The discriminant controls automorphism groups of noncommutative algebras

S. Ceken ${ }^{\text {a }}$, J.H. Palmieri ${ }^{\text {b }}$, Y.-H. Wang ${ }^{\text {c }}$, J.J. Zhang ${ }^{\text {b }}$
a Department of Mathematics, Akdeniz University, 07058 Antalya, Turkey
b Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, USA
c School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China

A R T I C L E I N F O

Article history:

Received 23 July 2013
Accepted 21 October 2014
Available online 8 November 2014
Communicated by Karen Smith

MSC:

16W20
11R29

Keywords:

Automorphism group
Discriminant
Trace
Affine automorphism
Triangular automorphism
Locally nilpotent derivation

A B S T R A C T

We use the discriminant to determine the automorphism groups of some noncommutative algebras, and we prove that a family of noncommutative algebras has tractable automorphism groups.
© 2014 Elsevier Inc. All rights reserved.

[^0]
0. Introduction

There is a long history and an extensive study of the automorphism groups of algebras. Determining the full automorphism group of an algebra is generally a notoriously difficult problem. For example, the automorphism group of the polynomial ring of three variables is not yet understood, and a remarkable result in this direction is given by Shestakov and Umirbaev [17] which shows the Nagata automorphism is a wild automorphism. Since 1990s, many researchers have been successfully computing the automorphism groups of interesting infinite-dimensional noncommutative algebras, including certain quantum groups, generalized quantum Weyl algebras, skew polynomial rings and many more - see $[2-4,6,11,19]$, which is only a partial list. Recently, by using a rigidity theorem for quantum tori, Yakimov has proved the Andruskiewitsch-Dumas conjecture and the Launois-Lenagan conjecture in [22,21], each of which determines the automorphism group of a family of quantized algebras with parameter q being not a root of unity. A uniform approach to both the Andruskiewitsch-Dumas conjecture and the LaunoisLenagan conjecture is provided in a preprint by Goodearl and Yakimov [12]. These beautiful results, as well as others, motivated us to look into the automorphism groups of noncommutative algebras.

To warm up, let us consider an explicit example. For the rest of the introduction, let k be a field and let $k^{\times}=k \backslash\{0\}$. For any integer $n \geq 2$, let W_{n} be the k-algebra generated by $\left\{x_{1}, \ldots, x_{n}\right\}$, subject to the relations $x_{i} x_{j}+x_{j} x_{i}=1$ for all $i \neq j$. The action of the symmetric group S_{n} on the set $\left\{x_{1}, \ldots, x_{n}\right\}$ extends to an action of S_{n} on the algebra W_{n}, and the map $x_{i} \mapsto-x_{i}$ determines an algebra automorphism of W_{n}. Therefore $S_{n} \times\{ \pm 1\}$ is a subgroup of the full automorphism group $\operatorname{Aut}\left(W_{n}\right)$ of the k-algebra W_{n}. We compute $\operatorname{Aut}\left(W_{n}\right)$ when n is even.

Theorem 1. Assume that char $k \neq 2$. If $n \geq 4$ is even, then $\operatorname{Aut}\left(W_{n}\right)=S_{n} \times\{ \pm 1\}$.

It is well-known that $\operatorname{Aut}\left(W_{2}\right)=S_{2} \ltimes k^{\times}$, see [3]. If n is odd or char $k=2$, then Aut $\left(W_{n}\right)$ is unknown and contains more automorphisms than $S_{n} \times\{ \pm 1\}$: see Example 5.10.

Understanding the automorphism group of an algebra is fundamentally important in general, and for the algebra W_{n}, is the first step in the study of the invariant theory under group actions [8]. The invariant theory of W_{2} was studied in [9], and [9, Theorem 0.4] applies to W_{2} as W_{2} is filtered Artin-Schelter regular of dimension 2. We have the following for even integers $n \geq 4$.

Theorem 2. (See [8].) Assume that char $k \neq 2$. Let n be an even integer ≥ 4 and G be any group acting on W_{n}. Then the fixed subring W_{n}^{G} under the G-action is filtered Artin-Schelter Gorenstein.

By Theorem 2, the W_{n} 's form a class of rings with good homological properties under any group action. The proof of Theorem 2 is heavily dependent on the structure of $\operatorname{Aut}\left(W_{n}\right)$.

As stated in the first sentence of [22], the automorphism group of an algebra is often difficult to describe. For an algebra with many generators, it is usually impossible to compute its automorphism group directly. This leads us to consider the following question.

Question. What invariants of an algebra control its automorphism group?

This question has been implicitly asked by many authors, for example, in the papers mentioned in the first paragraph of the introduction, and different techniques have been used in the study of automorphism groups. In this paper, we use the discriminant. When n is even, the discriminant of W_{n} over its center is a non-unit element of the center, and it is preserved by any algebra automorphism of W_{n}. This is how we prove Theorem 1. Unfortunately, when n is odd or when the characteristic of k is 2 , the discriminant of W_{n} over its center is (conjecturally) trivial, whence no useful information can be derived from this invariant. This is one reason why the form of $\operatorname{Aut}\left(W_{n}\right)$ is dependent on the parity of n and char k.

Our main theorem is an abstract version of Theorem 1. Let A be a filtered algebra with filtration $\left\{F_{i} A\right\}_{i \geq 0}$ such that the associated graded ring gr A is connected graded. We say an automorphism $g \in \operatorname{Aut}(A)$ is affine if $g\left(F_{1} A\right) \subset F_{1} A$. Let Af be the category of k-algebras A satisfying the following conditions:
(1) A is a filtered algebra such that the associated graded ring gr A is a domain,
(2) A is a finitely generated free module over its center R, and
(3) the discriminant $d(A / R)$ is dominating (see Definition 2.3).

The morphisms in this category are just isomorphisms of algebras. Conditions (1) and (2) are easy to understand, while the terminology in condition (3) will be defined in Sections 1 and 2. At this point we only mention that the algebras W_{n} are in Af when n is even and that there are algebras such that (1) and (2) hold and (3) fails [Example 5.7].

Theorem 3. Let A be in the category Af. In parts (3), (4), assume that char $k=0$. Let R be the center of A. Then the following hold.
(1) Every automorphism g of A is affine.
(2) Every automorphism h of the polynomial extension $A[t]$ is triangular. That is, there is a $g \in \operatorname{Aut}(A), c \in k^{\times}$and $r \in R$ such that

$$
h(t)=c t+r \quad \text { and } \quad h(x)=g(x) \in A \quad \text { for all } x \in A
$$

In other words,

$$
\operatorname{Aut}(A[t])=\left(\begin{array}{cc}
\operatorname{Aut}(A) & R \\
0 & k^{\times}
\end{array}\right)
$$

(3) Every locally nilpotent derivation (defined after Lemma 3.2) of A is zero.
(4) $\operatorname{Aut}(A)$ is an algebraic group that fits into the exact sequence

$$
\begin{equation*}
1 \rightarrow\left(k^{\times}\right)^{r} \rightarrow \operatorname{Aut}(A) \rightarrow S \rightarrow 1 \tag{*}
\end{equation*}
$$

where $r \geq 0$ and S is a finite group. In other words, $\operatorname{Aut}(A)=S \ltimes\left(k^{\times}\right)^{r}$.

If char $k \neq 0$, part (3) of the above could fail, see Example 3.9. Note that parts (3), (4) are consequences of part (2) [Lemmas 3.3(2) and 3.4]. Part (3) suggests that the discriminant controls locally nilpotent derivations too. Part (4) gives a structure theorem for $\operatorname{Aut}(A)$. The integer r is called the symmetry rank of A, denoted by $\operatorname{sr}(A)$; and the order $|S|$ is called the symmetry index of A, denoted by $\operatorname{si}(A)$. For example, Theorem 1 says that, when $n \geq 4$ is even, $\operatorname{sr}\left(W_{n}\right)=0$ and $s i\left(W_{n}\right)=2 n!$.

Theorem 3(1) provides a uniform approach to the automorphism groups of all algebras in Af. There are many algebras in the category Af [Section 5]. For example, if A is a PI skew polynomial ring $k_{p_{i j}}\left[x_{1}, \ldots, x_{n}\right]$ such that (a) x_{i} is not in the center of A for all i and (b) A is free over its center, then A is in Af [7]. Here a PI algebra means an algebra satisfying a polynomial identity [15, Chapter 13]. The category Af also has the nice property that it is closed under the tensor product [Theorem 5.5].

As we will see below, the discriminant method has limitations. An immediate one is that we need to assume the existence of a "good" trace function, and this does not exist for a general noncommutative algebra - see Example 1.9.

In the sequel [7] we develop other techniques for computing discriminants and automorphism groups. One major goal of that paper is to work with algebras which are not free over their centers. We also deal with algebras B of the following form. First, let A_{q} be the q-quantum Weyl algebra generated by x and y subject to the relation $y x=q x y+1$ for some $q \in k^{\times}$(we assume that $q \neq 1$, but q need not be a root of unity). Consider the tensor product $B:=A_{q_{1}} \otimes \cdots \otimes A_{q_{m}}$ of quantum Weyl algebras, where $q_{i} \in k^{\times} \backslash\{1\}$ for all i. Since we are not assuming that the q_{i} are roots of unity, B need not be in Af ; however, the conclusion of Theorem 3 holds for B :

Theorem 4. (See [7].) Let $B=A_{q_{1}} \otimes \cdots \otimes A_{q_{m}}$ and assume that $q_{i} \neq 1$ for all $i=$ $1, \ldots, m$.
(1) The automorphism group $\operatorname{Aut}(B)$ is an algebraic group that fits into an exact sequence of the form (*).
(2) The automorphism group of $B[t]$ is triangular, namely,

$$
\operatorname{Aut}(B[t])=\left(\begin{array}{cc}
\operatorname{Aut}(B) & C(B) \\
0 & k^{\times}
\end{array}\right)
$$

where $C(B)$ is the center of B.
(3) If char $k=0$, then every locally nilpotent derivation of B is zero.

Two explicit examples are given in [7]. Let B be as in Theorem 4.
(1) If $q_{i} \neq \pm 1$ and $q_{i} \neq q_{j}^{ \pm 1}$ for all $i \neq j$, then $\operatorname{Aut}(B)=\left(k^{\times}\right)^{m}$.
(2) If $q_{i}=q \neq \pm 1$ for all i, then $\operatorname{Aut}(B)=S_{m} \ltimes\left(k^{\times}\right)^{m}$.

Theorem 4 also holds for the tensor products of A_{q} 's with W_{n} 's (for n even), as well as with many others in Af.

We would like to remark that most results in the literature (including the papers mentioned at the beginning of the introduction) calculate the automorphism group of non-PI algebras, or algebras with a parameter q (or multi-parameters) not being a root of unity. In general it is more difficult to compute the automorphism group in the PI case, or when q is a root of unity. Our method deals with both the PI and non-PI cases. Theorem 3 works for the PI case, and then mod p reduction (to be discussed in the sequel [7]) reduces the non-PI case (with appropriate parameters) to the PI case.

The definition of the discriminant is purely linear algebra, but the computation of the discriminant seems to be very difficult and tedious in general. In this paper we only (partially) compute one nontrivial example that is needed in the proof of Theorem 1. It would be nice to develop basic theory and computational tools for the discriminant in the noncommutative setting.

The paper is laid out as follows. In Section 1, we recall the notion of the discriminant, and we establish some of its basic properties. In Sections 2 and 3, we discuss so-called "affine" and "triangular" automorphisms and prove Theorem 3. The discriminant computation of W_{n} over its center occupies a major part of Section 4 and Theorem 1 is proved near the end of Section 4. In Section 5 we give comments, remarks, and examples related to the category Af.

1. Discriminant in the noncommutative setting

Throughout let k be a commutative domain. Modules (sometimes called vector spaces), algebras and morphisms are over k.

According to [10], the discriminant for polynomials was introduced by Cayley in 1848. Since then, it has been important in number theory (Galois theory) and algebraic geometry. In this section, we discuss the concept of the discriminant in the noncommutative setting. Let R be a commutative algebra and let B and F be algebras both of which
contain R as a subalgebra. In applications, F would be either R or the ring of fractions of R.

Definition 1.1. An R-linear map $\operatorname{tr}: B \rightarrow F$ is called a trace map if $\operatorname{tr}(a b)=\operatorname{tr}(b a)$ for all $a, b \in B$.

Here are some examples.

Example 1.2.

(1) Let $B=M_{n}(R)$. The internal trace $\operatorname{tr}_{\text {int }}: B \rightarrow R$ is defined to be the usual matrix trace, namely, $\operatorname{tr}_{\mathrm{int}}\left(\left(r_{i j}\right)\right)=\sum_{i=1}^{n} r_{i i}$.
(2) Let B be a subalgebra of $M_{n}(F)$ and R a subalgebra of $F \cap B \subset M_{n}(F)$. The composition $\operatorname{tr}: B \rightarrow M_{n}(F) \xrightarrow{\operatorname{tr}_{\text {int }}} F$ is a trace map from B to F.
(3) Let B be an R-algebra and F be a commutative R-subalgebra of B such that $B_{F}:=B \otimes_{R} F$ is finitely generated free over F. Then left multiplication defines a natural embedding of R-algebras $l m: B \rightarrow \operatorname{End}_{F}\left(B_{F}\right) \cong M_{n}(F)$ where n is the rank $\operatorname{rk}(B / F)$. By part (2), we obtain a trace map, called the regular trace, by composing: $\operatorname{tr}_{\mathrm{reg}}: B \xrightarrow{l m} M_{n}(F) \xrightarrow{\mathrm{tr}_{\mathrm{int}}} F$.

Although we are going to mainly use the regular trace in this paper, the definition of the discriminant works for any trace map. From now on, assume that F is a commutative algebra. Let R^{\times}be the set of units in R. For any $f, g \in R$, we use the notation $f={ }_{R^{\times}} g$ to indicate that $f=c g$ for some $c \in R^{\times}$. The following definition can be found in Reiner's book [16].

Definition 1.3. Let $\operatorname{tr}: B \rightarrow F$ be a trace map and w be a fixed integer. Let $Z:=\left\{z_{i}\right\}_{i=1}^{w}$ be a subset of B.
(1) The discriminant of Z is defined to be

$$
d_{w}(Z: \operatorname{tr})=\operatorname{det}\left(\operatorname{tr}\left(z_{i} z_{j}\right)\right)_{w \times w} \in F
$$

(2) (See [16, Section 10, p. 126].) The w-discriminant ideal (or w-discriminant R-module) $D_{w}(B, \operatorname{tr})$ is the R-submodule of F generated by the set of elements $d_{w}(Z: \operatorname{tr})$ for all $Z=\left\{z_{i}\right\}_{i=1}^{w} \subset B$.
(3) Suppose B is an R-algebra which is finitely generated free over R. If Z is an R-basis of B, the discriminant of B is defined to be

$$
d(B / R)={ }_{R^{\times}} d_{w}(Z: \operatorname{tr})
$$

(4) We say the discriminant (respectively, discriminant ideal) is trivial if it is either 0 or a unit (respectively, it is either the zero ideal or contains 1).

