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We count the algebraic numbers of fixed degree by their 
w-weighted lp-norm which generalizes the naïve height, the 
length, the Euclidean and the Bombieri norms. For non-
negative integers k, l such that k + 2l ≤ n and a Borel subset 
B ⊂ R ×Cl

+ denote by Φp,w,k,l(Q, B) the number of ordered 
(k+ l)-tuples in B of conjugate algebraic numbers of degree n
and w-weighted lp-norm at most Q. We show that

lim
Q→∞

Φp,w,k,l(Q,B)
Qn+1 =

Voln+1(Bn+1
p,w )

2ζ(n + 1)

∫
B

ρp,w,k,l(x, z)dxdz,

where Voln+1(Bn+1
p,w ) is the volume of the unit w-weighted 

lp-ball and ρp,w,k,l will denote the correlation function 
of k real and l complex zeros of the random polynomial ∑n

j=1
ηj

wj
zj , where ηj are i.i.d. random variables with density 

cpe−|t|p for 0 < p < ∞ and with constant density on [−1, 1]
for p = ∞. If the boundary of B is of Lipschitz type, we also 
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estimate the rate of convergence. We give an explicit formula 
for ρp,w,k,l, which in the case k+2l = n has a very simple form. 
To this end, we obtain a general formula for the correlations 
between real and complex zeros of a random polynomial with 
arbitrary independent absolutely continuous coefficients.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

What is the distribution of algebraic numbers of a given degree n? To answer this 
question, we first need to define a suitable notion for it. For discrete sets like e.g. infinite 
subsets of integers one is lead to consider asymptotic relative densities of such sets in 
intervals of integers [1, N ] in the large N limit. Clearly, this direct approach does not 
work for algebraic numbers (real or complex), since any domain contains an infinite 
number of them (even for a fixed degree n). A possible solution is the following classical 
ordering of algebraic numbers by the concept of height. Let Q denote the field of (all) 
algebraic numbers over Q. A function h : Q → R+ is called a height function if for any 
n ∈ Z+ and Q > 0 there are only finitely many algebraic numbers α of degree n such 
that h(α) ≤ Q. Note that usually it is required (and we will always assume this) that 
h(α′) = h(α) for all conjugates of α.

Having defined h, we are interested in the asymptotic number of α ∈ Q of degree n

lying in a given subset B of R or C such that h(α) ≤ Q as Q → ∞. More generally, 
for k = 1, . . . , n, one would like to determine the asymptotic behaviour of the number 
of k-tuples (α1, . . . , αk) ∈ B1 × · · · ×Bk of conjugate algebraic numbers of degree n and 
height at most Q as Q → ∞.

In this paper, we consider the so-called weighted lp-heights (p ∈ (0, ∞]).
We would like to emphasize that throughout this paper the degree n of polynomials, 

algebraic numbers, etc. is fixed.
Section 2 contains some basic notation. In Section 3 we describe the problem of count-

ing vectors with algebraic coordinates and formulate the main number-theoretical results 
of the paper. Section 4 gives a necessary account of related topics in random polyno-
mials. There we formulate the principal result relating distributions of zeros of random 
polynomials and algebraic numbers. In Section 5 we state several explicit formulae for a 
function which plays the role of the joint distribution functions for conjugate algebraic 
numbers. Sections 6–8 contain the proofs of our statements.

2. Basic definitions

Given a polynomial q(z) := a0 + a1z + · · · + anz
n and a vector of positive weights 

w = (w0, w1, . . . , wn) define the w-weighted lp,w-norm of q as
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lp,w[q] :=
{

(
∑n

i=0 |wiai|p)1/p , 0 < p < ∞;
max0≤i≤n wi|ai|, p = ∞.

Although it is not a real norm for 0 < p < 1, all our results remain true in this case as 
well.

In the non-weighted case w = 1, this notion generalizes the naïve height (p = ∞), the 
length (p = 1), and the Euclidean norm (p = 2):

H[q] := max
0≤i≤n

|ai|, L[q] :=
n∑

i=0
|ai|, ‖q‖ :=

(
n∑

i=0
a2
i

)1/2

.

An important weighted example is the Bombieri p-norm:

[q]p :=
(

n∑
i=0

(
n

i

)1−p

|ai|p
)1/p

.

Denote by Bn+1
p,w the (n + 1)-dimensional unit lp,w-ball:

Bn+1
p,w :=

{
(a0, . . . , an) ∈ Rn+1 :

n∑
i=0

|wiai|p ≤ 1
}
. (1)

Using the well-known formula for the volume of the (non-weighted) unit lp-ball Bn+1
p we 

have

Voln+1(Bn+1
p,w ) =

Voln+1(Bn+1
p )

w0w1 . . . wn
=

⎧⎪⎨
⎪⎩

2n+1Γ
(
1+ 1

p

)n+1

w0w1...wnΓ
(
1+n+1

p

) , p < ∞,

2n+1

w0w1...wn
, p = ∞.

. (2)

Let Pp,w(Q) denote the class of integral polynomials (polynomials with integer coef-
ficients) of degree n and the lp,w-height at most Q:

Pp,w(Q) := {q ∈ Z[z] : deg[q] = n, lp,w[q] ≤ Q}.

We say that an integral polynomial is prime, if it is irreducible over Q, primitive (the 
greatest common divisor of its coefficients equals 1), and its leading coefficient is positive. 
Denote by P∗

p,w(Q) the class of prime polynomials from Pp,w(Q):

P∗
p,w(Q) := {q ∈ Pp,w(Q) : q is prime}.

The minimal polynomial of an algebraic number α is the (unique) prime polynomial 
q such that q(α) = 0. We put by definition

lp,w[α] := lp,w[q].
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The other roots of q are called the (algebraic) conjugates of α.

3. Distribution of algebraic numbers

We would like to study the joint distribution of several conjugate algebraic numbers of 
degree n and bounded height. What is the natural configuration space for this problem? 
Consider a prime polynomial of degree n. Some of its zeros are real, and the rest are 
symmetric with respect to the real line. Thus we may neglect the zeros lying in C−. Fix 
some integer numbers k, l ≥ 0 such that 0 < k + 2l ≤ n.

For a measurable set B ⊂ Rk × Cl
+ and the height function lp,w denote by 

Φp,w,k,l(Q, B) the number of (k + l)-tuples (α1, . . . , αk, β1, . . . , βl) ∈ B of distinct num-
bers such that for some q ∈ P∗

p,w(Q) it holds

q(α1) = · · · = q(αk) = q(β1) = · · · = q(βl) = 0.

Essentially Φp,w,k,l(Q, B) denotes the number of ordered (k+ l)-tuples in B of conjugate 
algebraic numbers of degree n and height lp,w at most Q.

We always assume that B is measurable and its boundary ∂B has Lebesgue measure 
0. Our aim is to show that there exists a non-trivial limit

lim
Q→∞

Φp,w,k,l(Q,B)
Qn+1 (3)

and to find its exact value.

Theorem 3.1. For p ∈ (0, ∞], a fixed positive vector w = (w0, w1, . . . , wn), and some 
integer numbers k, l ≥ 0 such that 0 < k + 2l ≤ n, there exists a function ρp,w,k,l :
Rk × Cl

+ → R+ such that for any measurable B ⊂ Rk × Cl
+ with the boundary having 

Lebesgue measure 0 we have

lim
Q→∞

Φp,w,k,l(Q,B)
Qn+1 =

Voln+1(Bn+1
p,w )

2ζ(n + 1)

∫
B

ρp,w,k,l(x, z)dxdz,

where the formula for Voln+1(Bn+1
p,w ) is given in (2). The expression for ρp,w,k,l(x, z) will 

be given in Corollary 5.6.

Provided that ∂B is smooth enough we are able to estimate the rate of convergence 
in (3) as well. To clarify what we mean by “smooth enough” we need the following 
definition (see [45, Definition 2.2]).

Definition 3.2. We say that S ⊂ Rd is of Lipschitz class (M, L) (S ∈ Lip(M, L)) if there 
exist M maps φ1, . . . , φM : [0, 1]d−1 → Rd satisfying a Lipschitz condition

|φi(x) − φi(y)| ≤ L|x− y| for x, y ∈ [0, 1]d−1, i = 1, . . . ,M,
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such that S is covered by the images of the maps φi.

