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1. Introduction

In its classical formulation, the Brunn-Minkowski inequality states that the volume 
functional, raised to the power 1/n, is concave on the class Kn of convex bodies in the 
n-dimensional Euclidean space. Specifically, for every pair K0, K1 of nonempty convex 
compact subsets of Rn and every t ∈ [0, 1], denoting by (1 − t)K0 + tK1 the set of points 
of the form (1 − t)x + ty for x ∈ K0 and y ∈ K1, and by V (·) the n-dimensional Lebesgue 
measure, it holds

V 1/n((1 − t)K0 + tK1
)
≥ (1 − t)V 1/n(K0) + tV 1/n(K1) , (1)

with equality sign if and only if K0 and K1 are homothetic.
Named after Brunn, who firstly proved it in dimension 2 and 3 [22,23], and Minkowski, 

who shortly afterwards gave a full analytic proof in n-dimensions and characterized the 
equality case [62], in the last century this fundamental inequality has been proved and 
generalized in many different ways by an impressive list of mathematicians, including 
Hilbert [44], Bonnesen [17], Kneser-Suss [54], Blaschke [16], Hadwiger [42], Knothe [55], 
Dinghas [39], MacCann [60], McMullen [61], Ball [4], Klain [53].

It is not conceivable to give here an idea about the impact of the Brunn-Minkowski 
inequality in both Analysis and Geometry, and in their interplay. We limit ourselves to 
refer to Chapter 7 in the treatise [68] by Schneider, which includes a lot of historical 
and bibliographical notes, and to the excellent survey paper [40] by Gardner, from which 
we quote: “In a sea of mathematics, the Brunn-Minkowski inequality appears like an 
octopus, tentacles reaching far and wide, its shape and color changing as it roams from 
one area to the next.”

Aim of this paper is to reveal a new tentacle of this fascinating creature, which gets 
as far as the viscosity theory of nonlinear PDEs, by proving the validity of a Brunn-
Minkowski type inequality for the principal frequency of fully non-linear homogeneous 
elliptic operators.

As a starting point to introduce our results, we recall that the Brunn-Minkowski 
inequality has been generalized, in a suitable form, to several functionals other than vol-
ume. They include not only geometric quantities (such as quermassintegrals [68, Section 
7.4]), but also some energies from physics and calculus of variations. To be more precise, 
following [32], we say that a functional Φ which is invariant under rigid motions and 
homogeneous of degree γ �= 0 on Kn satisfies a Brunn-Minkowski type inequality if, by 
analogy to (1), it holds

Φ1/γ((1 − t)K0 + tK1
)
≥ (1 − t)Φ1/γ(K0) + tΦ1/γ(K1) . (2)

The most significant choices of functionals Φ for which the above inequality has been 
proved are: the principal frequency of the Laplacian (see Brascamp-Lieb [21]), the 
torsional rigidity (see Borell [20]), the Newtonian capacity (see Borell [18] and Caffarelli-
Jerison-Lieb [26]), the logarithmic capacity and a n-dimensional version of it (see Borell 
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[19] and Colesanti-Cuoghi [31]), the p-capacity (see Colesanti-Salani [33]), the first eigen-
value of the p-Laplacian and the p-torsional rigidity (see Colesanti-Cuoghi-Salani [32]), 
the first eigenvalue of the Monge-Ampère operator (see Salani [65]), the Bernoulli con-
stant (see Bianchini-Salani [9]), the Hessian eigenvalue in three-dimensional convex 
domains (see Liu-Ma-Xu [58]), functionals related to Hessian equations (see Salani [66]). 
For large part of these results, a nice account can be found in the paper [30] by Colesanti.

Regarding this spectrum of extensions of the Brunn-Minkowski inequality, we wish to 
draw attention on the class of domains where the inequality is known to work. Actually, 
the validity of inequality (1) for the volume functional goes far beyond the class of convex 
bodies: it has been extended to all measurable sets; a short and elegant proof due to 
Hadwiger-Ohmann [43] can be found in the above mentioned survey paper by Gardner. 
In spite, to our knowledge, for all the functionals Φ mentioned above the validity of 
inequality (2) has been established only within convex bodies, exception made for the 
first eigenvalue of the Laplacian and the torsional rigidity, for which the inequality is 
known to hold for all open bounded domains with sufficiently regular boundary.

It is now time to present the new family of Brunn-Minkowski type inequalities we 
obtain in this paper. Given an open bounded domain Ω in Rn, we consider the following 
eigenvalue problem for a fully nonlinear, degenerate elliptic, homogeneous operator:

⎧⎨
⎩
F (∇u,D2u) = λ|u|αu in Ω

u = 0 on ∂Ω .
(3)

Here F : (Rn \ {0}) × Sn → R is a continuous function satisfying, for every ξ ∈ Rn \ {0}
and X in the space Sn of symmetric real matrices, the following conditions:

(H1) Homogeneity: for some α > −1 and every (t, μ) ∈ (R \ {0}) ×R,

F (tξ, μX) = |t|αμF (ξ,X);

(H2) Uniform ellipticity: for some C ≥ c > 0 and every Y in the space Sn
+ of positive 

semidefinite symmetric matrices,

c|ξ|αtr(Y ) ≤ F (ξ,X) − F (ξ,X + Y ) ≤ C|ξ|αtr(Y ).

For any operator satisfying (H1)-(H2), inspired by the celebrated work by Berestycki, 
Nirenberg and Varadhan [7], Birindelli and Demengel introduced in [12] the principal 
eigenvalue λ(Ω) as

λ(Ω) := sup
{
λ ∈ R : ∃u > 0 in Ω viscosity super-solution to the pde in (3)

}
;

here the notion of viscosity super-solution has to be meant as specified in Section 2.1
below.
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The bibliography related to the eigenvalue problem for fully nonlinear second order 
operators is very wide. With no attempt of completeness, we limit ourselves to quote 
Birindelli-Demengel for many related works including [11,13–15], Ikoma-Ishii for the 
computation of eigenvalues on balls [45,46], Armstrong [2], Berestycki-Capuzzo Dolcetta-
Porretta-Rossi [6], and Quaas-Sirakov [63] for related maximum principles, Berestycki-
Rossi for the case of unbounded domains [8], Kawohl and different coauthors for the case 
of the game theoretic p-Laplacian [5,49–52] (see also our recent joint work [37]), Juutinen 
for the case of the normalized infinity Laplacian [48], Busca-Esteban-Quaas for the case 
of Pucci operators [24].