The following well-known proposition establishes some basic properties of the discriminant, including that $d(B / R)$ is independent of the choice of Z.

Proposition 1.4. Let $\mathrm{tr}: B \rightarrow R$ be an R-linear trace map (so $F=R$). Let $Z:=\left\{z_{i}\right\}_{i=1}^{w}$ be a set of elements in B.
(1) (See [16, p. 66, Exer. 4.13].) Suppose that $Y=\left\{y_{j}\right\}_{j=1}^{w}$ is such that $y_{i}=\sum_{j} r_{i j} z_{j}$ where $r_{i j} \in R$, and denote the matrix $\left(r_{i j}\right)_{w \times w}$ by $(Y: Z)$. Then

$$
d_{w}(Y: \operatorname{tr})=\operatorname{det}(Y: Z)^{2} d_{w}(Z: \operatorname{tr})
$$

(2) If both Y and Z are R-linear bases of B, then

$$
d_{w}(Y: \operatorname{tr})={ }_{R^{\times}} d_{w}(Z: \operatorname{tr})
$$

As a consequence $d(B / R)$ is well-defined up to a scalar in R^{\times}.
(3) (See [16, Theorem 10.2].) If B is an R-algebra which is finitely generated free over R with an R-basis Z, then $D_{w}(B, \operatorname{tr})$ is the principal ideal of R generated by $d_{w}(Z: \operatorname{tr})$ or equivalently by $d(B / R)$.

Proof. (2) is an immediate consequence of (1).

Here are some simple examples. The first two indicate the connection with the classical theory and third one is relevant to Theorem 1.

Example 1.5. If f is a monic polynomial, then its discriminant $\operatorname{Disc}(f)$ is classically defined to be the product of the differences of the roots. If f is the minimal polynomial of an algebraic number α, it is well-known that $d(\mathbb{Z}[\alpha] / \mathbb{Z})=\operatorname{Disc}(f)$, see $[16$, pp. 66-67, Exer. 414 and Theorem 4.35], or [1, Theorem 6.4.1], or [18, Definition 6.2.2 and Remark 6.2.3].

Example 1.6. Let $B=M_{n}(R)$. A word of caution: we are using the regular trace map, not the internal trace map, to compute the discriminant. If we use the basis $Z=\left\{e_{i j} \mid\right.$ $1 \leq i, j \leq n\}$ of matrix units, then we have

$$
e_{i j} e_{k l}= \begin{cases}e_{i l} & \text { if } j=k \\ 0 & \text { else }\end{cases}
$$

So we need to compute the regular trace of the matrix $e_{i l}$: we compute the trace of the matrix giving its action by left multiplication on $M_{n}(R)$. Diagonal entries in that matrix arise when $e_{i l} e_{j k}$ is a scalar multiple of $e_{j k}$, which can only happen when $i=l=j$; in this case, there are n diagonal entries, each of which is 1 , so

$$
\operatorname{tr}_{\mathrm{reg}}\left(e_{i j} e_{k l}\right)= \begin{cases}n & \text { if } i=l \text { and } j=k \\ 0 & \text { otherwise }\end{cases}
$$

Therefore $d_{n^{2}}(Z: \operatorname{tr})= \pm n^{n^{2}}$.

Example 1.7.

(1) Let $B=W_{2}=k\langle x, y\rangle /(x y+y x-1)$ and let $R=k\left[x^{2}, y^{2}\right] \subset B$. Then it is easy to check that R is the center of B and $B=R \oplus R x \oplus R y \oplus R x y$. Using the regular trace tr, one sees that

$$
\operatorname{tr}(1)=4, \quad \operatorname{tr}(x)=0, \quad \operatorname{tr}(y)=0, \quad \operatorname{tr}(x y)=2 .
$$

Using these traces and the fact tr is R-linear, we have the matrix

$$
\left(\operatorname{tr}\left(z_{i} z_{j}\right)\right)_{4 \times 4}=\left(\begin{array}{cccc}
4 & 0 & 0 & 2 \\
0 & 4 x^{2} & 2 & 0 \\
0 & 2 & 4 y^{2} & 0 \\
2 & 0 & 0 & 2-4 x^{2} y^{2}
\end{array}\right)
$$

where $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}=\{1, x, y, x y\}$, and therefore the discriminant of $d(B / R)$ is the determinant of the matrix $\left(\operatorname{tr}\left(z_{i} z_{j}\right)\right)_{4 \times 4}$, which is, by a direct computation, $-2^{4}\left(4 x^{2} y^{2}-1\right)^{2}$.
(2) Let C be the skew polynomial ring $k_{-1}[x, y]:=k\langle x, y\rangle /(x y+y x)$. A similar computation shows that the discriminant of C over its center $R=k\left[x^{2}, y^{2}\right]$ is $-2^{8} x^{4} y^{4}$. The details are left to the reader.

Now we consider the case when B contains a central subalgebra R. Assume that F is a localization of R such that $B_{F}:=B \otimes_{R} F$ is finitely generated free over F. For example, if B_{R} is free, we may take $F=R$, and if not, we may take F to be the field of fractions of R (assuming R is a domain). We let $\mathrm{tr}_{\mathrm{reg}}: B \rightarrow F$ denote the regular trace defined in Example 1.2(3), namely,

$$
\begin{equation*}
\operatorname{tr}_{\mathrm{reg}}: B \rightarrow B_{F} \xrightarrow{l m} \operatorname{End}_{F}\left(B_{F}\right) \xrightarrow{\operatorname{tr}_{\mathrm{int}}} F . \tag{1.7.1}
\end{equation*}
$$

We also simply write tr for $\operatorname{tr}_{\text {reg }}$ since this is used most of the time. For any algebra B, let $\operatorname{Aut}(B)$ denote the full algebra automorphism group of B over the base ring. If C is a central subalgebra of B, the subgroup of automorphisms which fix C is denoted $\operatorname{Aut}_{C}(B)$. We say that an element $g \in \operatorname{Aut}(B)$ preserves a subalgebra A of B if $g(A) \subseteq A$. Note that if g preserves R, then g preserves any localization of R, and in particular, it preserves F. We also note that, in case R is the center of B, any automorphism will preserve it.

Lemma 1.8. Fix $g \in \operatorname{Aut}(B)$ such that g and g^{-1} preserve R and let $w=\operatorname{rk}\left(B_{F} / F\right)$. Let x be an element in B.
(1) For any F-basis $Z=\left\{z_{i}\right\}_{i=1}^{w}$ of B_{F}, if $x z_{i}=\sum_{j} r_{i j} z_{j}$ for some $r_{i j} \in F$, then $\operatorname{tr}(x)=\sum_{i=1}^{w} r_{i i}$.
(2) $g(\operatorname{tr}(x))=\operatorname{tr}(g(x))$ for any $x \in B$.
(3) $g\left(d_{w}(Z: \operatorname{tr})\right)=d_{w}(g(Z): \operatorname{tr})$ for any set $Z=\left\{z_{i}\right\}_{i=1}^{w}$.
(4) The discriminant R-module $D_{w}(B, \operatorname{tr})$ is g-invariant.
(5) Suppose the image of tr is in R and consider the trace map $\operatorname{tr}: B \rightarrow R$. Then the discriminant ideal $D_{w}(B, \operatorname{tr})$ is g-invariant.
(6) If B is finitely generated free over R, then the discriminant $d(B / R)$ is a g-invariant up to a unit of R.

Proof. (1) This is the definition of trace, noting that $\operatorname{tr}_{\mathrm{int}}$ is independent of the choices of basis Z.
(2) If $Z=\left\{z_{i}\right\}_{i=1}^{w}$ is an F-basis, so is $Y=\left\{g\left(z_{i}\right)\right\}_{i=1}^{w}$ by linear algebra. So by part (1), we may use Y to compute tr. Applying g to $x z_{i}$ we have $g(x) g\left(z_{i}\right)=\sum_{j} g\left(r_{i j}\right) g\left(z_{j}\right)$. Since g preserves R, we obtain $\operatorname{tr}(g(x))=\sum_{i=1}^{w} g\left(r_{i i}\right)=g(\operatorname{tr}(x))$.
(3) This follows from part (2), the definition of $d_{w}(Z: \operatorname{tr})$ and an easy computation.
(4) It follows from part (3) and the definition that $g\left(D_{w}(B, \operatorname{tr})\right) \subset D_{w}(B, \operatorname{tr})$. Since g and g^{-1} are automorphisms, we have $g\left(D_{w}(B, \operatorname{tr})\right)=D_{w}(B, \operatorname{tr})$.
(5) This is a consequence of (4).
(6) By Proposition 1.4(3), $D_{w}(B, \operatorname{tr})$ is a principal ideal generated by $d(B / R)$. Since g preserves $D_{w}(B, \operatorname{tr}), g(d(B / R))=c d(B / R)$ for some $c \in R^{\times}$.

We conclude this section with a well-known observation.

Example 1.9. Let k be a field. Let A_{1} be the first Weyl algebra, the algebra generated by x and y subject to the relation $y x=x y+1$.

Assume first that char $k=0$. Let B be an algebra and let $\operatorname{tr}: A_{1} \rightarrow B$ be any additive map such that $\operatorname{tr}(a b)=\operatorname{tr}(b a)$ for all $a, b \in A_{1}$. Then $\operatorname{tr}\left(A_{1}\right)=0$, as every element in A_{1} can be written as $y a-a y$ for some $a \in A_{1}$ - for any $m, n \geq 0$ and any $c \in k$, we have

$$
c x^{m} y^{n}=y\left(\frac{c}{m+1} x^{m+1} y^{n}\right)-\left(\frac{c}{m+1} x^{m+1} y^{n}\right) y
$$

So there is no nontrivial trace map from A_{1} to any algebra.
If char $k=p>0$, then A_{1} is a finitely generated free module over its center $R:=$ $k\left[x^{p}, y^{p}\right]$. A direct computation shows that the regular trace $\operatorname{tr}: A_{1} \rightarrow R$ is the zero map in this case.

2. Dominating elements and automorphisms

In this section, we establish tools for identifying and constructing certain algebra automorphisms, called "affine" and "triangular" automorphisms. In the situation of

Theorem 1, we can show that every automorphism is affine - see Section 4 - and this allows us to prove the theorem.

The main result in this section is Theorem 3(1). To state and prove it, we need the concept of a "dominating element," which we now develop.

Let A be an algebra over k. We say A is connected graded if $A=k \oplus A_{1} \oplus A_{2} \oplus \cdots$ and A is locally finite if each A_{i} is finitely generated over k. We now consider filtered rings. Let Y be a finitely generated free k-submodule of A. In this case we would also say that Y is finite-dimensional (over k). Suppose $k \cap Y=\{0\}$. Consider the standard filtration $F=\left\{F_{n} A:=(k \oplus Y)^{n} \mid n \geq 0\right\}$ and assume that F is an exhaustive filtration of A and that the associated graded ring gr A is connected graded. As a consequence of gr A being connected graded, the unit map $k \rightarrow A$ is injective. For each element $f \in F_{n} A \backslash F_{n-1} A$, the associated element in $\operatorname{gr} A$ is defined to be gr $f=f+F_{n-1} A \in\left(\operatorname{gr}_{F} A\right)_{n}$. The degree of an element $f \in A$, denoted by $\operatorname{deg} f$, is defined to be the degree of $\operatorname{gr} f$. By definition, $\operatorname{deg} c=0$ for all $0 \neq c \in k$.

Using the standard filtration $\left\{F_{n} A=(k \oplus Y)^{n} \mid n \geq 0\right\}$ makes it easier to talk about affine automorphisms [Definition 2.5]. But the ideas in this section also apply to non-standard filtrations, see Example 5.6.

Note that, if gr A is a domain, then, for any elements $f_{1}, f_{2} \in A$,

$$
\begin{equation*}
\operatorname{deg}\left(f_{1} f_{2}\right)=\operatorname{deg} f_{1}+\operatorname{deg} f_{2} \tag{2.0.1}
\end{equation*}
$$

Let A^{\times}denote the set of all units of A. If gr A is a connected graded domain, as we assume in much of what follows, it is easy to see that $A^{\times}=k^{\times}$. In this case, if R is any subalgebra of A (for example, if R is the center of A), $R^{\times}=k^{\times}$.

One can check that assigning degrees (which could be different from 1) to a set of generators of A is almost equivalent to giving a filtration on A, though not every filtration has the property that gr A is a domain. See $[23$, Section 1] for some details.

Definition 2.1. Suppose that $Y=\bigoplus_{i=1}^{n} k x_{i}$ generates A as an algebra.
(1) A nonzero element $f:=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A$ is called locally dominating if, for every $g \in \operatorname{Aut}(A)$, one has
(a) $\operatorname{deg} f\left(y_{1}, \ldots, y_{n}\right) \geq \operatorname{deg} f$ where $y_{i}=g\left(x_{i}\right)$ for all i, and
(b) if, further, $\operatorname{deg} y_{i_{0}}>1$ for some i_{0}, then $\operatorname{deg} f\left(y_{1}, \ldots, y_{n}\right)>\operatorname{deg} f$.
(2) Assume that $\operatorname{gr} A$ is a connected graded domain. A nonzero element $f \in A$ is called dominating if, for every filtered PI algebra T with $\operatorname{gr} T$ a connected graded domain, and for every subset of elements $\left\{y_{1}, \ldots, y_{n}\right\} \subset T$ that is linearly independent in the quotient k-module $T / F_{0} T$, there is a lift of f, say $f\left(x_{1}, \ldots, x_{n}\right)$, in the free algebra $k\left\langle x_{1}, \ldots, x_{n}\right\rangle$, such that the following hold: either $f\left(y_{1}, \ldots, y_{n}\right)=0$ or
(a) $\operatorname{deg} f\left(y_{1}, \ldots, y_{n}\right) \geq \operatorname{deg} f$, and
(b) if, further, $\operatorname{deg} y_{i_{0}}>1$ for some i_{0}, then $\operatorname{deg} f\left(y_{1}, \ldots, y_{n}\right)>\operatorname{deg} f$.

