
Advances in Mathematics 359 (2020) 106880
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Motivic periods and Grothendieck arithmetic 

invariants

F. Andreatta a, L. Barbieri-Viale a,∗, A. Bertapelle b, 
appendix by B. Kahn c

a Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, 
via C. Saldini, 50, Milano I-20133, Italy
b Dipartimento di Matematica “T. Levi-Civita”, Università degli Studi di Padova, 
via Trieste, 63, Padova I-35121, Italy
c IMJ-PRG, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 January 2019
Received in revised form 27 
September 2019
Accepted 9 October 2019
Available online 7 November 2019
Communicated by A. Asok

MSC:
14F42
14F40
19E15
14C30
14L15

Keywords:
Motives
Periods
Motivic and de Rham cohomology

We construct a period regulator for motivic cohomology of 
an algebraic scheme over a subfield of the complex numbers. 
For the field of algebraic numbers we formulate a period 
conjecture for motivic cohomology by saying that this period 
regulator is surjective. Showing that a suitable Betti–de Rham 
realization of 1-motives is fully faithful we can verify this 
period conjecture in several cases. The divisibility properties 
of motivic cohomology imply that our conjecture is a neat 
generalization of the classical Grothendieck period conjecture 
for algebraic cycles on smooth and proper schemes. These 
divisibility properties are treated in an appendix by B. 
Kahn (extending previous work of Bloch and Colliot-Thélène–
Raskind).

© 2019 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: Fabrizio.Andreatta@unimi.it (F. Andreatta), Luca.Barbieri-Viale@unimi.it

(L. Barbieri-Viale), Alessandra.Bertapelle@unipd.it (A. Bertapelle), Bruno.Kahn@imj-prg.fr (B. Kahn).
https://doi.org/10.1016/j.aim.2019.106880
0001-8708/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aim.2019.106880
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:Fabrizio.Andreatta@unimi.it
mailto:Luca.Barbieri-Viale@unimi.it
mailto:Alessandra.Bertapelle@unipd.it
mailto:Bruno.Kahn@imj-prg.fr
https://doi.org/10.1016/j.aim.2019.106880
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2019.106880&domain=pdf


2 F. Andreatta et al. / Advances in Mathematics 359 (2020) 106880
Contents

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Periods: constructions and conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Periods of 1-motives: fullness of Betti-de Rham realizations . . . . . . . . . . . . . . . . . . . . . . . 13
3. Some evidence: description of some Grothendieck arithmetic invariants . . . . . . . . . . . . . . . 29

Appendix A. Divisibility properties of motivic cohomology (by B. Kahn) . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

0. Introduction

Let X be a scheme which is separated and of finite type over a subfield K of the 
complex numbers. Consider the q-twisted singular cohomology Hp(Xan, Zan(q)) of the 
analytic space Xan associated to the base change of X to C and the pth de Rham 
cohomology Hp

dR(X), which is an algebraically defined K-vector space. We have the 
following natural C-linear isomorphism

�p,q
X : Hp(Xan,Zan(q)) ⊗Z C ∼= Hp

dR(X) ⊗K C

providing a comparison between these cohomology theories. As Grothendieck originally 
remarked, for X defined over the field of algebraic numbers K = Q or a number field, 
the position of the whole Hp

dR(X) with respect to Hp(Xan, Zan(q)) under �p,q
X «yields an 

interesting arithmetic invariant, generalizing the “periods” of regular differential forms» 
(see [30, p. 101 & footnotes (9) and (10)], cf. [3, §7.5 & Chap. 23], [16], [17] and [33, 
Chap. 5 & 13]). For the comparison of several notions of “periods” and versions of the 
period conjecture we refer to Huber survey [32] (see also [17, §2.2.2]).

The main goal of this paper is to describe this arithmetic invariant, at least for p = 1
and all twists, notably, q = 1 and q = 0. In more details, we first reconstruct �p,q

X (in 
Definition 1.2.4) by making use of Ayoub’s period isomorphism (see Lemma 1.2.2) in 
Voevodsky’s triangulated category DMeff

ét of motivic complexes for the étale topology. 
Denote by Hp,q

� (X) the named arithmetic invariant, i.e., the subgroup of those cohomol-
ogy classes in Hp(Xan, Zan(q)) which are landing in Hp

dR(X) via �p,q
X . We then show 

the existence of a regulator map (see Corollary 1.2.6 and Definition 1.2.7)

rp,q� : Hp,q(X) → Hp,q
� (X)

from étale motivic cohomology groups Hp,q(X). Here we regard motivic cohomology 
canonically identified with Hp

éh(X, Z(q)) where Z(q) is the Suslin-Voevodsky motivic 
complex (see [47, Def. 3.1]), as a complex of sheaves for the éh-topology (introduced in 
[12, §10.2]). We are mostly interested in the case of q = 0, 1 so that Z(0) ∼= Z[0] and 
Z(1) ∼= Gm[−1] by a theorem of Voevodsky (see [47, Thm. 4.1]).

Following Grothendieck’s idea, we conjecture that the period regulator rp,q� is sur-
jective over Q and we actually show some evidence. We easily see that H0,q

� (X) = 0
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for q �= 0 and r0,0
� is an isomorphism: therefore, the first non-trivial case is for 

p = 1. Moreover, by making use of Suslin-Voevodsky rigidity theorem we can show 
that rp,q� is surjective on torsion (see Lemma 1.4.2). We can also show: if the vanishing 
Hp,q(X) ⊗Q/Z = 0 holds true then the surjectivity of rp,q� is equivalent to the vanishing 
Hp

dR(X) ∩Hp(Xan, Qan(q)) = 0. The divisibility properties of motivic cohomology (see 
Appendix A) imply that our conjecture is a neat generalization of the classical period 
conjecture for algebraic cycles on smooth and proper schemes (see Proposition 1.4.4).

In order to study the case p = 1 we can make use of the description of H1 via the 
Albanese 1-motive L1Alb(X). Recall the existence of the homological motivic Albanese 
complex LAlb(X), a complex of 1-motives whose pth homology LpAlb(X) is a 1-motive 
with cotorsion (see [12, §8.2] for details). We can regard complexes of 1-motives as objects 
of DMeff

ét and by the adjunction properties of LAlb (proven in [12, Thm. 6.2.1]) we have 
a natural map

Extp(LAlb(X),Z(1)) → Hp,1(X) ∼= Hp−1
éh (X,Gm)

which is an isomorphism, rationally, for all p (see the motivic Albanese map displayed in 
(3.2) and (3.3) below). We can also describe periods for 1-motives (see Definition 2.2.1) 
in such a way that we obtain suitable Betti-de Rham realizations in period categories 
(see Definitions 2.5.4 and 2.5.1): a key point is that these realizations are fully faithful 
over Q (see Theorem 2.7.1). The main ingredient in the proof of fullness is a theorem 
due to Waldschmidt [54, Thm. 5.2.1] in transcendence theory, generalizing the classical 
Schneider-Lang theorem (see also [16, Thm. 4.2]). An alternative proof can be given 
using a theorem of Wüstholz [56] (see our second proof of Theorem 2.7.1). A version of 
Baker’s theorem and instances of Kontsevich period conjecture for 1-motives are further 
explored in a recent work of Huber and Wüstholz [34]. Note that Kontsevich’s period 
conjecture for 1-motives was formulated in [57] (see also [3, §23.3.3]).

Actually, we show that the regulator rp,1� can be revisited by making use of 1-motives 
(see Lemmas 3.2.1 to 3.2.3 and Proposition 3.2.7). As a byproduct, all this promptly ap-
plies to show the surjectivity of r1,1

� : H0
éh(X, Gm) → H1,1

� (X) via Ext(LAlb(X), Z(1))
verifying the conjecture for p = 1 and q = 1 (see Theorem 3.2.4). In fact, we can use 
the motivic Picard complex RPic(X) (see [12, §8.3]) so that Extp(Z(0), RPic(X)) =
Extp(LAlb(X), Z(1)) by Cartier duality showing that Ext(LAlb(X), Z(1)) is an exten-
sion of the finitely generated group Hom(Z, RpPic(X)) by a divisible group; we thus 
conclude that rp,1� induces a map

θp� : Hom(Z,RpPic(X)) → Hp,1
� (X)

which in turn can be described making use of the mentioned Betti-de Rham realization. 
The surjectivity of rp,1� can be translated via θp� and the fullness of the Betti-de Rham 

realization. For p = 1, considering the 1-motive R1Pic(X) = [L∗
1

u∗
1→ G∗

1] which is the 
Cartier dual of L1Alb(X) = [L1

u1→ G1], we get a canonical isomorphism
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Keru∗
1
∼= Hom(Z,R1Pic(X)) ∼= H1

dR(X) ∩H1(Xan,Zan(1)) = H1,1
� (X).

In particular, we obtain that H1
dR(X) ∩H1(Xan, Z(1)) = 0 if X is proper. This vanishing 

for smooth projective varieties was previously obtained by Bost-Charles [17, Thm. 4.2].
With some more efforts, making now use of the motivic complex Lπ0(X) along with 

its adjunction property (as stated in [12, §5.4]), we get a map

Extp(Lπ0(X),Z(0)) → Hp,0(X) ∼= Hp
éh(X,Z).

Analysing the composition of this map for p = 1 with r1,0
� we see that

r1,0
� : H1

ét(X,Z) ∼= H1,0
� (X) = H1

dR(X) ∩H1(Xan,Zan)

is an isomorphism (see Theorem 3.3.1), which yields the case p = 1 and q = 0 of our 
conjecture. In particular, H1

dR(X) ∩ H1(Xan, Zan) = 0 for X normal. This vanishing 
for smooth quasi-projective varieties was previously obtained by Bost-Charles [17, Thm. 
4.1].

For p = 1 and q �= 0, 1 we have that H1,q
� (X) = 0 (see Corollary 3.4.2) so that the 

period conjecture for motivic cohomology is trivially verified.
Remarkably, the description of the Grothendieck arithmetic invariants Hp,q

� (X) ap-
pears strongly related to the geometric properties encoded by motivic cohomology. These 
properties are almost hidden for smooth schemes, since the divisibility properties of 
motivic cohomology of X smooth yields that for p /∈ [q, 2q] the surjectivity of rp,q� is 
equivalent to the vanishing Hp

dR(X) ∩ Hp(Xan, Qan(q)) = 0. However, for X smooth 
with a smooth compactification X and normal crossing boundary Y , we have that

Ker (Div0
Y (X) u∗

1−→ Pic0
X/Q) ∼= H1

dR(X) ∩H1(Xan,Zan(1))

where u∗
1 is the canonical mapping sending a divisor D supported on Y to OX(D). In 

fact, here R1Pic(X) is Cartier dual of L1Alb(X) = [0 → A0
X/Q

], the Serre-Albanese 

semi-abelian variety (see [12, Chap. 9]). Therefore, there exist smooth schemes X such 
that H1,1

� (X) is non-zero and the vanishings in [17, Thm. 4.1 & 4.2] are particular 
instances of our descriptions.

With similar techniques one can make use of the Borel-Moore Albanese complex 
LAlbc(X) (see [12, Def. 8.7.1]) to describe the compactly supported variant H1,q

c,�(X), 
for any twist q.

Finally, the cohomological Albanese complex LAlb∗(X) (see [12, Def. 8.6.2]) shall be 
providing a description of H2d−j,q

� (X) for d = dim(X), at least for j = 0, 1 and q an 
arbitrary twist. A homological version of period regulators is also feasible and will be 
discussed in a future work.
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1. Periods: constructions and conjectures

Let DMeff
τ be the effective (unbounded) triangulated category of Voevodsky motivic 

complexes of τ -sheaves over a field K of zero characteristic, i.e., the full triangulated 
subcategory of D(Shvtr

τ (SmK)) given by A1-local complexes (e.g. see [6, §4.1] and, for 
complexes bounded above, see also [47, Lect. 14]). We here generically denote by τ either 
the Nisnevich or étale Grothendieck topology on SmK , the category of smooth schemes 
which are of finite type over the field K. Let Z(q) for q ≥ 0 be the Suslin-Voevodsky 
motivic complex regarded as a complex of étale sheaves with transfers. More precisely 
we consider a change of topology tensor functor

α : DMeff
Nis → DMeff

ét

and Z(q) = αZNis(q) (see [12, Cor. 1.8.5 & Def. 1.8.6]) where ZNis(q) is the usual complex 
for the Nisnevich topology (see also [50, Def. 3.1]). We have the following canonical 
isomorphisms Z(0) ∼= Z[0], Z(1) ∼= Gm[−1] and Z(q) ⊗Z(q′) ∼= Z(q+q′) for any q, q′ ≥ 0
(see [50, Lemma 3.2]). For any object M ∈ DMeff

ét we here denote M(q) := M ⊗ Z(q). 
Recall that by inverting the Tate twist M � M(1) we obtain DMτ (where every compact 
object is isomorphic to M(−n) for some n ≥ 0 and M compact and effective). For 
M ∈ DMeff

ét we shall define its motivic cohomology as

Hp,q(M) := HomDMeff
ét

(M,Z(q)[p]).

For any algebraic scheme X we have the Voevodsky étale motive M(X) = αC•Ztr(X) ∈
DMeff

ét where C• is the Suslin complex and Ztr(X) is the representable Nisnevich sheaf 
with transfers (see [47, Def. 2.8, 2.14 & Properties 14.5] and compare with [12, Lemma 
1.8.7 & Sect. 8.1]). We then write Hp,q(X) := Hp,q(M(X)) and we refer to it as the 
étale motivic cohomology of X. We have an isomorphism

Hp,q(X) ∼= Hp
éh(X,Z(q))
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where the last cohomology is, in general, computed by the éh-topology (see [12, §10.2]
and cf. [6] and [50, Prop. 1.8 & Def. 3.1]). In particular, if X is smooth Hp

éh(X, Z(q)) ∼=
Hp

ét(X, Z(q)).
Note that we also have the triangulated category of motivic complexes without trans-

fers DAeff
ét and if we are interested in rational coefficients we may forget transfers or keep 

the Nisnevich topology as we have equivalences

DAeff
ét,Q

∼= DMeff
ét,Q

∼= DMeff
Nis,Q

(see [6], [7, Cor. B.14] and [47, Thm. 14.30]). If we work with rational coefficients, we 
then have that motivic cohomology Hp,q(X)Q is computed by the cdh-topology, i.e., 
Hp

éh(X, Q(q)) ∼= Hp
cdh(X, Q(q)), and Hp

cdh(X, Q(q)) ∼= Hp
Zar(X, Q(q)) if X is smooth.

1.1. de Rham regulator

Denote by Ω the object of DMeff
ét which represents de Rham cohomology. More pre-

cisely we here denote Ω := αΩNis where ΩNis is the corresponding object for the Nisnevich 
topology (see [45, §2.1] and cf. [7, §2.3] without transfers). This latter ΩNis is given by 
the complex of presheaves with transfers that associates to X ∈ SmK the global sections 
Γ(X, Ω•

X/K) of the usual algebraic de Rham complex.
For M ∈ DMeff

ét we shall denote (cf. [44, §6] and [45, Def. 2.1.1 & Lemma 2.1.2])

Hp
dR(M) := HomDMeff

ét
(M,Ω[p]).

