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We give a combinatorial interpretation for any minor (or binomial determinant) 
of the matrix of binomial coefficients. This interpretation involves configurations of 
nonintersecting paths, and is related to Young tableaux and hook length for- 
mulae. 0 1985 Academic Press. Inc. 

1. THE FUNDAMENTAL THEOREM 

Let A = (aii)ijao be the infinite matrix defined by aii = (I) for j< i and 
ati = 0 for j> i. A binomial determinant is any minor of A. The minor 
corresponding to rows 0 <a, <a, < ... < ak and columns 0 6 b, < 
b, < ... < bk will be denoted by 

(1) 

where d = {a, ,..., ak} and a = {b, ,..., bk}. 
Binomial determinants appear in algebraic geometry as coefficients in the 

Chern class calculus for the tensor product of two fiber bundles (see 
Lascoux [ 161 and Macdonald [ 19, pp. 30-311). In particular, all these 
coefficients are nonnegative, as we shall see from the combinatorial inter- 
pretation. 

Let17=~x~.Apathofnisasequencew=(s,,s,,...,s,)ofpointsinn 
such that if si= (x, y) then si+ I is either (x, y - 1) (a vertical step) or 
(x + 1, y) (a horizontal step). See Fig. 1. 
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FIG 1. The binomial determinant (~~~~). . 

THEOREM 1. Let 0 <a, < ... < ak and 0 <b, < ... < b, be strictly 
increasing sequences of nonnegative integers. Let Ai = (0, ai) and B, = (bi, bi). 
Then the binomial determinant 

is the number of k-tuples (We,..., wk) of paths of II such that: 

(i) For each i, wi is a path from Ai to B,. 

(ii) The paths wi are pairwise disjoint. 

An example is given in Fig. 1. 

Before proving the theorem, we give three immediate corollaries: 

COROLLARY 2. The binomial determinant 

is nonnegative, and is positive iff bi < ai for each i. 

COROLLARY 3. Zf aj=bj then 
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COROLLARY 4. The number of nonzero minors (including the empty 
minor) of the matrix A,, = ((f))Os i.jGn is the Catalan number 

1 2n+4 
cn+z=- 

( ) n+3 n+2 

2. BIJECTIVE PROOF OF THEOREM 1 

Let Gk be the set of permutations of [k] = { 1, 2,..., k}. Let E be the set 
of pairs (a; (w,,..., w,)), where CJ E Gk and (w, ,..., wk) is a k-tuple of paths of 
l7 such that wi goes from Ai to Bgci,. Let NZc E be the subset of pairs for 
which G is the identity permutation and pi,..., wk are pairwise disjoint. The 
number of paths from Ai to B, is 

so 

where 5 = (a; (w, ,..., wk)) and Inv(a) is the number of inversions of 0‘. 
The theorem is a consequence of the following lemma: 

LEMMA 5. There exists an involution QI: E - NI --f E - NI such that if 
#(a; (w, ,...v wk)) = ((T’; (w’, ,..., w;)) then (- l)inv(“‘) = - (- 1)1”v(o). 

Proof: We define 4 as follows. Let 5 = (a; (wi,..., wk)) be an element of 
E - NZ. If 0 is not the identity, then there exist integers i,j with 16 i < j < k 
and a(i) > a(j). It is easy to see that the paths wi and wj have a common 
vertex. By the definition of N1, if CJ is the identity then there also exist two 
distinct paths with a common vertex. Thus we can define i, as the smallest 
i, 1 <id k, such that wi intersects another path. We then define C= C(t) as 
the first vertex of wi,, which is also a vertex of another path and we define j, 
as the smallest j greater than iO such that C is a vertex of wj. 

We then set 4(r) = (7; (w;,..., w;)), where z is the product of 0 by the 
transposition (i, j), w; = w, for I# i, j, and w: (resp. w;) is the path obtained 
by following Wi (resp. wj) up to C( 5) and then following wj (resp. wi) after 
C(t). Clearly d(r) is in E - NZ and satisfies the condition of the lemma. 

If we repeat the construction of 4 for d(l), we obtain C(&[)) = C(l) and 
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4(4(O) = 5. Th is completes the proof of the lemma, and hence of 
Theorem 1. 

