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0.1 Abstract

Cook, William, M.A, Fall 2019 Computer Science

A Dual State Hierarchical Ensemble Kalman Filter Algorithm

Chairperson: Jesse Johnson

Dynamic models that simulate processes across large geographic locations, such

as hydrologic models, are often informed by empirical parameters that are distributed

across a geographical area and segmented by geological features such as watersheds.

These parameters may be referred to as spatially distributed parameters. Spatially

distributed parameters are frequently spatially correlated and any techniques utilized

in their calibration ideally incorporate existing spatial hierarchical relationships into

their structure. In this paper, a parameter estimation method based on the Dual

State Ensemble Kalman Filter called the Dual State Hierarchical Ensemble Kalman

Filter (DSHEnKF) is presented. This modified filter is innovative in that it allows

parameters to be placed into a set of groups that are smoothed using hierarchical

modeling techniques. The usability and effectiveness of this new technique is demon-

strated by applying it to a rainfall-runoff model that simulates subcatchment-scale

hydrologic processes and contains high dimensional spatially distributed empirical

parameters.
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Chapter 1

Introduction

Utilizing sequential data assimilation techniques to filter the output of hydrologic

models is an efficient way to correct and calibrate hydrologic models before and af-

ter their implementation in scientific studies or public projects [30], [26], [29]. Ob-

servations such as SWE (snow water equivalent), streamflow, and precipitation are

collected on a daily basis across various geographic regions, allowing real time in-

formation to be dynamically ingested by the hydrologic model and inform present

and future predictions. Hydrologic models allow hydrologists to better understand

the catchment hierarchy and predict the response, and the need to research optimal

methods of hydrologic data assimilation has been recognized [37] and researched [20],

[29]. Observed hydrologic data may allow models that output streamflow or SWE

states, such as rainfall-runoff models, to undergo parameter estimation. Many em-

pirical parameters exist in conceptual hydrologic models, such as the HBV model, to

account for wildcard environmental attributes such as the temperature threshold for

melting snow in a snowpack system [21], the percolation of water from the upper to

the lower reservoir of a groundwater system [21], or the dispersion of a wave through

a channel used in the Muskingham-Cunge routing method [25]. These parameters

are frequently correlated and can have more then one set of values that produce good

results [15], [21]. Parameter estimation for rainfall-runoff models has been an active

area of research [34],[35] and research has progressed into the 21st century [26], [39],

[29].
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Models that ingest data sequentially can have their variables efficiently refined,

a process henceforth referred to as ’filtering’, by a Kalman Filter, a sequential data

assimilation algorithm. Kalman Filters only need the previous timestep’s state es-

timate and covariance matrices to update the current timestep’s state estimate and

covariance matrices based on a new observed state. The original Kalman filter[18]

was created for applications on linear systems and adaptations are necessary for ap-

plications to non-linear systems. The extended Kalman Filter[16] works for mildly

non-linear systems but does not function optimally on strongly non-linear systems[24].

The Unscented Kalman Filter[17] is an improvement on the Extended Kalman Filter

that allows for the filtering of highly non-linear systems by using weighted samples

from the state distribution. The Ensemble Kalman Filter[10], a predecessor to the

Unscented Kalman Filter, filters non-linear systems by generating an ’ensemble’ of

model instances and adding unique noise to each instance’s forcing data. An ad-

vantage of this ensemble based approach is the EnKF’s capacity to approximate the

complete posterior estimation of a problem without weighting the samples, resulting

in a better handling of strong non-linearity. The substitution of the original Kalman

Filter’s error covarience matrix with an ensemble covariance matrix also allows for

the efficient computation of the covariance of high dimensional state vectors.

To calibrate model parameters as well as correct model states a Dual State Kalman

Filter may be used as demonstrated by Moradkhani et. al in 2005 [26]. Dual state

Kalman filters simulate parameter perturbation by adding a small unbiased and Gaus-

sian perturbation to the model parameters . These perturbed parameters vectors are

then corrected in a similar fashion to the state vectors. After this happens a second

filter is run to correct the state vectors in the traditional fashion. The Dual State

Ensemble Kalman Filter implemented by Moradkhani et. al[26] extends the Ensem-

ble Kalman Filter into a dual state configuration and is shown to successfully predict

a set of parameters and correct model predictions.

An alternative method of dual parameter and state estimation that utilizes the

Kalman Filter is the Joint Kalman Filter, which combines states and parameters into

one vector that is calculated simultaneously without the need for a second run. Joint
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Ensemble Kalman Filters have been successfully implemented on hydrologic models

[38], [43] and other models [8], but Joint Ensemble Kalman filters can suffer from "fil-

ter inbreeding" under certain circumstances [14] [41]. Overall Dual Ensemble Kalman

Filters have been shown to produce more accurate parameter estimations then Joint

Ensemble Kalman Filters, especially in noisy situations or non-linear environments,

with the major drawback of the Dual approach being its larger computational cost

[22].

1.1 Aim

When semidistributed hydrologic models are applied over large regions that are

sparsely gauged, calibrated model parameters need to be transferred from subcatch-

ments where parameters have been identified - such as in gauged subcatchments where

observations exist - to neighboring ungaged subcatchments where observations are not

known in a process generally referred to as regionalization [7], [23]. Generally, region-

alization techniques transfer information between catchments deemed to be similar

in some way. Multiple methods of classifying catchments as similar include by using

spatial proximity [17] or through other catchment attributes such as catchment shape

or topographic characteristics [28]. However, the correlation of catchment attributes

with catchment parameters are typically low [3] and can result in low model perfor-

mances [32], [4]. The regionalization problem in hydrologic modeling is not solved

yet and is currently an important area of research in hydrology [3], [13].

