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1. Introduction

A finite, connected graph Γ with vertex set V (Γ ) and path-length distance d is said 
to be distance-regular if, for any vertices x, y ∈ V (Γ ) and any integers 1 ≤ i, j ≤
max{d(z, w) : z, w ∈ V (Γ )}, the number of vertices at distance i from x and distance 
j from y depends only on i, j and d(x, y), independent of the choice of x and y. Many 
distance-regular graphs arise from classical objects, such as the Hamming graphs, the 
Johnson graphs, the Grassmann graphs, the bilinear forms graphs, and the dual polar 
graphs amongst others. In particular, distance-regular graphs give a framework to study 
these classical objects from a combinatorial point of view. In addition, distance-regular 
graphs and association schemes give an algebraic–combinatorial framework to study, for 
example, codes and designs [13,18].

In their 1984 book, E. Bannai and T. Ito conjectured that there are only finitely many 
distance-regular graphs of fixed valency greater than two (cf. [5, p. 237]). In this paper 
we prove that their conjecture holds:

Theorem 1.1. There are only finitely many distance-regular graphs of fixed valency greater 
than two.

History
A distance-transitive graph is a connected graph Γ such that for every four (not 

necessarily distinct) vertices x, y, u, v in V (Γ ) with d(x, y) = d(u, v), there exists an 
automorphism τ of Γ such that τ(x) = u and τ(y) = v both hold. It is straight-forward to 
see that distance-transitive graphs are distance-regular graphs. In [14,15], P.J. Cameron, 
C.E. Praeger, J. Saxl and G.M. Seitz proved that there are only finitely many finite 
distance-transitive graphs of fixed valency greater than two. They did this by applying 
Sims’ conjecture [33] for finite permutation groups (i.e. that there exists an integral 
function f such that |Gx| ≤ f(dGx

) holds, where, for G a primitive permutation group 
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acting on a finite set Ω, Gx denotes the stabilizer of x, x ∈ Ω, and dGx
denotes the length 

of any Gx-orbit in Ω \ {x}), which they also showed to hold by using the classification 
of the finite simple groups (in [15] they gave a proof without many details, and in [14]
Cameron worked out a detailed proof with an explicit diameter bound).

Note that for small diameter there are many distance-regular graphs which are not 
distance-transitive. On the other hand there are only five families of distance-regular 
but not distance-transitive graphs known with unbounded diameter, namely the Doob 
graphs [19] (see also [13, p. 262]), the quadratic forms graphs [20] (see also [13, p. 290]), 
the Hemmeter graphs [12] and the Ustimenko graphs [37] (for both, see also [13, p. 279]) 
and the twisted Grassmann graphs [16]. Any member of the first four families is vertex-
transitive, whereas the twisted Grassmann graphs have exactly two orbits under the full 
automorphism group [16].

The first class of distance-regular graphs for which the Bannai–Ito conjecture was 
shown is the class of regular generalized n-gons. Feit and Higman [21] (cf. [13, The-
orem 6.5.1]) showed that a regular generalized n-gon has either valency 2 or n ∈
{3, 4, 6, 8, 12}. In addition, R.M. Damerell, and E. Bannai and T. Ito have indepen-
dently shown that there are only finitely many Moore graphs with valency at least three 
[4,17].

In the series of papers [6–9], E. Bannai and T. Ito showed that their conjecture 
holds for valencies k = 3, 4, as well as for the special class of bipartite distance-regular 
graphs. In [27] and [28], J.H. Koolen and V. Moulton also showed that the conjecture 
holds for distance-regular graphs of fixed valency k = 5, 6 or 7, and for triangle-free 
distance-regular graphs of fixed valency k = 8, 9 or 10. More recently, in [3], together 
with S. Bang, they showed that the Bannai–Ito conjecture holds for regular near polygons 
and geodetic distance-regular graphs.

The proof for the Bannai–Ito conjecture that we present in this paper builds upon 
many of the concepts and ideas developed in [2,3,27,28].

Structure of the paper
In Section 2, we present some definitions and previous results concerning distance-

regular graphs and associated sequences and related structures, and in Section 3 we 
present some properties of certain generalizations of these sequences. In Section 4, we 
state without proof the key result of the paper (Theorem 4.2) and used this to prove 
Theorem 1.1. We also present an outline proof of Theorem 4.2, before proving it in 
Sections 5 to 9. In Section 10, we will present an application of Theorem 1.1 to distance-
regular graphs of order (s, t). We conclude in Section 11 by discussing some possible 
future directions.

2. Preliminaries

In this section, we review some of the well-known theory of Christoffel numbers for 
orthogonal polynomials, interlacing and distance-regular graphs that will be used in this 
paper. We refer the reader to [5,13] and [36] for more details.
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2.1. Christoffel numbers

Let L1 be the arbitrary tridiagonal matrix defined by

L1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0 β0
γ1 α1 β1

γ2 α2 β2
. . .

γi αi βi

. . .

γn−1 αn−1 βn−1
γn αn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where αi ≥ 0, βi−1, γi > 0 are real numbers with α0 = γ0 = βn = 0 and γ1 = 1, and 
αi + βi + γi = β0 holding for all 1 ≤ i ≤ n. Let vi(x) (0 ≤ i ≤ n + 1) be the polynomials 
defined recursively by the equations

v0(x) := 1, v1(x) := x, (2)

xvi(x) = βi−1vi−1(x) + αivi(x) + γi+1vi+1(x) (1 ≤ i ≤ n− 1), (3)

vn+1(x) = (x− αn)vn(x) − βn−1vn−1(x), (4)

and Fi(x) (0 ≤ i ≤ n) be the monic polynomials defined by setting F0(x) := 1, F1(x) :=
x + 1 and

Fi(x) := γ2 · · · γi
(
v0(x) + v1(x) + · · · + vi(x)

)
(2 ≤ i ≤ n).

Note that for each 2 ≤ i ≤ n, the polynomial Fi(x) satisfies the recurrence relation

Fi(x) = (x− β0 + βi−1 + γi)Fi−1(x) − βi−1γi−1Fi−2(x). (5)

Moreover, by (2)–(5), for each 0 ≤ i ≤ n, the polynomials vi(x) and Fi(x) have degree 
i and have exactly i distinct real roots in the closed interval [−β0, β0] (cf. [36, Theo-
rem 3.3.1]). Note that the polynomial (x − β0)Fn(x) is the minimal polynomial of the 
matrix L1.

Now, let κ := β0 and define

κi := vi(κ) (0 ≤ i ≤ n), and (6)

ui(x) := vi(x)
κi

(0 ≤ i ≤ n). (7)

Put κ := κ1. Then the polynomials ui(x) (0 ≤ i ≤ n) satisfy

ui(κ) = 1 (0 ≤ i ≤ n); (8)
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u0(x) = 1, u1(x) = x

κ
, xui(x) = γiui−1(x) + αiui(x) + βiui+1(x)

(1 ≤ i ≤ n). (9)

The sequence (ui(x))ni=0 is called the standard sequence of L1, and if θ is an eigenvalue 
of L1, then the column vector (u0(θ), u1(θ), . . . , un(θ))T is a right eigenvector of L1
associated to θ, by (9).

Note also that it follows by (7) that, for each eigenvalue θ of the matrix L1, the 
equation

n∑
i=0

v2
i (θ)
κi

=
n∑

i=0
κiu

2
i (θ) (10)

holds.
Now, let β0 = θ0 > θ1 > θ2 > · · · > θn be the eigenvalues of L1 and, for i = 0, 1, . . . , n, 

define

mi :=
( ∑n

j=0 κj∑n
j=0

v2
j (θi)
κj

)
(11)

as well as the symmetric bilinear form (·,·) on the polynomial ring R[x] by

(f, g) :=
n∑

i=0
mif(θi)g(θi).

Then, (vi, vi) �= 0 holds for all 0 ≤ i ≤ n, and (vi, vj) = (vi, vi)δi,j holds for all 0 ≤
i, j ≤ n, where δi,j is the Kronecker delta function on N0 × N0, where N0 is the set of 
non-negative integers. In particular, it follows that (vi)ni=0 is a sequence of orthogonal 
polynomials with respect to (·,·). Note that within the theory of orthogonal polynomials, 
the numbers mi are referred to as the Christoffel numbers of the sequence (vi)ni=0 [36, 
Theorem 3.4.1], [5, p. 201]. Analogously, we call the number mi as defined in (11), the 
Christoffel number of L1 associated with θi.

2.2. Interlacing

We now recall two results stated in [2] that provide us with some interrelationships 
between the eigenvalues of the matrix L1 as defined in (1). The first generalizes the 
well-known Interlacing Theorem [13, Theorem 3.3.1], from which it immediately follows.

Lemma 2.1. Suppose that A is a real n × n matrix for which there exists a non-singular 
diagonal matrix Q such that the matrix Q−1AQ is real and symmetric. If η1 ≤ . . . ≤ ηn
are the eigenvalues of A and θ1 ≤ . . . ≤ θn−1 are the eigenvalues of the matrix obtained 
by removing the ith row and ith column of A, with i ∈ {1, . . . , n}, then
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η1 ≤ θ1 ≤ η2 ≤ . . . ≤ ηn−1 ≤ θn−1 ≤ ηn.

Note that in [2, Lemma 3.1] the condition that Q has to be a diagonal matrix was 
omitted. Without this condition the lemma is not true.

In particular, since βiγi+1 > 0 (0 ≤ i ≤ n − 1) and L1 is tridiagonal, it follows that 
L1 satisfies the conditions on A given in Lemma 2.1, and therefore the eigenvalues of L1
must satisfy the inequalities given in this lemma.

The second result guarantees the existence of eigenvalues of L1 lying within certain 
limits.

Lemma 2.2. (See [2, Theorem 3.2].) Let αi, βi, γi (0 ≤ i ≤ n) be non-negative integers 
satisfying α0 = γ0 = βn = 0, βi−1, γi > 0, αi + βi + γi = β0, βi−1 ≥ βi and γi ≥ γi−1
for all 1 ≤ i ≤ n, and let L1 be the tridiagonal matrix as defined in (1). For each 
1 ≤ i ≤ n − 1, let �(i) := |{j : (γj , αj , βj) = (γi, αi, βi), 1 ≤ j ≤ n − 1}|. Then the 
following statements hold.

(i) If �(i) ≥ 2 then there is an eigenvalue θ of L1 with

αi + 2
√
βiγi cos

(
2π

�(i) + 1

)
≤ θ < k.

(ii) If �(i) ≥ 3 then there is an eigenvalue θ of L1 with

αi + 2
√

βiγi cos
(

jπ

�(i) + 1

)
≤ θ ≤ αi + 2

√
βiγi cos

(
(j − 2)π
�(i) + 1

)
,

for all j = 3, . . . , �(i).

2.3. Distance-regular graphs

We now review some basic definitions and results concerning distance-regular graphs.
For Γ a finite, connected graph, denote by d(x, y) the path-length distance between 

any two vertices x, y in the vertex set V (Γ ) of Γ (i.e. the length of a shortest path), 
and by D = DΓ the diameter of Γ (i.e. the maximum distance between any two vertices 
of Γ ). For any y ∈ V (Γ ), let Γi(y) be the set of vertices in Γ at distance precisely i
from y, where i ∈ N0 is a non-negative integer not exceeding D. In addition, define 
Γ−1(y) = ΓD+1(y) := ∅.

Following [13, p. 126], a finite, connected graph Γ is called a distance-regular graph
if there are integers bi, ci, i = 0, 1, . . . , D, such that, for any two vertices x, y ∈ V (Γ ) at 
distance i = d(x, y), there are precisely ci neighbors of y in Γi−1(x) and bi neighbors of 
y in Γi+1(x). In particular, Γ is regular with valency k := b0. The numbers ci, bi and

ai := k − bi − ci (0 ≤ i ≤ D)



S. Bang et al. / Advances in Mathematics 269 (2015) 1–55 7
(i.e. the number of neighbors of y in Γi(x) for d(x, y) = i) are called the intersection 
numbers of Γ . Note that bD = c0 = a0 := 0 and c1 = 1. In addition, we define ki := |Γi(y)|
for any vertex y ∈ V (Γ ), i = 0, 1, . . . , D. This definition for distance-regular graphs is 
easily seen to be equivalent to the one given in the introduction.

For Γ a distance-regular graph as above, we define

TΓ :=
(
(ci, ai, bi)

)D
i=1 (12)

and we let

GΓ :=
(
(γi, αi, βi)

)g+1
i=1 (13)

denote the (necessarily unique) maximal length subsequence of TΓ for which the ith term 
of GΓ is not equal to the (i +1)th term of GΓ for all 1 ≤ i ≤ D−1. In addition, we define 
the numbers

h = hΓ :=
∣∣{j : (cj , aj , bj) = (c1, a1, b1), 1 ≤ j ≤ D − 1

}∣∣, and (14)

t = tΓ :=
∣∣{j : (cj , aj , bj) = (b1, a1, c1), h < j ≤ D − 1

}∣∣ (15)

which are called the head and the tail of Γ , respectively. Note that by [2, Lemma 2.1], 
it follows that tail t satisfies the following:

t ≤ h and, if t ≥ 1 then (cD−t, aD−t, bD−t) = · · · = (cD−1, aD−1, bD−1) = (b1, a1, 1).
(16)

2.3.1. Intersection numbers
For the rest of Section 2, we suppose that Γ is a distance-regular graph with va-

lency k ≥ 3, diameter D ≥ 2, intersection numbers ai, bi, ci, 0 ≤ i ≤ D and 
GΓ = ((γi, αi, βi))g+1

i=1 .
In [13, Proposition 4.1.6] and [2, Lemma 2.1(ii)], it is shown that the following in-

equalities always hold:

k = b0 > b1 ≥ b2 ≥ · · · ≥ bD−1 > bD = 0 and 1 = c1 ≤ c2 ≤ · · · ≤ cD ≤ k, (17)

ai ≥ a1 + 1 − min{bi, ci} (1 ≤ i ≤ D − 1). (18)

In particular, it follows that for every term (γi, αi, βi) in GΓ , βi ≥ βi+1 and γi ≤ γi+1
hold. For each 1 ≤ i ≤ g, define

s(i) = sΓ (i) := min
{
j : (cj , aj , bj) = (γi, αi, βi), 1 ≤ j ≤ D − 1

}
, (19)

�(i) = �Γ (i) :=
∣∣{j : (cj , aj , bj) = (γi, αi, βi), 1 ≤ j ≤ D − 1

}∣∣, (20)

and define s(g + 1) = D. Note that s(1) = 1 �(1) = hΓ , �(g + 1) = 1, and that s(i + 1) −
s(i) = �(i) holds for all 1 ≤ i ≤ g.
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2.3.2. Diameter bounds
The following result is originally due to A.A. Ivanov [26] (cf. [13, Theorem 5.9.8]). 

Note that N denotes the set of positive integers.

Theorem 2.3 (A.A. Ivanov’s diameter bound). Let k ≥ 3 be an integer. Then there is a 
function F : N → N so that, for all distance-regular graphs Γ with valency k, diameter 
DΓ , and head hΓ , the inequality

DΓ ≤ F (k)hΓ

holds.

Note that it was also shown in [26] (cf. [13, Theorem 5.9.8]) that one can in fact take 
F (k) = 4k in the last theorem.

Now, in order to show that there are only finitely many of distance-regular graphs Γ
with fixed valency k ≥ 3, it suffices to show that the diameter DΓ of any such graph 
is bounded above by some function f : N → N depending only on k, since |V (Γ )| ≤
1 +

∑DΓ

i=1 k(k − 1)i−1. Thus, in view of Theorem 2.3, it also suffices to show that the 
head hΓ is bounded above by some function g in k. In particular, the following result 
also holds (as we can take g(k) to be a constant function).

Corollary 2.4. Suppose that k ≥ 3 and C ≥ 1 are positive integers. Then there are only 
finitely many distance-regular graphs Γ with valency k and head hΓ ≤ C.

2.3.3. Eigenvalues of distance-regular graphs
The tridiagonal matrix L1 = L1(Γ ) associated to Γ is defined by

L1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b0
c1 a1 b1

c2 a2 b2
. . .

ci ai bi
. . .

cD−1 aD−1 bD−1
cD aD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and θ ∈ R is an eigenvalue of Γ if θ is an eigenvalue of L1(Γ ) [13, p. 129]. Note that any 
distance-regular graph Γ with diameter D = DΓ has exactly D + 1 distinct eigenvalues 
[13, p. 128]. Moreover, if θ is an eigenvalue of Γ , then (u0, u1, . . . , uD)T is called the 
standard sequence of Γ associated with θ, which is a right eigenvector of L1(Γ ) associated 
with eigenvalue θ, and the multiplicity m(θ) of θ is given by

m(θ) = |V (Γ )|∑D 2
. (21)
i=0 kiui (θ)
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This equation is known as Biggs’ formula [10, Theorem 21.4]. Note that in view of 
Eqs. (10) and (11) it follows by this last formula that the multiplicity of eigenvalue θi of 
Γ is equal to the Christoffel number mi of L1(Γ ).

3. Graphical sequences

In this section, we define graphical sequences and tridiagonal sequences. Note that 
these are similar (but not identical) to the ones presented in [3]. The definition for these 
sequences is motivated by the sequences GΓ and TΓ associated to Γ a distance-regular 
graph that were presented in the last section.

For integers κ ≥ 3 and λ ≥ 0 with λ ≤ κ − 2, define

Vκ,λ :=
{
(γ, α, β) ∈ N3

0 : β, γ ≥ 1, γ + α + β = κ and α ≥ max{λ + 1 − β, λ + 1 − γ}
}
.

Definition 3.1. With κ, λ and Vκ,λ as just defined above, a sequence G = ((γi, αi, βi))g+1
i=1

of distinct terms in N3
0 is called a (κ, λ)-graphical sequence if it satisfies the following 

conditions:

(G0) (γi, αi, βi) ∈ Vκ,λ (1 ≤ i ≤ g),
(G1) (γ1, α1, β1) = (1, λ, κ − λ − 1),
(G2) βi ≥ βi+1 (1 ≤ i ≤ g − 1) and γi ≤ γi+1 (1 ≤ i ≤ g),
(G3) βg+1 = 0 and γg+1 + αg+1 = κ.

