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deformation of Gq that is naturally associated with the 
quantum flag manifold L∞(T\Gq).
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1. Introduction

In this paper, we will study a product type action of a q-deformed compact quantum 
group. Theory of a quantum group was initiated by Drinfel’d and Jimbo [13,21]. They 
have introduced the quantum group Uq(g), the q-deformation of the enveloping algebra 
of a Kac–Moody Lie algebra g. In the operator algebraic approach, Woronowicz has 
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defined SU q(N) and introduced the concept of a compact quantum group [51–53,55] by 
deforming a function algebra. We can construct the q-deformed compact quantum group 
Gq for a connected semisimple compact Lie group G using Uq(g) for a finite dimensional 
simple g (see [27,15]).

Let us consider a product type action of Gq on a uniformly hyperfinite C∗-algebra. 
Such an action has been studied by Konishi, Nagisa, and Watatani [26]. They have 
shown that the fixed point algebra of the product type action of SUq(2) with respect 
to the spin-1/2 irreducible representation is generated by certain Jones projections. 
In particular, if we take its weak closure, then the product type action is never min-
imal.

In [17], Izumi has elucidated this interesting phenomenon by introducing the concept 
of a (non-commutative) Poisson boundary. Namely, he has constructed a von Neumann 
algebra from a random walk on the dual discrete quantum group of a compact quantum 
group, and shown that is isomorphic to the relative commutant of a fixed point algebra 
inside an infinite tensor product factor of matrix algebras. Since this pioneering work, 
the program of realization of Poisson boundaries has been carried out in several papers 
[17,20,44,49,50]. In particular, it is known that the Poisson boundary of Gq is isomorphic 
to the quantum flag manifold T\Gq [17,20,44].

On the center of a Poisson boundary as a von Neumann algebra, it has been con-
jectured in [46] that the center could coincide with the classical part of the Poisson 
boundary, that is, the center could come exactly from the random walk on the von 
Neumann algebraic center of the dual discrete quantum group. Indeed, it is well-known 
for experts that this is the case to SU q(2). Also for universal quantum groups Ao(F )
and Au(F ), the conjecture has been affirmatively solved [47,49,50]. We will show the 
following result which states that the conjecture also holds for every Gq (Theorem 3.1).

Theorem 1. The von Neumann algebra L∞(T\Gq) is a factor of type I.

Let us again consider a product type action of Gq on a factor M. From Izumi’s result 
and Theorem 1, it turns out that the relative commutant Q := (MGq )′∩M is the infinite 
dimensional type I factor, where MGq denotes the fixed point algebra. Thus we obtain 
the tensor product splitting M ∼= R ⊗ Q, where R := Q′ ∩M. It is then shown that the 
inclusion MGq ⊂ R is irreducible and of depth 2 (Lemma 4.1). Hence it arises from a 
minimal action of a unique compact quantum group on R. Actually, we will show that 
the compact quantum group is nothing but the maximal torus T (Theorem 4.6). Hence 
we have a T -equivariant copy of L∞(T ) inside R. Then it is natural to ask whether this 
copy and Q generate a von Neumann algebra that is Gq-isomorphic to L∞(Gq).

To solve this question, we need to show the triviality of the Gq-equivariant auto-
morphism on L∞(T\Gq). In [37], Soibel’man has classified irreducible representations 
of C(Gq) as a C∗-algebra. Namely, it has become clear that irreducible representations 
of C(Gq) are parametrized by the maximal torus T and the Weyl group W of g as 
{πt,w}t∈T,w∈W . Then Dijkhuizen–Stokman’s result [12, Theorem 5.9] states that any 
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irreducible representation of C(T\Gq) actually comes from that of C(Gq). This, in par-
ticular, implies that the counit gives a unique character on C(T\Gq), and we obtain the 
triviality of the Gq-equivariant automorphism group of C(T\Gq) (Corollary 3.5).

By using these results, we study an L∞(T\Gq)-valued invariant cocycle. Actually, it 
is shown that any such cocycle is a coboundary with a unique solution in Z(L∞(Gq)) up 
to a scalar multiple (Theorem 3.6). As an application, we can show the following main 
result of this paper (Theorem 4.14).

Theorem 2. A faithful product type action of Gq is induced from a minimal action of T
on a type III factor. Moreover, such a minimal action is unique.

Another application of Theorem 1 concerns theory of 2-cocycle deformation of locally 
compact quantum groups. In [9], De Commer has shown that a 2-cocycle twisted von 
Neumann bi-algebra of a locally compact quantum group again has a locally compact 
quantum group structure. In our setting, we will encounter with a 2-cocycle Ω that is 
canonically associated with an irreducible projective unitary representation of Gq coming 
from L∞(T\Gq). We can determine the intrinsic group of Gq,Ω, the deformation of Gq

by Ω (Theorem 3.10) as follows.

Theorem 3. The intrinsic group of Gq,Ω is isomorphic to T̂ .

When Gq = SU q(2), it has been proved by De Commer that Gq,Ω is isomorphic 
to Ẽq(2), Woronowicz’s quantum E(2) group [11]. The above theorem generalizes a 
partial result of [54].

This paper is organized as follows.
In Section 2, we will give a brief summary of theory of a compact quantum group and 

a q-deformed Lie group Gq.
In Section 3, the notion of an invariant cocycle is introduced. We will prove that 

all invariant cocycles evaluated in L∞(T\Gq) come from the canonical generators of 
Z(L∞(Gq)). As an application, we compute the intrinsic group of a 2-cocycle deforma-
tion Gq,Ω .

In Section 4, we will discuss a product type action. First, we will deduce from sector 
theory that the canonical inclusion of factors stated before corresponds to a minimal 
action of the maximal torus T . Next, by using invariant cocycles and the triviality 
of Gq-equivariant automorphism of L∞(T\Gq), we will show that a faithful product 
type action is actually induced from a minimal action of T . Then the classification of 
product type actions is studied. Especially, we will present a complete classification of 
product type actions of SU q(2). Uncountably many non-product type and mutually 
non-cocycle conjugate actions of SU q(2) on the injective type III1 factors are also con-
structed.

In the last section, we will pose a problem concerning the main results in a more 
general situation.



R. Tomatsu / Advances in Mathematics 269 (2015) 162–196 165
2. Preliminary

2.1. Notation and terminology

In this paper, Z+ denotes the set of non-negative integers, that is, Z+ = {0, 1, . . .}.
The tensor symbol ⊗ denotes the minimal tensor product for C∗-algebras and the von 

Neumann algebra tensor product for von Neumann algebras.
We denote by spanS and spanwS, the linear span of a set S and the weak closure of 

spanS, respectively.
For a von Neumann algebra M, we will denote by Z(M) its center. By End(M), we 

will denote the set of normal endomorphisms on M. For ρ, σ ∈ End(M), (ρ, σ) denotes 
the set of intertwiners. Namely, an element a ∈ (ρ, σ) satisfies aρ(x) = σ(x)a for all 
x ∈ M. If (ρ, ρ) = C, then we will say that ρ is irreducible. Two endomorphisms ρ, σ on 
M are said to be equivalent if there exists a unitary u ∈ M such that ρ = Adu ◦ σ. By 
Sect(M), we denote the quotient space of End(M). The equivalence class of ρ is denoted 
by [ρ] which is called a sector. For sector theory, reader’s are referred to [16,29,30].

Recall the notion of a Hilbert space in a von Neumann algebra [36]. A weakly closed 
linear space H in a von Neumann algebra M is called a Hilbert space in M if W ∗V ∈ C

for all V, W ∈ H . Then H is a Hilbert space with the inner product 〈V, W 〉 := W ∗V . 
The support of H , which we denote by s(H ), is the infimum of projections p ∈ M such 
that pV = V for all V ∈ H . If {Vi}i∈I is an orthonormal base of H , then we have 
s(H ) =

∑
i∈I ViV

∗
i .

If ρ, σ ∈ End(M) and ρ is irreducible, then (ρ, σ) is a Hilbert space in M by the inner 
product 〈V, W 〉 := W ∗V for V, W ∈ (ρ, σ).

Let N ⊂ M be an inclusion of properly infinite von Neumann algebras. Then L2(M)
also has the structure of the standard form for N. Let JM and JN be the modular 
conjugations of M and N, respectively. Then γM

N (x) := JNJMxJMJN, x ∈ M, is called 
the canonical endomorphism from M into N. It is known that the sector [γM

N ] in Sect(N)
does not depend on the choice of the structure of the standard forms of N and M.

2.2. Compact quantum group

We will freely use the notions and the notation introduced in [44].
Let G := (C(G), δ) be a (C∗-algebraic) compact quantum group. We always assume 

that the Haar state h is faithful. Let {L2(G), 1h} be the GNS representation with respect 
to h. We will regard C(G) as a C∗-subalgebra of B(L2(G)) from now on. By L∞(G), we 
denote the weak closure of C(G).

The multiplicative unitary V is a unitary on L2(G) ⊗ L2(G) such that

V (x1h ⊗ ξ) = δ(x)(1h ⊗ ξ) for x ∈ C(G), ξ ∈ L2(G).

Then V satisfies the pentagon equation V12V13V23 = V23V12. The coproduct δ extends 
to the normal coproduct δ: L∞(G) → L∞(G) ⊗ L∞(G) by putting δ(x) = V (x ⊗ 1)V ∗
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for x ∈ L∞(G). Note V belongs to B(L2(G)) ⊗ L∞(G). The Haar state h also extends 
to a faithful normal invariant state on L∞(G).

Let H be a Hilbert space. A unitary v ∈ B(H) ⊗L∞(G) is called a unitary representa-
tion on H when (id⊗δ)(v) = v12v13. By Repf (G), we denote the set of finite dimensional 
unitary representations. We set

A(G) := span
{
(ω ⊗ id)(v)

∣∣ ω ∈ B(H)∗, v ∈ Repf (G)
}
.

Then A(G) is a dense unital ∗-subalgebra of C(G). We can define an anti-multiplicative 
linear map κ on A(G), which is called the antipode, such that (id ⊗ κ)(v) = v∗ for 
v ∈ Repf (G). The counit is the character ε: A(G) → C such that (id ⊗ ε)(v) = 1 for 
v ∈ Repf (G). We only treat a co-amenable G in this paper, and ε extends to the character 
on C(G). See [3–5,43] for details of the amenability.

By using the Woronowicz characters {fz}z∈C, the modular automorphism group σh

and the scaling automorphism group τ are given by

σh
t (x) = (fit ⊗ id ⊗ fit)

(
δ(2)(x)

)
,

τt(x) = (fit ⊗ id ⊗ f−it)
(
δ(2)(x)

)
for all t ∈ R, x ∈ A(G),

where δ(2) := (δ ⊗ id) ◦ δ. In general, for k ∈ N, we let δ(k) := (δ(k−1) ⊗ id) ◦ δ. Then 
δ(k+�) = (δ(k) ⊗ δ(�−1)) ◦ δ for k,  ∈ N.

Let v ∈ B(H) ⊗ L∞(G) be a finite dimensional unitary representation. We let Fv :=
(id ⊗ f1)(v), which is non-singular and positive. Then F z

v = (id ⊗ fz)(v) for all z ∈ C. 
It is known that Tr(Fv) = Tr(F−1

v ), which is called the quantum dimension of v, and 
denoted by dimq(v) or dimq H.

