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Given a continuous vector field λ(t, ·) of Sobolev class H 3
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the unit circle S1, the flow maps η = g(t, ·) of the differential 
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dη
dt

= λ(t, η)
η(0, ζ) = ζ
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curve g(t, ·) is in the Weil-Petersson class WP(S1) and 
is continuously differentiable with respect to the Hilbert 
manifold structure of WP(S1) introduced by Takhtajan-Teo 
[40]. The first assertion had already been demonstrated in our 
previous paper [36]. In this sequel to [36], we will continue to 
deal with the Weil-Petersson class WP(S1) and completely 
solve this conjecture in the affirmative.
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1. Introduction

This is a continuous work of our previous paper [36], where we presented some recent 
results on the Weil-Petersson geometry theory of the universal Teichmüller space, a 
topic which is important in Teichmüller theory and has wide applications to various 
areas such as mathematical physics (see [4]-[5], [18], [19], [27]-[28]), differential equation 
and computer vision (see [14], [15], [20]).

A sense-preserving homeomorphism g of the unit circle S1 onto itself is said to belong 
to the Weil-Petersson class, which is denoted by WP(S1), if it has a quasiconformal 
extension to the unit disk Δ whose Beltrami coefficient ν is square integrable in the 
Poincaré metric, namely,

∫∫
Δ

|ν(z)|2(1 − |z|2)−2dxdy < +∞. (1.1)

In an important paper [40], Takhtajan-Teo showed how to endow WP(S1) and its two 
close relatives, the Weil-Petersson Teichmüller space T0 = WP(S1)/Möb(S1) and the 
Weil-Petersson Teichmüller curve T̂0 = WP(S1)/ Rot(S1), with Hilbert manifold struc-
tures (see also [15], [36]). Here, Möb(S1) denotes the group of all Möbius transformations 
keeping the unit disk Δ fixed, while Rot(S1) denotes the sub-group of all rotations about 
the circle S1. In [36], we gave the following intrinsic characterization of a quasisymmet-
ric homeomorphism in the Weil-Petersson class WP(S1) without using quasiconformal 
extensions, which solves a problem proposed by Takhtajan-Teo in 2006. Recall that, for 
a function f defined on a subset Γ of the complex plane, f ′ denotes the derivative of f , 
namely, for z ∈ Γ,

f ′(z) .= lim
Γ�ζ→z

f(ζ) − f(z)
ζ − z

provided the limit exists, while f ′(z) .= 0 otherwise.

Theorem 1.1. ([36]) A sense-preserving homeomorphism g on the unit circle S1 belongs 
to the Weil-Petersson class WP(S1) if and only if g is absolutely continuous (with respect 
to the arc-length measure) such that log g′ belongs to the Sobolev class H 1

2 on the unit 
circle. Moreover, the correspondence g �→ log |g′| induces a homeomorphism from the 

Weil-Petersson Teichmüller curve T̂0 onto the real Sobolev space H
1
2
R/R.

It should be pointed out that the second assertion of Theorem 1.1 was stated in a 
different but an equivalent way in [36] (see Theorem 8.1 in [36]). The definition of Sobolev 
class will be given in the next section. In this paper, we will continue to deal with the 
Weil-Petersson class WP(S1). Recall that WP(S1) is modeled on the Sobolev space H

3
2 , 

namely, the tangent space to WP(S1) at the identity consists of precisely the H
3
2 vector 

fields λ on the unit circle (see [25], [40] and also [17]). We will be mainly concerned with 
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the flows of H 3
2 vector fields on the unit circle. It is known that the Weil-Petersson class 

WP(S1) can be generated by the flows of the H
3
2 vector fields on the unit circle (see [9], 

[15]). Here we consider the converse problem and prove the following result, completely 
solving a conjecture posed by Gay-Balmaz-Ratiu in the recent paper [15] (see page 760 
in [15] and also [9]).

Theorem 1.2. Let λ(t, ·) ∈ C0([0, M ], H 3
2 ) be a continuous vector field of Sobolev class 

H
3
2 on the unit circle S1. Then the flow curve η = g(t, ·) of the differential equation

{
dη
dt = λ(t, η)
η(0, ζ) = ζ

(1.2)

is in the Weil-Petersson class WP(S1) and is continuously differentiable with respect to 
the Hilbert manifold structure of WP(S1) such that

d

dt
g(t, ·) = λ(t, g(t, ·)). (1.3)

Recall that the first assertion in Theorem 1.2 was already proved by the author in 
[36]. In fact, we have proved

Theorem 1.3. ([36]) Under the assumption of Theorem 1.2, the flow curve g(t, ·) of the 
differential equation (1.2) satisfies log g′(t, ·) ∈ H

1
2 , which implies by Theorem 1.1 that 

the flow curve η = g(t, ·) is in the Weil-Petersson class WP(S1), and the mapping 
t �→ log g′(t, ·) from [0, M ] into H

1
2 is continuously differentiable such that

d

dt
log g′(t, ·) = λ′(t, g(t, ·)). (1.4)

Theorem 1.2 has several important consequences on the regularity of the Weil-
Petersson class WP(S1) and on the flows of the vector fields of Sobolev class H 3

2 on 
the unit circle S1 (see [15] and [36] for more details). It is also assumed to be useful to 
the further study of the geometry of the Weil-Petersson Teichmüller space T0. We hope 
to pursue this in a separated paper.

An open problem (see page 68 in [40]) is to give a geometric characterization of 
a Weil-Petersson quasi-circle, the image of the unit circle S1 under a quasiconformal 
mapping which is conformal outside the unit disk Δ and has Beltrami coefficient in Δ
satisfying (1.1). A partial answer to this problem was obtained by Gallardo-Gutiérrez, 
González, Pérez-González, Pommerenke and Rättyä [10]. A Weil-Petersson quasi-line is 
defined in the same way, namely, it is the image of the real line R under a quasiconformal 
mapping which is conformal on the lower plane U∗ and has Beltrami coefficient in the 
upper half plane U being square integrable in the Poincaré metric, that is, satisfying 
(2.1) below. In a forth-coming paper [39], we will endow the set of all Weil-Petersson 
quasi-lines (with certain normalized condition) with a real Hilbert manifold structure 
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from a geometric point of view and show that new manifold structure is topologically 
equivalent to the standard complex Hilbert manifold structure given by Takhtajan-Teo 
[40]. Theorem 2.3 in the next section will play an essential role in that work.

2. Weil-Petersson Teichmüller space on the real line

In this section, we give some basic definitions and results on the Weil-Petersson Te-
ichmüller space (see [36] and [40] for more details). As will be seen later, it is convenient 
to define the Weil-Petersson Teichmüller space and prove Theorem 1.2 in the setting of 
the real line R instead of the unit circle S1. Actually, as stated at the end of the first 
section, the results in the real line case, e.g. Theorems 2.2 and 2.3 below, turn out to be 
very useful to the study of geometric characterizations of Weil-Petersson quasi-lines (see 
[39]).

Let M(U) denote the open unit ball of the Banach space L∞(U) of essentially bounded 
measurable functions on the upper half plane U in the complex plane C. For μ ∈ M(U), 
let fμ be the unique quasiconformal mapping on U onto itself which has complex dilata-
tion μ and keeps the points 0, 1 and ∞ fixed. We say two elements μ and ν in M(U)
are equivalent, denoted by μ ∼ ν, if fμ = fν on the real line R. Then T = M(U)/∼ is 
known as the Bers model of the universal Teichmüller space. We let Φ denote the natural 
projection from M(U) onto T so that Φ(μ) is the equivalence class [μ]. [0] is called the 
base point of T . It is known that T has a unique complex Banach manifold structure 
such that the natural projection Φ from M(U) onto T is a holomorphic split submersion 
(see [11], [21], [22]).