In this paper, hierarchical modeling techniques are integrated into the Dual State

Ensemble Kalman Filter’s parameter perturbation equation to create a Hierarchical

Dual State Ensemble Kalman Filter. A hierarchical parameter perturbation frame-

work allows the model to account for parameters that are potentially hierarchically

related. For example, streamflow wave celerity being calculated for a series of sub-

basins may be hierarchically related to each other because of a larger watershed or

topographic feature enveloping them. To examine the Dual State Hierarchical En-

semble Kalman Filter’s application to high dimensional spatially distributed raster
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data and geographical data the hydrologic model, a variation of a rainfall-runoff

model, is implemented to predict streamflows across the state of Montana. The

hydrologic model is informed by a variety of sub-components featuring high dimen-

sional spatially distributed parameters, including a snowpack process, soil process,

and a Muskingham-Cunge routing component. The hydrologic model’s parameters

can be linked to individual sub-basins with can in turn be sorted into hydrologic unit

code watershed boundaries.

Chapter 2 covers the methods behind the Dual State Hierarchical Ensemble Kalman

Filtering algorithm. Chapter 3 discusses the hydrologic model and how a Dual State

Hierarchical Ensemble Kalman Filter was applied to it. Chapter 4 presents results

while Chapter 5 discusses conclusions and further research opportunities.
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Chapter 2

The Hierarchical Dual Ensemble

Kalman Filter Method

2.1 General Dynamic Model and Observations

A generic dynamic model can be defined as one more more discrete nonlinear stochas-

tic processes[8]:

𝑥𝑡+1 = 𝑓(𝑥𝑡,𝑢𝑡,𝜃𝑡) + 𝜀𝑡 (2.1)

where 𝑥𝑡 is an 𝑛 dimensional vector representing the state variables of the model

at time step 𝑡, 𝑢𝑡 is a vector of forcing data (e.g temperature or precipitation) at

time step 𝑡, and 𝜃𝑡 is a vector of model parameters which may or may not change

per time step (e.g soil beta - 𝛽 or degree day factor - DDF ). The non-linear function

𝑓 takes these variables as inputs and returns the updated state vector at the next

timestep 𝑥𝑡+1. The noise variable 𝜀𝑡 accounts for both model structural error and for

any uncertainty in the forcing data.

A state’s observation vector 𝑧𝑡 can be defined as

𝑧𝑡 = ℎ(𝑥𝑡,𝜃𝑡) + 𝛿𝑡 (2.2)

Where the 𝑥𝑡 vector represents the true state, 𝜃𝑡 represents the true parameters,
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ℎ(.) is a function that determines the relationship between observation and state

vectors, and 𝛿𝑡 represents observation error. 𝛿𝑡 is Gaussian and independent of 𝜀𝑡.

The Dual Hierarchical State Ensemble Kalman Filter can be split into three sub-

sections: The prediction phase, the parameter correction phase, and the state correc-

tion phase.

2.2 DEnHKF Method

2.2.1 Prediction Phase

Just as in a standard Dual Ensemble Kalman filter [26], each ensemble member 𝑖

is represented by a stochastic model similar to (2.1). The modified equation is as

follows:

𝑥𝑖−
𝑡+1 = 𝑓(𝑥𝑖+

𝑡 ,𝑢𝑖
𝑡,𝜃

𝑖−
𝑡 ) + 𝜔𝑡, 𝑖 = 1, ..., 𝑛 (2.3)

Where 𝑛 is the total number of ensembles. The −/+ superscripts denote filtered

(+) and uncorrected (−) values. Note that 𝜃𝑖−
𝑡 ’s 𝑡 subscript does not necessarily

denote that 𝜃 is time dependent when implemented in the standalone model but

rather indicates that parameter values change as they are filtered over time. The

noise term 𝜔𝑡 accounts for model error. Since the model error is unknown, 𝜔𝑡 is

hereafter excluded from the prediction equation. Model error is accounted for via the

perturbation of the forcing data, see below [11].

Errors in the model design and process noise are accounted for through the pertur-

bation the forcing data vector 𝑢𝑡 with random noise 𝜁𝑖𝑡 to generate a unique vector 𝑢𝑖
𝑡

for each ensemble [26], [8]. 𝜁 𝑖𝑡 is drawn from a normal distribution with a covarience

matrix 𝑄𝑖
𝑡.

𝑢𝑖
𝑡+1 = 𝑢𝑡 + 𝜁 𝑖𝑡 , 𝜁 𝑖𝑡 ∼ 𝑁(0, 𝑄𝑖

𝑡) (2.4)

6



Parameter Perturbation

To generate the apriori parameters 𝜃𝑖−
𝑡+1, an evolution of the parameters similar to

the evolution of the state variables must be implemented. Implementations of param-

eter evolution in [36] added a small perturbation sampled from 𝑁(0,Σ𝜃
𝑡 ), where Σ𝜃

𝑡

represents the covariance matrix of 𝜃 at timestep 𝑡. This legacy method of evolution

resulted in overly dispersed parameter samples and the loss of continuity between two

consecutive points in time [19] [8]. To overcome this the kernel smoothing technique

developed by West [42] and implemented by Liu [19] has been used effectively in

previous Dual Ensemble Kalman filter implementations [26] and similar models [8].

𝜃𝑖−
𝑡+1 = 𝑎𝜃𝑖+

𝑡 + (1 − 𝑎)𝜃+
𝑡 + 𝜏 𝑖

𝑡 (2.5)

𝜏 𝑖
𝑡 ∼ 𝑁(0, ℎ2𝑉𝑡) (2.6)

Where 𝜃+
𝑡 is the mean of the parameters with respect to the ensembles, 𝑉𝑡 =

var(𝜃𝑖+
𝑡 ), 𝑎 is a shrinkage factor between (0,1) of the kernel location, and ℎ is a

smoothing factor. ℎ may be defined as
√

1 − 𝑎2. In previous research 𝑎 values chosen

between .45 and .49 have been shown to be optimal [8], but note that ℎ and 𝑎 tend

to vary per model and are generally found via experimentation [26] [1] [2] [8].

Hierarchical Parameter Perturbation

In a standard hierarchical linear regression, a value 𝑦 and its predictor variables 𝛼

and 𝛽 are contained in vectors 𝑔𝑦, 𝑔𝛼, and 𝑔𝛽 respectively, all of which are of size

𝑁, 𝑗 = 1, ..., 𝑛. Vectors 𝑔𝛼 and 𝑔𝛽 have a mean and standard deviation of 𝜇𝛼, 𝜎𝛼 and

𝜇𝛽, 𝜎𝛽 respectively.