Let G = ((γi, αi, βi))g+1
i=1 be a (κ, λ)-graphical sequence and let � : {1, . . . , g + 1} → N

be a function with �(g + 1) = 1. For each 1 ≤ i ≤ g + 1, define s�(i) = s(i) by

s(1) := 1,

s(i) := 1 +
i−1∑
j=1

�(j) (2 ≤ i ≤ g + 1). (22)

Definition 3.2. With G, � and s as just defined above, the sequence of triples T =
T (G, �) := ((cm, am, bm))s(g+1)

m=1 given by putting, for each 1 ≤ i ≤ g + 1,

(cs(i)+j , as(i)+j , bs(i)+j) = (γi, αi, βi)
(
0 ≤ j ≤ �(i) − 1

)
is called the (κ, λ)-tridiagonal sequence (associated with G and �).

Given T = T (G, �) as in this last definition, we define the head h = hT , the tail t = tT
and the diameter D = DT of T to be

hT := �(1), (23)

tT :=
∣∣{hT < i ≤ s(g + 1) : (ci, ai, bi) = (κ− λ− 1, λ, 1)

}∣∣, and (24)
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DT := s(g + 1), (25)

respectively. Note that h and t satisfy

h ≥ t and, if t ≥ 1 then (cD−t, aD−t, bD−t) = · · · = (cD−1, aD−1, bD−1) = (b1, a1, 1)

(see (16)).
Note that if Γ is a distance-regular graph, with diameter DΓ and TΓ =

((cm, am, bm))DΓ
m=1, then, referring to (13) and (20), it follows that the sequence GΓ is a 

(b0, a1)-graphical sequence and that TΓ is the (b0, a1)-tridiagonal sequence T (GΓ , �Γ ).
Now, given a (κ, λ)-graphical sequence G, function � and the (κ, λ)-tridiagonal se-

quence T = T (G, �) = ((cm, am, bm))Dm=1 as in Definitions 3.1 and 3.2, we define the 
tridiagonal matrix L1(T ) associated to T by

L1(T ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 κ

c1 a1 b1
c2 a2 b2

. . .

ci ai bi
. . .

cD−1 aD−1 bD−1
cD aD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It follows by the results in Section 2.1, that the tridiagonal matrix L1(T ) has exactly 
D + 1 distinct eigenvalues, κ = θ0 > θ1 > θ2 > · · · > θD, say, which we call the 
eigenvalues of T and denote by

ET := {θi : 0 ≤ i ≤ D}. (26)

Note that applying formulae (3) and (6) to the matrix L1(T ) we obtain, for each 1 ≤
i ≤ g + 1,

κs(i)+j = κ

βi

(
βi

γi

)j i−1∏
t=1

(
βt

γt

)�(t)

=
κ b1 · · · bs(i)+j−1

c1c2 · · · cs(i)+j

(
j = 0, . . . , �(i) − 1

)
. (27)

We define the Christoffel numbers of T to be the Christoffel numbers associated with 
L1(T ) (cf. Section 2.1).

Now, in case L1 = L1(TΓ ) for a distance-regular graph Γ then, for any θ, θ′ distinct 
algebraic conjugate eigenvalues of Γ , the multiplicities of θ and θ′ are equal [5, Propo-
sition III.1.5]. Hence so are the corresponding Christoffel numbers, which implies that ∑D

i=0 κiu
2
i (θ) =

∑D
i=0 κiu

2
i (θ′) holds.

Motivated by this fact, we will be interested in (κ, λ)-tridiagonal sequences T that 
satisfy the following key property:
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(AC) Any two eigenvalues of T which are algebraically conjugate (over Q) have the same 
Christoffel numbers.

We conclude this section with a useful result concerning graphical sequences. Suppose 
that G = ((γi, αi, βi))g+1

i=1 is a (κ, λ)-graphical sequence for some integers κ ≥ 3 and 
0 ≤ λ ≤ κ − 2, as in Definition 3.1. For each 1 ≤ i ≤ g we define the ith right and ith 
left guide point by

Ri = Ri(G) := αi + 2
√
βiγi and Li = Li(G) := αi − 2

√
βiγi (1 ≤ i ≤ g) (28)

respectively. In addition, we put Rmax = Rmax(G) := max{Ri : 1 ≤ i ≤ g}.
Moreover, for each 1 ≤ i ≤ g, we define the ith guide interval to be the open interval

Ii = Ii(G) := (Li,Ri). (29)

The following lemma is a slight extension of Lemma 3.1 in [3]. We provide a proof 
of it for the sake of completeness. Note that a sequence r1, . . . , rn of real numbers is 
called unimodal if there exists some 1 ≤ t ≤ n satisfying r1 ≤ r2 ≤ · · · ≤ rt and 
rt ≥ rt+1 ≥ · · · ≥ rn.

Lemma 3.3. Suppose that κ ≥ 3 and λ ≥ 0 are integers with λ ≤ κ − 2, and that 
G = ((γi, αi, βi))g+1

i=1 is a (κ, λ)-graphical sequence. Then the following hold.

(i) The inequality Ri ≥ R1 holds for all 1 ≤ i ≤ g, with equality holding if and only if 
(γi, αi, βi) ∈ {(1, λ, κ − λ − 1), (κ − λ − 1, λ, 1)}.

(ii) For any 2 ≤ i ≤ g, if βi ≥ γi then Ri−1 < Ri.
(iii) For any 2 ≤ i ≤ g − 1, if βi ≤ γi then Ri+1 < Ri.

In particular, by (ii) and (iii), it follows that the sequence (Ri)gi=1 is unimodal.

Proof. First note that by (G0) and (G1) in Definition 3.1, for each 1 ≤ i, j ≤ g, we have

Ri −Rj = (
√

βj −
√
γj)2 − (

√
βi −

√
γi)2, and (30)

β1 ≥ γi. (31)

Now, to see that (i) holds, note that by (G0), (G2) and (31), 
√
β1 − 1 ≥ |

√
βi −

√
γi|

holds. Hence Ri ≥ R1 holds in view of (30) with j = 1. Moreover, equality holds if and 
only if (γi, αi, βi) = (γ1, α1, β1) if βi ≥ γi and (γi, αi, βi) = (β1, α1, γ1) if γi ≥ βi.

To complete the proof of the lemma, note that (ii) and (iii) follow from (30) and 
(G2), since βi−1 ≥ βi ≥ γi ≥ γi−1 and γi+1 ≥ γi ≥ βi ≥ βi+1 hold for (ii) and (iii), 
respectively. �
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4. A key result

In this section we will state without proof a key result (Theorem 4.2) that we will 
then use to prove the main result of this paper (Theorem 1.1). We will then give a sketch 
a proof of this key result which we will prove in Sections 5 to 9, inclusive.

For w = (wi)ni=1 any sequence, we put

w := {wi : 1 ≤ i ≤ n}, (32)

i.e. the set consisting of all distinct terms in W . To state Theorem 4.2, we will require 
the following key definition:

Definition 4.1. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. A (κ, λ)-quadruple is a 
quadruple (G, Δ; L, �) such that

(i) G := (δi := (γi, αi, βi))g+1
i=1 is a (κ, λ)-graphical sequence (cf. Definition 3.1),

(ii) Δ = (δip)τp=1 is a subsequence of G in which (1, λ, κ − λ − 1) ∈ Δ (i.e., i1 = 1) and 
(γg+1, αg+1, βg+1) /∈ Δ, and

(iii) � : {1, . . . , g + 1} → N and L : {1, . . . , g + 1} \ {i1, . . . , iτ} → N are functions with 
�(g + 1) = 1 and L(i) = �(i) for all i ∈ {1, . . . , g + 1} \ {i1, . . . , iτ}.

Theorem 4.2. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2, and let G =
(δi := (γi, αi, βi))g+1

i=1 be a (κ, λ)-graphical sequence. Suppose that Δ = (δip)τp=1 is 
a subsequence of G with (1, λ, κ − λ − 1) ∈ Δ and (γg+1, αg+1, βg+1) /∈ Δ, and 
L : {1, . . . , g + 1} \ {i1, . . . , iτ} → N is a function. Suppose ε > 0 is a real num-
ber, C := C(κ) > 0 is a constant, and � : {1, . . . , g + 1} → N is any function for 
which (G, Δ; L, �) is a (κ, λ)-quadruple and the associated (κ, λ)-tridiagonal sequence 
T = T (G, �) satisfies

(i) Property (AC),
(ii) DT ≤ ChT , and
(iii) DT − (hT + tT ) > εhT ,

where hT , tT and DT are as defined in (23)–(25), respectively.
Then, there exist positive constants F := F (κ, G, Δ, L) and H := H(κ, λ, ε, G, Δ, L)

such that if �(ip) > F holds for all 1 ≤ p ≤ τ , then hT ≤ H holds.

We will now use Theorem 4.2 to prove Theorem 1.1, the main theorem of this paper. 
To do this, we will make use of the following result:

Proposition 4.3. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2, and let G = (δi :=
(γi, αi, βi))g+1

i=1 be a (κ, λ)-graphical sequence. Suppose ε > 0 is a real number, C :=
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C(κ) > 0 is a constant, and � : {1, . . . , g + 1} → N is any function with �(g + 1) = 1, 
such that the associated (κ, λ)-tridiagonal sequence T = T (G, �) satisfies

(i) Property (AC),
(ii) DT ≤ C hT , and
(iii) DT − (hT + tT ) > εhT .

Then there exists a positive constant H := H(κ, λ, ε, G) such that hT ≤ H holds.

Proof. Suppose that κ, λ, G, ε, C, � are as in the statement of the proposition. First, we 
show that the following statement holds:

(‡) For each i = 0, . . . , g−1, there exists a subsequence Gi of G with precisely (i +1)-terms 
satisfying (1, λ, κ −λ −1) /∈ Gi and (γg+1, αg+1, βg+1) ∈ Gi for which there is a positive 
constant Li := Li(κ, λ, ε, G, Gi) such that

�(j) ≤ Li

holds for all (γj , αj , βj) ∈ Gi.

Proof of (‡). We use induction on i. In case i = 0, (‡) holds for the subsequence G0 :=
((γg+1, αg+1, βg+1)) and constant L0 := 1.

So, assume that (‡) holds for all i = s, with 0 ≤ s ≤ g − 2, i.e. there is a subsequence 
Gs = ((γip , αip , βip))s+1

p=1 of G with (1, λ, κ − λ − 1) /∈ Gs and (γg+1, αg+1, βg+1) ∈ Gs for 
which there is a positive constant Ls := Ls(κ, λ, ε, G, Gs) > 0 such that �(ip) ≤ Ls holds 
for all 1 ≤ p ≤ s + 1.

Let L({i1, . . . , is+1}) denote the set consisting of those functions L : {i1, . . . , is+1} →
N satisfying L(ip) ≤ Ls for all 1 ≤ p ≤ s +1. Note that the set L({i1, . . . , is+1}) depends 
only on κ, λ, ε, G and Gs. Let Δs denote the subsequence of G obtained by removing the 
terms in Gs from G. Put m = m(G, Gs) := min{2 ≤ i ≤ g : (γi, αi, βi) ∈ Δs}.

Define positive constants F̃s = F̃s(κ, λ, ε, G, Gs) and H̃s = H̃s(κ, λ, ε, G, Gs) by

F̃s := max
{
F (κ,G,Δs, L) : L ∈ L

(
{i1, . . . , is+1}

)}
,

H̃s := max
{
H(κ, λ, ε,G,Δs, L) : L ∈ L

(
{i1, . . . , is+1}

)}
,

where F (κ, G, Δs, L) and H(κ, λ, ε, G, Δs, L) are the constants given by applying Theo-
rem 4.2 to the (κ, λ)-quadruple (G, Δs; L, �).

Then, by Theorem 4.2, either (a) �(i) > F̃s holds for all (γi, αi, βi) ∈ Δs, in which 
case we can let Gs+1 be the sequence defined by adding the term (γm, αm, βm) to the 
beginning of Gs and put Ls+1 := max{Ls, C(κ) H̃s}, or (b) there exists (γn, αn, βn) ∈ Δs

such that �(n) ≤ F̃s holds, in which case we can let Gs+1 be the sequence defined by 
inserting the term (γj , αj , βj) with j := max{m, n} into the sequence Gs (according to its 
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place in G) and put Ls+1 := max{Ls, C(κ) F̃s}. This completes the proof that statement 
(‡) holds. �

To complete the proof of the proposition, we apply (‡) for i = g− 1. In particular, for 
this choice of i, Gg−1 = ((γi, αi, βi))g+1

i=2 , and constant Lg−1 depends only on κ, λ, ε and G, 
and hence the set L({i1, . . . , ig}) = L({2, . . . , g+1}) of those functions L : {i1, . . . , ig} →
N satisfying L(ip) ≤ Lg−1 for all 1 ≤ p ≤ g depends only on κ, λ, ε and G. Since 
(G, Δ; L, �) is a (κ, λ)-quadruple for the subsequence Δ = ((γ1, α1, β1) = (1, λ, κ −λ −1))
of G and L any function in L({2, . . . , g + 1}), it follows by applying Theorem 4.2 to 
(G, Δ; L, �) that there exists a constant

C = C(κ, λ, ε,G) := max
{
F (κ,G,Δ, L), H(κ, λ, ε,G,Δ, L) : L ∈ L

(
{2, . . . , g + 1}

)}
,

where F (κ, G, Δ, L), H(κ, λ, ε, G, Δ, L) are the constants given by Theorem 4.2 so that

hT ≤ C

holds. This completes the proof of the proposition. �
In order to prove Theorem 1.1, we will also make use of the following result from [2], 

which generalizes results of Bannai and Ito [8,9] and Suzuki [34]:

Theorem 4.4. (See [2, Theorem 1.2].) Suppose that k ≥ 3 is a fixed integer. Then there 
exists a positive number ε0 = ε0(k), depending only on k, so that there are only finitely 
many distance-regular graphs with valency k, head hΓ , tail tΓ , and diameter DΓ that 
satisfy

DΓ − (hΓ + tΓ ) ≤ ε0hΓ .

Proof of Theorem 1.1. Let k ≥ 3 be a fixed integer. By Theorem 4.4, there exists a 
constant ε0 = ε0(k) > 0 (which depends only on k) such that there are only finitely 
many distance-regular graphs Γ with valency k, head hΓ , tail tΓ and diameter DΓ that 
satisfy

DΓ − (hΓ + tΓ ) ≤ ε0hΓ .

Now, suppose that Γ is any distance-regular graph with valency k that satisfies

DΓ − (hΓ + tΓ ) > ε0hΓ . (33)

Then, by Theorem 2.3 and (33), the (k, a1)-tridiagonal sequence TΓ = T (GΓ , �Γ )
(cf. (12)) satisfies all of conditions (i)–(iii) in Proposition 4.3, where a1 is an intersection 
number of Γ .
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Therefore, for any distance-regular graph Γ with valency k that satisfies (33), it follows 
that

hΓ ≤ C(k)

:= max
{
H
(
k, a1, ε0(k),G

)
: 0 ≤ a1 ≤ k − 2, G is a (k, a1)-graphical sequence

}
where H(k, a1, ε0(k), G) is the constant given by Proposition 4.3 (note that in the formula 
for C(k), taking a maximum is appropriate since the number of integers a1 with 0 ≤
a1 ≤ k − 2 is finite, and so is the number of (k, a1)-graphical sequences). Theorem 1.1
now follows by applying Corollary 2.4 with the constant C(k). �

The strategy that we use to prove Theorem 4.2 (whose proof will be presented in 
Section 9) is quite involved, and so we will now provide a brief overview of the proof 
before continuing.

Let (G, Δ; L, �) be any (κ, λ)-quadruple as in the statement of Theorem 4.2, and put 
G := ((γi, αi, βi))g+1

i=1 and T := T (G, �).
By Lemma 3.3(i), for each 2 ≤ i ≤ g satisfying (γi, αi, βi) ∈ G \ {(1, λ, κ − λ −

1), (κ − λ − 1, λ, 1), (γg+1, αg+1, βg+1)}, there exists a closed interval I = [Imin, Imax]
with Imin < Imax, which we shall call a “well-placed interval” (see Section 7), such that

(W1) I ⊆ (R1, Rmax);
(W2) If I ∩ Ii �= ∅ then I ⊆ Ii holds, 1 ≤ i ≤ g;
(W3) I ⊆ Ii

all hold (cf. (28), (29)).
In the first step of the proof of Theorem 4.2, we will approximate the Christoffel 

numbers of the eigenvalues of T inside a well-placed interval I. To do this, we define the 
quantities

c = c(G, I) := min
{
{2 ≤ i ≤ g : Imax < Li} ∪ {g + 1}

}
;

d = d(G, I) := max
{
{2 ≤ i ≤ g : Imax < Li} ∪ {c}

}
;

Gap(I) = GapG,�(I) :=
{∑

c≤j≤d
�(j) if c ≤ g

0 if c = g + 1,

(cf. (69), (70), (72)) and, for any eigenvalue θ ∈ I of T , we approximate the sum ∑DT
i=0 κiu

2
i (θ) (see Theorem 8.1) by bounding the following three subsums (cf. (22), (25), 

(27), (74)):

(1) Head sum: 
∑s(a)−2

i=0 κiu
2
i (θ);

(2) Gap sum: 
∑s(b+1)

i=s(a)−1 κiu
2
i (θ);

(3) Tail sum: 
∑DT

s(b+1)+1 κiu
2
i (θ).
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We can use the theory of three-term recurrence relations, to bound the Head sum and 
the Gap sum (see Theorem 8.7 and Corollary 8.8). However, for the Tail sum, there may 
exist some real numbers near to which we are unable to find good bounds for the Tail 
sum. Let B denote the set of these real numbers (cf. (52)). In Theorem 6.2, we show 
that B is finite and depends only on G, Δ and L. In particular, for each (γi, αi, βi) ∈
G\{(1, λ, κ −λ −1), (κ −λ −1, λ, 1), (γg+1, αg+1, βg+1)}, there always exists a well-placed 
interval J ⊆ Ii such that J ∩ B = ∅ (cf. Corollary 7.3). Note that such a well-placed 
interval J depends only on G, Δ and L. We strengthen the condition on the interval I
by requiring that in addition to (W1)–(W3), it also satisfies I ∩ B = ∅. Then for any 
such a well-placed interval, we can approximate the Tail sum as long as we require that 
�(i) > F holds for all (γi, αi, βi) ∈ Δ, where F is a positive constant depending only on 
κ, G, Δ and L (cf. Theorem 8.9).