For any algebraic scheme X and M = M(X) we here may also consider the sheafification 
of Ω for the éh-topology. Actually, we set

Hp
dR(X) := Hp

dR(M(X)) ∼= Hp
éh(X,Ω)

(see [12, Prop. 10.2.3]). Remark that this definition is equivalent to the definition of the 
algebraic de Rham cohomology in [33, Chap. 3] via the h-topology (as one can easily 
see via blow-up induction [12, Lemma 10.3.1 b)] after [33, Prop. 3.2.4] and [33, Lemma 
3.1.14]).

Note that for q = 0 we have a canonical map r0 : Z(0) → Ω yielding a map

Hp,0(X) ∼= Hp
éh(X,Z) → Hp

dR(X) ∼= Hp
éh(X,Ω).

For q = 1 we have r1 := d log : Z(1) → Ω in DMeff
ét (see [45, Lemme 2.1.3] for the 

Nisnevich topology and apply α) yielding a map

Hp,1(X) ∼= Hp−1
éh (X,Gm) → Hp

dR(X) ∼= Hp
éh(X,Ω).

Following [45, (2.1.5)] an internal de Rham regulator rq in DMeff
ét for q ≥ 2 is then 

obtained as the composition of
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rq : Z(q) ∼= Z(1)⊗q d log⊗q

−→ Ω⊗q → Ω. (1.1)

For M ∈ DMeff
ét , composing a map M → Z(q)[p] with rq[p] we get an external de Rham 

regulator map

rp,qdR : Hp,q(M) → Hp
dR(M) (1.2)

and in particular for M = M(X) we get

rp,qdR : Hp,q(X) ∼= Hp
éh(X,Z(q)) → Hp

dR(X) ∼= Hp
éh(X,Ω).

Note that if X is smooth then Hp
éh(X, Ω) ∼= Hp

ét(X, Ω) ∼= Hp
Zar(X, Ω•

X) coincides with 
the classical algebraic de Rham cohomology (again, see [12, Prop. 10.2.3] and cf. [33, 
Prop. 3.2.4]) and we thus obtain rp,qdR : Hp

ét(X, Z(q)) → Hp
Zar(X, Ω•

X) in this case.

1.2. Periods

As soon as we have an embedding σ : K ↪→ C we may consider a Betti realization 
(e.g. see [45, §3.3] or [5, Def. 2.1]) in the derived category of abelian groups D(Z) as a 
triangulated functor

βσ : DMeff
ét → D(Z) (1.3)

such that βσ(Z(q)) ∼= Zan(q) := (2πi)qZ[0]. Actually, following Ayoub (see also [7, 
§2.1.2] and [8, §1.1.2]) if we consider the analogue of the Voevodsky motivic category 
DMeff

an obtained as the full subcategory of D(Shvtr
an(AnC)) given by A1

an-local complexes, 
where we here replace smooth schemes SmK by the category AnC of complex analytic 
manifolds, we get an equivalence

β : DMeff
an

�−→ D(Z)

such that Man(X) � Sing∗(X) is sent to the singular chain complex of X ∈ AnC. 
Moreover there is a natural triangulated functor

σ : DMeff
ét → DMeff

an

such that M(X) � Man(Xan) where the analytic space Xan is given by the C-points 
of the base change XC of any algebraic scheme X. We then set βσ := β ◦ σ. Thus it 
is clear that βσ(Z[0]) = βσ(M(Spec(K)) = Z[0]. Since a K-rational point of X yields 
M(X) = Z ⊕ M̃(X) we also see that βσ(Z(1)[1]) ∼= βσ(M̃(Gm)) ∼= β(M̃an(C∗)) ∼=
Zan(1)[1] and then, βσ(Z(q)) ∼= Zan(q) in general, as it follows from the compatibility of 
βσ with the tensor structures, i.e., we here use the fact that βσ is unital and monoidal. 
For M ∈ DMeff

ét , we denote
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Hp,q
an (M) := HomD(Z)(βσM,Zan(q)[p])

and we have a Betti regulator map

rp,qan : Hp,q(M) → Hp,q
an (M) (1.4)

induced by βσ. In particular, for M = M(X), we obtain from Ayoub’s construction (see 
also [45, Prop. 4.2.7]):

Lemma 1.2.1. For any algebraic K-scheme X and any field homomorphism σ : K ↪→ C

we have

Hp,q
an (X) := HomD(Z)(βσM(X),Zan(q)[p]) ∼= Hp(Xan,Zan(q))

and a Betti regulator map

rp,qan : Hp,q(X) → Hp(Xan,Zan(q)).

Recall that the functor βσ admits a right adjoint βσ : D(Z) → DMeff
ét (see [8, Def. 

1.7]). Note that the Betti regulator (1.4) is just given by composition with the unit

rqσ : Z(q) → βσβσ(Z(q)) (1.5)

of the adjunction. Actually, by making use of the classical Poincaré Lemma and 
Grothendieck comparison theorem ([30, Thm. 1′]) we get:

Lemma 1.2.2 (Ayoub). There is a canonical quasi-isomorphism

�q : βσβσ(Z(q)) ⊗Z C
q.i.−→ Ω ⊗K C

whose composition with rqσ in (1.5) is the regulator rq in (1.1) after tensoring with C.

Proof. See [7, Cor. 2.89 & Prop. 2.92] and also [9, §3.5]. �
Remark 1.2.3. Note that applying βσ to �q we obtain a quasi-isomorphism βσ(�q) such 
that

C ∼= βσ(Z(q)) ⊗Z C

βσ(rq)C

βσ(rqσ)C
βσβ

σβσ(Z(q)) ⊗Z C
βσ(�q)

βσ(Ω) ⊗K C

where βσ(rq)C is a split injection but it is not a quasi-isomorphism (cf. [45, §4.1]).
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For M ∈ DMeff
ét , by composition with �q we get a period isomorphism

�p,q
M : Hp,q

an (M) ⊗Z C
�−→ Hp

dR(M) ⊗K C.

Definition 1.2.4. For any scheme X we shall call period isomorphism the C-isomorphism

�p,q
X : Hp(Xan,Zan(q)) ⊗Z C

�−→ Hp
dR(X) ⊗K C

obtained by setting �p,q
X := �p,q

M(X) as above. We shall denote ηp,qX := (�p,q
X )−1 the 

inverse of the period isomorphism.

We also get the following compatibility.

Proposition 1.2.5. For M ∈ DMeff
ét along with a fixed embedding σ : K ↪→ C the inverse 

of the period isomorphism �p,q
M above induces a commutative diagram

Hp,q(M)
rp,qan

rp,qdR

Hp,q
an (M)

ιp,qan

Hp
dR(M)

ιp,qdR

Hp
dR(M) ⊗K C

�
Hp,q

an (M) ⊗Z C

where ιp,qdR and ιp,qan are the canonical mappings given by tensoring with C.

Proof. This easily follows from Lemma 1.2.2. In fact, by construction, the claimed com-
mutative diagram can be translated into the following commutative square:

HomDMeff (M,Z(q)[p])

rp,qdR :=rq [p]◦−

ιp,qan ◦ rp,qan HomDMeff (M,βσβσZ(q)[p])C

�q [p]◦−

HomDMeff (M,Ω[p])

ιp,qdR

−⊗KC
HomDMeff (M,Ω[p])C.

�

Corollary 1.2.6. Let X be an algebraic K-scheme along with a fixed embedding σ : K ↪→
C. The period isomorphism �p,q

X above induces a commutative square

Hp,q(X)
rp,qan

rp,qdR

Hp(Xan,Zan(q))

ιp,qan

Hp
dR(X)

ιp,qdR
Hp(Xan,C).
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Note that from Corollary 1.2.6 we get a refinement of the Betti regulator.

Definition 1.2.7. Define the algebraic singular cohomology classes as the elements of the 
subgroup Hp,q

alg (X) := Im rp,qan ⊆ Hp(Xan, Zan(q)) given by the image of the motivic 
cohomology under the Betti regulator rp,qan .

Define the �-algebraic singular cohomology classes by the subgroup

Hp,q
� (X) := Hp

dR(X) ∩Hp(Xan,Zan(q)) ⊆ Hp(Xan,Zan(q))

where ∩ means that we take elements in Hp(Xan, Zan(q)) which are given by the inverse 
image (under ιp,qan ) of elements in Hp

dR(X) regarded (under ιp,qdR) inside Hp(Xan, C) via 
the isomorphism �p,q

X above.
The groups Hp,q

� (X) shall be called period cohomology groups and

rp,q� : Hp,q(X) → Hp,q
� (X)

induced by rp,qdR and rp,qan shall be called the period regulator.

We get that:

Corollary 1.2.8. Hp,q
alg (X) ⊆ Hp,q

� (X).

For example, all torsion cohomology classes are �-algebraic: we shall see in 
Lemma 1.4.2 that they are also algebraic.

In particular, if Hp(Xan, Zan(q)) is all algebraic, i.e., the Betti regulator rp,qan is surjec-
tive, then the canonical embedding ιp,qan of singular cohomology Hp(Xan, Qan(q)) in the 
C-vector space Hp(Xan, C) factors through an embedding of Hp(Xan, Qan(q)) into the 
K-vector space Hp

dR(X). If K = Q this rarely happens. For example, if p = 0 it happens 
only if q = 0 and in this case r0,q

� is always surjective (as H0,q
� (X) = 0 for q �= 0).

1.3. Period conjecture for motivic cohomology

Over K = Q it seems reasonable to make the conjecture that all �-algebraic classes 
are algebraic, i.e., to conjecture that the period regulator rp,q� is surjective. In other 
words we may say that the period conjecture for motivic cohomology holds for X, in 
degree p and twist q, if

Hp,q
alg (X) = Hp,q

� (X). (1.6)

Over a number field we may expect that this holds rationally. If (1.6) holds we also have 
that Hp(Xan, Zan(q)) modulo torsion embeds into Hp

dR(X) if and only if Hp(Xan, Zan(q))
is all algebraic. Note that using Proposition 1.2.5 we can define Hp,q

� (M) providing a 
version of the period conjecture for any object M ∈ DMeff

ét .
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Proposition 1.3.1. For any q ≥ 0 the period conjecture (1.6) holds true for X, in degree 
p and twist r, if and only if it holds true for M(X)(q), in degree p and twist q + r.

Proof. By Voevodsky cancellation theorem [51] we have that twisting by q in motivic co-
homology Hp,r(X) �−→ Hp,q+r(M(X)(q)) is an isomorphism of groups. If M = M(X)(q)
with q ≥ 0 we also get Hp,r

� (X) �−→ Hp,q+r
� (M(X)(q)) canonically by twisting. In fact, 

we have a diagram induced by twisting

Hp(Xan,Zan(r)) ⊗C
qC

˜˜

ωp,r
X

Hp,q+r
an (M(X)(q)) ⊗Z C˜
�p,q+r

M(X)(q)

Hp
dR(X) ⊗K C

qdR

˜ Hp
dR(M(X)(q)) ⊗K C

where qC := q ⊗ C is the C-isomorphism given by the canonical integrally defined 
mapping q : Hp(Xan, Zan(r)) �→ Hp,q+r

an (M(X)(q)) which is sending a p-th cohomology 
class regarded as a map βσM(X) = Sing∗(Xan) → Zan(r)[p] in D(Z) to the q-twist 
βσM(X)(q) = Sing∗(Xan)(q) → Zan(q + r)[p]. Similarly, the C-isomorphism qdR is in-
duced by twisting, since Ω(−q) q.i.−→ Ω is a canonical isomorphism in DMeff

ét and the claim 
follows. �

For X smooth we have that Hp,q(X) ∼= Hp
ét(X, Z(q)) and with rational coefficients 

we have that Hp
ét(X, Q(q)) ∼= CHq(X, 2q−p)Q. In particular, if X is smooth and p = 2q

we get that r2q,q
� is the modern refinement of the classical cycle class map with rational 

coefficients

r2q,q
� = c�q� : CHq(X)Q → H2q,q

� (X)Q (1.7)

for codimension q cycles on X considered in [17]. In this case, the period conjecture (1.6)
with rational coefficients coincides with the classical Grothendieck period conjecture for 
algebraic cycles: see [17, §1.1.3] and [17, Prop. 2.13-14] comparing it with the conjecture 
on torsors of periods.

Remark 1.3.2. For K = C we may also think to refine the Hodge conjecture as previously 
hinted by Beilinson, conjecturing the surjectivity of

rp,qHodge : Hp,q(X)Q → HomMHS(Q(0), Hp(X)(q)).

However, such a generalization doesn’t hold, in general, e.g. see [20].

1.4. Torsion cohomology classes are algebraic

Consider Z/n(q) := Z(q) ⊗ Z/n. By Suslin-Voevodsky rigidity we have a quasi-
isomorphism of complexes of étale sheaves μ⊗q

n → Z/n(q) yielding Hp
éh(X, Z/n(q)) ∼=



12 F. Andreatta et al. / Advances in Mathematics 359 (2020) 106880
Hp
ét(X, μ⊗q

n ) ∼= Hp
éh(X, μ⊗q

n ). For a proof of this key result see [47, Thm. 10.2 & Prop. 
10.7] for X smooth and make use of [12, Prop. 12.1.1] to get it in general.

Lemma 1.4.1. For any algebraic scheme X over K = K ↪→ C we have Hp
éh(X, Z/n(q)) ∼=

Hp(Xan, Z/n).

Proof. As étale cohomology of μ⊗q
n is invariant under the extension σ : K ↪→ C of 

algebraically closed fields we obtain the claimed comparison from the classical comparison 
result after choosing a root of unity. �

We then have (cf. [49, Prop. 3.1]):

Lemma 1.4.2. The regulator rp,q� |tor: Hp,q(X)tor→→Hp,q
� (X)tor is surjective on torsion 

and rp,q� ⊗Q/Z : Hp,q(X) ⊗Q/Z ↪→ Hp,q
� (X) ⊗Q/Z is injective.

Proof. By construction, for any positive integer n, comparing the usual universal coef-
ficient exact sequences, we have the following commutative diagram with exact rows

0 → Hp
éh(X,Z(q))/n

rp,qan /n

Hp
éh(X,Z/n(q))

1.4.1

nH
p+1
éh (X,Z(q)) → 0

nr
p+1,q
an

0 → Hp(Xan,Zan)/n Hp(Xan,Z/n) nH
p+1(Xan,Zan) → 0.

Passing to the direct limit on n we easily get the claim. In fact, nH
p,q
� (X) =

nH
p(Xan, Zan) and rp,qan /n factors through rp,q� /n. �

Lemma 1.4.3. We have that rp,q� ⊗Q is surjective if and only if rp,q� is surjective; moreover, 
if this is the case rp,q� ⊗Q/Z is an isomorphism.

Proof. This follows from a simple diagram chase. �
In the situation that Hp,q(X) ⊗Q/Z = 0 the period conjecture for motivic cohomology 

(1.6) is then equivalent to

Hp
dR(X) ∩Hp(Xan,Qan(q)) = 0. (1.8)

In particular:

Proposition 1.4.4. If X is smooth then (1.6) for p /∈ [q, 2q] is equivalent to (1.8). If X is 
smooth and proper then (1.6) is equivalent to the surjectivity of c�q� in (1.7) for p = 2q
and to the vanishing (1.8) for p �= 2q.
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Proof. In fact, by the Appendix A, Theorem A.1.3, we have that for p /∈ [q, 2q] the group 
Hp,q(X) is an extension of torsion by divisible groups so that Hp,q(X) ⊗Q/Z = 0. If X
is proper the latter vanishing holds true for all p �= 2q. �

Proposition 1.4.4 explains some weight properties related to the Grothendieck period 
conjecture, weight arguments which are also considered in [17].