We denote by L(U) the Banach space of all measurable functions μ with norm

‖μ‖WP
.= ‖μ‖∞ +

⎛
⎝ 1
π

∫∫
U

|μ(z)|2
y2 dxdy

⎞
⎠

1
2

, z = x + iy. (2.1)

Set M(U) = M(U) ∩ L(U). Then T0 = M(U)/∼ is the complex model of the Weil-
Petersson Teichmüller space. It is known that T0 has a unique complex Hilbert manifold 
structure such that the natural projection Φ from M(U) onto T0 is a holomorphic split 
submersion (see [40] and also [36]).

It is well known that a quasiconformal self-mapping of U induces a bi-holomorphic 
automorphism of the universal Teichmüller space (see [11], [21], [22]). Precisely, let w :
U → U be a quasiconformal mapping with complex dilatation μ. Then w induces an 
bi-holomorphic isomorphism Rw : M(U) → M(U) as

Rw(ν) =
(

ν − μ

1 − μ̄ν

∂w

∂w

)
◦ w−1. (2.2)

Rw descends down a bi-holomorphic isomorphism w∗ : T → T by w∗ ◦ Φ = Φ ◦ Rw. w∗

is usually called an allowable mapping. When w is quasi-isometric under the Poincaré 
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metric |dz|/y with Beltrami coefficient μ ∈ M(U), Rw maps M(U) into itself and 
w∗ : T0 → T0 is bi-holomorphic.

We denote by WP(R) the Weil-Petersson class of all increasing homeomorphisms h
of R onto itself which have quasiconformal extensions w to the upper half plane U
whose Beltrami coefficients μ belong to the class M(U). We also denote by WP0(R)
the sub-class of WP(R) of all mappings h with the normalized condition h(0) = 0, 
h(1) = 1. Then the correspondence [μ] �→ fμ|R induces a one-to-one map I from T0 onto 
the normalized Weil-Petersson class WP0(R), which endows WP0(R) with a complex 
Hilbert manifold structure (under which I is a bi-holomorphic isomorphism).

Recall that the Sobolev class H 1
2 (H

1
2
R) on the unit circle S1 or the real line R is the 

set of all locally integrable (real-valued) functions ϕ with

‖ϕ‖2
H

1
2

= 1
4π2

∫
S

∫
S

|ϕ(u) − ϕ(ũ)|2
|u− ũ|2 |du||dũ| < +∞, (2.3)

where S denotes the unit circle S1 or the real line R. We denote by H
3
2 (H

3
2
R) the class of 

all (real-valued) functions ϕ on the unit circle S1 or the real line R which are locally ab-
solutely continuous such that ϕ′ ∈ H

1
2 . As will be seen in section 8 (Theorem 8.1 below), 

the tangent space to WP0(R) at the identity consists of precisely the H
3
2 real-valued 

vector fields on the real line vanishing at the points 0 and 1.
We have the following result on the real line parallel to Theorem 1.2.

Theorem 2.1. Let ω(t, ·) ∈ C0([0, M ], H
3
2
R) be a continuous real-valued vector field on the 

real line R with the normalized condition ω(t, 0) = ω(t, 1) = 0. Then the flow curve 
u = h(t, ·) of the differential equation

{
du
dt = ω(t, u)
u(0, x) = x

(2.4)

is in the normalized Weil-Petersson class WP0(R) and is continuously differentiable with 
respect to the Hilbert manifold structure of WP0(R) such that

d

dt
h(t, ·) = ω(t, h(t, ·)). (2.5)

The following result plays an essential role in the proof of Theorem 2.1.

Theorem 2.2. Let h be an increasing and locally absolutely continuous homeomorphism 
from the real line onto itself such that logh′ belongs to the Sobolev class H 1

2 . Then h
belongs to the Weil-Petersson class WP(R). Moreover, the correspondence

u �→ hu : hu(x) =
∫ x

0 eu(t)dt∫ 1
0 eu(t)dt

, x ∈ R (2.6)
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induces a real analytic map Ψ from the real Sobolev space H
1
2
R/R into the normalized 

Weil-Petersson class WP0(R)(= I(T0)).

Since the logarithmic derivative is not invariant under a Möbius transformation, (the 
first assertion of) Theorem 2.2 can not be deduced from Theorem 1.1 directly. We will 
prove Theorem 2.2 by means of a construction due to Semmes (see [33]-[34]), which is 
largely different from the approach in our previous paper [36]. Theorem 2.2 only gives 
a sufficient condition for an increasing homeomorphism on the real line being in the 
Weil-Petersson class WP(R). We have shown in a separated paper (see [38]) that this 
sufficient condition is also a necessary one. Consequently, Ψ is a one-to-one analytic map 

from the real Sobolev space H
1
2
R/R onto the normalized Weil-Petersson class WP0(R). 

We will show that the inverse map Ψ−1 is also real analytic.

Theorem 2.3. Ψ is a one-to-one analytic map from the real Sobolev space H
1
2
R/R onto 

the normalized Weil-Petersson class WP0(R) whose inverse Ψ−1 is also real analytic.

Remark 2.1. Here is an appropriate place to point out why we first prove our main results 
in the real line case and then come back to the unit circle case. As will be seen later, the 
main effort of the paper is to prove the real analyticity of the map sending an H

1
2 function 

to a Weil-Petersson homeomorphism. The proof is based on an important instruction due 
to Semmes [34], which is available on the real line but not on the unit circle. On the 
other hand, we have a program to study the Weil-Petersson Teichmüller space from 
several points of view. In the forth-coming work [39], we will study how the Riemann 
mapping depends on a Weil-Petersson quasi-line. In [39] we need the Weil-Petersson 
theory on the real line parallel to the unit circle case, which will be carried out in the 
present paper. Theorem 2.3 implies that the normalized Weil-Petersson class WP0(R), 
the real model of the Weil-Petersson Teichmüller space T , can be endowed with a real 
Hilbert manifold structure from H

1
2
R/R by the correspondence h �→ log h′, which is real 

analytically equivalent to the standard complex Hilbert manifold structure on T given 
by Takhtajan-Teo [40]. This fact will play an important role in the sequel [39].

3. BMO functions

In order to prove Theorem 2.2, we need a construction concerning quasiconformal 
extensions of strongly quasisymmetric homeomorphisms introduced by Semmes [33]-[34], 
which relies heavily on BMO estimates (see section 4 below). In this section we recall 
some basic definitions and results on BMO functions (see [13]).

A locally integrable function u ∈ L1
loc(R) is said to have bounded mean oscillation 

and belongs to the space BMO if

‖u‖BMO
.= sup 1

|I|

∫
I

|u(t) − uI |dt < +∞, (3.1)
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where the supremum is taken over all finite sub-intervals I of R, while uI is the average 
of u on the interval I, namely,

uI = 1
|I|

∫
I

u(t)dt. (3.2)

If u also satisfies the condition

lim
|I|→0

1
|I|

∫
I

|u(t) − uI |dt = 0,

we say u has vanishing mean oscillation and belongs to the space VMO. We can define 
BMO functions and VMO functions on the unit circle in a similar way. It is well known 
that H 1

2 ⊂ VMO, and the inclusion map is continuous (see [42]). In the following, we 
denote by BMOR the set of all real-valued BMO functions.

We need some basic results on BMO functions. For simplicity, we fix some notations. 
C, C1, C2 · · · will denote universal constants that might change from one line to another, 
while C(·), C1(·), C2(·) · · · will denote constants that depend only on the elements put in 
the brackets. The notation A � B means that there is a positive constant C independent 
of A and B such that A/C ≤ B ≤ CA. The notation A � B (A � B) means that there 
is a positive constant C independent of A and B such that A ≤ CB (A ≥ CB). By 
the well-known theorem of John-Nirenberg for BMO functions (see [13]), there exist two 
universal positive constants C1 and C2 such that for any BMO function u, any subinterval 
I of R and any λ > 0, it holds that

|{t ∈ I : |u(t) − uI | ≥ λ}|
|I| ≤ C1 exp

(
−C2λ

‖u‖BMO

)
. (3.3)

By Chebychev’s inequality, we obtain that for u with ‖u‖BMO < C2,

1
|I|

∫
I

(e|u−uI | − 1)dt = 1
|I|

∞∫
0

|{t ∈ I : |u− uI | ≥ λ}| d(eλ − 1)

≤ C1

∞∫
0

eλ exp
(

−C2λ

‖u‖BMO

)
dλ (3.4)

≤ C1‖u‖BMO

C2 − ‖u‖BMO
.