As far as we know, there is no previous attempt to prove that the Brunn-Minkowski 
inequality holds true for the principal eigenvalue of a fully nonlinear operator. Our main 
result states that this is indeed the case as soon as the operator enjoys, besides (H1)-(H2), 
the following condition

(H3) Convexity: for every ξ ∈ Rn \ {0},

X 	→ F (ξ,X) is convex on Sn ,

and the involved domains belong to the class

An :=
{

open bounded connected Lipschitz domains of Rn

satisfying a uniform exterior sphere condition

}
. (4)

We remark that this class is closed with respect to the Minkowski addition of sets.

Theorem 1 (Brunn-Minkowski inequality). If F satisfies conditions (H1)-(H2)-(H3), for 
every pair of domains Ω0, Ω1 ∈ An, and every t ∈ [0, 1], it holds

λ
(
(1 − t)Ω0 + tΩ1

)−1/(α+2) ≥ (1 − t)λ(Ω0)−1/(α+2) + t λ(Ω1)−1/(α+2) . (5)

We emphasize that the class An contains all bounded open sets which are convex or 
of class C2, but domains in An do not need to be convex, nor of class C2. In particular, 
for the first eigenvalue of the p-Laplacian, Theorem 1 extends to domains in An the 
Brunn-Minkowski inequality proved for C2 convex bodies by Colesanti-Cuoghi-Salani 
[32]. Besides the p-Laplacian, a list of further relevant operators fitting the assumptions 
of Theorem 1 is postponed at the end of this section.

The reason why we work on the class An is that, for such domains, we are able to 
prove the existence of positive viscosity eigenfunctions, until now known only for C2

domains (see [12,14]). This side result, which may have its own interest, is given in 
Section 3 (see Theorem 19): it is derived as a by-product of a global Hölder estimate 
(see Proposition 17), which in turn is obtained via a barrier argument, adapted from 
Birindelli-Demengel, involving the distance from the boundary.
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Our approach to obtain Theorem 1 can be synthetically defined as a synergy between 
the method introduced by Colesanti in [30] to obtain the Brunn-Minkowski inequality 
for the first eigenvalue of the Laplacian for convex domains, and the method introduced 
by Alvarez, Lasry and Lions in [1] to obtain the convexity of viscosity solutions to second 
order fully nonlinear elliptic equations with state constraint boundary conditions. We 
also point out that in the paper [47] parabolic problems are considered under a close 
perspective, working on possibly non-convex domains, yet still with classical solutions; 
more specifically, using Lemma 3.1 in [47] it can be realized that the general theory pre-
viously developed by Salani in [67] (covering for instance the case of the Pucci operator) 
can be extended to non-convex domains.

Roughly speaking, the proof of Theorem 1 goes as follows. The key point is that, in 
order to prove the inequality (2) for Φ(·) = λ(·), it is enough to construct a sub-solution 
to the corresponding eigenvalue problem on the domain (1 − t)Ω0 + tΩ1. In case of 
the Laplacian, this assertion relies on the variational characterization of the eigenvalue 
as minimum of the Rayleigh quotient. In our fully nonlinear setting, though there is 
no variational interpretation of the eigenvalue, the same principle remains true thanks 
to a maximum principle proved by Birindelli-Demengel (see Theorem 7 below). Then 
the next step is how to construct a sub-solution. To that aim the idea is to look at the 
transformed equation satisfied by (minus) the logarithms of the eigenfunctions (which on 
convex domains are known to be convex functions [21,27]), consider (minus) the infimal 
convolution between these logarithms, and take its exponential. In case of the Laplacian, 
the function thus obtained turns out to be a sub-solution essentially because the infimal 
convolution linearizes the Fenchel transform, and the map M 	→ tr(M−1) is convex on 
the family of positive definite matrices. In our fully non-linear setting, we still consider 
the function constructed in the same way, but in order to show that it is a sub-solution 
we have to adopt a different procedure. Indeed, since we do not have enough regularity 
information on the eigenfunctions, we cannot write pointwise Hessians; moreover, since 
we want to get rid of the convexity assumptions on the domains, we cannot exploit the 
log-concavity of eigenfunctions. To overcome these difficulties, we set up a generalization 
of the method introduced by Alvarez-Lasry-Lions in order to show that the convex 
envelope is a sub-solution, the difference being that we work with a family of distinct
functions on distinct, possibly non-convex, domains (compare Propositions 8 and 14 below 
respectively with Propositions 1 and 3 in [1]). We remark that similar techniques have 
been used in the above mentioned paper [67] by Salani, where the author has introduced 
a very general theory of Brunn-Minkowski inequalities for functionals related to elliptic 
PDEs, for a very general class of nonlinear operators. Yet, the effective applicability of 
the results in [67] is limited by the fact that only classical solutions are considered.

Let us point out that at present we are not able to push over our viscosity approach 
in order to deal with the equality case in Theorem 1. We address such characterization 
as an interesting open problem, which seems to be quite delicate. Actually, for a lot of 
Brunn-Minkowski type inequalities, the characterization of the equality case is still open, 
especially when dealing with non-convex domains. The case of the first eigenvalue of the 
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Laplacian is emblematic in this respect: since Brascamp-Lieb [21], the inequality (2) is 
known to hold for all compact, connected domains having sufficiently regular boundary, 
but the equality case has been settled only forty years later by Colesanti [30], and his 
approach works just for convex domains.

On the other hand, as a companion result to Theorem 1, we are able to establish the 
log-concavity of positive viscosity eigenfunctions. As well as in Theorem 1, we need as a 
key assumption the convexity of F in its second variable. However, for technical reasons 
which will be explained during the proof, here it is needed in the following stronger form:

(H3)’ Reinforced convexity: F is of class C2, and for every δ > 0 there exists a positive 
constant c0 such that

∇2
XF (ξ,X)M ·M ≥ c0|M |2 ∀M,X ∈ Sn , ∀ξ ∈ Rn with |ξ| > δ .

Theorem 2 (log-concavity of eigenfunctions). Assume that F satisfies conditions
(H1)-(H2)-(H3)’. Then:

(i) if Ω is a strongly convex bounded open set of class C2,β for some β ∈ (0, 1), then 
any positive viscosity eigenfunction is log-concave;

(ii) if Ω is a convex bounded open set, then there exists a positive viscosity eigenfunction 
which is log-concave.