Remark 3.3. It is clear that if in the Definition 3.2 we replace the domain [0, 1]d−1 by an 
arbitrary parallelepiped, then S is still of Lipschitz class with some different parameter L.

This definition can be naturally extended to subsets of Rd1×Cd2 as well by considering 
them as images under the standard isometry between Rd1 ×Cd2 and Rd1+2d2 .

Theorem 3.4. Suppose that the boundary of B is of Lipschitz class (M, L). Then,
∣∣∣∣∣∣
Φp,w,k,l(Q,B)

Qn+1 −
Voln+1(Bn+1

p,w )
2ζ(n + 1)

∫
B

ρp,w,k,l(x, z)dxdz

∣∣∣∣∣∣ ≤
{
C log Q

Q , n = 2, l = 0,
C 1

Q , otherwise,

where C depends on n, M, L, w only.

For the naïve height (p = ∞, wi = 1), the problem of finding the limit in (3) was 
solved for real (k = 1, l = 0) and complex (k = 0, l = 1) algebraic numbers, see [27]
and [18], and also for tuples of real conjugate algebraic numbers (k is arbitrary, l = 0), 
see [16].

Unfortunately, our approach cannot cover the case of the Mahler measure. The Mahler 
measure (in particular, in the form of the Weil height) has many applications in algebraic 
number theory. Counting algebraic numbers and points with respect to the Weil height 
and its generalisations has been intensively studied. See the papers [33], [32], [46], [19]
for results in this direction and related references.

It turns out that the function ρp,w,k,l coincides with the correlation function of the 
zeros of some specific random polynomial. To formulate the result we first recall some 
essential notions.

4. Zeros of random polynomials

Let ξ0, ξ1, . . . , ξn be independent real-valued random variables with bounded proba-
bility density functions f0, . . . , fn. Consider the random polynomial defined as

G(z) := ξ0 + ξ1z + · · · + ξnz
n, z ∈ C. (4)

With probability one, all zeros of G are simple, see [9]. Denote by μ the empirical measure 
counting the zeros of G:

μ :=
∑

z:G(z)=0

δz,

where δz is the unit point mass at z. The random measure μ may be regarded as a random 
point process on C. A natural way of describing the distribution of a point process is 
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via its correlation functions. Since the coefficients of G are real, its zeros are symmetric 
with respect to the real line, and some of them possibly are real. Therefore, the natural 
configuration space for the point process μ must be a “separated” union C+ ∪ R with 
topology induced by the union of topologies in C+ and R. Instead of considering the 
correlation functions of the process on C+ ∪ R, an equivalent way is to investigate the 
mixed (k, l)-correlation functions (see [42]). We call functions ρk,l : Rk × Cl

+ → R+, 
where 0 < k + 2l ≤ n, mixed (k, l)-correlation functions of the zeros of G, if for any 
family of mutually disjoint Borel subsets B1, . . . , Bk ⊂ R and Bk+1, . . . , Bk+l ⊂ C+,

E

[
k+l∏
i=1

μ(Bi)
]

=
∫
B1

. . .

∫
Bk+l

ρk,l(x, z) dx dz, (5)

where E denotes the expectation with respect to the joint distribution of ξ0, ξ1, . . . , ξn. 
Here and subsequently, we write

x := (x1, . . . , xk) ∈ Rk, z := (z1, . . . , zl) ∈ Cl
+.

The most intensively studied class of random polynomials are Kac polynomials, when 
ξi’s are i.i.d. Sometimes the i.i.d. coefficients are considered with some non-random 
weights ci’s. The common examples are flat or Weil polynomials (with ci =

√
1/i!) 

and elliptic polynomials (with ci =
√(

n
i

)
).

The (1, 0)-correlation function ρ1,0 is called a density of real zeros. Integrated over R
it gives the average number of real zeros of G. The asymptotic properties of this quantity 
as n → ∞ have been intensively studied for many years, mostly for Kac polynomials; 
see the historical background in [6] and the survey of the most recent results in [42]. We 
just mention some contributions here like: [25], [13], [41], [21], [34], [31], [39], [4], [15].

Similarly, ρ0,1 is called a density of complex zeros being an expectation of the empirical 
measure μ counting non-real zeros. Its limit behaviour as n → ∞ is of a great interest 
as well, see [38], [23], [22], [24], [36], [37], [5], and the references given there.

There are comparatively few papers on higher-order correlation functions of zeros. 
Well-known results are due to Bleher and Di [7], [8] who studied the correlations between 
real zeros for elliptic and Kac polynomials, and to Tao and Vu [42] who proved asymptotic 
universality for the mixed correlation functions for elliptic, Weil, and Kac polynomials 
under some moment conditions on ξi.

Our next result connects the limit density of tuples of conjugate algebraic numbers 
with the correlation function of zeros of the following random polynomial.

Theorem 4.1. Let p ∈ (0, ∞] and let η0, η1, . . . , ηn be i.i.d. real random variables with a 
probability density function given by

f(t) :=

⎧⎨
⎩

1
2Γ
(
1+ 1

p

)e−|t|p , p < ∞,

11 (t), p = ∞.
(6)
2 [−1,1]
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Consider the random polynomial defined as

Gp,w(z) :=
n∑

i=0

ηi
wi

zi. (7)

Then, the mixed (k, l)-correlation function of zeros of Gp,w coincides with the function 
ρp,w,k,l from Theorem 3.1.

The exact formula for ρp,w,k,l is given in Section 5. Let us now formulate one important 
special case.

4.1. Bombieri 2-norm

The next theorem shows that the way of counting algebraic numbers with respect 
to the Bombieri 2-norm is in some sense the most natural. It has been shown in [12]
that in the case of Bombieri 2-norm the zeros of the corresponding random polynomial 
(sometimes called the elliptic random polynomial) have a very simple density.

Theorem 4.2 (Edelman–Kostlan [12]). Assume that w =
((

n
i

)−1/2
)n
i=0

. Then

ρ2,w,1,0(x) =
√
n

π(1 + x2) .

Thus for any degree n the asymptotic density of algebraic numbers counted with 
respect to Bombieri 2-norm coincides with the normalized Cauchy density. In particular, 
Theorem 3.1 implies the following.

Corollary 4.3. We have

lim
Q→∞

Φ2,w,1,0(Q,B)
Qn+1 =

√
nVoln+1(Bn+1

2,w )
2π ζ(n + 1)

∫
B

dx
1 + x2 .

The volume Voln+1(Bn+1
2,w ) can be calculated as

Voln+1(Bn+1
2,w ) = π

n+1
2

Γ
(
1 + n+1

2
)
√√√√ n∏

i=0

(
n

i

)
= (π n!)n+1

2

Γ
(
1 + n+1

2
)∏n

i=0 i!
.

5. General formula for ρp,w,k,l

Recall that f0, . . . , fn denote the probability density functions of the coefficients 
ξ0, . . . , ξn of G and ρk,l denotes the mixed correlation function of its zeros; see (4) and (5). 
For m = 1, . . . , n, consider a function ρm : Cm → R defined as
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ρm(z1, . . . , zm) :=
∏

1≤i<j≤m

|zi − zj |

×
∫

Rn−m+1

n∏
i=0

fi

⎛
⎝n−m∑

j=0
(−1)m−i+jσm−i+j(z1, . . . , zm)tj

⎞
⎠ m∏

i=1

∣∣∣∣∣
n−m∑
j=0

tjz
j
i

∣∣∣∣∣dt0 . . .dtn−m,

(8)

where we used the following notation for the elementary symmetric polynomials:

σi(z1, . . . , zm) :=

⎧⎪⎨
⎪⎩

1, if i = 0,∑
1≤j1<···<ji≤m zj1zj2 . . . zji , if 1 ≤ i ≤ m,

0, otherwise.
(9)

It is tacitly assumed that the arguments of fi’s are well-defined (i.e., real): we shall 
restrict ourselves by considering only those points (z1, . . . , zm) such that all symmetric 
functions of them are real.