Similarly, for any p ≥ 1 we have

1
|I|

∫
I

|u− uI |pdt � C(p)‖u‖pBMO. (3.5)



8 Y. Shen, S. Tang / Advances in Mathematics 359 (2020) 106891
Lemma 3.1. Let φ be a C∞ function on the real line which is supported on [−1, 1] and 
satisfies 

∫
R φ(x)dx = 1. Set φy(x) = y−1φ(y−1x) for y > 0, and

φy ∗ v(x) =
∫
R

φy(x− t)v(t)dt. (3.6)

Then it holds that

|φy ∗ eu| � |eφy∗u| (3.7)

when ‖u‖BMO is small.

Proof. Lemma 3.1 appears in [34]. For completeness and for convenience of later use, 
we write down the detailed proof here. Actually, besides Lemma 3.1 itself, the following 
inequalities (3.8) and (3.9) will also be used in the proof of Theorem 2.2.

For x ∈ R and y > 0, consider I = [x − y, x + y] so that

uI = 1
2y

x+y∫
x−y

u(t)dt.

Since 
∫
R φ(x)dx = 1, which implies that 

∫
R φy(x)dx = 1, we obtain

|φy ∗ u(x) − uI | = |φy ∗ (u− uI)(x)| ≤ C(φ) 1
|I|

∫
I

|u(t) − uI |dt � ‖u‖BMO. (3.8)

Since |ez − 1| ≤ |zez| ≤ |z|e|z|, we have

1
|I|

∫
I

|eu(t)−φy∗u(x) − 1|dt ≤ 1
|I|

∫
I

|eu(t)−φy∗u(x)||u(t) − φy ∗ u(x)|dt

≤ |euI−φy∗u(x)|
|I|

∫
I

|eu(t)−uI |(|u(t) − uI | + |uI − φy ∗ u(x)|dt.

Using Hölder inequality, we conclude from (3.4), (3.5) and (3.8) that

1
|I|

∫
I

|eu(t)−φy∗u(x) − 1|dt � ‖u‖BMO (3.9)

when ‖u‖BMO is small. Noting that

φy ∗ eu(x) − eφy∗u(x) = eφy∗u(x)φy ∗ (eu−φy∗u(x) − 1)(x),
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we obtain

|φy ∗ eu(x) − eφy∗u(x)| = |eφy∗u(x)||φy ∗ (eu−φy∗u(x) − 1)(x)|

� |eφy∗u(x)|
|I|

∫
I

|eu(t)−φy∗u(x) − 1|dt,

which implies by (3.9) the required relation (3.7). �
4. Semmes’ construction revisited

We begin this section with a basic result of Coifman-Meyer [6]. For u ∈ BMO on the 
real line, set

γu(x) =
∫ x

0 eu(t)dt∫ 1
0 eu(t)dt

, x ∈ R. (4.1)

Coifman-Meyer [6] showed that γu is a strongly quasisymmetric homeomorphism from 
the real line R onto a chord-arc curve Γu = γu(R) when ‖u‖BMO is small. If, in addition, 
u is real-valued, then γu is a strongly quasisymmetric homeomorphism of R onto itself. 
Recall that a sense preserving homeomorphism h on R is strongly quasisymmetric if it is 
locally absolutely continuous so that |h′| belongs to the class of weights A∞ introduced 
by Muckenhoupt (see [13]) and it maps R onto a chord-arc curve passing through the 
point at infinity (see [34]).

In an important paper [34], Semmes showed that, when ‖u‖BMO is small, γu can be 
extended to a quasiconformal mapping to the whole plane whose Beltrami coefficient 
satisfies certain Carleson measure condition. To be precise, let ϕ and ψ be two C∞

real-valued function on the real line supported on [−1, 1] such that ϕ is even, ψ is odd 
and 

∫
R ϕ(x)dx = 1, 

∫
R ψ(x)xdx = 1. Define

ρ(x, y) = ρu(x, y) = ϕy ∗ γu(x) − iψy ∗ γu(x), z = x + iy ∈ U . (4.2)

Semmes proved that ρ is a quasiconformal mapping from the upper half plane U onto the 
left domain bounded by Γu when ‖u‖BMO is small. Furthermore, when u is real-valued, 
ρ is a quasiconformal mapping of U onto itself and is quasi-isometric under the Poincaré 
metric |dz|/y. In fact, there exist two C∞ functions α and β on the real line which are 
supported on [−1, 1] and satisfy 

∫
R α(x)dx = 0, 

∫
R β(x)dx = 1 such that

∂ρ(z) = αy ∗ eu(x), ∂ρ(z) = βy ∗ eu(x), z = x + iy ∈ U . (4.3)

It follows from Lemma 3.1 that the Beltrami coefficient μ of ρ satisfies
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|μ(z)| = |∂ρ(z)|
|∂ρ(z)| = |αy ∗ eu(x)|

|βy ∗ eu(x)|

� |αy ∗ eu(x)|
|eβy∗u(x)|

= |αy ∗ eu−βy∗u(x)(x)|
= |αy ∗ (eu−βy∗u(x) − 1)(x)| (4.4)

� 1
2y

x+y∫
x−y

|eu(t)−βy∗u(x) − 1)|dt

� ‖u‖BMO

if ‖u‖BMO is small, by (3.9).

5. Proof of Theorem 2.2 (first part)

We first prove the following result.

Lemma 5.1. There exists some universal constant δ > 0 such that, for any u ∈ H
1
2 with 

‖u‖
H

1
2

< δ, the mapping ρ = ρu defined by (4.2) is quasiconformal whose Beltrami 
coefficient μ satisfies ‖μ‖WP � ‖u‖

H
1
2

and thus belongs to the class M(U).

Proof. By the continuity of the inclusion H
1
2 → BMO, we conclude that there exists 

some universal constant δ > 0 such that, for any u ∈ H
1
2 with ‖u‖ 1

2
< δ, the mapping 

ρ = ρu defined by (4.2) is quasiconformal. It remains to show that μ ∈ M(U).
For z = x + iy ∈ U , set I = [x − y, x + y] as before so that

uI = 1
2y

x+y∫
x−y

u(t)dt.

Noting that 
∫
R α(x)dx = 0, and |ez − 1| ≤ |zez| ≤ |z|e|z|, we conclude by (4.3) that

|∂ρ(z)| = |αy ∗ eu(x)| =

∣∣∣∣∣∣
∫
R

αy(x− t)eu(t)dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
R

αy(x− t)(eu(t) − eu(x))dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

αy(x− t)(eu(t)−u(x) − 1)eu(x)dt

∣∣∣∣∣∣

R
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≤
∫
R

|αy(x− t)||u(t) − u(x)||eu(t)|dt

� 1
|I|

∫
I

|u(t) − u(x)||eu(t)|dt.

On the other hand, since 
∫
R β(x)dx = 1, we conclude by Lemma 3.1 and (4.3) that

|∂ρ(z)| = |βy ∗ eu(x)| � |eβy∗u(x)|.

Thus,

|μ(z)| = |∂ρ(z)|
|∂ρ(z)| �

1
|I|

∫
I

|u(t) − u(x)||eu(t)−βy∗u(x)|dt.

By Hölder inequality, we conclude by (3.9) that

|μ(z)|2 � 1
|I|2

∫
I

|u(t) − u(x)|2dt
∫
I

|eu(t)−βy∗u(x)|2dt

� 1
|I|

∫
I

|u(t) − u(x)|2dt (5.1)

� 1
y

y∫
−y

|u(t + x) − u(x)|2dt.