Now, by condition (iii) of Theorem 4.2, we can find an element (γi, αi, βi) ∈ G \
{(1, λ, κ − λ − 1), (κ − λ − 1, λ, 1), (γg+1, αg+1, βg+1)} satisfying �(i) > εhT

g , and we can 
find a well-placed interval I ⊆ Ii such that I ∩ B = ∅ and Len(I) > εhT

g both hold (cf. 
(23), (71)).

By the approximation given in Theorem 8.1 and Property (AC), it follows that for 
any real number δ > 0, there exist two positive constants C1 = C1(κ, λ, ε, δ, G, Δ, L)
and C2 = C2(κ, λ, δ) such that any two eigenvalues θ, η ∈ I of T which are conjugate 
algebraic numbers must satisfy |θ − η| ≤ δ if hT ≥ C1 and Gap(I) ≤ C2hT all hold (cf. 
Theorem 9.1). In Claim 9.3, we show, by using interlacing, that the number of eigenvalues 
in I is at least C3hT , where C3 is a positive constant depending only on Imax − Imin, ε
and G.

Now, we have to consider two cases: either Gap(I) ≤ C2hT or Gap(I) > C2hT . In the 
first case, Gap(I) ≤ C2hT , we show by using Theorem 9.1, Claim 9.3 and Theorem 5.5, 
a result in number theory, that

lim
hT →∞

|{η : eigenvalues of T that have an algebraic conjugate in I}|
hT

= ∞

holds (cf. Proposition 9.2). Since the number of eigenvalues of T is exactly DT + 1
(cf. (26)) and DT + 1 ≤ (C(κ) + 1)hT holds by condition (ii) of Theorem 4.2, there 
exists a constant H > 0 depending only on κ, λ, ε, G, Δ, L so that hT ≤ H holds, as 
required.

In the second case, Gap(I) > C2hT , by the unimodality of the sequence (Ri)gi=1, we 
can find another well-placed interval I ′ := [I ′

min, I ′
max] which depends only on G, Δ, L

such that

(1) I ′
min > Imax;

(2) I ′ ∩ B = ∅;
(3) Len(I ′) > Gap(I) ,
g
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all hold (see Proposition 7.4). So we can repeat the same process with I ′ instead of I. 
Using the unimodality of the sequence (Ri)gi=1, the condition I ′

min > Imax implies that 
c(G, I) ≤ c(G, I ′), d(G, I ′) ≤ d(G, I) and Gap(I ′) < Gap(I) all hold. Hence, the second 
case can be repeated at most g times so that, finally, the first case must be satisfied, 
from which Theorem 4.2 again follows.

5. Two useful results for polynomials

In this section, we prove two useful results concerning roots of polynomials. The first 
one, Theorem 5.1, will be used in Theorem 6.2 to show that the set B (as we intro-
duced in Section 4) is finite. The second result, Theorem 5.5, analyzes the polynomials 
having all roots in an interval. It will be used to bound the number of eigenvalues of a 
distance-regular graph in the proof of Proposition 9.2.

We denote the degree of any polynomial p(x) by deg(p(x)). The polynomial p(x) = 0
is called the zero polynomial and, for technical reasons, we define the degree of this 
polynomial to be −1 (cf. [25, p. 158]). Two polynomials p1(x) and p2(x) are identical if 
their difference p1(x) − p2(x) is the zero polynomial. Let R and C be the fields of real 
and complex numbers, respectively, and let R[x] denote the ring of polynomials in one 
variable x with real coefficients.

Theorem 5.1. Let q1(x), q2(x) ∈ R[x] be two monic quadratic polynomials which are not 
squares of linear polynomials, and let I ⊆ R be the largest (infinite) interval on which 
both q1(x) and q2(x) are non-negative. Suppose Pj(x) ∈ R[x] (1 ≤ j ≤ 4) are such that 
C := max{deg(Pj(x)) : 1 ≤ j ≤ 4} ≥ 0. Put

P (x) := P1(x) + P2(x)
√
q1(x) + P3(x)

√
q2(x) + P4(x)

√
q1(x)q2(x).

Then the equation P (x) = 0 has at most 4(C + 2) roots in I, unless q1(x) is identical 
to q2(x) and P2(x) + P3(x), P1(x) + q1(x)P4(x) are the zero polynomials, in which case 
P (x) = 0 for every x ∈ I.

Proof. For each i, j ∈ {0, 1}, we define

P (ij)(x) := P1(x) + (−1)iP2(x)
√

q1(x) + (−1)i+jP3(x)
√

q2(x)

+ (−1)jP4(x)
√
q1(x)q2(x),

and put

P ∗(x) := P (00)(x) × P (01)(x) × P (10)(x) × P (11)(x). (34)

Note that

P (00)(x)P (01)(x) =
(
P1(x) + P2(x)

√
q1(x)

)2 − q2(x)
(
P3(x) + P4(x)

√
q1(x)

)2
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has the form U(x) +V (x)
√

q1(x) with U(x), V (x) ∈ R[x] satisfying deg(U(x)) ≤ 2C + 4
and deg(V (x)) ≤ 2C + 2. Similarly,

P (10)(x)P (11)(x) =
(
P1(x) − P2(x)

√
q1(x)

)2 − q2(x)
(
P3(x) − P4(x)

√
q1(x)

)2
= U(x) − V (x)

√
q1(x).

Hence, by (34), P ∗(x) = U(x)2 − V (x)2q1(x) is a real polynomial of degree at most 
4C + 8. This proves the theorem in the non-degenerate case when P ∗(x) is not the zero 
polynomial.

Assume now that P ∗(x) is the zero polynomial. We need to prove that this happens 
only if q1(x) is identical to q2(x) and P2(x) + P3(x), P1(x) + q1(x)P4(x) are the zero 
polynomials. We first prove the following.

Claim 5.2. If q1(x) − q2(x) is not the zero polynomial then P ∗(x) is also not the zero 
polynomial.

Proof. We first show that P 2
1 (x) −q1(x)q2(x)P4(x)2 is not the zero polynomial if at least 

one of the polynomials P1(x), P4(x) is not the zero polynomial. Take a root γ ∈ C of q1(x)
which is not a root of q2(x). By the condition of the theorem, γ is the root of q1(x)q2(x)
of multiplicity 1. Assume that P 2

1 (x) −q1(x)q2(x)P4(x)2 is the zero polynomial. Then γ is 
the root of q1(x)q2(x)P4(x)2 of odd multiplicity but it is either not the root of P1(x)2 or 
it is its root of even multiplicity, a contradiction. By the same argument, P2(x)2q1(x) −
P3(x)2q2(x) is not the zero polynomial if at least one of the polynomials P2(x), P3(x)
is not the zero polynomial. Since C := max{deg(Pj(x)) : 1 ≤ j ≤ 4} ≥ 0, we always 
have either P 2

1 (x) �= q1(x)q2(x)P4(x)2 (if P1(x)P4(x) is not the zero polynomial) or 
P2(x)2q1(x) �= P3(x)2q2(x) (if P2(x)P3(x) is not the zero polynomial) for infinitely many 
x ∈ I.

Suppose P ∗(x) is the zero polynomial. Then one of the functions P (ij)(x), where 
i, j ∈ {0, 1}, must be zero identically on x ∈ I. Hence

P1(x) + (−1)iP2(x)
√
q1(x) + (−1)i+jP3(x)

√
q2(x) + (−1)jP4(x)

√
q1(x)q2(x)

= 0. (35)

Our aim is to show that this is only possible if all Pj(x), j = 1, 2, 3, 4, are the zero 
polynomials which is not the case by the condition of the theorem.

We first claim that

P1(x)P2(x) = q2(x)P3(x)P4(x). (36)

Indeed, putting first two terms of (35) into the right hand side and squaring we obtain

(
P1(x) + (−1)iP2(x)

√
q1(x)

)2 = q2(x)
(
(−1)iP3(x) + P4(x)

√
q1(x)

)2
. (37)
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Since q1(x) is not the square of a linear polynomial, by the same argument for roots 
multiplicity as above, the function S(x) + T (x)

√
q1(x), where S(x), T (x) ∈ R[x], is 

zero identically on I if and only if S(x) and T (x) are the zero polynomials. Therefore, 
collecting terms for 

√
q1(x) in (37) we obtain (36).

Similarly, putting the first and the third term of (35) to the right hand side, squaring 
and then using the same argument for the ring R[x] + R[x]

√
q2(x), we deduce that

P1(x)P3(x) = q1(x)P2(x)P4(x). (38)

Suppose first that P1(x) is the zero polynomial. Then, by (36) and (38), P2(x), P3(x) or 
P4(x) is zero identically. If either P2(x) or P3(x) is the zero polynomial then, by (35), all 
four Pj(x) must be the zero polynomials, a contradiction. If P4(x) is the zero polynomial 
then P2(x)

√
q1(x) + (−1)jP3(x)

√
q2(x) = 0. But this yields P2(x)2q1(x) = P3(x)2q2(x), 

a contradiction again. By the same argument, if any of the polynomials P2(x), P3(x), 
P4(x) is the zero polynomial, then by (36) and (38) one more polynomial must be a 
zero polynomial. One then concludes as above that all four polynomials are the zero 
polynomials.

Finally, if none of the polynomials Pj(x) is the zero polynomial then multiplying 
(36) and (38) gives P1(x)2P2(x)P3(x) = q1(x)q2(x)P2(x)P3(x)P4(x)2. Hence P1(x)2 =
q1(x)q2(x)P4(x)2, which is a contradiction again. �

Now, to complete the proof of the theorem, suppose that q1(x) is identical to q2(x). 
Then P (x) = P1(x) + q1(x)P4(x) + (P2(x) + P3(x))

√
q1(x) for all x ∈ I. If P1(x) +

q1(x)P4(x) and P2(x) + P3(x) are the zero polynomials then P (x) is zero identically. 
Otherwise,

P (x)
(
P1(x) + q1(x)P4(x) −

(
P2(x) + P3(x)

)√
q1(x)

)
=

(
P1(x) + q1(x)P4(x)

)2 − q1(x)
(
P2(x) + P3(x)

)2
is not the zero polynomial. So P has at most 2C + 4 roots in I, which is better than 
required. �

In the remainder of this section, we will show the second useful result, Theorem 5.5.
For any real number κ ≥ 2, we denote by Pκ the set of all irreducible monic polyno-

mials p(x) ∈ Z[x] such that all of the roots of p(x) are contained in the closed interval 
[−κ, κ]. Note Pκ ⊆ Pκ′ if κ ≤ κ′.

Lemma 5.3. Let κ ≥ 2 be a real number and let n be a positive integer. Then the following 
holds.

(i) The set consisting of all polynomials p(x) ∈ Pκ of degree at most n is finite.
(ii) Pκ is an infinite set.
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Proof. (i) Obviously, any coefficient of each p(x) ∈ Pκ of degree at most n is in 
[−(2κ)n, (2κ)n], so Pκ contains at most (2(2κ)n + 1)n+1 of such polynomials. See also 
[27, Lemma 7.1].

(ii) Let Pn(1, 0, 1)(x) be the characteristic polynomial of the tridiagonal (n ×n)-matrix 
with zeroes on the diagonal and ones on the subdiagonals and superdiagonals. Then 
Pn(1, 0, 1)(x) is a polynomial of degree n and has n distinct roots, 2 cos( iπ

n+1 ), i = 1, . . . , n
[10, p. 11]. Thus, if we factorize Pn(1, 0, 1)(x) into irreducible factors, say q1(x), . . . , qt(x), 
then qi(x) �= qj(x) if 1 ≤ i < j ≤ t and qi(x) ∈ P2 for all 1 ≤ i ≤ t. (ii) now follows 
immediately from (i). �

In fact, an old result of R.M. Robinson [32] asserts that if J is an interval of length 
strictly greater than 4 then there are infinitely many irreducible monic polynomials whose 
roots all lie in J . Moreover, none of them has a root of the form 2 cos(πr) with r ∈ Q as 
those lying in P2.

Now, for any real number ζ > 0, let Iκ,ζ be the set of all closed intervals of length 
ζ which are contained in the closed interval [−κ, κ]. For each p ∈ Pκ and I ∈ Iκ,ζ , we 
define

Υκ(p, I) := |{θ ∈ I : p(θ) = 0}| − 1
deg(p(x)) , and (39)

Υκ,ζ := sup
{
Υκ(p, I) : p ∈ Pκ, I ∈ Iκ,ζ

}
. (40)

Remark 5.4. Note that Υκ, ζ is positive for all ζ > 0 since by Lemma 5.3(ii) there exists 
a polynomial p(x) ∈ P2 with degree n > 8κ

ζ and so, by the pigeon hole principle, there 

exists an interval I ∈ Iκ,ζ of length ζ such that p(x) has at least nζ4κ roots in I. Even so, 
we now show that the limit of Υκ,ζ as ζ tends to ∞ is zero.

Theorem 5.5. Let κ ≥ 2 be a real number. Then

lim
ζ→0

Υκ,ζ = 0.

Proof. Fix κ ≥ 2 and ζ ∈ (0, 1). Let p(x) ∈ Pκ be of degree n, say, and let I ∈ Iκ,ζ . 
Since p(x) is irreducible in Z[x], it has n distinct roots α1, . . . , αn ∈ [−κ, κ]. Consider 
the discriminant Δ(p) of p given by

Δ(p) :=
∏

1≤i<j≤n

(αi − αj)2.

Since p(x) is a monic polynomial with integral coefficients, its discriminant Δ(p) is an 
integer. Moreover, Δ(p) is not zero as the roots of p(x) are distinct and Δ(p) > 0, so 
Δ(p) ≥ 1.

Without loss of generality, assume that {α1, . . . , αt} is the set of roots of p(x) contained 
in I, for some 0 ≤ t ≤ n. Let τ = τ(p, I) := t .
n



S. Bang et al. / Advances in Mathematics 269 (2015) 1–55 21
Claim 5.6. If t ≥ 2 then τ2 ≤ −2 ln (2κ)
ln ζ .

Proof. We have

1 ≤
∏

1≤i<j≤n

(αi − αj)2

=
( ∏

1≤i<j≤t

(αi − αj)2
)( ∏

1≤i<j≤n and j>t

(αi − αj)2
)

≤ ζτn(τn−1)(2κ)n(n−1),

since t = τn ≥ 2, |αi − αj | ≤ ζ for 1 ≤ i < j ≤ t and |αi − αj | ≤ 2κ for 1 ≤ i < j ≤ n. 
Using τn − 1 ≥ τ(n − 1)/2 and 0 < ζ < 1 we find that 1 ≤ ζ

τnτ(n−1)
2 (2κ)n(n−1), 

so 1 ≤ ζτ
2/22κ. The claim follows by taking the logarithms of both sides of the last 

inequality. �
Now, let q(x) ∈ Pκ and I ∈ Iκ,ζ be such that

Υκ(q, I) ≥ 1
2Υκ,ζ > 0.

Such a q(x) exists, since, as remarked before the statement of the theorem, Υκ,ζ is 
positive. Since Υκ(q, I) > 0, the polynomial q(x) has at least 2 roots in I. Hence, by 
Claim 5.6 and (39), we have√

−2 ln (2κ)
ln ζ

≥ |{x ∈ I : q(x) = 0}|
deg(q(x)) >

|{x ∈ I : q(x) = 0}| − 1
deg(q(x))

= Υκ(q, I) ≥ 1
2Υκ,ζ > 0,

from which the theorem immediately follows. �
6. Preliminary results for the Christoffel numbers

In this section, we will prove some results which we will use later in Section 8 for the 
approximation of Christoffel numbers.

Suppose that G := ((γi, αi, βi))g+1
i=1 is a (κ, λ)-graphical sequence, that (G, Δ; L, �) is a 

(κ, λ)-quadruple as in Definition 4.1, and that Δ = (δj)τj=1.
Fix i with 0 ≤ i ≤ τ − 1. Let 0 ≤ ji < g be the integer for which

δτ−i = (γg−ji , αg−ji , βg−ji) (41)

holds. We put j−1 := −1, and note that ji − j(i−1) ≥ 1 necessarily holds.
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Suppose ji − j(i−1) ≥ 2. Then, for ni := ji − j(i−1) − 1, we define the sequence 

z(i) = (z(i)
s )ni

s=1 by putting

z(i)
s := (γg−j(i−1)−s, αg−j(i−1)−s, βg−j(i−1)−s), s = 1, . . . , ni.