Introduce as well the absolute value of the Vandermonde determinant:

vm(z1, . . . , zm) :=
∏

1≤i<j≤m

|zi − zj |. (10)

It was proved in [17] that the correlation functions of real zeros of G are given by (8):

ρk,0(x) = ρk(x)

for all x ∈ Rk. The following theorem generalises this relation to all mixed (k, l)-corre-
lation functions.

Theorem 5.1. For all (x, z) ∈ Rk ×Cl
+,

ρk,l(x, z) = 2lρk+2l(x, z, z̄), (11)

where ρk+2l is defined in (8). Specifically,

ρk,l(x, z) = 2lvk+2l(x, z, z̄)
∫

Rn−k−2l+1

n∏
i=0

fi

⎛
⎝n−k−2l∑

j=0
(−1)k−i+jtjσk+2l−i+j(x, z, z̄)

⎞
⎠

×
k∏

i=1

∣∣∣∣∣
n−k−2l∑

j=0
tjx

j
i

∣∣∣∣∣ ·
l∏

i=1

∣∣∣∣∣
n−k−2l∑

j=0
tjz

j
i

∣∣∣∣∣
2

dt0 . . .dtn−k−2l. (12)

The proof of Theorem 5.1 is given in Section 7.
Note that the correlations between real zeros and the correlations between complex 

zeros are essentially given by the same function ρm. In particular, ρ2 provides a formula 
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for the density of complex zeros as well as for the two-point correlation function of real 
zeros:

ρ0,1(z) = 2ρ2(z, z̄), ρ2,0(x, y) = ρ2(x, y).

Let us give some examples. Taking k = 1, l = 0 in (12) yields a formula for the density 
of real zeros.

Corollary 5.2. We have

ρ1,0(x) =
∫
Rn

n∏
i=0

fi (ti−1 − xti)

∣∣∣∣∣
n−1∑
j=0

tjx
j

∣∣∣∣∣dt0 . . .dtn−1,

where we set t−1 = tn := 0.

This formula (with different notations) was obtained in [48].
Taking k = 0, l = 1 yields a formula for the density of complex zeros.

Corollary 5.3. We have

ρ0,1(z) = 4| Im z|
∫

Rn−1

n∏
i=0

fi(ti−2 − 2ti−1 Re z + ti|z|2)
∣∣∣∣∣
n−2∑
j=0

tjz
j

∣∣∣∣∣
2

dt0 . . .dtn−2,

where we set t−2 = t−1 = tn−1 = tn := 0.

This formula (with different notations) was obtained in [47].
Taking k = n − 2l we obtain the (non-normalized) joint density of all zeros given that 

G has exactly n − 2l real zeros.

Corollary 5.4. We have

ρn−2l,l(x, z) = 2lvn(x, z, z̄)
∫
R

|t|n
n∏

i=0
fi
(
(−1)n−itσn−i(x, z, z̄)

)
dt. (13)

Recall that μ denotes the empirical measure counting the zeros of G. It is easy to 
derive from (5) that

E

[
μ(R)!

(μ(R) − n + 2l)!
μ(C+)!

(μ(C+) − l)!

]
=
∫

Rn−2l

∫
Cl

+

ρn−2l,l(x, z)dxdz,

where we used the convention 0! := 1 and q! := ∞ for any integer q < 0. Since with 
probability one μ(R) + 2μ(C+) = n, the random variable under expectation is non-zero 
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if and only if μ(R) = n − 2l. Thus we obtain the probability that G has exactly n − 2l
real zeros.

Corollary 5.5. We have

P [μ(R) = n− 2l] = 2l

l!(n− 2l)!

∫
Rn−2l

∫
Cl

+

vn(x, z, z̄)

×
∫
R

|t|n
n∏

i=0
fi
(
(−1)n−itσn−i(x, z, z̄)

)
dtdxdz.

This formula has been obtained earlier in [47].
From Theorems 4.1 and 5.1, the following statement immediately follows.

Corollary 5.6. An explicit representation for the integrand ρp,w,k,l(x, z) of Theorem 3.1
can be obtained from (12) by choosing the densities of coefficients as

fi(t) =

⎧⎨
⎩

wi

2Γ
(
1+ 1

p

)e−|wit|p , p < ∞,

wi

2 1[−1,1](wit), p = ∞.

In the case k = n − 2l the formula for ρp,w,k,l(x, z) can be considerably simplified as 
shown in the next theorem. Before formulating it we introduce the following notion: for 
an arbitrary monic polynomial q(z) := (z − z1) . . . (z − zn) define its discriminant as

D[q] = D[z1, . . . , zn] :=
∏
i<j

(zi − zj)2.

Theorem 5.7. We have

ρp,w,n−2l,l = 2l+1

(n + 1) Voln+1(Bn+1
p,w )

√
|D[q]|

(lp,w[q])n+1 ,

where q is the monic polynomial whose zeros are the arguments of ρp,w,n−2l,l:

q(z) := (z − x1) . . . (z − xk)(z − z1)(z − z1) . . . (z − zl)(z − zl).

The proof will be presented in Section 8.
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6. Proof of Theorems 3.1, 3.4 and 4.1

6.1. Methods of proof: counting integer points

We reduce counting algebraic numbers to counting corresponding minimal polyno-
mials represented by the vectors of their coefficients. So we need to formulate some 
statements about counting integer points in multidimensional regions.

Estimating the number of integer points in a region by its measure is a well-known 
idea. The most «ancient» publication (that relates integer points counting to the volume 
of a region), which the authors are aware of, is a result by Lipschitz [30]. See as well 
the classical monograph by Bachmann [1, pp. 436–444] (in particular, formulas (83a) 
and (83b) on pages 441–442). There are a number of papers generalizing such estimates 
to arbitrary lattices, see e.g. [32] and [2].

For a Borel set A ⊂ Rd denote by λ(A) the number of points in A with integer 
coordinates, and by λ∗(A) the number of points in A with coprime integer coordinates:

λ(A) = #
(
A ∩ Zd

)
,

λ∗(A) = #
{
(x1, . . . , xd) ∈ A ∩ Zd : gcd(x1, . . . , xd) = 1

}
.

For a real number r and a set S ⊂ Rd let

rS = {rx : x ∈ S}.

Lemma 6.1. Let d ≥ 2 be an integer. Let A ⊂ Rd be a fixed bounded region. If the 
boundary ∂A of A has Lebesgue measure 0, then

lim
Q→∞

λ(QA)
Qd

= Vold(A).

Note that the requirement of A to be just Lebesgue measurable doesn’t suffice, and 
the boundary ∂A must be of Lebesgue measure 0 to ensure the existence of the limit. For 
example, if one takes A to be the set of points in [0, 1]d with rational coordinates, then 
for any positive integer Q the set QA contains ≈ Qd integer points, but A has Lebesgue 
measure 0. Notice that in this case ∂A = [0, 1]d.

Proof. The lemma can be easily proved if one considers coverings of A by d-dimensional 
cubes with edge Q−1. See, for example, [29, Chapter VI §2]. Note that none of the 
conditions of the lemma can be omitted. �

Lemma 6.1 provides no estimates for the rate of convergence. Additionally, in this 
lemma the region A is kept fixed and therefore cannot depend on Q. To avoid all these 
restrictions one needs to restrict oneself to a suitable class of regions. See [10], [29], [40]. 
One way is to employ the class provided in Daveport’s paper [10]. However, for our goals 
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it is more natural to follow the approach used in [44]. To this end, we will need a notion 
of the Lipschitz class which was introduced in Section 3.

Lemma 6.2. Consider a bounded region A ⊂ Rd, d ≥ 2, such that the boundary ∂A of A
is in Lip(M, L). Then A is Lebesgue measurable and

∣∣∣∣λ(QA)
Qd

− Vold(A)
∣∣∣∣ ≤ C

Q
, (14)

where C depends on d, L, M only.

Proof. The proof follows directly from [44, Theorem 5.4]. �
Now we need to adapt the latter two lemmas to the integer points with coprime 

coordinates.

Lemma 6.3. Under the assumptions of Lemma 6.1 we have

lim
Q→∞

λ∗(QA)
Qd

= Vold(A)
ζ(d) , (15)

and under the assumptions of Lemma 6.2 we have
∣∣∣∣λ∗(QA)

Qd
− Vold(A)

ζ(d)

∣∣∣∣ ≤ C
logχd,0 Q

Q
, (16)

where C depends on d, L, M only and

χn,l :=
{

1, n = 2, l = 0;
0, otherwise.