𝑦𝑗,𝑔 = 𝛼𝑔𝑥𝑗,𝑔 + 𝛽𝑔, 𝛼𝑔 ∈ 𝑁(𝜇𝛼, 𝜎𝛼), 𝛽𝑔 ∈ 𝑁(𝜇𝛽, 𝜎𝛽) (2.7)

where 𝛼 and 𝛽 are determined to be hierarchically related properties drawn from

their respective normal distributions. For a simple overview of hierarchical models

refer to Osborne [27], while [12] is a more in-depth reference.
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In a Hierarchical Duel Ensemble Kalman Filter, parameter perturbation has been

modified to have properties of a hierarchical linear regressive system. First, all individ-

ual components of the vector 𝜃 are sorted into 𝑚 new vectors defined by hierarchical

belonging, where 𝑚 is the total number of hierarchical groups. All new vectors are

part of set 𝐺. A subset of 𝐺 where all selected members are in the same hierarchical

group is henceforth referred to as 𝐺𝑔. Each member 𝑗 of a group vector 𝐺𝑔, where 𝑔

is the specific group number, is related to other members through shared hierarchical

characteristics (spatial or otherwise.) Algorithms (2.5) and (2.6) are then updated to

conform to the hierarchical structure described in (2.7):

𝜃𝑖−
𝑡+1,𝑔 = 𝑎ϒ𝑖

𝑡,𝑔 + (1 − 𝑎)𝜃+
𝑡,𝑔 + 𝜏 𝑖

𝑡,𝑔 (2.8)

ϒ𝑖
𝑡,𝑔 ∼ 𝑁(𝜇𝑔, 𝜎𝑔) (2.9)

𝜏 𝑖
𝑡 ∼ 𝑁(0, ℎ2𝑉 𝑖

𝑡,𝑔) (2.10)

Where 𝜃𝑖+
𝑡,𝑔 is the mean over all ensembles for all members of group 𝑔, 𝜇𝑔 and 𝜎𝑔

are the grand mean and grand standard deviation respectively of all ensembles and

locations in the set of vectors in 𝐺𝑔 (for clarity, the calculation of the grand mean

and grand standard deviation returns a scalar value), and 𝑉𝑔,𝑡 is the variance matrix

with respect to the ensembles of all members of group 𝑔.

The final modification to be made allows for the dynamic calculation of the shrink-

age factor 𝑎. Since 𝜏 𝑖
𝑡 is dependent on the standard deviation of the ensemble 𝜃𝑖+

𝑡,𝑔 , a

group of ensembles that have tightened around a group of parameters will be increas-

ingly be drawn to the grand mean 𝜇𝜃, decoupling tight ensembles from their chosen

values and ultimately causing all values across a hierarchical group to collapse to one

value. To prevent this, a vector 𝛼 is substituted for 𝑎 such that

𝛼𝑖
𝑡,𝑔 = 𝑎[

2

1 + 𝑒−𝑏𝑣
− 1] (2.11)

8



where 𝑣 is a vector of variances with respect to the ensembles of all members in

group 𝑔 and 𝑏 is a tuning parameter that controls how quickly 𝑒−𝑏𝑣 converges to 0. 𝑏

must be chosen very carefully and will vary from parameter to parameter, with the

simple equation 𝑏 = 1/𝑡𝑜𝑡𝑎𝑙𝑟𝑎𝑛𝑔𝑒 acting as a possible starting point. All members of

vector 𝛼𝑖
𝑡,𝑔 will fall between 0 and 𝑎, with 𝑎 being a value < 1.

Thus, the final equation is

𝜃𝑖−
𝑡+1,𝑔 = 𝛼ϒ𝑖

𝑡,𝑔 + (1 −𝛼)𝜃+
𝑡,𝑔 + 𝜏 𝑖

𝑡,𝑔 (2.12)

2.2.2 Parameter Correction Phase

In an Ensemble Kalman Filter, observations are perturbed to reflect model error. To

accomplish this 𝑛 unique perturbations are created. Therefore, the variable 𝑧𝑖
𝑡+1 is

defined as follows:

𝑧𝑖
𝑡+1 = 𝑧𝑡+1 + 𝜂𝑖

𝑡+1, 𝜂𝑖
𝑡+1 = 𝑁(0, 𝑅𝑡+1) (2.13)

Where 𝑧𝑡+1 is an observation vector defined by (2.2) and 𝜂𝑖𝑡+1 is a random pertur-

bation drawn from a normal distribution with covarience matrix 𝑅𝑡+1. A set of state

predictions that can be related to the observations are generated by running the a

priori state vector through the function ℎ(.):

𝑦𝑖
𝑡+1 = ℎ(𝑥𝑖−

𝑡+1,𝜃
𝑖−
𝑡+1) (2.14)

The parameter update equation is similar to the update equation of the linear

Kalman filter 𝑥+
𝑡 = 𝑥−

𝑡 +𝐾𝑡(𝑧𝑡−𝐻�̂�𝑡), with 𝑦𝑖
𝑡+1 serving the same purpose as 𝐻�̂�𝑡.

However, unlike the linear kalman filter, parameters are corrected in lieu of the states

in the first correction phase:

𝜃𝑖+
𝑡+1 = 𝜃𝑖−

𝑡+1 + 𝐾𝜃
𝑡+1(𝑧

𝑖
𝑡+1 − 𝑦𝑖

𝑡+1) (2.15)

To facilitate this, 𝐾𝜃
𝑡+1 is defined as
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𝐾𝜃
𝑡+1 = Σ𝜃,𝑦

𝑡+1(Σ
𝑦,𝑦
𝑡+1 + 𝑅𝑡+1)

−1 (2.16)

where Σ𝜃,𝑦
𝑡+1 is the cross covariance of 𝜃𝑡+1 and 𝑦𝑡+1, Σ𝑦,𝑦

𝑡+1 is the covarience of 𝑦𝑡+1,

and 𝑅𝑡+1 is the observation error matrix from (2.13).