In addition, for N :=
∑

z∈z(i) L(z), we let w(i) = (w(i)
k )Nk=1 be the sequence whose kth 

term w(i)
k is defined to be z(i)

j for the necessarily unique j for which

j−1∑
s=1

L
(
z(i)
s

)
< k ≤

j∑
s=1

L
(
z(i)
s

)
(42)

holds.
Now, suppose that θ is a real number, and that v0 and v1 are real numbers satisfying 

(v0, v1) �= (0, 0). In addition, let (vj)N+1
j=0 be the sequence that is defined by the recurrence 

relations

β̃jvj−1 + (α̃j − θ)vj + γ̃jvj+1 = 0 (j = 1, 2, . . . , N), (43)

where (γ̃j , α̃j , β̃j) denotes the jth term w(i)
j of the sequence w(i), and N is as above if 

ji − j(i−1) ≥ 2 and N := 0 else. Then, in view of (43), for ji − j(i−1) ≥ 2 there are 

polynomials f (i)
t (x), g(i)

t (x) in Q[x] (of degree s − 1 and s − 2, respectively) that, for 
θ ∈ [Rg−ji , κ], satisfy vs = f

(i)
t (θ)v1 + g

(i)
t (θ)v0 for each s ≥ 1,

vN =
{
f

(i)
1 (θ)v1 + g

(i)
1 (θ)v0 if ji − j(i−1) ≥ 2

v0 if ji − j(i−1) = 1,
(44)

and

vN+1 =
{
f

(i)
2 (θ)v1 + g

(i)
2 (θ)v0 if ji − j(i−1) ≥ 2

v1 if ji − j(i−1) = 1.
(45)

In addition, in case ji − j(i−1) = 1, we let f (i)
t (x) and g(i)

t (x) (t = 1, 2) be the polyno-
mials in Q[x] for which both f (i)

t (x) − t + 1 and g(i)
t (x) + t − 2 are the zero polynomials 

for t = 1, 2. Note that the degrees of the polynomials f (i)
t (x) and g(i)

t (x) are as follows:

deg
(
f

(i)
1 (x)

)
=

{−1 +
∑

z∈z(i) L(z) if ji − j(i−1) ≥ 2
−1 if ji − j(i−1) = 1; (46)

deg
(
g
(i)
1 (x)

)
=

{
deg(f (i)

1 (x)) − 1 if ji − j(i−1) ≥ 2
0 if ji − j(i−1) = 1;

(47)

deg
(
f

(i)
2 (x)

)
= deg

(
f

(i)
1 (x)

)
+ 1; (48)

deg
(
g
(i)
2 (x)

)
= deg

(
f

(i)
1 (x)

)
. (49)
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Note also that f (i)
t (x) and g(i)

t (x) (t = 1, 2, 0 ≤ i ≤ τ − 1) depend only on the triple 
(G, Δ, L) (and not on the function �).

We now present the second key definition of this section. For the (κ, λ)-graphical 
sequence G = ((γi, αi, βi))g+1

i=1 , let xi = xi(θ) and yi = yi(θ) (where |xi| ≥ |yi|) be the 
roots of the equation

γg−ix
2 + (αg−i − θ)x + βg−i = 0 (0 ≤ i < g). (50)

Definition 6.1. For any integers κ ≥ 3 and λ ≥ 0 with λ ≤ κ − 2, let (G, Δ; L, �) be 
a (κ, λ)-quadruple with G = ((γi, αi, βi))g+1

i=1 and Δ = (δi)τi=1. With reference to (28), 
(44), (45) and (50), for 0 ≤ i ≤ τ − 1 and δτ−i = (γg−ji , αg−ji , βg−ji) ∈ Δ satisfying 
βg−ji ≤ γg−ji , and for any real numbers v0, v1 satisfying (v0, v1) �= (0, 0) we define the 
set Bi = Bi(G, Δ, L) by

Bi(G,Δ, L) :=
{
θ ∈

[
Rg−ji(G),Rmax(G)

]
: Fi(θ) = 0

}
, (51)

where Fi(x) is the polynomial in R[x] given by

Fi(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

ξ∈{xji
,yji

}((x− αg+1)(f (i)
1 (x)ξ − f

(i)
2 (x)) + γg+1(g(i)

1 (x)ξ − g
(i)
2 (x)))

if i = 0∏
(ξ,χ)∈{xji

,yji
}×{xj(i−1) ,yj(i−1)}

((f (i)
1 (x)ξ − f

(i)
2 (x))χ + g

(i)
1 (x)ξ − g

(i)
2 (x))

if i �= 0.

With reference to (51), we also define the set B = B(G, Δ, L) by

B(G,Δ, L) :=
⋃

0≤i≤τ−1 and βg−ji
≤γg−ji

Bi(G,Δ, L). (52)

Note that since the polynomials f (i)
t (x) and g(i)

t (x) (t = 1, 2, 0 ≤ i ≤ τ − 1) depend 
only on the triple (G, Δ, L), the polynomial Fi(x) and the sets Bi and B in the last 
definition all also depend only on (G, Δ, L). Note that, if Rmax(G) = κ, then Fi(κ) = 0
for all i, 0 ≤ i ≤ τ − 1 (as the standard eigenvector for κ is the all-one vector and xi = 1
for all 0 ≤ i ≤ τ − 1), and hence in this case κ ∈ B.

Theorem 6.2. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Suppose that (G, Δ; L, �)
is a (κ, λ)-quadruple. Then there exists a constant C = C(G, Δ, L) > 0 such that

|B| ≤ C

holds, for B = B(G, Δ, L) as defined in Definition 6.1.

Proof. Let (G, Δ; L, �) be a (κ, λ)-quadruple, put G = ((γi, αi, βi))g+1
i=1 and let T =

T (G, �) be the associated (κ, λ)-tridiagonal sequence. In addition, put Δ = (δj)τj=1 and 
let δτ−i = (γg−ji , αg−ji , βg−ji) ∈ Δ with βg−ji ≤ γg−ji be as defined in (41).
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To prove the theorem, we will use Theorem 5.1 to bound |Bi| by some constant 
depending only on G, Δ and L for each 0 ≤ i ≤ τ − 1. To do this, we first define 
polynomials qs(x), s = 1, 2, and Pj(x), 1 ≤ j ≤ 4 as in the statement of that theorem, 
breaking this definition into cases depending on i:

(a) i = 0: Let qs(x) = (x − αg−ji)2 − 4βg−jiγg−ji (s = 1, 2). For each ξ ∈ {xji , yji}, 
put

P1(x) := (x− αg−ji)((x− αg+1)f (i)
1 + γg+1g

(i)
1 )

2γg−ji

− (x− αg+1)f (i)
2 − γg+1g

(i)
2 ,

P ξ
2 (x) := (−1)δξ,yji

(
(x− αg+1)f (i)

1 + γg+1g
(i)
1

2γg−ji

)
,

P3(x) = P4(x) = 0,

where δξ,yji
is the Kronecker delta function, and let P2(x) = P ξ

2 (x). Then, for this specific 
choice of polynomials, the polynomial P (x) = P ξ(x) in Theorem 5.1 becomes

P (x) = (x− αg+1)
(
f

(i)
1 (x)ξ − f

(i)
2 (x)

)
+ γg+1

(
g
(i)
1 (x)ξ − g

(i)
2 (x)

)
,

which is precisely the factor that appears in the definition of the polynomial F0(x) in 
Definition 6.1.

Note that if P1(x) and P2(x) are the zero polynomials, then (x − αg+1)f (i)
s +

γg+1g
(i)
s are also the zero polynomials for s = 1, 2. This contradicts (46)–(49). Hence 

max{deg(Pj(x)) : 1 ≤ j ≤ 4} ≥ 0.
(b) i ≥ 1: Let q1(x) = (x − αg−ji)2 − 4βg−jiγg−ji and q2(x) = (x − αg−j(i−1))2 −

4βg−j(i−1)γg−j(i−1) . Note that as βg−j(i−1) ≤ βg−ji ≤ γg−ji ≤ γg−j(i−1) holds, q1(y) �=
q2(y) for some y ∈ R. For each (ξ, χ) ∈ {xji , yji} ×{xj(i−1) , yj(i−1)}, let Ps(x) ∈ Q[x], 1 ≤
s ≤ 4, be polynomials such that P (x) := (f (i)

1 (x)ξ−f
(i)
2 (x))χ +g

(i)
1 (x)ξ−g

(i)
2 (x), i.e. the 

factor appearing in the definition of the polynomial Fi(x) in Definition 6.1, i ≥ 1. Note 
that if Ps(x) = 0 (1 ≤ s ≤ 4) are all the zero polynomials, then so are the polynomials 
f

(i)
t (x) and g(i)

t (x), t = 1, 2. Thus vN (θ) = vN+1(θ) = 0 hold for any real number θ, 
which is impossible as (v0, v1) �= (0, 0). Hence max{deg(Ps(x)) : 1 ≤ s ≤ 4} ≥ 0.

With these definitions in hand we can now apply Theorem 5.1 simultaneously to cases 
(a) and (b). (Clearly, q1(x) and q2(x) are not squares of linear polynomials.) In particular, 
in view of (46)–(49),

|Bi| ≤
{

8(4 + deg(f (i)
1 (x))) if i = 0

16(4 + deg(f (i)
1 (x))) if i �= 0

holds, from which the proof of the theorem now follows by taking

C(G,Δ, L) := 16|G|
(

3 +
∑

L(i)
)
. �
(γi,αi,βi)∈G\Δ
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Now, for the (κ, λ)-quadruple (G, Δ; L, �), let T = T (G, �) be the associated tridiagonal 
sequence. Let θ be a real number. Then, for each 0 ≤ i < g satisfying θ > Rg−i, there 
exist complex numbers ν(i)

1 (θ) and ν(i)
2 (θ) such that the terms in the standard sequence 

(uj = uj(θ))DT
j=0 satisfy

us(g−i+1)−j(θ) = ν
(i)
1 (θ)xj

i (θ) + ν
(i)
2 (θ)yji (θ)

(
0 ≤ j ≤ �(g − i) + 1

)
, (53)

where s(g − i + 1), xi(θ) and yi(θ) are as defined in (22) and (50). Note that xi(θ) −
yi(θ) �= 0 holds, and that (ν(i)

1 (θ), ν(i)
2 (θ)) �= (0, 0) holds as (u0, u1) �= (0, 0). Taking 

j = 0, 1 in (53) we obtain:

ν
(i)
1 (θ) =

(
−yi(θ)

xi(θ) − yi(θ)

)
us(g−i+1)(θ) +

(
1

xi(θ) − yi(θ)

)
us(g−i+1)−1(θ); (54)

ν
(i)
2 (θ) =

(
xi(θ)

xi(θ) − yi(θ)

)
us(g−i+1)(θ) +

(
−1

xi(θ) − yi(θ)

)
us(g−i+1)−1(θ). (55)

In particular, in view of (44), (45) and (53), for each δτ−i = (γg−ji , αg−ji , βg−ji) ∈ Δ, 
there exist polynomials f (i)

t = f
(i)
t (x), g(i)

t = g
(i)
t (x) (t = 1, 2) in Q[x] such that

us(g−ji+1)(θ) =
{
f

(i)
1 (θ)us(g−j(i−1))−1(θ) + g

(i)
1 (θ)us(g−j(i−1))(θ) if i �= 0

f
(i)
1 (θ)uD−1(θ) + g

(i)
1 (θ)uD(θ) if i = 0

(56)

and

us(g−ji+1)−1(θ) =
{
f

(i)
2 (θ)us(g−j(i−1))−1(θ) + g

(i)
2 (θ)us(g−j(i−1))(θ) if i �= 0

f
(i)
2 (θ)uD−1(θ) + g

(i)
2 (θ)uD(θ) if i = 0

(57)

hold, where f (i)
t (x) − t + 1 and g(i)

t (x) + t − 2 are the zero polynomials if ji − j(i−1) = 1.
The last theorem of this section will play an important role later on in obtaining an 

upper bound for the Christoffel numbers of any eigenvalue of T (G, �) within some closed 
interval not intersecting B. For any non-empty closed real interval I, we define Imin and 
Imax to be the real numbers for which I = [Imin, Imax] holds.

Theorem 6.3. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Suppose that (G, Δ; L, �)
is a (κ, λ)-quadruple and let G = ((γi, αi, βi))g+1

i=1 . Suppose that I is a non-empty, closed 
subinterval of (R1, Rmax) such that

I ∩
(
B ∪ {Ri : 1 ≤ i ≤ g}

)
= ∅ and 2 ≤ b < g (58)

both hold, where b = b(G, I) := max{2 ≤ i ≤ g : Imax < Ri}. Then for each 
(γg−i, αg−i, βg−i) ∈ Δ with b + 1 ≤ g − i ≤ g, there exist positive constants Ci =
Ci(κ, G, Δ, L, I) ≥ 1 and Mi = Mi(κ, G, Δ, L, I) > 1 such that, if �(g − j) > Ci hold for 
all j < i with (γg−j , αg−j , βg−j) ∈ Δ, then
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∣∣∣∣ν(i)
1 (θ)
ν

(i)
2 (θ)

∣∣∣∣ > Mi

(
yi(θ)
xi(θ)

)Ci

(59)

holds for any real number θ ∈ I, where Ri, Δ, xi(θ), yi(θ), B = B(G, Δ, L) and ν(i)
j (θ)

(j = 1, 2) are as defined in (28), (32), (50), (52) and (53), respectively.

Proof. Let T = T (G, �) be the (κ, λ)-tridiagonal sequence associated to (G, Δ; L, �), let 
D := DT and let Δ = (δi)τi=1. Note that for each 0 ≤ j < g − b, 0 < yj(θ)

xj(θ) < 1 holds 
for any θ ∈ I, and also that yj(θ)

xj(θ) is a non-zero continuous function (in θ) on the closed 
interval I. Hence, there exists a constant 0 < P = P (G, I) < 1 such that

yj(θ)
xj(θ)

=
θ − αg−j −

√
(θ − αg−j)2 − 4βg−jγg−j

θ − αg−j +
√

(θ − αg−j)2 − 4βg−jγg−j

≤ P < 1 (60)

holds for any 0 ≤ j < g − b and for any θ ∈ I. Note also that for each 0 ≤ j < g − b, 
βg−j ≤ γg−j holds by Lemma 3.3.

Now, for each δτ−s ∈ Δ, let

δτ−s := (γg−js , αg−js , βg−js)

for some 0 ≤ js < g. We prove the theorem by induction on 0 ≤ s ≤ s, where

s := max{i : δτ−i ∈ Δ and Rg−ji < Imin}.

First, suppose s = 0. Let δτ = (γg−j0 , αg−j0 , βg−j0) ∈ Δ for some 0 ≤ j0 ≤ g − b − 1.
By (9), γg+1uD−1(θ) +(αg+1−θ)uD(θ) = 0 and uD(θ) �= 0 for any θ ∈ I. By (54)–(57), 

there exist polynomials f (0)
t (x), g(0)

t (x) ∈ Q[x] (t = 1, 2) such that

ν
(j0)
1 (θ)

=
(

(θ − αg+1)(−f
(0)
1 (θ)yj0(θ) + f

(0)
2 (θ)) + γg+1(−g

(0)
1 (θ)yj0(θ) + g

(0)
2 (θ))

γg+1(xj0(θ) − yj0(θ))

)
uD(θ)

and

ν
(j0)
2 (θ) =

(
(θ − αg+1)(f (0)

1 (θ)xj0(θ) − f
(0)
2 (θ)) + γg+1(g(0)

1 (θ)xj0(θ) − g
(0)
2 (θ))

γg+1(xj0(θ) − yj0(θ))

)
uD(θ)

both hold for all θ ∈ I. It follows by (58) and uD(θ) �= 0 that ν(j0)
t (θ) �= 0 (t = 1, 2)

for all θ ∈ I. Since the function ν
(j0)
1 (θ)

ν
(j0)
2 (θ)

is a non-zero continuous function on the 

closed interval I, by (60) there exist constants Nj0 := Nj0(κ, G, Δ, L, I) > 0 and 
Cj0 := Cj0(κ, G, Δ, L, I) ≥ 1 so that
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∣∣∣∣ν(j0)
1 (θ)
ν

(j0)
2 (θ)

∣∣∣∣ ≥ Nj0 > PCj0−1 ≥ 1
P

(
yj0(θ)
xj0(θ)

)Cj0

(61)

holds for any θ ∈ I. Hence there exist constants Cj0 = Cj0(κ, G, Δ, L, I) ≥ 1 and 
Mj0 = Mj0(κ, G, Δ, L, I) := 1/P such that (59) holds for all θ ∈ I. This completes the 
proof of the base case.

Now, suppose 0 < s ≤ s, and assume that the theorem holds for all δτ−j ∈ Δ
with 0 ≤ j < s. Let x := xj(s−1)(θ), y := yj(s−1)(θ), νt := ν

(j(s−1))
t (θ) (t = 1, 2) and 

� := �(g − j(s−1)). In view of (53) and (56) and (57), there exist polynomials f (s)
t (x)

and g(s)
t (x) (t = 1, 2) such that, putting f1 := f

(s)
1 (θ), f2 := f

(s)
2 (θ), g1 := g

(s)
1 (θ) and 

g2 := g
(s)
2 (θ),

us(g−js+1) = f1us(g−j(s−1))−1 + g1us(g−j(s−1))

= (f1x + g1)ν1x
� + (f1y + g1)ν2y

�; (62)

us(g−js+1)−1 = f2us(g−j(s−1))−1 + g2us(g−j(s−1))

= (f2x + g2)ν1x
� + (f2y + g2)ν2y

� (63)

both hold for all θ ∈ I. Let x′ := xjs(θ) and y′ := yjs(θ), and define Mjs =
Mjs(κ, G, Δ, L, I) by

Mjs(κ,G,Δ, L, I)

:= max
{
Mj(s−1) , 2

∣∣∣∣ (f1y
′ − f2)y + g1y

′ − g2

(f1y′ − f2)x + g1y′ − g2

∣∣∣∣, 2
∣∣∣∣ (f1x

′ − f2)y + g1x
′ − g2

(f1x′ − f2)x + g1x′ − g2

∣∣∣∣ : θ ∈ I

}
.