The above theorem can be read as an extension to viscosity solutions of general fully 
nonlinear operators of the result proved by Sakaguchi in [64] for the p-Laplacian (see 
also [57]) and by Bianchini and Salani in [10] for a general class of operators includ-
ing the ones considered here. Part (i) of the statement is obtained essentially via the 
convex envelope method of Alvarez-Lasry-Lions, whereas, for part (ii), we use our afore 
mentioned existence result (Theorem 19), which involves an approximation argument 
with smooth domains. In particular, the fact that an approximation procedure is needed 
explains why part (ii) of the statement is formulated for some (not for any) positive 
viscosity eigenfunction. Clearly, in case the eigenvalue is simple, also for Ω as in (ii) any 
positive viscosity solution is log-concave. This is for instance the case of the p-Laplacian 
[64] and of the normalized p-Laplacian [37].

We conclude this Introduction by providing a short list of some relevant operators to 
which the results stated above apply.

Example 3. The following operators satisfy assumptions (H1)-(H2)-(H3). Moreover, all 
of them satisfy also assumption (H3)’ (the corresponding function F being linear in X), 
except for the minimal Pucci operator, which however satisfies assumption (H3) (see [25, 
Lemma 2.10]).
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• The p-Laplacian, for p > 1:

Δpu = div
(
|∇u|p−2∇u)

F (ξ,X) = −|ξ|p−2trX − (p− 2)|ξ|p−4〈Xξ, ξ〉 , α = p− 2

• The normalized p-Laplacian, for p > 1:

ΔN
p u = 1

p |∇u|2−pdiv
(
|∇u|p−2∇u)

F (ξ,X) = − 1
p trX − p−2

p |ξ|−2〈Xξ, ξ〉 , α = 0

• The minimal Pucci operator:

Mλ,Λ(D2u) = λ
∑
ei>0

ei(D2u) + Λ
∑
ei<0

ei(D2u) , 0 < λ ≤ Λ,

F (ξ,X) = λ
∑
ei>0

ei(X) + Λ
∑
ei<0

ei(X) , α = 0 (ei(X) = eigenvalues of X).

The remaining of the paper is organized as follows:

– in Section 2 we provide the intermediate results we need about viscosity solutions 
and infimal convolutions;

– in Section 3 we prove the existence of eigenfunctions for domains in An;
– in Section 4 we give the proofs of Theorems 1 and 2.

2. Preliminary results

2.1. Viscosity solutions and maximum principle

Below we adopt the following standard notation: if u, ϕ are two real functions on Ω
and x ∈ Ω, by writing ϕ ≺x u (resp. u ≺x ϕ), we mean that ϕ touches u from below 
(resp. from above) at x, that is u(x) = ϕ(x) and ϕ(y) ≤ u(y) (resp. u(y) ≤ ϕ(y)) for 
every y ∈ Ω. Moreover, we denote by J2,−

Ω u(x) (resp. J2,+
Ω u(x)) the second order sub-jet

(resp. super-jet) of u at x, which is by definition the set of pairs (ξ, A) ∈ Rn × Sn such 
that, as y → x, y ∈ Ω, it holds

u(y) ≥ (≤) u(x) + 〈ξ, y − x〉 + 1
2 〈A(y − x), y − x〉 + o(|y − x|2) .

For any λ > 0, the notion of viscosity sub- and super-solutions to the pde

F (∇u,D2u) = λ|u|αu
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can be intended according Crandall-Ishii-Lions [35] or according to Birindelli-Demengel 
[14], as formulated respectively in Definition 4 and Definition 5. For later use, we give 
these two definitions for the more general equation

F (∇u,D2u) = g(u), (6)

where g : R → R is a continuous function.

Definition 4. – An upper semicontinuous function u : Ω → R is a viscosity sub-solution
to (6) if, for every x ∈ Ω and for every smooth function ϕ such that u ≺x ϕ, denoting 
by F∗ the lower semicontinuous envelope of F , it holds

F∗(∇ϕ(x), D2ϕ(x)) ≤ g(ϕ(x))

(or equivalently F∗(ξ, A) ≤ g(u(x)) for every (ξ, A) ∈ J2,+
Ω u(x)).

– A lower semicontinuous function u : Ω → R is a viscosity super-solution to (6) if, 
for every x ∈ Ω and for every smooth function ϕ such that ϕ ≺x u, denoting by F ∗ the 
upper semicontinuous envelope of F , it holds

F ∗(∇ϕ(x), D2ϕ(x)) ≥ g(ϕ(x))

(or equivalently F ∗(ξ, A) ≥ g(u(x)) for every (ξ, A) ∈ J2,−
Ω u(x)).

– A continuous function u : Ω → R is a viscosity solution to (6) in Ω if it is both a 
viscosity super-solution and a viscosity sub-solution.

Definition 5. – An upper semicontinuous function u : Ω → R is a viscosity sub-solution
to (6) if, for every x ∈ Ω:

·) either u is equal to a constant c on an open ball Br(x) ⊂ Ω and 0 ≤ g(c);
·) or for every smooth function ϕ such that u ≺x ϕ with ∇ϕ(x) �= 0, it holds

F (∇ϕ(x), D2ϕ(x)) ≤ g(ϕ(x))

(or equivalently F (ξ, A) ≤ g(u(x)) for every (ξ, A) ∈ J2,+
Ω u(x) with ξ �= 0).

– A lower semicontinuous function u : Ω → R is a viscosity super-solution of (6) if, for 
every x ∈ Ω:

·) either u is equal to a constant c on an open ball Br(x) ⊂ Ω and 0 ≥ g(c);
·) or for every smooth function ϕ such that ϕ ≺x u with ∇ϕ(x) �= 0, it holds

F (∇ϕ(x), D2ϕ(x)) ≥ g(ϕ(x))

(or equivalently F (ξ, A) ≥ g(u(x)) for every (ξ, A) ∈ J2,−
Ω u(x) with ξ �= 0).