Consequently,

∫∫
U

|μ(z)|2
y2 dxdy �

∫∫
U

y∫
−y

|u(t + x) − u(x)|2
y3 dtdxdy

=
+∞∫

−∞

dx

+∞∫
0

dy

y3

y∫
−y

|u(t + x) − u(x)|2dt

=
+∞∫

−∞

dx

+∞∫
0

dy

y3

y∫
0

(|u(x + t) − u(x)|2 + |u(x− t) − u(x)|2)dt

=
+∞∫

−∞

dx

+∞∫
0

(|u(x + t) − u(x)|2 + |u(x− t) − u(x)|2)dt
+∞∫
t

dy

y3 (5.2)

=
+∞∫

dx

+∞∫ |u(x + t) − u(x)|2 + |u(x− t) − u(x)|2
2t2 dt
−∞ 0
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=
+∞∫

−∞

dx

+∞∫
−∞

|u(x + t) − u(x)|2
2t2 dt

� ‖u‖2
H

1
2
. �

Corollary 5.1. Let h be an increasing and locally absolutely continuous homeomorphism 
from the real line onto itself such that ‖ log h′‖

H
1
2

< δ. Then h can be extended to 
a quasiconformal mapping to the upper half plane which is quasi-isometric under the 
Poincaré metric |dz|/y and has Beltrami coefficient in M(U). In particular, h belongs 
the Weil-Petersson class WP(R).

To prove (the first part of) Theorem 2.2, we will decompose a homeomorphism h with 
finite ‖ log h′‖

H
1
2

into homeomorphisms hj with small norms ‖ log h′
j‖H 1

2
. We need some 

preliminary results. The first is about the pull-back operator induced by a quasisymmet-
ric homeomorphism. Recall that an increasing homeomorphism h from the real line onto 
itself is said to be quasisymmetric if there exists a (least) positive constant C(h), called 
the quasisymmetric constant of h, such that |h(I1)| ≤ C(h)|h(I2)| for all pairs of adjacent 
intervals I1 and I2 on R with the same length |I1| = |I2|. A strongly quasisymmetric 
homeomorphism is obviously quasisymmetric. We have the following well-known result.

Proposition 5.1. ([3], [24]) Let h be an increasing homeomorphism h from the real line 
onto itself. Then the pull-back operator Ph defined by Phu = u ◦ h is a bounded operator 
from H

1
2 into itself if and only if h is quasisymmetric.

Lemma 5.2. Let h be an increasing and locally absolutely continuous homeomorphism 
from the real line onto itself such that ‖ log h′‖

H
1
2
< ∞. Then h is strongly quasisym-

metric.

Proof. Consider the Cayley transformation γ(z) = z−i
z+i from the upper half plane U

onto the unit disk Δ. Since logh′ is in H
1
2 on the real line, log h′ ◦ γ−1 is in H

1
2 on the 

unit circle and consequently in VMO on the unit circle, which implies that log h′ ◦ γ−1

can be approximated by a sequence of bounded functions (un) on the unit circle under 
the BMO norm (see [13]). Thus, log h′ can be approximated by the bounded functions 
un ◦ γ on the real line under the BMO norm. By Lemma 1.4 in [26] stating that an 
increasing and locally absolutely continuous homeomorphism g from the real line onto 
itself is strongly quasisymmetric if log g′ can be approximated by bounded functions on 
the real line under the BMO norm, we conclude that h is strongly quasisymmetric. �
Proof of Theorem 2.2 (first part). Let h be an increasing and locally absolutely continu-
ous homeomorphism from the real line onto itself such that logh′ belongs to the Sobolev 
class H 1

2 . Without loss of generality, we assume h(0) = 0. For each real number t ∈ [0, 1], 
set
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ht(x) =
x∫

0

(h′(s))tds, x ∈ R. (5.3)

Then ht is an increasing and locally absolutely continuous homeomorphism from the real 
line onto itself with h0 = id, h1 = h, and log h′

t = t log h′, which implies by Lemma 5.2
that ht is strongly quasisymmetric. Noting that for any fixed t ∈ [0, 1],

‖ log(hs ◦ h−1
t )′‖

H
1
2

= ‖(log h′
s − log h′

t) ◦ h−1
t ‖

H
1
2

= |s− t|‖P−1
ht

log h′‖
H

1
2
,

we conclude by Proposition 5.1 that there exists a neighborhood It such that ‖ log(hs ◦
h−1
t )′‖

H
1
2
< δ when s ∈ It. By compactness, we conclude that there exists a sequence of 

finite numbers 0 = t0 < t1 < t2 < · · · < tn < tn+1 = 1 such that ‖ log(htj◦h−1
tj+1

)′‖
H

1
2
< δ

for j = 0, 1, 2, · · · , n − 1, n. Since WP(R) is a group,1 and

h−1 = (ht0 ◦ h−1
t1 ) ◦ (ht1 ◦ h−1

t2 ) ◦ · · · ◦ (htn ◦ h−1
tn+1

),

we conclude by Corollary 5.1 that h ∈ WP(R). �
6. Proof of Theorem 2.2 (second part) and Theorem 2.3

Lemma 6.1. Let H
1
2
δ = {u ∈ H

1
2 : ‖u‖

H
1
2

< δ}, where δ is the universal constant 

obtained in Lemma 5.1. For u ∈ H
1
2
δ , let Λ(u) denote the Beltrami coefficient for the 

quasiconformal mapping ρu defined by (4.2). Then Λ : H
1
2
δ → M(U) is holomorphic.

Proof. Since Λ is bounded in H
1
2
δ , it is sufficient to show that, for each fixed pair of (u, v)

with u ∈ H
1
2
δ , v ∈ H

1
2 , Λ̃(t) .= Λ(u + tv) is holomorphic in a small neighborhood of t = 0

in the complex plane. To do so, choose

0 < ε <
δ − ‖u‖

H
1
2

2‖v‖
H

1
2

so that u + tv ∈ H
1
2
δ when |t| ≤ 2ε. We conclude by (4.3) that Λ̃(t)(z) is holomorphic in 

|t| ≤ 2ε for fixed z ∈ U . For |t0| < ε, |t| < ε, Cauchy formula yields that

∣∣∣∣∣ Λ̃(t)(z) − Λ̃(t0)(z)
t− t0

− d

dt
|t=t0Λ̃(t)(z)

∣∣∣∣∣ = |t− t0|
2π

∣∣∣∣∣∣∣
∫

|ζ|=2ε

Λ̃(ζ)(z)
(ζ − t)(ζ − t0)2

dζ

∣∣∣∣∣∣∣
1 Cui [7] first proved that WP(S1), WP(S1)/ Rot(S1) and WP(S1)/Möb(S1) are all groups (see also [40]). 

This can also be seen by means of Theorem 1.1 and Proposition 5.1. Consider the Cayley transformation 
γ(z) = z−i

z+i from the upper half plane U onto the unit disk Δ. Then the correspondence g �→ h = γ−1 ◦g◦γ
induces a one-to-one from WP(S1)/ Rot(S1) onto WP(R) when WP(S1)/ Rot(S1) is considered as the 
sub-class of WP(S1) of all mappings h with h(1) = 1. This already implies that WP(R) is also a group.
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≤ |t− t0|
2πε3

∫
|ζ|=2ε

|Λ̃(ζ)(z)||dζ|.

Thus, by (4.4),
∥∥∥∥∥ Λ̃(t) − Λ̃(t0)

t− t0
− d

dt
|t=t0Λ̃(t)

∥∥∥∥∥
∞

≤ |t− t0|
2πε3

∫
|ζ|=2ε

‖Λ̃(ζ)‖∞|dζ| ≤ C(u, v)|t− t0|,

and by (5.2),

∫∫
U

1
y2

∣∣∣∣∣ Λ̃(t)(z) − Λ̃(t0)(z)
t− t0

− d

dt
|t=t0Λ̃(t)(z)

∣∣∣∣∣
2

dxdy

≤ |t− t0|2
4π2ε6

∫∫
U

1
y2

⎛
⎜⎝ ∫
|ζ|=2ε

|Λ̃(ζ)(z)||dζ|

⎞
⎟⎠

2

dxdy

≤ |t− t0|2
πε5

∫∫
U

∫
|ζ|=2ε

|Λ̃(ζ)(z)|2
y2 |dζ|dxdy

= |t− t0|2
πε5

∫
|ζ|=2ε

∫∫
U

|Λ̃(ζ)(z)|2
y2 dxdy|dζ|

� C(u, v)|t− t0|2.