(64)

By the induction hypothesis, if �(g − jt) > Cj(s−1) holds for all 0 ≤ t < s − 1, 
then (59) holds for the case i = j(s−1). Moreover, there exists an integer Ejs :=
Ejs(κ, G, Δ, L, I) ≥ 1 so that

∣∣∣∣ν1

ν2

∣∣∣∣(x

y

)Ejs

> Mjs (65)

holds for any θ ∈ I. Now take C ′
js

(κ, G, Δ, L, I) := max{Ejs , Cj(s−1)} and suppose that 
�(g − jt) > C ′

js
holds for all 0 ≤ t < s. If ν(js)

1 (η) = 0 holds for some η ∈ I, then 
us(g−js+1)−1(η) = us(g−js+1)(η)yjs(η) holds and so, as η /∈ B,

ν̄1x̄
�
((
f̄1ȳ

′ − f̄2
)
x̄ + ḡ1ȳ

′ − ḡ2
)

= ν̄2ȳ
�
((
−f̄1ȳ

′ + f̄2
)
ȳ − ḡ1ȳ

′ + ḡ2
)

and((
f̄1ȳ

′ − f̄2
)
x̄ + ḡ1ȳ

′ − ḡ2
) ((

−f̄1ȳ
′ + f̄2

)
ȳ − ḡ1ȳ

′ + ḡ2
)
�= 0

both hold, where ν̄t = ν
(j(s−1))
t (η), f̄t = f

(s)
t (η), ḡt = g

(s)
t (η) (t = 1, 2), x̄ = xj(s−1)(η), 

x̄′ = xjs(η), ȳ = yj(s−1)(η), and ȳ′ = yj(s−1)(η). This contradicts (64) and (65) as
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Mjs <

∣∣∣∣ ν̄1

ν̄2

∣∣∣∣( x̄

ȳ

)Ejs

≤
∣∣∣∣ ν̄1

ν̄2

∣∣∣∣( x̄

ȳ

)�

=
∣∣∣∣ (f̄1ȳ

′ − f̄2)ȳ + ḡ1ȳ
′ − ḡ2

(f̄1ȳ′ − f̄2)x̄ + ḡ1ȳ′ − ḡ2

∣∣∣∣.
Similarly, it follows that ν(js)

t (θ) �= 0 (t = 1, 2) must hold for all θ ∈ I. Moreover, by 
(53), (62) and (64), there exists a constant Njs := Njs(κ, G, Δ, L, I) > 0 such that

∣∣∣∣ν(js)
1 (θ)
ν

(js)
2 (θ)

∣∣∣∣ =
∣∣∣∣ν1x

�((−f1y
′ + f2)x− g1y

′ + g2) + ν2y
�((−f1y

′ + f2)y − g1y
′ + g2)

ν1x�((f1x′ − f2)x + g1x′ − g2) + ν2y�((f1x′ − f2)y + g1x′ − g2)

∣∣∣∣
≥ Mjs |(f1y

′ − f2)x + g1y
′ − g2| − |(f1y

′ − f2)y + g1y
′ − g2|

Mjs |(f1x′ − f2)x + g1x′ − g2| + |(f1x′ − f2)y + g1x′ − g2|

≥ |(f1y
′ − f2)y + g1y

′ − g2|
Mjs |(f1x′ − f2)x + g1x′ − g2| + |(f1x′ − f2)y + g1x′ − g2|

≥ Njs (66)

holds for any θ ∈ I. This implies that there exists a positive constant C ′′
js

=
C ′′

js
(κ, G, Δ, L, I) ≥ 1 such that Njs > MjsP

C′′
js holds. Hence by taking Cjs =

Cjs(κ, G, Δ, L, I) := max{C ′
js
, C ′′

js
}, it follows that

∣∣∣∣ν(js)
1 (θ)
ν

(js)
2 (θ)

∣∣∣∣ ≥ Njs > MjsP
Cjs ≥ Mjs

(
yjs(θ)
xjs(θ)

)Cjs

holds for all θ ∈ I. By applying the induction hypothesis, it follows that the desired 
result holds for each (γg−js , αg−js , βg−js) ∈ Δ satisfying 0 ≤ js < g − b. This completes 
the proof of the theorem. �
7. Well-placed intervals

In this section, we define the concept of a well-placed interval with respect to a graph-
ical sequence, and derive some simple properties of such intervals that will be used later 
on. Note that our definition of a well-placed interval is similar (but not identical) to the 
one presented in [3].

Suppose that G = ((γi, αi, βi))g+1
i=1 is a (κ, λ)-graphical sequence, where κ ≥ 3 and 

0 ≤ λ ≤ κ − 2 are integers.
For any closed subinterval I = [Imin, Imax] of (R1, Rmax) with positive length, define 

integers a = a(G, I), b = b(G, I), c = c(G, I) and d = d(G, I) (that depend only on G
and I) by

a(G, I) := min{2 ≤ i ≤ g : Imax < Ri}, (67)

b(G, I) := max{2 ≤ i ≤ g : Imax < Ri}, (68)

c(G, I) := min
{
{2 ≤ i ≤ g : Imax < Li} ∪ {g + 1}

}
, (69)

d(G, I) := max
{
{2 ≤ i ≤ g : Imax < Li} ∪ {c}

}
. (70)
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The interval I is called a well-placed interval with respect to G if it satisfies the following 
conditions:

(W1) I is a closed subinterval of the open interval (R1, Rmax) with positive length;
(W2) If I ∩ Ij �= ∅ then I ⊆ Ij holds, 1 ≤ j ≤ g;
(W3) I ⊆ Ia, where a := a(G, I).

From now on, we will denote well-placed intervals using calligraphic script (e.g. I
instead of I) to help the reader follow the text.

In the rest of the section, we will derive some properties of well-placed intervals. We 
start with recording some simple properties of the numbers a, b, c, d.

Lemma 7.1. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2, and let G = ((γi, αi, βi))g+1
i=1

be a (κ, λ)-graphical sequence. Let I = [Imin, Imax] be a well-placed interval with respect 
to G. For the numbers a, b, c, d as defined in (67)–(70), the following hold:

(i) 2 ≤ a ≤ b ≤ g.
(ii) c ≤ d.
(iii) If c ≤ g, then 2 ≤ a < c ≤ d ≤ b ≤ g holds.
(iv) {1 ≤ i ≤ g : 1 ≤ i < a or b < i ≤ g} ⊆ {1 ≤ i ≤ g : Ri < Imin}.
(v) If c ≤ g, then {1 ≤ i ≤ g : a ≤ i < c or d < i ≤ b} ⊆ {1 ≤ i ≤ g : I ⊆ Ii} holds.
(vi) If c = g + 1, then {1 ≤ i ≤ g : a ≤ i ≤ b} = {1 ≤ i ≤ g : I ⊆ Ii} holds.

Proof. (i)–(iii) are simple consequences of the definitions of well-placed intervals and the 
numbers a, b, c and d.

(iv)–(vi) are direct consequences of the following inequalities, which follow in view of 
the fact that the sequence (Ri)gi=1 is unimodal by Lemma 3.3:

max{Ri : 1 ≤ i < a or b < i ≤ g} < Imin < Imax < min{Ri : a ≤ i ≤ b}

and

max
{
Li : 1 ≤ i < min{c, g + 1} or min{d, g + 1} < i ≤ g

}
< Imin. �

We now present a result that ensures the existence of well-placed intervals.

Proposition 7.2. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2, and let G =
((γi, αi, βi))g+1

i=1 be a (κ, λ)-graphical sequence.

(i) For each (γi, αi, βi) ∈ G \ {(1, λ, κ − λ − 1), (κ − λ − 1, λ, 1), (γg+1, αg+1, βg+1)} and 
for any closed subinterval I ⊆ (R1, Ri) with positive length, there exists a well-placed 
interval Ji ⊆ I with respect to G (cf. (28)).
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(ii) Let I be a well-placed interval with respect to G. Then any closed interval J ⊆ I
with positive length is also a well-placed interval with respect to G. In particular, 
a(G, J ) = a(G, I), b(G, J ) = b(G, I), c(G, J ) = c(G, I), d(G, J ) = d(G, I) must all 
hold (cf. (67)–(70)).

Proof. (i) Let (γi, αi, βi) ∈ G \ {(1, λ, κ −λ − 1), (κ −λ − 1, λ, 1), (γg+1, αg+1, βg+1)} and 
suppose that I = [Imin, Imax] ⊆ (R1, Ri) is a subinterval with positive length. Define

Mi := max
{
Imin, y : y ∈ {Rj , Lj : 1 ≤ j ≤ g} and Imin ≤ y < Imax

}
.

Then Imin ≤ Mi < Imax, and the closed interval

Ji :=
[
Imax + 2Mi

3 ,
2 Imax + Mi

3

]
is a well-placed interval with respect to G satisfying Ji ⊆ I.

(ii) This follows immediately from the definition of well-placed intervals. �
Now, suppose that � : {1, . . . , g + 1} → N is a function with �(g + 1) = 1. For I

a well-placed interval with respect to G, we define C = CG,I , Len(I) = LenG,�(I) and 
Gap(I) = GapG,�(I) as follows:

CG,I :=
{
{1 ≤ i ≤ g : a ≤ i < c or d < i ≤ b} if c ≤ g

{1 ≤ i ≤ g : a ≤ i ≤ b} if c = g + 1,

LenG,�(I) :=
∑
j∈C

�(j), (71)

GapG,�(I) :=
{∑

c≤j≤d
�(j) if c ≤ g

0 if c = g + 1.
(72)

Using Proposition 7.2, we now show that for any (κ, λ)-graphical sequence G, there is 
a certain family of well-placed intervals with respect to G each of whose members avoid 
the set B(G, Δ, L) as defined in Definition 6.1.

Corollary 7.3. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Suppose that (G, Δ; L, �)
is a (κ, λ)-quadruple and let G = (δi := (γi, αi, βi))g+1

i=1 . Then for any closed subinterval 
I ⊆ (R1, Ri) with positive length, there exists a well-placed interval Ji in I such that 
Ji ∩ B = ∅ holds (cf. (28), (32) and (52)).

In particular, Len(Ji) ≥ �(i) also holds.

Proof. Suppose that (γi, αi, βi) and I are as in the statement of the corollary. By Propo-
sition 7.2(i), there exists a well-placed interval I ⊆ I with respect to G. By Theorem 6.2, 
the set B is finite. Hence, by Proposition 7.2(ii), we may take any closed subinterval Ji

of I \ B with positive length to give the desired well-placed interval. �



S. Bang et al. / Advances in Mathematics 269 (2015) 1–55 31
We conclude this section by showing that, in addition, well-placed intervals satisfying 
certain other properties also exist.

Proposition 7.4. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ −2. Let G = ((γi, αi, βi))g+1
i=1

be a (κ, λ)-graphical sequence and � : {1, . . . , g + 1} → N is a function with �(g + 1) = 1. 
Suppose that I is a well-placed interval with respect to G such that Gap(I) �= 0 holds. 
Then there exists a well-placed interval J such that

(i) Jmin > Imax,
(ii) Gap(J ) < Gap(I) and
(iii) Len(J ) > Gap(I)

g

all hold, where Len(J ) := LenG,�(J ) and Gap(I) := GapG,�(I) are as defined in 
(71) and (72), respectively.

Proof. As the sequence (Ri)gi=1 is unimodal by Lemma 3.3 and since Gap(I) �= 0, there 
exists an integer j with c ≤ j ≤ d such that �(j) > Gap(I)

g and Rj > Imax both hold, where 
c = c(G, I) and d = d(G, I) are as defined in (69) and (70). Hence, by Proposition 7.2, 
there exists such a well-placed interval J ⊆ (Imax, Rj) ⊆ Ij as Len(J ) ≥ �(j) > Gap(I)

g . 
The result now follows. �
8. Christoffel numbers

In this section, we prove a result that will allow us to bound the Christoffel numbers of 
the (κ, λ)-tridiagonal sequence associated to a (κ, λ)-quadruple. We will begin by stating 
the main theorem of this section, whose proof will be split into several steps. To state 
this result, we require some further definitions.

Let G = ((γi, αi, βi))g+1
i=1 be a (κ, λ)-graphical sequence for some integers κ ≥ 3

and λ ≥ 0 with λ ≤ κ − 2. Let x be a real number. For each (γi, αi, βi) ∈ G \
{(γg+1, αg+1, βg+1)}, define ρi = ρi(x) and σi = σi(x) to be the roots of the (auxil-
iary) equation

βiz
2 + (αi − x)z + γi = 0, (73)

which, without loss of generality, we assume to satisfy |ρi| ≥ |σi| for all 1 ≤ i ≤ g.

Theorem 8.1. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ −2. Suppose that (G, Δ; L, �) is a 
(κ, λ)-quadruple and let G = ((γi, αi, βi))g+1

i=1 . Suppose that I is a well-placed interval with 
respect to G satisfying I ∩ B(G, Δ, L) = ∅, with B(G, Δ, L) as defined in Definition 6.1. 
Then there exist positive constants F := F (κ, G, Δ, L, I), C1 := C1(κ, G, I) and C2 :=
C2(κ, G, Δ, L, I) so that if �(i) > F holds for all (γi, αi, βi) ∈ Δ then, for any θ ∈ I, the 
following holds:



32 S. Bang et al. / Advances in Mathematics 269 (2015) 1–55
C1

(
1

9κ4

)Gap(I)

Len(I)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤
D∑
i=0

κiu
2
i

≤ C2
(
9κ4)Gap(I)Len(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

,

where κi and ui := ui(θ) are as defined in (6) and (7) for the matrix L1(T (G, �)), and 
D := DT (G,�), a := a(G, I), Len(I) := LenG,�(I), Gap(I) := GapG,�(I) and ρi := ρi(θ)
are as defined in (25), (67), (71), (72) and (73), respectively.

To prove Theorem 8.1, we will divide the sum 
∑D

i=0 κiu
2
i into three parts: The Head 

sum
∑s(a)−2

i=0 κiu
2
i , the Gap sum

∑s(b+1)
i=s(a)−1 κiu

2
i , and the Tail sum

∑D
i=s(b+1)+1 κiu

2
i . In 

particular, in Section 8.1 we will prove a preliminary result concerning three-term recur-
rence relations and, for completeness, recall some additional results on such recursions 
from previous papers. We will then use these results in Section 8.2 to derive bounds for 
the Head and the Gap sums (as well as to prove some results in Section 9). Then, in 
Section 8.3, we will derive an upper bound for the Tail sum which, together with the 
previous bounds, will be used to prove Theorem 8.1.

8.1. Three-term recurrence relations

Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Suppose that T = T (G, �) is a 
(κ, λ)-tridiagonal sequence and let G = ((γi, αi, βi))g+1

i=1 . Let x be a real number, and let 
ρi := ρi(x) and σi := σi(x) be as defined in (73), noting that without loss of generality 
we are assuming |ρi| ≥ |σi| for all 1 ≤ i ≤ g. If x /∈ {Ri, Li : 1 ≤ i ≤ g}, with Ri and 
Li as defined in (28), then the roots ρi and σi are distinct, and so, by standard theory 
of recurrence relations, it follows that

us(i)−1+j = ω
(i)
1 ρji + ω

(i)
2 σj

i

(
0 ≤ j ≤ �(i) + 1

)
(74)

holds for some complex numbers ω(i)
1 := ω

(i)
1 (x) and ω(i)

2 := ω
(i)
2 (x), where ui = ui(x)

are the numbers associated to the matrix L1(T ) given by (7) and s(i) is defined in (22). 
In this situation, note also that (1) if |x −αi| > 2

√
βiγi holds then the roots ρi and σi are 

real numbers with |ρi| >
√

γi

βi
> |σi|, and ω(i)

1 , ω(i)
2 are real, and (2) if |x −αi| < 2

√
βiγi

holds then the roots ρi and σi are complex numbers with σi = ρi and |ρi| = |σi| =
√

γi

βi
, 

and ω(i)
1 , ω(i)

2 are complex numbers with ω(i)
2 = ω

(i)
1 .

We now prove a result that is analogous with the result [1, Proposition 3.1] that was 
proven to hold for distance-regular graphs.

Proposition 8.2. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ −2. Let G = ((γi, αi, βi))g+1
i=1

be a (κ, λ)-graphical sequence, � : {1, . . . , g + 1} → N be a function with �(g + 1) = 1, 
and T = T (G, �) be the (κ, λ)-tridiagonal sequence associated to G and �. Suppose that 
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I is a well-placed interval with respect to G. Then, for all θ ∈ I the following hold (cf. 
(67), (74)):

(i) 0 < σi(θ) < ρi(θ) < 1, for all 1 ≤ i ≤ a − 1.
(ii) us(i)−1(θ) >

∏i−1
j=1 ρj(θ)�(j), for all 2 ≤ i ≤ a.

(iii) −ω
(i)
1 (θ) < ω

(i)
2 (θ) < 0 < ω

(i)
1 (θ), for all 1 ≤ i ≤ a.

Proof. Suppose θ ∈ I, and put ρi := ρi(θ), σi := σi(θ), (1 ≤ i ≤ g), uj := uj(θ)
(1 ≤ j ≤ DT ) and ω(i)

j := ω
(i)
j (θ) (j = 1, 2) as in (74).

(i) Since θ > Ri holds for all 1 ≤ i < a by (67), 0 < σi < ρi holds for all 1 ≤ i < a. 
By (G0) in Definition 3.1 and by Lemma 3.3, 0 < θ < Rmax = max{κ − (

√
βi −

√
γi)2 :

1 ≤ i ≤ g} ≤ κ and βi > γi (1 ≤ i < a) both hold. Hence

2βi − (θ − αi) = (κ− θ) + (βi − γi) > 0 and(
2βi − (θ − αi)

)2 − (
(θ − αi)2 − 4βiγi

)
= 4βi(κ− θ) > 0

follow. Thus, (i) holds by (73) and the fact that ρi = θ−αi+
√

(θ−αi)2−4βiγi

2βi
holds.

To prove that (ii) and (iii) hold, we will use the following claim.

Claim 8.3.

(a) ρi+1 < ρi (1 ≤ i ≤ a − 1).
(b) us(i) > ρi us(i)−1 (1 ≤ i ≤ a).
(c) ω

(i)
1 > us(i)−1 (1 ≤ i ≤ a).