Arguments similar to the one of Lemma 5 have been used by Chaundy 
[3], Karlin and MacGregor [14], and Lindstrom [ 181. See also Gessel 
and Viennot [8,9], Goulden and Jackson [ 10, pp. 322-3281, and Sulanke 
WI. 

3. PERMUTATIONS WITH GIVEN DESCENT SET 

Let c be a permutation in 6,. The descent set of (T is 
DES(o) = {ii o(i) > o(i + l), for 1 d i < n}. Theorem 1 gives as a corollary 
MacMahon’s formula [20] (rediscovered by Carlitz [2], Niven [21], and 
Gupta [ 111) for the number of permutations with a given descent set. 

COROLLARY 6. ZfU= {c,<c2-c ... cc,) c_ [n- 11 then the number of 
permutations o E 6, with DES(a) = %? is the binomial determinant 

cl, c2,..., ck, n 
0, c 1 ,*.., ck - I, ck ). 

Proof. We code a permutation c E 6, by a configuration of noninter- 
secting paths which is counted according to Theorem 1 by the binomial 
determinant. 

Let [n-Jo= (0) u [n]. F or (T E G, define the function f: [n& --+ IV such 
that f(j ) is the number of indices i, 1 < i < j with o(i) < c(j). (Then f is a 
modified inversion table of o; see Knuth [ 15, p. 123.) It is easy to see that (T 
can be recovered from f and that i E DES(a) iff f(i) >,f(i + 1). Moreover, a 
function f: [n10 -+ N comes from some permutation iff f satisfies 
O<f(i)<i-1 for lBi6n. 

Such a function f can be coded by a configuration of nonintersecting 
paths counted by (3), where ‘% is the set of indices i for which 
f(i) 2 f (i + 1). (See Fig. 2.) For such a configuration there exists exactly 
one vertical step between the lines y = i and y = i - 1, for i = l,..., n. If this 
vertical step is ((i, j), (i - 1, j)) then we define f(i) = i -j - 1, For any con- 
figuration (not necessarily nonintersecting) of paths from Ai to Bi, the 
function f obtained in this way will satisfy 0 <f(i) < i - 1 for 1 < i d n and 
f(i)<f(i+ 1) f or i$ %. The nonintersecting condition is equivalent to 
f(i) 2 f (i + 1) for i E V. The correspondence is easily seen to be a bijection. 

In Section 8 we will give generating functions for some binomial deter- 
minants of the form of (3). 
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FIGURE 2 

4. A DUALITY THEOREM 

Let M be a matrix with rows and columns indexed 0, l,..., n. If d and a 
are subsets of [nlo= (0, I,..., n} of the same size, let M[&‘I B] denote the 
minor of it4 corresponding to the rows in d and the columns in 2. Then 
by a theorem of Jacobi [ 13; 17, pp. 153-1561, if L = M-’ then 

M[~~~‘/I]=(-l)~(detkf)L[Bl1], 

where d= [n-Jo - d, 9 = [n],, - 98, and 

E= c a+ C 6. 
rr‘s.4 hEJ 

We may restate Jacobi’s theorem in a more convenient form. If L is the 
inverse of a matrix M, let us call the matrix (( - 1 )i+i Lii) the sign-inverse of 
A4. Then Jacobi’s theorem says that if N is the sign-inverse of M, 

M[d Ii%] = (det M) . N[%8 I&]. 

Since the binomial coefficient matrix ((i)),,< i,iGn is its own sign-inverse, 
Jacobi’s theorem yields the following duality theorem for binomial deter- 
minants: 

PROPOSITION 7. For at’, BE [nlo, with (d 1 = 1 .GB 1, we have 
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We now sketch a combinatorial proof of the duality theorem. Given a 
configuration 5 of nonintersecting paths counted by ($), we shall construct 
a configuration CD(<) of noncrossing paths counted by 

and @ will be an involution. 
First we observe that any configuration of noncrossing paths is deter- 

mined by its endpoints and its horizontal steps. 
The endpoints of Q(t) are of course the points { (0, i) I i$S9} and 

{(i, i)li#d}. T o d escribe the set of horizontal steps of Q(t), we first define 
the set H, of all horizontal steps h = ((x, y), (x + 1, y)) with 0 <x dy - 1, 
0 < y < n such that h is not a horizontal step of 5 and ((x, y), (x, y - 1)) is 
not a vertical step of <. Then we define the set H of horizontal steps of @( 0 
to be the set of all steps ((y-X-l,y), (y-x,y)) for which 
((x,Y),(x+LY))~HI. 