– A continuous function u : Ω → R is a viscosity solution to (6) in Ω if it is both a 
viscosity supersolution and a viscosity subsolution.
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The following equivalence lemma is adapted from [38, Lemma 2.1] and [3, Proposi-
tion 2.4], and will be very useful in the sequel (cf. Remark 15). For this result and the 
subsequent Theorem 7, the uniform ellipticity condition (H2) can be replaced by the 
much weaker degenerate ellipticity condition:

(H2)’ F (ξ, X) ≥ F (ξ, Y ) for every ξ ∈ Rn \ {0} and for every X, Y ∈ Sn, X ≤ Y .

Lemma 6. For any operator F satisfying (H2)’ and

F ∗(0, 0) = F∗(0, 0) = 0, (7)

and any continuous function g, Definitions 4 and 5 are equivalent.

Proof. Let us show the equivalence for super-solutions, the case of sub-solutions being 
analogous. Let u be a super-solution according to Definition 4 and let x ∈ Ω. To show 
that u is a super-solution according to Definition 5, we have just to consider the case 
when u is equal to a constant c on a ball Br(x), and show that 0 ≥ g(c). Let us fix an 
arbitrary point y ∈ Br(x), and let us consider the test function ϕ(z) = c − |z− y|q, with 
q > 2. We have that ϕ touches u from below at y, with ∇ϕ(y) = 0 and D2ϕ(y) = 0. 
Therefore, by assumption

F ∗(∇ϕ(y), D2ϕ(y)) ≥ g(ϕ(y))

or equivalently, in view of (7),

0 = F ∗(0, 0) ≥ g(c) .

Conversely, let u be a super-solution according to Definition 5 and let x ∈ Ω. To show 
that u is a super-solution according to Definition 4, we have to consider just the situation 
when ϕ touches u from below at x with ∇ϕ(x) = 0. We distinguish two cases. First case: 
u is equal to a constant c on an open ball Br(x) ⊂ Ω. Then it holds 0 ≥ g(c) (because u
is assumed to be a super-solution according to Definition 5), and D2ϕ(x) ≤ 0 (because 
ϕ is touching from below the locally constant function u). Observe that, if X ≤ 0, by the 
degenerate ellipticity assumption (H2)’ we have that F (ξ, X + Y ) ≥ F (ξ, Y ) for every 
ξ �= 0 and Y ∈ Sn, so that, from (7),

F ∗(0, X) ≥ 0, ∀X ≤ 0,

hence we conclude that

F ∗(0, D2ϕ(x)) ≥ 0 ≥ g(c) .

Second case: u is not equal to a constant on any open ball Br(x) ⊂ Ω. Given y ∈ Bρ(0), 
with ρ > 0 small enough, we consider the function
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ϕy(z) = ϕ(y + z) ∀z ∈ Br(x) .

Since it is not restrictive to assume that x is a strict minimum point of u − ϕ in Br(x), 
for |y| small enough we have that ϕy touches u from below at some point xy ∈ Br(x). 
We claim that, with no loss of generality, we may assume that there exists a sequence 
yk → 0 such that ∇ϕyk

(xyk
) �= 0 for every k. If this is the case, by testing the equation 

at xyk
, we obtain

F (∇ϕyk
(xyk

), D2ϕyk
(xyk

)) ≥ g(ϕyk
(xyk

)) ,

which by passing to the limsup as k → +∞ yields

F ∗(0, D2ϕ(x)) ≥ g(ϕ(x)) .

Finally, it remains to prove the claim. By making r smaller if necessary, we can assume 
that x is the unique critical point of ϕ in Br(x). (This is immediate if D2ϕ(x) is invertible, 
and such condition can always be assumed up to replacing ϕ(z) by ϕε(z) = ϕ(z) −
ε
2 (z − x)tM(z − x), being M a positive definite matrix in Sn such that D2ϕ(x) − εM is 
invertible for all ε > 0.) Then, arguing by contradiction, and exploiting the fact that x
is the unique critical point of ϕ in Br(x), one can show that, if the sequence yk would 
not exist, u should be constant around x (see [38, Lemma 2.1] or [3, Proposition 2.4] for 
more details). �

We remark that assumption (7) is fulfilled by every operator F satisfying the homo-
geneity condition (H1) with α > −1. Hence, in view of Lemma 6, in the remaining of the 
paper we write the words sub- and super-solutions referring indistinctly to Definition 4
or 5.

The following maximum principle will be used as a keystone in our proof of Theorem 1:

Theorem 7. [12, Thm. 3.3] Let Ω ⊂ Rn be an open bounded set and let F satisfy as-
sumptions (H1)-(H2)’. Let τ < λ(Ω), and let u be a viscosity sub-solution to

F (∇u,D2u) = τ |u|αu in Ω,

satisfying u ≤ 0 on ∂Ω. Then u ≤ 0 in Ω.

The idea to prove Theorem 1 is to construct a subsolution which, if the inequality (5)
would be false, would violate the maximum principle above. To that aim we drive our 
attention to the operation of infimal convolution.
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2.2. Infimal convolutions

For a fixed k ∈ N, set

Λ+
k :=

{
t = (t0, . . . , tk) : ti ∈ (0, 1] ,

k∑
i=0

ti = 1
}
,

Ok :=
{

(Ω0, . . . ,Ωk) : Ωi ⊂ Rn open bounded set
}
.

Given (Ω0, . . . , Ωk) ∈ Ok and t ∈ Λ+
k , we consider the convex Minkowski combination

Ωt := t0 Ω0 + · · · + tk Ωk =
{ k∑

i=0
tixi : xi ∈ Ωi

}
.

Notice that Ωt is an open set: indeed, if x =
∑k

i=0 tixi, for any j ∈ {0, . . . , k} it holds

Bδ(xj) ⊂ Ωj =⇒ Btjδ(x) ⊂ Ωt . (8)

Let vi : Ωi → R, i = 0, . . . , k, be given functions. We can think vi as defined on Rn, by 
extending them to +∞ outside Ωi.

We call weighted infimal convolution of the functions v0, . . . , vk (with weight t) the 
function defined on Rn by

(v0 · · · vk)t(x) := inf
{

k∑
i=0

ti vi(xi) : x0, . . . , xk ∈ Rn, x =
k∑

i=0
ti xi

}
, x ∈ Rn .

Clearly, the weighted infimal convolution (v0 · · · vk)t has finiteness domain

Dom((v0 · · · vk)t) = Ωt .

We say that the infimal convolution (v0 · · · vk)t is exact at a point x ∈ Ωt, if the 
above infimum is attained.