Remark 1.4.5. For K = C we have that rp,qβ |tor: Hp,q(X)tor→→Hp(Xan, Zan(q))tor is 
surjective (as also remarked in [49] for X smooth projective): torsion motivic cohomology 
classes supply the defect of algebraic cycles providing the missing torsion algebraic cycles. 
In fact, from the well known Atiyah-Hirzebruch-Totaro counterexamples to the integral 
Hodge conjecture we know that c�p : CHp(X) → H2p(Xan, Zan(p)) cannot be surjective 
on torsion for p ≥ 2 in general.

2. Periods of 1-motives: fullness of Betti-de Rham realizations

Let tM1(K) be the abelian category of 1-motives with torsion over K (see [12, App. 
C]). We shall drop the reference to K if it is clear from the context. We shall denote

MK = [uK : LK → GK ] ∈ tM1(K)

a 1-motive with torsion with LK in degree 0 and GK in degree 1; for brevity, we shall 
write MK = LK [0] if GK = 0 and MK = GK [−1] if LK = 0 and we omit the reference 
to K if unnecessary. Let Mtor := [Ltor ∩ Ker(u) → 0] be the torsion part of MK , let 
Mfr := [L/Ltor → G/u(Ltor)] be the free part of MK , and let Mtf := [L/Ltor∩Ker(u) → G]
be the torsion free part of MK . There are short exact sequences of complexes

0 → Mtor → MK → Mtf → 0 (2.1)

and

0 → [F = F ] → Mtf → Mfr → 0, (2.2)

where F = Ltor/Ltor ∩ Ker(u). Let Mab denote the 1-motive with torsion [L → G/T]
where T is the maximal subtorus of G. Recall (see [12, Prop. C.7.1]) that the canonical 
functor M1 → tM1 from Deligne 1-motives admits a left adjoint/left inverse given by 
M � Mfr.

Any 1-motive M = [L → G] is canonically endowed with an increasing filtration of 
sub-1-motives, the weight filtration, defined as follows:

Wi(M) =

⎧⎪⎨⎪⎩
M if i ≥ 0

G[−1] if i = −1
T[−1] if i = −2 (2.3)
0 if i ≤ −3
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with T the maximal subtorus of G. We have that Db(tM1) ∼= Db(M1) (see [12, Thm. 
1.11.1]) and that there is a canonical embedding (see [12, Def 2.7.1])

Tot : Db(M1) ↪→ DMeff
ét (2.4)

so that we can also regard 1-motives as motivic complexes of étale sheaves. The re-
striction of the Betti realization βσ in (1.3) can be described explicitly for 1-motives 
via Deligne’s Hodge realization (see [12, Thm. 15.4.1]). Similarly, the restriction of the 
de Rham realization in [45] can be described via Deligne’s de Rham realization as fol-
lows.

2.1. de Rham realization

Let K be a field of characteristic zero and let MK = [uK : LK → GK ] ∈ tM1(K) be 
a 1-motive with torsion over K. Note that for M�

K := [u�K : LK → G�
K ] the universal 

Ga-extension of MK we have

0 → V (M) → M�
K

ρM

−→ MK → 0

where V (M) := Ext(MK , Ga)∨. The existence of universal extensions is well-known when 
LK is torsion-free; for the general case see [11, Proposition 2.2.1]. Recall (see [23, §10.1.7]) 
the following

Definition 2.1.1. The de Rham realization of MK is

TdR(MK) := Lie(G�
K)

as a K-vector space.

Remark 2.1.2. Note that ρM = (idL, ρG) where ρG : G�
K→→GK is a quotient and Ker ρG =

V (M) so that GK is the semiabelian quotient of G�
K and u�K is a canonical lifting of 

uK , i.e., uK = ρG ◦ u�K . Further V (M) ⊆ TdR(MK) is also the kernel of the mor-
phism

dρG : Lie(G�
K) → Lie(GK)

induced by ρG, so that TdR(MK) together with the K-subspace V (M) can be re-
garded as a filtered K-vector space. This datum is called the Hodge filtration of 
TdR(MK).
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The algebraic K-group G�
K fits in the following diagram [14, (2.15)]

0 V (A)

i

A� ×A G G 0

0 V (M) G�
ρG G 0

V (L) L ⊗Ga

where we have omitted subscripts K and written V (A) for V (A[−1]) = V (G[−1]).

Lemma 2.1.3. For K ⊂ K ′ we have a natural isomorphism

(M�
K)K′ ∼= (MK′)�.

2.2. Base change to C and periods

Consider K a subfield of C and let MC = [uC : LC → GC] be the base change of MK

to C. Let TZ(MC) be the finitely generated abelian group in the usual Deligne-Hodge 
realization of MC (see [23, 10.1.3] and [13, §1]) given by the pull-back

0 H1(GC) Lie(GC)
exp

GC 0

0 TZ(GC) TZ(MC)
ẽxp

ũC

LC

uC

0

where for brevity TZ(GC) denotes TZ(GC[−1]) which by definition is H1(GC). After base 
change to C and Lemma 2.1.3 we then get (M�

K)C ∼= (MC)� hence an isomorphism

ι : TdR(MC) �−→ TdR(MK) ⊗K C (2.5)

and a commutative diagram

0 H1(GC) Lie(GC)
exp

GC 0

0 H1(G�
C) Lie(G�

C)
exp

dρG

G�
C

ρG

0

0 TZ(GC) TZ(MC)

ũC

ẽxp
LC

u�
C

uC

0

(2.6)
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where the dotted arrow exists by definition of TZ(MC) and the fact that the upper 
right-hand square is cartesian. Hence also the lower right-hand square is cartesian and 
the sequence on the bottom is equivalently obtained by pull-back of the upper sequence 
via uC or of the sequence in the middle via u�C. Further TZ(GC) is identified with the 
kernel of both exponential maps and the dotted arrow gives a homomorphism TZ(MC) →
TdR(MC) := Lie(G�

C). Finally note that the weight filtration in (2.3) gives a filtration on 
TZ(MC): the immersion TC → GC gives an inclusion TZ(TC) = H1(TC) ⊆ H1(GC) =
TZ(GC) while TZ(GC) ⊆ TZ(MC) comes from the previous diagram.

Definition 2.2.1. The homomorphism of periods is the unique homomorphism

�M,Z : TZ(MC) → TdR(MK) ⊗K C

that yields dρG ◦�M,Z = ũC and exp ◦�M,Z = u�C ◦ ẽxp under the identification given by 
the isomorphism ι in (2.5).

Note that ũC is the pull-back of uC along exp and for x ∈ LC we may pick l̃og(x) ∈
TZ(MC), i.e., such that ẽxp(l̃og(x)) = x. We then get

uC(x) = exp(ũC(l̃og(x))) = exp(dρG(�M,Z(l̃og(x)))). (2.7)

Theorem 2.2.2. The induced C-linear mapping

�M,C : TC(MC) := TZ(MC) ⊗Z C → TdR(MK) ⊗K C

is an isomorphism.

Proof. Making use of the identification in (2.5) we are left to see that it holds true for 
K = C. The case of L without torsion is treated by Deligne [23, 10.1.8]. Actually, an 
easy proof can be given by dévissage to the case of lattices, tori and abelian varieties. 
For the general case note that �M,C = �Mtf ,C by (2.1). Indeed TdR(Mtor) = 0 and the 
kernel of the canonical morphism TZ(MC) → TZ(Mtf,C) is torsion. Further by (2.2) the 
map TZ(Mtf,C) → TZ(Mfr,C) is an isomorphism and we have an exact sequence

0 → [F = F ] → M�
tf → M�

fr → 0

so that the canonical morphism TdR(Mtf) → TdR(Mfr) is an isomorphism too. Hence 
�Mtf ,C = �Mfr,C. We conclude that �M,C = �Mfr,C and the latter is an isomorphism 
since Mfr is a Deligne 1-motive. �
Examples 2.2.3. • If MK = [0 → Gm], then TZ(MC) = Z and the first and second rows 
in (2.6) are given by 0 → Z 2πi→ C

exp→ C∗ → 0. Hence �M,Z = ũC : Z → C, x �→ 2πix and 
�M,C : C → C, z �→ 2πiz.
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• If MK = [LK → 0], then TZ(MC) = LC and TdR(MC) = LC⊗ZC and the map �M,Z

is the homomorphism LC → LC ⊗Z C, x �→ x ⊗ 1 and �M,C is the identity map.
• If MK = [u : Z → Gm] with u(1) = a ∈ K∗, then G� = Gm × Ga. Once fixed a 

complex logarithm log a of a we can construct an isomorphism Z × Z → TZ(MC) =
{(z, y) ∈ C × Z| exp(z) = ay} that maps the pair (k, y) to (y log a + 2πik, y). The 
homomorphism of periods becomes then the map �M,Z : Z × Z → C × C that sends 
(k, y) to (y log a + 2πik, y).

Note that over C the Hodge filtration V (M) ⊆ TdR(MK) of Remark 2.1.2 is obtained 
from the Hodge filtration of TC(MC) via �M,C.

2.3. Periods and transcendence

The proof of Theorem 2.7.1, which is the main outcome of the second section of this 
paper, makes use of deep results of transcendence theory that we recall below. First 
consider [43, Theorem 2].

Theorem 2.3.1. Let AK be an abelian variety of dimension d over K = Q. Let Θ: Cd →
Aan be the homomorphism given by the theta functions, inducing an isomorphism of the 
complex torus onto Aan. Assume that the derivations ∂/∂zi, (i = 1, . . . , d) are defined 
over K. If α = (αi) ∈ Cd is a complex vector �= 0 such that all αi lie in K, then Θ(α)
is transcendental over K. In particular, the periods are transcendental.

It can be generalized to semiabelian varieties as follows.

Theorem 2.3.2. Let GK be a semiabelian variety over K = Q. If 0 �= x ∈ Lie(GK), then 
exp(x) ∈ GC(C) is transcendental over K. In particular, Lie(GK) ∩ Ker(exp) = {0} in 
Lie(GC).

Proof. The assertion is known if GK = Gd
m,K due to fundamental work of Hermite and 

Lindemann on the transcendence of eβ for β a non zero algebraic number. The case GK

an abelian variety is Theorem 2.3.1. The general case follows then by dévissage. �
This type of results has been further generalised by Waldschmidt ([54, Thm. 5.2.1]):

Theorem 2.3.3. Let G be a commutative connected algebraic group over K = Q. Let 
ϕ : Cn → Gan be an analytic map such that the induced morphism on Lie algebras arises 
from a homomorphism of K-vector spaces Kn → Lie G. Let Γ ⊂ Cn be a subgroup 
containing n elements which are C-linearly independent and such that ϕ(Γ) ⊂ G(K). 
Then the algebraic dimension of ϕ, i.e. the dimension of the Zariski closure of the image 
of ϕ, is ≤ n.
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This implies the following result [17, Thm. 3.1], which is one of the technical inputs 
for the proof of our Theorem 2.7.1

Theorem 2.3.4. Let GK , HK be two connected commutative algebraic groups over K = Q. 
If the group H1(GC) generates Lie(GC) as a complex vector space, then the map

Lie : HomK-gr(GK ,HK) → {ψ ∈ HomK(Lie GK ,Lie HK)|ψC(H1(GC)) ⊆ H1(HC)}

is an isomorphism of Z-modules.

The condition on the group H1(GC) is satisfied whenever GC is a semiabelian variety 
(or its universal vectorial extension) since TZ(GC) = H1(GC) generates TdR(GC) =
Lie(G�

C) and hence Lie(GC). Note that Theorem 2.2.2 is a generalization of this fact. For 
completeness we also cite the following result [56, Thm 1], which is a consequence of the 
celebrated analytic subgroup theorem of Wüstholz. It implies the result of Waldschmidt 
is a special case. We will use it to give an alternative proof of Theorem 2.7.1:

Theorem 2.3.5. Let W be a commutative connected algebraic group over Q. Let S be 
a subset of exp−1(W (Q)

)
and let V ⊂ LieW be the smallest Q-vector subspace whose 

C-span contains S. Then, there exists a connected algebraic subgroup Z ⊂ W such that 
LieZ = V .

2.4. Period categories

For a fixed σ : K ↪→ C we consider a homological category for Betti-de Rham 
realizations as follows. Let ModZ,K be the following category: (i) objects are triples 
(HZ, HK , ω) where HZ is a finitely generated abelian group, HK is a finite dimensional 
K-vector space, and ω : HZ → HK ⊗K C is a homomorphism of groups; (ii) morphisms 
ϕ : (HZ, HK , ω) → (H ′

Z, H
′
K , ω′) are pairs ϕ := (ϕZ, ϕK) where ϕZ : HZ → H ′

Z is a 
group homomorphism, ϕK : HK → H ′

K is a K-linear homomorphism and ϕ is compati-
ble with ω and ω′, i.e., the following square

HZ
ω

ϕZ

HK ⊗K C

ϕK⊗1C

H ′
Z

ω′

H ′
K ⊗K C

(2.8)

commutes. For H = (HZ, HK , ω) in ModZ,K let

ωC : HZ ⊗Z C → HK ⊗K C (2.9)

be the induced C-linear mapping and denote Mod∼=
Z,K the full subcategory of ModZ,K

given by those objects such that ωC is a C-isomorphism.
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There is a Q-linear variant ModQ,K of this category where objects are (HQ, HK , ω) as 
above but HQ is a finite dimensional Q-vector space. Note that ModQ,K

∼= ModZ,K ⊗Q

is the category ModZ,K modulo torsion objects (see [12, B.3] for this notion).

Definition 2.4.1. We shall call Mod∼=
Z,K (resp. Mod∼=

Q,K) the category (resp. Q-linear cat-
egory) of homological periods.

Let Mod∼=,fr
Z,K (resp. Mod∼=,tor

Z,K ) be the full subcategory of Mod∼=
Z,K given by those objects 

H such that HZ is free (resp. is torsion). For any r ∈ Z we shall denote

Z(r) := (Z,K, (2πi)r) ∈ Mod∼=,fr
Z,K .

For H = (HZ, HK , ω) and H ′ = (H ′
Z, H

′
K , ω′) we can define

H ⊗H ′ := (HZ ⊗Z H ′
Z, HK ⊗K H ′

K , ω ⊗ ω′) (2.10)

and set H(r) := H ⊗ Z(r) the Tate twist. For H ∈ Mod∼=,fr
Z,K , say that H = (HZ, HK , ω)

with HZ free, we have duals H∨ ∈ Mod∼=,fr
Z,K given by

(HZ, HK , ω)∨ := (H∨
Z , H

∨
K , ω∨) (2.11)

where H∨
Z = Hom(HZ, Z) is the dual abelian group, H∨

K = Hom(HK , K) is the dual 
K-vector space, and

ω∨ : H∨
Z → H∨

K ⊗K C

is the composition of the canonical mapping H∨
Z → H∨

Z ⊗Z C with the C-isomorphism 
H∨

Z ⊗Z C
�−→ H∨

K ⊗K C given by the inverse of the C-dual of ωC in (2.9), i.e., ω∨(f) =
(f ⊗Z idC) ◦ ω−1

C for any f : HZ → Z, up to the canonical isomorphism H∨
K ⊗K C �

(HK ⊗K C)∨. We clearly get that (H∨)∨ = H and ( )∨ : Mod∼=,fr
Z,K → Mod∼=,fr

Z,K is a 
dualizing functor. Note that Z(r)∨ = Z(−r) so that H(r)∨ = H∨(−r) for r ∈ Z.