As an illustration, we describe geometrically how Q(t) is constructed, 
where 5 is the configuration of Fig. 1. First we shift Fig. 1 so that the boun- 
dary becomes an equilateral triangle (Fig. 3a). Then we construct the set 
H, of horizontal edges (Fig. 3b) and mark the points (0, i) and (i, i) which 
are not endpoints of paths in r. Next we remove the “northeast” lines and 
replace them with “northwest” lines, and fill in vertical steps to make a 
contiguration of nonintersecting paths with steps “west” and “northwest” 
(Fig. 4a). Finally, we reflect our configuration left to right. (Fig. 4b). We 
leave it to the reader to verify that a nonintersecting configuration is 
always obtained and that 0 is an involution. 

We will discuss some other applications of Jacobi’s theorem in Section 8. 

(b) YJ (a) 

FIGURE 3 
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(a) (b) 

FIGURE 4 

5. EVALUATION OF BINOMIAL DETERMINANTS 

In this section we show that the binomial determinant 

(1;: I:::::: l:) 

can be evaluated in closed form if either the a’s or the b’s are consecutive 
integers. 

LEMMA 8. Ifb,#O,then 

Proof The lemma follows immediately from the formula 

LEMMA 9. 

a, a + l,..., a + k - 1 a, a + l,..., a + k - 2 

= 0, b bk ) ( b, - 1, b3 - l,..., bk - 1 > ’ 2,..., 

Proof: Remove the path from A, to B, and the first horizontal step of 
each other path. 

A partition is an increasing sequence 1= A, < A, < ... <I, of non- 
negative integers. To any set d = {al < . . . < uk} of nonnegative integers 
we may associate a partition 1=p(&) by Ai=ui-i+l. Thus 
p(0, 1, 3, 5) = 0012. 
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The Ferrers diagram of a partition I = (A, 6 .. . < A,) is an array of k 
rows of cells, with li cells, left justified, in the ith row. (Zero parts are 
ignored). The rows are numbered from top to bottom. The hook length h, 
of a cell x in a Ferrers diagram is the number of cells to the right of it plus 
the number of cells above it plus one. The content c, of a cell x is the num- 
ber of cells to the left of it minus the number of cells below it. Figure 5a 
shows the Ferrers diagram of 431 with hook lengths indicated; Fig. 5b 
shows contents. 

The conjugate ;1* of a partition I is the partition (with all nonzero parts) 
whose Ferrers diagram is the transpose of that of A. We denote by H(A) the 
product of the hook lengths of A and we denote by C,(A) the product 
n, (a + c,) over all cells x in the Ferrers diagram of A. Note that 
H(A) = H(/l*). 

PROPOSITION 10. 

a, a + l,..., a + k - 1 C,(P) 
b, > bz,...r bk =z@ 

where p = [p(b, ,..., bk)]*. 

Proof: Let us write B(A, a) for the binomial determinant in question, 
where 1 =p(b,,..., bk), so bi = lj + i- 1. We proceed by induction on bk. 
The case bk = 0 is trivial. Now suppose 1, = 0, so that b, = 0. Then by 
Lemma 9, B(A, a) = B(A’, a) where A’ = (AI,..., A,) and the formula holds by 
induction. Finally, suppose A, > 0. Let ,i= (A, - l,..., A,- 1) and let p = X* 
(so that p is p with its largest part removed). Then by Lemma 8, 

B(ku)= 
u(u+ l)...(u+k- 1) 

b b ...b B(&u-1) 

=[I! 
a+cx ca-l(P) C,(P) 

h’ ‘1 

k 

-=-) 
T H(P) H(P) 

where the product is over all cells x in the first row of the Ferrers diagram 
of p. 