2.2.3 State Correction Phase

After 𝜃𝑖+
𝑡+1 has been calculated the model is run again (2.3) with the 𝜃𝑖+

𝑡+1 replacing

𝜃𝑖−
𝑡+1.

𝑥𝑖−
𝑡+1 = 𝑓(𝑥𝑖+

𝑡 ,𝑢𝑖
𝑡,𝜃

𝑖+
𝑡 ), 𝑖 = 1, ..., 𝑛 (2.17)

After a new state vector is generated it is re-run through (2.14) with the new

parameter vector:

𝑦𝑖
𝑡+1 = ℎ(𝑥𝑖−

𝑡+1,𝜃
𝑖+
𝑡+1) (2.18)

The corrected state vector is then run through the state update equation

𝑥𝑖+
𝑡+1 = 𝑥𝑖−

𝑡+1 + 𝐾𝑥
𝑡+1(𝑧

𝑖
𝑡+1 − 𝑦𝑖

𝑡+1) (2.19)

𝐾𝑥
𝑡+1 = Σ𝑥,𝑦

𝑡+1(Σ
𝑦,𝑦
𝑡+1 + 𝑅𝑡+1)

−1 (2.20)

where Σ𝑥,𝑦
𝑡+1 is the cross covariance of 𝑥𝑡+1 and 𝑦𝑡+1.
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Chapter 3

Application of DHEnKF to

Hydrologic Model

3.1 The Hydrologic Model

The hydrologic model is used to test the viability of the DSHEnKF method. The

hydrologic model takes parameters related to streamflows and groundwater, precip-

itation, minimum daily temperatures, and maximum daily temperatures as inputs

and outputs streamflow values along with some additional states such as the amount

of water precipitated as snowfall (henceforth referred to as swe or snow water equiv-

alent.) The hydrologic model was designed to be implemented in any geographic

location. For this study it was utilized to model streamflows throughout the western

half of the state of Montana.

Configuring the hydrologic model to model streamflows throughout Western Mon-

tana is advantageous because it allows for the calibration of a very large number of

spatially distributed, high dimensional parameters. These parameters can be ex-

Table 3.1: States

State Dimensions
Streamflow (in cubic meters per second) 66 (nodes)
Snow Water Equivalent (in mm3) 12319 (pixels)
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Table 3.2: Forcing Data

Forcing Data (𝑢) Purpose Dimensions
tempmin Lowest temperature for timestep 12319 (pixels)
tempmax Highest temperature for timestep 12319 (pixels)
precipitation Amount of rainfall for timestep 12319 (pixels)

pected to vary significantly across the entirety of Western Montana, a mountainous

region which covers an area of over 80,000 km2 and sports diverse terrain.

3.1.1 Input Data

The hydrologic model takes rasterized precipitation data and temperature data from

meteorological databases as input. This data (Table 3.2) was utilized as a vector of

forcing data in the ensemble kalman filter framework (e.g: 𝑢𝑡 = [𝑝𝑟𝑒𝑐𝑖𝑝𝑡, 𝑇𝑚𝑖𝑛𝑡, 𝑇𝑚𝑎𝑥𝑡].)

3.1.2 Calibrated Parameters

The hydrologic model utilizes a HBV rainfall-runoff component and a Muskingum-

Cunge routing component. The HBV component includes a precipitation and snow-

pack process that utilizes the empirical parameters degree day factor (mm∘C−1d−1)

and temperature threshold (∘C), a soil process that utilizes the empirical parameters

potential evapo-transpiration (dimensionless), soil beta (dimensionless), and soil max

water content (mm), and a runoff generation process that utilizes the empirical pa-

rameters 𝑐𝑘0 (d−1), 𝑐𝑘1 (d−1), 𝑐𝑘2 (d−1), ℎ𝑙1 (mm), and 𝑝𝑒𝑟𝑐 (d), all of which control

various aspects of groundwater percolation and runoff. The Muskingum-Cunge rout-

ing component utilizes parameters that control wave dispersion (dimensionless) and

wave celerity (seconds). Wave celerity was not calibrated in this project. To learn

more about the hydrologic model, its algorithms, and the parameters that control it

refer to Appendix A.
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Table 3.3: Calibrated Parameters

Parameter (𝜃) Purpose
ddf Degree Day Factor
aet_lp Potential Evapo-Transpiration
soil_beta Portion of ponded water that goes into soil storage
soil_max_wat Soil compartment maximum water capacity
ck0 Immediate runoff
ck1 Fast runoff
ck2 Groundwater runoff
hl1 Groundwater water storage threshold
perc Groundwater peculation
e Wave dispersion

Table 3.4: Observations

Observed State (𝑥) Source Dimensions
streamflow USGS 26
snow water equivalent NRCS 45

3.2 Observation Data

A Kalman Filter relies on one or more observed states for correction. Accordingly,

observations were obtained for streamflows and snowfall across Montana. For stream-

flow, USGS streamflow data was collected at 26 sites. Each observed site was paired

with the closest simulated stream outlet within a 2.5 mile cutoff. For snowfall, SNO-

TEL sites monitored by the Natural Resources Conservation Service (NRCS) were

used 3-1. 45 stations were chosen and matched to specific pixels in the hydrologic

model’s raster files.

3.3 Catchment Data and Hierarchical Groups

The hydrologic model utilizes the Watershed Boundary Dataset (WBD), a national

hydrologic unit from the USGS that defines the areas of the United States landscape

that drain to portions of the stream network, to separate Montana into 330 water-

sheds, each with its own stream reach (Figure 3-2.) Each watershed is associated

with one of each type of parameter from Table 3.3. These 330 watersheds fall into
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Figure 3-1: swe stations (orange dots) and modeled streamflows across all of Montana.
The streamflows and swe stations in the western section of Montana (shown in blue
in figure 3-3) were utilized for this project.

3 larger watershed zones (called HUC4, or 4-digit hydrologic unit boundaries) that

were utilized to classify each watershed into one of 3 hierarchical zones (Figure 3-3.)