Similar constructions can be done for the Q-linear variant Mod∼=
Q,K . Note that Mod∼=

Q,K

(resp. Mod∼=,fr
Z,K) admits an internal Hom defined via the internal Hom of the category of 

finite dimensional Q-vector spaces (resp. lattices). Furthermore these categories do have 
an identity object: 1 = Z(0) ∈ Mod∼=,fr

Z,K and 1 = Q(0) ∈ Mod∼=
Q,K , respectively. For any 

object H of Mod∼=
Q,K we have H∨ = Hom(H, 1) and End(1) = Q. Hence all objects of 

Mod∼=
Q,K are reflexive. Similarly, for Mod∼=,fr

Z,K .

Lemma 2.4.2. The categories ModZ,K and Mod∼=
Z,K are abelian tensor categories. The 

category Mod∼=
Q,K is a neutral Tannakian category with fibre functor the forgetful functor 

to Q-vector spaces.
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Note that there is a cohomological version of Mod∼=
Z,K and Mod∼=

Q,K , which is called 
the de Rham–Betti category in the existing literature (cf. [3, 7.5]).

Definition 2.4.3. Let Mod∼=
K,Z be the category whose objects are triples (HK , HZ, η) where 

HK is a finite dimensional K-vector space, HZ is a finitely generated abelian group and

η : HK ⊗K C
�−→ HZ ⊗Z C

is an isomorphism of C-vector spaces. We shall call Mod∼=
K,Z and its Q-linear variant 

Mod∼=
K,Q the categories of cohomological periods.

The category Mod∼=,fr
K,Z is denoted CdRB in [17, §2.1] and in [16, §5.3]. The Q-linear 

variant Mod∼=
K,Q is denoted (K, Q)-Vect in [33, Chap. 5]. For these categories we have 

an analogue of Lemma 2.4.2; in particular, a dualizing functor exists.

Lemma 2.4.4. There is canonical equivalence given by the functor

ς : Mod∼=
Z,K → Mod∼=

K,Z ς(HZ, HK , ω) := (HK , HZ, ω
−1
C )

which induces an equivalence between the tensor subcategories Mod∼=,fr
Z,K and Mod∼=,fr

K,Z.

We set

Z(r) := ς(Z(r)) ∈ Mod∼=,fr
K,Z.

Note that, for H ∈ Mod∼=,fr
Z,K we may consider H◦ ∈ Mod∼=,fr

K,Z setting

(HZ, HK , ω)◦ := (H∨
K , H∨

Z , ω
◦) = ς(H∨) = ς(H)∨ (2.12)

where ω◦ : H∨
K ⊗K C

�−→ H∨
Z ⊗Z C is just given by the C-dual of ωC in (2.9). We then 

have Z(r)◦ = Z(−r) ∈ Mod∼=,fr
K,Z so that H(r)◦ = H◦(−r) for all r ∈ Z.

The functor ( )◦ is an anti-equivalence and there is an induced equivalence Mod∼=
Q,K

∼=
(Mod∼=

K,Q)op of neutral Tannakian categories.

2.5. Betti–de Rham realization and Cartier duality

Now recall the period mapping �M,Z : TZ(MC) → TdR(MK) ⊗K C provided by Defi-
nition 2.2.1. According to Theorem 2.2.2 we have that �M,C is a C-isomorphism.

Definition 2.5.1. For K a subfield of C, MK ∈ tM1(K) and �M,Z we set

TBdR(MK) := (TZ(MC), TdR(MK), �M,Z) ∈ Mod∼=
Z,K



F. Andreatta et al. / Advances in Mathematics 359 (2020) 106880 21
and the Q-linear variant

TQ
BdR(MK) := (TQ(MC), TdR(MK), �M,Q) ∈ Mod∼=

Q,K

where TQ(MC) := TZ(MC) ⊗ZQ. Call these realizations the Betti–de Rham realizations.

Since the period mapping �M,Z in TBdR(MK) is covariantly functorial, by the con-
structions in (2.6) and (2.5), the Betti–de Rham realization yields a functor

TBdR : tM1(K) → Mod∼=
Z,K (2.13)

in the homological category Mod∼=
Z,K . Similarly, with rational coefficients, we get a functor 

from 1-motives up to isogenies MQ
1 (K) ∼= tMQ

1 (K) to Mod∼=
Q,K . By Examples 2.2.3 we 

have TBdR(Z[0]) = Z(0) and TBdR(Gm[−1]) = Z(1).

Definition 2.5.2. For H = (HZ, HK , ω) ∈ Mod∼=,fr
Z,K define the Cartier dual

H∗ := (H∨
Z , H

∨
K , 2πiω∨) = H∨(1) = H(−1)∨ = Hom(H,Z(1)) ∈ Mod∼=,fr

Z,K .

Note that this construction is reflexive.

Theorem 2.5.3. For MK ∈ tM1(K) free with Cartier dual M∗
K we have that

TBdR(MK)∗ ∼= TBdR(M∗
K)

Proof. It suffices to prove that the Poincaré biextension of MK provides a natural mor-
phism T (MK) ⊗ T (M∗

K) → Z(1) which induces the usual dualities 〈 , 〉Z on TZ’s and 
〈 , 〉dR on TdR’s constructed in [23, §10.2.3 & §10.2.7]. This is proved in [23, Prop. 
10.2.8]. �

Note that we also have a de Rham–Betti contravariant realization in the cohomological 
category Mod∼=

K,Z. Recall from [12, §1.13] that we also have the category of 1-motives 
with cotorsion tM1. Cartier duality

( )∗ : tM1
�−→ tM1 (2.14)

is an anti-equivalence of abelian categories.

Definition 2.5.4. For M ∈ tM1 denote

TdRB(M) := ς(TBdR(M∗)) = (TdR(M∗), TZ(M∗), ηM∗) ∈ Mod∼=
K,Z

where ηM∗ := �−1
M∗,C is the inverse of the C-linear period isomorphism �M∗,C of the 

Cartier dual M∗ ∈ tM1 (see Theorem 2.2.2). Call this realization (and its Q-linear 
variant) the de Rham–Betti realization.
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With this definition we get a functor

TdRB : tMop
1 → Mod∼=

K,Z. (2.15)

Now we have TdRB(Z[0]) = Z(1) and TdRB(Gm[−1]) = Z(0). With the notation adopted 
in (2.12), we also have

TBdR(M)◦(1) = (TdR(M)∨, TZ(M)∨, (2πi)−1�◦
M).

Lemma 2.5.5. We have a natural isomorphism of functors TdRB( ) ∼= TBdR( )◦(1).

Proof. For M ∈ M1 and its Cartier dual M∗ we have that TBdR(M)∗ ∼= TBdR(M∗) ∈
Mod∼=,fr

Z,K by Theorem 2.5.3. Thus the period isomorphism of the Cartier dual �M∗,Z =
2πi�∨

M,Z and its C-inverse �−1
M∗,C = (2πi)−1�◦

M. �
2.6. Weight and Hodge filtrations

Consider the category FModZ,K given by objects in ModZ,K endowed with finite and 
exhaustive filtrations and morphisms that respect the filtrations.

More precisely, an object of FModZ,K is an abelian group HZ endowed with a (weight) 
filtration W•HZ and a K-vector space HK endowed with two filtrations W•HK , F•HK , 
along with the corresponding compatibilities of the ω’s on weight filtrations.

Let MK = [LK → GK ] be a 1-motive over K and, as usual, let TK denote the maximal 
subtorus of GK . Since the Betti-de Rham realization (2.13) is functorial and compatible 
with the canonical weight filtration (2.3) on TZ(MC) and TdR(MK) is filtered by V (M), 
the Hodge filtration as in Remark 2.1.2, we also get a realization functor

FTBdR : tM1(K) → FModZ,K . (2.16)

We have

(TZ(MC), TdR(MK), �M,Z) ⊇ (TZ(GC), TdR(GK), �G,Z) ⊇ (TZ(TC), TdR(TK), �T,Z).

Note that:

Lemma 2.6.1. Let K = Q. Let MK and NK be two free 1-motives over K. Then any 
morphism ϕ : TBdR(MK) → TBdR(NK) in Mod∼=,fr

Z,K preserves the weight filtrations.

Proof. Let ϕ = (ϕZ, ϕK) : (TZ(MC), TdR(MK), �M,Z) → (TZ(NC), TdR(NK), �N,Z) for 
MK and NK one of the following pure 1-motives: [ZK → 0], [0 → Gm,K ] and [0 → AK ], 
where AK is an abelian variety. We show that ϕ = 0 for different weights, in all cases. 
As K is algebraically closed this implies that ϕ = 0 for all pure 1-motives of different 
weights and this easily yields the claimed compatibility.
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For MK = [ZK → 0] and NK = [0 → Gm,K ] (respectively MK = [0 → Gm,K ] and 
NK = [ZK → 0]) we have TBdR([ZK → 0]) = Z(0), TBdR([0 → Gm,K ]) = Z(1) and 
ϕ = 0 as ϕK : K → K is given by the multiplication by an algebraic number but the 
compatibility (2.8) forces such algebraic number to be n2πi (respectively n/2πi) for some 
n ∈ Z.

Similarly, for MK = [ZK → 0] and NK = [0 → AK ] we have that �Z,N◦ϕZ(1) = ϕK(1)
if, and only if, ϕ = 0. Indeed, the preceding equality implies that dρA ◦�Z,N ◦ ϕZ(1) =
dρA ◦ϕK(1). Now, the right-hand term is in Lie(AK) while by Remark 2.3.2 the left-hand 
term would give a transcendental point of Lie(AC) if ϕZ(1) �= 0.

Dually, for MK = [0 → AK ] and NK = [0 → Gm,K ] by making use of Theorem 2.5.3
we then get ϕ∗ = 0 thus ϕ = 0.

Finally, for MK = [0 → Gm,K ] and NK = [0 → AK ] we can apply Theorem 2.3.4
to the pair (ϕK , ϕZ) so that, dually, making use of Theorem 2.5.3, the same holds for 
MK = [0 → AK ] and NK = [ZK → 0]. �

Let MK = [uK : LK → GK ] and NK = [vK : FK → HK ] be free and let 
ϕ : TBdR(MK) → TBdR(NK) be a morphism in Mod∼=

Z,K . Then we have a K-linear 
mapping ϕK : TdR(MK) → TdR(NK) and a homomorphism ϕZ : TZ(MC) → TZ(NC)
which is compatible with the weight filtrations, by Lemma 2.6.1. Moreover, ϕZ and 
ϕK are compatible with the �’s as in (2.8). We have that ϕZ restricts to a homomor-
phism

W−1ϕZ : W−1TZ(MC) := TZ(GC) ∼= H1(G�
C) → W−1TZ(NC) := TZ(HC) ∼= H1(H�

C)
(2.17)

and we get an induced map on grW0 as follows

ϕZ,0 : grW0 TZ(MC) = TZ(MC)/TZ(GC) = LC → grW0 TZ(NC) = TZ(NC)/TZ(HC) = FC.

(2.18)

Note that ϕZ,0 is indeed defined over Q.

Lemma 2.6.2. Let K = Q. Let MK and NK be two free 1-motives over K. Then any 
morphism ϕ : TBdR(MK) → TBdR(NK) in Mod∼=,fr

Z,K preserves the Hodge filtrations.

Proof. Let MK = [uK : LK → GK ] and NK = [vK : FK → HK ] be free and let 
ϕ : TBdR(MK) → TBdR(NK) be a morphism in Mod∼=

Z,K . We have to show that 
ϕK(V (M)) ⊆ V (N) where V (M) is the additive part of G�

K and V (N) is that of H�
K ; 

see Remark 2.1.2. Recall the commutative diagram
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TZ(MC)

�M,Z

ϕZ
TZ(NC)

�N,Z

TdR(MC)
ϕK⊗idC

TdR(NC).

(2.19)

By definition of �M,Z and (2.17) there is then a commutative diagram

H1(G�
C)

W−1ϕZ

H1(H�
C)

Lie(G�
C)

ϕK⊗idC

Lie(H�
C)

where the vertical arrows are those in the horizontal sequence in the middle of diagram 
(2.6) for M and N respectively. Hence there exists an analytic morphism hC : G�

C → H�
C

with dhC = ϕK ⊗ idC. It is sufficient to prove that hC is algebraic and defined over K to 
conclude by the structure theorem of algebraic K-groups that hK(V (M)) ⊆ V (N) and 
hence that ϕK = dhK preserves the Hodge filtrations.

If LK = 0, by Lemma 2.6.1, ϕ factors through W−1TBdR(NK) = TBdR(HK). Hence we 
may assume FK = 0 as well. It follows then from Theorem 2.3.4 applied to G� and H�

that the above morphism hC is indeed algebraic and defined over K. Hence ϕK preserves 
the Hodge filtrations.

Now let LK �= 0 and set L�
K = LK⊗Ga,K . Since ϕ preserves the weights by Lemma 2.6.1

we get W−1ϕ : TBdR(GK) → TBdR(HK). By the previous step W−1ϕK(V (G)) ⊆ V (H) ⊆
V (N). We thus obtain the following commutative diagram

TZ(MC)

ϕZ

�M,Z

TdR(M)/V (G) ⊗C
exp

γ

G�
C/V (G)C GC ⊕ L�

C

δ

TZ(NC)
�N,Z

TdR(N)/V (N) ⊗C
exp

H�
C/V (N)C HC

where the mapping γ is induced by ϕK , we have the canonical identification of 
G�
K/V (G) = GK ⊕ L�

K and δ = gC + β with gC = gK ⊗ idC and gK : GK → HK induced 
by W−1ϕK . We are left to show that β : L�

C → HC is zero. Since the composition of the 
upper arrows in the previous diagram maps TZ(GC) to 0 ⊕ 0, we obtain a commutative 
square

LC

ϕZ,0

(u,1)
GC ⊕ L�

C

δ

FC
v HC
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where ϕZ,0 is the induced map as in (2.18). In particular, for x ∈ LK(K) we have 
β(x ⊗ 1) = v(ϕZ,0(x)) − gK(u(x)) = γ − dgK ⊗ idC is in HK(K). On the other hand 
β(x ⊗ 1) = exp dβ(x ⊗ 1). Since dβ = dδ − dgK ⊗ idC we have that dβ(x ⊗ 1) belongs 
to Lie(HK) regarded as a K-linear subspace of Lie(HC). By Remark 2.3.2 we get that 
β(x ⊗ 1) = 0 and therefore that β = 0. �
2.7. Full faithfulness

We are now ready to show that our previous Lemmas 2.6.1 and 2.6.2 yield the full 
faithfulness of Betti–de Rham and de Rham–Betti realizations.

Theorem 2.7.1. The functors TBdR in (2.13) and TdRB in (2.15) restricted to M1(K) are 
fully faithful over K = Q.

Proof. Clearly, the functor TBdR (resp. TdRB) is faithful (cf. [4, proof of Lemma 3.3.2]) 
and we are left to show the fullness. Making use of Lemma 2.5.5 we are left to check the 
fullness for TBdR. Let MK = [uK : LK → GK ] and NK = [vK : FK → HK ] be free and let 
ϕ : TBdR(MK) → TBdR(NK) be a morphism in Mod∼=

Z,K .
For 0-motives, i.e., if GK = HK = 0, we have LK

∼= Zr
K and FK

∼= Zs
K , ϕZ : TZ(MC) ∼=

Zr → TZ(NC) ∼= Zs
K provides a morphism f : MK → NK such that TBdR(f) = ϕ.