The next result is inspired from [1, Propositions 1 and 4]. Given a family of continuous 
functions bounded from below, it provides a key information on the subjets of their 
weighted infimal convolution, provided the latter is exact.

Proposition 8. Let (Ω0, . . . , Ωk) ∈ Ok and t = (t0, . . . , tk) ∈ Λ+
k . Let vi : Ωi → R

be continuous functions bounded from below, and assume that (v0 · · · vk)t is exact at 
x ∈ Ωt, with

(v0 · · · vk)t(x) =
k∑

ti vi(xi), x =
k∑

ti xi, xi ∈ Ωi ∀i = 0, . . . , k . (9)

i=0 i=0
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Then, for a given pair (ξ, A) ∈ J2−(v0 · · · vk)t(x), and for every ε > 0, there exist 
A0, . . . , Ak ∈ Sn such that (ξ, Ai) ∈ J

2−
vi(xi), i = 0, . . . , k, and

A− εA2 ≤
k∑

i=0
tiAi . (10)

If, in addition, A ≥ 0, and ε is small enough, then Ai ≥ 0 for every i = 0, . . . , k and

A− εA2 ≤
(
t0 A

−1
0 + . . . + tk A

−1
k

)−1
. (11)

Remark 9. The above result (and its proof) is quite similar to Proposition 1 in [1]. For 
completeness, we give the proof in some detail, since we are going to exploit inequal-
ity (10), which is not explicitly given in [1].

Proof. To simplify the notation, let us denote w := (v0 · · · vk)t. Let ϕ ∈ C2(Ωt) be a 
test function such that ϕ ≺x w. Let (y0, . . . , yk) ∈ Ω0 × · · · ×Ωk. By the definition of w, 
the fact that (w − ϕ)(y) ≥ (w − ϕ)(x) for every y ∈ Ωt, and since (v0 · · · vk)t is exact 
at x, we have that

k∑
i=0

tivi(yi) − ϕ

(
k∑

i=0
ti yi

)
≥ w

(
k∑

i=0
ti yi

)
− ϕ

(
k∑

i=0
ti yi

)

≥ w

(
k∑

i=0
ti xi

)
− ϕ

(
k∑

i=0
ti xi

)

=
k∑

i=0
ti vi(xi) − ϕ

(
k∑

i=0
ti xi

)
.

In other words, the point (x0, . . . , xk) where the infimum in (9) is attained turns out to 
be a minimum point for the function

Ω0 × · · · × Ωk � (y0, . . . , yk) 	→
k∑

i=0
tivi(yi) − ϕ

(
k∑

i=0
ti yi

)
.

Then, by [35, Theorem 3.2], for every ε > 0 there exist A0, . . . , Ak ∈ Sn such that 
(ξ, Ai) ∈ J

2−
vi(xi), i = 0, . . . , k, and

⎛
⎝t0 A0 · · · 0

...
. . .

...
0 · · · tk Ak

⎞
⎠ ≥

⎛
⎜⎝

t20 B · · · t0tk B
...

. . .
...

t0tk B · · · t2k B

⎞
⎟⎠ (12)

with B := A − ε A2.
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The inequality in (10) follows by testing (12) with a vector of the form (h, . . . , h) ∈
(Rn)k.

Moreover, by testing (12) with vectors of the form (0, . . . , hi, . . . , 0), we get the in-
equalities

ti(A− εA2) ≤ Ai, ∀i = 0, . . . , k , (13)

whereas, testing (12) with an arbitrary vector (h0, . . . , hk), we see that

〈B h, h〉 ≤
k∑

i=0
ti 〈Ai hi, hi〉 , with h :=

k∑
i=0

ti hi . (14)

Assume now that A ≥ 0, and choose ε > 0 so that I > εA, and hence B ≥ 0. From 
(13), we see that Ai ≥ 0 for every i. In fact, it is not restrictive to assume that Ai are 
positive definite, since the case of degenerate matrices can be handled as in [1], p. 273.

Finally, minimizing the right-hand side of (14) under the constraint 
∑k

i=0 ti hi = h

leads to (11). �
In order to be able to apply Proposition 8, we complement it with the following 

statement, which provides sufficient conditions for the weighted convolution to be exact.

Proposition 10. Let (Ω0, . . . , Ωk) ∈ Ok and t = (t0, . . . , tk) ∈ Λ+
k . Let vi : Ωi → R be 

continuous functions bounded from below, with

vi → +∞ as x → ∂Ωi , ∀i = 1 . . . , k . (15)

Then the weighted infimal convolution (v0 · · · vk)t is continuous and exact at every 
point x ∈ Ωt. Moreover, it holds

(v0 · · · vk)t → +∞ as x → ∂Ωt . (16)

Proof. For the continuity of the weighted infimal convolution and the fact that it is 
exact, we refer to [69], Theorem 2.5 and Corollary 2.1. In order to prove the last part 
of the statement, let us consider a sequence of points xn → ∂Ωt as n → +∞. Since the 
weighted infimal convolution is exact, there exist sequences xn

i , i = 0, . . . , k, such that

(v0 · · · vk)t(xn) =
k∑

i=0
ti vi(xn

i ), xn =
k∑

i=0
ti x

n
i , xn

i ∈ Ωi ∀i = 0, . . . , k .

We claim that xn
i → ∂Ωi as n → +∞, ∀i = 1, . . . , k. Once proved the claim, the required 

property (16) follows at once from (15) and the assumptions that the functions vi’s are 
bounded from below.
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To show the claim it is enough to observe that, if dist(x, ∂Ωt) < δ, then dist(xi, ∂Ωi) <
δ/ti for every i = 0, . . . , k. Indeed, if we assume by contradiction that there exists j
such that dist(xj , ∂Ωj) ≥ δ/tj , then Bt−1

j δ(xj) ⊂ Ωj . By (8), this implies Bδ(x) ⊂ Ωt, 
contradiction. �
2.3. The modified equation

In view of Proposition 10, it is convenient to look at the equation satisfied by minus 
the logarithm of viscosity eigenfunctions, so to deal with functions which diverge on the 
boundary. To that aim, let us introduce the operator G associated with F by

G(ξ,X) := −F (ξ, ξ ⊗ ξ −X) , (17)

and let us consider the modified equation

G(∇v,D2v) = −λ(Ω) in Ω . (18)

Remark 11. If F satisfies (H2) (resp. (H2)’), the same holds for G. Moreover, if F satisfies 
(H3), namely F is convex in X, then G is concave in X.