(17)

Proof. Using the inclusion-exclusion principle (Moebius inversion) one can easily show 
that

λ∗(QA) =
[QN ]+1∑

r=1
μ(r)λ

(
Q

r
A

)
,

where N is a positive number such that A ⊆ [−N, N ]d, and μ(·) is the Moebius function.
Let

θA(Q) := λ(QA)
Qd

− Vold(A).

Then we have
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λ∗(QA) = Qd

⎛
⎝[QN ]+1∑

r=1

μ(r)
rd

Vold(A) +
[QN ]+1∑

r=1

μ(r)
rd

θA

(
Q

r

)⎞⎠ .

From the well-known equality ζ(d)−1 =
∑∞

r=1 μ(r)r−d, the first sum can be estimated 
as ∣∣∣∣∣∣

[QN ]+1∑
r=1

μ(r)
rd

− 1
ζ(d)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞∑
r=[QN ]+2

μ(r)
rd

∣∣∣∣∣∣ ≤
∞∫

QN

dx

xd
= 1

(d− 1)(QN)d−1 . (18)

From Lemma 6.1 we infer that for any ε > 0 there exists Q0 = Q0(A, ε) such that 
|θA(Q)| ≤ ε for all Q ≥ Q0, and there exists finite ΘA = maxQ≥0 |θA(Q)|. Hence

∣∣∣∣∣∣
[QN ]+1∑

r=1

μ(r)
rd

θA

(
Q

r

)∣∣∣∣∣∣ ≤ ε
∑

1≤r≤ Q
Q0

1
rd

+ ΘA

∑
r> Q

Q0

1
rd

≤ ζ(d) ε + ΘA

(d− 1)

[
Q

Q0(ε)

]1−d

.

Therefore, for any ε > 0

lim
Q→∞

∣∣∣∣∣∣
[QN ]+1∑
r=1

μ(r)
rd

θA

(
Q

r

)∣∣∣∣∣∣ ≤ ζ(d) ε,

which proves (15).
To prove (16), note that the bound (14) in Lemma 6.2 can be written as

|θA(Q)| ≤ C

Q
,

where the constant C is the same as in (14). Hence,
∣∣∣∣∣∣
[QN ]+1∑
r=1

μ(r)
rd

θA

(
Q

r

)∣∣∣∣∣∣ ≤
C

Q

[QN ]+1∑
r=1

1
rd−1 ≤

{
CQ−1ζ(d− 1), d ≥ 3,
CQ−1 (log([QN ] + 1) + 1) , d = 2.

Now joining the latter estimate with the bound (18) and suitably choosing a new constant 
C, we obtain (16). �
6.2. Proof of Theorems 3.1, 3.4 and 4.1

Let us describe how to calculate Φp,w,k,l(Q, B).
Given a function g : C → R and a Borel subset B ⊂ Rk × Cl denote by μg,k,l(B)

the number of ordered (k+ l)-tuples (x1, . . . , xk, z1, . . . , zl) ∈ B of distinct numbers such 
that
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g(x1) = · · · = g(zl) = 0.

For any algebraic number its minimal polynomial is prime, and any prime polynomial is 
a minimal polynomial for some algebraic number. Therefore we have

Φp,w,k,l(Q,B) =
∑

q∈P∗
p,w(Q)

μq,k,l(B). (19)

On the other hand the right-hand side can obviously be written as

Φp,w,k,l(Q,B) =
∞∑

m=0
m · #{q ∈ P∗

p,w(Q) : μq,k,l(B) = m}. (20)

Since μq,k,l(B) ≤ n!/(n − k − 2l)!, the number of the summands in the right-hand side 
is finite.

Consider a set Am ⊂ Bn+1
p,w (which depends on B) consisting of all points (a0, . . . , an) ∈

Bn+1
p,w such that

μa0+a1x+···+anxn,k,l(B) = m.

Then, by definition of a primitive polynomial,

#{q ∈ Pp,w(Q) : q is primitive and μq,k,l(B) = m} = λ∗(QAm).

Hence it follows from the definition of a prime polynomial that

∣∣∣∣#{p ∈ P∗
p,w(Q) : μq,k,l(B) = m} − 1

2λ
∗(QAm)

∣∣∣∣
≤ #{q ∈ Pp,w(Q) : q is reducible}. (21)

Note that the factor 1/2 arises because prime polynomials have positive leading coeffi-
cients. It is known (see [43], or [28], [11]) that

#{q ∈ Pp,w(Q) : q is reducible} = O (Qn logχn,0 Q) , Q → ∞, (22)

where χn,0 is defined in (17). Note that for n = 2 any reducible integer polynomial has 
only real roots. Thus (21) and (22) imply

∣∣∣∣#{p ∈ P∗
p,w(Q) : μq,k,l(B) = m} − 1

2λ
∗(QAm)

∣∣∣∣ = O (Qn logχn,l Q) , Q → ∞.

Applying this to (20), we obtain
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Φp,w,k,l(Q,B) = 1
2

∞∑
m=0

mλ∗(QAm) + O (Qn logχn,l Q) , Q → ∞. (23)

It follows from Lemma 6.3 that under the assumptions of Theorem 3.1,

lim
Q→∞

λ∗(QAm)
Qn+1 = Voln+1(Am)

ζ(n + 1) . (24)

To estimate the rate of convergence in (24) we need to use (16) which requires Am to 
be of Lipschitz class. This is established in the next lemma.

Lemma 6.4. Let B ⊂ Rk × Cl
+ and Am be defined as above. If B is of Lipschitz class 

(M, L), then the boundary ∂Am is of Lipschitz class (M1, L1) for some constants M1, 
L1 depending on n, M, L, w only.

The proof of Lemma 6.4 is postponed to the end of this section. Now assuming 
Lemma 6.4 we have from (16) that under the assumptions of Theorem 3.4,

∣∣∣∣λ∗(QAm)
Qn+1 − Voln+1(Am)

ζ(n + 1)

∣∣∣∣ ≤ C

Q
, (25)

where C depends on n, M, L, w only. Note that since n ≥ 2, dimension of Am is at least 
3, so there is no factor logQ in the right-hand side of (25).

Thus having obtained (23), (24), and (25), to prove Theorems 3.1 and 3.4 we are left 
with the task of calculating of Voln+1(Am). To this end, consider the random polynomial 
defined as

G̃(z) :=
n∑

k=0

ξkz
k,

where the random vector (ξ0, ξ1, . . . , ξn) is uniformly distributed over Bn+1
p,w . By definition 

of Am,

P [μG̃,k,l(B) = m] = Voln+1(Am)
Voln+1(Bn+1

p,w )
. (26)

The probability on the left-hand side is difficult to calculate due to dependence of the 
coefficients of G̃(z). However, the zeros of G̃(z) do not change if we divide the polynomial 
by any non-zero constant. By proper normalisation we can achieve independence of the 
coefficients.

Lemma 6.5. Let p ∈ (0, ∞], and w = (w0, w1, . . . , wn) be a vector of positive weights. 
Assume that the random vector (ξ0, ξ1, . . . , ξn) is uniformly distributed in Bn+1

p,w and that 
the random variables η0, η1, . . . , ηn are i.i.d. with Lebesgue density
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f(t) :=

⎧⎨
⎩

1
2Γ
(
1+ 1

p

)e−|t|p , p < ∞,

1
21[−1,1](t), p = ∞.

(27)

Then the polynomials G̃(z) =
∑n

i=0 ξiz
i and

G(z) =
n∑

i=0

ηi
wi

zi (28)

have the same distribution of roots (both real and complex).

To prove the lemma, we need the following probabilistic representation of the uniform 
measure on Bn+1

p .

Theorem 6.6 (Barthe et al.). Let p > 0 and let η0, η1, . . . , ηn be i.i.d. random variables 
with p.d.f. (27). Let Z be an exponential random variable (i.e., the p.d.f. of Z is e−t, t ≥
0) independent of η0, η1, . . . , ηn. Then,

(η0, η1, . . . , ηn)
(
∑n

i=0 |ηi|p + Z)1/p
d= (ξ0, ξ1, . . . , ξn).