Let Irr(G) be the complete set of unitary equivalence classes of irreducible unitary 
representations. For s ∈ Irr(G), we fix a section v(s) = (v(s)ij)i,j∈Is . Then we have the 
following orthogonal equalities: for all s, t ∈ Irr(G), i, j ∈ Is and k,  ∈ It,

h
(
v(s)ijv(t)∗k�

)
= dimq

(
v(s)

)−1(Fvs)�,jδs,tδi,k,

h
(
v(s)∗ijv(t)k�

)
= dimq

(
v(s)

)−1(
F−1
vs

)
k,i

δs,tδj,�. (2.1)

2.3. Action

Let A be a unital C∗-algebra. We will say that a faithful unital ∗-homomorphism 
α: A → A ⊗ C(G) is a (right) action of G on A if (α ⊗ id) ◦ α = (id⊗δ) ◦ α, and 
α(A)(C ⊗C(G)) is a dense subspace of A ⊗C(G). Similarly, we can define a left action.

By Aα, we denote the fixed point algebra {x ∈ A | α(x) = x ⊗ 1}. If Aα = C, then α
is said to be ergodic.

For a von Neumann algebra M, a (right) action means a faithful normal unital 
∗-homomorphism α: M → M ⊗ L∞(G) satisfying (α ⊗ id) ◦ α = (id ⊗ δ) ◦ α. The fixed 
point algebra Mα is similarly defined.
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We will say that a state ϕ ∈ M∗ is invariant when (ϕ ⊗ id)(α(x)) = ϕ(x)1 for
all x ∈ M.

The crossed product is defined by

M�α G := spanw{α(M)
(
C⊗R(G)

)}
⊂ M⊗B

(
L2(G)

)
,

where R(G) denotes the right quantum group algebra, that is,

R(G) := spanw{(id ⊗ ω)(V )
∣∣ ω ∈ L∞(G)∗

}
.

Let e1 := (id ⊗ h)(V ) ∈ R(G). Then e1 is a minimal projection of B(L2(G)), and 
(1 ⊗ e1)(M �α G)(1 ⊗ e1) = Mα ⊗ Ce1. Thus Mα is a corner of M �α G. In particular, 
if M �α G is a factor, then so is Mα.

2.4. Quantum subgroup

Let H and G be compact quantum groups. We will say that H is a quantum subgroup
of G when there exists a unital surjective ∗-homomorphism rH: C(G) → C(H), which we 
will call a restriction map, such that δH ◦ rH = (rH ⊗ rH) ◦ δG, where δH and δG denote 
the coproducts of H and G, respectively.

Then H acts on C(G) from the both sides. Namely, γ�
H

:= (rH⊗id) ◦δG and γr
H

:= (id⊗
rH) ◦ δG define left and right actions of H, respectively. Moreover, they are commuting, 
that is, (id ⊗ γr

H
) ◦ γ�

H
= (γ�

H
⊗ id) ◦ γr

H
.

Let us introduce the function algebras on the homogeneous spaces as follows:

C(H\G) :=
{
x ∈ C(G)

∣∣ γ�
H(x) = 1 ⊗ x

}
,

C(G/H) :=
{
x ∈ C(G)

∣∣ γr
H(x) = x⊗ 1

}
.

Then the restrictions of δG on C(H\G) and C(G/H) yield actions from the right and 
left, respectively. The weak closures of C(H\G) and C(G/H) are denoted by L∞(H\G)
and L∞(G/H), respectively.

Let εH and εG be the counits of H and G, respectively. Then εH ◦ rH = εG. So we will 
denote simply by ε the counits of H and G.

Lemma 2.1. Let α be an action of G on a von Neumann algebra M. Then there uniquely 
exists a unital C∗-subalgebra A of M such that

• α(A) ⊂ A ⊗ C(G);
• if a C∗-subalgebra B ⊂ M satisfies α(B) ⊂ B ⊗ C(G), then B ⊂ A;
• A is weakly dense in M.
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Proof. Let A be a C∗-algebra generated by all C∗-subalgebras B ⊂ M which satisfy 
α(B) ⊂ B ⊗ C(G). Then it is clear that (1) and (2) hold. We will check (3) as follows.

Let s ∈ Irr(G) and Hs the corresponding irreducible module. Let HomG(Hs, M) be 
the set of G-equivariant linear maps. Then M is weakly spanned by T (Hs) for T ∈
HomG(Hs, M) and s ∈ Irr(G). It is clear that T (Hs) ⊂ A, and we are done. Note that A
is in fact generated by such T (Hs)’s. �

Let α and A be as above and H a quantum subgroup of G with a restriction map rH. 
Then we can restrict α on H, that is, αH := (id ⊗ rH) ◦ α gives an action of H on A. It 
is clear that αH preserves any α-invariant normal state on M. Thus αH extends to M as 
the action of H. We will call αH the restriction of α by H.

2.5. Uq(g)

We will quickly review the definition of Uq(g) introduced by Drinfel’d and Jimbo [13,
21], and the highest weight theory. Our references are [6,22,23,25,27]. Let A = (aij)i,j∈I

be an irreducible Cartan matrix of finite type (I := {1, . . . , n}), and (h, {hi}i∈I , {αi}i∈I)
the root data (the realization of A), that is,

• h is an n-dimensional vector space over C, and {hi}i is a base of h;
• {αi}i is a base of h∗, the space of linear functionals on h;
• αj(hi) = aij for all i, j ∈ I.

Each αi is called a simple root. The simple reflection si: h∗ → h∗ is defined by si(λ) :=
λ − λ(hi)αi. Note that s2

i = 1. The Weyl group W is the finite group generated by si’s. 
The word length of w ∈ W with respect to {s1, . . . , sn} is denoted by (w). We denote 
by w0 an element of maximal length. It is known that any w ∈ W is contained in w0, 
that is, (w0) = (w) + (w−1w0). It follows from this equality that w0 is unique and 
w2

0 = 1.
Take positive integers {di}i∈I such that diaij = djaji for all i, j ∈ I. A standard form 

is an inner product (·,·) on h∗ such that (αi, αj) = diaij for i, j ∈ I. It is known that 
(αi, αi) = 2di can attain at most two values. We normalize {di}i∈I so that the smallest 
value of (αi, αi) is equal to 2. Then the normalized standard form satisfies the following 
properties:

• W -invariance, that is, (wλ, wμ) = (λ, μ) for w ∈ W , λ, μ ∈ h∗;
• (αi, αi)/2 ∈ Z+ for i ∈ I;
• λ(hi) = 2(λ, αi)/(αi, αi) for i ∈ I.

We associate A with a finite dimensional simple Lie algebra g over C whose Cartan 
subalgebra is h.
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Definition 2.2 (Drinfel’d, Jimbo). Let 0 < q < 1. The quantum universal enveloping 
algebra Uq(g) is the unital C-algebra generated by {Ki, X

+
i , X−

i }i∈I such that Ki is 
invertible for all i ∈ I, and the following relations hold for all i, j ∈ I:

KiKj = KjKi, KiX
±
j = q±(αi,αj)/2X±

j Ki; (2.2)

X+
i X−

j −X−
j X+

i = δij
K2

i −K−2
i

qi − q−1
i

; (2.3)

1−aij∑
k=0

(−1)k
(

1 − aij
k

)
q2
i

q
−k(1−aij−k)
i

(
X±

i

)k
X±

j

(
X±

i

)1−aij−k = 0 if i �= j, (2.4)

where qi := q(αi,αi)/2, and the t-binomial is defined by
(
m

n

)
t

:= (t; t)m
(t; t)n(t; t)m−n

, (a; t)m = (1 − a)(1 − at) · · ·
(
1 − atm−1)

for m, n ∈ Z+ and a ∈ C.

Then Uq(g) has the Hopf∗-algebra structure defined as follows: For i ∈ I,

• (Coproduct)

Δ
(
K±

i

)
= K±

i ⊗K±
i , Δ

(
X±

i

)
= X±

i ⊗Ki + K−1
i ⊗X±

i ,

• (Antipode)

S
(
K±

i

)
= K∓

i , S
(
X±

i

)
= −q±1

i X±
i ,

• (Counit)

ε(Ki) = 1, ε
(
X±

i

)
= 0,

• (Involution)

K∗
i = Ki,

(
X±

i

)∗ = X∓
i . (2.5)

2.6. Representation theory of Uq(g)

For a finite dimensional Hilbert space H, we call a ∗-homomorphism π from Uq(g) into 
B(H) a representation. If the commutant of Imπ is trivial, π is said to be irreducible. In 
general, Im π is a finite dimensional C∗-algebra, and π is the direct sum of irreducibles.

Let π: Uq(g) → B(H) be an irreducible representation. From (2.5), we obtain non-
singular self-adjoint operators π(Ki). Let p±i be the projections onto the positive and 
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negative spectral subspaces of π(Ki), respectively. Then the relations (2.2) and (2.5)
imply p±i H are Uq(g)-invariant. Hence each Ki has either only positive eigenvalues or 
only negative ones. We will say that π is admissible when π(Ki) is a positive operator 
for all i ∈ I.

For g = (gk)k ∈ Zn
2 =

∏n
k=1{1, −1}, we will define an automorphism σg on Uq(g) as 

a ∗-algebra (not as a Hopf∗-algebra) by

σg

(
K±

i

)
= giK

±
i , σg

(
X±

i

)
= X±

i for i ∈ I.

Then for any irreducible π, we can find g ∈ Zn
2 so that π ◦ σg is admissible. Hence the 

classification of irreducible admissible representations is essential.
Let π: Uq(g) → B(H) be a finite dimensional admissible representation. Then π(Ki)’s 

are generating a commutative C∗-subalgebra. Hence we obtain the decomposition of H
into the common eigenspaces. For λ ∈ h∗, we define

Hλ :=
{
ξ ∈ H

∣∣ π(Ki)ξ = q(λ,αi)/2ξ
}
.

Note that q(λ,αi)/2 = q
λ(hi)/2
i . Then the positivity of each π(Ki) implies the direct sum 

decomposition of H:

H =
⊕
λ∈h∗

Hλ.

If Hλ �= {0}, then λ and Hλ are called a weight and a weight space of π (or of the 
Uq(g)-module H), respectively. By Wt(H), we denote the collection of the weights of π. 
It is known that dimHλ = dimHwλ for all λ ∈ Wt(H) and w ∈ W .

If a non-zero vector ξ ∈ Hλ is cyclic and π(X+
i )ξ = 0 for all i ∈ I, then λ and ξ are 

called a highest weight and a highest weight vector of H, respectively. A lowest weight 
and a lowest vector are similarly introduced by using X−

i instead of X+
i . It is known 

that if λ is a highest weight, then w0λ is a lowest weight.
By Irr+(Uq(g)), we denote the set of the unitary equivalence classes of irreducible 

admissible representations of finite dimension.
Let us introduce the root lattice Q :=

∑
i∈I Zαi ⊂ h∗, and set Q+ :=

∑
i∈I Z+αi. 

We will equip h∗ with the partial order ≤ such that λ ≤ μ if and only if μ − λ ∈ Q+. 
Then it turns out that a finite dimensional irreducible admissible representation has a 
unique maximal weight that is in fact the highest weight. Moreover, the weight space of 
the highest weight is one-dimensional.

Let

P :=
{
λ ∈ h∗

∣∣ λ(hi) ∈ Z for all i ∈ I
}
,

and
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P+ :=
{
λ ∈ h∗

∣∣ λ(hi) ∈ Z+ for all i ∈ I
}
.

We will call an element of P and P+ an integral weight and a dominant integral weight, 
respectively. When λ ∈ P+ satisfies λ(hi) > 0 for all i ∈ I, λ is said to be regular. We 
will denote by P++ the set of regular dominant weights. Note that Q ⊂ P ⊂

∑
i∈I Qαi

since A is an invertible matrix.
From λ ∈ P+, we can construct an irreducible module L(λ) that is the irreducible 

quotient of the Verma module M(λ). The highest weight theory says that there exists 
a one-to-one correspondence P+ � λ ←→ L(λ) ∈ Irr+(Uq(g)). Let πλ: Uq(g) → B(L(λ))
be the corresponding representation.