If the weight −1 parts are non-zero, by Lemma 2.6.1 ϕZ restricts to a homomorphism 
W−1ϕZ as in (2.17) and it yields a morphism ϕZ,0 as in (2.18) i.e., ϕZ,0 is the map 
induced by ϕZ on grW0 . If we set fC := ϕZ,0 the homomorphism fC : LC → FC trivially 
descends to a homomorphism fK : LK → FK over K = Q.

Let’s now consider ϕC := ϕK ⊗K idC and translate (2.17) and (2.19), as in the proof 
of Lemma 2.6.2, in the following commutative diagram with exact rows

0 H1(G�
C)

W−1ϕZ

Lie(G�
C)

exp

ϕC

G�
C

ψ

0

0 H1(H�
C) Lie(H�

C)
exp

H�
C 0

(2.20)

yielding a morphism of analytic groups ψ : G�
C → H�

C on the quotients via the ex-
ponential mapping exp, as indicated above. Now, since by Lemma 2.6.2, we have 
ϕK(V (M)) ⊆ V (N), ψ(V (MC)) ⊆ V (NC), the diagram (2.20) induces a commutative 
diagram

0 H1(GC)

W−1ϕZ

Lie(GC)
exp

ϕ′
C

GC

ψ′

0

0 H1(HC) Lie(HC)
exp

HC 0.
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As ϕ′
C is the base change of the K-linear map Lie(GK) → Lie(HK) induced by ϕK , it fol-

lows from Theorem 2.3.4 that ψ′ = gC is the base change of the morphism gK : GK → HK

over K = Q induced by W−1ϕK (see the proof of Lemma 2.6.2).
We are left to check that h := (fK , gK) gives a morphism h : MK → NK , i.e., that 

gK ◦ uK = vK ◦ fK , and to see that TBdR(h) = ϕ. To show that h is a morphism of 
1-motives we may work after base change to C and, using (2.6), it suffices to prove that 
ψ ◦ u�C = v�C ◦ fC. Consider the following diagram

TZ(MC)
ϕZ

�M,Z

ẽxp
TZ(NC)

�N,Z

ẽxp

LC

u�
C

fC FC

v�C
TdR(MK) ⊗K C

ϕC

exp

TdR(NK) ⊗K C

exp

G�
C

ψ
H�
C .

All squares are commutative. Indeed, exp ◦�M,Z = u�C ◦ ẽxp and exp ◦�N,Z = v�C ◦ ẽxp by 
(2.6), fC ◦ ẽxp = ẽxp◦ϕZ by definition of fC, ϕC ◦�M,Z = �N,Z◦ϕZ by the compatibility 
of ϕZ with ϕK as in (2.8), and finally ψ ◦ exp = exp ◦ϕC by (2.20). One concludes by 
the surjectivity of the map ẽxp that also ψ ◦ u�C = v�C ◦ fC.

Now consider the morphism α := TBdR(h) − ϕ : TBdR(MK) → TBdR(NK) in Mod∼=
Z,K . 

By construction W−1ϕZ = W−1TZ(h) so that α is vanishing on TBdR(GK). Moreover we 
have that grW0 TZ(h) = ϕZ,0 so that α induces a morphism in Mod∼=

Z,K from TBdR(LK)
to TBdR(HK) which is trivial by Lemma 2.6.1. �
Remark 2.7.2. In the proof of Theorem 2.7.1, in order to show that (fK , gK) : MK → NK

is a morphism we are left to check that gK ◦uK = vK ◦fK . Remark that this also follows 
from two key facts: (i) the pullbacks ũC and ṽC of uC and vC factor through the period 
mappings �’s and (ii) the mappings ϕZ and ϕK are compatible with the �’s.

In fact, according to the above notation, for x ∈ LC pick l̃og(x) ∈ TZ(MC) and note 
that ϕZ(l̃og(x)) = l̃og(f(x)). Making use of (2.7) we obtain

gC(uC(x)) = gC exp dρG�M,Z(l̃og(x)) = exp dρHdg�C�M,Z(l̃og(x))

by the functoriality of exp. Now ψ = ϕK ⊗K 1C and we are assuming the compatibility 
(ϕK ⊗K 1C) ◦�M,Z = �N,Z ◦ ϕZ so that

gC(uC(x)) = exp dρH�N,ZϕZ(l̃og(x)) = exp dρH�N,Z(l̃og(f(x))) = vC(f(x))

using (2.7) again, as claimed.
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We notice that an alternative proof of Theorem 2.7.1 can be given using Wüstholz’s 
analytic subgroup Theorem 2.3.5 as follows:

Alternative Proof of Theorem 2.7.1. Let MK = [uK : LK → GK ] and NK = [vK : FK →
HK ] be free 1-motives and let ϕ = (ϕZ, ϕK) : TBdR(MK) → TBdR(NK) be a morphism 
in Mod∼=

Z,K . Let W = G�
K × H�

K and note that we have commutative squares

T := TZ(MC)
(id,ϕZ)

TZ(MC) × TZ(NC)
�M,Z×�N,Z

LieWC = Lie G�
C ⊕ Lie H�

C

exp

LC
(id,ϕZ,0)

LC × FC
u�×v�

WC := G�
C × H�

C

where the horizontal arrows are injective. Let S denote the image of T in LieWC; it is 
contained in exp−1(W (Q)

)
since the image of LC×FC via u�× v� is contained in W (Q). 

Let V denote the image of LieG�
K in LieW via the map id ⊕ ϕK . By the compatibility 

of ϕZ and ϕK over C via the homomorphisms of periods, VC coincides with the C-span 
of S. It then follows from Theorem 2.3.5 that there exists an algebraic subgroup Z ⊂ W

whose Lie algebra is V . Now, the composition of the inclusion Z → W with the projection 
W → G�

K is an isogeny, since it is an isomorphism on Lie algebras. In fact, it is an 
isomorphism; indeed the injective map T → VC = LieZC ⊂ LieWC maps H1(G�

C) ⊂
T into H1(ZC) ⊂ H1(WC) and hence the isomorphism LieZC

∼−→ Lie G�
C restricts 

to an isomorphism H1(ZC) ∼−→ H1(G�
C). Let γ : G�

K → H�
K be the homomorphism of 

algebraic K-groups defined by composing the inverse of the isomorphism Z → G�
K with 

the inclusion Z → W and the second projection W → H�
K . By construction Lie γ = ϕK .

In order to see that f := (ϕZ,0, γ) is a morphism of 1-motives with TBdR(f) = ϕ

it suffices to check that γC ◦ u�C = v�C ◦ ϕZ,0 as morphisms LC → H�
C. The latter 

fact is equivalent to the equality (idG� , γ) ◦ u� = (u�, v� ◦ ϕZ,0) as morphisms LC →
WC, and, by the above diagram, this is satisfied whenever (idLie G� , Lie γC) ◦ �M,Z =
(�M,Z, �N,Z ◦ ϕZ) : T → LieWC. Then we conclude by the commutativity of diagram 
(2.8) since Lie γC = ϕK ⊗ idC. �
2.8. Descent to number fields

Let K ′/K be a field extension with K ′ ⊆ Q. Note the following commutative diagram 
of functors

M1(K)
TBdR Mod∼=,fr

Z,K

M1(K ′)
TBdR Mod∼=,fr

Z,K′

(2.21)
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where the functor on the left is the usual base-change and the vertical functor on the 
right maps (HZ, HK , ω) to (HZ, HK⊗KK ′, ω) using the canonical isomorphism (HK⊗K

K ′) ⊗K′ C � HK ⊗K C.

Proposition 2.8.1. Let K be a subfield of Q. The functor TBdR : M1(K) → Mod∼=,fr
Z,K is 

fully faithful.

Proof. The functor TBdR is fully faithful over Q by Theorem 2.7.1; hence it is faithful 
over K, since the left-hand vertical functor in (2.21) is faithful.

Assume now MK = [u : LK → GK ], NK = [v : FK → HK ] are 1-motives over K and let 
(ϕZ, ϕK) : TBdR(MK) → TBdR(NK) be a morphism in ModZ,K . By Theorem 2.7.1 there 
exists a morphism ψ : MQ → NQ such that TBdR(ψ) = (ϕZ, ϕK ⊗K idQ). Note that there 
exists a subfield K ′ ⊂ Q with K ′/K finite Galois and ψ = (f, g) is defined over K ′. We 
may further assume that LK′ , FK′ are constant free. Hence grW0 ϕZ descends over K ′ and 
we have a commutative square

LK′
f=grW0 (ϕZ)

FK′

LK′ ⊗Ga,K′
grW0 (ϕK′ )

FK′ ⊗Ga,K′

(2.22)

where the vertical morphisms map x to x ⊗ 1 (and descend the homomorphism of peri-
ods for grW0 (M) and grW0 (N) respectively). By diagram (2.22) f descends over K since 
grW0 (ϕK′) = grW0 (ϕK) ⊗ idK′ and the vertical morphisms are injective on points. In 
order to check that ψ descends over K, we may then reduce to the case LK = FK = 0. 
By Cartier duality, we may further reduce to the case where LK = FK = 0 and 
GK = AK, HK = BK are abelian varieties.

For any τ ∈ Gal(K ′/K) let τ also denote the corresponding K-automorphism of 
SpecK ′. Further let τ∗AK′ denote the base change of AK′ along τ and let τAK′ : AK′ →
AK′ be equal to idAK ⊗ τ . It is not a morphism of K ′-schemes in general. Finally let 
ιA,τ : AK′ → τ∗AK′ be the canonical morphism of K ′-schemes such that τAK′ is the 
composition of ιA,τ with the projection τ∗AK′ → AK′ .

In order to prove that the morphism ψ : AK′ → BK′ is defined over K we have to 
check that for any τ ∈ Gal(K ′/K) it is τBK′ ◦ ψ = ψ ◦ τAK′ . In fact it is sufficient to 
check that ιB,τ ◦ ψ = (τ∗ψ) ◦ ιA,τ as morphisms of K ′-schemes AK′ → τ∗BK′ , where 
τ∗ψ : τ∗AK′ → τ∗BK′ is the obvious base change of ψ. By faithfulness of TBdR, it is 
sufficient to check that

TBdR(ιB,τ ) ◦ TBdR(ψ) = TBdR(τ∗ψ) ◦ TBdR(ιA,τ ). (2.23)

Note that since AK is a K-form of AK′ , we may identify AK′ with τ∗AK′ so that ιA,τ
becomes the identity map. Further TdR(τ∗ψ) = τ∗(ϕK ⊗ idK′) may be identified with 
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ϕK ⊗ idK′ and TZ(τ∗ψ) with ϕZ. We conclude that TBdR(τ∗ψ) may be identified with 
(ϕZ, ϕK ⊗ idK′) and hence (2.23) is clear. �
3. Some evidence: description of some Grothendieck arithmetic invariants

Throughout this section we assume that K = Q and by scheme we mean a separated 
scheme of finite type over K. In order to show the period conjecture for motivic coho-
mology (1.6) we are left to deal with rational coefficients. However, we prefer to keep 
the arguments integral when possible. In general, for any algebraic scheme X over K, 
by making use of the period isomorphism �p,q

X and its inverse ηp,qX in Definition 1.2.4 we 
set

Hp,q
BdR(X) := (Hp(Xan,Zan(q)), Hp

dR(X), �p,q
X ) ∈ Mod∼=

Z,K

and

Hp,q
dRB(X) := (Hp

dR(X), Hp(Xan,Zan(q)), ηp,qX ) ∈ Mod∼=
K,Z.

Note that ς(Hp,q
BdR(X)) = Hp,q

dRB(X). We have that �p,q
X = (2πi)q�p,0

X and ηp,qX =
(2πi)−qηp,0X where ηp,0X : Hp

dR(X) ⊗K C
�−→ Hp(Xan, C) is the usual de Rham–Betti 

comparison isomorphism (up to a sign cf. [33, Def. 5.3.1] and [45, Lemma 4.1.1 & Prop. 
4.1.2] for the Nisnevich topology). In particular we have that Hp,q

dRB(X) = Hp,0
dRB(X)(q).

3.1. Period cohomology revisited

For H ∈ ModZ,K we set

H� := Hom(Z(0), H)

where the Hom-group is taken in ModZ,K . This yields a functor

( )� : ModZ,K → ModZ

to the category of finitely generated abelian groups. Similarly, let H� := Hom(Z(0), H)
for H ∈ Mod∼=

K,Z where now the Hom-group is taken in Mod∼=
K,Z. By Lemma 2.4.4, for 

H ∈ Mod∼=
Z,K we clearly have that

H� = ς(H)�.

Moreover, for H ∈ Mod∼=,fr
Z,K we have H∗ = H(−1)∨ ∈ Mod∼=,fr

Z,K so that

H∗
� = Hom(Z(0), H(−1)∨) = Hom(H,Z(1)).
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Note that for H ∈ Mod∼=,fr
Z,K we also have H◦(1) = H(−1)◦ ∈ Mod∼=,fr

K,Z (see (2.12)) and 
we shall denote

H� := HomMod∼=,fr
K,Z

(Z(0), H(−1)◦) = HomMod∼=,fr
Z,K

(H,Z(1)) = H∗
�.

With rational coefficients, for H ∈ ModZ,K ⊗Q and the corresponding HQ ∈ ModQ,K

we then have H� ⊗Z Q ∼= HQ
� := Hom(Q(0), HQ) and, similarly, H� ⊗Z Q ∼= H�

Q . We 
have (cf. [17, Def. 2.1] and [16, (5.15)]):

Lemma 3.1.1. For H = (HZ, HK , ω) ∈ ModZ,K we have H�
∼= HZ ∩HK where ∩ is the 

inverse image of HK under ω : HZ → HK ⊗K C. Moreover, for H = (HK , HZ, η) ∈
Mod∼=

K,Z, we have that H�
∼= HK ∩HZ where ∩ is the inverse image of HK under the 

composition of HZ → HZ ⊗Z C
η−1

−→ HK ⊗K C.

Proof. The identifications are given by mapping ϕ ∈ Hom(Z(0), H) to ϕ(1) ∈ HZ ∩
HK . �

Similarly, for H = (HK , HQ, ω) ∈ Mod∼=
K,Q we have that HQ

�
∼= HK ∩HQ. We then 

clearly obtain:

Corollary 3.1.2. For H = Hp,q
dRB(X) we have that H�

∼= Hp,q
� (X) coincides with the 

period cohomology of Definition 1.2.7.

Moreover, composing the functor H � H� with the Betti–de Rham realization of 
1-motives TBdR in (2.13) we obtain a functor

T� := ( )� ◦ TBdR : tM1(K) → ModZ. (3.1)

For a 1-motive M ∈ tM1(K) we also have TdRB(M) ∈ Mod∼=
K,Z. Composing H � H�

with the de Rham–Betti realization TdRB in (2.15) now yields a functor

T� := ( )� ◦ TdRB : tM1(K)op → ModZ.

We also note that Lemma 2.5.5 yields:

Corollary 3.1.3. For M ∈ M1(K) we have that T�(M) := TdRB(M)� ∼= TBdR(M)�.