Proof. See [3]. �
Now we are ready to prove the lemma.

Proof of Lemma 6.5. It is easy to check that the vector (w0ξ0, w1ξ1, . . . , wnξn) is uni-
formly distributed in Bn+1

p . Therefore, from Theorem 6.6 we obtain at once

(w−1
0 η0, w

−1
1 η1, . . . , w

−1
n ηn)

(
∑n

i=0 |ηi|p + Z)1/p
d= (ξ0, ξ1, . . . , ξn).

Since dividing a polynomial by a non-zero constant does not affect its zeros, the lemma 
is proved. �

Thus it readily follows that

P [μG̃,k,l(B) = m] = P [μG,k,l(B) = m],

where the random polynomial G is defined in (28). Combining this with (26), we arrive 
at

∞∑
m=0

mVoln+1(Am) = Voln+1(Bn+1
p,w )

∞∑
m=0

mP [μG,k,l(B) = m]

= Voln+1(Bn+1
p,w )E[μG,k,l(B)] = Voln+1(Bn+1

p,w )
∫
B

ρp,w,k,l(x, z) dxdz,
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where the last relation follows from the properties of correlation functions (see, e.g., [20]). 
Combining this with (23), (24), and (25) finishes the proof of Theorems 3.1, 3.4 and 4.1.

6.3. Proof of Lemma 6.4

Claim. The boundary of Am is contained in the union of four sets:

(i) the boundary of Bn+1
p,w ;

(ii) the set

A′ =
{
(a0, . . . , an) ∈ Bn+1

p,w : μa0+a1x+···+anxn,k,l(∂B) > 0
}

;

(iii) the set D consisting of the points (a0, . . . , an) such that the polynomial a0 + a1x +
· · · + anx

n has double real roots;
(iv) the set D′ consisting of the points (a0, . . . , an) such that the polynomial a0 + a1x +

· · · + anx
n has double non-real roots.

Proof of Claim. Suppose that a point (a0, . . . , an) does not belong to any of Sets (i)–(iv). 
The task is to show that (a0, . . . , an) /∈ ∂Am. Let B′ ⊂ Ck+l denote a set of all (k +
l)-tuples of different (real or complex) roots of

g(x) := a0 + a1x + · · · + anx
n.

Since B′ is finite and (a0, . . . , an) /∈ A′, we have

ε1 := dist(∂B,B′) > 0. (29)

Denoting by z1, . . . , zn the roots of g, we have that

ε2 := min
i	=j

|zi − zj | > 0. (30)

Consider δ > 0 and a polynomial

h(x) := b0 + b1x + · · · + bnx
n

such that

|aj − bj | < δ for j = 0, . . . , n.

If δ is sufficiently small, then

(b0, . . . , bn) ∈ Bn+1
p,w if and only if (a0, . . . , an) ∈ Bn+1

p,w , (31)
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which means that (b0, . . . , bn) does not belong to Set (i). Let

R := max
i=1,...,n

|zi|.

If zi is a root of g, then

|h(zi)| = |g(zi) − h(zi)| ≤
n∑

j=0
|aj − bj |Rj ≤ (n + 1)δ(Rn + 1).

On the other hand,

h(zi) = bn(zi − z′1) . . . (zi − z′n),

where z′1, . . . , z
′
n are the roots of h. Assuming that δ is so small that |bn| ≥ |an|/2, we 

arrive at

∣∣(zi − z′1) . . . (zi − z′n)
∣∣ ≤ 2(n + 1)a−1

n δ(Rn + 1).

Therefore if δ is sufficiently small, then there exists an index j such that

|zi − z′j | <
ε2

2 and |zi − z′j | <
ε1√
k + l

. (32)

Thus, taking into account (30), we obtain that the roots of g and h split into n pairs all 
satisfying (32) and the roots z′1, . . . , z′n are pairwise different. Now consider some indices 
1 ≤ i1 < · · · < ik+l ≤ n. It follows from the second part of (32) that

∥∥(zi1 , . . . , zik+l
) − (z′i1 , . . . , z

′
ik+l

)
∥∥ < ε1,

which together with (29) implies that (z′i1 , . . . , z
′
ik+l

) /∈ ∂B and

(z′i1 , . . . , z
′
ik+l

) ∈ B if and only if (zi1 , . . . , zik+l
) ∈ B.

This together with (31) means that all points (b0, . . . , bn) from some neighbourhood of 
(a0, . . . , an) satisfy

(b0, . . . , bn) ∈ Am if and only if (a0, . . . , an) ∈ Am,

so (a0, . . . , an) /∈ ∂Am, and the claim follows. �
It follows from the claim that in order to prove Lemma 6.4 it is enough to show that 

Sets (i)–(iv) are of Lipschitz class.
(i) The boundary of Bn+1

p,w . For p ≥ 1 the set Bn+1
p,w is a convex body. Therefore, 

according to [45, Theorem 2.6] its boundary ∂Bn+1
p,w belongs to the Lipschitz class (1, L0), 
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where L0 depends on n, p, w only. In the case 0 < p < 1 the set ∂Bn+1
p,w consists of 2n+1

congruent concave pieces. Every piece can be embedded in the boundary of a convex 
body congruent to

{
(a0, . . . , an) ∈ Bn+1

1,w \ Bn+1
p,w : min

0≤j≤n
aj ≥ 0

}
.

Applying [45, Theorem 2.6] to the latter set we see that ∂Bn+1
p,w is of Lipschitz class 

(2n+1, L0) for 0 < p < 1.
(ii) The set A′. Consider binary multi-indices ε ∈ {−1, 1}k, δ ∈ {−1, 1}l. We have

A′ ⊂
⋃

(ε,δ)∈{−1,1}k+l

A′
ε,δ,

where A′
ε,δ is a set of points (a0, . . . , an) ∈ Bn+1

p,w such that there exists a (k + l)-tuple

(x1, . . . , xk, z1, . . . , zl) ∈ ∂B (33)

of distinct zeros of a0 + a1x + · · · + anx
n with

{
|xi| ≤ 1, εi = 1,
|xi| > 1, εi = −1

and
{
|zj | ≤ 1, δj = 1,
|zj | > 1, δj = −1

(34)

for i = 1, . . . , k, j = 1, . . . , l.
Let us fix some (ε, δ) ∈ {−1, 1}k+l, (a0, . . . , an) ∈ A′

ε,δ, and the corresponding (k +
l)-tuple (33).

Since the components of (33) are different roots of a0 + a1x + · · ·+ anx
n, there exists 

a unique polynomial with real coefficients 
∑n−k−2l

r=0 brx
r such that

n∑
i=0

aix
i =

n−k−2l∑
r=0

brx
r
∏

i:εi=1
(x− xi)

∏
i:εi=−1

(x−1
i x− 1) (35)

×
∏

j:δj=1

(x− zj)(x− z̄j)
∏

j:δj=−1

(z−1
j x− 1)(z̄−1

j x− 1).

Thus,

ai = pi(xε1
1 , . . . , xεk

k , zδ11 , . . . , zδll , z̄δ11 , . . . , z̄δll , b0, . . . , bn−k−2l) (36)

for some polynomials p0, . . . , pn.
Since ∂B is of Lipschitz class, there exists a Lipschitz map

φ = (φ1, . . . , φk+l) : [0, 1]k+2l−1 → Rk ×Cl
+
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(from a fixed finite collection of Lipschitz maps depending on B only) such that

(x1, . . . , xk, z1, . . . , zl) ∈ φ([0, 1]k+2l−1).

Thus for some t0 ∈ [0, 1]k+2l−1 and i = 1, . . . , k, j = 1, . . . , l we have

xi = φi(t0), zj = φk+j(t0). (37)

For i = 1, . . . , k, j = 1, . . . , l, let

ϕi,εi :=
{
φi, εi = 1,

φi

max(1,|φi|2) , εi = −1,
and ϕk+j,δj :=

{
φk+j , δj = 1,

φk+j

max(1,|φk+j |2) , δj = −1.