Let ωi ∈ P+ be the fundamental weight that is defined by ωi(hj) = δi,j for i, j ∈ I. 
Then P =

∑
i∈I Zωi and P+ =

∑
i∈I Z+ωi.

The Weyl vector is defined by ρ := (1/2) 
∑

α∈Δ+
α, where Δ := {wαi | w ∈ W, i ∈ I}

and Δ+ := Δ ∩ Q+. It is known that ρ(hi) = 1 for all i ∈ I, that is, ρ =
∑

i∈I ωi. In 
particular, ρ is a dominant integral weight.

2.7. C(Gq)

Let π: Uq(g) → B(Hπ) be a finite dimensional representation. For vectors ξ, η ∈ Hπ, 
we will define a linear functional Cπ

ξ,η on Uq(g) by

Cπ
ξ,η(x) :=

〈
π(x)η, ξ

〉
for x ∈ Uq(g).

For λ ∈ P+ and μ ∈ Wt(L(λ)), we will fix an orthonormal base {ξiμ | i ∈ Iλμ} of L(λ)μ, 
where Iλμ := {1, . . . , dimL(λ)μ}. We often write Cλ

ξiμ,ξ
j
ν

or, more simply, Cλ
μi,νj

for Cπλ

ξiμ,ξ
j
ν
.

Since dimL(λ)wλ = dimL(λ)λ = 1 for w ∈ W , we simply denote by Cλ
wλ,w′λ for 

Cλ
ξwλ,ξw′λ

, where ξwλ ∈ L(λ)wλ and ξw′λ ∈ L(λ)w′λ are fixed unit vectors for w, w′ ∈ W . 
Note that there exists an ambiguity of a constant factor of modulus one about this 
expression.

Then we will introduce the following subspace of Uq(g)∗:

A(Gq) := span
{
Cπ

ξ,η

∣∣ ξ, η ∈ Hπ, π is an admissible representation
}

= span
{
Cλ

μi,νj

∣∣ μ, ν ∈ Wt
(
L(λ)

)
, i ∈ Iλμ , j ∈ Iλν , λ ∈ P+

}
.

Then A(Gq) inherits the Hopf∗-algebra structure from Uq(g). (See [27, Chapter 3].) 
The following equality is frequently used:

δ
(
Cλ

μi,νj

)
=

∑
ζ∈Wt(λ), k∈Iλ

ζ

Cλ
μi,ζk

⊗ Cλ
ζk,νj

,

where Wt(λ) denotes Wt(L(λ)). The C∗-completion of A(Gq) is denoted by C(Gq). It 
is known that Gq is co-amenable. Hence the Haar state h is faithful, and the counit ε
is norm bounded on C(Gq) (see, for example, [2, Corollary 5.1]). The following result is 
well-known for experts (see [25, Example 9, p. 425]).
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Lemma 2.3. For z ∈ C, the Woronowicz character fz: A(Gq) → C is given by

fz
(
Cλ

ξμ,ξν

)
= 〈ξν , ξμ〉q2(μ,ρ)z for all ξμ ∈ L(λ)μ, ξν ∈ L(λ)ν .

Hence for t ∈ R, λ ∈ P+ and μ, ν ∈ Wt(λ), we have

σh
t

(
Cλ

ξμ,ξν

)
= q2(μ+ν,ρ)itCλ

ξμ,ξν for all ξμ ∈ L(λ)μ, ξν ∈ L(λ)ν , (2.6)

and the quantum dimension dimq L(λ) is given by

dimq L(λ) =
∑

μ∈Wt(λ)

q2(μ,ρ) dimL(λ)μ. (2.7)

2.8. The maximal torus and the quantum flag manifold

Let us denote by T the n-torus, that is, T = {(t1, . . . , tn) ∈ Cn | |ti| = 1, i = 1, . . . , n}. 
Recall that n = |I|. By the coupling 〈·,·〉: T × P → C defined by

〈
(t1, . . . , tn), μ

〉
:= t

μ(h1)
1 · · · tμ(hn)

n for (t1, . . . , tn) ∈ T, μ ∈ P,

we will regard P as the dual group of T . Let evt: C(T ) → C be the evaluation map 
at t ∈ T . Then the restriction map rT : C(Gq) → C(T ) is defined as follows:

evt ◦ rT
(
Cλ

ξμ,ξν

)
= 〈t, μ〉〈ξν , ξμ〉 for all t ∈ T, ξμ ∈ L(λ)μ, ξν ∈ L(λ)ν . (2.8)

With this map, T is a quantum subgroup of Gq and called the maximal torus. Note that 
rT actually comes from the inclusion map Uq(h) into Uq(g).

Let γt := (evt ◦ rT ⊗ id) ◦ δ be the left action of T on C(Gq). Then we have

γt
(
Cλ

ξμ,ξν

)
= 〈t, μ〉Cλ

ξμ,ξν for all t ∈ T, ξμ ∈ L(λ)μ, ξν ∈ L(λ)ν . (2.9)

Let us denote by C(T\Gq) the fixed point algebra of the T -action γ. The weak closure 
of C(T\Gq) is denoted by L∞(T\Gq) that is called the quantum flag manifold.

3. Invariant cocycles and 2-cocycle deformations

In this section, we will introduce the notion of invariant cocycles evaluated in 
L∞(T\Gq) and determine them. As an application, we will describe the intrinsic group 
of a twisted quantum group Gq,Ω.



R. Tomatsu / Advances in Mathematics 269 (2015) 162–196 173
3.1. Factoriality of L∞(T\Gq)

Let G be a compact quantum group. In [46], it is conjectured that the classical 
Poisson boundary H∞

class(Ĝ, μ) could coincide with the center of the Poisson boundary 
Z(H∞(Ĝ, μ)). (See [17,20,44] for a detail of theory of a Poisson boundary.) In particular, 
if the fusion rule of G is commutative, the conjecture asks the factoriality of the Poisson 
boundary. It has been verified that the conjecture is true for SU q(2), Ao(F ) [47,49] and 
Au(F ) [50]. To these examples, we can show that a stronger property that the canonical 
G-action on a Poisson boundary is “approximately inner.” We will show the factoriality 
of L∞(T\Gq) as follows.

For λ ∈ P+, we let aλ := Cλ
λ,w0λ

. Then they generate a commutative C∗-subalgebra 
of C(Gq). See [27, Corollary 2.1.5, Propositions 2.2.4, 2.3.2, Chapter 3] for its proof. 
Readers should note that several typographical errors concerning signs are found in [27, 
Proposition 2.1.4, Corollary 2.1.5, Proposition 2.3.2, Chapter 3].

Theorem 3.1. The following statements hold:

(1) γ is a faithful action of T on the center Z(L∞(Gq));
(2) L∞(T\Gq) is the type I∞ factor.

Proof. (1). Let λ, Λ ∈ P+, μ, ν ∈ Wt(λ), ξμ ∈ L(λ)μ and ξν ∈ L(λ)ν . Then by [27, 
Corollary 2.1.5, Proposition 2.3.2, Chapter 3], we have

Cλ
ξμ,ξνaΛ = q(Λ,−μ+w0ν)aΛC

λ
ξμ,ξν , Cλ

ξμ,ξνa
∗
Λ = q(Λ,−μ+w0ν)a∗ΛC

λ
ξμ,ξν .

Thus

Cλ
ξμ,ξν |aΛ| = q(Λ,−μ+w0ν)|aΛ|Cλ

ξμ,ξν . (3.1)

Let aΛ = vΛ|aΛ| be the polar decomposition in L∞(Gq). Then vΛCλ
ξμ,ξν

= Cλ
ξμ,ξν

vΛ. 
Hence vΛ belongs to the center of L∞(Gq). Then γt(vΛ) = 〈t, Λ〉vΛ for t ∈ T . Thus γ is 
faithful on Z(L∞(Gq)).

(2). This is a direct consequence of [46, Theorem 4.7]. We will sketch the proof for 
readers’ convenience. Let H∞(Ĝq) be the Poisson boundary of Ĝq and Θ: L∞(Gq) →
R(Gq) the Poisson integral defined by Θ(x) := (id ⊗ h)(V ∗(1 ⊗ x)V ) for x ∈ L∞(Gq). 
Then Θ is a Ĝq–Gq-equivariant isomorphism from L∞(T\Gq) onto H∞(Ĝq). See [17, 
Theorem 5.10], [20, Theorems A, B] and [44, Corollary 4.11] for the proof.

Let x ∈ Z(L∞(Gq)) ∩L∞(T\Gq). Then Θ(x) is fixed by the coproduct of R(Gq), and 
Θ(x) is a scalar. Hence Z(L∞(Gq))γ = Z(L∞(Gq)) ∩ L∞(T\Gq) = C which shows the 
central ergodicity of γ.

By (1), Z(L∞(Gq)) is generated by unitaries vλ, λ ∈ P+, such that γt(vλ) = 〈t, λ〉vλ
for t ∈ T . From (2.9), it turns out that L∞(Gq) = Z(L∞(Gq)) ∨ L∞(T\Gq). Hence 
Z(L∞(T\Gq)) ⊂ Z(L∞(Gq)) ∩ L∞(T\Gq) = C. �
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Note that by ergodicity, vΛ in the above proof must be a unitary. As a corollary, we 
have the following.

Corollary 3.2. The Poisson boundary H∞(Ĝq) is the type I∞ factor.

Recall Dijkhuizen–Stokman’s result [12, Theorem 5.9] which states that any C∗-irre-
ducible representation of C(T\Gq) is obtained by restricting a C∗-irreducible representa-
tion of C(Gq). Among them, a one-dimensional representation of C(Gq) factors through 
C(T ) via the canonical restriction map and its restriction of C(T\Gq) coincides with the 
counit ε.

Lemma 3.3 (Dijkhuizen–Stokman). The counit is the unique character of C(T\Gq).

For an action α of Gq on a unital C∗-algebra (or von Neumann algebra) A, we denote 
by AutGq

(A) the set of Gq-equivariant automorphisms on A, that is,

AutGq
(A) :=

{
θ ∈ Aut(A)

∣∣ α ◦ θ = (θ ⊗ id) ◦ α
}
.

Theorem 3.4. The embedding of C(T\Gq) into C(Gq) is unique.

Proof. Suppose that ψ: C(T\Gq) → C(Gq) is a Gq-equivariant embedding. By 
Lemma 3.3, we have ε ◦ ψ = ε on C(T\Gq). Then for x ∈ C(T\Gq),

x = (ε⊗ id)
(
δ(x)

)
= (ε ◦ ψ ⊗ id)

(
δ(x)

)
= (ε⊗ id)

(
δ
(
ψ(x)

))
= ψ(x). �

From the previous result, we have the following.

Corollary 3.5. One has AutGq
(C(T\Gq)) = {id}.

This also implies AutGq
(L∞(T\Gq)) = {id} because an equivariant map on 

L∞(T\Gq) preserves each finite dimensional spectral subspace and also C(T\Gq).

3.2. Invariant cocycles evaluated in L∞(T\Gq)

Recall that the left T -action γ is faithful and ergodic on Z(L∞(Gq)). For each 
fundamental weight ωi ∈ P , i ∈ I, we take a unitary vωi

in Z(L∞(Gq)) such that 
γt(vωi

) = 〈t, ωi〉vωi
for t ∈ T . Next, for λ =

∑n
i=1 aiωi ∈ P , ai ∈ Z, we set vλ := va1

ω1

· · · van
ωn

. Then we have

γt(vλ) = 〈t, λ〉vλ, vλvμ = vλ+μ for t ∈ T, λ, μ ∈ P. (3.2)

Note that vλ’s are generating Z(L∞(Gq)) as a von Neumann algebra, and L∞(Gq) =
Z(L∞(Gq)) ∨ L∞(T\Gq).
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Now for each λ ∈ P , we introduce the unitary wλ defined by:

δ(vλ) = (vλ ⊗ 1)wλ. (3.3)

Since δ and γ are commuting, wλ belongs to L∞(T\Gq) ⊗ L∞(Gq). From the above 
equation, the cocycle relation (wλ ⊗ 1)(δ ⊗ id)(wλ) = (id ⊗ δ)(wλ) holds. Moreover, 
setting δwλ := Adwλ ◦ δ, we have δwλ = δ on L∞(Gq) because vλ is a central unitary.