Proof. In view of Proposition 8.2(i) and βjρ
2
j +(αj−θ)ρj +γj = 0 (1 ≤ j ≤ g), it follows 

that

(βi − 1)ρ2
i + (αi + 1 − θ)ρi + γi = ρi(1 − ρi) > 0 and

βiρ
2
i + (αi − 1 − θ)ρi + (γi + 1) = 1 − ρi > 0

for all 1 ≤ i ≤ a − 1. Hence, by (G2) in Definition 3.1, statement (a) in the claim holds.
We now prove statements (b) and (c) by using induction on i. Suppose i = 1. By

β1

(
θ

κ

)2

+ (λ− θ)
(
θ

κ

)
+ 1 =

(
1 − θ

κ

)(
1 + (1 + λ)

(
θ

κ

))
> 0,

ρ1u0 = ρ1 < θ
κ = u1 hold. Thus, by Proposition 8.2(i) and ρ1u0 = ρ1(ω(1)

1 + ω
(1)
2 ) <

ω
(1)
1 ρ1 + ω

(1)
2 σ1 = u1, (b) and (c) hold for i = 1.

Now let 2 ≤ i < a, and suppose that (b) and (c) hold for all 2 ≤ j ≤ i. By the 
induction hypothesis, it follows us(i+1)−ρius(i+1)−1 = ω

(i)
2 σ

�(i)
i (σi−ρi) > 0 by (i) of the 
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proposition, and us(i+1) > ρius(i+1)−1 > ρi+1us(i+1)−1 by statement (a) of the claim. 
Thus, by (74), (b) and (c) hold for all 1 ≤ i ≤ a, which completes the proof of the 
claim. �

(ii) We prove this using induction on i. Suppose i = 2. Then by applying (b) and (c) 
of Claim 8.3 and statement (i) (with i = 1),

us(2)−1 − ρ
�(1)
1 = ρ

�(1)
1

(
ω

(1)
1 − 1

)
+ ω

(1)
2 σ

�(1)
1 > ρ1

(
ω

(1)
1 − 1

)(
ρ
�(1)−1
1 − σ

�(1)−1
1

)
> 0.

Therefore (ii) holds for i = 2.
Now let 2 ≤ i < a, and suppose that (ii) holds for all 2 ≤ j ≤ i. Using (i) and 

Claim 8.3(c), it follows that

us(i+1)−1 − us(i)−1ρ
�(i)
i = ω

(i)
2
(
σ
�(i)
i − ρ

�(i)
i

)
> 0

holds. Hence, by induction, us(i+1)−1 >
∏i

j=1 ρ
�(j)
j .

(iii) Using (ii) and Claim 8.3(c), it follows 0 < us(i)−1 = ω
(i)
1 + ω

(i)
2 < ω

(i)
1 for all 

1 ≤ i ≤ a. Now, (iii) follows immediately. �
We now recall a result that was originally stated using different terminology in [2]

and [8].

Lemma 8.4. (Cf. [2, Lemma 5.1], [8, Proposition 7].) Let κ ≥ 3 and λ ≥ 0 be integers with 
λ ≤ κ − 2. Let G = ((γi, αi, βi))g+1

i=1 be a (κ, λ)-graphical sequence, � : {1, . . . , g + 1} → N

be a function with �(g + 1) = 1, and T := T (G, �) be the (κ, λ)-tridiagonal sequence 
associated to G and � with diameter DT (cf. (25)). Let θ be any real number with |θ| ≤ κ. 
Then for each i = 1, . . . , DT − 1,

(i)

1
3κ max

{∣∣ui(θ)
∣∣, ∣∣ui+1(θ)

∣∣} ≤ max
{∣∣ui−1(θ)

∣∣, ∣∣ui(θ)
∣∣} ≤ 3κmax

{∣∣ui(θ)
∣∣, ∣∣ui+1(θ)

∣∣}
and

(ii)

(
1

9κ4

)
max

{
κi−1u

2
i−1(θ), κiu

2
i (θ)

}
≤ max

{
κiu

2
i (θ), κi+1u

2
i+1(θ)

}
≤ 9κ4 max

{
κi−1u

2
i−1(θ), κiu

2
i (θ)

}
hold, where κi and ui(θ) are as defined in (6) and (7) for the matrix L1(T ).
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Proof. (i) Since |θ| ≤ κ and 0 < βi, γi < κ (1 ≤ i ≤ g) hold, it follows by (9) that

∣∣ui+1(θ)
∣∣ =

∣∣∣∣(θ − αi

βi

)
ui(θ) −

(
γi
βi

)
ui−1(θ)

∣∣∣∣ ≤ 2κ
∣∣ui(θ)

∣∣ + κ
∣∣ui−1(θ)

∣∣
≤ 3κmax

{∣∣ui−1(θ)
∣∣, ∣∣ui(θ)

∣∣}
and

∣∣ui−1(θ)
∣∣ =

∣∣∣∣(θ − αi

γi

)
ui(θ) −

(
βi

γi

)
ui+1(θ)

∣∣∣∣ ≤ 2κ
∣∣ui(θ)

∣∣ + κ
∣∣ui+1(θ)

∣∣
≤ 3κmax

{∣∣ui(θ)
∣∣, ∣∣ui+1(θ)

∣∣}
all hold. Statement (i) now follows immediately.

(ii) Since 1
κκi+1 ≤ κi ≤ κ κi−1, i = 1, . . . , DT −1, holds by (27), statement (ii) follows 

immediately from (i). �
For completeness, we now recall two results from [2].

Corollary 8.5. (See [2, Corollary 4.2].) Suppose N ≥ 2 is an integer, and α ≥ 0, β > 0, 
γ > 0, x0 and x1 are real numbers satisfying (x0, x1) �= (0, 0). Let ε be a real number with 
0 < ε < 2

√
βγ. Then there exist positive real numbers Cs := Cs(β, γ, ε), s = 1, 2, 3, 4

such that for every real number θ with |θ − α| ≤ 2
√
βγ − ε, and for all real numbers 

x2, . . . , xN satisfying γxi−1 + (α− θ)xi + βxi+1 = 0 (i = 1, . . . , N − 1), we have

C1 max
{
x2

0,

(
β

γ

)
x2

1

}
≤ max

{(
β

γ

)i−1

x2
i−1,

(
β

γ

)i

x2
i

}
≤ C2 max

{
x2

0,

(
β

γ

)
x2

1

}
for i = 1, 2, . . . , N , and

C3N max
{
x2

0,

(
β

γ

)
x2

1

}
≤

N∑
i=0

(
β

γ

)i

x2
i ≤ C4N max

{
x2

0,

(
β

γ

)
x2

1

}
.

Proposition 8.6. (See [2, Proposition 4.3].) Suppose N ≥ 2 is an integer, and α ≥ 0, 
β > 0, γ > 0, x0 and x1 are real numbers satisfying (x0, x1) �= (0, 0). Let κ, ε and 
ε′ be positive real numbers. Then there exist constants C1 = C1(κ, α, β, γ, ε) > 0 and 
C2 = C2(β, γ, ε) > 1 such that, for every real number θ with |θ−α| ≥ 2

√
βγ + ε, |θ| ≤ κ, 

and

|x1 − x0σ| > ε′ max
{
|x0|,

√
β

γ
|x1|

}
(with ρ = ρ(θ) and σ = σ(θ) the roots of βx2 + (α− θ)x + γ = 0 with |ρ| ≥ |σ|), and for 
all real numbers x2, . . . , xN satisfying γxi−1 + (α− θ)xi + βxi+1 = 0 (i = 1, . . . , N − 1), 
we have
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N∑
i=0

(
β

γ

)i

x2
i ≤ C1

((
β

γ

)
ρ2
)N

max
{
x2

0,

(
β

γ

)
x2

1

}
and, for all n ≤ N ,

x2
n ≤ C2 ρ

2n max
{
x2

0,

(
β

γ

)
x2

1

}
.

8.2. Bounding Head and Gap sums

In this subsection, we obtain bounds for Head sum 
∑s(a)−2

i=0 κiu
2
i and Gap sum ∑s(b+1)

i=s(a)−1 κiu
2
i . In more detail, we prove the following:

Theorem 8.7. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Let G = ((γi, αi, βi))g+1
i=1

be a (κ, λ)-graphical sequence, � : {1, . . . , g+1} → N be a function with �(g+1) = 1, and 
T := T (G, �) be the (κ, λ)-tridiagonal sequence associated to G and �. Suppose that I is a 
well-placed interval with respect to G. Then there exist positive constants Ci := Ci(κ, G, I)
(1 ≤ i ≤ 11) such that for any element θ in I, the following all hold:

(i)
∑s(a)−2

i=0 κiu
2
i ≤ C1

∏a−1
i=1 ((βi

γi
)ρ2

i )�(i).
(ii)

∏a−1
i=1 ρ

2�(i)
i < max{u2

s(a)−1, (
βa

γa
)u2

s(a)} ≤ C2
∏a−1

i=1 ρ
2�(i)
i .

(iii) Let ĉ := min{c, b + 1}. Then

C3

(
ĉ−1∑
i=a

�(i)
)

a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

≤
s(ĉ)∑

i=s(a)−1

κiu
2
i

≤ C4

(
ĉ−1∑
i=a

�(i)
)

a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

.

(iv) Let ĉ := min{c, b + 1}. Then

C5

a−1∏
i=1

ρ
2�(i)
i ≤ max

{
u2
s(ĉ)−1,

(
βĉ−1
γĉ−1

)
u2
s(ĉ)

} ĉ−1∏
i=a

(
βi

γi

)�(i)

≤ C6

a−1∏
i=1

ρ
2�(i)
i .

(v) If c ≤ g, then 
∑s(d+1)

i=s(c) κiu
2
i < C7(9κ4)Gap(I) ∏a−1

i=1 ((βi

γi
)ρ2

i )�(i).
(vi) If c ≤ g and d < b both hold, then

C8

(
1

9κ4

)Gap(I)
(

b∑
i=d+1

�(i)
)

a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

≤
s(b+1)∑

i=s(d+1)−1

κiu
2
i ≤ C9

(
9κ4)Gap(I)

(
b∑

i=d+1
�(i)

)
a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

.
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(vii) If c ≤ g, then

C10

(
1

9κ4

)Gap

(I)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤ κs(b+1) max
{
u2
s(b+1)−1,

(
βb

γb

)
u2
s(b+1)

}

≤ C11
(
9κ4)Gap(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

,

where κi and ui := ui(θ) are as defined in (6) and (7) relative to the matrix L1(T ), and 
s(i), a, b, c, d, Gap(I) := GapG,�(I) and ρi := ρi(θ) are as defined in (22), (67)–(70), 
(72) and (73), respectively.

Proof. Suppose that G, �, T , I and θ are as in the statement of the theorem.
(i) and (ii): In order to apply Proposition 8.6, we first prove that there are positive 

constants ε1 := ε1(G, I) and ε2 := ε2(G, I) such that, for all 1 ≤ i ≤ a − 1,

(a) |θ − αi| ≥ 2
√
βiγi + ε1, and

(b) |us(i) − σius(i)−1| > ε2 max{|us(i)−1|, 
√

βi

γi
|us(i)|}

both hold.
For statement (a), we can take ε1 = ε1(G, I) := min{Imin − (αi + 2

√
βiγi) : 1 ≤ i ≤

a − 1}, in view of (67) and (W2).
By (67) and (73), inequalities M1 ≥ ρi > 0 and ρi−σi√

βi/γi
≥ M2 > 0 all hold for any 

θ ∈ I and for any 1 ≤ i ≤ a − 1, where

M1 = M1(G, I) := max
{

(Imax − αi) +
√

(Imax − αi)2 − 4βiγi
2βi

: 1 ≤ i ≤ a− 1
}

and

M2 = M2(G, I) := min
{√

γi
√

(Imin − αi)2 − 4βiγi

βi

√
βi

: 1 ≤ i ≤ a− 1
}
.

By (i) and (iii) of Proposition 8.2,

|us(i) − σius(i)−1|

max{|us(i)−1|,
√

βi

γi
|us(i)|}

=
∣∣∣∣ ω

(i)
1

ω
(i)
1 ρi + ω

(i)
2 σi

∣∣∣∣ |ρi − σi|√
βi

γi

>
1
|ρi|

|ρi − σi|√
βi

γi

≥ M2

M1
> 0

holds, and hence (b) holds for ε2 = ε2(G, I) = M2
M1

.
Now by Proposition 8.6, there exist constants M3 = M3(κ, G, I) > 1 and M4 =

M4(κ, G, I) > 0 such that for all 1 ≤ i ≤ a − 1,

max
{
u2
s(i+1)−1,

(
βi+1

)
u2
s(i+1)

}
≤ M3ρ

2�(i)
i max

{
u2
s(i)−1,

(
βi

)
u2
s(i)

}
(75)
γi+1 γi
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and

�(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≤ M4 κs(i)−1

((
βi

γi

)
ρ2
i

)�(i)

max
{
u2
s(i)−1,

(
βi

γi

)
u2
s(i)

}
(76)

both hold. By applying (75) inductively and also using (76), it follows that, for each 
1 ≤ i ≤ a − 1,

max
{
u2
s(i+1)−1,

(
βi+1

γi+1

)
u2
s(i+1)

}
≤ M i

3

i∏
j=1

ρ
2�(j)
j max

{
u2

0,

(
β1

γ1

)
u2

1

}

< κM i
3

i∏
j=1

ρ
2�(j)
j and

�(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≤ κ2M4M

i−1
3

i∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

≤ κ2M4 M
a−2
3

a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

all hold. Statements (i) and (ii) now follow by taking

C1 := (a− 1)κ2 M4 M
a−2
3 , C2 := κMa−1

3

and noting that u2
s(a)−1 >

∏a−1
j=1 ρ

2�(j)
j holds by Proposition 8.2(ii).

(iii) By Lemma 7.1, I ⊆ Ii holds for each a ≤ i ≤ ĉ− 1. Let ε = ε(G, I) := min{|αi +
2
√
βiγi − Imax|, |Imin − (αi − 2

√
βiγi)| : a ≤ i ≤ ĉ − 1}. Then |θ − αi| ≤ 2

√
βiγi − ε

and 0 < ε < 2
√
βiγi both hold for all a ≤ i ≤ ĉ− 1. Hence by Corollary 8.5, there exist 

constants Mj := Mj(G, I) > 0 (5 ≤ j ≤ 8) such that, for any a ≤ i ≤ ĉ− 1,

M5 max
{
u2
s(i)−1,

(
βi

γi

)
u2
s(i)

}
≤

(
βi

γi

)�(i)

max
{
u2
s(i+1)−1,

(
βi

γi

)
u2
s(i+1)

}
≤ M6 max

{
u2
s(i)−1,

(
βi

γi

)
u2
s(i)

}
(77)

and

M7�(i) max
{
u2
s(i)−1,

(
βi

γi

)
u2
s(i)

}
≤

�(i)+1∑
j=0

(
βi

γi

)j

u2
s(i)−1+j

≤ M8�(i) max
{
u2
s(i)−1,

(
βi

)
u2
s(i)

}
(78)
γi
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both hold. Note that for each 1 ≤ i ≤ g, the following hold for all 0 ≤ j ≤ �(i) + 1:

1
κ

(
βi

γi

)j i−1∏
m=1

(
βm

γm

)�(m)

≤ κs(i)−1+j ≤ κ

(
βi

γi

)j i−1∏
m=1

(
βm

γm

)�(m)

. (79)

Hence, by applying (79) to (78) and by using (77) and statement (ii) of the theorem, 
it follows that, for each a ≤ i ≤ ĉ − 1, there exists a constant M9 := M9(κ, G, I) > 0
such that

�(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≤ κM8�(i)

i−1∏
j=1

(
βj

γj

)�(j)

max
{
u2
s(i)−1,

(
βi

γi

)
u2
s(i)

}

≤ κM8M
i−a
6 �(i)

a−1∏
j=1

(
βj

γj

)�(j)

max
{
u2
s(a)−1,

(
βa

γa

)
u2
s(a)

}

≤ κmax
{
1,M ĉ

6
}
M8M9�(i)

a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

holds and, similarly,

�(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≥

M7

κ
min

{
1,M ĉ

5
}
�(i)

a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

.

Hence (iii) follows by taking

C3(κ,G, I) := M7

3κ min
{
1,M ĉ

5
}
, C4(κ,G, I) := κmax

{
1,M ĉ

6
}
M8M9,

in light of that fact that each element κs(i)−1+ju
2
s(i)−1+j appears in the sum∑ĉ−1

i=a

∑�(i)+1
m=0 κs(i)−1+mu2

s(i)−1+m at most three times.
(iv) This follows from (77) and statement (ii) of the theorem.
(v) By Lemma 8.4(ii), statement (iv) of the theorem, (72) and (79), there exists a 

constant C7 = C7(κ, G, I) > 0 so that

s(d+1)∑
i=s(c)

κiu
2
i < 2

(
9κ4)s(d+1)−s(c)+1 max

{
κs(c)−1u

2
s(c)−1, κs(c)u

2
s(c)

}

≤ C7
(
9κ4)Gap(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

holds. (v) follows immediately.
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(vi) and (vii) Using the same proof as for statement (iii), it can be seen that if d < b

then (77) and (78) both hold for all d + 1 ≤ i ≤ b.
By (77)–(79), Lemma 8.4(ii) and statement (iv) of the theorem, there exist constants 

Mj = Mj(κ, G, I) > 0 (10 ≤ j ≤ 15) such that

κs(b+1) max
{
u2
s(b+1)−1,

(
βb

γb

)
u2
s(b+1)

}
≤ M10κs(d+1) max

{
u2
s(d+1)−1,

(
βd

γd

)
u2
s(d+1)

}
≤ M11κs(c)

(
9κ4)Gap(I) max

{
u2
s(c)−1,

(
βc−1

γc−1

)
u2
s(c)

}

≤ M12
(
9κ4)Gap(I)

a−1∏
j=1

((
βi

γi

)
ρ2
i

)�i

holds, and moreover, if d < b then for each d + 1 ≤ i ≤ b,

�(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≤ M13 �(i)

(
9κ4)Gap(I)

c−1∏
j=1

(
βj

γj

)�(j)

max
{
u2
s(c)−1,

(
βc

γc

)
u2
s(c)

}

≤ M14 �(i)
(
9κ4)Gap(I)

a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

and

�(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≥ M15 �(i)

(
1

9κ4

)Gap(I) a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

all hold. By taking C8(κ, G, I) := M15
3 , C9(κ, G, I) := M14 and C11(κ, G, I) := M12, it 

can be seen that the inequalities in (vi) and (vii) involving these constants all hold. It 
can also be seen in a similar fashion that there exists a constant C10 = C10(κ, G, I) > 0
such that the left-hand inequality in (vii) holds. �

By using the previous theorem, we now obtain bounds for Gap sum 
∑s(b+1)

i=s(a)−1 κiu
2
i .