For this project the leftmost HUC-4 zone (shown in blue in figure 3-3) was utilized

to obtain the 66 hydrologic HUC-8 watersheds used in the hydrologic model.

3.4 Small Testset

A filtering run could take anywhere between 20 hours and a week depending on

calibration duration and number of ensembles used. In order to efficiently test new

equations and starting parameters a small 3 node dataset was developed. This dataset

covered the Bitterroot area of Montana and only held 3 subbasins (Figure 3-4).
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Figure 3-2: Subbasins - HUC8 polygons

3.5 Filter Modifications

The DHEnKF filter was implemented with a series of modifications that streamlined

the filtering process.

3.5.1 Parameter Ranges

Parameter minimums and maximums were implemented on each model parameter

to avoid anomalous or erratic model output such as negative snowfall or streamflow.

The use of parameter bounds in Kalman filters is well researched and they have been

used in a variety of past studies [33].

For every parameter 𝜃 a minimum 𝜃𝑚𝑖𝑛 and a maximum value 𝜃𝑚𝑎𝑥 was defined.

If an ensemble member 𝑖 was generated outside of the range (𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥) during the

apriori phase it was adjusted to:

𝜃𝑖 =

⎧⎨⎩ 𝜃𝑚𝑖𝑛 𝜃𝑖 < 𝜃𝑚𝑖𝑛

𝜃𝑚𝑎𝑥 𝜃𝑖 > 𝜃𝑚𝑎𝑥

(3.1)
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Figure 3-3: Montana’s 3 HUC4 zones rendered onto the raster grid.

𝜃𝑖 =

⎧⎨⎩ 𝜃𝑚𝑖𝑛 𝜃𝑖 < 𝜃𝑚𝑖𝑛

𝜃𝑚𝑎𝑥 𝜃𝑖 > 𝜃𝑚𝑎𝑥

(3.2)

For posterior parameters the same clipping logic from Eq. (3.2) is used. Initially

an approach similar to the approach in [33] was utilized, but this logic kept parameters

immobile when the innovation between the state and observations were very large,

rendering the filter’s parameter correction phase meaningless. To account for the

problem of ensemble collapse, a minimum variance and a normalization feature was

implemented (see below.)

3.5.2 Normalization Feature

To reduce erratic parameter ensemble behavior when sudden large discrepancies be-

tween observed data and model data appeared, a normalization feature was imple-
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mented in the parameter correction phase. For every parameter 𝜃 a maximum move-

ment range 𝜃𝑟𝑎𝑛𝑔𝑒 was defined based upon boundaries 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥. An empirical

parameter 𝛾 controlled the maximum amount of movement per correction phase.

𝜃𝑟𝑎𝑛𝑔𝑒 = 𝛾(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛) (3.3)

𝛾 = 1 allows for unhindered movement for theta, while 𝛾 = 0 does not allow any

movement. For the purposes of this paper 𝛾 = .1 greatly reduced filter instability

while allowing parameters to converge relatively quickly to far away values.
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Figure 3-4: The small dataset’s 3 subbasins and 3 streamreaches (blue).
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Chapter 4

Results

4.1 Runtime Modifications: Perturation of States

Early attempts at running the DSHEnKF on the hydrologic model were marked by

the complete collapse of posterior ensemble covariance to the mean and erratic jumps

from the minimum to the maximum bounds for all streamflow parameters. Snow

water equivalent parameters and states, however, converged in a stable fashion. It was

determined that these erratic jumps were due to the hydrologic model’s dependence

on the value of the catchments’ lowest groundwater reservoir, an unobserved and

uncorrected state, which was integral to the production of streamflow in each timestep.

White noise added to the forcing data (precipitation and min/max temperature) was

unable to generate adequately diverse ensemble behavior when groundwater states

were uniform across ensembles. To account for this, perturbation of groundwater and

streamflow states was implemented.

4.1.1 Perturbation of Groundwater States

The hydrologic model was extremely sensitive to its starting states, in particular the

lower groundwater reservoir. Underwhelming starting groundwater caused the param-

eters ck0, ck1, and ck2 to converge towards values that emptied all water pouring

into the reservoirs so modeled streamflow could match the observations. Conversely,
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Figure 4-1: Uniform groundwater Figure 4-2: Perturbed groundwater

high starting groundwater caused ck0, ck1, and ck2 to converge towards parameters

that let very little groundwater out of the reservoirs, further exasperating the problem

and causing higher and higher values for ck0, ck1, and ck2 to be chosen.

To solve this issue and find a reliable blanket starting value for groundwater

subcatchments in an efficient amount of time the small dataset was run using the

parameter boundaries specified by [21]. Trial and error was utilized on the dataset

until groundwater stabilized. To encourage the model to explore different parameter

values for different amounts of groundwater, initial states for the large dataset were

perturbed across all ensembles and catchments using a 𝜇 equal to the average stable

value of the small dataset, which for this model was roughly calculated to be 100mm,

and a 𝜎 of 80mm. During the prediction phase groundwater was treated as forcing

data and was perturbed slightly at a 𝜎 of 𝑢𝑔𝑤 * 𝑔𝑤, with 𝑢𝑔𝑤 = .05.

4.1.2 Continuous perturbation of streamflow and snow-water

equivalent states

Another method of smoothing the model’s calibration process despite its over-reliance

on groundwater was through the direct perturbation of streamflow and swe states.

This perturbation guaranteed that ensemble collapse was never fully realized. Gaus-

sian noise was added to the state vector xi−
t before the parameter correction state

and the state correction stage such that
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xi−
t,str + 𝑁(0,xi−

t,str · −; 𝑝𝑞𝑠𝑡𝑟) (4.1)

and

xi−
t,swe + 𝑁(0,xi−

t,swe · 𝑞𝑠𝑤𝑒) (4.2)

where 𝑞𝑠𝑡𝑟 and 𝑞𝑠𝑤𝑒 are values between 0 and 1 representing model uncertainty.

While the continuous perturation of streamflow and swe states was a useful debugging

technique, large values for 𝑞𝑠𝑡𝑟 and 𝑞𝑠𝑤𝑒 reduced the effectiveness of model calibration

and were avoided.