Let us denote by Z1
inv(δ, L∞(T\Gq)) the collection of L∞(T\Gq)-valued cocycles w

such that δw = δ on L∞(T\Gq). In general, when α is an action of Gq on a von Neumann 
algebra N, we denote by Z1

inv(α, N) the set of α-cocycles w with αw = α. We call such 
w an invariant cocycle.

We know wλ’s are invariant cocycles of the action of δ on L∞(T\Gq), but in fact, 
they are all.

Theorem 3.6. In the above setting, the following statements hold:

(1) Z1
inv(δ, L∞(T\Gq)) = {wλ | λ ∈ P};

(2) the map P � λ �→ wλ ∈ Z1
inv(δ, L∞(T\Gq)) is a group isomorphism.

Proof. (1). Let w ∈ Z1
inv(δ, L∞(T\Gq)). First, we will observe that the twisted right 

action δw is ergodic on L∞(Gq). Let x ∈ L∞(Gq)δ
w . Since w ∈ L∞(T\Gq) ⊗ L∞(Gq), 

the actions γ and δw are commuting. Thus we may and do assume that γt(x) = 〈t, μ〉x
for some μ ∈ P and all t ∈ T . Then γ fixes y := v∗μx, and y belongs to L∞(T\Gq). Using 
wδ(x)w∗ = δw(x) = x ⊗ 1 and δw = δ on L∞(T\Gq), we have

wwμw
∗δ(y) = w

(
v∗μ ⊗ 1

)
δ(vμ) · δ(y)w∗ =

(
v∗μ ⊗ 1

)
wδ(x)w∗ = y ⊗ 1. (3.4)

In particular, y∗y and yy∗ are fixed by δ since wwμw
∗ commutes with δ(yy∗). By ergod-

icity of δ on L∞(T\Gq), we may and do assume that y is a unitary.
Set the inner automorphism ψ := Ad y∗ on L∞(T\Gq). Then for z ∈ L∞(T\Gq),

δ
(
ψ(z)

)
= δ

(
y∗
)
δ(z)δ(y) =

(
y∗ ⊗ 1

)
wwμw

∗ · δ(z) · ww∗
μw

∗(y ⊗ 1) by (3.4)

=
(
y∗ ⊗ 1

)
δ(z)(y ⊗ 1) = (ψ ⊗ id)

(
δ(z)

)
.

Namely, ψ ∈ AutGq
(L∞(T\Gq)). However, we must have ψ = id by Corollary 3.5. It 

turns out from Theorem 3.1 that y ∈ C. From (3.4), we have wμ = 1. This shows μ = 0. 
(See the proof of the second statement.) Hence x is a scalar, and δw is ergodic on L∞(Gq).

Second, we will use Connes’ 2 × 2 matrix trick. Let N := M2(C) ⊗ L∞(Gq) and 
{eij}2

i,j=1 be a system of matrix units of M2(C). We set α := id ⊗ δ and w := e11 ⊗ 1 +
e22 ⊗ w. Then w is an α-cocycle. We will show that the projections p1 := e11 ⊗ 1 and 
p2 := e22 ⊗ 1 are Murray–von Neumann equivalent in Nα.

Consider the crossed product N�αGq. Since α is a cocycle perturbation of id⊗δ, N�α

Gq is canonically isomorphic to M2(C) ⊗L∞(Gq) �δGq, and also to M2(C) ⊗B(L2(Gq)). 
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Thus N�α Gq is the type I∞ factor. The fixed point algebra Nα is a corner of N�α Gq, 
and Nα is a type I factor. Since p1N

αp1 = L∞(Gq)δ = C and p2N
αp2 = L∞(Gq)δ

w = C, 
p1 and p2 are minimal projections in Nα. Hence they are equivalent.

Let us take a unitary v ∈ L∞(Gq) such that e12 ⊗ v ∈ Nα, that is, δ(v) = (v ⊗ 1)w. 
The ergodicity of δ shows that v is the unique solution of this equation up to a scalar 
multiple. Indeed, if v′ is a (not necessarily unitary) another solution, then δ(v′v∗) =
(v′ ⊗ 1)w · w∗(v∗ ⊗ 1) = v′v∗ ⊗ 1, and v′v∗ ∈ C. Then by the commutativity of γ and δ
and also the equality (γt⊗ id)(w) = w, we can find a unique λ ∈ P such that v = vλv1 for 
some unitary v1 ∈ L∞(T\Gq). However, the invariance δw = δ on L∞(T\Gq) deduces 
Ad v1 ∈ AutGq

(L∞(T\Gq)). Hence v1 is a scalar as before, and w = wλ.
(2). Let λ, μ ∈ P . Since vλ is central and vλvμ = vλ+μ, we have

wλwμ =
(
v∗λ ⊗ 1

)
δ(vλ) ·

(
v∗μ ⊗ 1

)
δ(vμ) =

(
v∗λ ⊗ 1

)(
v∗μ ⊗ 1

)
δ(vλ) · δ(vμ) = wλ+μ.

To show the injectivity, let wλ = 1. Then vλ is fixed by δ, and vλ is a scalar. Hence 
〈t, λ〉 = 1 for all t ∈ T , and λ = 0. �
3.3. 2-Cocycle deformations

As we have shown, the quantum flag manifold L∞(T\Gq) is a type I factor. So, we 
would like to find a unitary which implements the right action δ on L∞(T\Gq).

Lemma 3.7. There exists a unitary U∈L∞(T\Gq) ⊗ L∞(Gq) such that δ(x) =U(x⊗ 1)U∗

for all x ∈ L∞(T\Gq).

Proof. Let p0 be the distinguished minimal projection of C(T\Gq). (See [27, Chap-
ter 3.5].) Namely, p0 satisfies |aρ|p0 = p0, where aρ = Cρ

ρ,w0ρ. Actually, p0 is also 
contained in C(Gq/T ), and δ(p0) ∈ C(T\Gq) ⊗ C(Gq/T ). Recall that L∞(T\Gq) ⊗
L∞(Gq/T ) is a type I factor. We will show that δ(p0) is an infinite projection.

Suppose that δ(p0) is of finite rank. Then δ(p0)(C(T\Gq) ⊗ C(Gq/T ))δ(p0) is finite 
dimensional. Recall πw0 that is a C∗-irreducible representation of C(Gq) associated by 
w0 ∈ W (see [37, Theorems 3.4, 5.7] or [27, Theorems 5.3.3, 6.2.7, Chapter 3]). Thanks 
to [12, Theorem 5.9], the restrictions of πw0 on C(T\Gq) and C(Gq/T ) are irreducible, 
e := (πw0 ⊗ πw0)(δ(p0)) is a finite rank projection of B(Hw0) ⊗ B(Hw0). In particular, 
e is a compact operator on Hw0 ⊗Hw0 .

Recall the fact that the counit of C(Gq) factors through πw0 and the quotient map 
B(Hw0) → B(Hw0)/K(Hw0). (See [44, p. 294].) Thus we have a ∗-homomorphism 
ηw0 : Im πw0 → C such that ηw0 ◦ πw0 = ε and ηw0 = 0 on Im πw0 ∩ K(Hw0). Then 
we obtain (idK(Hw0 ) ⊗ ηw0)(e) = 0. This implies that πw0(p0) = 0. It follows from the 
faithfulness of πw0 that p0 equals 0, a contradiction. Hence δ(p0) is an infinite projection 
of L∞(T\Gq) ⊗ L∞(Gq/T ).
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Take a partial isometry v ∈ L∞(T\Gq) ⊗ L∞(Gq/T ) such that v∗v = p0 ⊗ 1 and 
vv∗ = δ(p0). Let {eij}∞i,j=0 be a system of matrix units of L∞(T\Gq) such that e00 = p0. 
Then a unitary U :=

∑∞
i=0 δ(ei0)v(e0i ⊗ 1) implements δ. �

Remark 3.8. By the same proof as the above, we can show that (πw0 ⊗ πw)(δ(p0)) is a 
projection of infinite rank on Hw0 ⊗Hw for any w ∈ W �= {e}.

The coassociativity of δ, implies that (id ⊗ δ)(U)∗U12U13 commutes with x ⊗1 ⊗1 for 
all x ∈ L∞(T\Gq). By factoriality of L∞(T\Gq), we obtain a unitary Ω ∈ L∞(Gq) ⊗
L∞(Gq) such that

U12U13 = (id ⊗ δ)(U)
(
1 ⊗Ω∗).

Then Ω satisfies the following 2-cocycle relation:

(Ω ⊗ 1)(δ ⊗ id)(Ω) = (1 ⊗Ω)(id ⊗ δ)(Ω).

Denote by δΩ the twisted coproduct AdΩ ◦ δ. Then thanks to [9, Theorem 6.2], the pair 
(L∞(Gq), δΩ) becomes a new, in general non-compact, locally compact quantum group 
in the sense of [28], which we will denote by Gq,Ω. Set L∞(Gq,Ω) := L∞(Gq). Readers 
are referred to [10] for a general treatment of projective representations.

We will not study a concrete description of Gq,Ω, but describe group-like elements. 
A unitary u ∈ L∞(Gq,Ω) is said to be group-like when δΩ(u) = u ⊗ u. Denote by 
G (Gq,Ω) the collection of all group-like elements of Gq,Ω, which is called the intrinsic 
group of Gq,Ω.

For a unitary u ∈ L∞(Gq,Ω), we will put

wu := U(1 ⊗ u)U∗ ∈ L∞(T\Gq) ⊗ L∞(Gq). (3.5)

Lemma 3.9. The unitary wu is a δ-cocycle if and only if u ∈ G (Gq,Ω).

Proof. This is shown by the following straightforward computations:

(
wu ⊗ 1

)
(δ ⊗ id)

(
wu

)
= U12u2U

∗
12 · U12

(
wu

)
13U

∗
12

= U12u2U13u3U
∗
13U

∗
12

= (id ⊗ δ)(U)Ω∗
23(1 ⊗ u⊗ u)Ω23(id ⊗ δ)

(
U∗),

and

(id ⊗ δ)
(
wu

)
= (id ⊗ δ)(U)

(
1 ⊗ δ(u)

)
(id ⊗ δ)

(
U∗). �

By Lemma 3.7 and (3.5), wuδ(x) = δ(x)wu for all x ∈ L∞(T\Gq). Thus wu belongs 
to Z1

inv(δ, L∞(T\Gq)) if u ∈ G (Gq,Ω).
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Theorem 3.10. The map G (Gq,Ω) � u �→ wu ∈ Z1
inv(δ, L∞(T\Gq)) is a group isomor-

phism. In particular, G (Gq,Ω) is isomorphic to P = T̂ .

Proof. It is trivial that this map is an injective group homomorphism. To show the sur-
jectivity, let w ∈ Z1

inv(δ, L∞(T\Gq)). Then for x ∈ L∞(T\Gq), we have wδ(x)w∗ = δ(x), 
and so U∗wU commutes with x ⊗ 1. By factoriality of L∞(T\Gq), there exists a unitary 
u ∈ L∞(Gq) such that w = U(1 ⊗u)U∗. Since w is a δ-cocycle, u is group-like with respect 
to δΩ by the previous lemma. The remaining statement follows from Theorem 3.6. �

This result shows that we have a Hopf algebra embedding of L∞(T ) into L∞(Gq,Ω), 
that is, the n-dimensional torus T is a “quotient quantum group” of Gq,Ω.