Working with rational coefficients we have TQ
BdR := TBdR⊗Q (resp. TQ

dRB := TdRB⊗Q) 
and we then get a functor TQ

� (resp. a contravariant functor T�
Q ) from the category of 

1-motives up to isogenies MQ
1 := M1 ⊗ Q ∼= tM1 ⊗ Q ∼= tM1 ⊗ Q to the category of 

finite dimensional Q-vector spaces. Moreover, applying our Theorem 2.7.1 we have:
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Corollary 3.1.4. For M = [u : L → G] ∈ M1(Q) with Cartier dual M∗ = [u∗ : L∗ → G∗] ∈
M1(Q) we have that

T�(M) ∼= TZ(MC) ∩ TdR(MK) ∼= Ker u

and

T�(M) ∼= TdR(M∗
K) ∩ TZ(M∗

C) ∼= Ker u∗.

Proof. Note that Z(0) = TBdR(Z[0]) and for TBdR(M) = (TZ(MC), TdR(MK), �M,Z) we 
have

Ker u ∼= HomM1(K)(Z[0],M) TBdR−→ Hom(TBdR(Z[0]), TBdR(M)) = T�(M)

which is an isomorphism over K = Q as proven in Theorem 2.7.1. We just apply 
Lemma 3.1.1. Moreover, TdRB(M) = (TdR(M∗

K), TZ(M∗
C), ηM∗), Z(0) = TdRB(Gm[−1])

and we have an isomorphism

HomM1(K)(M,Gm[−1]) TdRB−→ Hom(TdRB(Gm[−1]), TdRB(M)) = T�(M)

and HomM1(K)(M, Gm[−1]) ∼= HomM1(K)(Z[0], M∗) = Ker u∗ showing the claim. �
3.2. Period conjecture for q = 1

Recall that Z(1) ∈ DMeff
ét is canonically identified with Tot([0 → Gm]) = Gm[−1] (see 

[12, Lemma 1.8.7]). We then have

Hp,1(X) ∼= Hp−1
éh (X,Gm)

for all p ∈ Z. Recall the motivic Albanese triangulated functor

LAlb : DMeff
gm → Db(M1)

where DMeff
gm ⊂ DMeff

Nis is the subcategory of compact objects, i.e., the category of 
geometric motives, which has been constructed in [12, Def. 5.2.1] (see also [10, Thm. 
2.4.1]). This functor is integrally defined. Rationally, LAlb yields a left adjoint to the 
inclusion functor given by Tot in (2.4) (see [12, Thm. 6.2.1]).

Applying LAlb to the motive of any algebraic scheme X we get LAlb(X) ∈ Db(M1), 
a complex of 1-motives whose p-th homology LpAlb(X) ∈ tM1 is a 1-motive (with 
cotorsion, see [12, Def. 8.2.1]). Dually, we have RPic(X) ∈ Db(tM1) (see [12, §8.3]). 
Taking the Cartier dual of LpAlb(X) we get RpPic(X) ∈ tM1 and conversely via (2.14). 
Now, the motivic Albanese map

M(X) → TotLAlb(X)
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in DMeff
ét (see [12, §8.2.7]) yields an integrally defined map

HomDb(tM1)(LAlb(X), [0 → Gm][p]) → HomDMeff
ét

(M(X),Z(1)[p]) ∼= Hp−1
éh (X,Gm).

(3.2)

Rationally (by adjunction), this map becomes a Q-linear isomorphism

Hp−1
éh (X,Gm)Q ∼= HomDMeff

ét,Q
(M(X),Z(1)[p]) �←− HomDb(MQ

1 )(LAlb(X),Gm[−1][p]).
(3.3)

Using (2.14) we set

Extp(Z,RPic(X)) := HomDb(tM1)(Z,RPic(X)[p]) ∼= HomDb(tM1)(LAlb(X),Gm[−1][p])

for all p ∈ Z and we also have (cf. [12, Lemma 10.5.1]):

Lemma 3.2.1. For any X over K = Q and p ∈ Z there is an extension

0 → Ext(Z,Rp−1Pic(X)) → Extp(Z,RPic(X)) π−→ Hom(Z,RpPic(X)) → 0

where the Hom and Ext are here taken in the category tM1 of 1-motives with torsion. The 
composition of (3.2) with the period regulator rp,1� : Hp−1

éh (X, Gm) → Hp,1
� (X) induces a 

mapping

θp� : Hom(Z,RpPic(X)) → Hp,1
� (X).

Proof. In fact, the canonical spectral sequence

Ep,q
2 = Extp(Z,RqPic(X)) ⇒ Extp+q(Z,RPic(X))

yields the claimed extension since the abelian category of 1-motives with torsion tM1(K)
is of homological dimension 1 over the algebraically closed field K = Q. Moreover, for 
any 1-motive M = RpPic(X) ∈ tM1(K) the group Ext(Z, M) is divisible and the group 
Hom(Z, M) is finitely generated (as it follows easily by making use of [12, §C.8]). The 
horizontal mapping in the following commutative diagram

Ext(Z,Rp−1Pic(X)) zero

Extp(Z,RPic(X))

π

Hp−1
éh (X,Gm)

rp,1�

Hp,1
� (X)

Hom(Z,RpPic(X)) θp
�
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obtained by the composition of (3.2) with the period regulator rp,1� , is therefore sending 
Ext(Z, Rp−1Pic(X)) to zero, since Hp,1

� (X) is finitely generated. We then get the induced 
mapping θp� as indicated in the diagram. �

Also for the Betti realization, there is an integrally defined group homomorphism

θpZ : TZ(RpPic(X)C)fr → Hp(Xan,Zan(1))fr

induced via Cartier duality, by applying the Betti realization βσ in (1.3) to the motivic 
Albanese (3.2) in a canonical way. This is justified after the natural identification of 
Deligne’s TZ with the Betti realization βσ on 1-motives (see [12, Thm. 15.4.1] and [53]
for an explicit construction of the natural isomorphism TZ ∼= βσ Tot). Rationally, it 
yields an injection

θpQ : TQ(RpPic(X)C) ∼= Hp
(1)(Xan,Qan(1)) ⊂ Hp(Xan,Qan(1))

where the notation Hp
(1) is taken to indicate the largest 1-motivic part of Hp(Xan, Qan(1))

(more precisely, this is given by the underlying Q-vector space associated to the mixed 
Hodge structure, see [12, Cor. 15.3.1]).

For the de Rham realization, similarly, we have a K-linear mapping

θpdR : TdR(RpPic(X)) → Hp
dR(X).

Actually, for M = LpAlb(X) and M∗ = RpPic(X), we have ηM∗ the C-inverse of the 
period isomorphism �M∗,C in Theorem 2.2.2 and ηp,1X which is the inverse of the period 
isomorphism in Definition 1.2.4. Together with θpZ and θpdR, we obtain a diagram

TZ(RpPic(X)C)C
θp
Z⊗C

Hp(Xan,Zan(1))C
2πi

Hp(Xan,C)

TdR(RpPic(X))C

ηM∗

θp
dR⊗C

Hp
dR(X) ⊗K C.

ηp,1
X

ηp,0
X

We have that this diagram commutes, in fact:

Lemma 3.2.2. Let X be over the field K = Q and p ∈ Z. There is a morphism

θpdRB := (θpdR, θ
p
Z) : TdRB(LpAlb(X))fr → Hp,1

dRB(X)fr

in the category Mod∼=,fr
K,Z. Rationally θpdRB ⊗ Q becomes injective. Moreover, θ0

dRB and 
θ1
dRB are integrally defined isomorphisms.

Proof. This is a consequence of [12, Cor. 16.3.2]. For p = 0, 1 it is straightforward that 
they are isomorphisms. �
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Lemma 3.2.3. The map θp� defined in Lemma 3.2.1 factors through the de Rham-Betti 
realization via the Cartier duals (2.14), i.e., we have the following factorization

Hom(Z,RpPic(X))

θp
�

Hom(LpAlb(X),Gm[−1])
TdRB

T�(LpAlb(X)) ι
Hp,1

� (X)

such that ι is given by θpdRB in Lemma 3.2.2, using Corollary 3.1.2, as follows

T�(LpAlb(X)) = Hom(Z(0), TdRB(LpAlb(X))) → Hom(Z(0), Hp,1
dRB(X)) ∼= Hp,1

� (X)

and the latter Hom is here taken in Mod∼=
K,Z.

Proof. By construction θp� is induced by rp,1� on a quotient via the motivic Albanese (3.2)
applying Betti and de Rham realizations so that the claimed factorization is clear. �

Thus, showing the period conjecture (1.6) for q = 1 is equivalent to seeing that 
θp� is surjective, rationally. Recall (see [12, Prop. 10.4.2]) that for any X of dimension 
d = dim(X) the 1-motive Ld+1Alb(X) is a group of multiplicative type and

LpAlb(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if p < 0
[Z[π0(X)] → 0] if p = 0
[L1

u1→ G1] if p = 1
0 if p > max(2, d + 1)

where G1 is connected, so that LpAlb(X) ∈ M1 is free for p = 0, 1 (see [12, Prop. 12.6.3 
c)]). Thus R0Pic(X) = [Z[π0(X)] → 0]∗ = [0 → Z[π0(X)]∨ ⊗ Gm] is a torus and we 
have that Ext(Z, R0Pic(X)) = HomK(Z, R0Pic(X)) = K∗⊗ZZ[π0(X)]∨ (see [12, Prop. 
C.8.3 (b)]).

Theorem 3.2.4. For any X over K = Q we have that (1.6) holds true for p = q = 1, i.e., 
the period regulator r1,1

� : H0
éh(X, Gm)→→H1,1

� (X) is surjective. Moreover, considering 

the 1-motive R1Pic(X) = [L∗
1

u∗
1→ G∗

1] which is the Cartier dual of L1Alb(X) we have a 
canonical isomorphism

Keru∗
1
∼= H1

dR(X) ∩H1(Xan,Zan(1)) = H1,1
� (X).

In particular, if X is proper H0
éh(X, Gm) ∼= K∗ ⊗Z Z[π0(X)]∨ and H1

dR(X) ∩
H1(Xan, Z(1)) = 0.

Proof. In fact, R1Pic(X) is free and therefore Hom(L1Alb(X), Gm[−1]) ∼= Hom(Z,
R1Pic(X)) ∼= Keru∗

1. Thus the extension in Lemma 3.2.1 is
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0 → K∗ ⊗Z Z[π0(X)]∨ → Ext1(Z,RPic(X)) → Keru∗
1 → 0.

Moreover θ1
� : Hom(Z, R1Pic(X)) ∼= Keru∗

1
�→ H1,1

� (X) is an isomorphism, which in 
turn implies that r1,1

� is a surjection. Actually, see Lemma 3.2.3, θ1
� factors as follows

Hom(Z,R1Pic(X))
(a)∼= T�(L1Alb(X))

(b)∼= Hom(Z(0), H1,1
dRB(X))

(c)∼= H1,1
� (X)

where: (a) is the isomorphism obtained applying Corollary 3.1.4 to M = L1Alb(X); 
(b) is the Hom(Z(0), −) of the isomorphism θ1

dRB : TdRB(L1Alb(X)) ∼= H1,1
dRB(X) given 

by p = 1 in Lemma 3.2.2; (c) is the isomorphism in Corollary 3.1.2. If X is proper then 
L∗

1 = 0, i.e., L1Alb(X) = [L1
u1→ G1] with G1 an abelian variety (see [12, Cor. 12.6.6]) in 

such a way that R1Pic(X) = [0 → G∗
1], and H0

éh(X, Gm) ∼= Gm(π0(X)) (see [12, Lemma 
12.4.1]). �
Remark 3.2.5. We may actually compute R1Pic(X) by using descent. For example, if X is 
normal let X be a normal compactification of X, p : X• → X a smooth hypercovering and 
X • a smooth compactification with normal crossing boundary Y• such that p : X • → X

is a hypercovering. Then p∗ : Pic0
X/K

�→ Pic0
X•/K

is an abelian variety and

R1Pic(X) = [Div0
Y•(X •)

u∗
1→ Pic0

X/K ]

where Div0
Y•(X •) := Ker(Div0

Y0
(X0) → Div0

Y1
(X1)) (see [12, Prop. 12.7.2]).

For X smooth we have that (see [12, Cor. 9.2.3])

LpAlb(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[Z[π0(X)] → 0] if p = 0
[0 → A0

X/K ] if p = 1
[0 → NS∗

X/K ] if p = 2
0 otherwise,

where A0
X/K is the Serre-Albanese semi-abelian variety and NS∗

X/K denotes the group 
of multiplicative type dual to the Néron-Severi group NSX/K . In this case, we then have

RpPic(X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[0 → Z[π0(X)]∗] if p = 0

[Div0
Y (X) u∗

1→ Pic0
X/K ] if p = 1

[NSX/K → 0] if p = 2
0 otherwise,

for a smooth compactification X with normal crossing boundary Y . Note that, reducing 
to the smooth case by blow-up induction we can see that the map (3.2) is an isomorphism 
for p = 0, 1 (cf. [12, Lemma 12.6.4 b)]). We deduce the following:
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Corollary 3.2.6. For any scheme X over K = Q we have a short exact sequence

0 → K∗ ⊗Z Z[π0(X)]∨ → H0
éh(X,Gm) r1,1

�−→ H1,1
� (X) → 0.

In general, we also have:

Proposition 3.2.7. For K = Q the period regulator rp,1� admits a factorization

Hp,1(X)Q ∼= Hp−1
éh (X,Gm)Q→→T�

Q (LpAlb(X)) ↪→ Hp
dR(X) ∩Hp(Xan,Qan(1))

= Hp,1
� (X)Q

where the projection is given by Lemma 3.2.1 via TQ
dRB and the inclusion is given by 

θpdRB⊗Q in Lemma 3.2.2. Therefore, the conjecture (1.6) is equivalent to T�
Q (LpAlb(X)) ∼=

Hp,1
� (X)Q.

Proof. In fact, using the adjunction (3.3), the Cartier dual π∗ of π in Lemma 3.2.1, 
the factorization of Lemma 3.2.3 and Theorem 2.7.1 we have the following commutative 
diagram

HomDb(MQ
1 )(LAlb(X),Gm[−1][p]) �

π∗⊗Q

Hp−1
éh (X,Gm)Q

rp,1�,Q

Hp,1
� (X)Q

Hom(LpAlb(X),Gm[−1])Q
TQ
dRB

�
T�
Q (LpAlb(X)).

�

For X smooth we further have that

Hp,1(X) ∼= Hp−1
éh (X,Gm) ∼= Hp−1

ét (X,Gm)

and this latter is vanishing after tensoring with Q for all p �= 1, 2 (see [29, Prop. 1.4]). 
Accordingly, the period conjecture (1.6) for X smooth and p �= 1, 2 is in fact equivalent 
to (1.8), i.e.,

Hp,1
� (X) = Hp

dR(X) ∩Hp(Xan,Qan(1)) = 0 p �= 1, 2. (3.4)

For p = 2 and X smooth we have that H2,1(X) ∼= Pic(X), r2,1
� = c� is induced by the 

usual cycle class map and T�
Q (L2Alb(X)) = NS(X)Q.

We here recover the results of Bost-Charles (see [16, Thm. 5.1] and [17, Cor. 3.9-3.10]) 
as follows. We refer to [12, Chap. 4] for the notion of biextension of 1-motives. The 
following is a generalization of [17, Thm. 3.8 2)] and of the discussion of the sign issue 
in [17, §3.4]:
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Lemma 3.2.8. For N, M ∈ M1(Q) we have that

Biext(N,M;Gm) ∼= (TBdR(N)∨ ⊗ TBdR(M)∨ ⊗ Z(1))�

and, when N = M, the subgroup of symmetric biextensions corresponds to alternating 
elements.