(0) 

-2 

BEb 
-I 0 I 
0 12 3 

(b) 

FIGURE 5 
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The duality theorem allows us to evaluate from Proposition 9 binomial 
determinants of the form 

In fact we can evaluate the seemingly more general binomial determinant 

aI , a2 ,..., ak 

b, b + i,..., b + k - 1 

since (as long as a, 2 6) the latter expression is equal to 

0, l,..., b - 1, a, ,..., uk 
0, 1 ,..., b - 1, b ,..., b + k - 1 ’ 

The value of the binomial determinant can be expressed most simply if we 
consider instead the form 

D= a,+b-k,a?+b-k ,..., a,+b-k 

( b-k, b-k+ l,..., b-l ’ 

Let A= [~(a,, a, ,..., &)] *, let j = ak -k + 1, and define the partition p 
by ~lr+Lj-ii.1 = b, i= l,...,j. Then the duality theorem applied to 
Proposition 10 yields D= C&*)/H(p*). It turns out, however, that the 
simpler formula D= C’,(A*)/H(A*) holds. We shall give bijective 
derivations of both of these formulae from Proposition 10 in the next 
section. 

We note the alternate expression 

al, a2% ak 
b,b+l,...,b+k-1 

(“lh”‘(ukh dta 

=b!...(b+k-l)! 
a ) 

1 ,‘.., k , 

where 

d(a, , . . . ,  ok) = , - ,  (aj- aj) 

l<i<j<k 

and (a), = a(a - 1). . . (a - m + 1). This formula is easily proved by induc- 
tion from Lemma 8 and the formula 

which is analogous to Lemma 9. 
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6. PATHS AND YOUNG TABLEAUX 

Configurations of nonintersecting paths can be used in several ways to 
encode Young tableaux. 

Toj?=(O<b,< ... < bk) we associate a “truncated Ferrers diagram” of 
b=b,+ . . . + bk cells: row i with bi cells is shifted one cell to the left with 
respect to row i- 1. A shifted Young tableau of shape b is a filling of the 
truncated Ferrers diagram with positive integers which are (weakly) 
decreasing from left to right and strictly decreasing from bottom to top. A 

shifted Young tableau of shape 5421 is shown in Fig. 6. 
Given a configuration 52 = (w, ,..., wk) of paths satisfying condition (i) of 

Theorem 1, we can fill in the truncated Ferrers diagram of shape /I by 
writing in the ith row the ordinates of the horizontal steps of path wi, in 
decreasing order. It is clear that we obtain a shifted Young tableau iff the 
configuration satisfies condition (ii) of Theorem 1. For example, the con- 
figuration of Fig. 1 corresponds to the tableau of Fig. 6. We deduce: 

COROLLARY 11. For any sequences a = (0 < a, < . . < ak) and 
/?=(O<b, < .e. bk), the binomial determinant 

is the number of shifted Young tableaux of shape /I such that $f, and li are 
the first and last elements of row i, aiP, < fi 6 a, and Ii 2 bi. 

Remark. By adding ai at the beginning and bi at the end of row i, we 
see that the tableaux of Corollary 11 correspond to shifted Young tableaux 
with fixed shape and fixed first and last elements in each row. 

George Andrews (unpublished) has given a more elegant interpretation 
to 

al ,..., ak 

( ) b, >...> b, 

which is easily shown to be equivalent to Corollary 10: it is the number of 
row-strict shifted Young tableaux, with nonnegative integer entries, of 

FIGURE 6 
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shape (b, + l,..., bk + 1) in which the largest part in row i is ai. (In a row- 
strict shifted Young tableau, entries are strictly decreasing from left to right 
and weakly decreasing from bottom to top.) 

If A is a partition, a Young tableau of shape I is a tilling of the (ordinary) 
Ferrers diagram of R with positive integers which are increasing from left to 
right and strictly increasing from bottom to top. 

Suppose that 52 = (w i ,..., wk) satisfies conditions (i) and (ii) of Theorem 
1, where ai = a + i- 1, 1 < i < k. Let 1 =p(b, ,..., bk) and define p by 
pk--i+l +&=a, i= l)...) k. Let Ai be the point (i- 1, a,). Then each path wi 
must go from Ai to Ai with horizontal steps. Let us label the steps from Ai 
to B, as 1, 2,..., a. (There are always a such steps.) Note that path w: con- 
sists of bj - i+ 1 = Ai horizontal steps and a - 6, + i- 1 = pkPi+, vertical 
steps. We now define two Young tableaux T,(Q) and T,(Q): column i of 
T, (Sz) is the sequence of horizontal labels of path w; ~ i+ i and column i of 
T,(Q) is the sequence of vertical labels of path w:. (See Fig. 7 and 8.) It is 
clear that T, is a bijection from conligurations of nonintersecting paths 
counted by the binomial determinant 

a, a + i,..., a + k - 1 

b,, b,, b, 

T, (RI = T,(il.t = 

cl- 6 

14161 

FIGURE 8 
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to Young tableaux of shape A* with entries in [a] and that T2 is a bijection 
from these configurations to Young tableaux of shape p* with entries in 
Cal. 