Consequently, the limit

lim
t→t0

Λ̃(t) − Λ̃(t0)
t− t0

= d

dt
|t=t0Λ̃(t)

exists in M(U) and Λ : H
1
2
δ → M(U) is holomorphic. �

To complete the proof of (the second part of) of Theorem 2.2, we need to use the 
allowable maps introduced in section 2. Let h0 ∈ WP0(R) be a normalized mapping in 
the Weil-Petersson class. Then g0 = γ ◦ h0 ◦ γ−1 belongs to the Weil-Petersson class 
WP(S1) on the unit circle, where γ(z) = z−i

z+i is the Cayley transformation from the 
upper half plane U onto the unit disk Δ. Cui [7] showed that the Douady-Earle [8]
extension DE(g0) of g0 is a quasiconformal mapping of the unit disk onto itself whose 
Beltrami coefficient satisfies the condition (1.1). Set w0 = γ−1 ◦ DE(g0) ◦ γ. Then w0
is a quasiconformal extension of h0 with Beltrami coefficient μ0 ∈ M(U). Since the 
Douady-Earle extension DE(g0) is quasi-isometric under the Poincaré metric |dz|/(1 −
|z|2) (see [8]), w0 is quasi-isometric under the Poincaré metric |dz|/y. Thus w0 induces an 
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allowable map w∗
0 : T0 → T0 which is a bi-holomorphic isomorphism. Now h0 induces a 

one-to-one mapping Rh0 : WP0(R) → WP0(R) which sends h to h ◦h−1
0 . Clearly, it holds 

that I ◦ w∗
0 = Rh0 ◦ I, which implies that Rh0 : WP0(R) → WP0(R) is bi-holomorphic. 

On the other hand, when log h′
0 ∈ H

1
2
R , h0 also induces a bi-holomorphic isomorphism 

Lh0 : H 1
2 /C → H

1
2 /C defined by

Lh0u = (u− log h′
0) ◦ h−1

0 .

When restricted to H
1
2
R/R, both Lh0 and its inverse are real analytic. Clearly, Rh0 :

WP0(R) → WP0(R) and Lh0 : H
1
2
R/R → H

1
2
R/R are related by Rh0 ◦ Ψ = Ψ ◦ Lh0 . 

Summarizing these, we obtain

Lemma 6.2. In order to prove that Ψ : H
1
2
R/R → WP0(R) is real analytic, it is sufficient 

to show that Ψ is real analytic near the base point.

Proof of Theorem 2.2 (second part). Since Ψ = I ◦Φ ◦Λ on (H
1
2
δ ∩H

1
2
R)/R, we conclude 

by Lemma 6.1 that Ψ is real analytic near the base point. Combining this with Lemma 6.2
completes the proof of Theorem 2.2. A direct computation shows that the differential of 
Ψ at a point u ∈ H

1
2
R/R is the linear operator

v �→ 1(∫ 1
0 eu(t)dt

)2

⎛
⎝ 1∫

0

eu(t)dt

x∫
0

eu(t)v(t)dt−
1∫

0

eu(t)v(t)dt
x∫

0

eu(t)dt

⎞
⎠ (6.1)

for v ∈ H
1
2
R/R. �

Proof of Theorem 2.3. As stated in section 2, Ψ is a one-to-one map from the real 
Sobolev space H

1
2
R/R onto the normalized Weil-Petersson class WP0(R). Now Ψ is real 

analytic, and its derivative duΨ : H
1
2
R/R → H

3
2
R(0, 1) ◦Ψ(u) is given by the linear opera-

tor (6.1). Here, H
3
2
R(0, 1) is the set of all real-valued H

3
2 -functions ω with the normalized 

conditions ω(0) = ω(1) = 0. Recall that H
3
2
R(0, 1) is the tangent space at the base point 

of the normalized Weil-Petersson class WP0(R) (see Theorem 8.1 below), which im-
plies that H

3
2
R(0, 1) ◦ Ψ(u) is the tangent space at the point Ψ(u) of WP0(R). Clearly, 

duΨ : H
1
2
R/R → H

3
2
R(0, 1) ◦ Ψ(u) is invertible. In fact, for each ω ∈ H

3
2
R(0, 1) ◦ Ψ(u),

(duΨ)−1ω(x) =

⎛
⎝ 1∫

0

eu(t)dt

⎞
⎠ ω′(x)

eu(x) , x ∈ R. (6.2)

Now the invertibility of duΨ implies that the inverse mapping Ψ−1 is also real analytic 
by the implicit function theorem. �
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Remark 6.1. Theorem 2.3 says that, with the standard real Hilbert manifold structure of 
H

1
2
R/R, Ψ is a one-to-one analytic map from H

1
2
R/R onto the normalized Weil-Petersson 

class WP0(R) whose inverse Ψ−1 is also real analytic. Therefore, there exists a unique 

complex Hilbert manifold structure on H
1
2
R/R such that Ψ is a bi-holomorphism from 

H
1
2
R/R onto WP0(R). This complex Hilbert manifold structure on H

1
2
R/R can be assigned 

as follows. For u ∈ H
1
2
R/R, define

hu(x) =
∫ x

0 eu(t)dt∫ 1
0 eu(t)dt

, x ∈ R

as before. By the well-known conformal sewing principle (see [1], [21], [22], [36], [40]), 
there exists a pair of quasiconformal mappings fu, gu on the whole plane C which satisfies 
the following properties:

(1) Both fu and gu fix the points 0, 1, and ∞;
(2) fu = gu ◦ hu on the real line;
(3) fu is conformal in the lower half plane U∗, with Beltrami coefficient μ1 in U being 

square integrable in the Poincaré metric, that is, μ1 ∈ M(U);
(4) gu is conformal in the upper half plane U , with Beltrami coefficient μ2 in U∗ being 

square integrable in the Poincaré metric, that is, μ2 ∈ M(U∗).2
Let D(U∗) denote the Dirichlet space of functions φ holomorphic in U∗ with semi-norm

‖φ‖D(U∗)
.=

⎛
⎝ 1
π

∫∫
U∗

|φ′(z)|2dxdy

⎞
⎠

1
2

.

Then the correspondence u �→ log f ′
u induces a one-to-one map from H

1
2
R/R onto a con-

nected open subset in D(U∗)/C, which endows H
1
2
R/R with a complex Hilbert manifold 

structure. Under this complex Hilbert manifold structure, Ψ is a bi-holomorphism from 

H
1
2
R/R onto WP0(R). For more details, see [40] and also [36]. Theorem 2.3 says that 

this complex Hilbert manifold structure on H
1
2
R/R is compatible with the standard real 

Hilbert manifold structure H
1
2
R/R, which is obtained by the standard way under the 

semi-norm (2.3).

7. Proof of Theorems 1.2 and 2.1

We first point out the following analogous result to Theorem 1.3. A detailed proof can 
be found in our paper [16].