4.2 Small dataset

To expedite the discovery of optimal initial values, errors, and minimum and maxi-

mum bounds for the complete dataset (see Table 4.1 and table 4.2) the small dataset

was run and compared with the ranges proposed by [31] and [40] and then run again

with boundaries optimized for the current model. The small dataset, which was

comprised of 3 catchments around the Biterroot valley and consisted of one gauged

catchment (henceforth referred to as catchment 241) and 2 ungauged catchments

(catchments 244 and 248), was run over a period of 1095 days starting a little be-

fore Fall of 2010. Simulations began in September so modeled snowfall accumulation

could be corrected first, allowing accurate snow melts to inform streamflow runoff in

the Spring and Summer. All parameters in the small dataset converged to a set of

values quickly but quickly readjusted when significant differences arose between the

observed and modeled states.

4.2.1 Streamflow states and parameters

The gauged catchment 241’s posterior streamflow state (leftmost graph in Figure 4-

3) snapped to the observations quickly. Catchment 241’s post-parameter corrected

streamflow values (shown in yellow on the figures in 4-3) also closely followed the

observations. Notice the slight discrepancy between the post parameter correction
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Figure 4-3: Streamflow states for the 3 small dataset catchments. From left to right:
241,244,248

Figure 4-4: Groundwaters for the 3 catchments

state and posterior state seen in the first graph in Figure 4-3 during the Winter time

periods. While state correction continuously tried to move streamflow down to a

match the observed Winter state, parameters were not found that allowed streamflow

to perfectly match the observed states. This behavior is connected to the value of

the lower groundwater reservoir and is seen to some degree in the Winter months in

almost all streamflow state graphs.

The lower groundwater reservoir in all three catchments rose 20mm-200mm through-

out the 1095 day filtering period (Figure 4-4). Throughout this time the filter’s values

for ck2 and perc, two parameters that impact the buildup and dispersion of lower

groundwater, remained unchanged. The stabilization of the lower groundwater com-

ponent in the hydrologic model is explored in Chapter 5.

As seen in the plots in Figure 4-7, parameter ensembles converged to the ensem-

ble mean within the first 5-10 days and remained stable until the Spring and Sum-

mer months. When modeled results deviated significantly from observed states (and
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Table 4.1: Hyperparameters - parameter perturbations and min/max ranges

Parameter (𝜃) 𝑞 Min Max
Degree Day Factor (ddf) .75mm∘C−1d−1 1mm∘C−1d−1 8mm∘C−1d−1

Tempature Threshold (thres) .5∘C -2.5∘C 2.5∘C
Potential Evapo-Transpiration (aet_lp) .15 .3 1
Ponded water to soil storage (soil_beta) 1.75 1 6
Soil compartment max capacity (soil_max_wat) 40 50mm 500mm
Immediate runoff (ck0) 6d−1 .25d−1 10d−1

Fast runoff (ck1) 25d−1 3.33d−1 50d−1

Groundwater runoff (ck2) 350d−1 50d−1 650d−1

Groundwater water storage threshold (hl1) 25mm 0mm 50mm
Groundwater peculation (perc) 1.5d 3d 50d
Wave dispersion (e) .35 .25 .4

therefore the innovation spiked) the ensemble increased in variance and its members

searched for a more optimal value. This stair-stepping behavior is linked to the new

hierarchical parameter perturbation algorithms and appears to be standard behavior

for the DSHEnKF algorithm. The implications of this are explored in Chapter 5.

Importantly, all catchment values remained unique and did not coverage to a spatial

mean.

Figure 4-5: Streamflow innovation (catchment 241)

4.2.2 Snow-water equivalent states and parameters

Snow-water equivalent states and parameters behaved similarly to their streamflow

counterparts. Catchment 241’s snow-water equivalent states (Figure 4-8) snapped
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(a) 241:ck0 (b) 241:ck1 (c) 241:ck2

(d) 244:ck0 (e) 244:ck1 (f) 244:ck2

(g) 248:ck0 (h) 248:ck1 (i) 248:ck2

Figure 4-7: Convergence of ck parameters for all 3 catchments
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Table 4.2: Initial parameter values

Parameter (𝜃) Starting Value
Degree Day Factor (ddf) .4mm∘C−1d−1

Tempature Threshold (thres) 2∘C
Potential Evapo-Transpiration (aet_lp) .5
Ponded water to soil storage (soil_beta) 4.8
Soil compartment max capacity (soil_max_wat) 400mm
Immediate runoff (ck0) 20d−1

Fast runoff (ck1) 200d−1

Groundwater runoff (ck2) 300d−1

Groundwater water storage threshold (hl1) 20mm
Groundwater peculation (perc) 10d
Wave dispersion (e) .37

Figure 4-8: Snow-water equivalent states for the 3 catchments. From left to right:
241, 244, 248
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Figure 4-9: SWE innovation (catchment 241)

to the observations quickly. Snow-water equivalent innovation (Figure 4-9) is some-

what less biased then streamflow innovation (Figure 4-5). Snow-water equivalent

parameters behaved similarly to their streamflow counterparts. All ensembles and

catchments converged to ensemble means within the first 20 days and did not sig-

nificantly deviate from their chosen values throughout the remainder of calibration

(Figure 4-11.) Similarly to the streamflow parameter ensembles, each catchment’s

value remained unique and did not converge to the mean (more easily seen in Figure

4-13.)
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(a) 241:ddf (b) 241:thres

(c) 244:ddf (d) 244:thres

(e) 248:ddf (f) 248:thres

Figure 4-11: Convergence of ddf and thres parameters for all 3 catchments
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(a) All catchments:ddf (b) All catchments:pp

Figure 4-13: All SWE parameters stabilized quickly during the run of the small
dataset. a = .9

4.3 Complete Dataset

After workable initial values, errors, and boundaries and had been selected the com-

plete dataset was calibrated. Calibration of the complete dataset was computationally

expensive and a balance had to be struck between ensemble size, time run, and data

collected per timestep. For these results a full three years (1095 days) was run with

100 ensemble members. The effects of different ensemble sizes on results is discussed

in Chapter 5. Running the DSHEnKF on the large dataset produced good results that

point to both strengths in the hierarchical design and further research opportunities.