Remark 12. Similarly as in Section 2, also viscosity sub- and super-solutions to (18) can 
be intended either à la Crandall-Ishii-Lions or à la Birindelli-Demengel, namely according 
to Definition 4 or to Definition 5. Thanks to Lemma 6, the two notions are equivalent. 
Note in particular that, since the right–hand side of (18) is negative, for super-solutions 
the “either” condition in Definition 5 is automatically satisfied.

Lemma 13. Assume that F satisfies (H1)-(H2)’, and let G be defined by (17). Then a 
function u is a positive viscosity sub-solution to

F (∇u,D2u) = λ(Ω)uα+1 in Ω

if and only if the function v = − log u is a viscosity super-solution to

G(∇v,D2v) = −λ(Ω) in Ω .

Proof. Let us give the proof working with solutions à la Crandall-Ishii-Lions. We observe 
that u ≺x ϕ if and only if ψ := − logϕ ≺x v, and that the inequality F∗(∇ϕ, D2ϕ) ≤
λ(Ω)ϕα+1 can be rewritten as

F∗
(
− e−ψ∇ψ, e−ψ(∇ψ ⊗∇ψ −D2ψ)

)
≤ λ(Ω)e−(α+1)ψ .

By (H1), this amounts to

F∗
(
∇ψ,∇ψ ⊗∇ψ −D2ψ

)
≤ λ(Ω) .
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The required equivalence follows by observing that

G∗(ξ,X) = [−F (ξ, ξ ⊗ ξ −X)]∗ = −F∗(ξ, ξ ⊗ ξ −X) . �
We are finally in a position to give the main brick for the proof of Theorem 1:

Proposition 14. Assume that F satisfies F∗(0, 0) = 0, (H2)’ and (H3), and let G be 
defined by (17). Let (Ω0, . . . , Ωk) ∈ Ok, and t = (t0, . . . , tk) ∈ Λ+

k . Let v0, . . . , vk be 
continuous functions bounded from below which are viscosity super-solutions to

{
G(∇vi, D

2vi) = −λ(Ωi) in Ωi,

vi → +∞ on ∂Ωi .

Then w = (v0 · · · vk)t is a viscosity super-solution to

{
G(∇w,D2w) = −

∑k
i=0 tiλ(Ωi) in Ωt,

w → +∞ on ∂Ωt .

Proof. From Proposition 10, we know that w is continuous, exact, and satisfies w → +∞
as x → ∂Ωt. In order to check that w is a viscosity super-solution to G(∇w, D2w) =
− 
∑k

i=0 tiλ(Ωi) in Ωt, we use the definition à la Birindelli-Demengel. Let x ∈ Ωt. If w
is constant on a ball centered at x, we have nothing to check. Otherwise, let (ξ, A) ∈
J2−w(x), with ξ �= 0. Let xi ∈ Ωi be such that (9) holds. By Proposition 8, there exist 
A0, . . . , Ak ∈ Sn such that (ξ, Ai) ∈ J

2−
vi(xi), satisfying (10). Hence,

G(ξ, A− εA2) ≥ G

(
ξ,

k∑
i=0

tiAi

)
≥

k∑
i=0

tiG(ξ, Ai) ≥ −
k∑

i=0
tiλ(Ωi) ,

where in the first inequality we have used the fact that G is degenerate elliptic, in the 
second one the fact that it is concave in X (cf. Remark 11), and in the third one the 
fact that the vi’s are super-solutions to G(∇vi, D2vi) = −λ(Ωi).

Passing to the limit as ε → 0 we conclude that G(ξ, A) ≥ − 
∑k

i=0 tiλ(Ωi). �
Remark 15. We warn the reader that the above proof cannot be successfully concluded if 
one adopts the definition of viscosity super-solution à la Crandall-Ishii-Lions. Indeed, in 
this case, one would need to use the concavity of the upper semicontinuous envelope G∗. 
But, in general, the concavity of G is not inherited by G∗ (for instance, in case of the 
normalized p-Laplacian, one can easily check that G∗ fails to be concave). This sheds 
some light on the importance of the equivalence Lemma 6.



16 G. Crasta, I. Fragalà / Advances in Mathematics 359 (2020) 106855
3. Existence of eigenfunctions for domains in An

In this section we prove the existence of eigenfunctions for operators F satisfying 
assumptions (H1)-(H2) on domains belonging to the class An defined in (4) (see The-
orem 19), along with their global Hölder continuity (see Proposition 17). We remark 
that the restriction α > −1 in (H1) is fundamental for the proof of Lemma 16 below, 
and hence also for the subsequent results. For domains of class C2, the corresponding 
results have been proved in [12, Theorem 5.5 and 4.1] (see also [14, Theorem 8 and 
Proposition 6]).

We recall that, for any Lipschitz domain Ω, denoting by dΩ the distance function from 
the boundary

dΩ(x) := min
y∈∂Ω

|y − x|, x ∈ Rn,

the following properties are equivalent (see e.g. [29,34,36]):

(a) Ω ∈ An;
(b) there exists r > 0 such that the distance function dΩ is differentiable at any point 

of the exterior tubular neighborhood

Nr := {x ∈ Rn \ Ω : 0 < dΩ(x) < r};

(c) Ω is a set of positive reach, i.e. there exists r > 0 such that every point x ∈ Nr

admits a unique projection on Ω.

These properties are clearly satisfied if Ω is of class C2 or if Ω is a convex set.
Let us also recall that, if Ω ∈ An, the distance function dΩ is semiconcave in Ω, i.e. 

there exists a constant κ > 0 such that the map x 	→ dΩ(x) − κ
2 |x|2 is concave in Ω

(see [28, Proposition 2.2(iii)]). The constant κ is called a semiconcavity constant for dΩ, 
and can be chosen equal to the reciprocal of the radius in the uniform external sphere 
condition.

As a consequence of the semiconcavity of dΩ, for any Ω in An and any function f
bounded in Ω, we are able to construct a barrier for sub-solutions to

{
F (∇u,D2u) = f(x), in Ω,

u = 0 on ∂Ω.
(19)

We prove:

Lemma 16. Let Ω ∈ An, let F satisfy (H1)-(H2), and let f be a bounded function in Ω. 
Then, for every upper semicontinuous sub-solution u of (19) and every γ ∈ (0, 1), there 
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exist constants M, δ > 0, depending only on the semiconcavity constant of dΩ and on the 
structural constants of F , such that

u(x) ≤ M dΩ(x)γ , ∀x ∈ Ω such that dΩ(x) ≤ δ.