2 M(U∗) can be defined in the same manner as M(U).
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Theorem 7.1. Under the assumption of Theorem 2.1, the flow curve h(t, ·) of the dif-
ferential equation (2.3) satisfies log h′(t, ·) ∈ H

1
2
R and the mapping t �→ log h′(t, ·) from 

[0, M ] into H
1
2
R is continuously differentiable such that

d

dt
log h′(t, ·) = ω′(t, h(t, ·)). (7.1)

Proof of Theorem 2.1. Since the vector field ω(t, ·) satisfies the normalized condition 
ω(t, 0) = ω(t, 1) = 0, the flow curve h(t, ·) of the differential equation (2.4) satisfies 
the condition h(t, 0) = h(t, 1) − 1 = 0. Then it holds that h(t, ·) = Ψ(log h′(t, ·)). Con-
sequently, h(t, ·) is in the normalized Weil-Petersson class WP0(R) and is continuously 
differentiable with respect to the Hilbert manifold structure of WP0(R) by Theorems 2.2
and 7.1. Now since h(t, ·) is a smooth curve in the Weil-Petersson class WP0(R), we have

(
d

dt
h(t, ·)

)
(x) = ∂

∂t
(h(t, x)),

which implies (2.5) from (2.4). �
Proof of Theorem 1.2. Without loss of generality, we may assume that the vector field 
λ(t, ·) satisfies the normalized condition λ(t, 1) = λ(t, −1) = λ(t, −i) = 0 so that the 
flow curve g(t, ·) of the differential equation (1.2) satisfies the condition g(t, 1) = 1, 
g(t, −1) = −1, g(t, −i) = −i. Consider as above the Cayley transformation γ(z) = z−i

z+i

from the upper half plane U onto the unit disk Δ. Set

ω(t, u) = λ(t, γ(u))
γ′(u) , u ∈ R, (7.2)

and

h(t, x) = γ−1 ◦ g(t, γ(x)), x ∈ R. (7.3)

By Corollary 8.1 below, we see that ω(t, ·) ∈ C0([0, M ], H
3
2
R) is a continuous real-valued 

vector field on the real line R with ω(t, 0) = ω(t, 1) = 0. A direct computation yields 
that h(t, ·) is the flow curve of the differential equation

{
du
dt = ω(t, u)
u(0, x) = x.

By Theorem 2.1, h(t, ·) is in the normalized Weil-Petersson class WP0(R) and is con-
tinuously differentiable with respect to the Hilbert manifold structure of WP0(R) such 
that
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d

dt
h(t, ·) = ω(t, h(t, ·)). (7.4)

Noting that the correspondence g �→ h = γ−1 ◦ g ◦ γ is a real analytic diffeomor-
phism from T0 = WP(S1)/Möb(S1) onto WP0(R), we conclude that g(t, ·) is in 
T0 = WP(S1)/Möb(S1) and is continuously differentiable with respect to the Hilbert 
manifold structure of T0 = WP(S1)/Möb(S1). Finally, (1.3) follows from (1.2) immedi-
ately. �
8. Appendix: on the tangent space to WP0(R)

The tangent space to the universal Teichmüller space is well understood (see [11], 
[12], [23], [32]). In this section, we will deal with the tangent space to the Weil-Petersson 
Teichmüller space, showing some results which have been used in previous sections and 
have independent interests of their own.

Recall that a complex-valued function F defined in a domain Ω is called a quasicon-
formal deformation (abbreviated to q.d.) if it has the generalized derivative ∂̄F such 
that ∂̄F ∈ L∞(Ω). There are several reasons for being interested in quasiconformal 
deformations because of their close relation with quasiconformal mappings and Teich-
müller spaces (see [1], [11], [12], [22], [32], [41]) and also of their own interests (see [2], 
[17], [29]-[30], [31], [35], [37]). The notion of quasiconformal deformation is also closely 
related to the Zygmund class Λ∗ in the usual sense (see [43]). Reich-Chen [31] proved 
that any Zygmund function g ∈ Λ∗ on the unit circle has a quasiconformal deformation 
extension to the unit disk and conversely, any continuous function g on the unit circle 
which has a quasiconformal deformation extension to the unit disk must belong to the 
Zygmund class Λ∗ if g also satisfies the condition �η̄g(η) = 0 for all η ∈ S1. We will 
need the following result. A proof of Proposition 8.1 may be founded in our paper [17].

Proposition 8.1. Let g be a continuous function on the unit circle with the normalized 
condition �w̄g(w) = 0 on S1. Then g ∈ H

3
2 if and only if g can be extended to a 

quasiconformal deformation g̃ to the unit disk so that

∫∫
Δ

|∂̄g̃(w)|2(1 − |w|2)−2dudv < +∞. (8.1)

Proposition 8.1 implies that the tangent space to WP(S1) at the identity consists of 
precisely the H

3
2 vector fields λ on the unit circle (see [25], [40] and also [17]), a fact 

which was already pointed out in section 1. In this section, we will prove the following 
analogous result.

Theorem 8.1. The tangent space to WP0(R) at the identity consists of precisely the H
3
2

real-valued vector fields f on the real line with the normalized condition f(0) = f(1) = 0.
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By the standard Ahlfors-Bers theory of quasiconformal mappings, Theorem 8.1 follows 
from the following result immediately.

Theorem 8.2. Let f be a real-valued continuous function on the real line. Then f ∈ H
3
2

if and only if f can be extended to a quasiconformal deformation f̃ to the upper half 
plane so that f̃(z) = o(z2) as z → ∞ and

∫∫
U

|∂̄f̃(z)|2y−2dxdy < +∞, z = x + iy. (8.2)

We sketch the standard proof how Theorem 8.1 is deduced from Theorem 8.2 (see 
[12], [41]). Suppose we are given a curve of Weil-Petersson class mappings ht(x) (t > 0
is small) normalized to fix 0 and 1, which is the identity for t = 0 and differentiable with 
respect to t for the Hilbert manifold structure on WP0(R) = I(T0). Denote

ht(x) = x + tf(x) + o(t), t → 0.

Since the natural projection Φ:M(U) → T0 is a holomorphic split submersion, we con-
clude that there is a differentiable curve of Beltrami coefficients νt ∈ M(U) such that 
ht is the restriction to the real line of the normalized quasiconformal mapping fνt

. Now 
there exists some μ ∈ L(U) such that

νt = tμ + o(t).

Consequently,

fνt
(z) = z + tḟ [μ](z) + o(t), t → 0.

Here ḟ [μ] satisfies the normalized conditions ḟ [μ](0) = ḟ [μ](1) = 0, ḟ [μ](z) = o(z2) as 
z → ∞, and is uniquely determined by the condition ∂ḟ [μ] = μ (see [12]). Noting that 
f = ḟ [μ]|R, we conclude by Theorem 8.2 that f ∈ H

3
2 .

Conversely, suppose we are given a function f ∈ H
3
2 satisfying the normalized condi-

tion f(0) = f(1) = 0. By Theorem 8.2 again, we deduce that f can be extended to the 
upper half plane to a quasiconformal deformation f̃ with ∂−derivative μ = ∂f̃ ∈ L(U)
and f̃(z) = o(z2) as z → ∞. Set μt = tμ for small t > 0. Then

fμt
(z) = z + tḟ [μ](z) + o(t), t → 0.

Noting that both ḟ [μ] and f̃ satisfy the normalized conditions ḟ [μ](0) = ḟ [μ](1) = 0, 
ḟ [μ](z) = o(z2) as z → ∞, and have the same ∂-derivative μ, we conclude that ḟ [μ] = f̃ . 
Then,

fμt
(z) = z + tf̃(z) + o(t), t → 0.
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Set ht = fμt
|R. Then it holds that

ht(x) = x + tf(x) + o(t), t → 0,

which implies that ht is a differentiable curve in WP0(R) = I(T0) with the tangent 
vector f .

Before giving the proof of Theorem 8.2, we point out the following corollary, which 
was already used in the proof of Theorem 1.2.

Corollary 8.1. Let g be a continuous function on the unit circle with the normalized 
conditions g(1) = 0, and �w̄g(w) = 0, and γ(z) = z−i

z+i be the Cayley transformation 
from the upper half plane U onto the unit disk Δ. Set f = (g ◦ γ)/γ′ so that f is a 
continuous real-valued function on the real line with the normalized condition f(x) =
o(x2) as x → ∞. Then g ∈ H

3
2 on S1 if and only if f ∈ H

3
2 on R.

Proof. For a q.d. extension g̃ of g, f̃ = (g̃ ◦ γ)/γ′ is a q.d. extension of f with the 
normalized condition f̃(z) = o(z2) as z → ∞, and vice versa. Moreover, it holds that

∂̄f̃ = (∂̄g̃ ◦ γ)γ
′

γ′ .