4.3.1 Streamflow states and parameters

Streamflow calibration on the complete dataset progressed in a similar way to calibra-

tion on the small dataset, but more variation in geographic location helped identify

patterns in the DSHEnKF method. All parameters in individual watersheds collapsed

to their means in the first 30 days and increased in variance when large discrepancies

existed between modeled behavior and observed streamflow behavior. While gauged

posterior states matched their observations, innovation tended to be biased in either
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Figure 4-14: A gauged streamflow state (catchment 198) and its innovation

the positive or the negative direction (Figure 4-14.) It is believed that this is primar-

ily due to the model’s heavy dependence on groundwater to influence a timestep’s

state as discussed in section section 4.1.

Streamflow parameters converged in a similar fashion to the small dataset’s pa-

rameters (Figure 4-16.) Note how the ensembles tend to reconstitute during the

Spring and Summer time periods - this is most noticeable in the ck0 graph in 4-17.

Patterns in the distribution of streamflow parameters are explored in Chapter 5.

4.3.2 Snow-water equivalent states and parameters

Snow-water equivalent calibration on the complete dataset behaved similarly to stream-

flow calibration.

Figure 4-22 shows the traces for the ddf and pp parameters. These parameters

remained locked at their chosen values after the 100th time step. States converged to

the observations quickly in gauged nodes (Figure 4-18 and innovation was generally

unbiased (Figure 4-19.)
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(a) ck0 (b) ck1

(c) ck2 (d) soil_beta

Figure 4-16: All streamflow catchments converged quickly to specific values.
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Figure 4-17: Traces for catchment 198 - ck0 and soil_beta

Figure 4-18: Snow-water equivalent states for 3 catchments: 42 (gauged), 241
(gauged), and 137 (ungauged)

Figure 4-19: A gauged swe state and its innovation (catchment 170)
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Figure 4-20: ddf and temperature threshold - catchment 170

(a) ddf (b) pp

Figure 4-22: All traces of snow water equivalent related parameters
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4.4 Effects of the Hierarchical Blending Component

To observe the effects of the hierarchical component on the filtering process the small

dataset was run over 365 timesteps with different values for a. The difference in

parameter traces for different values of a may be seen in Figure 4-24. The value of a

controls the maximum amount of weight that may be given to the group mean when

ensemble variance as lim 𝑣𝑎𝑟(𝜃) → ∞. A very low to nonexistent a value would allow

no transfer of data between catchments, while a high a value allows for a complete

transfer of information at the expense of temporal memory. For the hydrologic model

it was decided that the filter seeks parameters best when a = .9.
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(a) a = .1 (b) a = .4

(c) a = .65 (d) a = .99

Figure 4-24: Effect of different values for the blending component a
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Chapter 5

Analysis, Further Research

Opportunities and Conclusion

5.1 Analysis

5.1.1 The Significance of Ensemble Size

To observe the effect of ensemble size on the DSHEnKF filtering process, a 50 ensemble

run and a 25 ensemble run were compared to the 100 ensemble run from chapter 4.

The 50 ensemble and 25 ensemble run were identical to the 100 ensemble run in

regards to starting parameters. Figure 5-1 shows how streamflow estimations for

an ungaged catchment in the filtering process evolve as more ensembles are added.

As the leftmost graph demonstrates, small numbers of ensembles lead to spurious

streamflow predictions in both the prior and posterior. However, as demonstrated in

Figure 5-2, this spurious behavior does not translate into the unfiltered run of the

model. Figures 5-2 and 5-4 demonstrate how the model performs when utilizing the

unfiltered 50 ensemble and 100 ensemble parameters.
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Figure 5-1: Streamflow states for ungaged catchment 194 during the filtering process.
From left to right: 25 ensembles, 50 ensembles, 100 ensembles

5.1.2 Comparison of Filtered Parameters

To analyze the accuracy of the Dual State Hierarchical Ensemble Kalman Filtering

algorithm, the final calibrated parameter values were taken from Chapter 4’s run

and applied to a standard unfiltered hydrologic model. The model was run over a

period of 6 years and the results were compared to a run of the hydrologic model

with the initial parameters from Table 4.2, the 50 ensemble run mentioned earlier in

this chapter, and the corresponding gauged catchments. Figure 5-4 shows the varying

results from 4 catchments. Catchments 115 and 173 show a clear improvement over

the initial modeled results. Catchment 173 demonstrates the danger of using an

inferior number of ensemble members, as the initial estimates are superior to the 50

ensemble run. Catchment 139 demonstrates a case where the filtered parameters were

unable to successfully emulate the observed state. Overall, the filtered parameters

represent an improvement over the non-filtered parameters when compared to the

observed states.

5.1.3 Groundwater Accumulation Process and Correlated Pa-

rameters

While both the 50 ensemble run and 100 ensemble run of the model generally pro-

duced reasonably accurate streamflow estimates, many parameters, particularly the

groundwater parameters ck2 and perc, tended to differ greatly in spatial distribution.

This warranted an evaluation of these parameter’s correlation, the results of which
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Figure 5-2: The resulting hyrdologic model run over 6 years for the ungaged catchment
194 from Figure 5-1

can be seen in figure 5-5. ck2 was determined to be inversely proportional to perc.

Therefore, while these two parameters were calibrated in such a way that groundwa-

ter remained stable, different amounts of groundwater are collected and dispersed in

the lower reservoir (Figure 5-9). Therefore, while the DSHEnKF placed all param-

eters in reasonable positions in both runs, the correlated nature of these and other

parameters can result in different distributions of parameters. Correlated parameters

have been documented in HBV models in the past [15], [23], [21] and as a result these

results are not surprising. Final parameters may be expected to lock onto different

parameter values per each filtering run and potentially cause ungauged outputs like

groundwater to differ.
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(a) Catchment 115 (b) Catchment 139

(c) Catchment 165 (d) Catchment 173

Figure 5-4: 4 runs of the hydrologic model compared to the observed state: initial
parameters from Table 4.2, parameters from a 50 ensemble run, parameters from a
100 ensemble run.
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Figure 5-5: perc values plotted against ck2 values.