We refer to T as a "testing" algebra. To prove our main Theorem 3, we only need one testing algebra, $T=A \otimes k[t]=A[t]$. But it is convenient to include all testing algebras T in order to prove Theorem 5.5. In almost all applications, it is easy to see that $f\left(y_{1}, \ldots, y_{n}\right) \neq 0$; so we only need to verify (a) and (b) in order to show that f is dominating. If this is the case, we will not mention the subcase of $f\left(y_{1}, \ldots, y_{n}\right)=0$.

It is not hard to see that dominating elements are locally dominating. Next we give some examples of dominating elements. A monomial $x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ is said to have degree component-wise less than (or, cwlt, for short) $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ if $b_{i} \leq a_{i}$ for all i and $b_{i_{0}}<a_{i_{0}}$ for some i_{0}. We write $f=c x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}+(c w l t)$ if $f-c x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ is a linear combination of monomials with degree component-wise less than $x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$. The following is easy.

Lemma 2.2. Retain the above notation and assume that $\operatorname{gr} A$ is a connected graded domain. Fix $f \in A$.
(1) If $f=c x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}+$ (cwlt) where $n>0, b_{1} b_{2} \cdots b_{n}>0$, and $0 \neq c \in k$, then f is dominating.
(2) For any positive integer d, f is dominating (respectively, locally dominating) if and only if f^{d} is.

Proof. (2) is clear, using (2.0.1). To prove (1), write

$$
f=c x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}+\sum c_{a_{s}} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} .
$$

Let T be any \mathbb{N}-filtered PI domain and $\left\{y_{1}, \cdots, y_{n}\right\}$ be a set of elements in T of degree at least 1. Suppose that $\operatorname{deg} y_{i_{0}}>1$ for some i_{0}. Since each term $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ is cwlt $x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$, we have $\operatorname{deg} y_{1}^{a_{1}} \cdots y_{n}^{a_{n}}<\operatorname{deg} y_{1}^{b_{1}} \cdots y_{n}^{b_{n}}$, again by (2.0.1). Hence $f\left(y_{1}, \ldots, y_{n}\right)$ has leading term $c y_{1}^{b_{1}} \cdots y_{n}^{b_{n}}$. Thus

$$
\operatorname{deg} f\left(y_{1}, \ldots, y_{n}\right)=\operatorname{deg} y_{1}^{b_{1}} \cdots y_{n}^{b_{n}}=\sum_{i=1}^{n} b_{i} \operatorname{deg} y_{i}>\sum_{i=1}^{n} b_{i}=\operatorname{deg} f .
$$

Therefore part (b) in Definition 2.1(2) is verified. Part (a) can be checked similarly. The assertion follows.

Definition 2.3. Retain the hypotheses in Definition 2.1. Let $\operatorname{tr}: A \rightarrow R=F$ be the regular trace function (1.7.1) and $w=\operatorname{rk}\left(A_{R} / R\right)$. We say the discriminant of A over R is dominating (respectively, locally dominating) if the discriminant ideal $D_{w}(A, \operatorname{tr})$ is a principal ideal of R generated by a dominating (respectively, locally dominating) element.

Usually we assume that A is finitely generated free over R; then by Proposition 1.4(3), $D_{w}(A, \operatorname{tr})$ is generated by $d(A / R)$. In this case we also say that $d(A / R)$ is dominating in Definition 2.3. We now recall a few other definitions given in the introduction.

Definition 2.4. Let Af be the category consisting of all k-flat k-algebras A satisfying the following conditions:
(1) A is a filtered algebra as in Definition 2.1 such that the associated graded ring gr A is a connected graded domain,
(2) A is a finitely generated free module over its center R, and
(3) the discriminant $d(A / R)$ is dominating.

The morphisms in this category are isomorphisms of algebras.

Definition 2.5. Let (A, Y) be defined as in Definition 2.1.
(1) An algebra automorphism g of A is said to be affine if $\operatorname{deg} g\left(x_{i}\right)=1$ for all i, or equivalently, $g(Y) \subset Y \oplus k$.
(2) If every $g \in \operatorname{Aut}(A)$ is affine, we call $\operatorname{Aut}(A)$ affine.

The definition of an affine automorphism (and that of a dominating element) is dependent on Y (or the filtration of A). But in most cases, the filtration (which is not unique in general) is relatively easy to determine. Dominating elements help us to determine the automorphism group in the following way.

Lemma 2.6. Let A be an algebra generated by Y with a locally dominating element f. If $g \in \operatorname{Aut}(A)$ such that $g(f)=\lambda f$ for some $0 \neq \lambda \in k$, then g is affine.

Proof. Since g is an automorphism, the elements $g_{i}:=g\left(x_{i}\right)$ are not in k. Thus deg $g_{i} \geq 1$. If $\operatorname{deg} g_{i_{0}}>1$ for some i_{0}, then $\operatorname{deg} f\left(g_{1}, \ldots, g_{n}\right)>\operatorname{deg} f$ as f is locally dominating. Note that $g(f)=f\left(g_{1}, \ldots, g_{n}\right)$, whence $\operatorname{deg} g(f)>\operatorname{deg} f$, contradicting the hypothesis $g(f)=\lambda f$. Therefore $\operatorname{deg} g\left(x_{i}\right)=1$ for all i.

By Lemma $1.8(6)$, the discriminant $d(B / R)$ is g-invariant for any automorphism g such that g and g^{-1} preserve R. In several situations - see Theorem 4.9(1), Example 5.1, and [7] - we show that the discriminant is dominating, and so any automorphism g is affine by Lemma 2.6. Here is a general statement, which is also Theorem 3(1).

Theorem 2.7. Let A be a filtered algebra with standard filtration $F_{n} A=(Y \oplus k)^{n}$. Assume that the discriminant of A over its center R is locally dominating in A (for example, A is in Af). Then every automorphism of A is affine.

Proof. This follows from Lemmas 1.8(6) and 2.6.
Remark 2.8. For a filtered algebra A generated by $Y=\bigoplus_{i=1}^{n} k x_{i}$, here is a general way of determining affine automorphisms of A. For simplicity, let k be a field. Write

$$
g\left(x_{i}\right)=\sum_{j=1}^{n} a_{i j} x_{j}+b_{i}, \quad \text { for all } i=1, \ldots, n,
$$

with $\left(a_{i j}\right)_{n \times n} \in G L_{n}(k)$ and $b_{i} \in k$. Write the inverse of g on the generators as

$$
g^{-1}\left(x_{i}\right)=\sum_{j=1}^{n} a_{i j}^{\prime} x_{j}+b_{i}^{\prime}, \quad \text { for all } i=1, \ldots, n
$$

with $\left(a_{i j}^{\prime}\right)_{n \times n}=\left(a_{i j}\right)^{-1} \in G L_{n}(k)$ and $b_{i}^{\prime} \in k$. List all of the relations of A, say,

$$
r_{s}\left(x_{1}, \ldots, x_{n}\right)=0
$$

for $s=1,2, \ldots$ Then g is an automorphism of A if and only if

$$
r_{s}\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)=r_{s}\left(g^{-1}\left(x_{1}\right), \ldots, g^{-1}\left(x_{n}\right)\right)=0
$$

for all s. After we fix a k-basis of A, this is an explicit linear algebra problem and can be solved completely if we have an explicit description of the relations r_{s}. If A is noetherian, then it is enough to use $r_{s}\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)=0$ only. In conclusion, in many situations it is relatively easy to determine all affine automorphisms of A.

Let $\operatorname{Aut}_{\mathrm{af}}(A)$ be the set of affine automorphisms of A. Since k is a field, $\operatorname{Aut}_{\mathrm{af}}(A)$ is a subgroup of $G L(Y \oplus k)$. Since every relation of A gives rise to some closed conditions, $\operatorname{Aut}_{\mathrm{af}}(A)$ is a closed subgroup of $G L(Y \oplus k)$. As a consequence, Aut ${ }_{\mathrm{af}}(A)$ is an algebraic group and acts on $Y \oplus k$ rationally.

3. Consequences

In the previous section, we proved Theorem 3(1); our goal now is to prove the rest of that theorem. This involves an examination of triangular automorphisms and locally nilpotent derivations.

First we consider the automorphism group of $A[t]$ when A has a dominating discriminant over its center R. For any $g \in \operatorname{Aut}(A), c \in k^{\times}$and $r \in R$, the map

$$
\begin{equation*}
\sigma: t \rightarrow c t+r, \quad x \rightarrow g(x), \quad \text { for all } x \in A \tag{3.0.1}
\end{equation*}
$$

determines uniquely a so-called triangular automorphism of $A[t]$. The automorphisms given in Example 5.10 can be viewed as triangular automorphisms of the Ore extension $D\left[x_{n} ; \tau, \delta\right]$ where D is the subalgebra generated by $\left\{x_{1}, \ldots, x_{n-1}\right\}$.

One may associate the triangular automorphism σ (3.0.1) with the upper triangular matrix $\left(\begin{array}{ll}g & r \\ 0 & c\end{array}\right)$. The product of two such automorphisms (or two such matrices) is given by

$$
\left(\begin{array}{cc}
g_{1} & r_{1} \\
0 & c_{1}
\end{array}\right) \circ\left(\begin{array}{cc}
g_{2} & r_{2} \\
0 & c_{2}
\end{array}\right)=\left(\begin{array}{cc}
g_{1} g_{2} & g_{1}\left(r_{2}\right)+r_{1} c_{2} \\
0 & c_{1} c_{2}
\end{array}\right)
$$

The inverse is given by

$$
\left(\begin{array}{ll}
g & r \\
0 & c
\end{array}\right)^{-1}=\left(\begin{array}{cc}
g^{-1} & -c^{-1} g^{-1}(r) \\
0 & c^{-1}
\end{array}\right)
$$

This shows that all triangular automorphisms form a subgroup of $\operatorname{Aut}(A[t])$, which is denoted by

$$
\operatorname{Aut}_{\mathrm{tr}}(A[t]) \quad \text { or } \quad\left(\begin{array}{cc}
\operatorname{Aut}(A) & R \\
0 & k^{\times}
\end{array}\right)
$$

Using the dominating discriminant we can show that $\operatorname{Aut}_{\mathrm{tr}}(A[t])=\operatorname{Aut}(A[t])$. The following lemma is obvious.

Lemma 3.1. Suppose A is a finitely generated free module over its center R. Let C be a commutative algebra that is k-flat. Then $d(A \otimes C / R \otimes C)={ }_{(R \otimes C) \times d} d(A / R)$. If, further, $(R \otimes C)^{\times}=R^{\times}$, then $d(A \otimes C / R \otimes C)={ }_{R^{\times}} d(A / R)$.

The next lemma says that discriminant of $d(A[t] / R[t])$ is dominating among the elements in $g(A)$, for $g \in \operatorname{Aut}(A[t])$: it controls the degree of $g\left(x_{i}\right)$ for $x_{i} \in Y$ and for $g \in \operatorname{Aut}(A[t])$. However, it does not control the degree of $g(t)$.

Lemma 3.2. Let A be in Af. Then the following hold.
(1) Let C be a k-flat commutative filtered algebra such that $\operatorname{gr} A \otimes \operatorname{gr} C$ is a connected graded domain. If $g \in \operatorname{Aut}(A \otimes C)$, then $g(Y) \subset Y \oplus k$.
(2) Let m be a positive integer. If g is an automorphism of $A\left[t_{1}, \ldots, t_{m}\right]$, then $g(Y) \subseteq$ $Y \oplus k$.

Proof. (2) is a consequence of (1). So we only prove (1).
Let T be the corresponding filtered algebra $A \otimes C$ such that $\operatorname{gr} T=\operatorname{gr} A \otimes \operatorname{gr} C$, which is a domain by hypothesis. Hence (2.0.1) holds and $(A \otimes C)^{\times}=k^{\times}$. It is clear that the center of $A \otimes C$ is $R \otimes C$. By Lemma 3.1, $f:=d(A \otimes C / R \otimes C)={ }_{k} \times d(A / R)$. Let $Y=\bigoplus_{i=1}^{n} k x_{i}$.

Consider a new filtration on the testing algebra $A \otimes C$ with assignment $\operatorname{deg}^{\prime}(c)=$ $2 \operatorname{deg}(c)$ for all $c \in C$ and $\operatorname{deg}^{\prime}\left(x_{i}\right)=1$ for all i. Consequently, $\operatorname{deg}^{\prime}(c) \geq 2$ for any $c \in C \backslash k$. It is easy to verify that $\operatorname{gr}^{\prime}(A \otimes C) \cong(\operatorname{gr} A) \otimes\left(\mathrm{gr}^{\prime} C\right)$, and the latter is isomorphic to $(\operatorname{gr} A) \otimes(\operatorname{gr} C)$ as ungraded algebras.

Let $g \in \operatorname{Aut}(A \otimes C)$. Since g preserves f (up to a scalar), $\operatorname{deg}^{\prime} g(f)=\operatorname{deg}^{\prime} f$. Since $x_{i} \in Y \backslash\{0\}$ are not in the center, $y_{i}:=g\left(x_{i}\right)$ is not in the center of $A \otimes C$ for all i. Consequently, $\operatorname{deg} y_{i} \geq 1$ for all i. Since f is dominating, there is a presentations of f, say $f\left(x_{1}, \ldots, x_{n}\right)$, such that

$$
\operatorname{deg}^{\prime} g(f)=\operatorname{deg}^{\prime} f\left(y_{1}, \ldots, y_{n}\right)>\operatorname{deg}^{\prime} f(=\operatorname{deg} f)
$$

if $\operatorname{deg}^{\prime} y_{i}>1$ for some i. This yields a contradiction and therefore $\operatorname{deg}^{\prime} y_{i} \leq 1$ for all i. This means that $g\left(x_{i}\right) \in Y \oplus k$ for all i as $\operatorname{deg}^{\prime}(c) \geq 2$ for any $c \in C \backslash k$.

Derivations are closely related to automorphisms. Recall that a k-linear map $\partial: A \rightarrow A$ is called a derivation if

$$
\partial(x y)=\partial(x) y+x \partial(y)
$$

for all $x, y \in A$. We call ∂ locally nilpotent if for every $x \in A, \partial^{n}(x)=0$ for some n. Given a locally nilpotent derivation ∂ (and assuming that $\mathbb{Q} \subseteq k$), the exponential map $\exp (\partial): A \rightarrow A$ is defined by

$$
\exp (\partial)(x)=\sum_{i=0}^{\infty} \frac{1}{i!} \partial^{i}(x), \quad \text { for all } x \in A
$$

Since ∂ is locally nilpotent, $\exp (\partial)$ is an algebra automorphism of A with inverse $\exp (-\partial)$.
Lemma 3.3. Suppose that $\mathbb{Q} \subseteq k$. Let C be a commutative algebra that is k-flat.
(1) If every k-algebra automorphism of $A \otimes C[t]$ restricts to an algebra automorphism of A, then every locally nilpotent derivation of $A \otimes C$ becomes zero when restricted to A.
(2) If $\operatorname{Aut}(A[t])=\operatorname{Aut}_{\mathrm{tr}}(A[t])$, then every locally nilpotent derivation of A is zero.
(3) If A is in Af, then every locally nilpotent derivation of $A\left[t_{1}, \ldots, t_{m}\right]$ becomes zero when restricted to A.