Obviously, ϕi,εi , ϕ̄i,εi , ϕk+j,δj , ϕ̄k+j,δj are Lipschitz, too. Taking into account (34), (36), 
and (37), we have

ai = pi(ϕ1,ε1(t0), . . . , ϕk,εk(t0), ϕk+1,δ1(t0), . . . , ϕk+l,δl(t0), (38)

ϕ̄k+1,δ1(t0), . . . , ϕ̄k+l,δl(t0), b0, . . . , bn−k−2l).

Let us assume for the moment that there exists a constant C > 0 depending on B only 
such that

|b0|, |b1|, . . . , |bn−k−2l| ≤ C. (39)

Letting

b̃i := bi + C

2C

and redefining the polynomials p0, . . . , pn accordingly, we obtain

ai = p̃i(ϕ1,ε1(t0), . . . , ϕk,εk(t0), ϕk+1,δ1(t0), . . . , ϕk+l,δl(t0),

ϕ̄k+1,δ1(t0), . . . , ϕ̄k+l,δl(t0), b̃0, . . . , b̃n−k−2l),

where

(t0, b̃0, . . . , b̃n−k−2l) ∈ [0, 1]n.

Since polynomials are Lipschitz on compact sets and the composition of Lipschitz func-
tions is Lipschitz, assuming (39) it follows from (38) that A′ is of Lipschitz class. Now let 
us show that (39) holds. To this end, we first recall the definition of the Mahler measure 
and its basic properties.
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For a polynomial q(z) = an(z − z1) . . . (z − zn) its Mahler measure is defined as

M [q] := |an|
n∏

i=1
max(1, |zi|).

It is known (see, e.g., [35, Theorem 4.2.1]) that the naive height can be estimated via 
the Mahler measure as follows:

M [q]√
n + 1

≤ H[q] ≤ 2n−1M [q]. (40)

Also, it is easily seen that for polynomials q1, q2 one has M [q1q2] = M [q1]M [q2]. Thus 
the polynomials 

∑n
i=0 aix

i and 
∑n−k−2l

r=0 brx
r (see (35)) have the same Mahler measure. 

We have

H

[∑n−k−2l

r=0
brx

r

]
≤ 2n−k−2l−1M

[∑n−k−2l

r=0
brx

r

]
= 2n−k−2l−1M

[∑n

i=0
aix

i
]

≤ 2n−k−2l−1√n + 1H
[∑n

i=0
aix

i
]
≤ 2n−k−2l−1√n + 1,

and (39) follows.
(iii) The set D. Let

W := [−1, 1] ×
[
− max

j=0,...,n
w−1

j , max
j=0,...,n

w−1
j

]n−1
.

Consider a map

φ = (φ0, . . . , φn) : W → Rn+1

defined as

φ0(x, t2, . . . , tn) =
n∑

j=2
(j − 1)tjxj , φ1(x, t2, . . . , tn) = −

n∑
j=2

jtjx
j−1,

φj(x, t2, . . . , tn) = tj , 2 ≤ j ≤ n.

Since φ is continuously differentiable in a compact, it satisfies a Lipschitz condition with 
some constant which depends on n and maxj=0,...,n w

−1
j only.

Now suppose that (a0, . . . , an) ∈ D. Then a0 + a1x + · · · + anx
n has a multiple real 

root, say x0, which implies

n∑
j=0

ajx
j
0 = 0,

n∑
j=0

jajx
j−1
0 = 0, (41)

or, equivalently,
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a0 =
n∑

j=2
(j − 1)ajxj

0, a1 = −
n∑

j=2
jajx

j−1
0 .

Using these equations and definition of φ we arrive at

aj = φj(x0, a2, . . . , an), 0 ≤ j ≤ n. (42)

Moreover, it is straightforward that if x0 �= 0, then 1/x0 is a multiple root of the reflected 
polynomial an + an−1x + · · · + a0x

n, hence applying the above reasoning gives

an−j = φj(x−1
0 , an−2, . . . , a0), 0 ≤ j ≤ n,

or, equivalently,

aj = φn−j(x−1
0 , an−2, . . . , a0), 0 ≤ j ≤ n. (43)

Since (a0, . . . , an) ∈ Bn+1
p,w ⊆ Bn+1

∞,w, we have that for |x0| ≤ 1 the argument of the 
right-hand side of (42) belongs to W , while for |x0| ≥ 1 the argument of the right-hand 
side of (43) belongs to W , hence we have (a0, . . . , an) ∈ φ(W ) ∪ φ′(W ), where φ′ :=
(φn, . . . , φ0). Thus it follows from Remark 3.3 that D is of Lipschitz class.

(iv) The set D′. Let

W := [0, π] × [0, 1] ×
[
− max

j=0,...,n
w−1

j , max
j=0,...,n

w−1
j

]n−2
.

Consider a map

φ = (φ0, . . . , φn) : W → Rn+1

defined as

φ0(α, r, t3, . . . , tn) =
n∑

j=3
tjr

j

(
− j

2
sin[(j − 1)α]

sinα
+ j cosα cos[(j − 1)α] − cosα

)
,

φ1(α, r, t3, . . . , tn) =
n∑

j=3
jtjr

j

(
cosα sin[(j − 1)α]

sinα
− cos[(j − 1)α]

)
,

φ2(α, r, t3, . . . , tn) = −
n∑

j=3
jtjr

j sin[(j − 1)α]
sin[2α] ,

φj(α, r, t3, . . . , tn) = tj , 3 ≤ j ≤ n.

Again, φ is continuously differentiable in a compact, so it satisfies the Lipschitz condition 
with some constant which depends on n and maxj=0,...,n w

−1
j only.
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Now suppose that (a0, . . . , an) ∈ D′. Then a0+a1x +· · ·+anx
n has a multiple non-real 

root, say z0 = r0(cosα0 + i sinα0), where r0 > 0, α0 ∈ (0, π), which implies

n∑
j=0

ajz
j
0 = 0,

n∑
j=1

jajz
j−1
0 = 0,

or, equivalently,

n∑
j=0

ajr
j
0 cos[jα0] = 0,

n∑
j=1

jajr
j−1
0 cos[(j − 1)α0] = 0, (44)

n∑
j=1

ajr
j
0 sin[jα0] = 0,

n∑
j=2

jajr
j−1
0 sin[(j − 1)α0] = 0.

It consistently follows from the fourth, second, and first equalities in (44) that

a2 = −1
2

n∑
j=3

jajr
j−2
0

sin[(j − 1)α0]
sinα0

,

a1 = −2a2r0 cos[α0] −
n∑

j=3
jajr

j−1
0 cos[(j − 1)α0]

=
n∑

j=3
jajr

j−1
0 cos[α0]

sin[(j − 1)α0]
sinα0

−
n∑

j=3
jajr

j−1
0 cos[(j − 1)α0],

a0 = −a1r0 cosα0 − a2r
2
0 cos[2α0] −

n∑
j=3

ajr
j
0 cos[jα0]

= −
n∑

j=3
jajr

j
0 cos2[α0]

sin[(j − 1)α0]
sinα0

+
n∑

j=3
jajr

j
0 cosα0 cos[(j − 1)α0]

+ 1
2

n∑
j=3

jajr
j
0 cos[2α0]

sin[(j − 1)α0]
sinα0

−
n∑

j=3
ajr

j
0 cos[jα0]

= −1
2

n∑
j=3

jajr
j
0
sin[(j − 1)α0]

sinα0
+

n∑
j=3

jajr
j
0 cosα0 cos[(j − 1)α0] −

n∑
j=3

ajr
j
0 cos[jα0],

where in the last equation we used the identity cos[2α0] = 2 cos2 α0 − 1. Using these 
equations and the definition of φ we arrive at

aj = φj(α0, r0, a3, . . . , an), 0 ≤ j ≤ n. (45)

Again, 1/z0 is a multiple root of the reflected polynomial an + an−1x + · · · + a0x
n, so 

applying the above reasoning gives
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an−j = φj(α0, r0, an−3, . . . , a0), 0 ≤ j ≤ n,

or, equivalently,

aj = φn−j(α0, r0, an−3, . . . , a0), 0 ≤ j ≤ n. (46)

Since (a0, . . . , an) ∈ Bn+1
p,w ⊆ Bn+1

∞,w, we have that for r0 ≤ 1 the argument of the right-
hand side of (45) belongs to W , while for r0 ≥ 1 the argument of the right-hand side 
of (46) belongs to W , so we have (a0, . . . , an) ∈ φ(W ) ∪φ′(W ), where φ′ := (φn, . . . , φ0). 
Thus it follows from Remark 3.3 that D′ is of Lipschitz class.