When Gq = SU q(2), it has been proved that Gq,Ω is isomorphic to Ẽq(2), Woronow-
icz’s quantum E(2) group in [11, Theorem 4.5]. In [54, Theorem 2.1], Woronowicz has 
classified unitary representations of Ẽq(2). In particular, the intrinsic group of Ẽq(2) is 
generated by the canonical unitary representation v (see [54, p. 254, (1)]), and is indeed 
isomorphic to Z ∼= T̂ .

4. Product type actions

In this section, we will study a product type action of Gq. We will fix our notation.
Let v be a unitary representation of Gq on a Hilbert space Hv with 2 ≤ dimHv ≤ ∞. 

Take a faithful invariant state φ ∈ B(Hv)∗, that is, φ satisfies (φ ⊗id)(v(x ⊗1)v∗) = φ(x)1
for all x ∈ B(Hv). Note that φ is never tracial since (id ⊗ f1)(Cλ) �= 1 for any non-zero 
λ ∈ P+.

Consider the infinite tensor product (M, ϕ) :=
⊗∞

m=1(B(Hv), φ)′′ that is a factor 
of type IIIλ with λ �= 0. So, Connes’ S-invariant is computed from the period of φ. 
Let α: M → M ⊗ L∞(Gq) be the product type action with respect to v [17,20,26]. 
Let Eα: M → Mα be the conditional expectation defined by Eα := (id ⊗ h) ◦ α. Then 
ϕ ◦ Eα = ϕ.

4.1. Depth 2 inclusions

In what follows, we always assume that α is faithful, that is, the subspace α(M)(M ⊗C)
is dense in M ⊗ L∞(Gq). This is the case when each irreducible representation of Gq

is contained in a product unitary representations (v ⊗ v)⊗m for some m ∈ N. Then as 
remarked in [20, p. 509], each irreducible is contained in v⊗m for some m ∈ N. Therefore, 
the faithfulness of α implies the generating property of the corresponding probability 
measure on Irr(Gq).

Thanks to [17, Corollary 3.9], the relative commutant Q := (Mα)′ ∩M is non-trivial. 
Moreover, we know by [17, Theorem 5.10], [20, Theorem A] and [44, Corollary 4.11] that 
there exists a Gq-equivariant isomorphism from L∞(T\Gq) onto Q. In particular, Q is a 
type I factor by Theorem 3.1. Then we have the following tensor product decomposition:
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M = R ∨ Q ∼= R⊗ Q, (4.1)

where R := Q′ ∩ M. Note that the invariant state ϕ is of the form ϕ|R ⊗ ϕ|Q. Indeed, 
the modular automorphism group σϕ preserves Mα, and it does Q. Hence, by Takesaki’s 
theorem [41, p. 309], there exists a unique conditional expectation F : M → Q with 
ϕ ◦ F = ϕ. Then F maps R into the center Z(Q) = C, and

ϕ(xy) = ϕ
(
F (x)y

)
= ϕ

(
F (x)

)
ϕ(y) = ϕ(x)ϕ(y) for x ∈ R, y ∈ Q.

We will study the inclusion Mα ⊂ R.

Lemma 4.1. The inclusion Mα ⊂ R is irreducible and of depth 2.

Proof. First we will show the irreducibility. Let x ∈ (Mα)′∩R. Then x ∈ (Mα)′∩M = Q, 
but x ∈ R = Q′ ∩M. Hence x ∈ Z(Q) = C.

Next we let Mα ⊂ R ⊂ R1 ⊂ R2 be the Jones tower. We will show that (Mα)′∩R2 is a 
type I factor. Let Mα ⊂ M ⊂ M1 ⊂ M2 be the Jones tower. By (4.1), this is isomorphic 
to the following:

Mα ⊗ C ⊂ R⊗ Q ⊂ R1 ⊗ Q1 ⊂ R2 ⊗ Q2,

where Q1 and Q2 are type I factors. Thus it suffices to show that (Mα)′ ∩M2 is a type I 
factor.

Claim. The Jones tower Mα ⊂ M ⊂ M1 ⊂ M2 is isomorphic to Mα ⊗ C ⊂ α(M) ⊂
M �α Gq ⊂ M ⊗B(L2(Gq)).

Proof of Claim. Since α is integrable, there exists a canonical surjection from M �α Gq

onto M1 (see, for example, [20, p. 510] or [48, Theorem 5.3]). Recall that α is faithful. 
Thanks to [20, Corollary 1.5], we have an isomorphism from α(M)′ ∩ (M �α Gq) onto 
M′∩M1. In particular, the canonical surjection from M �αGq onto M1 is an isomorphism. 
Hence the tower Mα ⊂ M ⊂ M1 is isomorphic to Mα⊗C ⊂ α(M) ⊂ M �αGq. The basic 
extension of α(M) ⊂ M �αGq is realized as M ⊗B(L2(Gq)) through the computation of 
the modular conjugation of M �αGq. See [48, Proof of Proposition 5.9] or [18, Lemma 5.7]
for its proof. �

Hence (Mα)′∩M2 is isomorphic to ((Mα)′∩M) ⊗B(L2(Gq)) = Q ⊗B(L2(Gq)), which 
is a type I factor. �

The restriction of Eα on R gives a conditional expectation from R onto Mα. Therefore, 
there exists a compact quantum group and its minimal action β on R with the fixed point 
algebra Mα. (See [14,31,40]. It is worth mentioning that Longo’s sector-approach still 
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works in our case.) We will show that the quantum group is nothing but the maximal 
torus T .

Note that Rβ can be of type II1 though R is of type III. Thus β is not dual in general 
(see [18, Proposition 5.2 (5)]). However, the action is semidual (see, for example, [34, 
Theorem 4.4], [48, Proposition 6.4] and [56, Theorem 2.2]). So let us take the tensor 
product by B(2) as follows:

M := B
(
2
)
⊗M, α := id ⊗ α.

Also set R := B(2) ⊗ R and Q := C ⊗ Q. Then we have

M = R ∨ Q ∼= R⊗ Q, Mα = B
(
2
)
⊗Mα,

(
Mα

)′ ∩M = Q.

Let π be a Gq-equivariant isomorphism from L∞(T\Gq) onto Q, which is unique by 
Corollary 3.5.

Recall wλ ∈ Z1
inv(δ, L∞(T\Gq)) introduced in (3.3). Set an α-cocycle wo

λ defined by

wo
λ := (π ⊗ id)(wλ). (4.2)

Then wo
λ ∈ Z1

inv(α,Q) for all λ ∈ P .
Note that M �α Gq is an infinite factor. Since Mα and Mαwo

λ contain B(2) ⊗ C, 
they are also infinite factors. Using the 2 × 2 matrix trick as before, we obtain a unitary 
uλ ∈ M for λ ∈ P such that α(uλ) = (uλ ⊗ 1)wo

λ. For x ∈ Mα, we have

α
(
uλxu

∗
λ

)
= (uλ ⊗ 1)wo

λ(x⊗ 1)
(
wo

λ

)∗(
u∗
λ ⊗ 1

)
= uλxu

∗
λ ⊗ 1.

Hence θλ := Aduλ gives an endomorphism on Mα. We will show that θλ is in fact an 
automorphism.

Lemma 4.2. For any λ ∈ P , uλ belongs to R.

Proof. Let x ∈ Q and y ∈ Mα. Then

u∗
λxuλy = u∗

λxθλ(y)uλ = u∗
λθλ(y)xuλ = yu∗

λxuλ.

Hence ρλ := Adu∗
λ defines an endomorphism on Q. Moreover for x ∈ Q, we have

α
(
ρλ(x)

)
= α

(
u∗
λ

)
α(x)α(uλ) =

(
wo

λ

)∗(
u∗
λ ⊗ 1

)
α(x)(uλ ⊗ 1)wo

λ

=
(
wo

λ

)∗(ρλ ⊗ id)
(
α(x)

)
wo

λ.

Thus
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α
(
ρλ(x)

)
= wo

λα
(
ρλ(x)

)(
wo

λ

)∗ because wo
λ ∈ Z1

inv(α,Q)

= wo
λ ·

(
wo

λ

)∗(ρλ ⊗ id)
(
α(x)

)
wo

λ ·
(
wo

λ

)∗
= (ρλ ⊗ id)

(
α(x)

)
.

Namely, ρλ is a Gq-equivariant embedding of Q into itself. The injectivity of ρλ implies 
that spectral multiplicities of ρλ(Q) and Q must coincide, and ρλ(Q) = Q. Hence ρλ is a 
Gq-equivariant automorphism on Q ∼= L∞(T\Gq). By Corollary 3.5, we obtain ρλ = id, 
that is, uλ ∈ Q′ ∩M = R. �

Let λ, μ ∈ P . Since uμ belongs to R, we see wo
λ(uμ ⊗ 1) = (uμ ⊗ 1)wo

λ, and

α(uλuμ) = (uλ ⊗ 1)wo
λ(uμ ⊗ 1)wo

μ = (uλuμ ⊗ 1)wo
λw

o
μ

= (uλuμ ⊗ 1)wo
λ+μ =

(
uλuμu

∗
λ+μ ⊗ 1

)
α(uλ+μ).

It follows that cλ,μ := uλuμu
∗
λ+μ is contained in Mα, and

θλ ◦ θμ = Ad cλ,μ ◦ θλ+μ for all λ, μ ∈ P. (4.3)

We will show that (θ, c) is a cocycle action of P on Mα as below. (See [35] for the 
definition of a cocycle action.) If we put μ = −λ, we have uλ+μ = u0 = 1, and θλ ◦θ−λ =
Ad cλ,−λ. This shows the surjectivity of θλ, that is, θλ ∈ Aut(Mα).

The 2-cocycle identity of c is verified as follows: for λ, μ, ν ∈ P ,

cλ,μcλ+μ,ν = uλuμu
∗
λ+μ · uλ+μuνu

∗
λ+μ+ν

= uλuμuνu
∗
λ+μ+ν ,

and

θλ(cμ,ν)uλ,μ+ν = uλ · uμuνu
∗
μ+ν · u∗

λ · uλuμ+νu
∗
λ+μ+ν

= uλuμuνu
∗
λ+μ+ν .

From (4.3), it turns out that (θ, c) gives a cocycle action on an infinite factor Mα. Then 
c is in fact a coboundary by [39, Proposition 2.1.3]. Take unitaries u′

λ in Mα for λ ∈ P

so that u′
λθλ(u′

μ)cλ,μ(u′
λ+μ)∗ = 1 for λ, μ ∈ P . By replacing uλ with u′

λuλ if necessary, 
we may and do assume that our uλ’s are satisfying

uλ ∈ R, uλuμ = uλ+μ, α(uλ) = (uλ ⊗ 1)wo
λ for all λ, μ ∈ P. (4.4)

Then we have an outer action θ of P on Mα. Indeed, if for some λ ∈ P , a ∈ Mα

satisfies ax = θλ(x)a for all x ∈ Mα, then u∗
λa ∈ (Mα)′ ∩ R = C. This, however, implies 

that uλ ∈ Mα and wo
λ = 1, that is, λ = 0. We will prove that R is actually generated by 

Mα and {uλ}λ∈P by sector technique developed in [19].
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Since the inclusion N := Mα ⊂ R comes from a compact quantum group action, 
R is the crossed product of N by the dual discrete quantum group action. We would 
like to determine this action. For the sake of this, we should study the sector [γR

N|N] in 
Sect(N), where γR

N denotes the canonical endomorphism from R into N. Since there exists 
a conditional expectation from M onto R, we have a canonical embedding NL2(R)N ⊂
NL2(M)N. Hence [γR

N|N] is contained in [γM
N |N]. So let us study NL2(M)N first. The 

author thanks Izumi for suggesting this method.