Proof. (1) Let ∂ be a locally nilpotent derivation of $A \otimes C$. Extend ∂ to $\partial^{\prime}: A \otimes C[t] \rightarrow$ $A \otimes C[t]$ by defining $\partial^{\prime}(t)=0$ and $\left.\partial^{\prime}\right|_{A \otimes C}=\partial$. Then ∂^{\prime} is a locally nilpotent derivation of $A \otimes C[t]$. Further, $t \partial^{\prime}$ is a locally nilpotent derivation of $A \otimes C[t]$. Then the exponential map $\exp \left(t \partial^{\prime}\right)$ is a k-algebra automorphism of $A \otimes C[t]$. By hypothesis, the restriction of $\exp \left(t \partial^{\prime}\right)$ to A is an automorphism of A. But,

$$
\exp \left(t \partial^{\prime}\right)(x)=\sum_{i=0}^{\infty} \frac{t^{i}}{i!} \partial^{i}(x), \quad \text { for all } x \in A
$$

which is in A only if $\partial(x)=0$. The assertion follows.
(2) This is a special case of (1) when $C=k$.
(3) Let $C=k\left[t_{1}, \ldots, t_{m}\right]$. By Lemma 3.2(1) (for $C=k\left[t_{1}, \ldots, t_{m}, t\right]$), the hypotheses of part (1) hold. Then the assertion follows from part (1).

From now until Lemma 3.6 we suppose that k is a field of characteristic zero. We refer to [13] for basic definitions about (affine) algebraic groups. By Remark 2.8, if $\operatorname{Aut}(A)$ is affine, then it is an algebraic subgroup of $G L(Y \oplus k)$. Let $\operatorname{Aut}^{1}(A)$ denote the identity
component of $\operatorname{Aut}(A)$, which is the unique closed, connected, normal subgroup of finite index in $\operatorname{Aut}(A)$. An element $\sigma \in \operatorname{Aut}^{1}(A)$ or in $\operatorname{Aut}(A)$ is called unipotent if $I d-\sigma$, as a linear map of $Y \oplus k$, is nilpotent.

Lemma 3.4. Let k be a field of characteristic zero. Assume that $\operatorname{Aut}(A)$ is affine (namely, $\operatorname{Aut}(A) \subset G L(Y \oplus k))$ and that every locally nilpotent derivation of A is zero. Then Aut ${ }^{1}(A)$ is a torus - it is isomorphic to $\left(k^{\times}\right)^{r}$ for some $r \geq 0-$ and $\operatorname{Aut}(A)$ is an algebraic group that fits into an exact sequence

$$
1 \rightarrow\left(k^{\times}\right)^{r} \rightarrow \operatorname{Aut}(A) \rightarrow S \rightarrow 1
$$

for some finite group S.

Proof. Let σ be in $\operatorname{Aut}(A)$ such that $I d-\sigma$ is nilpotent on $Y \oplus k$. Then $\log \sigma:=$ $\sum_{n=1}^{\infty} \frac{-1}{n}(I d-\sigma)^{n}$ is a locally nilpotent derivation. By hypothesis, $\log \sigma$ is zero. Then $I d-\sigma$ is zero, so $\sigma=I d$. So every unipotent element in $\operatorname{Aut}(A)$ is the identity. Then Aut ${ }^{1}(A)$ is a torus by [13, Exer. 21.4.2]. Since $\operatorname{Aut}^{1}(A)$ has finite index in $\operatorname{Aut}(A)$, the exact sequence is clear.

Now we are ready to prove Theorem 3(2)-(4).
Theorem 3.5. Let k be a field of characteristic zero and A be in Af. Then the following hold.
(1) $\operatorname{Aut}(A[t])=\operatorname{Aut}_{\text {tr }}(A[t])$.
(2) Every locally nilpotent derivation ∂ of $A[t]$ is of the form

$$
\partial(x)=0 \quad \text { for all } x \in A, \quad \partial(t)=r \quad \text { for some } r \in R .
$$

(3) Every locally nilpotent derivation of A is zero.
(4) $\operatorname{Aut}(A)$ is an algebraic group that fits into an exact sequence

$$
1 \rightarrow\left(k^{\times}\right)^{r} \rightarrow \operatorname{Aut}(A) \rightarrow S \rightarrow 1
$$

for some finite group S.
Proof. (1) Let $Y=\bigoplus_{i=1}^{n} k x_{i}$ and $g \in \operatorname{Aut}(A[t])$. By Lemma 3.2(2), $g\left(x_{i}\right) \in Y \oplus k \subset A$, or $g(A) \subset A$. Applying Lemma 3.2(2) to $h:=g^{-1}$, we have $h(A) \subset A$. Thus $\left.g\right|_{A}$ and $\left.h\right|_{A}$ are inverse to each other and hence $\left.g\right|_{A} \in \operatorname{Aut}(A)$. Let $g(t)=\sum_{i=0}^{n} a_{i} t^{i}$ with $a_{n} \neq 0$ and $h(t)=\sum_{j=0}^{m} b_{j} t^{j}$ with $b_{m} \neq 0$. Then $g h(t)=\sum_{i=0}^{n m} c_{i} t^{i}$ with $c_{n m}=a_{n}\left(b_{m}\right)^{n} \neq 0$. Since $g h(t)=t, n m=1$ (consequently, $n=m=1$) and $a_{1} b_{1}=1$. Thus $c:=a_{1} \in R^{\times}=k^{\times}$. This shows that $g(t)=c t+a_{0}$ where $c \in k^{\times}$and $a_{0} \in A$. Since t is central, $r:=a_{0} \in R$. The assertion follows.
(2) By Lemma 3.3(3), $\partial(x)=0$ for all $x \in A$. Let $\partial(t)=\sum_{i=0}^{d} c_{i} t^{i}$ for some $c_{i} \in A$. Suppose $\partial(t) \neq 0$ and it has t-degree d (namely, $c_{d} \neq 0$). If $n>0$, the induction shows that $\partial^{n}(t)$ has t-degree $n d-(n-1)$. Hence ∂ is not locally nilpotent, a contradiction. Thus $\partial(t)=c_{0} \in A$. Since $x t=t x$ for all $x \in A$, applying ∂ to the equation, we have $x c_{0}=c_{0} x$. Thus c_{0} is in the center of A and the assertion follows.
(3) Follows from part (1) and Lemma 3.3(2).
(4) Follows from Theorem 2.7, part (3) and Lemma 3.4.

Next we compute another automorphism group and we assume that k is a commutative domain. For any positive integer m, define $A\left[\underline{t}_{m}^{ \pm 1}\right]$ to be the Laurent polynomial extension $A\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, \cdots, t_{m}^{ \pm 1}\right]$. The following lemma is easy and the proof is omitted.

Lemma 3.6. Let A be any algebra.
(1) $\left(A\left[\underline{m}_{m}^{ \pm 1}\right]\right)^{\times}=\bigcup_{\left(n_{s}\right) \in \mathbb{Z}^{m}} A^{\times} \cdot t_{1}^{n_{1}} t_{2}^{n_{2}} \cdots t_{m}^{n_{m}}$.
(2) Suppose $A^{\times}=k^{\times}$. Then every automorphism of $A\left[\underline{t}_{m}^{ \pm 1}\right]$ preserves $k\left[\underline{t}_{m}^{ \pm 1}\right]$.
(3) $\operatorname{Aut}\left(k\left[\underline{E}_{m}^{ \pm 1}\right]\right)=\left(k^{\times}\right)^{m} \rtimes G L_{m}(\mathbb{Z})$.

Proposition 3.7. Let m be a positive integer. If $A^{\times}=k^{\times}$, then

$$
\operatorname{Aut}\left(A\left[\underline{t}_{m}^{ \pm 1}\right]\right)=\operatorname{Aut}_{k\left[\underline{t}_{m}^{ \pm 1}\right]}\left(A\left[\underline{t}_{m}^{ \pm 1}\right]\right) \times \operatorname{Aut}\left(k\left[\underline{t}_{m}^{ \pm 1}\right]\right)
$$

Proof. Let $g \in \operatorname{Aut}\left(A\left[\underline{t}_{m}^{ \pm 1}\right]\right)$. By Lemma 3.6(2), $\left.g\right|_{k\left[\underline{t}^{ \pm 1}\right]}:=g_{2}$ preserves $k\left[\underline{t}_{m}^{ \pm 1}\right]$. Thus $g_{2} \in \operatorname{Aut}\left(k\left[\underline{t}_{m}^{ \pm 1}\right]\right)$. Then $\left(1 \otimes g_{2}\right)^{-1} g$ is in $\operatorname{Aut}_{k\left[\underline{\underline{t}}_{m}^{ \pm 1}\right]}\left(A\left[\underline{t}_{m}^{ \pm 1}\right]\right)$. The assertion holds.

If $\operatorname{gr} A$ is a connected graded domain, then $A^{\times}=k^{\times}$. Therefore Proposition 3.7 applies. Note that $\operatorname{Aut}_{k\left[\underline{t}_{m}^{ \pm 1}\right]}\left(A\left[\underline{t}_{m}^{ \pm 1}\right]\right)$ is affine by Lemma $3.2(1)$, and therefore computable [Remark 2.8]. By using Proposition 3.7, Aut ($\left.A\left[\underline{t}_{m}^{ \pm 1}\right]\right)$ can be described explicitly. In general, it would be interesting to understand the relationship between $\operatorname{Aut}(A \otimes C)$ and the pair $(\operatorname{Aut}(A), \operatorname{Aut}(C))$. Under the situation of Lemma 3.3(1), we have some useful information. On the other hand, this relationship is extremely complicated when A and C are arbitrary.

To conclude this section we give two examples. The first one shows that parts (2), (3), (4) of Theorem 3 do not follow from part (1) of Theorem 3, and the second one shows that Theorem 3(3) fails without the hypothesis that char $k=0$.

Example 3.8. Let $q \in k^{\times}$be not a root of unity. Let A be the skew polynomial ring generated by x_{1}, x_{2}, x_{3} subject to the relations

$$
x_{2} x_{1}=x_{1} x_{2}, \quad x_{3} x_{1}=q x_{1} x_{3}, \quad x_{3} x_{2}=q x_{2} x_{3} .
$$

Let $Y=k x_{1} \oplus k x_{2} \oplus k x_{3}$. Then A is graded with $F_{1} A=Y \oplus k$. Using the fact that q is not a root of unity, one can check that every automorphism g of A is affine, namely,
$g(Y) \subset Y$. In fact, $\operatorname{Aut}(A) \cong G L(2, k) \times k^{\times}$. So it is not of the form in Theorem 3(4). The map $\partial: x_{1} \rightarrow 0, x_{2} \rightarrow x_{1}, x_{3} \rightarrow 0$ extends to a nonzero locally nilpotent derivation. Further, there is an automorphism of $A[t]$

$$
h: x_{1} \rightarrow x_{1}, \quad x_{2} \rightarrow x_{2}+t x_{1}, \quad x_{3} \rightarrow x_{3}, \quad t \rightarrow t+a,
$$

which is not in $\operatorname{Aut}_{t r}(A[t])$. Therefore parts (2), (3), (4) of Theorem 3 fail.
Example 3.9. Let A be the skew polynomial ring $k_{-1}\left[x_{1}, x_{2}\right]$ and $R:=k\left[x_{1}^{2}, x_{2}^{2}\right]$ be the center of A. For any $a, b \in k$ and any $h \in R$, define a derivation by

$$
\partial: x_{1} \rightarrow a x_{1} h, \quad x_{2} \rightarrow b x_{2} h .
$$

This ∂ extends to a derivation for any commutative base ring k and, by induction, $\partial\left(x_{1}^{m} x_{2}^{n}\right)=(a m+b n) x_{1}^{m} x_{2}^{n} h$ for all non-negative integers m and n.

Now assume that char $k=p>2$. Let $a=1, b=0$ and $h=x_{1}^{2}$. Then $\partial\left(x_{2}\right)=0$ and $\partial\left(x_{1}^{m}\right)=m x_{1}^{m+2}$. By induction, $\partial^{n}\left(x_{1}\right)=1 \cdot 3 \cdot 5 \cdots(2 n-1) x_{1}^{2 n+1}$ for all $n \geq 1$. It follows that $\partial^{p}=0$. Therefore ∂ is locally nilpotent. By Example 1.7(2), the discriminant of A over its center is $x_{1}^{4} x_{2}^{4}$, which is dominating. So Theorem 3(3) fails without the hypothesis that char $k=0$. Let d be the discriminant $x_{1}^{4} x_{2}^{4}$. Then $\partial(d)=4 x_{1}^{6} x_{2}^{4}=4 d x_{1}^{2} \neq 0$. In this case, d is not an eigenvector of ∂.

4. An example

In this section, we assume that k is a commutative domain and that 2 is invertible in k. Our goal here is to prove Theorem 1 by computing enough information about the discriminant for the algebra W_{n} to show that this algebra is in Af.

Let $\mathcal{A}:=\left\{a_{i j} \mid 1 \leq i<j \leq n\right\}$ be a set of scalars in k. Define the (-1)-quantum Weyl algebra $V_{n}(\mathcal{A})$ to be generated by $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ subject to the relations

$$
x_{i} x_{j}+x_{j} x_{i}=a_{i j}
$$

for all $i<j$. Example 1.7(1) is a special case with $n=2$ and $a_{12}=1$. If $a_{i j}=0$ for all $i<j$, then this algebra is denoted by $k_{-1}\left[x_{1}, \ldots, x_{n}\right]$. If $a_{i j}=1$ for all $i<j$, we get the algebra W_{n} of the introduction.

We refer to [15] for the definitions of Gelfand-Kirillov dimension (or GK-dimension, for short), and Krull dimension.