7. Proof of Theorem 5.1

7.1. Preliminaries

Suppose that x1, . . . , xk ∈ R and z1, . . . , zl ∈ C+ are different zeros of the random 
polynomial G defined in (4). It means that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 . . . xn
1

...
...

. . .
...

1 xk . . . xn
k

1 Re z1 . . . Re zn1
0 Im z1 . . . Im zn1
...

...
. . .

...
1 Re zl . . . Re znl
0 Im zl . . . Im znl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ ξ0

...
ξn

⎞
⎠ = 0. (47)

Denote by V (x, z) the real Vandermonde type matrix

V (x, z) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 . . . xk+2l−1
1

...
...

. . .
...

1 xk . . . xk+2l−1
k

1 Re z1 . . . Re zk+2l−1
1

0 Im z1 . . . Im zk+2l−1
1

...
...

. . .
...

1 Re zl . . . Re zk+2l−1
l

0 Im zl . . . Im zk+2l−1
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, (47) is equivalent to
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
j=k+2l ξjx

j
1

...∑n
j=k+2l ξjx

j
k

Re
∑n

j=k+2l ξjz
j
1

Im
∑n

j=k+2l ξjz
j
1

...
Re
∑n

j=k+2l ξjz
j
l

Im
∑n

j=k+2l ξjz
j
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −V (x, z)

⎛
⎝ ξ0

...
ξk+2l−1

⎞
⎠ . (48)

It is easy to check that V (x, z) satisfies

| detV (x, z)| = 2−lvk+2l(x, z, z̄), (49)

where vk+2l is defined in (10).
Consider a random function η = (η0, . . . , ηk+2l−1)T : Rk ×Cl → Rk+2l defined as

η(x, z) := −V −1(x, z)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
j=k+2l ξjx

j
1

...∑n
j=k+2l ξjx

j
k

Re
∑n

j=k+2l ξjz
j
1

Im
∑n

j=k+2l ξjz
j
1

...
Re
∑n

j=k+2l ξjz
j
l

Im
∑n

j=k+2l ξjz
j
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (50)

It follows from (48) that (47) is equivalent to

η(x, z) =

⎛
⎝ ξ0

...
ξk+2l−1

⎞
⎠ . (51)

Consider a random function ϕ : Rk ×Cl → R defined as

ϕ(x, z) := 1
vk+2l(x, z)

k∏
i=1

∣∣∣∣∣
k+2l−1∑
j=0

jηj(x, z)xj−1
i +

n∑
j=k+2l

jξjx
j−1
i

∣∣∣∣∣
×

l∏
i=1

∣∣∣∣∣
k+2l−1∑
j=0

jηj(x, z)zj−1
i +

n∑
j=k+2l

jξjz
j−1
i

∣∣∣∣∣
2

.

(52)
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Lemma 7.1. For all (x, z) ∈ Rk ×Cl,

E

[
ϕ(x, z)

k+2l−1∏
i=0

fi(ηi(x, z))
]

= ρk+2l(x, z, z̄). (53)

Proof. The idea of the proof goes back to [26, pp. 58–59] (see also [27, Lemmas 2.5, 2.6]).
By definition of the expected value,

E

[
ϕ(x, z)

k+2l−1∏
i=0

fi(ηi(x, z))
]

= 1
vk+2l(x, z) (54)

×
∫

Rn−k−2l+1

k∏
i=1

∣∣∣∣∣
k+2l−1∑
j=0

jrj(x, z, s)xj−1
i +

n∑
j=k+2l

jsjx
j−1
i

∣∣∣∣∣
×

l∏
i=1

∣∣∣∣∣
k+2l−1∑
j=0

jrj(x, z, s)zj−1
i +

n∑
j=k+2l

jsjz
j−1
i

∣∣∣∣∣
2

×
k+2l−1∏

i=0
fi(ri(x, z, s))

n∏
i=k+2l

fi(si)dsk+2l . . .dsn,

where the functions r0, . . . , rk+2l−1 are defined by

⎛
⎝ r0(x, z, s)

...
rk+2l−1(x, z, s)

⎞
⎠ := −V −1(x, z)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
j=k+2l sjx

j
1

...∑n
j=k+2l sjx

j
k

Re
∑n

j=k+2l sjz
j
1

Im
∑n

j=k+2l sjz
j
1

...
Re
∑n

j=k+2l sjz
j
l

Im
∑n

j=k+2l sjz
j
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(55)

and s := (sk+2l, . . . , sn).
Now we perform the following change of variables:

si =
n−k−2l∑

j=0
(−1)k+2l−i+jσk+2l−i+j(x, z, z̄)tj , i = k + 2l, . . . , n, (56)

where σi’s are defined in (9) and we write σi := 0 for i < 0. The Jacobian is a lower 
triangle matrix with ones on the diagonal, hence the determinant is 1. This variable 
change is suggested by the fact that x1, . . . , xk, z1, z̄1 . . . , zl, z̄l are zeros of the polynomial
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g(z) := r0 + r1z + · · · + rk+2l−1z
k+2l−1 + sk+2lz

k+2l + · · · + snz
n,

see (55). Thus for some t′0, . . . , t
′
n−k−2l we have

g(z) =
k∏

j=1
(z − xj)

l∏
j=1

(z − zj)(z − z̄j)

⎛
⎝n−k−2l∑

j=0
t′jz

j

⎞
⎠ (57)

=

⎛
⎝k+2l∑

j=0
(−1)k+2l−jσk+2l−j(x, z, z̄)zj

⎞
⎠
⎛
⎝n−k−2l∑

j=0
t′jz

j

⎞
⎠ .

Comparing the coefficients of the polynomials from the left-hand and right-hand sides 
and recalling (56) we obtain that t′i = ti for i = 0, . . . , n − k − 2l and

ri(x, z, s) =
n−k−2l∑

j=0
(−1)k+2l−i+jσk+2l−i+j(x, z, z̄)tj , i = 0, . . . , k + 2l − 1. (58)

If we differentiate the first equation in (57) at points xi, zi, and z̄i, we get

k+2l−1∑
j=0

jrjx
j−1
i +

n∑
j=k+2l

jsjx
j−1
i =

∏
j 	=i

(xi − xj)
l∏

j=1
(xi − zj)(xi − z̄j)

⎛
⎝n−k−2l∑

j=0
t′jx

j
i

⎞
⎠ ,

(59)

k+2l−1∑
j=0

jrjz
j−1
i +

n∑
j=k+2l

jsjz
j−1
i =

k∏
j=1

(zi − xj)
∏
j 	=i

(zi − zj)(zi − z̄j)

⎛
⎝n−k−2l∑

j=0
t′jz

j
i

⎞
⎠ ,

k+2l−1∑
j=0

jrj z̄i
j−1 +

n∑
j=k+2l

jsj z̄i
j−1 =

k∏
j=1

(z̄i − xj)
∏
j 	=i

(z̄i − zj)(z̄i − z̄j)

⎛
⎝n−k−2l∑

j=0
t′j z̄i

j

⎞
⎠ .

Substituting (56), (58), and (59) in (54) completes the proof of the lemma. �
Denote by Jη(x, z) the real Jacobian matrix of η at point (x, z):

Jη =

⎛
⎜⎝

∂η0
∂x1

. . . ∂η0
∂xk

∂η0
∂ Re z1

∂η0
∂ Im z1

. . . ∂η0
∂ Re zl

∂η0
∂ Im zl

...
. . .

...
...

...
. . .

...
...

∂ηk+2l−1
∂x1

. . . ∂ηk+2l−1
∂xk

∂ηk+2l−1
∂ Re z1

∂ηk+2l−1
∂ Im z1

. . . ∂ηk+2l−1
∂ Re zl

∂ηk+2l−1
∂ Im zl

⎞
⎟⎠ .