Thus from Proposition 10 we obtain the following hook length formula 
(see Stanley [25]): 

COROLLARY 12. Let ,I= (A, d . . . < ;Ik) be a partition and suppose 
a 2 Ak. Define the partition p by pi + Ak- i+, = a, i = I,..., k. Then the number 
of Young tableaux of shape A* with entries in [a] and the number of Young 
tableaux of shape p* with entries in [a] are both equal to C,(A*)/H(A*). 

We note that the bijection from T,(Q) to T*(Q) was given by Stanley 
[26]. It follows immediately from Corollary 11 that C,(l*)/H(A*) = 
CAP* j/H@* ). 

Now let us suppose that Sz = (wl ,..., wk) satisfies conditions (i) and (ii) of 
Theorem 1, with ai= ci+ b-k, bi= b-k+ i- 1; i= l,..., k, where b 2 k. 
Let A =p(cl ,..., ck). Each path wi contains u, - bi = c, - i + 1 = Ai vertical 
steps. Let us assign to a vertical step with abscissa i the label b - i. (See 
Fig. 9.) Then we construct a Young tableau T(Q) in which row i of T(Q) 
consists of the labels of path wk _ i+ i, in increasing order. It is easy to see 
that T gives a bijection between configurations of nonintersecting paths 
counted by the binomial determinant 

c1 + b - k, c2 + b-k,..., ck + b-k 
b-k, b-k + l,..., b - 1 > 

and Young tableaux of shape 1 with parts in [b]. Thus from Proposition 
10 and Corollary 12 we have: 

52: 

A2 

A3 

A4 

2 T(R)= 

3 

4 

5 

6 

7 

6 

9 

b-l 
46 El33 2 3 3 4 
II I3 

FIGURE 9 
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COROLLARY 13. Zf O<c,< a** <ck and b2k then 

c1 + b - k, c2 + b - k,..., ck + b - k C,(A) 
b-k, b -k + l,..., b - 1 =H(I)’ 

where 1 =p(cl,..., ck). 

7. BIJECTIVE PROOFS FOR Hook LENGTH FORMULAE 

It is natural to ask whether a bijective proof can be given for the hook 
length formula of Proposition 10. Everything we have done is bijective 
except for Lemma 8, which is trivial algebraically. To construct a bijective 
proof of Proposition 10 we need only find a bijective proof of Lemma 8. 

The case k = 1 of Lemma 8 is the formula 

$)=a(;:;) 
which is easily explained bijectively: since (;) counts paths from (0, a) to 
(b, b), and these paths each have b horizontal steps, b(g) counts paths from 
(0, a) to (b, b) in which one of the horizontal steps is “marked.” Similarly 
a(;::) counts paths from (0, a- 1) to (b- 1, b- 1) in which one of the 
vertices is marked. To go from one to the other, we contract a marked step 
to a marked vertex, or expand a marked vertex to a marked horizontal 
step. 

This idea can be applied to a configuration of nonintersecting paths: we 
mark a horizontal step in each path (b, b2,..., bk choices) or a vertex in each 
path (a1a2,..., ak choices). Unfortunately, the contracted or expanded paths 
need not be nonintersecting. However, the correspondence 8 which we 
obtain can be applied to any marked element (a; (wi,..., wk)) of E (as 
defined in Section 2), and 0 preserves ( - 1) *““(‘) Moreover, the involution 
4 of Section 2 can easily be modified to apply’to marked paths. Thus if 
B= [bl] x ... x [bk] and A= [al] x ... x [a,], we have the diagram of 
bijections shown in Fig. 10. It follows that B x NZ and A x NZ’ have the 

BXE AXE’ 

FIGURE 10 



DETERMINANTS 313 

same cardinality. An explicit bijection between B x NI and A x NZ’ can be 
obtained by applying the “involution principle” of Garsia and Milne [7]: 
given 5 in B x NZ there is a unique 5’ in A x NZ’ which may be expressed as 
(t+~WqY)~tl(<) for some n > 0. 