Corollary 8.8. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Let G = ((γi, αi, βi))g+1
i=1

be a (κ, λ)-graphical sequence, � : {1, . . . , g+1} → N be a function with �(g+1) = 1, and 
T := T (G, �) be the (κ, λ)-tridiagonal sequence associated to G and �. Suppose that I is a 
well-placed interval with respect to G. Then there exist positive constants C := C(κ, G, I)
and C ′ := C ′(κ, G, I) such that for any element θ in I,



S. Bang et al. / Advances in Mathematics 269 (2015) 1–55 41
C

(
1

9κ4

)Gap(I)

Len(I)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤
s(b+1)∑

i=s(a)−1

κiu
2
i

≤ C ′(9κ4)Gap(I)Len(I)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

,

where κi and ui := ui(θ) are as defined in (6) and (7) for the matrix L1(T (G, �)), and 
s(i), a := a(G, I), b := b(G, I), Len(I) := LenG,�(I), Gap(I) := GapG,�(I) and ρi := ρi(θ)
are as defined in (22), (67), (68), (71)–(73), respectively.

Proof. Constants Ci (i = 3, 4, 7, 8, 9) in this proof are the constants in Theorem 8.7. 
Note that Len(I) ≥ 1 and (9κ4)Gap(I) ≥ 1. We break the proof into three cases:

(1) c = g+1: By (71) and (72), Len(I) =
∑b

i=a
�(i) ≥ 1 and Gap(I) = 0. By applying 

Theorem 8.7(iii) with ĉ = b + 1, Corollary 8.8 holds for C := C3 and C ′ := C4.
(2) c ≤ g and d = b: Then Len(I) =

∑c−1
i=a

�(i) ≥ 1, and by applying Theorem 8.7(iii) 
and (v) for ĉ = c, the result follows for C := C3 and C ′ := C4 + C7 as

C3

(
1

9κ4

)Gap(I)

Len(I)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤ C3Len(I)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤
s(c)∑

i=s(a)−1

κiu
2
i

≤ C4Len(I)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤ C4
(
9κ4)Gap(I)Len(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

and

s(b+1)∑
i=s(c)

κiu
2
i < C7

(
9κ4)Gap(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤ C7
(
9κ4)Gap(I)Len(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

all hold.
(3) c < g and d < b: In this case, Len(I) =

∑c−1
i=a

�(i) +
∑b

i=d+1 �(i) and by Theo-
rem 8.7(iii), (v) and (vi), the following all hold:

min{C3, C8}
(

1
9κ4

)Gap(I) c−1∑
i=a

�(i)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤ C3

c−1∑
�(i)

a−1∏((
βi

γi

)
ρ2
i

)�(i)
i=a i=1
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≤
s(c)∑

i=s(a)−1

κiu
2
i

≤ C4

c−1∑
i=a

�(i)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤ max{C4, C7, C9}
(
9κ4)Gap(I) Len(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

,

s(d+1)∑
i=s(c)

κiu
2
i ≤ C7

(
9κ4)Gap(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤ max{C4, C7, C9}
(
9κ4)Gap(I) Len(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

and

min{C3, C8}
(

1
9κ4

)Gap(I) b∑
i=d+1

�(i)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤
s(b+1)∑

i=s(d+1)−1

κiu
2
i

≤ C9
(
9κ4)Gap(I)

b∑
i=d+1

�(i)
a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

≤ max{C4, C7, C9}
(
9κ4)Gap(I)Len(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

.

Hence, the result now follows by taking

C := min{C3, C8}
2 , C ′ := 3 max{C4, C7, C9},

in light of the fact s(c) ≤ s(d + 1) − 1. The corollary now follows. �
8.3. Bounding Tail sum

In this section, we obtain an upper bound for the Tail sum 
∑D

i=s(b+1)+1 κiu
2
i . Namely:

Theorem 8.9. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ −2. Suppose that (G, Δ; L, �) is 
a (κ, λ)-quadruple and let G = ((γi, αi, βi))g+1

i=1 . Suppose that I is a well-placed interval 
with respect to G satisfying I ∩ B = ∅ and b < g (cf. (52) and (68)). Then there exist 
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positive constants F := F (κ, G, Δ, L, I) and C := C(κ, G, Δ, L, I) so that if �(i) > F

holds for all (γi, αi, βi) ∈ Δ with b < i ≤ g then, for any θ ∈ I,

D∑
i=s(b+1)+1

κiu
2
i ≤ C

(
9κ4)Gap(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i

)�(i)

holds, where κi and ui := ui(θ) are as defined in (6) and (7) for the matrix L1(T (G, �)), 
and s(i), D := DT (G,�), a := a(G, I), Gap(I) := GapG,�(I) and ρi := ρi(θ) are as defined 
in (22), (25), (67), (72) and (73), respectively.

Proof. Suppose (G, Δ; L, �) and I are as in the statement of the theorem. By Theo-
rem 6.3, for each 0 ≤ i ≤ g−b − 1 satisfying (γg−i, αg−i, βg−i) ∈ Δ there exist constants 
Ci = Ci(κ, G, Δ, L, I) ≥ 1 and Mi = Mi(κ, G, Δ, L, I) > 1 such that if �(g − j) > Ci

holds for all (γg−j , αg−j , βg−j) ∈ Δ with j < i, then (59) holds for all θ ∈ I. Now put

F = F (κ,G,Δ, L, I)

:= max
{
Ci(κ,G,Δ, L, I) : 0 ≤ i ≤ g − b− 1 and (γg−i, αg−i, βg−i) ∈ Δ

}
;

M = M(κ,G,Δ, L, I)

:= min
{
Mi(κ,G,Δ, L, I) : 0 ≤ i ≤ g − b− 1 and (γg−i, αg−i, βg−i) ∈ Δ

}
.

(†) Suppose that if {(γg−i, αg−i, βg−i) ∈ Δ : 0 ≤ i ≤ g − b − 1} �= ∅ then �(g − i) > F

holds for all (γg−i, αg−i, βg−i) ∈ Δ with 0 ≤ i ≤ g − b − 1.

Let θ ∈ I. We will use the following:

Claim 8.10. There exist constants C1 = C1(G, I) > 0 and Cm = Cm(κ, G, Δ, L, I) > 0
(m = 2, 3) such that, for all 0 ≤ i ≤ g − b − 1, the following hold:

(a)

|us(g−i+1)−j | ≤ C1 max
{
|us(g−i+1)−1|, |us(g−i+1)|

}
xj
i

(
0 ≤ j ≤ �(g − i) + 1

)
.

(b)

max
{
|us(g−i)−1|, |us(g−i)|

}
> C2 max{|us(g−i+1)−1|, |us(g−i+1)|}x�(g−i)

i .

(c)

g−b−1∏
j=0

xj
2�(g−j) max

{
u2
D−1, u

2
D

}
< C3 max

{
u2
s(b+1)−1, u

2
s(b+1)

}
,

where xj is defined in (50).
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Proof. Let 0 ≤ i ≤ g− b − 1. By (50) and Lemma 7.1(iv), xi > yi > 0. Let ν(i)
j = ν

(i)
j (θ)

(j = 1, 2) be as defined in (53).
(a) First suppose that ν(i)

1 ν
(i)
2 > 0 holds. Then for all 0 ≤ j ≤ �(g− i) + 1, (a) follows 

since

|us(g−i+1)−j | =
∣∣ν(i)

1
∣∣xj

i +
∣∣ν(i)

2
∣∣ yji <

(∣∣ν(i)
1
∣∣ +

∣∣ν(i)
2
∣∣)xj

i = |us(g−i+1)|xj
i .

Now suppose ν(i)
1 ν

(i)
2 < 0. By (54) and (55),

max
{∣∣ν(i)

1
∣∣, ∣∣ν(i)

2
∣∣} ≤ 2 max

{
1

xi − yi
,

xi

xi − yi

}
max

{
|us(g−i+1)−1|, |us(g−i+1)|

}
≤ C1 max

{
|us(g−i+1)−1|, |us(g−i+1)|

}
(80)

holds, where

C1 = C1(G, I)

:= 2 max
{

Imax − αm√
(Imin − αm)2 − 4βmγm

,
γm√

(Imin − αm)2 − 4βmγm
:

0 ≤ m ≤ g − b− 1
}
.

Since |us(g−i+1)−j | ≤ max{|ν(i)
1 |, |ν(i)

2 |} xj
i holds by ν(i)

1 ν
(i)
2 < 0 and xi > yi > 0, (a) fol-

lows by (80).
(b) Suppose (γg−i, αg−i, βg−i) ∈ G \Δ. Then �(g− i) = L(g− i) and, by Lemma 8.4(i) 

and 0 < xi <
Imax−αg−i

γg−i
, it follows that

max
{
|us(g−i)−1|, |us(g−i)|

}
≥

(
1

3κxi

)�(g−i)

max
{
|us(g−i+1)−1|, |us(g−i+1)|

}
x
�(g−i)
i

≥
(

γg−i

3κ(Imax − αg−i)

)L(g−i)

max
{
|us(g−i+1)−1|, |us(g−i+1)|

}
x
�(g−i)
i ,

and thus (b) follows by taking C2 = C2(κ, G, Δ, L, I), where

C2 := min
{(

γg−m

3κ(Imax − αg−m)

)L(g−m)

: 0 ≤ m ≤ g − b− 1 and

(γg−m, αg−m, βg−m) ∈ G \ Δ
}
.

Now suppose (γg−i, αg−i, βg−i) ∈ Δ. By Theorem 6.3 with (†),
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max
{
|us(g−i+1)−1|, |us(g−i+1)|

}
≤ max{1, xi}

(∣∣ν(i)
1
∣∣ +

∣∣ν(i)
2
∣∣)

<

(
1 + 1

M

(
xi

yi

)F)
(1 + xi)

∣∣ν(i)
1
∣∣

<

(
1 + 1

M

(
(Imax − αg−i)2

βg−iγg−i

)F)(
1 + Imax − αg−i

γg−i

)∣∣ν(i)
1
∣∣ (81)

and

max
{
|us(g−i)−1|, |us(g−i)|

}
≥

∣∣ν(i)
1 x

�(g−i)
i

∣∣− ∣∣ν(i)
2 y

�(g−i)
i

∣∣
>

∣∣ν(i)
1
∣∣x�(g−i)

i

(
1 − 1

M

(
xi

yi

)F(
yi
xi

)�(g−i))
>

(
1 − 1

M

)∣∣ν(i)
1
∣∣x�(g−i)

i (82)

all hold. By (81) and (82), statement (b) now follows by taking C2 = C2(κ, G, Δ, L, I), 
where

C2 := 1 − 1
M

max{(1 + 1
M

(
(Imax−αg−m)2

βg−mγg−m
)F )(1 +

Imax−αg−m
γg−m

) : 0 ≤ m ≤ g − b − 1 and (γg−m, αg−m, βg−m) ∈ Δ}
.

(c) This follows by applying (b) inductively on i for 0 ≤ i ≤ g − b − 1. �
Let 0 ≤ i ≤ g−b −1. By (a) and (c) of the claim, ( γg−i

βg−i
)x2

i > 1 and Theorem 8.7(vii), 
there exist constants Mj = Mj(κ, G, I) > 0 (j = 1, 2) and Mj = Mj(κ, G, Δ, L, I) > 0
(j = 3, 4) such that

�(g−i)−1∑
j=0

κs(g−i+1)−ju
2
s(g−i+1)−j

< κκD

i−1∏
j=0

(
γg−j

βg−j

)�(g−j) �(g−i)−1∑
m=0

(
γg−i

βg−i

)m

u2
s(g−i+1)−m

≤ M1κD

i−1∏
j=0

(
γg−j

βg−j

)�(g−j)

max
{
u2
s(g−i+1)−1, u

2
s(g−i+1)

} �(g−i)−1∑
m=0

(
γg−i

βg−i

)m

x2m
i

≤ M2κD max
{
u2
D−1, u

2
D

} i∏
j=0

((
γg−j

βg−j

)
x2
j

)�(g−j)

≤ M2κD max
{
u2
D−1, u

2
D

} g−b−1∏ ((
γg−j

βg−j

)
x2
j

)�(g−j)
j=0
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≤ M3κs(b+1) max
{
u2
s(b+1)−1, u

2
s(b+1)

}
≤ M4

(
9κ4)Gap(I)

a−1∏
j=1

((
βj

γj

)
ρ2
j

)�(j)

(83)

holds. From (83) and

D∑
j=s(b+1)+1

κju
2
j =

g−b−1∑
i=0

�(g−i)−1∑
j=0

κs(g−i+1)−ju
2
s(g−i+1)−j ,

Theorem 8.9 now follows by taking C(κ, G, Δ, L, I) := (g − b)M4. �
With these results in hand, we can now prove the main theorem of this section:

Proof of Theorem 8.1. Theorem 8.1 follows immediately by Theorem 8.7(i), Corollary 8.8
and Theorem 8.9. �
9. Distribution of eigenvalues and proof of Theorem 4.2

In this section we prove Theorem 4.2 and thus complete the proof of the Bannai–Ito 
conjecture. To do this we will first prove two results concerning the distribution of the 
eigenvalues of a graphical sequence in a well-placed interval with respect to this sequence, 
using the results from the last four sections.

Theorem 9.1. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2, and let G = (δi :=
(γi, αi, βi))g+1

i=1 be a (κ, λ)-graphical sequence. Suppose that Δ = (δip)τp=1 is a subse-
quence of G with (1, λ, κ − λ − 1) ∈ Δ and (γg+1, αg+1, βg+1) /∈ Δ, L : {1, . . . , g + 1} \
{i1, . . . , iτ} → N is a function, and I is a well-placed interval with respect to G satisfying 
I ∩ B(G, Δ, L) = ∅ (cf. (52)). Suppose that ε > 0 is a real number, C := C(κ) > 0
is a constant, and � : {1, . . . , g + 1} → N is any function for which (G, Δ; L, �) is a 
(κ, λ)-quadruple and the associated (κ, λ)-tridiagonal sequence T = T (G, �) satisfies

(i) Property (AC),
(ii) DT ≤ ChT , and
(iii) Len(I) ≥ εhT ,

where hT , DT and Len(I) := LenG,�(I) are as defined in (23), (25) and (71), respectively.
Then for any real number δ > 0, there exist positive constants F := F (κ, G, Δ, L, I), 

C1 := C1(κ, λ, ε, δ, G, Δ, L, I) and C2 := C2(κ, λ, δ) such that if �(ip) > F holds for all 
1 ≤ p ≤ τ and if there exist two conjugate algebraic numbers θ and η in ET ∩I satisfying 
|θ − η| > δ then

either hT < C1 or Gap(I) > C2hT

holds, where ET and Gap(I) := GapG,�(I) are as defined in (26) and (72), respectively.
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Proof. Suppose that κ, λ, ε, C, G, Δ, L, I, � and T are as in the statement of the 
theorem, and put h := hT and D := DT . Let δ be any positive real number, and let θ
and η be two conjugate algebraic numbers in ET ∩ I satisfying |θ− η| > δ. Without loss 
of generality, we assume η − θ > δ.

By applying Theorem 8.1 and the conditions ε h ≤ Len(I) < D ≤ C h given by (ii) 
and (iii) in the statement of the theorem, it follows that there exist positive constants 
F := F (κ, G, Δ, L, I), M1 := M1(κ, G, I) and M2 := M2(κ, G, Δ, L, I) so that if �(ip) >
F holds for all 1 ≤ p ≤ τ then

ε hM1

(
1

9κ4

)Gap(I) a−1∏
i=1

((
βi

γi

)
ρ2
i (x)

)�(i)

≤
D∑
i=0

κiu
2
i (x)

≤ hM2C
(
9κ4)Gap(I)

a−1∏
i=1

((
βi

γi

)
ρ2
i (x)

)�(i)

(84)

holds for any x ∈ I, where κi and ui := ui(x) are as defined in (6) and (7) for the matrix 
L1(T ), and a, ρi(x) are as defined in (67) and (73), respectively.

By Proposition 8.2(i) and η > θ, it follows that

0 < ρi(θ) < ρi(η) < 1 (i = 1, . . . , a− 1), (85)

and moreover, by (85) and η − θ > δ,

ρ1(η) > ρ1(θ) + δ

2(κ− λ− 1) >

(
1 + δ

2(κ− λ− 1)

)
ρ1(θ). (86)

By applying (85) and (86) to (84), it follows that

D∑
i=0

κiu
2
i (η) ≥ ε hM1

(
1

9κ4

)Gap(I) a−1∏
i=1

((
βi

γi

)
ρ2
i (η)

)�(i)

> ε hM1

(
1

9κ4

)Gap(I)(
1 + δ

2(κ− λ− 1)

)2h a−1∏
i=1

((
βi

γi

)
ρ2
i (θ)

)�(i)

≥ εM1

M2C

(
1

9κ4

)2Gap(I)(
1 + δ

2(κ− λ− 1)

)2h D∑
i=0

κiu
2
i (θ). (87)

Since θ and η are algebraic conjugates, 
∑D

i=0 κiu
2
i (η) =

∑D
i=0 κiu

2
i (θ) > 0 holds by 

Property (AC). Hence, by (87),
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ln
(

1 + δ

2(κ− λ− 1)

)2

<
ln(M2C

εM1
)

h
+ Gap(I)

h
ln
(
9κ4)2. (88)

Now, put

C1 :=
ln(M2C

εM1
)

ln(1 + δ
2(κ−λ−1) )

and C2 :=
ln(1 + δ

2(κ−λ−1) )
2 ln(9κ4) .