Lemma 4.3. For any λ ∈ P+, there exists a Hilbert space Hλ with s(Hλ) = 1 in M which 
admits an isometric Gq-isomorphism from L(λ) onto Hλ.

Proof. Recall that Mα is not a type I factor. Otherwise, it follows that M = Mα ∨ Q, 
and M would be of type I. Thus we can take a von Neumann algebra embedding ψ of 
B(L(λ)) into C1�2 ⊗ Mα ⊂ Mα. Let w := (ψ ⊗ id)(Cλ). Then w is an α-cocycle, and 
B(2) ⊗C is contained in the fixed point algebra of M by αw. Hence we can employ the 
2 × 2-matrix trick as usual, we obtain a unitary u ∈ M such that α(u) = (u ⊗ 1)w.

Let {eij}i,j∈I be a system of matrix units of Imψ such that each eii is minimal. Fix 
an element i0 in I. Since 1�2 ⊗ ei0i0 is infinite projection, there exists an isometry in 
Vi0 ∈ B(2) ⊗ Mα such that Vi0V

∗
i0

= 1�2 ⊗ ei0i0 . For i ∈ I, we set Vi := (1 ⊗ eii0)Vi0 . 
Then it turns out that V ∗

i Vj = δij1 and ViV
∗
j = 1 ⊗ eij for i, j ∈ I. We let Wi := uVi. 

Then

α(Wi) = α(u)α(Vi) = (u⊗ 1)w(Vi ⊗ 1)

=
∑
j∈I

(Wj ⊗ 1)
(
V ∗
j ⊗ 1

)
w(Vi ⊗ 1).

Therefore, the statement follows by setting Hλ := span{Wi | i ∈ I}. �
For λ ∈ P+, let Tλ be an isometric Gq-isomorphism from L(λ) onto a Hilbert space 

Hλ in M. We let V λ
μi

:= Tλ(ξμi
) for μ ∈ Wt(λ) and i ∈ Iλμ . Then we obtain

α
(
V λ
μi

)
=

∑
ν∈Wt(λ), j∈Iλ

ν

V λ
νj

⊗ Cλ
νj ,μi

.

For λ, Λ ∈ P+, μ ∈ Wt(λ), i ∈ Iλμ , ν ∈ Wt(Λ) and j ∈ IΛν , we have

Eα

(
V λ
μi

(
V Λ
νj

)∗) = (id ⊗ h)
(
α
(
V λ
μi

(
V Λ
νj

)∗))
=

∑
η,ζ,k,�

V λ
ηk

(
V Λ
ζ�

)∗ · h(Cλ
ηk,μi

(
Cλ

ζ�,νj

)∗)

= δλ,Λδμ,νδi,j
(
dimq L(λ)

)−1
Fλ
μi,μi

∑
δη,ζδk,�V

λ
ηk

(
V Λ
ζ�

)∗ by (2.1)

η,ζ,k,�
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= δλ,Λδμ,νδi,j
(
dimq L(λ)

)−1
Fλ
μi,μi

∑
η,k

V λ
ηk

(
V Λ
ηk

)∗
= δλ,Λδμ,νδi,j

(
dimq L(λ)

)−1
Fλ
μi,μi

= δλ,Λδμ,νδi,j
(
dimq L(λ)

)−1
q2(μ,ρ) by Lemma 2.3.

So if we put Wλ
μi

:= (dimq L(λ))1/2q−(μ,ρ)V λ
μi

, then {Wλ
μi
}μ,i is a linear base of Hλ such 

that

Eα

(
Wλ

μi

(
WΛ

νj

)∗) = δλ,Λδμ,νδi,j . (4.5)

Now we let

σλ(x) :=
∑

μ∈Wt(λ), i∈Iλ
μ

V λ
μi
x
(
V λ
μi

)∗ for x ∈ N.

Then σλ is an endomorphism on N. We will determine the intertwiner space (σλ, σλ). 
Recall vμ ∈ Z(L∞(Gq)) and wμ ∈ Z1

inv(δ, L∞(T\Gq)) introduced in (3.2) and (3.3). 
Then we set

aλμi
:=

∑
ν∈Wt(λ), j∈Iλ

ν

V λ
νj
π
((
Cλ

μi,νj

)∗
vμ

)
u∗
μ for λ ∈ P+, μ ∈ Wt(λ), i ∈ Iλμ ,

where we recall that uμ is satisfying (4.4). Note that (Cλ
μi,νj

)∗vμ is contained in 
L∞(T\Gq), and π((Cλ

μi,νj
)∗vμ) is well-defined.

Lemma 4.4. Let λ ∈ P+. Then the following statements hold:

(1) For all μ ∈ Wt(λ), {aλμi
}i∈Iλ

μ
is an orthonormal base of (θμ, σλ).

(2) (σλ, σλ) is linearly spanned by aλμi
(aλμj

)∗ for μ ∈ Wt(λ) and i, j ∈ Iλμ .

Proof. (1). We will check that aλμi
is contained in Mα. Indeed,

α
(
aλμi

)
=

∑
ν,j

α
(
V λ
νj

)
· (π ⊗ id)

(
δ
((
Cλ

μi,νj

)∗
vμ

))
· α

(
u∗
μ

)

=
∑

ν,η,ζ,j,k,�

(
V λ
ηk

⊗ Cλ
ηk,νj

)
· (π ⊗ id)

(((
Cλ

μi,ζ�

)∗ ⊗ (
Cλ

ζ�,νj

)∗)(vμ ⊗ 1)wμ

)
·
(
wo

μ

)∗(
u∗
μ ⊗ 1

)
=

∑
ν,η,ζ,j,k,�

δη,ζδk,�
(
V λ
ηk

⊗ 1
)
· (π ⊗ id)

(((
Cλ

μi,ζ�

)∗ ⊗ 1
)
(vμ ⊗ 1)

)
·
(
u∗
μ ⊗ 1

)
= aλμ ⊗ 1.
i
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Next we have the following for x ∈ Mα:

aλμi
θμ(x) =

∑
ν,j

V λ
νj
π
((
Cλ

μi,νj

)∗
vμ

)
u∗
μθμ(x)

=
∑
ν,j

V λ
νj
π
((
Cλ

μi,νj

)∗
vμ

)
xu∗

μ

=
∑
ν,j

V λ
νj
xπ

((
Cλ

μi,νj

)∗
vμ

)
u∗
μ = σλ(x)aλμi

.

Thus aλμi
∈ (θμ, σλ). We have

(
aλμi

)∗
aλνj

=
∑

η,ζ,k,�

uμπ
(
v∗μC

λ
μi,ηk

)(
V λ
ηk

)∗ · V λ
ζ�
π
((
Cλ

νj ,ζ�

)∗
vν
)
u∗
ν

=
∑
η,k

uμπ
(
v∗μC

λ
μi,ηk

(
Cλ

νj ,ηk

)∗
vν
)
u∗
ν

= δμ,νδi,j ,

and
∑
μ,i

aλμi

(
aλμi

)∗ =
∑

μ,η,ζ,i,k,�

V λ
ηk
π
((
Cλ

μi,ηk

)∗
vμ

)
u∗
μ · uμπ

(
v∗μC

λ
μi,ζ�

)(
V λ
ζ�

)∗
=

∑
η,ζ,k,�

δη,ζδk,�V
λ
ηk

(
V λ
ζ�

)∗ = 1.

Hence for x ∈ Mα, we obtain

σλ(x) =
∑
μ,i

aλμi
θμ(x)

(
aλμi

)∗
,

and we are done. �
By the previous lemma, we get the following equality in Sect(N):

[σλ] =
⊕

μ∈Wt(λ)

dimL(λ)μ[θμ]. (4.6)

Lemma 4.5. In Sect(N), one has

[
γM
N

∣∣
N

]
=

⊕
λ∈P+

dimL(λ)[σλ].

Proof. We will decompose the N–N bimodule NL2(M)N as follows. First we observe that 
the linear span of H ∗

λ N, λ ∈ P+ is weakly dense in M. Indeed, for any λ ∈ P and any 
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equivariant map T : L(λ) → M, it turns out that a :=
∑

μ,i V
λ
μi
T (ξλμi

)∗ belongs to Mα. 
It follows that T (ξλμi

)∗ = (V λ
μi

)∗a ∈ H ∗
λ N. Since the linear span of T (ξλμi

)∗’s for T and 
λ, μ, i is weakly dense in M, we are done.

Next recall the α-invariant state ϕ on M. Take a faithful normal state ψ on B(2) and 
put ϕ := ψ ⊗ ϕ. Then ϕ is an α-invariant state on M. For λ ∈ P+, we let eN : L2(M) →
N1ϕ be the Jones projection. Then from (4.5), zλ :=

∑
μ,i(Wλ

μi
)∗eNWλ

μi
is a projection 

onto the subspace Xλ := H ∗
λ N1ϕ. Since each (Wλ

μi
)∗eNWλ

μi
belongs to N′∩JϕN

′Jϕ, the 
subspace (Wλ

μi
)∗N1ϕ is an N–N-bimodule. Thus we have the following decomposition as 

the N–N-bimodules:

NL2(M)N =
⊕
λ∈P+

⊕
μ∈Wt(λ), i∈Iλ

μ

(
Wλ

μi

)∗
N1ϕ. (4.7)

Let us consider the map N1ϕ � x1ϕ �→ (Wλ
μi

)∗x1ϕ. Again by (4.5), it turns out that 
this map extends to the unitary map U from N1ϕ onto (Wλ

μi
)∗N1ϕ. Then for a, b ∈ N

and ξ ∈ N1ϕ, we have

U
(
σλ(a)ξb

)
=

(
Wλ

μi

)∗ · (σλ(a)ξb
)

=
(
Wλ

μi

)∗
σλ(a)ξb

= a
((
Wλ

μi

)∗
ξ
)
b = a(Uξ)b.

Hence as the N–N-bimodules, (Wλ
μi

)∗N1ϕ and Nσλ
L2(N)N are isomorphic. Then the 

statement follows from (4.7). �
By (4.6) and the previous lemma, we obtain

[
γM
N

∣∣
N

]
=

⊕
μ∈P

∞[θμ].

Since [γR
N|N] is contained in [γM

N |N], [γR
N|N] is a direct sum of multiples of [θμ]’s. Now 

we know N ⊂ R comes from a minimal action of a compact quantum group. Since every 
θμ is an automorphism, each irreducible representation of the compact quantum group 
is one-dimensional. Thanks to [19, p. 49] or [45, Lemma 3.5], we have

[
γR
N

∣∣
N

]
=

⊕
μ∈S

[θμ] for some S ⊂ P.

However, each uμ is actually an element of R which implements θμ, [θμ] must be contained 
in [γR

N|N]. Thus we obtain S = P , that is,

[
γR
N

∣∣
N

]
=

⊕
[θμ].
μ∈P
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Then by [19, Theorem 3.9], it turns out that R is generated by N = Mα and uμ, μ ∈ P . 
For μ ∈ P , Eα(uμ) is an element in (id, θμ) The outerness of θ implies that Eα(uμ) = 0
for μ �= 0. Hence we obtain the following result.

Theorem 4.6. The inclusion Mα ⊂ R is isomorphic to Mα ⊂ Mα �θ T̂ , where T̂ = P as 
usual.