Since ∂̄g̃ satisfies (8.1) if and only if ∂̄f̃ satisfies (8.2), this corollary follows directly from 
Proposition 8.1 and Theorem 8.2. �

Now we begin to prove Theorem 8.2. We first recall the following well-known result 
(see [42]).

Proposition 8.2. Let φ be analytic in the unit disk. Then it holds that
∫∫
Δ

|φ(w)|2dudv � |φ(0)|2 +
∫∫
Δ

|φ′(w)|2(1 − |w|2)2dudv. (8.3)

We show that a similar result also holds on the upper half plane.

Proposition 8.3. Let ψ be analytic in the upper half plane with ψ(∞) = 0. Then it holds 
that ∫∫

U

|ψ(z)|2dxdy �
∫∫
U

|ψ′(z)|2y2dxdy, z = x + iy. (8.4)

Proof. Suppose first that 
∫∫

U |ψ(z)|2dxdy < +∞. Let γ(z) = z−i
z+i be the Cayley 

transformation from the upper half plane U onto the unit disk Δ as before. Set 
φ = (ψ ◦ γ−1)(γ−1)′. Noting that
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φ′ = (ψ′ ◦ γ−1)(γ−1)′2 + ψ ◦ γ−1(γ−1)′′,

we obtain by Proposition 8.2 that

∫∫
U

|ψ′(z)|2y2dxdy

=
∫∫
Δ

|(ψ′ ◦ γ−1)(γ−1)′2|2(1 − |w|2)2dudv

�
∫∫
Δ

(|φ′|2 + |ψ ◦ γ−1(γ−1)′′|2)(1 − |w|2)2dudv

�
∫∫
Δ

(|φ′(w)|2(1 − |w|2)2 + |φ(w)|2)dudv

�
∫∫
Δ

|φ(w)|2dudv

=
∫∫
U

|ψ(z)|2dxdy.

Here we have used the relation

(γ−1)′′

(γ−1)′ (w) = 2
1 − w

.

Conversely, suppose that 
∫∫

U |ψ′(z)|2y2dxdy < +∞. Then we have the following 
reproducing formula (see [11]):

ψ′(z) = 12
π

∫∫
U

v2ψ′(w)
(w̄ − z)4 dudv, w = u + iv,

or equivalently,

ψ(z) = 4
π

∫∫
U

v2ψ′(w)
(w̄ − z)3 dudv, w = u + iv.

Now for any holomorphic function ϕ in the upper half plane with 
∫∫

U |ϕ(z)|2dxdy < +∞, 
we have ∫∫

ψ(z)ϕ(z)dxdy

U
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= 4
π

∫∫
U

∫∫
U

v2ψ′(w)ϕ(z)
(w − z̄)3 dudvdxdy

= − 4
π

∫∫
U

v2ψ′(w)dudv
∫∫
U

ϕ(z)
(z̄ − w)3 dxdy

= − 4
π

∫∫
U

v2ψ′(w)dudv
+∞∫
0

dy

+∞+iy∫
−∞+iy

ϕ(z)
(z − 2iy − w)3 dz

= −4i
∫∫
U

v2ψ′(w)dudv
+∞∫
0

ϕ′′(2iy + w)dy

= 2
∫∫
U

v2ψ′(w)ϕ′(w)dudv,

which implies by what we have proved in the first part that

∣∣∣∣∣∣
∫∫
U

ψ(z)ϕ(z)dxdy

∣∣∣∣∣∣
2

≤ 4
∫∫
U

|ψ′(z)|2y2dxdy

∫∫
U

|ϕ′(z)|2y2dxdy

�
∫∫
U

|ψ′(z)|2y2dxdy

∫∫
U

|ϕ(z)|2dxdy.

Consequently,

∫∫
U

|ψ(z)|2dxdy �
∫∫
U

|ψ′(z)|2y2dxdy. �

Now suppose that f is a real-valued continuous function on the real line, and there 
exists some constant α < 2 such that f(t) = O(|t|α) as t → ∞. Following Reich [29], set

Af(z) = z2 + 1
iπ

+∞∫
−∞

f(t)
(t− z)(t2 + 1)dt, z ∈ U , (8.5)

and

Hf(z) = (z − z̄)3

2iπ

+∞∫
−∞

f(t)
(t− z)(t− z̄)3 dt, z ∈ U . (8.6)

Clearly, Af is analytic on the upper half plane U , and
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(Af)′′′(z) = 12
iπ

+∞∫
−∞

f(t)
(t− z)4 dt, z ∈ U . (8.7)

Reich [29] showed that Hf is a C∞ extension of f to U , and

∂̄(Hf)(z) = −y2(Af)′′′(z), z = x + iy ∈ U . (8.8)

He also showed that �(Af) is continuous extension of f to U (see also [37]).

Lemma 8.1. Let f be a real-valued continuous function on the real line with the normalized 
condition f(t) = O(|t|α) as t → ∞ for some constant α < 2. Then f ∈ H

3
2 if and only if

∫∫
U

|(Af)′′′(z)|2y2dxdy, z = x + iy. (8.9)

Proof. Recall that a function ω on the real line belongs to the class H 1
2 if and only if 

there exists some harmonic function ω̃ on the upper half plane with boundary values 
ω and has finite Dirichlet integral 

∫∫
U (|∂ω̃|2 + |∂̄ω̃|2) < +∞. Consequently, under the 

assumption of the lemma, f ∈ H
3
2 if and only if 

∫∫
U |(Af ′)′−(Af ′)′(∞)|2 < +∞, which 

is equivalent to (8.9) by Proposition 8.3 due to the fact that (Af)′′′ = (Af ′)′′. �
Proof of Theorem 8.2. Let f ∈ H

3
2 be a real-valued continuous function on the real line. 

Then we conclude by (8.8) and Lemma 8.1 that Hf is the required quasiconformal defor-
mation extension of f to the upper half plane. Conversely, suppose f can be extended to 
a quasiconformal deformation f̃ to the upper half plane so that f̃(z) = o(z2) as z → ∞
and (8.2) holds. Then it holds the following equality (see [29] and also [37]):

(Af)′′′(z) = −12
π

∫∫
U

∂̄f̃(w)
(w − z̄)4 dudv, z = x + iy ∈ U . (8.10)

A direct computation shows that (8.9) holds by means of (8.2) and (8.10). In fact, by 
(8.10) we obtain

|(Af)′′′(z)|2 ≤ 144
π2

∫∫
U

|∂̄f̃(w)|2
|w − z̄|4 dudv

∫∫
U

1
|w − z̄|4 dudv = 36

πy2

∫∫
U

|∂̄f̃(w)|2
|w − z̄|4 dudv,

which implies by (8.2) that

∫∫
U

|(Af)′′′(z)|2y2dxdy ≤ 36
π

∫∫
U

∫∫
U

|∂̄f̃(w)|2
|w − z̄|4 dudvdxdy

= 36
π

∫∫
|∂̄f̃(w)|2

∫∫ 1
|w − z̄|4 dxdydudv
U U
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= 9
∫∫
U

|∂̄f̃(w)|2v−2dudv < +∞, w = u + iv.

We conclude that f ∈ H
3
2 by Lemma 8.1 again. �

Acknowledgments

The authors would like to thank the referee for a very careful reading of the manuscript 
and for several corrections which greatly improves the presentation of the paper.

References

[1] L.V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, New York, 1966.
[2] L.V. Ahlfors, Quasiconformal deformations and mappings in Rn, J. Anal. Math. 30 (1976) 74–97.
[3] A. Beurling, L.V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta 

Math. 96 (1956) 125–142.
[4] M.J. Bowick, S.G. Rajeev, String theory as the Kähler geometry of loop space, Phys. Rev. Lett. 58 

(1987) 535–538.
[5] M.J. Bowick, S.G. Rajeev, The holomorphic geometry of closed bosnic string theory and Diff S1/S1, 

Nuclear Phys. B 293 (1987) 348–384.
[6] R.R. Coifman, Y. Meyer, Lavrentiev’s Curves and Conformal Mappings, Report No. 5, Institute 

Mittag-Leffler, 1983.
[7] G. Cui, Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. 