Lemma 4.1. The following hold for $V:=V_{n}(\mathcal{A})$.
(1) V is an iterated Ore extension $k\left[x_{1}\right]\left[x_{2} ; \sigma_{2}, \delta_{2}\right] \cdots\left[x_{n} ; \sigma_{n}, \delta_{n}\right]$ where $\sigma_{j}: x_{i} \mapsto-x_{i}$ and $\delta_{j}: x_{i} \mapsto a_{i j}$ for all $i<j$.
(2) V is a filtered algebra with associated graded ring $\operatorname{gr} V \cong k_{-1}\left[x_{1}, \ldots, x_{n}\right]$.
(3) The center of $k_{-1}\left[x_{1}, \ldots, x_{n}\right]$ is

$$
\begin{cases}k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right] & \text { if } n \text { is even } \\ k\left[x_{1}^{2}, \ldots, x_{n}^{2}, \prod_{i} x_{i}\right] & \text { if } n \text { is odd }\end{cases}
$$

(4) If n is even, the center of V is $R:=k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$, and V is finitely generated free over R of rank 2^{n}.

Proof. (1) It is easy to check that σ_{j+1} is an algebra automorphism of $K_{j}:=$ $k\left[x_{1}\right]\left[x_{2} ; \sigma_{2}, \delta_{2}\right] \cdots\left[x_{j} ; \sigma_{j}, \delta_{j}\right]$ and δ_{j+1} is a σ_{j+1}-derivation of K_{j}. The assertion follows.
(2) Let $Y=\sum_{i=1}^{n} k x_{i}$. Then $F_{n}:=(k+Y)^{n}$ defines a filtration of V such that gr V is generated by $\left\{x_{1}, \ldots, x_{n}\right\}$ and subject to the relations $x_{i} x_{j}+x_{j} x_{i}=0$ for all $i \neq j$. The assertion follows.
(4) Since $k_{-1}\left[x_{1}, \ldots, x_{n}\right]$ is \mathbb{Z}^{n}-graded and \mathbb{Z}^{n} is an ordered group, the center of $k_{-1}\left[x_{1}, \ldots, x_{n}\right]$ is \mathbb{Z}^{n}-graded. So every central element is a linear combination of monomials. It can be checked directly that each central monomial is generated by $x_{1}^{2}, \ldots, x_{n}^{2}$ when n is even and by $x_{1}^{2}, \ldots, x_{n}^{2}, \prod_{i} x_{i}$ when n is odd.
(5) Let C be the center of V. Since $x_{i} x_{j}^{2}-x_{j}^{2} x_{i}=\left(-x_{j} x_{i}+a_{i j}\right) x_{j}-x_{j}\left(-x_{i} x_{j}+a_{i j}\right)=0$, $x_{j}^{2} \in C$. Thus $k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right] \subset C$. It is clear that $\operatorname{gr} C \subset C(\operatorname{gr} V)=k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$. Thus $\operatorname{gr} C=k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$. By lifting, $C=k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$.

We are interested in $\operatorname{Aut}(V)$, which is related to the graded algebra automorphism group, denoted by Aut ${ }_{g r}$, of $k_{-1}\left[x_{1}, \ldots, x_{n}\right]$. Let $[n]$ denote the set $\{1,2, \ldots, n\}$ and S_{n} be the symmetric group consisting of all permutations of $[n]$. Recall that W_{n} is the algebra $V\left(\{1\}_{i<j}\right)$, namely, $a_{i j}=1$ for all $1 \leq i<j \leq n$.

Lemma 4.2. The following hold.
(1) (See [14, Lemma 1.12].) $\operatorname{Aut}_{g r}\left(k_{-1}\left[x_{1}, \ldots, x_{n}\right]\right)=S_{n} \ltimes\left(k^{\times}\right)^{n}$.
(2) $S_{n} \times\{ \pm 1\} \subseteq \operatorname{Aut}\left(W_{n}\right)$.

Proof. (2) is clear. We only prove (1). This was proved in [14, Lemma 1.12] when k is a field. The assertion in the general case follows by passing from k to the ring of fractions of k.

Here is an application of Remark 2.8. Recall that $\operatorname{Aut}_{\mathrm{af}}(V)$ denotes the group of affine automorphisms of V. We take $Y=\bigoplus_{i=1}^{n} k x_{i}$ for the algebra V.

Lemma 4.3. Let g be an affine automorphism of V. Then there is a permutation $\sigma \in S_{n}$ and $r_{i} \in k^{\times}$such that $g\left(x_{i}\right)=r_{i} x_{\sigma(i)}$ for all i. As a consequence,

$$
\operatorname{Aut}_{\mathrm{af}}\left(W_{n}\right)= \begin{cases}S_{2} \ltimes k^{\times} & \text {if } n=2 \\ S_{n} \times\{ \pm 1\} & \text { if } n \geq 3\end{cases}
$$

Proof. Since g preserves the filtration, the associated graded automorphism, denoted by \bar{g}, is a graded algebra automorphism of $k_{-1}\left[x_{1}, \ldots, x_{n}\right]$. By Lemma 4.2(1), there is a permutation $\sigma \in S_{n}$ and $r_{i} \in k^{\times}$such that $\bar{g}\left(x_{i}\right)=r_{i} x_{\sigma(i)}$ for all i. Thus we have $g\left(x_{i}\right)=r_{i} x_{\sigma(i)}+a_{i}$ for some $a_{i} \in k$. It remains to show that $a_{i}=0$ for all i. Applying g to the relations $x_{i} x_{j}+x_{j} x_{i}=a_{i j}$, we have

$$
\begin{aligned}
a_{i j} & =g\left(x_{i} x_{j}+x_{j} x_{i}\right) \\
& =\left(r_{i} x_{\sigma(i)}+a_{i}\right)\left(r_{j} x_{\sigma(j)}+a_{j}\right)+\left(r_{j} x_{\sigma(j)}+a_{j}\right)\left(r_{i} x_{\sigma(i)}+a_{i}\right) \\
& =r_{i} r_{j}\left(x_{\sigma(i)} x_{\sigma(j)}+x_{\sigma(j)} x_{\sigma(i)}\right)+2 a_{i} r_{j} x_{\sigma(j)}+2 a_{j} r_{i} x_{\sigma(i)}+2 a_{i} a_{j} \\
& =r_{i} r_{j} a_{\sigma(i) \sigma(j)}+2 a_{i} r_{j} x_{\sigma(j)}+2 a_{j} r_{i} x_{\sigma(i)}+2 a_{i} a_{j}
\end{aligned}
$$

Since $r_{i} \neq 0$, we have $a_{j}=0$ for all j. The consequence follows easily from the fact that in W_{n}, we have $a_{i j}=1$ for all $i<j$, and so

$$
1=a_{i j}=r_{i} r_{j} a_{\sigma(i) \sigma(j)}=r_{i} r_{j}
$$

for all $i<j$.
Let $I=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ be a set of integers between 1 and n with repetitions. We let $X_{I}=x_{i_{1}^{\prime}} x_{i_{2}^{\prime}} \cdots x_{i_{s}^{\prime}} \in V_{n}(\mathcal{A})$ where $\left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{s}^{\prime}\right\}$ is a re-ordering of the elements in I such that $i_{1}^{\prime} \leq i_{2}^{\prime} \leq \cdots \leq i_{s}^{\prime}$. Since $V_{n}(\mathcal{A})$ has a PBW basis, $V_{n}(\mathcal{A})$ has a k-linear basis consisting of all different monomials X_{I}. For two sets I and J of integers between 1 and n, let $I+J$ denote the union of I and J with repetitions. Suppose K_{1} and K_{2} are two sets of integers. We write $K_{1} \rightarrow K_{2}$ if there is a presentation $K_{1}=\left\{k_{1}, \ldots, k_{w}\right\}$ and $K_{2}=\left\{k_{1}^{\prime}, \ldots, k_{w}^{\prime}\right\}$ such that $k_{\alpha}>k_{\alpha}^{\prime}$ for all α from 1 to w.

Lemma 4.4. Let $I=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ and $J=\left\{j_{1}, j_{2}, \ldots, j_{u}\right\}$ where the i 's and j 's are in non-decreasing order. Then

$$
X_{I} X_{J}=c X_{I+J}+\sum_{\substack{\emptyset \neq K_{1} \subset I \\ \emptyset \neq K_{2} \subset J \\ K_{1} \rightarrow K_{2}}} c_{K_{1}, K_{2}} X_{\left(I \backslash K_{1}\right)+\left(J \backslash K_{2}\right)}
$$

where $c \in k^{\times}, c_{K_{1}, K_{2}} \in k$.
Proof. First suppose that I has a single element i_{1}. If $i_{1} \leq j_{1}$, then the assertion is trivial. Now assume $i_{1}>j_{1}$. By induction on u, we have

$$
x_{i_{1}} x_{j_{2}} \cdots x_{j_{u}}=c^{\prime} X_{\left\{i_{1}\right\}+\left(J \backslash\left\{j_{1}\right\}\right)}+\sum_{\substack{K_{2}=\left\{k_{1}\right\} \subset\left(J \backslash\left\{j_{1}\right\}\right) \\ i_{1}>k_{1}}} c_{K_{2}} X_{\left(J \backslash\left(K_{2}+\left\{j_{1}\right\}\right)\right)} .
$$

Then

$$
\begin{aligned}
X_{I} X_{J}= & x_{i_{1}} x_{j_{1}} \cdots x_{j_{u}} \\
= & \left(x_{j_{1}} x_{i_{1}}+a_{i_{1} j_{1}}\right) x_{j_{2}} \cdots x_{j_{u}} \\
= & x_{j_{1}} x_{i_{1}} x_{j_{2}} \cdots x_{j_{u}}+a_{i_{1} j_{1}} x_{j_{2}} \cdots x_{j_{u}} \\
= & x_{j_{1}}\left[c^{\prime} X_{\left\{i_{1}\right\}+\left(J \backslash\left\{j_{1}\right\}\right)}+\sum_{\substack{K_{2}=\left\{k_{1}\right\} \subset\left(J \backslash\left\{j_{1}\right\}\right) \\
i_{1}>k_{1}}} c_{K_{2}} X_{\left(J \backslash\left(K_{2}+\left\{j_{1}\right\}\right)\right)}\right] \\
& \left.+a_{i_{1} j_{1}} x_{j_{2}} \cdots x_{j_{u}}\right] \\
= & c X_{\left\{i_{1}\right\}+J}+\sum_{\substack{\emptyset \neq K_{2} \subset J \\
I \rightarrow K_{2}}} c_{K_{2}} X_{\left(J \backslash K_{2}\right)} .
\end{aligned}
$$

Now we assume that $|I|>1$. We write $I=\left\{i_{1}\right\}+I^{\prime}$ where $\left|I^{\prime}\right|=|I|-1$. By induction,

$$
X_{I^{\prime}} X_{J}=b X_{I^{\prime}+J}+\sum_{\substack{\emptyset \neq K_{1} \subset I^{\prime} \\ \emptyset \neq K_{2} \subset J \\ K_{1} \rightarrow K_{2}}} b_{K_{1}, K_{2}} X_{\left(I^{\prime} \backslash K_{1}\right)+\left(J \backslash K_{2}\right)}
$$

Then

$$
\begin{aligned}
& X_{I} X_{J}= x_{i_{1}} X_{I^{\prime}} X_{J}=x_{i_{1}}\left[b X_{I^{\prime}+J}+\sum_{\substack{\emptyset \neq K_{1} \subset I^{\prime} \\
\emptyset \neq K_{2} \subset J \\
K_{1} \rightarrow K_{2}}} b_{K_{1}, K_{2}} X_{\left(I^{\prime} \backslash K_{1}\right)+\left(J \backslash K_{2}\right)}\right] \\
&=b x_{i_{1}} X_{I^{\prime}+J}+\sum_{\substack{\emptyset \neq K_{1} \subset I^{\prime} \\
\emptyset \neq K_{1} \subset J \\
K_{1} \rightarrow K_{2}}} b_{K_{1}, K_{2}} x_{i_{1}} X_{\left(I^{\prime} \backslash K_{1}\right)+\left(J \backslash K_{2}\right)} .
\end{aligned}
$$

For $x_{i_{1}} X_{I^{\prime}+J}$ and $x_{i_{1}} X_{\left(I^{\prime} \backslash K_{1}\right)+\left(J \backslash K_{2}\right)}$, we use the case when $|I|=1$. Note that i_{1} is no larger than any element in I^{\prime}. So

$$
\begin{aligned}
x_{i_{1}} X_{I^{\prime}+J} & =c^{\prime} X_{I+J}+\sum_{\substack{K_{2}=\left\{k_{1}\right\} \subset J \\
i_{1}>k_{1}}} c_{K_{2}} X_{\left(I+J \backslash\left(K_{2}+\left\{i_{1}\right\}\right)\right)} \\
& =c^{\prime} X_{I+J}+\sum_{\substack{K_{1}=\left\{i_{1}\right\} \\
K_{2}=\left\{k_{1}\right\} \subset J \\
K_{1} \rightarrow K_{2}}} c_{K_{2}} X_{\left(I \backslash K_{1}\right)+\left(J \backslash K_{2}\right)} .
\end{aligned}
$$

Similarly, by using the fact that i_{1} is no larger than any element in I^{\prime}, one can obtain that the linear combination

$$
\sum_{\substack{\emptyset \neq K_{1} \subset I^{\prime} \\ \emptyset \neq K_{2} \subset J \\ K_{1} \rightarrow K_{2}}} b_{K_{1}, K_{2}} x_{i_{1}} X_{\left(I^{\prime} \backslash K_{1}\right)+\left(J \backslash K_{2}\right)}
$$

is of the form

$$
\sum_{\substack{\emptyset \neq K_{1} \subset I \\ \emptyset \neq K_{2} \subset J \\ K_{1} \rightarrow K_{2}}} c_{K_{1}, K_{2}} X_{\left(I \backslash K_{1}\right)+\left(J \backslash K_{2}\right)} .
$$

The assertion follows.

For the rest of this section, we work on computing the discriminant of $V_{n}(\mathcal{A})$ and proving Theorem 1.