This “bijective proof of Lemma 8 can then be combined with the bijec- 
tive proof of Lemma 9 to yield a bijective proof of Proposition 10. The 
program we have just sketched has been carried out in detail by Remmel 
and Whitney [23]; see also related work in [22, 241. 

A disadvantage of the bijections obtained this way are that they are not 
“canonical” because the involution 4 of Section 2 depends on the choice of 
a point C(t) for any configuration 5 in E- NZ, and there are many dif- 
ferent choices that will work. It may be hoped that by the proper choice of 
C(C;) a bijection can be ob,tained with a more direct description, or at least 
with some interesting properties. 

For other bijective proofs of hook length formulae, see [4-6, 121. 

8. APPLICATIONS OF GENERATING FUNCTIONS 

In this section we give some noncombinatorial methods for expressing 
certain binomial determinants in terms of coefficients of quotients of the 
power series 

First we prove an elementary transformation formula. 

PROPOSITION 14. For any m 2 ak, 

Proof. If we transpose the determinant 

det 
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and then reverse the order of the rows and columns, we obtain 

As a special case, we have 

cI, c2,~~~, ck, n 

1 ,..., ck - I, ck 

n-cc,, n-c,-, )...) n-cl, n 

’ k,..., n - c2, n - cl 

which is easily proved combinatorially via Corollary 6. 

PROPOSITION 15. Let m and r be integers, with 0 6 r -c m. Define numbers 

Pi by 

with Pi=0 for i<O. 
Let d = {al < ..’ <ak} andB={b,< ... < bk) be subsets of [nlo and 

let A4 be the matrix, (($)Pi-j)OGi,jGn. Then 

Proof Let W= ( WV), < i,i< n be defined by 

mi ( .) w,= mJ Pip,. 
mj+r 

( 1. r 

It is easily verified that the matrices W and ((“$ r))O G i,j G n are sign-inverse. 
Then Jacobi’s theorem (as stated in Section 4) yields 
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The special case d = [n], 97 = [n - 1 lo of Proposition 13 yields 

( m + r, 2m + r,..., nm + r 
0, m,..., (n - 1) m )=[fI, (wr+r)]p.. 

If r = 0, this becomes 

i 

m, 2m,..., nm 
0, m,..., (n - 1) m 

=P,, 

which is equivalent, via Corollary 6, to a result of Carlitz [Z]. 
For m = 2, the generating functions involve trigonometric functions. For 

m = 2 and r = 0, P, is the secant number S,, given by 

2, 

secx= f S2.- 
i=. ’ (-ii)!’ 

Thus 

( 0, 2, 2,..., 4,..., 2n 2n - 2 > = SZn, 

and by duality, 

( 0, 1, l,..., 3 ,..., 2n 2n - - 3, 1, 2n 2n - ) = 1 sz,, . 

For m=2 and r= 1. we have 

It is not hard to show that here Pi = ( - 1 );+ ‘(22i - 2) B2;, where BZi is the 
Bernoulli number given by 

jro B,;=x/(e’- 1). 

3, 5,..., 2n + 1 
0, 2,..., 2n - 2 =1~3~.*(2n+1)(-1)“+‘(22”-2)BZn. 

The next simplest case of Proposition 15 is d= (2, 3 ,..., n}, 
49 = [n - 2],, which yields 
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( 2m + r, 2m + r,..., nm + r 
0, m,..., (n - 2) m 

)=[t2(mjr+r)] :‘p1(‘~~l~p2~ 

” n-l 
m 

In particular, for m = 2, r = 0, we get 

PROPOSITION 16. Let m, r, and Pi be as in Proposition 15. Let s be an 
integer with s > r. Define numbers Q, by 

j!. Ql 

gmi+s--r 

(mi+s-r)! 
= ,@(;;;+;)!]I’[ f w)i(;;;+rr),]. 