China Ser. A 43 (2000) 267–279.
[8] A. Douady, C.J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 

157 (1986) 23–48.
[9] A. Figalli, On flows of H 3

2 -vector fields on the circle, Math. Ann. 347 (2010) 43–57.
[10] E.A. Gallardo-Gutiérrez, M.J. González, F. Pérez-González, Ch. Pommerenke, J. Rättyä, Locally 

univalent functions, VMOA and the Dirichlet space, Proc. Lond. Math. Soc. 106 (2013) 565–588.
[11] F.P. Gardiner, N. Lakic, Quasiconformal Teichmüller Theory, Math. Surveys Monogr., vol. 76, Amer. 

Math. Soc., Providence, RI, 2000.
[12] F.P. Gardiner, D. Sullivan, Symmetric structures on a closed curve, Amer. J. Math. 114 (1992) 

683–736.
[13] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[14] F. Gay-Balmaz, J.E. Marsden, T.S. Ratiu, The Geometry of the Universal TeichmüLler Space and 

the Euler-Weil-Petersson Equation, Technical report, Ecole Normale Supérieure de Paris, Paris, 
France, 2009.

[15] F. Gay-Balmaz, T.S. Ratiu, The geometry of the universal Teichmüller space and the Euler-Weil-
Petersson equation, Adv. Math. 279 (2015) 717–778.

[16] Y. He, H. Wei, Y. Shen, Some notes on quasisymmetric flows of Zygmund vector fields, J. Math. 
Anal. Appl. 455 (2017) 370–380.

[17] Y. Hu, J. Song, H. Wei, Y. Shen, An integral operator induced by a Zygmund function, J. Math. 
Anal. Appl. 401 (2013) 560–567.

[18] A.A. Kirillov, Kähler structure on the K-orbits of a group of diffeomorphisms of the circle, Funkt-
sional. Anal. i Prilozhen. 21 (1987) 42–45.

[19] A.A. Kirillov, D.V. Yuriev, Kähler geometry of the infinite-dimensional homogeneous space M =
diff+(S1)/rot(S1), Funktsional. Anal. i Prilozhen. 21 (1987) 35–46.

[20] S. Kushnarev, Teichons: soliton-like geodesics on universal Teichmüller space, Exp. Math. 18 (2009) 
325–336.

[21] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1986.
[22] S. Nag, The Complex Analytic Theory of Teichmüller Spaces, Wiley-Interscience, 1988.
[23] S. Nag, On the tangent space to the universal Teichmüller space, Ann. Acad. Sci. Fenn. Math. 18 

(1993) 377–393.
[24] S. Nag, D. Sullivan, Teichmüller theory and the universal period mapping via quantum calculus and 

the H 1
2 space on the circle, Osaka J. Math. 32 (1995) 1–34.

http://refhub.elsevier.com/S0001-8708(19)30506-7/bib416831s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib416832s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4241s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4241s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib425231s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib425231s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib425232s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib425232s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib434Ds1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib434Ds1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4375s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4375s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4445s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4445s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4669s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4747505052s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4747505052s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib474Cs1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib474Cs1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4753s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4753s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib476172s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib474D52s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib474D52s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib474D52s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4752s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4752s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib485753s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib485753s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib48535753s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib48535753s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4B69s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4B69s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4B59s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4B59s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4B75s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4B75s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4C65s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4E6131s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4E6132s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4E6132s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4E53s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4E53s1


Y. Shen, S. Tang / Advances in Mathematics 359 (2020) 106891 25
[25] S. Nag, A. Verjovsky, Diff(S1) and the Teichmüller space, Comm. Math. Phys. 130 (1990) 123–138.
[26] D. Partyka, Eigenvalues of quasisymmetric automorphisms determined by VMO functions, Ann. 

Univ. Mariae Curie-Skłodowska Sect. A 52 (1998) 121–135.
[27] D. Radnell, E. Schippers, W. Staubach, A Hilbert manifold structure on the Weil-Petersson class 

Teichmüller space of bordered Riemann surfaces, Commun. Contemp. Math. 17 (42) (2015) 1550016.
[28] D. Radnell, E. Schippers, W. Staubach, Convergence of the Weil-Petersson metric on the Teichmuller 

spaces of bordered Riemann surfaces, Commun. Contemp. Math. 19 (1) (2017) 1650025.
[29] E. Reich, On some related extremal problems, Rev. Roumaine Math. Pures Appl. 39 (1994) 613–626.
[30] E. Reich, Extremal extensions from the circle to the disk, in: F.W. Gehring, P. Duren, et al. (Eds.), 

Quasiconformal Mappings and Analysis. A Collection of Papers Honoring F. W. Gehring, Springer, 
1998, pp. 321–335.

[31] E. Reich, J.X. Chen, Extensions with bounded ∂̄-derivative, Ann. Acad. Sci. Fenn. Math. 16 (1991) 
377–389.

[32] M. Reimann, Ordinary differential equations and quasiconformal mappings, Invent. Math. 33 (1976) 
247–270.

[33] S. Semmes, Estimates for (∂−μ∂)−1 and Calderón’s theorem on the Cauchy integral, Trans. Amer. 
Math. Soc. 306 (1988) 191–232.

[34] S. Semmes, Quasiconformal mappings and chord-arc curves, Trans. Amer. Math. Soc. 306 (1988) 
233–263.

[35] Y. Shen, Fourier coefficients of Zygmund functions and analytic functions with quasiconformal 
deformation extensions, Sci. China Math. 55 (2012) 607–624.

[36] Y. Shen, Weil-Petersson Teichmüller space, Amer. J. Math. 140 (2018) 1041–1074.
[37] Y. Shen, H. Liu, L. Wang, Zygmund functions on the real line and quasiconformal deformations, 

Sci. China Math. 56 (2013) 757–770.
[38] Y. Shen, S. Tang, L. Wu, Weil-Petersson and little Teichmüller spaces on the real line, Ann. Acad. 

Sci. Fenn. Math. 43 (2018) 935–943.
[39] Y. Shen, L. Wu, Weil-Petersson Teichmüller space III: dependence of Riemann mappings for Weil-

Petersson curves, arXiv :1907 .12262.
[40] L. Takhtajan, L.-P. Teo, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. 

Math. Soc. 183 (861) (2006).
[41] H. Wei, Y. Shen, On the tangent space to the BMO-Teichmüller space, J. Math. Anal. Appl. 419 

(2014) 715–726.
[42] K. Zhu, Operator Theory in Function Spaces, second edition, Mathematical Surveys and Mono-

graphs, vol. 138, American Mathematical Society, Providence, RI, 2007.
[43] A. Zygmund, Smooth functions, Duke Math. J. 12 (1945) 47–76.

http://refhub.elsevier.com/S0001-8708(19)30506-7/bib4E56s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5061s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5061s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib52535731s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib52535731s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib52535732s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib52535732s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib526531s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib526532s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib526532s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib526532s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5243s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5243s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib526569s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib526569s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib536531s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib536531s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib536532s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib536532s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib536831s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib536831s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib536832s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib534C57s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib534C57s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib535457s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib535457s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5357s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5357s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5454s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5454s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5753s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5753s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5A68s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5A68s1
http://refhub.elsevier.com/S0001-8708(19)30506-7/bib5A79s1

	Weil-Petersson Teichmüller space II: Smoothness of ﬂow curves of H3/2-vector ﬁelds
	1 Introduction
	2 Weil-Petersson Teichmüller space on the real line
	3 BMO functions
	4 Semmes' construction revisited
	5 Proof of Theorem 2.2 (ﬁrst part)
	6 Proof of Theorem 2.2 (second part) and Theorem 2.3
	7 Proof of Theorems 1.2 and 2.1
	8 Appendix: on the tangent space to WP0(R)
	Acknowledgments
	References