Remark 4.7. Recall the unitary U introduced in Lemma 3.7. Let Γ (x) := (π⊗ id)(U∗)×
α(x)(π ⊗ id)(U) for x ∈ M. Then (Γ ⊗ id) ◦ Γ = (id ⊗ δΩ) ◦ Γ , that is, Γ is an action 
of Gq,Ω on R. However, Γ is not faithful. Indeed, RΓ = Mα and Γ (uλ) = uλ ⊗ νλ for 
λ ∈ P , where νλ is a group-like unitary of Gq,Ω such that U∗wλU = 1 ⊗ νλ. Hence Γ is 
nothing but the dual action of θ.

4.2. Induced actions

Let us introduce the action β on R, that is,

βt(uμ) = 〈t, μ〉uμ for all t ∈ T, μ ∈ P.

By definition, βt = θ̂t−1 , where θ̂ denotes the dual action of θ. Then β extends to M by 
putting β = id on Q. Then ϕ ◦ βt = ϕ for all t ∈ T since Eα(uμ) = 0 if μ �= 0. We will 
show that W ∗(uμ | μ ∈ P ) ∨ Q is naturally isomorphic to L∞(Gq).

Lemma 4.8. There exists a von Neumann algebra isomorphism π: L∞(Gq) → W ∗(uμ |
μ ∈ P ) ∨ Q such that

• α ◦ π = (π ⊗ id) ◦ δ;
• βt ◦ π = π ◦ γt for all t ∈ T ;
• π(vμ) = uμ for μ ∈ P ;
• π(L∞(T\Gq)) = Q.

Proof. Let π: L∞(T\Gq) → Q be a Gq-equivariant isomorphism as before. Let wμ, wo
μ

be the invariant cocycles defined in (3.3) and (4.2). They are satisfying the following 
equalities:

δ(vμ) = (vμ ⊗ 1)wμ, α(uμ) = (uμ ⊗ 1)wo
μ for μ ∈ P.

Put P := W ∗(uμ | μ ∈ P ) ∨Q. Let us introduce a unitary map U : L2(Gq) → L2(P) such 
that U(vμa1h) = uμπ(a)1ϕ for μ ∈ P and a ∈ L∞(T\Gq). Then we have UvμU

∗ = uμ

and UaU∗ = π(a) for μ ∈ P and a ∈ L∞(T\Gq). The map π extends to a map, 
which we also denote by π, from L∞(Gq) into M. The Gq-equivariance of π is veri-
fied as
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α
(
AdU(vμ)

)
= α(uμ) = (uμ ⊗ 1)wo

μ

= (uμ ⊗ 1)(π ⊗ id)(wμ)

= (AdU ⊗ id)
(
(vμ ⊗ 1)wμ

)
= (AdU ⊗ id)

(
δ(vμ)

)
. �

Remark 4.9. It turns out from the previous lemma that α is semidual. Hence there exists 
an action σ of Ĝq on N = B(2) ⊗Mα such that M = N �σ Ĝq.

Recall the restriction of an action by a quantum subgroup (see Section 2.4). In the fol-
lowing lemma, we will show that the minimal action β actually comes from the restriction 
of α by the maximal torus T though it seems not so clear at first.

Let αT be the restriction of α on T . We denote by αt the restriction of α on t ∈ T , that 
is, αt := (id ⊗ evt) ◦ αT for t ∈ T . Let w0t be the element satisfying 〈w0t, μ〉 = 〈t, w0μ〉
for all μ ∈ P .

Lemma 4.10. The minimal action βt of T on R is given by αw0t on R.

Proof. To see this, we may assume that Mα is infinite. Then R is generated by Mα and 
uλ’s as before.

By the above equivariant embedding π, αT on {uλ}′′λ ∨ Q is conjugate to the right 
torus action γR on L∞(Gq), where γR

t := (id ⊗ evt ◦rT ) ◦ δ for t ∈ T . Using π(vλ) = uλ

and the polar decomposition of CΛ
Λ,w0Λ

with Λ ∈ P+, we have αt(uλ) = π(γR
t (vλ)) =

〈t, w0λ〉uλ = βw0t(uλ). �
Remark 4.11. Let x ∈ Rn and y := A−1x, where A denotes the Cartan matrix. Then we 
put t = (tj)j with tj = q

iyj

j for j = 1, . . . , n, and we get (w0t, ν) =
∏

j q
i(w0ωj ,ν)xj . By 

the commutation relation in the proof of Theorem 3.1, we obtain

γR
w0t = Ad |aω1 |ix1 · · · |aωn

|ixn on L∞(T\Gq).

This shows the right action γR on L∞(T\Gq) is implemented by a unitary representation.

Lemma 4.12. The map

Ξ:
(
Mα ⊗ C

)
∨W ∗(uμ ⊗ vμ | μ ∈ P ) ∨

(
C⊗ L∞(T\Gq)

)
→ M

with Ξ((a ⊗1)(uμ⊗vμ)(1 ⊗ b)) = auμπ(b) for a ∈ Mα, λ ∈ P and b ∈ Q is a well-defined 
Gq-equivariant isomorphism.

Proof. Let L := (Mα ⊗ C) ∨ W ∗(uμ ⊗ vμ | λ ∈ P ) ∨ (C ⊗ L∞(T\Gq)). Then L ⊂
R⊗ L∞(Gq).
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Claim. The following map U : L2(L) → L2(M) is a well-defined unitary:

U
(
(a⊗ 1)(uμ ⊗ vμ)(1 ⊗ b)(1ϕ ⊗ 1h)

)
:= auμπ(b)1ϕ

for a ∈ Mα, μ ∈ P and b ∈ L∞(T\Gq), where π is the one defined in the previous 
lemma.

Proof of Claim. Recall that M ∼= R ⊗ Q and ϕ is splitted to ϕ|R ⊗ ϕQ. Then the well-
definedness follows from ϕ(auμ) = 0 for a ∈ Mα and a non-zero μ ∈ P . �

Using this map, we obtain an isomorphism Ξ: L → M as in the statement. We will 
check the Gq-equivariance. Let a ∈ Mα, μ ∈ P and b ∈ L∞(T\Gq). Then Ξ(a) = a and 
Ξ(1 ⊗ b) = π(b). Next,

(Ξ ⊗ idL∞(Gq))
(
(idR ⊗δ)(uμ ⊗ vμ)

)
= (Ξ ⊗ idL∞(Gq))

(
(uμ ⊗ vμ ⊗ 1)(1 ⊗ wμ)

)
= (uμ ⊗ 1)(π ⊗ id)(wμ)

= (uμ ⊗ 1)wo
μ = α(uμ)

= α
(
Ξ(uμ ⊗ vμ)

)
.

Therefore, Ξ is Gq-equivariant. �
We will recall the notion of the induction of actions.

Definition 4.13. Let H be a quantum subgroup of G and Γ : A → A ⊗L∞(H) an action of 
H on a von Neumann algebra A. Let γH := (rH⊗ id) ◦δ be the left action of H on L∞(G). 
Set

IndG

H A := A⊗H L∞(G) =
{
x ∈ A⊗ L∞(G)

∣∣ (Γ ⊗ id)(x) = (id ⊗ γH)(x)
}
.

Then the restriction of id⊗ δ on IndG

H A, which we will denote by IndG

H Γ , gives an action 
of G, and we will call it the induction of Γ from H to G.

Note that the fixed point algebra of IndG

H Γ is equal to AΓ . Now we will prove the 
following main result of this paper.

Theorem 4.14. A faithful product type action of Gq is induced from a minimal action of 
T on a type III factor. Moreover, such minimal action is unique in the following sense: If 
there exists a minimal action χ of T on a factor N such that IndGq

T N is Gq-equivariantly 
isomorphic to M, then there exist a ∗-isomorphism ζ from R onto N and a topological 
group isomorphism f on T such that χt = ζ ◦ βf(t) ◦ ζ−1.

Proof. We let A := W ∗(uμ | λ ∈ P ) ⊂ R. Since βt(uμ) = 〈t, μ〉uμ and γt(vμ) = 〈t, μ〉vμ, 
we have
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A⊗T Z
(
L∞(T\Gq)

)
= W ∗(uμ ⊗ vμ | λ ∈ P ).

Therefore,

B
(
2
)
⊗ IndGq

T R = R⊗T L∞(Gq) =
(
Mα ∨A

)
⊗T

(
Z
(
L∞(Gq)

)
∨ L∞(T\Gq)

)
=

(
Mα ⊗ C

)
∨W ∗(uμ ⊗ vμ | λ ∈ P ) ∨

(
C⊗ L∞(T\Gq)

)
,

which is isomorphic to B(2) ⊗M through Ξ, the map constructed in the previous lemma. 
By definition, Ξ maps the fixed point algebra (R⊗T L∞(Gq))Gq = Rβ = Mα onto Mα

identically. Thus we can remove the contribution of B(2).
Next suppose that we have a minimal action χ of T on a factor N such that 

P := IndGq

T N is Gq-equivariantly isomorphic to M. Then the inclusion Nχ ⊂ (C ⊗
L∞(T\Gq))′ ∩ P is isomorphic to Mα ⊂ R. Thus there exist a ∗-isomorphism ζ from 
R onto N and a topological group isomorphism f on T such that χt = ζ ◦ βf(t) ◦ ζ−1

since every automorphism ψ on R which fixes Mα is of the form βt for some t ∈ T . 
Indeed, u∗

λψ(uλ) commutes with Mα, and it is a scalar (see [1, p. 131] for a more general 
situation). �
4.3. Classification of product type actions

As mentioned in Lemma 4.10, the minimal action β on R comes from the restriction 
of α on T , which we denote by αT as usual. Let αt := (id⊗ evt) ◦ αT for t ∈ T . Readers 
are referred to [33,35] for the notion of conjugacy and cocycle conjugacy. We will say 
that a (quantum) group action is stable when every cocycle is a coboundary.

Recall that αT on Q is implemented by a unitary representation (see Remark 4.11). 
Then we have

αw0t ≈ αw0t|R ⊗ αw0t|Q = βt ⊗ αw0t|Q
∼ βt ⊗ id |Q
∼ βt for t ∈ T,

where we have used the infiniteness of R at the last cocycle conjugacy. The notation ≈ and 
∼ denote the conjugacy and the cocycle conjugacy, respectively. We will summarize this 
observation in the following (cf. Lemma 4.10). For the notion of invariant approximate 
innerness, readers are referred to [33, Definition 4.5, Lemma 4.7].

Theorem 4.15. The minimal action βt of the maximal torus T on R is cocycle conjugate 
to αw0t. In particular, β is invariantly approximately inner.

Note that M is the completion of the infinite tensor product of B(H) by a product 
state, M is of type IIIλ with 0 < λ ≤ 1. To compute the type of Mα, the following result 
is useful. Note that Mα is not of type I as remarked in the proof of Lemma 4.3.
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Corollary 4.16. The following statements hold:

(1) The fixed point algebra MαT is not of type III0.
(2) If MαT is of type IIIλ with 0 < λ ≤ 1, then so is Mα. In this case, α is stable.
(3) If MαT is of type II, then so is Mα.

Proof. (1). It is clear that the canonical action of the infinite symmetric group S∞
is commuting not only αT but σϕ, where ϕ is the product state with respect to φ. 
Therefore, (MαT )′ϕ ∩MαT = C, and Γ (σϕ|MαT ) = Sp(σϕ|MαT ). This shows that MαT

is not of type III0.
(2). By [18, Proposition 5.2 (4)], αT is stable. This implies that αt is conjugate to 

βw0t, and MαT ∼= Rβ = Mα. The stability of α is shown by using 2 × 2-matrix trick.
(2). If Mα = Rβ were of type III, then so would MαT since there exists a normal 

conditional expectation from MαT onto Mα. This is a contradiction. �
Theorem 4.15 enables us to classify some product type actions of Gq.