Proof. Recall that Biext(−, M; Gm) is representable by the Cartier dual M∗ for 
M ∈ M1(K) (see [12, Prop. 4.1.1]). Thus Biext(N, M; Gm) = Hom(N, M∗) ∼=
Hom(TBdR(N), TBdR(M)∗) where we here use Theorem 2.5.3 and Theorem 2.7.1. 
Now TBdR(M)∗ = TBdR(M)∨(1) in such a way that Hom(TBdR(N), TBdR(M)∗) =
Hom(Z(0), TBdR(N)∨ ⊗ TBdR(M)∨ ⊗ Z(1)) making use of the tensor structure of the 
category Mod∼=,fr

Z,K by Lemma 2.4.2.
Assume N = M. Since Biext(M, M; Gm) ∼= Hom(TBdR(M), TBdR(M)∗), any biextension 

P corresponds to a pairing TBdR(M) ⊗ TBdR(M) → Z(1) which induces the pairing [23, 
10.2.3] on Deligne-Hodge realizations and the pairing [23, 10.2.7] on de Rham realizations; 
if P is symmetric, the pairing is alternating by [23, 10.2.5 & 10.2.8]. �
Corollary 3.2.9. For X over K = Q we have that

Biext(L1Alb(X),L1Alb(X);Gm)sym ∼= (H1,0
dRB(X) ⊗H1,0

dRB(X) ⊗ Z(1))alt� .

Proof. Applying Lemma 3.2.8 to the free 1-motive L1Alb(X) we obtain the claimed 
formula. In fact, recall that TZ(L1Alb(X)) ∼= H1(Xan, Zan)fr and observe that H1,0

dRB(X)
is identified with TBdR(L1Alb(X))∨ up to inverting the period isomorphism by the same 
argument of Lemma 3.2.2. �

This implies that the period conjecture for p = 2 holds true in several cases, e.g. for 
abelian varieties, as previously proved by Bost (see [16, Thm. 5.1]).

3.3. The case q = 0

Consider the case of Z(0) which is canonically identified with Tot([Z → 0]) = Z[0]. 
Note that Hp,0(X) ∼= Hp

éh(X, Z). Let M0(K) ⊂ M1(K) be the full subcategory of 
0-motives or Artin motives over K. Recall that the motivic π0 (see [12, §5.4] and [10, 
Cor. 2.3.4]) is a triangulated functor

Lπ0 : DMeff
gm → Db(M0)

whence Lπ0(X) ∈ Db(M0), a complex in the derived category of Artin motives, associ-
ated to the motive of X. We have that M(X) → TotLπ0(X) ∈ DMeff

ét (see (2.4) for Tot) 
induces
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HomDb(M0)(Lπ0(X),Z[p]) → HomDMeff
ét

(M(X),Z(0)[p]) ∼= Hp
éh(X,Z).

This map is an isomorphism, integrally, for p = 0, 1 (cf. [12, Lemma 12.6.4 b)]) and it 
becomes, by adjunction, a Q-linear isomorphism, for all p. Recall that for any M ∈ DMeff

gm
we have (see [12, Prop. 8.2.3])

LAlb(M(q)) ∼=
{
Lπ0(M)(1) if q = 1
0 for q ≥ 2

where an Artin motive twisted by one is a 1-motive of weight −2, i.e., the twist by one 
functor (−)(1) : Db(M0) → Db(M1) is induced by L � [0 → L ⊗ Gm]. Note that as 
soon as K = Q Artin motives are of homological dimension 0 and we have that

HomDb(M0)(Lπ0(X),Z[p]) = HomM0(Lpπ0(X),Z).

Moreover, we have that

Hp
éh(X,Z) ∼= HomDMeff

ét
(M(X)(1),Z(1)[p])

by Voevodsky’s cancellation theorem [51].

Theorem 3.3.1. For any X over K = Q we have that (1.6) holds true for p = 1 and 
q = 0. Moreover, we have

H1
ét(X,Z) ∼= H1

dR(X) ∩H1(Xan,Zan) ∼= H1,0
� (X)

which is vanishing if X is normal.

Proof. Making use of Proposition 1.3.1 we are left to show the period conjecture for 
M(X)(1) in degree 1 and twist 1. We have that

HomDMeff
ét

(M(X)(1),Z(1)[1]) ∼= HomD(M1)(LAlb(M(X)(1)),Z(1)[1]).

We have L0Alb(M(X)(1)) ∼= L0π0(X)(1) ∼= [0 → Z[π0(X)] ⊗Gm] in such a way that

Ext
tM1(L0Alb(M(X)(1)),Gm[−1]) = 0

and (cf. (3.3) for M(X)(1)) we obtain

H1
éh(X,Z) ∼= Hom

tM1(L1Alb(M(X)(1)),Gm[−1]).

Now T�(L1Alb(M(X)(1))) ∼= H1,1
� (M(X)(1)) ∼= H1,0

� (X) by Lemma 3.2.2 twisted by 
(−1) and the same argument in the proof of Theorem 3.2.4 applies here. Finally, recall 
that H1

ét(X, Z) ∼= H1
éh(X, Z) for any scheme X and H1

éh(X, Z) = 0 if X is normal (see 
[12, Lemma 12.3.2 & Prop. 12.3.4]). �
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Remark 3.3.2. For X not normal (e.g. for the nodal curve) the group H1
ét(X, Z) can 

be non-zero. Moreover, for any X we have a geometric interpretation H1
ét(X, Z) ∼=

L Pic(X) ↪→ Pic(X[t, t−1]) by a theorem of Weibel [55, Thm. 7.6]. Note that this 
L Pic(X) is also a sub-quotient of the negative K-theory group K−1(X) (see [55, Thm. 
8.5]).

For X smooth we have a quasi-isomorphism Lπ0(X) ∼= Z[π0(X)][0] (see [12, Prop. 
5.4.1]) which means that Hp,0(X)Q = 0 for p �= 0. This yields (as it also does Proposi-
tion 1.4.4 for X smooth) that the period conjecture (1.6) is equivalent to

Hp
dR(X) ∩Hp(Xan,Qan) = 0 p �= 0. (3.5)

Remark 3.3.3. The period conjecture (1.6) for q = 0 and X smooth is also equivalent to 
the surjectivity of fp

� : Hp,0
� (π0(X))Q → Hp,0

� (X)Q induced by the canonical morphism 
f : X → π0(X), for all p ≥ 0. In fact, the morphism f induces a map M(X) → M(π0(X))
and a commutative square by functoriality

Hp,0(X)Q
rp,0�

fp

Hp,0
� (X)Q

Hp,0(π0(X))Q
∼=

Hp,0
� (π0(X))Q

fp
�

where fp : HomDMeff
ét

(M(π0(X)), Z[p])Q → HomDMeff
ét

(M(X), Z[p])Q is an isomorphism 
for X smooth; since dim π0(X) = 0 then rp,0� is clearly an isomorphism for π0(X). For 
p = 0 the group H0(Xan, Zan(0)) has rank equal to the rank of Z[π0(X)] and f0

� is an 
isomorphism; for p �= 0 the surjectivity of fp

� is equivalent to the vanishing of all groups.

3.4. Arbitrary twists

We now apply Waldschmidt’s Theorem 2.3.3 to arbitrary twists.

Proposition 3.4.1. For M = [L → G] a free 1-motive over K = Q and q ∈ Z an integer 
we have that

1) the group Hom
(
Z(q), TBdR(M)

)
of homomorphisms in Mod∼=

Z,K or Mod∼=
Q,K is trivial 

for q �= 0, 1;
2) the group Hom

(
Z(q), TdRB(M)

)
of homomorphisms in Mod∼=

K,Z or Mod∼=
K,Q is trivial 

for q �= 0, 1.

Proof. 1) We work in Mod∼=
Z,K and leave the other case to the reader. We suppose first 

that L = 0. Consider a non trivial ϕ ∈ HomBdR
(
Z(q), TBdR(M)

)
and the subgroup 

Γ = TZ(Z(q)) = Z ⊂ TdR(Z(q))C = C. Via the non trivial map ϕK ⊗C : TdR(Z(q))C →
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TdR(G)C = Lie(G�
C) we can identify Γ with a subgroup of Lie(G�

C). This subgroup 
is contained in VC with V ⊂ Lie(G�) defined by the image ϕK

(
TdR(Z(q))

)
. Via the 

exponential map Lie(G�
C) → G�(C) the image of Γ is 0 ∈ G�(K) as ϕ is a map in the 

category Mod∼=
Z,K (respectively Mod∼=

Q,K). We deduce from Waldschmidt’s Theorem 2.3.3
that V ⊂ Lie(G�) is the Lie algebra of a 1-dimensional algebraic subgroup H of G�. There 
are only two possibilities H = Ga and H = Gm. In both cases the period morphism for 
Z(q) identifies Γ with the subgroup (2πi)qZ ⊂ Lie(HC) that goes to 0 via expHC

. For 
H = Ga the map expHC

is the identity, leading to a contradiction. For H = Gm the 
kernel of expHC

is (2πi)Z forcing q = 1.
Secondly we suppose that G = 0. Consider a non trivial ϕ ∈ HomBdR

(
Z(q), TBdR(M)

)
. 

Recall that TdR(M) = L ⊗K and the period map is induced by the inclusion L ⊂ L ⊗K. 
Let e = ϕK(1) ∈ L ⊗K. It is a non-zero element. Using that TZ(Z(q)) is identified via 
the period morphism for Z(q) with (2πi)qZ, we deduce that ϕZ(1) = (2πi)q · e should 
lie in L ⊂ L ⊗K. As π is transcendental, this forces q = 0.

For general M = [L → G] we reduce to G and L to conclude the statement.
2) We prove the statement for Mod∼=

K,Z using Lemma 2.4.4. The analogue for Mod∼=
K,Q

follows similarly. Given a 1-motive M and its Cartier dual M∗ we have a natural identi-
fication

ς : Hom
(
Z(q), TBdR(M∗)

) ∼= Hom
(
ς(Z(q)), ς(TBdR(M∗)) = Hom

(
Z(q), TdRB(M)

))
.

The statement follows then from 1). �
Denote Hp,q

dRB,(1)(X)fr ⊂ Hp,q
dRB(X)fr the image of TdRB(LpAlb(X))fr(q − 1) under 

θpdRB(q − 1) of Lemma 3.2.2 twisted by q − 1. We have:

Corollary 3.4.2. We get that Hp,q
�,(1)(X)fr = 0 if q �= 0, 1. For p = 1 we have H1,q

�,(1)(X) =
H1,q

� (X) and

H1,q
� (X) =

⎧⎪⎪⎨⎪⎪⎩
H1

ét(X,Z) (see Theorem 3.3.1) if q = 0
Keru∗

1 (see Theorem 3.2.4) if q = 1
0 q �= 0, 1.

Proof. We apply Proposition 3.4.1 2) to M = LpAlb(X) to deduce that

Hp,1−q
�,(1) (X)fr = HomdRB

(
Z(0), Hp,1

dRB,(1)(X)(−q))
)

= HomdRB
(
Z(q), TdRB(LpAlb(X))fr

)
= 0

if q �= 0, 1. �
Thus, for the period conjecture in degree p = 1, the previous computations for the 

twists q = 0, 1 are the only relevant.
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3.5. Higher odd degrees

Next, let X be a smooth and projective variety over K = Q. Denote J2k+1(X) the 
intermediate Jacobian: as a real analytic manifold, it is defined as the quotient of the 
image H2k+1

Z (X) of H2k+1(Xan, Zan(k)
)

in H2k+1(Xan, R(k)
)
. This defines a full lattice 

of H2k+1(Xan, R(k)
)

so that J2k+1(X) is compact. It has also a natural complex analytic 
structure induced by the identification

J2k+1(X) := H2k+1(Xan,C)/
(
F k+1H2k+1(Xan,C) + (�2k+1,k

X )−1(H2k+1
Z (X)

))
.

Thus J2k+1(X) is a complex torus.
For integers n define NnH2k+1(Xan, Qan(k)

)
⊂ H2k+1(Xan, Qan(k)

)
, the n-th step 

of the geometric coniveau filtration, as the kernel of

H2k+1(Xan,Qan(k)
)
−→

⊕
Z⊂X

H2k+1(Xan\Zan,Qan(k)
)

for Z ⊂ X varying among the codimension ≥ n closed subschemes.

Lemma 3.5.1. Assume that H2k+1(Xan, Qan(k)
)

has geometric coniveau k, i.e., that we 
have NkH2k+1(Xan, C

)
= H2k+1(Xan, C

)
. Then J2k+1(X) is an abelian variety, which 

descends to an abelian variety J2k+1(X)K over K with

TdRB
(
J2k+1(X)K

)
=

(
H2k+1

dR (X), H2k+1
Z (X), η2k+1,k

X

)
.

Proof. Under the assumption, H2k+1
Z (X) is a polarized Hodge structure of type (1, 0)

and (0, 1) so that J2k+1(X) is polarizable and, hence, an abelian variety. The second 
statement follows from [1, Thm. A] where it is proven that there exists an abelian variety 
J over K and a correspondence Γ ∈ CHh(J ×K X) over K, for h = k + dim J2k+1(X), 
inducing an isomorphism Γ∗ : H1(Jan, Qan) ∼= H2k+1(Xan, Qan(k)

)
(and hence in de 

Rham cohomology, compatibly with the period morphisms). Then set J2k+1(X)K :=
J . �

The period conjecture (1.6) in odd degrees for X predicts that H2k+1,q
� (X) =

H2k+1
dR (X) ∩H2k+1(Xan, Zan(q)

)
fr = 0 for every k ∈ N and every q ∈ Z.

Proposition 3.5.2. The period conjecture (1.6) in degree p = 2k + 1 and any twist q for 
X smooth and projective holds true if H2k+1(Xan, Qan(k)

)
has geometric coniveau k.

Proof. Thanks to Lemma 3.5.1 we have that

H2k+1,q
� (X) = Hom

(
Z(0), TdRB

(
J2k+1(X)K

)
(q − k)

)
= Hom

(
Z(k − q), TdRB

(
J2k+1(X)K

))
.
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This is trivial for k− q �= 0, 1 by Proposition 3.4.1. Now use Theorem 2.7.1. For k− q =
0 we get that this coincides with the homomorphisms of 1-motives from [Z → 0] to 
[0 → J2k+1(X)K ], which is 0. For k − q = 1 this coincides with the homomorphisms of 
1-motives from [0 → Gm] to [0 → J2k+1(X)K ], which is also 0. �
Remark 3.5.3. Lemma 3.5.1 is proven more generally in [1] for the Hodge structure 
NkH2k+1(Xan, Qan(k)

)
⊂ H2k+1(Xan, Qan(k)

)
defined by the k-th step of the coniveau 

filtration. Namely, if X is defined over a number filed L ⊂ K, there is an abelian variety 
J2k+1
a (X) over L with TdRB

(
J2k+1
a (X)

)
=

(
NkH2k+1

dR (X), NkH2k+1
Z (X), η2k+1,k

X

)
. The 

proof of Proposition 3.5.2 using J2k+1
a (X) gives the following weak version of the period 

conjecture:

NkH2k+1
dR (X) ∩NkH2k+1(Xan,Zan(q)

)
fr = 0 for every k ∈ N and every q ∈ Z. (3.6)

The assumption in Lemma 3.5.1 amounts to saying that NkH2k+1(Xan, Qan(k)
)

is 
equal to H2k+1(Xan, Qan(k)

)
. This equality holds, for example, for k = 1 for uniruled 

smooth projective threefolds; see [2].
The assumption implies, and under the generalized Hodge conjecture is equiva-

lent to, the fact that the Hodge structure H2k+1(Xan, Q
)

has Hodge coniveau k, i.e., 
H2k+1(Xan, C

)
is the sum of the (k + 1, k) and (k, k + 1) pieces of the Hodge decom-

position. Under this weaker condition on the Hodge coniveau one can still prove that 
H2k+1(Xan, Qan(k)

)
is the Hodge structure associated to the abelian variety J2k+1

alg (X)
over C, called the algebraic intermediate Jacobian in J2k+1(X). Unfortunately one lacks 
the descent to K. See the discussion in [2].