Let $B=V=V_{n}(\mathcal{A})$ and $R=k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$. Then B is a finitely generated free module over R of rank 2^{n} (and R is the center of B if n is even). Let $\operatorname{tr}: B \rightarrow R$ be the regular trace map as defined in Example 1.2(3). For any set of elements $X=\left\{f_{1}, \ldots, f_{w}\right\}$ in V, define

$$
\begin{equation*}
\Omega(X)=\Omega\left(f_{1}, \ldots, f_{n}\right)=\sum_{\sigma \in S_{w}}(-1)^{|\sigma|} f_{\sigma(1)} \cdots f_{\sigma(w)} . \tag{4.4.1}
\end{equation*}
$$

Let $x_{i_{1} i_{2} \cdots i_{w}}$ denote the element $\Omega\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{w}}\right)$.
Lemma 4.5. We work in the algebra $V:=V_{n}(\mathcal{A})$.
(1) $\operatorname{tr}(1)=2^{n}$.
(2) V is $\mathbb{Z} /(2)$-graded: $V=V_{\text {even }} \oplus V_{\text {odd }}$ with x_{i} having odd degree.
(3) If f has odd degree, then $\operatorname{tr}(f)=0$. As a consequence, if w is odd, then $\operatorname{tr}\left(x_{i_{1} i_{2} \cdots i_{w}}\right)=0$.
(4) If w is even, then $\operatorname{tr}\left(\Omega\left(f_{1}, \ldots, f_{w}\right)\right)=0$. As a consequence, if w is even, then $\operatorname{tr}\left(x_{i_{1} i_{2} \cdots i_{w}}\right)=0$.

Proof. (1)-(3) These are clear.
(4) Using the trace property $\operatorname{tr}(a b)=\operatorname{tr}(b a)$, we have

$$
\begin{aligned}
\operatorname{tr}\left(\Omega\left(f_{1}, \ldots, f_{w}\right)\right) & =\operatorname{tr}\left(\sum_{\sigma \in S_{w}}(-1)^{|\sigma|} f_{\sigma(1)} \cdots f_{\sigma(w)}\right)=\sum_{\sigma \in S_{w}}(-1)^{|\sigma|} \operatorname{tr}\left(f_{\sigma(1)} \cdots f_{\sigma(w)}\right) \\
& =\sum_{\sigma \in S_{w}}(-1)^{|\sigma|} \operatorname{tr}\left(f_{\sigma(w)} f_{\sigma(1)} \cdots f_{\sigma(w-1)}\right) \\
& =\sum_{\sigma \in S_{w}}(-1)^{|\sigma(1,2,3, \ldots, w)|} \operatorname{tr}\left(f_{\sigma(1)} \cdots f_{\sigma(w-1)} f_{\sigma(w)}\right) \\
& =-\sum_{\sigma \in S_{w}}(-1)^{|\sigma|} \operatorname{tr}\left(f_{\sigma(1)} \cdots f_{\sigma(w-1)} f_{\sigma(w)}\right)=-\operatorname{tr}\left(\Omega\left(f_{1}, \ldots, f_{w}\right)\right)
\end{aligned}
$$

Since 2 is invertible in k, the assertion follows.

Lemma 4.6. We continue to work in the algebra V.
(1) If $i_{1}<i_{2}<\cdots<i_{s}$ and $s>0$, then $\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{s}}\right) \in k$.
(2) If $I=\left\{i_{1}<i_{2}<\cdots<i_{s}\right\}$ and $J=\left\{j_{1}<j_{2}<\cdots<j_{u}\right\}$, then

$$
\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{s}} x_{j_{1}} \cdots x_{j_{u}}\right)=b x_{k_{1}}^{2} x_{k_{2}}^{2} \cdots x_{k_{n}}^{2}+(\text { cwlt })
$$

where $\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}=I \cap J$ and $b \in k$.
(3) If $i_{1}<i_{2}<\cdots<i_{s}$, then

$$
\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{s}} x_{i_{1}} \cdots x_{i_{s}}\right)=c x_{i_{1}}^{2} x_{i_{2}}^{2} \cdots x_{i_{s}}^{2}+(\text { cwlt })
$$

for some $c \in k^{\times}$.

Proof. (1) We compute the trace using the basis

$$
\left\{x_{j_{1}} x_{j_{2}} \cdots x_{j_{u}} \mid j_{1}<j_{2}<\cdots<j_{u}\right\}
$$

Write $I=\left\{i_{1}<i_{2}<\cdots<i_{s}\right\}$ and $J=\left\{j_{1}<j_{2}<\cdots<j_{u}\right\}$. We use Lemma 4.4 to compute:

$$
\left(x_{i_{1}} \cdots x_{i_{s}}\right)\left(x_{j_{1}} \cdots x_{j_{u}}\right)=X_{I} X_{J}=c X_{I+J}+\sum_{\substack{\emptyset \neq K_{1} \subset I \\ \emptyset \neq K_{2} \subset J \\ K_{1} \rightarrow K_{2}}} c_{K_{1}, K_{2}} X_{\left(I \backslash K_{1}\right)+\left(J \backslash K_{2}\right)} .
$$

If $X_{I+J}=r X_{J}$ for some $r \in R$, then r is a scalar multiple of $x_{k_{1}}^{2} \cdots x_{k_{w}}^{2}$ where $\left\{k_{1}, \ldots, k_{w}\right\}=I \cap J$. As a consequence $J=(I \backslash K)+(J \backslash K)$, which is impossible as $|K|>0$. If $X_{\left(I \backslash K_{1}\right)+\left(J \backslash K_{2}\right)}=r X_{J}$ for some $r \in R$, then r is a scalar multiple of $x_{k_{1}}^{2} \cdots x_{k_{w}}^{2}$ where $K:=\left\{k_{1}, \ldots, k_{w}\right\}=\left(I \backslash K_{1}\right) \cap\left(J \backslash K_{2}\right)$. As a consequence $J=\left(I \backslash K+K_{1}\right)+\left(J \backslash K+K_{2}\right)$. If $|K|>0$, then K is not in $\left(I \backslash K+K_{1}\right)+\left(J \backslash K+K_{2}\right)$, a contradiction. Therefore, the only possible case is when K is empty. When K is empty, the coefficient of X_{J} is in k. The assertion follows.
(2) By Lemma 4.4, we need to compute

$$
\operatorname{tr}\left(X_{I} X_{J}\right)=c \operatorname{tr}\left(X_{I+J}\right)+\sum_{\substack{\emptyset \neq K_{1} \subset I \\ \emptyset \neq K_{2} \subset J \\ K_{1} \rightarrow K_{2}}} c_{K_{1}, K_{2}} \operatorname{tr}\left(X_{\left(I \backslash K_{1}\right)+\left(J \backslash K_{2}\right)}\right) .
$$

Let $I \cap J=K=\left\{k_{1}, \ldots, k_{n}\right\}$. Clearly

$$
\operatorname{tr}\left(X_{I+J}\right)=x_{k_{1}}^{2} \cdots x_{k_{n}}^{2} \operatorname{tr}\left(X_{(I \backslash K)+(J \backslash K)}\right)=x_{k_{1}}^{2} \cdots x_{k_{n}}^{2} b
$$

for some $b=\operatorname{tr}\left(X_{(I \backslash K)+(J \backslash K)}\right) \in k$ by part (1).

Let $\left(I \backslash K_{1}\right) \cap\left(J \backslash K_{2}\right)=K^{\prime}=\left\{k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right\}$. Clearly

$$
\operatorname{tr}\left(X_{\left(I \backslash K_{1}\right)+\left(J \backslash K_{2}\right)}\right)=x_{k_{1}^{\prime}}^{2} \cdots x_{k_{m}^{\prime}}^{2} \operatorname{tr}\left(X_{\left(I \backslash\left(K^{\prime} \cup K_{1}\right)\right)+\left(J \backslash\left(K^{\prime} \cup K_{2}\right)\right)}\right)=x_{k_{1}^{\prime}}^{2} \cdots x_{k_{m}^{\prime}}^{2} b^{\prime}
$$

for some $b^{\prime} \in k$ by part (1). Since K^{\prime} is a subset of $K, \operatorname{tr}\left(X_{\left(I \backslash K_{1}\right)+\left(J \backslash K_{2}\right)}\right)$ is either a scalar multiple of $\operatorname{tr}\left(X_{I+J}\right)$ or a scalar multiple of some monomial in (cwlt). The assertion follows.
(3) For the most part, this is a special case of part (2). To prove c is invertible, we note $\operatorname{tr}\left(x_{i_{1}}^{2} \cdots x_{i_{s}}^{2}\right)=2^{n} x_{i_{1}}^{2} \cdots x_{i_{s}}^{2}$ and that 2 is invertible.

Remark 4.7. Let $V=W_{n}$, so the relations are $x_{i} x_{j}+x_{j} x_{i}=1$ for all $i \neq j$. Then we have an explicit formula for the trace of each basis element $x_{i_{1}} \cdots x_{i_{s}}$, where $1 \leq i_{1}<$ $\cdots<i_{s} \leq n$.
(1) If s is odd, then $\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{s}}\right)=0$, by Lemma 4.5(3).
(2) If $\sigma \in S_{n}$ is a permutation of [n], then, by Lemmas 1.8(2) and 4.6(1), $\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{s}}\right)=$ $\operatorname{tr}\left(x_{\sigma\left(i_{1}\right)} \cdots x_{\sigma\left(i_{s}\right)}\right)$.
(3) If s is even, then $\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{s}}\right)=2^{n-s / 2}$. To see this, we use induction on s. Note that $\operatorname{tr}\left(x_{i_{1}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{s}}\right)=\operatorname{tr}\left(x_{i_{2}} x_{i_{1}} x_{i_{3}} \cdots x_{i_{s}}\right)$ by part (2). Using the relation, we have

$$
\begin{aligned}
\operatorname{tr}\left(x_{i_{3}} \cdots x_{i_{s}}\right) & =\operatorname{tr}\left(\left(x_{i_{1}} x_{i_{2}}+x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \cdots x_{i_{s}}\right) \\
& =\operatorname{tr}\left(x_{i_{1}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{s}}\right)+\operatorname{tr}\left(x_{i_{2}} x_{i_{1}} x_{i_{3}} \cdots x_{i_{s}}\right) \\
& =2 \operatorname{tr}\left(x_{i_{1}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{s}}\right) .
\end{aligned}
$$

For any nonzero element f in the (graded) polynomial ring $k\left[x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right]$, let $\operatorname{pr}(f)$ denote the highest degree component of f, which is called the principal term of f or the leading term of f.

Using the basis

$$
\left\{X_{I}=x_{i_{1}} \cdots x_{i_{s}} \mid I=\left\{i_{1}<\cdots<i_{s}\right\} \subset[n]\right\}
$$

to compute the discriminant, we need to compute the determinant of the matrix

$$
M=\left(m_{I J}\right)_{2^{n} \times 2^{n}}
$$

where $m_{I J}=\operatorname{tr}\left(x_{i_{1}} \cdots x_{i_{w}} x_{j_{1}} \cdots x_{j_{s}}\right)$. By Lemma 4.6, we have the following.

- $m_{\emptyset, \emptyset}=2^{n}$,
- if $I=\left\{i_{1}, \ldots, i_{s}\right\}$, then $\operatorname{pr}\left(m_{I I}\right)$ is of the form $c x_{i_{1}}^{2} \cdots x_{i_{s}}^{2}$ where $c \in k^{\times}$, and other terms of $m_{I I}$ are cwlt $x_{i_{1}}^{2} \cdots x_{i_{s}}^{2}$,
- for every pair $I \neq J, m_{I J}$ is cwlt both $\operatorname{pr}\left(m_{I I}\right)$ and $\operatorname{pr}\left(m_{J J}\right)$.

Therefore we have the following.

Proposition 4.8. Retain the notation above.
(1) The product $\prod_{I \subset[n]} m_{I I}$ has principal term of the form $c\left(\prod_{i=1}^{n} x_{i}^{2}\right)^{2^{n-1}}$ for some $c \in k^{\times}$.
(2) Thus $\prod_{I \subset[n]} m_{I I}=c\left(\prod_{i=1}^{n} x_{i}^{2}\right)^{2^{n-1}}+(\mathrm{cwlt})$.
(3) For each non-identity permutation τ of $2^{[n]}$, each monomial in the product $\prod_{I \subset[n]} m_{I \tau(I)}$ is cwlt $\left(\prod_{i=1}^{n} x_{i}^{2}\right)^{2^{n-1}}$.

Recall that 2 is invertible in the commutative domain k.

Theorem 4.9. Let $B=V_{n}(\mathcal{A})$ and $R=k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right] \subset B$.
(1) The discriminant satisfies $d(B / R)=c\left(\prod_{i=1}^{n} x_{i}^{2}\right)^{2^{n-1}}+\left(\right.$ cwlt) where $c \in k^{\times}$. As a consequence, $d(B / R)$ is a dominating element of B.
(2) If $g \in \operatorname{Aut}(B)$ is an automorphism so that g and g^{-1} preserve R, then g is affine.
(3) If n is even, then $V_{n}(\mathcal{A})$ is in Af .

Proof. (1) By definition, $d(B / R)$ is the determinant of M, which is equal to

$$
\sum_{\tau \in S_{2} n}(-1)^{|\tau|} \prod_{I \subset[n]} m_{I \tau(I)}
$$

In every summand, by Proposition $3.7(2),(3), \prod_{I \subset[n]} m_{I I}$ has the highest possible degree and it is equal to $c\left(\prod_{i=1}^{n} x_{i}^{2}\right)^{2^{n-1}}+(\mathrm{cwlt})$ for some $c \in k^{\times}$. Any other term $\prod_{I \subset[n]} m_{I \tau(I)}$, for a non-identity permutation τ, is a linear combination of monomials that are cwlt $\left(\prod_{i=1}^{n} x_{i}^{2}\right)^{2^{n-1}}$ by Proposition 3.7(3). Therefore

$$
\sum_{\tau \in S_{2^{n}}}(-1)^{|\tau|} \prod_{I \subset[n]} m_{I \tau(I)}=c\left(\prod_{i=1}^{n} x_{i}^{2}\right)^{2^{n-1}}+(\text { cwlt })
$$

and the assertion follows.
(2) Assume that g is an automorphism such that g and g^{-1} preserve R. By Lemma 1.8(f), $g(d)=c d$ for some $c \in k^{\times}$. By part (1), $d(B / R)$ is dominating. By Lemma 2.6, g is affine.
(3) This follows from Lemma 4.1(4) and part (1).

When n is odd, part (3) no longer holds. See Example 5.10 and Remark 5.12 for more about what happens when n is odd or when char $k=2$.

Now we are ready to prove Theorem 1, as well as the following.

Theorem 4.10. Assume that n is a positive even integer. Then $k_{-1}\left[x_{1}, \ldots, x_{n}\right]$ is in Af and the following hold.
(1) $\operatorname{Aut}\left(k_{-1}\left[x_{1}, \ldots, x_{n}\right]\right)=S_{n} \ltimes\left(k^{\times}\right)^{n}$.
(2) $\operatorname{Aut}\left(k_{-1}\left[x_{1}, \ldots, x_{n}\right][t]\right)=\left(\begin{array}{c}S_{n} \ltimes\left(k^{\times}\right)^{n} \\ 0\end{array} \frac{k\left[x_{1}^{2}, \cdots, x_{n}^{2}\right]}{k^{\times}}\right)$.
(3) If $\mathbb{Q} \subseteq k$, then every locally nilpotent derivation of $k_{-1}\left[x_{1}, \ldots, x_{n}\right]$ is zero.