Proof. Throughout the proof we write for brevity d in place of dΩ. If κ > 0 is a semi-
concavity constant for d, since the map x 	→ d(x) − κ

2 |x|2 is concave in Ω, we have

x ∈ Ω, (ξ, A) ∈ J2,−d(x) =⇒ ∇d(x) = ξ, A ≤ κ I. (20)

Let γ ∈ (0, 1) be fixed, and let us consider the function g(x) := M d(x)γ , where 
M > 0 is a constant that will be determined later. For every x ∈ Ω, by (20) we have 
that (ξ, A) ∈ J2,−d(x) if and only if (ζ, X) ∈ J2,−g(x), with

ζ = Mγd(x)γ−1ξ, X = Mγd(x)γ−2 [(d(x)A + (γ − 1)ξ ⊗ ξ] , A ≤ κ I, |ξ| = 1,

and, in this case, both d and g are differentiable at x, with ∇d(x) = ξ and ∇g(x) = ζ �= 0.
Hence, if x ∈ Ω and (ζ, X) ∈ J2,−g(x), from (H1)-(H2) it holds

F (ζ,X) = (M γ)α+1d(x)(α+1)γ−α−2 F (ξ, d(x)A + (γ − 1)ξ ⊗ ξ)

≥ (M γ)α+1d(x)(α+1)γ−α−2 F (ξ, κ d(x) I − (1 − γ)ξ ⊗ ξ)

≥ (M γ)α+1d(x)(α+1)γ−α−2 [c(1 − γ) − C nκd(x)] ,

where in the last inequality we have used the fact that |ξ| = 1.
Since the exponent [(α + 1)γ − α − 2] is negative, if we choose δ < c(1 − γ)/(C n κ), 

we conclude that there exists ε > 0, depending only on γ and κ (and on the structural 
constants of F ), such that

F (ζ,X) ≥ Mα+1ε, ∀ (ζ,X) ∈ J2,−g(x), with x ∈ Ω, d(x) ≤ δ.

In other words, g is a positive supersolution of the equation

F (∇g,D2g) ≥ Mα+1ε in Ωδ := {x ∈ Ω : d(x) < δ}.

Finally, we can now choose

M := max
{
δ−γ max

x∈Ωδ

u ,

(
‖f‖∞
ε

) 1
α+1

+ 1
}

,

so that g ≥ u on ∂Ωδ and |f(x)| < Mα+1ε for every x ∈ Ωδ, hence the claim follows 
from the comparison result proved in [12, Theorem 3.6]. �

We can now derive a global Hölder estimate:
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Proposition 17. Let Ω ∈ An, let F satisfy (H1)-(H2), let f be a bounded function in Ω, 
and let u be a non-negative bounded viscosity solution of (19).

Then, for every γ ∈ (0, 1) there exists a constant H > 0, depending only on γ, ‖f‖∞
and the semiconcavity constant of dΩ, such that

|u(x) − u(y)| ≤ H |x− y|γ , ∀x, y ∈ Ω.

Proof. Thanks to Lemma 16, the result can be obtained following line by line the proof 
of Proposition 6 in [14] (see also [12, Theorem 4.1]). �
Remark 18. As a consequence of the global Hölder estimate given in Proposition 17, it 
is possible to obtain also a local Lipschitz regularity result. More precisely, under the 
hypotheses of Proposition 17, assume in addition that F satisfies the following Hölder 
continuity assumption with respect to ξ �= 0: there exist μ ∈ (1/2, 1] and K > 0 such 
that

|F (ξ + ζ,X) − F (ξ,X)| ≤ K|ζ|μ|X|, ∀ |ξ| = 1, |ζ| < 1/2, X ∈ Sn .

Then, by arguing as in Theorem 4.2 of [12], one can see that every non-negative bounded 
viscosity solution of (19) is locally Lipschitz continuous in Ω.

Finally, thanks to Proposition 17 we are in a position to give

Theorem 19. Let Ω ∈ An and let F satisfy (H1)-(H2). Then for λ = λ(Ω) the eigenvalue 
problem (3) admits a positive viscosity solution u. Moreover, u can be obtained as the 
uniform limit of a sequence of positive eigenfunctions {uk}, associated with an increasing 
sequence of smooth domains {Ωk} such that

⋃
k

Ωk = Ω, lim
k→+∞

λ(Ωk) = λ(Ω) .

Proof. Since Ω satisfies a uniform exterior sphere condition, we can construct a sequence 
of smooth (C∞) domains {Ωk}, still satisfying a uniform sphere condition (possibly with 
a smaller radius r, independent of k), such that Ωk ⊂ Ωk+1 and 

⋃
Ωk = Ω. This can be 

achieved by a standard regularization argument, i.e. by mollifying the function whose 
graph locally defines the boundary of Ω.

For every k ∈ N, let now uk be a positive eigenfunction in Ωk, normalized by ‖uk‖∞ =
1, and let us extend it in Ω by setting uk = 0 in Ω \ Ωk.

Let us fix γ ∈ (0, 1). By Proposition 17, there exists a constant H > 0, depending 
only on r, such that

|uk(x) − uk(y)| ≤ H|x− y|γ , ∀x, y ∈ Ω, ∀k ∈ N.
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Hence, by the Ascoli–Arzelà theorem, from {uk} we can extract a subsequence that 
converges uniformly in Ω to some continuous function u. Moreover, by monotonicity, 
the sequence λ(Ωk) converges decreasingly to some limit L. Thus the function u is a 
non-negative viscosity solution to the equation F (∇u, D2u) = L|u|αu in Ω. Since u ≥ 0
and u �≡ 0, by the strict maximum principle proved in [14, Theorem 2] we deduce that 
u > 0 in Ω. By definition of λ(Ω), this gives the inequality λ(Ω) ≥ L. On the other hand, 
since Ωk ⊂ Ω, we have λ(Ω) ≤ λ(Ωk) and hence in the limit λ(Ω) ≤ L, so that u is a 
positive eigenfunction associated with λ(Ω). �
4. Proofs of Theorems 1 and 2

4.1. Proof of Theorem 1

First of all we observe that it is enough to prove the inequality

λ
(
(1 − t)Ω0 + tΩ1

)
≤ (1 − t)λ(Ω0) + t λ(Ω1), ∀t ∈ [0, 1]. (21)

Indeed, by a standard argument, the Brunn–Minkowski inequality (5) follows from (21)
and the fact that

λ(kΩ) = 1
kα+2 λ(Ω), ∀k > 0.