Appendix A. Divisibility properties of motivic cohomology (by B. Kahn)

In this appendix, some results of Colliot-Thélène and Raskind on the K2-cohomology 
of smooth projective varieties over a separably closed field k are extended to the étale 
motivic cohomology of smooth, not necessarily projective, varieties over k. Some conse-
quences are drawn, such as the degeneration of the Bloch-Lichtenbaum spectral sequence 
for any field containing k.

Recall that in [19], Colliot-Thélène and Raskind study the structure of the K2-cohomo-
logy groups of a smooth projective variety X over a separably closed field. Following 
arguments of Bloch [15], their proofs use the Weil conjecture proven by Deligne [22]
and the Merkurjev-Suslin theorem [48]. These results and proofs can be reformulated in 
terms of motivic cohomology, since

Hi
Zar(X,K2) � Hi+2(X,Z(2))

or even in terms of étale motivic cohomology, since

Hj(X,Z(2)) ∼−→ Hj
ét(X,Z(2)) for j ≤ 3



F. Andreatta et al. / Advances in Mathematics 359 (2020) 106880 43
as follows again from the Merkurjev-Suslin theorem.
If we work in terms of étale motivic cohomology, the recourse to the latter theorem 

is irrelevant and only the results of [22] are needed; in this form, the results of [19] and 
their proofs readily extend to étale motivic cohomology of higher weights, as in [41, Prop. 
4.17] and [42, Prop. 1] (see also [49, Prop. 1.3]).

Here we generalise these results to the étale motivic cohomology of smooth varieties 
over a separably closed field: see Theorem A.1.3. This could be reduced by a dévissage 
to the smooth projective case, using de Jong’s alteration theorem in the style of [40], but 
it is simpler to reason directly by using cohomology with compact supports, and Weil II 
[24] rather than Weil I [22]. (I thank Hélène Esnault and Eckart Viehweg for suggesting 
to use this approach). This descends somewhat to the case where the base field k is not 
separably closed, yielding information on the Hochschild-Serre filtration on étale motivic 
cohomology (Theorem A.2.1). The rest of the appendix is concerned with implications 
on motivic cohomology of a field K containing a separably closed field: the main result, 
which uses the norm residue isomorphism theorem of Voevodsky, Rost et al. ([52], see 
also [31]) is that Hi(K, Z(n)) is divisible for i �= n (Theorem A.3.1). As an immediate 
consequence, the “Bloch-Lichtenbaum” spectral sequence of K from motivic cohomology 
to algebraic K-theory degenerates (Theorem A.4.1). We also show that the cokernel of 
the cup-product map

Hi−1(K,Z(n− 1)) ⊗K∗ → Hi(K,Z(n))

is uniquely divisible for i < n (Theorem A.5.1).
Throughout, motivic cohomology is understood in the sense of Suslin and Voevodsky 

(hypercohomology of the Suslin-Voevodsly complexes [50]).

A.1. A weight and coniveau argument

Let X be a separated scheme of finite type over a finitely generated field k.

Proposition A.1.1. Let n ∈ Z, ks a separable closure of k and G = Gal(ks/k). Let 
X = X ⊗k ks. Then Hj

c (X, Zl(m))G and Hj
c (X, Zl(m))G are finite for j /∈ [2m, m + d]

and any prime number l invertible in k, where d = dimX.

Proof. Suppose first that k = Fq is finite. By [21, Cor. 5.5.3 p. 394], the eigenvalues of 
Frobenius acting on Hj

c (X, Ql) are algebraic integers which are divisible by qj−d if j ≥ d. 
This yields the necessary bound m ≥ j − d for an eigenvalue 1. On the other hand, by 
[24], these eigenvalues have archimedean absolute values ≤ qj/2: this gives the necessary 
bound m ≤ j/2 for an eigenvalue 1. The conclusion follows.

In general, we may choose a regular model S of k, of finite type over SpecZ, such 
that X extends to a compactifiable separated morphism of finite type f : X → S. By 
[35, lemma 2.2.2 p. 274 and 2.2.3 p. 277], Rjf!Zl is a constructible Zl-sheaf on S and 
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its formation commutes with any base change. Shrinking S, we may assume that it is 
locally constant and that l is invertible on S. For a closed point s ∈ S, this gives an 
isomorphism

Hj
c (X,Zl) � Hj

c (Xs,Zl)

compatible with Galois action, and the result follows from the first case. �
Corollary A.1.2. If X is smooth in Proposition A.1.1, then Hi(X, Zl(n))(G) is finite for 
i /∈ [n, 2n], where the superscript (G) denotes the subset of elements invariant under some 
open subgroup of G. If X is smooth projective, then Hi(X, Zl(n))(G) is finite for i �= 2n
and are 0 for almost all l.

Proof. By Poincaré duality and Proposition A.1.1, Hi(X, Zl(n))G is finite for i /∈ [n, 2n]; 
the claim follows since Hi(X, Zl(n))) is a finitely generated Zl-module. In the projective 
case, the Weil conjecture [22] actually gives the finiteness of Hi(X, Zl(n))G, hence of 
Hi(X, Zl(n))(G), for all i �= 2n. But Gabber’s theorem [25] says that Hi(X, Zl(n)) is 
torsion-free for almost all l, hence the conclusion. �
Theorem A.1.3. Let X be a smooth variety over a separably closed field k of exponential 
characteristic p. Then, for i /∈ [n, 2n], the group Hi

ét(X, Z(n))[1/p] is an extension of a 
direct sum T of finite l-groups by a divisible group. If X is projective, this is true for 
all i �= 2n, and T is finite. If p > 1, Hi

ét(X, Z(n)) is uniquely p-divisible for i < n. In 
particular, Hi

ét(X, Z(n)) ⊗Q/Z = 0 for i < n. For i ≤ 1, Hi
ét(X, Z(n)) is divisible. The 

sequence

0 → Hi−1
ét (X,Q/Z(n)) → Hi

ét(X,Z(n)) → Hi
ét(X,Z(n)) ⊗Q → 0

is exact for i < n.

Proof. Away from p, it is identical to [42, proof of Prop. 1] (which is the projective case) 
in view of Corollary A.1.2. The unique p-divisibility of Hi

ét(X, Z(n)) for i < n follows 
from [26, Th. 8.4] and requires no separably closed hypothesis on k. �
Corollary A.1.4. Let K be a field containing a separably closed field k. Then, for i < n, 
the sequence

0 → Hi−1
ét (K,Q/Z(n)) → Hi

ét(K,Z(n)) → Hi
ét(K,Z(n)) ⊗Q → 0

is exact and the left group has no p-torsion if p = charK.

Proof. We may assume K/k finitely generated. By Theorem A.1.3, this is true for any 
smooth model of K over k, and we pass to the limit (see [37, Prop. 2.1 b)], or rather its 
proof, for the commutation of étale motivic cohomology with limits). �
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Remarks A.1.5. 1) At least away from p, the range of “bad” i’s in Corollary A.1.2 and 
Theorem A.1.3 is [n, 2n] in general but shrinks to 2n when X is projective. If we remove 
a smooth closed subset, this range becomes [2n −1, 2n]. As the proof of Proposition A.1.1
shows, it depends on the length of the weight filtration on H∗(X, Ql). If X = Y − D, 
where Y is smooth projective and D is a simple normal crossing divisor with r irreducible 
components, the range is [2n − r, 2n]. It would be interesting to understand the optimal 
range in general, purely in terms of the geometry of X.

2) Using Proposition A.1.1 or more precisely its proof, one may recover the l-local 
version of [40, Th. 3] without a recourse to de Jong’s alteration theorem. I don’t see how 
to get the global finiteness of [40] with the present method, because one does not know 
whether the torsion of Hj

c (X, Zl) vanishes for l large when X is not smooth projective.
3) Using a cycle class map to Borel-Moore l-adic homology, one could use Propo-

sition A.1.1 to extend Theorem A.1.3 to higher Chow groups of arbitrary separated 
k-schemes of finite type. Such a cycle class map was constructed in [36, §1.3]. Note that 
Borel-Moore l-adic cohomology is dual to l-adic cohomology with compact supports, 
so the bounds for finiteness are obtained from those of Proposition A.1.1 by changing 
signs.

A.2. Descent

Theorem A.2.1. Let X be a smooth variety over a field k; write ks for a separable closure 
of k, Xs for X ⊗k ks and G for Gal(ks/k). For a complex of sheaves C over Xét, write 
F rHi

ét(X, C) for the filtration on Hi
ét(X, C) induced by the Hochschild-Serre spectral 

sequence

Er,s
2 (C) = Hr(G,Hs

ét(Xs, C)) ⇒ Hr+s
ét (X,C).

Then, for i < n, the homomorphism

F rHi−1
ét (X,Q/Z(n)) → F rHi

ét(X,Z(n))

induced by the Bockstein homomorphism β is bijective for r ≥ 3 and surjective for 
r = 1, 2.

Proof. By the functoriality of Er,s
m (C) with respect to morphisms of complexes, we have 

a morphism of spectral sequences

δr,sm : Er,s−1
m (Q/Z(n)) → Er,s

m (Z(n))

converging to the Bockstein homomorphisms. By Theorem A.1.3, δr,i−r
2 is bijective for 

r ≥ 2 and surjective for r = 1. It follows that, for m ≥ 3, δr,i−r
m is bijective for r ≥ 3 and 

surjective for r = 1, 2. The conclusion follows. �
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Remarks A.2.2. 1) Of course, F rHi
ét(X, Z(n)) is torsion for r > 0 by a transfer argument, 

hence is contained in βHi−1(X, Q/Z(n)). The information of Theorem A.2.1 is that it 
equals βF rHi−1(X, Q/Z(n)).

2) For i ≥ n, we have a similar conclusion for higher values of r, with the same proof: 
this is left to the reader.

A.3. Getting the norm residue isomorphism theorem into play

Recall that for any field K and any i ≤ n, we have an isomorphism

Hi(K,Z(n)) ∼−→ Hi
ét(K,Z(n)). (A.1)

Indeed, this is seen after localising at l for all prime numbers l. For l �= charK, this 
follows from [50,27] and the norm residue isomorphism theorem [52], while for l = charK
it follows from [26]. Finally, Hi(K, Z(n)) = 0 for i > n. This yields:

Theorem A.3.1. Let K be as in Corollary A.1.4. Then, for i �= n, the group in (A.1) is 
divisible.

Proof. Again it suffices to prove this statement after tensoring with Z(l) for all prime 
numbers l. This is an immediate consequence of Corollary A.1.4 since, by [52], one has 
an isomorphism for l �= char k

Hi−1
ét (K,Ql/Zl(n)) � KM

i−1(K) ⊗Ql/Zl(n− i + 1)

and the right hand side is divisible. �
A.4. Application: degeneration of the Bloch-Lichtenbaum spectral sequence

Theorem A.4.1. Let K be as in Corollary A.1.4. Then the Bloch-Lichtenbaum spectral 
sequence [46, (1.8)]

Ep,q
2 = Hp−q(K,Z(−q)) ⇒ K−p−q(K)

degenerates. For any n > 0, the map KM
n (K) → Kn(K) is injective with divisible coker-

nel.

Proof. By the Adams operations, the differentials are torsion [46, Th. 11.7]. By Theo-
rem A.3.1, they vanish on the divisible groups Ep,q

2 for p < 0. But Hi(K, Z(n)) = 0 for 
i > n, so Ep,q

2 = 0 for p > 0. The last statement follows from the degeneration plus 
Theorem A.3.1. �
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Remarks A.4.2. 1) Again by the Adams operations, the filtration on Kn(K) induced by 
the Bloch-Lichtenbaum spectral sequence splits after inverting (n − 1)! for any field K. 
On the other hand, we constructed in [39] a canonical splitting of the corresponding 
spectral sequence with finite coefficients, including the abutment; the hypothesis that K
contains a separably closed field is not required there. This implies in particular that the 
map

KM
n (K)/lν → Kn(K)/lν

is split injective [39, Th. 1 (c)], hence bijective if K contains a separably closed subfield 
by Theorem A.4.1. Could it be that the mod lν splittings of [39] also exist integrally?

2) As in [39], Theorems A.3.1 and A.4.1 extend to regular semi-local rings of geometric 
origin containing a separably closed field; the point is that, for such rings R, the groups 
Hi−1

ét (R, Ql/Zl(n)) are divisible by the universal exactness of the Gersten complexes 
([28], [18, Th. 6.2.1]).

A.5. The map Hi−1(K, Z(n − 1)) ⊗K∗ → Hi(K, Z(n))

Theorem A.5.1. Let K be as in Corollary A.1.4. Then, for i < n,

(i) The cokernel of the cup-product map

H1(K,Z(n− i + 1)) ⊗Hi−1(K,Z(i− 1)) γi,n

→ Hi(K,Z(n))

is uniquely divisible.
(ii) The cokernel of the cup-product map

Hi−1(K,Z(n− 1)) ⊗K∗ δi,n→ Hi(K,Z(n))

is uniquely divisible.

Proof. By (A.1), we may use the étale version of these groups.
(i) Since Hi

ét(K, Z(n)) is divisible by Theorem A.3.1, so is Coker γi,n. Let ν ≥ 1 and 
l prime �= charK. The diagram

H1
ét(K,Z(n− i + 1)) ⊗Hi−1

ét (K,Z(i− 1)) γi,n

−−−−→ Hi
ét(K,Z(n))

β⊗1

⏐⏐ β


⏐⏐
H0

ét(K,Z/lν(n− i + 1)) ⊗Hi−1
ét (K,Z(i− 1)) ∪−−−−→ Hi−1

ét (K,Z/lν(n))

commutes, where β denotes Bockstein. The bottom horizontal map is surjective (even 
bijective) by the norm residue isomorphism theorem (resp. by [26]). By Theorem A.3.1
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again, H1
ét(K, Z(n −i +1)) is l-divisible, hence so is H1

ét(K, Z(n −i +1)) ⊗Hi−1
ét (K, Z(i −1)), 

and Coker γi,n is also l-torsion free by an easy diagram chase.
(ii) Consider the commutative diagram

H1
ét(K,Z(n− i + 1)) ⊗Hi−2

ét (K,Z(i− 2)) ⊗K∗ γi−1,n−1⊗1−−−−−−−−→ Hi−1
ét (K,Z(n− 1)) ⊗K∗

1⊗∪
⏐⏐� δi,n

⏐⏐�
H1

ét(K,Z(n− i + 1)) ⊗Hi−1
ét (K,Z(i− 1)) γi,n

−−−−→ Hi
ét(K,Z(n)).

Since the left vertical map is surjective, we see that Coker δi,n is the quotient of 
Coker γi,n by the image of the divisible group Hi−1

ét (K, Z(n −1)) ⊗K∗ (Theorem A.3.1), 
hence the claim follows from (i). �

It would be very interesting to describe Ker δi,n, but this seems out of range.
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