Corollary 4.17. A product type action α is unique up to conjugacy if Mα is of type III1. 
More precisely, such α is conjugate to IndGq

T (idR∞ ⊗m), where R∞ denotes the injective 
type III1 factor and m the minimal action of T on the type II1 injective factor R0.

Proof. Let β be the associated minimal action on R. Then Rβ = Mα is of type III1. It 
follows that β is a dual action of an outer action θ−1 on Rβ . Then θμ for each μ ∈ T̂ is 
approximately inner since Aut(R∞) = Int(R∞) [24, Theorem 1]. By [33, Theorem 4.11], 
θ has the Rohlin property, that is, the central freeness. Thus θ is unique up to cocycle 
conjugacy [35, Theorem 1.4, p. 7]. This implies the uniqueness of β up to conjugacy. �
Example 4.18. We will construct a model of a product type action whose fixed point 
algebra is of type III1. As a result, it turns out that IndGq

T (idR∞ ⊗m) is indeed of product 
type.

Take an n-dimensional unitary representation v of Gq such that the matrix elements 
vij generate C(Gq). Then we set the (n + 3)-dimensional representation w := 1⊕3 ⊕ v. 
Let λ, μ > 0 such that λ/μ /∈ Q. We introduce Adw-invariant state φ defined by the 
normalization of Trk, where k denotes the diagonal matrix diag(1, λ, μ, Fv).

By Corollary 4.16, it suffices to show that MαT is of type III1. It follows from the 
proof of Corollary 4.16 that Γ (σϕ|MαT ) = Sp(σϕ|MαT ). By construction of w, it turns 
out that log λ, logμ ∈ Sp(σϕ|MαT ). Thus MαT is of type III1.

When the fixed point algebra is of another type, it seems that the general classification 
is complicated. So, let us treat SU q(2) in what follows. Our main ingredient is the 
complete invariant treated in [33, Theorem 6.28]. Note that two actions of the torus 
R/2πZ are cocycle conjugate if and only if so are they as R-actions.
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We now suppose that α is a product type action of SU q(2) and v a finite dimensional 
representation. To compute the invariant, we give a parametrization of v and φ as follows. 
The irreducible representations of SU q(2) are parametrized by Z+ω1, or equivalently, the 
half spins (1/2)Z+. Let us decompose v into the direct sum of irreducible representations 
as follows:

v =
⊕

ν∈(1/2)Z+

mν⊕
k=1

Cν ,

where mν denotes the multiplicity of Cν in v. Under identification of T = R/2πZ, we 
have

vt =
⊕

ν∈(1/2)Z+

mν⊕
k=1

diag
(
e2νit, e(2ν−2)it, . . . , e−2νit) for t ∈ R.

Changing the orthonormal base of each intertwiner space if necessary, we may and do 
assume that φ is the normalization of Trkφ

, where kφ is defined as

kφ =
⊕

ν∈(1/2)Z+

mν⊕
k=1

cνk diag
(
q2ν , q2ν−2, . . . , q−2ν), for some cνk > 0.

From the faithfulness of α, v has at least one non-integer-spin representation and at 
least one integer. Thus we may assume that cνk = 1 for a fixed even ν and k. Note 
that the density matrix diag(q2ν , q2ν−2, . . . , q−2ν) contains 1 as its spectrum for any 
integer-spin ν.

Then the invariant Gλ,μ stated in [33, Theorem 6.28] is computed as follows:

GαT
:=

〈(
log

(
cνkq

�
)
, 
) ∣∣  = 2ν, 2ν − 2, . . . ,−2ν, k = 1, . . . ,mν , ν ∈ (1/2)Z+

〉
,

which is a closed subgroup of R2. Since there exists ν ∈ (1/2) +Z+ with mν > 0, GαT
can 

be written as the following form:

GαT
=

〈(
log cνe

k , 0
)
,
(
2 log cνo

k , 0
)
,
(
log

(
cνo

k q
)
, 1
) ∣∣ k, νe ∈ Z+, νo ∈ 1/2 + Z+

〉
(4.8)

Theorem 4.19. If Gq = SU q(2), and Mα is of type II, then Mα and M must be of 
type II1 and IIIq, respectively. Moreover, α is conjugate to the induction of the torus 
action σϕq

t/ log q, where ϕq denotes the Powers state on the Powers factor Rq of type IIIq.

Proof. Let tr be the tracial weight on Rβ. Then by [18, Proposition 5.2 (5)], {στ◦Eα|R
t }t∈R

is contained in {βt}t∈R/2πZ. In particular, στ◦Eα|R is periodic, and R is of type IIIλ for 
some 0 < λ < 1. We will show that λ must be equal to q.

By [33, Proposition 6.34], βt is cocycle conjugate to σψλ

t/ log λ or σψλ

−t/ log λ, where 
ψλ denotes the Powers state on the Powers factor Rλ. From Theorem 4.15, we have 
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αt ∼ β−t ∼ σψλ

∓t/ log λ, and their invariants introduced in [33, Section 6.5] coincide. The 

invariant of σψλ

∓t/ log λ equals Gλ = Z(log λ, ∓1). It follows immediately from (4.8) that 
cνk = 1 for all ν and k, and λ = q. Hence we have βt ∼ σψλ

−t/ log λ and αt = σϕ
t/ log q for 

t ∈ R. So, MαT = Mϕ is of type II1.
We will show that βt is in fact conjugate to σψq

−t/ log q. Employing Lemma 4.10, we 

have βt = α−t = σϕ
−t/ log q = σ

ϕ|R
−t/ log q on R. Note that R ∼= Rq and ϕ and ψq are peri-

odic states. Then by adjusting a Connes–Takesaki module, there exists an isomorphism 
ζ:R → Rq such that ϕ|R = ψq ◦ ζ. Thus βt ≈ σ

ψq

−t/ log q. It is not so difficult to show that 
the induction of an action is stable with respect to an automorphism of T , and we have 
α ≈ IndGq

T σ
ψq

−t/ log q ≈ IndGq

T σ
ψq

t/ log q. �
Example 4.20. Let v be the direct sum of the spin-0 and 1/2 irreducible representations. 
Namely, a unitary v has the following form:

v =

⎛
⎝ 1 0 0

0 x u

0 v y

⎞
⎠ ∈ M3(C) ⊗ C

(
SU q(2)

)
= M3

(
C
(
SU q(2)

))
,

where x, u, v and y are the canonical generators of C(SU q(2)) as a C∗-algebra (see [32]).
Now we set the following density matrix:

kφ =

⎛
⎝ 1 0 0

0 q 0
0 0 q−1

⎞
⎠ ,

where Tr denotes the canonical non-normalized trace of M3(C). Let ϕ be the product 
state of φ as usual. Then αt = σϕ

−t/ log q for t ∈ R/2πZ, and MαT is of type II1. Thus so 
is Mα.

The remaining case is when Mα is of type IIIλ with 0 < λ < 1. The infiniteness of Rβ

implies that the crossed product decomposition of R, that is, R = Rβ �θ Z. Recall that 
βt = θ̂e−it for t ∈ R/2πZ. Since β is invariantly approximately inner, θ is centrally free.

Let mod(θ) be the Connes–Takesaki module of θ [8]. Identifying the flow space of 
Rβ with (λ, 1] = R>0/λ

Z, we may assume that λ ≤ mod(θ) < 1. Let μ := mod(θ). 
Thanks to the classification of Z-actions, (see [7, Theorem 1, Corollary 6, p. 385] or 
[42, Theorem 1.13, p. 311]), θ is cocycle conjugate to idRλ

⊗θμ, where θμ denotes the 
automorphism on the injective type II∞ factor R0,1 with tr ◦θμ = μ tr. Thus R ∼= Rλ⊗Rμ

and βt ≈ idRλ
⊗σ

ϕμ

t/ log μ. So, the invariant of β is computed as follows:

Gλ,μ := Z(log λ, 0) + Z(logμ, 1). (4.9)

Note that we can replace μ with λμ, that is, Gλ,λμ = Gλ,μ. This shows that 
idRλ

⊗σ
ϕμ is (cocycle) conjugate to idRλ

⊗σ
ϕλμ .
t/ log μ t/ log(λμ)
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Theorem 4.21. If Gq = SU q(2), and Mα is of type IIIλ with 0 < λ < 1, then mod(θ) = q

or λ1/2q in R>0/λ
Z. In each case, α is unique up to conjugacy.

Proof. In this case, we have GαT
= Gλ,μ. By (4.8) and (4.9), we cνo

k ∈ λmk with mk ∈
(1/2)Z+ and μ ∈ qcνo

k λZ. Hence μ = qλn for some n ∈ (1/2)Z+, and mod(θ) = q or 
λ1/2q in R>0/λ

Z. �
Example 4.22. Let 0 < λ < 1 and ε ∈ {0, 1/2}. Set v and kφ as follows:

v =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 x u

0 0 v y

⎞
⎟⎟⎠ , kφ =

⎛
⎜⎜⎝

1 0 0 0
0 λ 0 0
0 0 λεq 0
0 0 0 λεq−1

⎞
⎟⎟⎠ .

Then we can see GαT
= Gλ,λεq by direct calculation.

So, if μ = λkq < 1 with k a half integer, then IndGq

T (idRλ
⊗σ

ϕμ

t/ log μ) is of product type 
and falls into two categories.

The following result is a direct consequence of the previous theorem.

Corollary 4.23. Let Gq = SU q(2) and 0 < λ < 1. Suppose that μ satisfies 0 < μ < 1 and 
μ/q /∈ (λ1/2)Z+ . Then the induced action IndGq

T (idRλ
⊗σ

ϕμ

t/ log μ) is not of product type. In 
particular, for any 0 < λ < 1, there exist uncountably many, non-product type, mutually 
non-cocycle conjugate actions of SU q(2) on the injective type III1 factor with fixed point 
factor of type IIIλ.

5. Related problems

Let G be a compact quantum group and K the maximal quantum subgroup of Kac 
type introduced in [38, App. A] and [44, Definition 4.6]. We would like to generalize 
Dijkhuizen–Stokman’s result.

Problem 5.1. Does the following equality hold (up to multiplicity)?

Irr
(
C(K\G)

)
=

{
π|C(K\G)

∣∣ π ∈ Irr
(
C(G)

)}
,

where Irr(A) denotes the equivalence classes of irreducible representation of a C∗-alge-
bra A.

Problem 5.2. Is the counit a unique character on C(K\G)?

We will remark on this problem. Let Γ be the set of characters on C(G). Then it is 
probably well-known for experts that Γ is a compact group that is regarded as a quantum 
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subgroup of G. The maximality of K implies that C(K\G) ⊂ C(Γ\G). In particular, the 
restriction of every element of Γ on C(K\G) gives a counit. Thus if Problem 5.1 is solved, 
this problem holds.

Problem 5.3. AutG(C(K\G)) = {id}?

If G is a compact group, then K = G. So these problems are trivial. We will explain 
why the last problem seems plausible. Let G be a compact group and H a closed sub-
group of G. Then AutG(C(H\G)) is isomorphic to NG(H)/H, where NG(H) denotes the 
normalizer group of H. If there exists a non-trivial g ∈ NG(H), then H and g generate 
a closed subgroup larger than H. Hence the maximality of K would imply the triviality 
of AutG(C(K\G)).

In the last section, in order to show that a faithful product type action of Gq is induced 
from a minimal action of the maximal torus T , we have exploited the representation 
theory of Gq and C(Gq) to a full. We would like to obtain this in a more conceptual way.

Problem 5.4. Let G be a co-amenable compact quantum group with commutative fusion 
rules and K the maximal quantum subgroup of Kac type. Then is any faithful product 
type action of G induced from a minimal action of K?
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