If 0 < M2C
εM1

≤ 1 then Gap(I) > C2h holds as Gap(I)
h >

ln(1+ δ
2(κ−λ−1) )

ln(9κ4) >
ln(1+ δ

2(κ−λ−1) )
2 ln(9κ4)

by (88). Moreover, if M2C
εM1

> 1 and Gap(I) ≤ C2h, then h <
ln(M2C

εM1
)

ln(1+ δ
2(κ−λ−1) )

holds by (88). 
Therefore Theorem 9.1 now follows for this choice of C1 and C2. �
Proposition 9.2. Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2, and let G =
(δi := (γi, αi, βi))g+1

i=1 be a (κ, λ)-graphical sequence. Suppose that Δ = (δip)τp=1 is 
a subsequence of G with (1, λ, κ − λ − 1) ∈ Δ and (γg+1, αg+1, βg+1) /∈ Δ, L :
{1, . . . , g + 1} \ {i1, . . . , iτ} → N is a function, and I is a well-placed interval with 
respect to G satisfying I ∩ B(G, Δ, L) = ∅ (cf. (52)). Suppose that ε > 0 is a real 
number, C := C(κ) > 0 is a constant, and � : {1, . . . , g + 1} → N is any function 
for which (G, Δ; L, �) is a (κ, λ)-quadruple and the associated (κ, λ)-tridiagonal sequence 
T = T (G, �) satisfies

(i) Property (AC),
(ii) DT ≤ ChT , and
(iii) Len(I) ≥ εhT ,

where hT , DT and Len(I) := LenG,�(I) are as defined in (23), (25) and (71), respectively.
Then for any real number μ > 0, there exist positive constants F := F (κ, G, Δ, L, I), 

G := G(κ, λ, ε, μ, G, I) and H := H(κ, λ, ε, μ, G, Δ, L, I) such that if �(ip) > F holds for 
all 1 ≤ p ≤ τ , and hT ≥ H and Gap(I) ≤ GhT also hold, then the number of eigenvalues 
of T that have an algebraic conjugate in I is at least μh, where Gap(I) := GapG,�(I) is 
as defined in (72).

Proof. Suppose that κ, λ, ε, C, G, Δ, L, I, � and T are as in the statement of the 
proposition, and put h := hT and D := DT . Let μ be any positive real number.

In view of Theorem 5.5, there exists a constant M1 := M1(κ, ε, μ, G, I) > 0 such that 
for any positive real number ζ satisfying ζ < M1,

Υκ,ζ ≤ 1
2 + 48πκμg

ε|I|
(89)

holds (cf. (40)). Put
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ζ0 = ζ0(κ, ε, μ,G, I) := min
{
|I|, M1

2

}
and Υ := Υκ,ζ0 . (90)

Then by (89) and (90),

Υ ≤ 1
2 + 48πκμg

ε|I|
<

1
2 . (91)

By Lemma 5.3(i) and Remark 5.4, there exists a constant M2 := M2(κ, ε, μ, G, I) > 0
such that ∣∣∣∣{p(x) ∈ Pκ : deg

(
p(x)

)
≤ 1

Υ

}∣∣∣∣ ≤ M2

holds, and therefore ∣∣∣∣{x ∈ I ∩ ET : deg(x) ≤ 1
Υ

}∣∣∣∣ ≤ M2

Υ
, (92)

where deg(x) is the degree of the minimal polynomial of an algebraic number x (cf. (26)).
Now, let F := F (κ, G, Δ, L, I), C1 := C1(κ, λ, ε, μ, G, Δ, L, I) and C2 :=

C2(κ, λ, ε, μ, G, I) be the positive constants given by Theorem 9.1 by taking δ := ζ0
2 , 

and put

H := max
{

6κπg
ε|I| ,

24κπgM2

εΥ |I| , C1

}
and G := C2.

We now show that for this choice of F , H and G, the proposition holds. To this end, 
let θ be any element in ET ∩ I satisfying deg(θ) > 1

Υ , and let pθ(x) ∈ Pκ be a minimal 
polynomial of θ. Then by Theorem 9.1, all roots of pθ(x) must lie in the closed interval 
[θ − ζ0

2 , θ + ζ0
2 ]. Hence, by (39), (40) and deg(θ) = deg(pθ) > 1

Υ ,

∣∣{x ∈ I : pθ(x) = 0
}∣∣ ≤ ∣∣∣∣{x ∈

[
θ − ζ0

2 , θ + ζ0
2

]
: pθ(x) = 0

}∣∣∣∣ ≤ Υ deg(pθ) + 1

< 2Υ deg(p θ). (93)

Now, we prove the following claim.

Claim 9.3. The number of eigenvalues of T in I is at least ( ε|I|
12κπg )h.

Proof. As h ≥ H and |I| < κ (by (W1)), h ≥ 6κπg
ε|I| > 1

ε holds. Hence, as Len(I) ≥ εh > 1
(by statement (iii) of the proposition), there exists m ∈ {2, . . . , g} so that �(m) > εh

g

and I ⊆ Im hold, where Im is the mth guide interval. Put (γ, α, β) := (γm, αm, βm), 
� := �(m) and e := |{j ∈ {1, . . . , �} : α + 2

√
βγ cos( jπ

�+1 ) ∈ I}|. Note that I ⊆ Im and 
α + 2

√
βγ cos( jπ ) ∈ Im, for all 1 ≤ j ≤ �. Since
�+1
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(
α + 2

√
βγ cos

(
(j − 1)π
� + 1

))
−
(
α + 2

√
βγ cos

(
jπ

� + 1

))
≤ 2π

√
βγ

� + 1 ≤ κπ

� + 1

holds for all 2 ≤ j ≤ �, it follows by � > εh
g and h ≥ 6κπg

ε|I| that e ≥ 
 (�+1)|I|
κπ � > 
 εh|I|

κπg � ≥
εh|I|
2κπg ≥ 3. Hence by Lemma 2.2(ii), there exists an eigenvalue θ ∈ ET ∩I and, moreover,

|ET ∩ I| ≥
⌊
e

3

⌋
>

e

6 >
εh|I|
12κπg

holds. Claim 9.3 now follows immediately. �
By applying Claim 9.3, (92) and h ≥ 24κπgM2

εΥ |I| (by h ≥ H), it follows that

∣∣∣∣{x ∈ ET ∩ I : deg(x) > 1
Υ

}∣∣∣∣ ≥ ε|I|h
12κπg −

∣∣∣∣{x ∈ ET ∩ I : deg(x) ≤ 1
Υ

}∣∣∣∣
≥ ε|I|h

24κπg . (94)

Now, for each integer i > 1
Υ , let Δi be the set of those elements in ET ∩ ([−κ, κ] \ I)

of degree i that have an algebraic conjugate which is contained in I, and let Θi be the 
set of those elements in ET ∩ I that have degree i. Then by (91) and (93), each element 
in Θi has an algebraic conjugate in [−κ, κ] \ I. This implies that Δi is a non-empty set 
if and only if Θi is a non-empty set. Hence, for each integer i > 1

Υ satisfying Θi �= ∅, the 
number of elements in the set

Λi :=
{
(θ, η) ∈ Θi × Δi : θ and η are conjugate algebraic numbers

}
is bounded above and below as follows:

(1 − 2Υ )i|Θi| < |Λi| < 2iΥ |Δi|. (95)

Hence, by (91), (94) and (95), the inequality

(1 − 2Υ )ε|I|h
24κπg ≤ (1 − 2Υ )

∑
i> 1

Υ , Θi �=∅

|Θi| < 2Υ
∑

i> 1
Υ ,Δi �=∅

|Δi| (96)

holds, and therefore by (91) and (96), it follows that

∑
i> 1

Υ , Δi �=∅

|Δi| >
(1 − 2Υ )ε|I|h

48κπgΥ ≥ μh (97)

holds. Since the number of eigenvalues of T which have an algebraic conjugate in I is at 
least 

∑
i> 1 ,Δ �=∅ |Δi|, the proposition now follows immediately by (97). �
Υ i
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Proof of Theorem 4.2. Suppose that κ, λ, ε, C, G, Δ, L, � and T are as in the statement 
of the theorem, and put h := hT , t := tT , D := DT , Len := LenG,� and Gap := GapG,�
(cf. (71), (72)).

By statement (iii) of the theorem and Lemma 3.3(i), there exists an integer s0 ∈
{2, . . . , g} such that Rs0 > R1 and �(s0) > ( ε

g )h (cf. (28)). On the other hand, by 
Corollary 7.3, there exists a well-placed interval J0 in the s0th guide interval Is0 =
(Ls0 , Rs0) (relative to G) such that J0 ∩ B = ∅ and Len(J0) > ( ε

g )h both hold as 
Len(J0) ≥ �(s0) (cf. (29), (52)). It follows by Proposition 9.2 for (ε, μ) := ( ε

g , C(κ) + 2)
that there exist positive constants F0 := F0(κ, G, Δ, L), G0 := G0(κ, λ, ε, G) and H0 :=
H0(κ, λ, ε, G, Δ, L) such that if �(i) > F0 holds for all (γi, αi, βi) ∈ Δ then

either h < H0 or Gap(J0) > G0h holds,

as T has exactly D + 1 distinct eigenvalues (cf. (26)) and D ≤ C h holds by statement 
(ii) of the theorem.

Now, if h < H0, then the theorem follows by taking H := H0 and F := F0.
Otherwise, h ≥ H0 and Gap(J0) > G0h both hold, so by Corollary 7.3 and Proposi-

tion 7.4 for I := J0, there exists an integer s1, c(G, J0) ≤ s1 ≤ d(G, J0), and a well-placed 
interval J1 in the s1 th guide interval Is1 such that

Len(J1) >
Gap(J0)

g
>

(
G0

g

)
h.

By applying Proposition 9.2 again for (ε, μ) := (G0
g , C(κ) + 2), there exist positive con-

stants F1 := F1(κ, G, Δ, L), G1 := G1(κ, λ, ε, G) and H1 := H1(κ, λ, ε, G, Δ, L) such that 
if �(i) > F1 holds for all (γi, αi, βi) ∈ Δ then

either h < H1 or Gap(J1) > G1h holds.

Since (Ri)gi=1 is a finite unimodal sequence by Lemma 3.3, it follows by iteratively 
repeating this argument (if necessary) that there exist an integer m, 1 ≤ m ≤ g, and 
positive constants Fj := Fj(κ, G, Δ, L) and Hj := Hj(κ, λ, ε, G, Δ, L) (0 ≤ j ≤ m) given 
by Proposition 9.2 such that if �(i) > max{Fj : 0 ≤ j ≤ m} holds for all (γi, αi, βi) ∈ Δ
then

max{Hj : 0 ≤ j ≤ m− 1} ≤ h < Hm

holds. Theorem 4.2 now follows by taking

H := max{Hj : 0 ≤ j ≤ m} and F := max{Fj : 0 ≤ j ≤ m}. �
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10. Distance-regular graphs of order (s, t)

In this section, we shall use our main result to show that, for fixed integer t > 1, there 
are only finitely many distance-regular graphs of order (s, t) whose smallest eigenvalue 
is different from −t −1. We begin by recalling the relevant definitions and some previous 
results.

Let Γ be a distance-regular graph. For any vertex x, the local graph of a vertex x is 
the subgraph of Γ induced by Γ1(x). For an integer s ≥ 1, a clique of size s (or, s-clique) 
is a set of s vertices which are pairwise adjacent. Following H. Suzuki (see [35]), we say 
that a distance-regular graph Γ is of order (s, t) for some positive integers s, t, if the 
local graph of any vertex is the disjoint union of t + 1 cliques of size s. In particular, 
a non-complete distance-regular graph with valency k ≥ 3 and c2 = 1 is of order (s, t)
with s = a1 + 1 and t = k

a1+1 .
Note that the Hamming graph H(n, q) is a distance-regular graph of order (n −1, q−1). 

Hence, for fixed positive integer t, there are infinitely many distance-regular graphs of 
order (s, t) where s is a positive integer. In addition, B. Mohar and J. Shawe-Taylor [30]
(see also [13, Theorem 4.2.16]) showed that any distance-regular graph of order (s, 1)
with s > 1 is isomorphic to the line graph of a Moore graph or the point graph of 
some generalized 2D-gon of order (s, 1), where D ∈ {3, 4, 6}. Since the point graph of 
a generalized 2D-gon of order (s, 1) is exactly the same as the flag graph of a regular 
generalized D-gon of order (s, s), there are infinitely many distance-regular graphs of 
order (s, 1) with s > 1.

The following proposition is well-known; we include its proof for completeness.

Proposition 10.1. For s, t positive integers, let Γ be a distance-regular graph of order 
(s, t) with diameter D ≥ 2. Then the smallest eigenvalue θD of Γ satisfies θD ≥ −t − 1. 
Moreover, if s > t, then θD = −t − 1 holds.

Proof. Let C be the set of (s + 1)-cliques in Γ . Let M be the vertex-clique of size s + 1
incidence matrix, that is, M is the (|V (Γ )| ×|C|)-matrix such that the (x, C)-entry of M
is 1 if x ∈ C and 0 otherwise. Then MMT = A + (t + 1)I, where MT is the transpose of 
M . As MMT is positive semidefinite, it follows that all the eigenvalues of Γ are at least 
−t − 1. Note that |C|(s + 1) = |V (Γ )|(t + 1) so that if s > t then |C| < |V (Γ )|, and, as 
the rank of M is at most |C|, it follows that A + (t + 1)I is singular. This shows that A
has −t − 1 as its smallest eigenvalue. �
Corollary 10.2. Let t ≥ 1 be an integer. Then there are only finitely many distance-regular 
graphs of order (s, t) with s ≥ 1 and st �= 1 which have smallest eigenvalue not equal to 
−t − 1.

Proof. Let t ≥ 1. If Γ is a distance-regular graph of order (s, t) such that its smallest 
eigenvalue is different from −t −1, then s ≤ t holds by Proposition 10.1. As the valency of 
Γ equals s(t +1) ≤ t(t +1), the corollary follows by Theorem 1.1 as long as s(t +1) �= 2. �
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Remark 10.3. Not much is known concerning distance-regular graphs of order (s, t) with 
t ≥ 2. The distance-regular graphs of order (1, 2) and (2, 2) were classified by N.L. Biggs, 
A.G. Boshier and J. Shawe-Taylor [11] and by A. Hiraki, K. Nomura and H. Suzuki [23], 
respectively. In [38], N. Yamazaki presented some strong results concerning distance-
regular graphs of order (s, 2) with s > 2. However, it is not known whether there are 
infinitely distance-regular graphs of order (s, 2) with s ≥ 2 and c2 = 1.

11. Concluding remarks

In Section 1, we mentioned that Sims’ conjecture on permutation groups could be used 
to prove that there are only finitely many finite, connected distance-transitive graphs of 
fixed valency greater than two. We conclude by recalling and discussing a combinatorial 
version of Sims’ conjecture that is related to the Bannai–Ito conjecture.

To state this conjecture, we first recall the definition of association schemes (as defined 
by E. Bannai and T. Ito [5]). An association scheme (X, R) is a finite set X together 
with a collection R = {R0, R1, . . . , Rr} of non-empty binary relations on X satisfying 
the following conditions:

(i) R is a partition of X ×X;
(ii) R0 = {(x, x) : x ∈ X};
(iii) for each Ri ∈ R, there exists i′ such that Ri′ = {(y, x) : (x, y) ∈ Ri};
(iv) for any 0 ≤ i, j, h ≤ r and for any (x, y) ∈ Rh, the number |{z ∈ X : (x, z) ∈ Ri

and (z, y) ∈ Rj}| is a constant phij which depends only on i, j, h not on the choice 
of (x, y).

Note that an association scheme in this sense is also called a homogeneous coherent 
configuration (see [22]). Also, an association scheme (X, R) is called primitive if any 
non-trivial relation Ri (i �= 0) induces a directed connected graph on the vertex set X.

Let (X, R) be a primitive association scheme. Then each non-trivial relation Ri ∈ R
(i �= 0) induces a directed, connected, regular graph of valency ki := p0

ii′ . L. Pyber [31, 
p. 207] and M. Hirasaka [24, p. 105] attribute the following conjecture to L. Babai.

Conjecture 11.1 (Babai’s conjecture). There exists an integral function f such that for 
any primitive association scheme (X, {R0, R1, . . . , Rr}),

kmax ≤ f(kmin)

holds, where kmax := max{ki : 1 ≤ i ≤ r} and kmin := min{ki : 1 ≤ i ≤ r}.

For a primitive permutation group G on a finite set Ω, the orbits Ri of the induced 
action of G on Ω×Ω determine a primitive association scheme, denoted by AS(G). Sims’ 
conjecture follows from Conjecture 11.1 by considering the association scheme AS(G) for 
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a primitive permutation group G. Note also that the cyclotomic schemes (for a definition 
see [24, p. 106]) provide examples of primitive association schemes with fixed smallest 
non-trivial valency and an unbounded number of classes. Therefore, in Conjecture 11.1
we cannot expect to provide a bound for r in terms of kmin.

The main theorem of this paper, Theorem 1.1, implies that Conjecture 11.1 is true for 
primitive distance-regular graphs with diameter D as the sequence (ki)1≤i≤D is unimodal 
by [13, Proposition 5.1.1(i)] and ki ≥

√
k holds for all i ≥ 1 by [13, Proposition 5.6.1].

One could also ask whether there exists an integral function f such that for any 
primitive commutative association scheme (X, {R0, R1, . . . , Rr}) with multiplicities mi

(i = 0, 1, . . . , r) with m0 = 1,

mmax ≤ f(mmin)

holds, where mmax := max{mi : 1 ≤ i ≤ r} and mmin := min{mi : 1 ≤ i ≤ r}. Such 
a function is not known to exist even for the class of Q-polynomial association schemes 
(for a definition see [13, p. 58]), although the dual statement of Theorem 1.1 has been 
shown to be true by W.J. Martin and J.S. Williford [29]. In particular, they showed that 
for any m1 > 2, there are only finitely many Q-polynomial association schemes with the 
property that the first idempotent in a Q-polynomial ordering has rank m1.
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