Proof of Theorems 1 and 4.10. Let $B=W_{n}$ and $R=k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$. Note that W_{n} is a special case of $V_{n}(\mathcal{A})$. By Theorem $4.9(3), W_{n}$ is in Af. Theorem 1 follows from Theorem 3 and Lemma 4.3.

Now consider $B=k_{-1}\left[x_{1}, \ldots, x_{n}\right]$. The first part of the proof is the same as for $B=W_{n}$. By Theorem 4.9(3), B is in Af and every $g \in \operatorname{Aut}(B)$ is affine by Theorem 3 . By Lemma 4.3, there is a $\sigma \in S_{n}$ such that $g\left(x_{i}\right)=r_{i} x_{\sigma(i)}$, where $r_{i} \in k^{\times}$. Thus part (1) follows. Parts (2), (3) follow from Theorem 3.

We also have the following results, which follow immediately from Theorems 1 and 3 and Proposition 3.7.

Theorem 4.11. Let n be a positive even integer and m a positive integer.
(1) $\operatorname{Aut}\left(W_{2}[t]\right)=\left(\begin{array}{cc}S_{2} \ltimes k^{\times} & k\left[x_{1}^{2}, x_{2}^{2}\right] \\ 0 & k^{\times}\end{array}\right)$.
(2) $\operatorname{Aut}\left(W_{2}\left[\underline{t}_{m}^{ \pm 1}\right]\right)=\left(S_{2} \ltimes\left(k\left[\underline{t}_{m}\right]\right)^{\times}\right) \times\left(\left(k^{\times}\right)^{m} \rtimes\{ \pm 1\}\right)$.
(3) If $n \geq 4, \operatorname{Aut}\left(W_{n}[t]\right)=\left(\begin{array}{c}S_{n} \times\{ \pm 1\} \\ 0 \\ 0\left[x_{1}^{2}, \ldots, x_{n}^{2}\right] \\ k^{\times}\end{array}\right)$.
(4) If $n \geq 4$, $\operatorname{Aut}\left(W_{n}\left[\underline{U}_{m}^{ \pm 1}\right]\right)=\left(S_{n} \times\{ \pm 1\}\right) \times\left(\left(k^{\times}\right)^{m} \rtimes G L_{m}(\mathbb{Z})\right)$.
(5) If $\mathbb{Q} \subseteq k$, then every locally nilpotent derivation of W_{n} is zero.

Further results can be found in [7].

Question 4.12. In the above we don't need the exact computation of the discriminant $d\left(W_{n} / R\right)$, but it would be nice to have. Let $x_{123 \cdots n}=\Omega\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ be defined as in (4.4.1), let

$$
M=\left(\begin{array}{cccc}
2 x_{1}^{2} & 1 & \cdots & 1 \\
1 & 2 x_{2}^{2} & \cdots & 1 \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 2 x_{n}^{2}
\end{array}\right)
$$

and let $D=\operatorname{det} M$. We have the following questions (or conjectures).
(1) Is $x_{123 \cdots n}^{2}={ }_{k \times} D$?
(2) Is $d\left(W_{n} / k\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]\right)={ }_{k \times} D^{2^{n-1}}$?

Both formulas have been verified by computer for even integers $n \leq 6$ (see also Example $1.7(1)$ for $n=2$). It also appears that if we use the basis

$$
\left\{\Omega\left(x_{i_{1}}, \ldots, x_{i_{s}}\right) \mid i_{1}<\cdots<i_{s}\right\}
$$

ordered by s, to compute the discriminant, then the corresponding matrix of traces is block diagonal, and the j th block is the matrix of $j \times j$ minors of M. Verifying this last statement would give the above computation of the discriminant, by the Sylvester-Franke theorem (see [20], for example).

5. Comments and examples

In this section we provide some comments, remarks, examples and questions related to automorphisms. To save space, some details are omitted. By Theorem 3, if A is in the category Af, then we can compute its automorphism group. In this section we would like to show that there are many algebras in Af.

First of all, a dominating discriminant may be in a form different from the one given in Lemma 2.2(1).

Example 5.1. Consider the algebra $S(p):=k\langle x, y\rangle /\left(y^{2} x-p x y^{2}, y x^{2}+p x^{2} y\right)$ where $p \in k^{\times}$. Suppose k is a field. By [5, (8.11)], $S(p)$ is a noetherian Artin-Schelter regular domain of global dimension 3, which is of type S_{2} in the classification given in [5]. Setting $\operatorname{deg} x=\operatorname{deg} y=1, S(p)$ is graded and its Hilbert series is

$$
H_{S(p)}(t)=\frac{1}{(1-t)^{2}\left(1-t^{2}\right)}
$$

It is known that $\operatorname{GKdim} S(p)=\operatorname{Kdim} S(p)=3$. We are interested in the case when $p=1$, so we set $A=S(1)$. One can check that the center of A is the commutative polynomial subring $R:=k\left[x^{4}, y^{2}, \Omega\right]$ where $\Omega=(x y)^{2}+(y x)^{2}$. As an R-module, A is free of rank 16. A computation (omitted) shows that

$$
d(A / R)={ }_{k^{\times}}\left(x^{4}\right)^{8}\left(\Omega^{2}+4 x^{4} y^{4}\right)^{8}
$$

We claim that this element is dominating.
Note that, in the algebra $A, d(A / R)$ has different presentations

$$
\left(x^{4}\right)^{8}\left(\Omega^{2}+4 x^{4} y^{4}\right)^{8}=\left(x^{4}\right)^{8}(x y+i y x)^{32}=\left(x^{4}\right)^{8}(x y-i y x)^{32}
$$

where $i^{2}=-1$. Let B be any \mathbb{N}-filtered algebra such that gr B is a domain. Let y_{1}, y_{2} be any elements in B of degree at least 1 . If $\operatorname{deg} y_{1}>1$ or $\operatorname{deg} y_{2}>1$, then either $\operatorname{deg}\left(y_{1} y_{2}-i y_{2} y_{1}\right)>2$ or $\operatorname{deg}\left(y_{1} y_{2}+i y_{2} y_{1}\right)>2$. Assume the former by symmetry. Then $\operatorname{deg}\left(y_{1}^{4}\right)^{8}\left(y_{1} y_{2}-i y_{2} y_{1}\right)^{32}>\operatorname{deg} d(A / R)$. Therefore $d(A / R)$ is dominating. Consequently, A is in Af and Theorem 3 applies. One can then easily check that $\operatorname{Aut}(A)=\left(k^{\times}\right)^{2}$.

Next we show that Af is closed under tensor products. We start with a few easy lemmas.

Lemma 5.2. Let A and B be algebras such that their centers $C(A)$ and $C(B)$ are k-flat. Then $C(A \otimes B)=C(A) \otimes C(B)$.

Lemma 5.3. Suppose that A is a free module over $C(A)$ of rank m, and B is a free module over $C(B)$ of rank n. Assume that both $C(A)$ and $C(B)$ are flat over k. Then $A \otimes B$ is a free module over $C(A \otimes B)$ of rank $m n$ and

$$
d(A \otimes B / C(A \otimes B))=d(A / C(A))^{n} d(B / C(B))^{m}
$$

Proof. Pick a basis $\left\{x_{i}\right\}$ of A over $C(A)$ and basis $\left\{y_{j}\right\}$ of B over $C(B)$. For any $a \in A$, $b \in B$, write $a x_{i}=\sum_{i^{\prime}} r_{i i^{\prime}} x_{i^{\prime}}$ and $b y_{j}=\sum_{j^{\prime}} s_{j j^{\prime}} y_{j^{\prime}}$. Then $\operatorname{tr}(a)=\sum_{i} r_{i i}$ and $\operatorname{tr}(b)=$ $\sum_{j} s_{j j}$. Using $\left\{x_{i} \otimes y_{j}\right\}$ as a basis of $A \otimes B$ over $C(A) \otimes C(B)$, we have

$$
(a \otimes b)\left(x_{i} \otimes y_{j}\right)=\sum_{i^{\prime}} \sum_{j^{\prime}} r_{i i^{\prime}} s_{j j^{\prime}} x_{i^{\prime}} \otimes y_{j^{\prime}}
$$

which implies that $\operatorname{tr}(a \otimes b)=\sum_{i} \sum_{j} r_{i i} s_{j j}=\operatorname{tr}(a) \operatorname{tr}(b)$. Now

$$
\begin{aligned}
d\left(A \otimes B / C_{A} \otimes C_{B}\right) & =\operatorname{det}\left(\operatorname{tr}\left(\left(x_{i} \otimes y_{j}\right)\left(x_{i^{\prime}} \otimes y_{j^{\prime}}\right)\right)\right)=\operatorname{det}\left(\operatorname{tr}\left(x_{i} x_{i^{\prime}}\right) \operatorname{tr}\left(y_{j} y_{j^{\prime}}\right)\right) \\
& =\operatorname{det}\left(\operatorname{tr}\left(x_{i} x_{i^{\prime}}\right)\right)^{n} \operatorname{det}\left(\operatorname{tr}\left(y_{j} y_{j^{\prime}}\right)\right)^{m} \\
& =d(A / C(A))^{n} d(B / C(B))^{m} .
\end{aligned}
$$

Lemma 5.4. Retain the hypotheses of Lemma 5.3. Suppose that $d(A / C(A))$ and $d(B / C(B))$ are dominating. Then so is $d(A \otimes B / C(A \otimes B))$.

Proof. Since $d(A / C(A))$ is a dominating element, $A \neq C(A)$ (unless $A=k$), so $m:=$ $\operatorname{rk}(A / C(A))>1$. Similarly, $n:=\operatorname{rk}(B / C(B))>1$. By Lemma 5.3, the discriminant of $A \otimes B$ over its center is $d(A / C(A))^{n} d(B / C(B))^{m}$. By hypothesis, both $d(A / C(A))$ and $d(B / C(B))$ are dominating, and it is routine to check that $d(A / C(A))^{n} d(B / C(B))^{m}$ is dominating.

Theorem 5.5. Retain the hypotheses of Lemma 5.3. Suppose that $\operatorname{gr} A \otimes \operatorname{gr} B$ is a connected graded domain. If A and B are in Af , so is $A \otimes B$.

Proof. This follows from Lemmas 5.3 and 5.4.

Therefore the following algebras are in Af:
(1) All $V_{n}(\mathcal{A})$ when n is even [Theorem 4.9]. Special cases are $k_{-1}\left[x_{1}, \ldots, x_{n}\right]$ and W_{n} when n is even.
(2) $A=k\langle x, y\rangle /\left(y^{2} x-x y^{2}, y x^{2}+x^{2} y\right)$ [Example 5.1].
(3) Any skew polynomial ring $A=k_{p_{i j}}\left[x_{1}, \ldots, x_{n}\right]$ satisfying the properties that (a) x_{i} are not central for all i and (b) A is a finitely generated free module over its center [7].
(4) Quantum Weyl algebras $A_{q}:=k\langle x, y\rangle /(y x-q x y-1)$ where $q \neq 1$ and q is a root of unity [7].
(5) Any tensor product of the algebras listed above.

In Section 2 we used standard filtrations in the definitions of dominating elements and affine automorphisms. In practice one might have to use non-standard filtrations in order to determine automorphism groups. Here is an example.

Example 5.6. Suppose 2 is invertible in k. Let D be the fixed subring $k_{-1}\left[x_{1}, x_{2}\right]^{S_{2}}$ where the group S_{2} is generated by the permutation $\sigma: x_{1} \leftrightarrow x_{2}$. Hence D is a graded PI domain. A presentation of D is given by

$$
D \cong k\langle x, y\rangle /\left(x^{2} y-y x^{2}, x y^{2}-y^{2} x, 2 x^{6}-3 x^{3} y-3 y x^{3}+4 y^{2}\right)
$$

where $x=x_{1}+x_{2}, y=x_{1}^{3}+x_{2}^{3}$ [14, Example 3.1]. Replacing y by $4 y-3 x^{3}, D$ has a better presentation

$$
D \cong k\langle x, y\rangle /\left(x^{2} y-y x^{2}, x y^{2}-y^{2} x, x^{6}-y^{2}\right)
$$

which we will use for the rest of this example. Then D is a connected graded algebra with $\operatorname{deg} x=1$ and $\operatorname{deg} y=3$. If we use a standard filtration for any possible generating set Y, the associated graded ring will not be a domain due to the third relation. Therefore it is not a good idea to use the standard filtration as we need to use (2.0.1) in our argument. A computation shows that the center of D is the polynomial ring generated by x^{2} and $z:=x y+y x$, and the discriminant of $d(D / C(D))$ is $f:=(x y-y x)^{4}$. Using the relations of D, one has

$$
f=\left((x y-y x)^{2}\right)^{2}=\left((x y+y x)^{2}-4 x^{2} y^{2}\right)^{2}=\left(z^{2}-4 x^{8}\right)^{2}=\left(z-2 x^{4}\right)^{2}\left(z+2 x^{4}\right)^{2} .
$$

Let g be any automorphism of D. By Lemma 1.8(6), $g(f)=c f$ for some $c \in k^{\times}$. Since the polynomial ring $k\left[x^{2}, z\right]$ is a unique factorization domain, we have

$$
\left\{\begin{array} { l }
{ g (z - 2 x ^ { 4 }) = a (z - 2 x ^ { 4 }) } \\
{ g (z + 2 x ^ { 4 }) = b (z + 2 x ^ { 4 }) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
g\left(z-2 x^{4}\right)=a\left(z+2 x^{4}\right) \\
g\left(z+2 x^{4}\right)=b\left(z-2 x^{4}\right)
\end{array}\right.\right.
$$

for some $a, b \in k^{\times}$. Hence $g\left(z \pm 2 x^{4}\right)$ has degree 4. Consequently, $g\left(x^{4}\right)$ has degree (at most) 4, which implies that $g(x)$ has degree 1 . By the third relation of $D, g(y)$ has degree 3 . From this it is easy to check that

$$
\left\{\begin{array} { l }
{ g (x) = a x } \\
{ g (y) = a ^ { 3 } y }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
g(x)=a x \\
g(y)=-a^{3} y
\end{array}\right.\right.
$$

for some $a \in k^{\times}$. Therefore $\operatorname{Aut}(D)=k^{\times} \rtimes S_{2}$.
We could modify the definition of Af so that D is in the category Af, but the definition would be more complicated in order to keep the tensor product property [Theorem 5.5]. At this point we would like to treat D separately. We have checked that all conclusions of Theorem 3 hold for D.