Lemma 7.2. For all (x, z) ∈ Rk ×Cl,

| detJη(x, z)| = 2lϕ(x, z), (60)

where ϕ(x, z) is defined in (52).
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Proof. Differentiating

V (x, z)η(x, z) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk+2l
1 xk+2l+1

1 . . . xn
1

...
...

. . .
...

xk+2l
k xk+2l+1

k . . . xn
k

Re zk+2l
1 Re zk+2l+1

1 . . . Re zn1
Im zk+2l

1 Im zk+2l+1
1 . . . Im zn1

...
...

. . .
...

Re zk+2l
l Re zk+2l+1

l . . . Re znl
Im zk+2l

l Im zk+2l+1
l . . . Im znl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ξk+2l

...
ξn

⎞
⎠ ,

we obtain

V (x, z)Jη(x, z) +
(
A1 0
0 A2

)
= −

(
A3 0
0 A4

)
, (61)

where

A1 :=

⎛
⎜⎜⎜⎜⎜⎝

∑k+2l−1
j=0 jηjx

j−1
1 0 . . . 0

0
∑k+2l−1

j=0 jηjx
j−1
2 . . . 0

...
...

. . .
...

0 0 . . .
∑k+2l−1

j=0 jηjx
j−1
k

⎞
⎟⎟⎟⎟⎟⎠ ,

A2 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑k+2l−1
j=0 ηj

∂ Re zj
1

∂ Re z1

∑k+2l−1
j=0 ηj

∂ Re zj
1

∂ Im z1
. . . 0 0∑k+2l−1

j=0 ηj
∂ Im zj

1
∂ Re z1

∑k+2l−1
j=0 ηj

∂ Im zj
1

∂ Im z1
. . . 0 0

...
...

. . .
...

...

0 0 . . .
∑k+2l−1

j=0 ηj
∂ Re zj

l

∂ Re zl

∑k+2l−1
j=0 ηj

∂ Re zj
l

∂ Im zl

0 0 . . .
∑k+2l−1

j=0 ηj
∂ Im zj

l

∂ Re zl

∑k+2l−1
j=0 ηj

∂ Im zj
l

∂ Im zl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A3 :=

⎛
⎜⎜⎜⎜⎜⎝

∑n
j=k+2l jξjx

j−1
1 0 . . . 0

0
∑n

j=k+2l jξjx
j−1
2 . . . 0

...
...

. . .
...

0 0 . . .
∑n

j=k+2l jξjx
j−1
k

⎞
⎟⎟⎟⎟⎟⎠ ,

A4 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
j=k+2l ξj

∂ Re zj
1

∂ Re z1

∑n
j=k+2l ξj

∂ Re zj
1

∂ Im z1
. . . 0 0∑n

j=k+2l ξj
∂ Im zj

1
∂ Re z1

∑n
j=k+2l ξj

∂ Im zj
1

∂ Im z1
. . . 0 0

...
...

. . .
...

...

0 0 . . .
∑n

j=k+2l ξj
∂ Re zj

l

∂ Re zl

∑n
j=k+2l ξj

∂ Re zj
l

∂ Im zl

0 0 . . .
∑n ξ

∂ Im zj
l
∑n ξ

∂ Im zj
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

j=k+2l j ∂ Re zl j=k+2l j ∂ Im zl
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We finish the proof by moving in (61) the second term from the left-hand side to the 
right-hand side, using (49), and noting that for any analytic function f(z)

det
(

∂ Re f
∂ Re z

∂ Re f
∂ Im z

∂ Im f
∂ Re z

∂ Im f
∂ Im z

)
= |f ′(z)|2. �

Lemma 7.3 (Coarea formula). Let B ⊂ Rm be a region. Let u : B → Rm be a Lipschitz 
function and h : Rm → R be an L1-function. Then

∫
Rm

#{x ∈ B : u(x) = y}h(y)dy =
∫
B

| detJu(x)|h(u(x))dx, (62)

where Ju(x) is the Jacobian matrix of u(x), and #S denotes the cardinality of a set S.

Proof. See [14, pp. 243–244]. �
7.2. Proof of Theorem 5.1

Now we are ready to finish the proof of Theorem 5.1. To this end, we show that for 
any family of mutually disjoint Borel subsets B1, . . . , Bk ⊂ R and Bk+1, . . . , Bk+l ⊂ C+,

E

[
k+l∏
i=1

μ(Bi)
]

= 2l
∫
B1

. . .

∫
Bk+l

ρk+2l(x, z)dx1 . . .dxkdz1 . . .dzl. (63)

From (51) we get

E

[
k+l∏
i=1

μ(Bi)
]

= E [#{(x, z) ∈ B1 × · · · ×Bk+l : η(x, z) = (ξ0, . . . , ξk+2l−1)}] . (64)

For clarity, denote the sets Bk+j by B̃k+j when we consider them as subsets of R2:

B̃k+j := {(x, y) ∈ R2 : x + iy ∈ Bk+j}.

Let us apply Lemma 7.3 to (64) with

m = k + 2l, B = B1 × · · · ×Bk × B̃k+1 × · · · × B̃k+l,

u(x1, . . . , xk+2l) = η(x1, . . . , xk, xk+1 ± ixk+2, . . . , xk+2l−1 ± ixk+2l),

h(y0, . . . , yk+2l−1) = f0(y0) . . . fk+2l−1(yk+2l−1).

Note that the indices of yi’s are shifted by 1 according to the enumeration of polynomial 
coefficients. Hence due to Lemma 7.3, the right-hand side of (64) is equal to
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∫
Rk+2l

E [#{(x1, . . . , xk+2l) ∈ B : u(x1, . . . , xk+2l) = y}] f0(y0) . . . fk+2l−1(yk+2l−1) dy

= E

∫
B

| det Ju(x)|
k+2l−1∏

i=0
fi(ui(x1, . . . , xk+2l)) dx1 . . .dxk+2l,

where we used first Fubini’s theorem and then (62). The Jacobian matrix of u coincides 
with the real Jacobian matrix of η, the determinant of which is given by Lemma 7.2. 
Thus, switching from u to η and again using Fubini’s theorem we obtain

E

[
k+l∏
i=1

μ(Bi)
]

= 2l
∫
B

E

[
ϕ(x, z)

k+2l−1∏
i=0

fi(ηi(x, z))
]

dx dz,

where ϕ(x, z) is defined in (52).
Combining this with (53) implies (63), and due to (5) the theorem follows.

8. Proof of Theorem 5.7

We first consider the case p < ∞. Applying (13) to Gp,w defined in (7) gives

ρp,w,n−2l,l(x, z) = 2l−n−1w0 . . . wn(
Γ
(
1 + 1

p

))n+1 vn(x, z, z̄)

×
∫
R

|t|n exp
(
−|t|p

n∑
i=0

|wiσn−i(x, z, z̄)|p
)

dt.

Using the substitution

s = |t|p
n∑

i=0
|wiσn−i(x, z, z̄)|p

and a representation of the gamma function, we obtain

ρp,w,n−2l,l(x, z) =
2l−nw0 . . . wnΓ

(
n+1
p

)
p
(
Γ
(
1 + 1

p

))n+1 vn(x, z, z̄)
(

n∑
i=0

|wiσn−i(x, z, z̄)|p
)−n+1

p

.

Using the identity 1
p Γ 
(

n+1
p

)
= 1

n+1 Γ 
(

n+1
p + 1

)
concludes the proof of Theorem 5.7

for p < ∞.
The case p = ∞ follows from the case p < ∞ by letting p → ∞:

ρ∞,w,n−2l,l(x, z) = lim ρp,w,n−2l,l(x, z)

p→∞



F. Götze et al. / Advances in Mathematics 359 (2020) 106849 31
= 2l−nw0 . . . wnvn(x, z, z̄)
(n + 1)(max0≤i≤n |wiσn−i(x, z, z̄)|)n+1 ,

where in the first equality we used the continuity of the Γ-function at 1 and in the second 
– the limit equality

lim
p→∞

⎛
⎝ m∑

j=1
|bj |p

⎞
⎠

1/p

= max
1≤j≤m

|bj |.

The theorem follows.
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