i i=O 

Let M= (M,,)osiGn,--IsjC,, by defined bv 

Let d= (a,< ... <ak) and S?= {b,<b,< ... <b,} be subsets of [n-Jo. 
Then 

a,m + s, a2171 + s,..., akm + s 
O,b,m+s-r ,..., b,m+s-r)=[Ed(mjr+s)] MC@‘l,Ju’-l”’ 

Proof We define matrices U = ( U,) _ 1 $ i,jG n and V = ( V,) _ 1 $ ;,, G n by 

u,-,= l= ,lo+, , 
(. > 

uP,,j=o for j 3 0, 

for i, j>O, 

V -1 -I.-I- 9 vp,j=o forj20, 

Vi,-,=Qi for i Z 0, 

for i,j>O. 
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It is easily verified that the matrices U and V are sign-inverse. Then the 
proposition follows by applying Jacobi’s theorem to the minor 
U[L~ I a u { - 1 } ] and simplifying. 

The special case d = [nlo, @= [n - l],, of Proposition 16 yields 

s, m + s,..., nm + s 
0, s - r,..., (n - 1 ) m + s - r ) = [fjo (m’r+s)] Qn. (4) 

If r = 0, this becomes 

s, m + s,..., nm + s 
0, s,..., (n - 1) m + s) i 

= Qm 

which is equivalent, via Corollary 6, to a result of Carlitz [2] 
Form=landr=OwehavePi=land 

so 

which is a special case of Proposition 10. 
For m = 2, r = 0, and s = 1, Q, is the tangent number T,, + , defined by 

x2i+ I 
tanx= f T*;+,------. 

i=O (2i+ l)! 

Thus (using duality) 

The combinatorial interpretations of the secant and tangent numbers were 
first found by D. Andre [ 11. 

For m = 2, r =O, s= 2, we get the secant numbers again. For m = 2, 
r=O, s=3 we have 

j!oQi x2i+3 =X~o~~x=xsecx-tanx, 
(2i+ 3)! 
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In general, 

( s, 2 + s,..., 2n + s 
0, s,..., 2n + s - 2 ) 

can be expressed in terms of tangent and secant numbers. 
Form=2,r=l,s=2,we have 

so Qi= 2-2”-’ T,,, , and we have 

3, 5,..., 2n + 3 
0, 3,..., 2n + 1 =2-“(n+l)! T2n+, 

= 2”n! G2n+2, 

where Gan + 2 is the Genocchi number defined by 

f 

XZn 

n=l 
G2, (2n)! = x tan(xP). 

The case d = [n], LB’= [n-2], of Proposition 16 gives 

Thus, for m = 2, r = 0, s = 1, we get 

3, 5,..., 2n + 1 
0, l,..., 2n - 3 > =(2n+1)T2,-,S,,-(2n-l)T,,+,S,,-,. 

There is an analog of Proposition 16 for the case 0 d s 6 r; however, we 
shall give here only the formula corresponding to (4). 
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PROPOSITION 17. Suppose that 0 6 s < r cm. Define numbers Ri by 

Then for nb 1, 

( r, m + r, 2m + r, 3m + r ,..., nm + r 

0, r-s, m, 2m ,..., (n- 1) m )=[,4(mjr+r)]R.. 

ProoJ: Let Y, = ( - 1 )jp ‘Rj. Then Y, satisfies the recurrence 

Thus we have the system of equations 

(rr3-(a) “’ 

(5f:)=(“,“) yo+(“m”) Y,, 

(n;-+J=(nmo+r) Yo+(nm;r) Y1+ . . . +(“;;r) Y,. 

Solving for Y,, we obtain 

Moving the last column (n - 1) columns to the left gives 

607:5X/3-8 
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The most interesting case of Proposition 17 is m = 2, s = 0, r = 1. Here we 
have 

,roRi&= - x cos x/sin x = -x cot I 

= f (-,)~+‘2qj2j& 

1=0 1 . 

so R,=(-1)“+‘22”B2n and thus 

( 0, 1, 3, 1, 2, 5, 4 7 )...) ,..., 2n 2n + - 2 1 ) =(-I),+’ 1 .3...(2n+ 1).2*“B,,. 

This seems to be the first example of a combinatorial interpretation for 
c, B2n 7 where c, is a simple product. 
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