Note that $k_{-1}\left[x_{1}, x_{2}\right]$ is in Af and $D=k_{-1}\left[x_{1}, x_{2}\right]^{S_{2}}$. We may ask the following question: does $k_{-1}\left[x_{1}, \ldots, x_{2 m}\right]^{S_{2 m}}$ have an "affine" automorphism group for all $m \geq 2$?

Example 5.7. Let $\ell \geq 3$ and q be a primitive ℓ th root of unity. Let A be the algebra $\left(k_{q}\left[x_{1}, x_{2}\right]\right)\left[x_{3}\right]$. Then A is a connected graded domain with $\operatorname{deg}\left(x_{i}\right)=1$ for $i=1,2,3$. Since x_{3} is central, it is not hard to check that the center of A is $R=k\left[x_{1}^{\ell}, x_{2}^{\ell}, x_{3}\right]$. Hence A is finitely generated free over its center with an R-basis $\left\{x_{1}^{a} x_{2}^{b} \mid 0 \leq a, b \leq \ell-1\right\}$. Therefore (1) and (2) of Definition 2.4 hold. By a computation, the discriminant $d(A / R)$ is equal to $\left(x_{1} x_{2}\right)^{\ell^{2}(\ell-1)}$, which is not dominating. Therefore (3) of Definition 2.4 fails. With some effort, one can show that every automorphism g of A is of the form

$$
g\left(x_{i}\right)= \begin{cases}a_{1} x_{1} & i=1 \\ a_{2} x_{2} & i=2 \\ a_{3} x_{3}+f\left(x_{1}^{\ell}, x_{2}^{\ell}\right) & i=3\end{cases}
$$

where $a_{i} \in k^{\times}$and f is a polynomial of two variables, and every locally nilpotent derivation ∂ of A is of the form

$$
\partial\left(x_{i}\right)= \begin{cases}0 & i=1 \\ 0 & i=2 \\ f\left(x_{1}^{\ell}, x_{2}^{\ell}\right) & i=3\end{cases}
$$

By Theorem 3(4), if k is a field, then Aut : $A \mapsto \operatorname{Aut}(A)$ defines a functor from Af to the category of algebraic groups over k. There are some interesting questions about this functor. It is well-known that the symmetry index si (defined after Theorem 3) is neither additive nor multiplicative. For example, if A and $A^{\otimes n}$ are both in Af, then $s i\left(A^{\otimes n}\right) \geq n!(s i(A))^{n}$. What about the symmetry rank?

Question 5.8. Let k be a field and let A and B be in Af. Is $\operatorname{sr}(A \otimes B)=\operatorname{sr}(A)+\operatorname{sr}(B)$?
Remark 5.9. In [7] we use the discriminant to propose another category Af_{-1} that has the following properties:
(1) If A is in Af, then the polynomial extension $A[t]$ is in Af_{-1} (and there are many other algebras in Af_{-1}).
(2) If B is in Af_{-1}, then $\operatorname{Aut}(B)$ is tame.

Therefore the automorphism groups of the algebras in Af_{-1} can be understood (in theory).

We now consider $W_{n}=k\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left(x_{i} x_{j}+x_{j} x_{i}-1, \forall i \neq j\right)$ again, when n is odd or char $k=2$.

Example 5.10. Consider the standard filtration of W_{n} defined by $Y=\bigoplus_{i=1}^{n} k x_{i}$. As stated in Theorem 1, if n is even and char $k \neq 2$, then every automorphism of W_{n} is affine. Here are some examples of non-affine automorphisms in other cases.
(1) If char $k=2$, then for any nonzero polynomial $f\left(t_{1}, \ldots, t_{n-1}\right)$, the following determines a non-affine algebra automorphism of W_{n} :

$$
x_{i} \mapsto \begin{cases}x_{i} & \text { if } i<n \\ x_{n}+f\left(x_{1}^{2}, \ldots, x_{n-1}^{2}\right) & \text { if } i=n\end{cases}
$$

The associated locally nilpotent derivation is determined by

$$
x_{i} \mapsto \begin{cases}0 & \text { if } i<n \\ f\left(x_{1}^{2}, \ldots, x_{n-1}^{2}\right) & \text { if } i=n\end{cases}
$$

(2) As in (4.4.1), define

$$
\Omega\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}}(-1)^{|\sigma|} x_{\sigma(1)} \cdots x_{\sigma(n)}
$$

Then we claim that $x_{i} \Omega\left(x_{1}, \ldots, x_{2 m}\right)=-\Omega\left(x_{1}, \ldots, x_{2 m}\right) x_{i}$ for all $i=1,2, \ldots, 2 m$: see Lemma 5.11 below. Given this, if n is odd, say $n=2 m+1$, then for any nonzero polynomial $f\left(t_{1}, \ldots, t_{2 m}\right)$, the following determines a non-affine algebra automorphism σ of W_{n} :

$$
x_{i} \mapsto \begin{cases}x_{i} & \text { if } i<2 m+1 \\ x_{2 m+1}+f\left(x_{1}^{2}, \ldots, x_{2 m}^{2}\right) \Omega\left(x_{1}, \ldots, x_{2 m}\right) & \text { if } i=2 m+1\end{cases}
$$

The associated locally nilpotent derivation ∂ is determined by

$$
x_{i} \mapsto \begin{cases}0 & \text { if } i<2 m+1 \\ f\left(x_{1}^{2}, \ldots, x_{2 m}^{2}\right) \Omega\left(x_{1}, \ldots, x_{2 m}\right) & \text { if } i=2 m+1\end{cases}
$$

and $\sigma=\exp (\partial)$.

The automorphisms in (1) and (2) are examples of elementary automorphisms see [17].

Lemma 5.11. Let W_{n} and $\Omega_{n}:=\Omega\left(x_{1}, \ldots, x_{n}\right)$ be defined as in Example 5.10. Then $x_{i} \Omega_{n}=(-1)^{n-1} \Omega_{n} x_{i}$ for all $i=1,2, \ldots, n$.

Proof. It is easy to reduce to the case when $k=\mathbb{Z}$.
We proceed by induction. It is easy to check that the assertion holds when $n=2$ by using the fact that x_{i}^{2} is central. Now assume the assertion holds for $n-1 \geq 2$ and we want to show that it holds for n. Note that, for every $\sigma \in S_{n}, \Omega\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=$ $(-1)^{|\sigma|} \Omega\left(x_{1}, \ldots, x_{n}\right)$. By symmetry, it suffices to show that $x_{1} \Omega_{n}=(-1)^{n-1} \Omega_{n} x_{1}$. The argument below is dependent on the parity of n, and we only give a proof when n is odd. The proof when n is even is very similar, and we omit it. Since n is odd, it suffices to show that $x_{1} \Omega_{n}-\Omega_{n} x_{1}=0$. We compute $x_{1} \Omega_{n}-\Omega_{n} x_{1}$ in two different ways.

It follows from the definition that $\Omega_{n}=\sum_{i=1}^{n}(-1)^{i-1} x_{i} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right)$. Then, by using the induction hypothesis,

$$
\begin{aligned}
x_{1} \Omega_{n}-\Omega_{n} x_{1}= & x_{1}\left(x_{1} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right)\right)-x_{1} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right) x_{1} \\
& +\sum_{i \geq 2}(-1)^{i-1}\left[x_{1} x_{i} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right)-x_{i} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) x_{1}\right] \\
= & x_{1}^{2} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right)-x_{1} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right) x_{1} \\
& +\sum_{i \geq 2}(-1)^{i-1}\left[x_{1} x_{i} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right)+x_{i} x_{1} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right)\right] \\
= & x_{1}^{2} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right)-x_{1} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right) x_{1} \\
& +\sum_{i \geq 2}(-1)^{i-1} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\Omega_{n} & =\sum_{i=1}^{n}(-1)^{i-n} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) x_{i} \\
& =\sum_{i=1}^{n}(-1)^{i-1} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) x_{i}
\end{aligned}
$$

as n is odd. So we have

$$
\begin{aligned}
x_{1} \Omega_{n}-\Omega_{n} x_{1}= & x_{1}\left(\Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right) x_{1}\right)-\Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{2} \\
& +\sum_{i \geq 2}(-1)^{i-1}\left[x_{1} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) x_{i}-\Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) x_{i} x_{1}\right] \\
= & -x_{1}^{2} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right)+x_{1} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right) x_{1} \\
& +\sum_{i \geq 2}(-1)^{i-1}\left[-\Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) x_{1} x_{i}-\Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) x_{i} x_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & -x_{1}^{2} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right)+x_{1} \Omega\left(\widehat{x}_{1}, x_{2}, \ldots, x_{n}\right) x_{1} \\
& +\sum_{i \geq 2}(-1)^{i} \Omega\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) \\
= & -\left(x_{1} \Omega_{n}-\Omega_{n} x_{1}\right) .
\end{aligned}
$$

Since $2 \neq 0$ in $\mathbb{Z}, x_{1} \Omega_{n}-\Omega_{n} x_{1}=0$ as required.
Remark 5.12. By the previous example, when n is odd or when char $k=2$, there are non-affine automorphisms. Thus the automorphism group looks complicated. Also, it appears that the discriminant does not provide useful information in either case: a (nontrivial) computation shows that the discriminant ideal of W_{3} over its center contains 1 , and hence it is trivial. We conjecture that this holds for any odd integer $n \geq 3$. We also note when n is odd, the center R contains $\Omega\left(x_{1}, \ldots, x_{n}\right)$, so W_{n} is not free over R. When char $k=2$, Lemma $4.5(1)$ says that $\operatorname{tr}(1)=0$ in k, and computer calculations suggest that the discriminant is zero (whence trivial) in general. (For more evidence, see Remark 4.7 - some of these computations remain valid in characteristic 2.) In conclusion, new invariants are needed to understand (or control) Aut $\left(W_{n}\right)$ when n is odd or when char $k=2$.

We conclude this paper with the following question.
Question 5.13. If n is odd and/or char $k=2$, what is the $\operatorname{group} \operatorname{Aut}\left(W_{n}\right)$?

Acknowledgments

The authors would like to thank Ken Goodearl, Colin Ingalls, Rajesh Kulkarni, and Milen Yakimov for several conversations on this topic during the Banff workshop in October 2012 and the NAGRT program at MSRI in the Spring of 2013, and thank the referee for his/her careful reading and valuable comments. S. Ceken was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), Science Fellowships and Grant Programmes Department (Programme No. 2214). Y.H. Wang was supported by the Natural Science Foundation of China (grant Nos. 10901098, 11271239) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China. J.J. Zhang was supported by the US National Science Foundation (NSF grant Nos. DMS-0855743 and DMS-1402863).

References

[1] S. Alaca, K.S. Williams, Introductory Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 2004.
[2] J. Alev, M. Chamarie, Dérivations et automorphismes de quelques algébres quantiques, Comm. Algebra 20 (6) (1992) 1787-1802.
[3] J. Alev, F. Dumas, Rigidité des plongements des quotients primitifs minimaux de $U_{q}(s l(2))$ dans l'algébre quantique de Weyl-Hayashi, Nagoya Math. J. 143 (1996) 119-146.
[4] N. Andruskiewitsch, F. Dumas, On the automorphisms of $U_{q}^{+}(g)$, in: Quantum Groups, in: IRMA Lect. Math. Theor. Phys., vol. 12, Eur. Math. Soc., Zürich, 2008, pp. 107-133.
[5] M. Artin, W. Schelter, Graded algebras of global dimension 3, Adv. Math. 66 (1987) 171-216.
[6] V.V. Bavula, D.A. Jordan, Isomorphism problems and groups of automorphisms for generalized Weyl algebras, Trans. Amer. Math. Soc. 353 (2) (2001) 769-794.
[7] S. Ceken, J. Palmieri, Y.-H. Wang, J.J. Zhang, Discriminant criterion and the automorphism group of quantized algebras, preprint, arXiv:1402.6625, 2014.
[8] S. Ceken, J. Palmieri, Y.-H. Wang, J.J. Zhang, Invariant theory for quantum Weyl algebras under finite group action, in preparation.
[9] K. Chan, C. Walton, Y.-H. Wang, J.J. Zhang, Hopf actions on filtered regular algebras, J. Algebra 397 (2014) 68-90.
[10] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Mod. Birkhäuser Class., Birkhäuser Boston, 2008.
[11] J. Gómez-Torrecillas, L. El Kaoutit, The group of automorphisms of the coordinate ring of quantum symplectic space, Beiträge Algebra Geom. 43 (2) (2002) 597-601.
[12] K.R. Goodearl, M.T. Yakimov, Unipotent and Nakayama automorphisms of quantum nilpotent algebras, preprint, arXiv:1311.0278, 2013.
[13] J.E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math., vol. 21, Springer-Verlag, New York, Heidelberg, 1975.
[14] E. Kirkman, J. Kuzmanovich, J.J. Zhang, Invariants of (-1)-skew polynomial rings under permutation representations, in: Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, in: Contemp. Math., vol. 623, Amer. Math. Soc., Providence, RI, 2014, pp. 155-192.
[15] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, with the cooperation of L.W. Small, revised edition, Amer. Math. Soc., Providence, RI, 2001.
[16] I. Reiner, Maximal Orders, London Math. Soc. Monogr. New Ser., vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003.
[17] I. Shestakov, U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (1) (2004) 197-227.
[18] W.A. Stein, Algebraic number theory: a computational approach, preprint, http://wstein.org/ books/ant/.
[19] M. Suárez-Alvarez, Q. Vivas, Automorphisms and isomorphism of quantum generalized Weyl algebras, preprint, arXiv:1206.4417v1, 2012.
[20] L. Tornheim, The Sylvester-Franke theorem, Amer. Math. Monthly 59 (6) (1952) 389-391.
[21] M. Yakimov, The Launois-Lenagan conjecture, J. Algebra 392 (2013) 1-9.
[22] M. Yakimov, Rigidity of quantum tori and the Andruskiewitsch-Dumas conjecture, Selecta Math. 20 (2) (2014) 421-464.
[23] A. Yekutieli, J.J. Zhang, Dualizing complexes and perverse modules over differential algebras, Compos. Math. 141 (3) (2005) 620-654.

[^0]: E-mail addresses: secilceken@akdeniz.edu.tr (S. Ceken), palmieri@math.washington.edu
 (J.H. Palmieri), yhw@mail.shufe.edu.cn (Y.-H. Wang), zhang@math.washington.edu (J.J. Zhang).