Specifically, it is enough to apply (21) with

t′ = t λ(Ω1)−1/(α+2)

(1 − t)λ(Ω0)−1/(α+2) + t λ(Ω1)−1/(α+2)
, Ω′

i = λ(Ωi)1/(α+2) Ωi, i = 0, 1.

Let us prove (21). For i = 0, 1, thanks to Theorem 19, there exists a positive eigen-
function ui associated with λ(Ωi), i.e. a positive function in C(Ωi) which is a viscosity 
solution to

{
F (∇ui, D

2ui) = λ(Ωi)uα+1
i in Ωi,

ui = 0 on ∂Ωi.

By Lemma 13, for i = 0, 1, the function vi := − log ui is a viscosity super-solution of

{
G(∇vi, D

2vi) = −λ(Ωi) in Ωi,

vi → +∞ on ∂Ωi,

where G is the function defined in (17).
Let w : Ωt → R be the infimal convolution of v0, v1 with coefficients t = (1 − t, t), in 

Ωt = (1 − t)Ω0 + tΩ1, i.e.,
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w(x) := inf
{
(1 − t)v0(x0) + t v1(x1) : x0 ∈ Ω0, x1 ∈ Ω1, x = (1 − t)x0 + t x1

}
.

By Proposition 14, w is a viscosity super-solution to
{
G(∇w,D2w) = −

[
(1 − t)λ(Ω0) + t λ(Ω1)

]
in Ωt,

w → +∞ on ∂Ωt .

Let us define u : Ωt → R as u(x) := e−w(x) for every x ∈ Ωt, u(x) = 0 for every 
x ∈ ∂Ωt. Clearly, u > 0 in Ωt and u ∈ C(Ωt).

Moreover, applying again Lemma 13, we infer that u is a viscosity sub-solution to

F (∇u,D2u) = [(1 − t)λ(Ω0) + t λ(Ω1)]uα+1 in Ωt.

Since u > 0 in Ωt and u = 0 on ∂Ωt, by Theorem 7 we conclude that (21) holds. �
4.2. Proof of Theorem 2(I)

Let v := − log u. In order to prove that v is a convex function, we exploit the convex 
envelope method by Alvarez-Lasry-Lions. By definition, the convex envelope v∗∗ of v sat-
isfies v∗∗ ≤ v. In order to show the converse inequality, we apply a comparison argument 
to the modified equation

G(∇v,D2v) = −λ(Ω) (22)

settled on a suitable level set Ωε := {u > ε}. To be more precise, the comparison principle 
given in [59, Theorem 1.3] ensures that the inequality v∗∗ ≥ v in Ωε holds true in Ωε

(and hence in the limit as ε → 0+ also in Ω), provided the following two properties hold 
true:

(a) v∗∗ is a viscosity super-solution to (22) in Ωε;
(b) v∗∗ = v on ∂Ωε.

We point out that we cannot take ε = 0 (namely work directly on Ω) because v → +∞ on 
∂Ω. We also stress that the assumption (H3)’ intervenes in the proof of item (b) given 
below, and this is the reason why the statement cannot be proved under the weaker 
condition X 	→ F (ξ, X−1) convex appearing in [1].

Proof of (a). Let us show that v∗∗ is a viscosity super-solution to (22) in the whole Ω. 
We observe that

v∗∗ = min
{

(v · · · v)t : t ∈
⋃

k≤(n+1)

Λ+
k

}
.

Thus, for some t ∈ Λ+
k (depending on x), we have
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v∗∗(x) = (v · · · v)t(x),

and hence, by applying Proposition 14 (with Ωi = Ω and vi = v for every i), we conclude 
that v∗∗ is a super-solution to (22). (As well, one could apply here Proposition 3 in [1]).

Proof of (b). By Lemma 4 in [1], the required equality v∗∗ = v on ∂Ωε is satisfied provided 
the level set Ωε is convex. We are thus reduced to prove the convexity of Ωε for ε small 
enough.

We start by noticing that, by [15, Proposition 3.5], v belongs to C1,β(Ω) (for some 
β ∈ (0, 1)). Combined with the Hopf boundary point principle given in [14, Corollary 1], 
this ensures that |∇v| ≥ α > 0 in N , where N is an inner neighborhood of ∂Ω. This 
fact, and the strong convexity assumption made on Ω, enable us to apply Lemma 2.4 in 
[56] (see also [64, Proposition 3.2]) to infer that the required convexity property of Ωε is 
satisfied, for ε sufficiently small, as soon as we know that u ∈ C2(N).

The latter property follows by standard elliptic regularity, in particular thanks to the 
convexity hypothesis made on F and to the condition ∂Ω ∈ C2,β . So we limit ourselves to 
give adequate references, along with a few additional comments. By the convexity of F , 
we can apply the method of continuity as done for instance in the proof of Theorem 9.7 
in [25]. There is just one point where we need to be careful when following the proof of 
Theorem 9.7 in [25]: since F depends also on ξ, we cannot exploit the a priori estimates 
used therein (which are those given in Theorem 9.5 in [25]). In place, we can invoke the 
a priori estimates given in [41, Theorem 17.26]. These estimates are stated actually for 
more regular solutions, but this is not restrictive thanks to classical Schauder estimates, 
which hold in particular by the C2,β regularity of ∂Ω (see [41, Section 6.4]). The relevant 
point is that the estimates in [41, Theorem 17.26] continue to hold for F = F (ξ, X), and 
enable us to conclude along the proof line of [25, Theorem 9.7]. As a drawback, we have 
to ask the convexity condition in the reinforced form (H3)’, which is needed precisely to 
ensure the validity of condition (17.85) in [41]. �
4.3. Proof of Theorem 2(ii)

Let Ω ∈ An, and let {uk} be the approximating sequence given by Theorem 19. We 
remark that the approximating smooth sets {Ωk} can be chosen to be strongly convex. 
Since, by Theorem 2(i), every function uk is log-concave, then also their uniform limit u
is a log-concave positive eigenfunction. �
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