5.1.4 Ensemble Variance

While the Dual State Hierarchical Ensemble Kalman Filtering algorithm possesses

many of the same characteristics as the standard Dual State Ensemble Kalman Filter-

ing algorithm developed by Moradkhani et. al in 2005 [26], there are some important

differences. One of of the largest differences is the DSHenKF’s ensembles’ tendency

to rapidly collapse to the ensemble mean after the mean locks onto a working pa-

rameter value. In a standard Ensemble Kalman Filter this variance collapse would

be an unwanted effect because the variance between ensembles is a measure of the

uncertainty in a parameter. However, the nature of the new hierarchical parameter

perturbation scheme encourages this behavior through its dynamic weighting of the

ensemble mean as ensembles converge. A large variance in ensemble size, in fact,

would indicate a larger reliance on the group mean and would indicate the parameter

has not yet found a suitable value (see figure 5-10 for an example of this.) Con-
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(a) 100 ensemble run: ck2 (b) 50 ensemble run: ck2

(c) 100 ensemble run: perc (d) 50 ensemble run: perc

Figure 5-7: Final parameter distributions for the 50 and 100 ensemble runs of the
complete dataset
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(a) Catchment 115 (b) Catchment 139

(c) Catchment 165 (d) Catchment 173

Figure 5-9: Lower groundwater reservoir water levels from the runs in Figure 5-4
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sequently, the uncertainty in an ensemble of parameters in the DSHEnKF method

is not necessarily a sign of the lack of variance in a parameter and may simply be

the result of a calibrated ensemble of parameters or dormant ensemble of parameters

that will reconstitute as soon as the value of the parameter becomes relevant to the

model’s tracking of the observations.

Figure 5-10: An example of a parameter’s behavior when it is unable to lock onto a
a set of values. In this case, this parameter cannot lock because b is too large.
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5.2 Further Research Opportunities

This research introduces and explores the potency of the DSHEnKF method. How-

ever, research must be done to compare the accuracy and efficiency of the DSHEnKF

method to other filtering algorithms such as the vanilla Dual-State Ensemble Kalman

Filter, the Particle Filter, the Joint Ensemble Kalman Filter, and the Unscented

Kalman Filter.

Due to computational limitations, certain tests and comparisons such as the op-

timal ensemble size for the DSHEnKF, the filtering of very large datasets over large

time periods, experimentation with multiple hierarchical groupings, or the expansion

of state correction to other outputs of the hydrologic model such as groundwater were

not attempted. Further research using a different model or more capable computer

would flesh out the advantages and disadvantages of the DSHEnKF method.

As discussed in subsection 5.1.4, ensemble variance collapses quickly in this method.

The advantages and disadvantages of this effect should be explored. The exploration

of the calculation of the 𝑏 parameter in the dynamic alpha equation is integral to

optimizing this issue since 𝑏 controls the variance at which the hierarchically gener-

ated vector of parameters begins to be mixed with the mean of the parameters. In

addition to new methods of calculating 𝑏, the testing of new ways of determining 𝛼

apart from the logistical formula suggested here is also warranted.

Since this study introduced the methodology and results of the DSHEnKF and

utilized observed catchments to determine the algorithm’s usefulness, further research

into the accuracy of the DSHEnKF’s ability to calibrate ungaged catchments through

its hierarchical component is warranted. The ability to calibrate these ungaged catch-

ments is one of the DSKEnKF’s most important applications in the realm of hydro-

logic modeling.
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5.3 Summary

The DSHEnKF method has been proven to be a useful calibration procedure on

hierarchically structured datasets, and it has been determined that the DSKEnKF

can successfully filter parameters and states and that the final filtered parameters

produce more accurate results. A Dual State Hierarchical Ensemble Kalman Filter

was chosen to calibrate the hydrologic model because 1) the DSHEnKF does not

have to compute the high dimensional state covariance matrix during the update

phase as the ensemble covariance matrix may be substituted in its place, 2) the

hydrologic model is a sequential model that could conceivably benefit from real-time

parameter correction, and 3) 10+ years of observed streamflow and SWE data may

be compared to model data to test for over-fitting. While the potential applications

of the DSKEnKF are exciting, further research is needed to understand this method’s

usefulness when compared to other filtering methods.

44



Appendix A

The Hydrologic Model

This model is a hydrologic system that couples a rainfall-runoff model to a routing

component that simulates streamflows within a regional stream network. An HBV

model [5, 6] was modified to simulate hydrologic processes like snowmelt, evapo-

transpiration, and infiltration at the subcatchment level and transform the resulting

precipitation into runoff and streamflow. This streamflow is then routed via the

Muskingum-Cunge routing algorithm [9]. Below is a description of the implementa-

tion of those algorithms.

A.0.1 Rainfall Runoff component

The HBV model [5, 6] contains a mixture of raster-based and vector-based opera-

tions. Raster-based operations utilize spatially distributed data drawn from meteoro-

logical databases (precipitation and temperature data.) The raster grid is also used

to calculate snow accumulation, melt, and soil processes. These are informed both

by input from the meteorological databases and by a series of spatially distributed

parameters, such as potential evapotranspiration. Vector-based operations increase

computational efficiency through the use of polygons. Unique polygons are indexed

by 𝑘 later in this appendix while grid points are indexed by 𝑗. Uniform hydrologic

response units (HRUs) are implemented to aggregate runoff production over these

polygons and thus act as the bridge between the vector based operations and raster
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Table A.1: Hydrologic Model Outputs - Raster or Vector

Name Category
Snow Water Equivalent Raster
Evapo-Transpiration Raster
Snow Melt Raster
Pond Raster
Soil Moisture Raster
Upper Soil Storage Vector
Lower Soil Storage Vector
Runoff Vector

Table A.2: Hydrologic Model Parameters - Raster or Vector

Name Purpose Type
ddf Degree Day Factor Raster
thres Temperature Threshold Raster
aet_lp Potential Evapo-Transpiration Raster
soil_beta Portion of ponded water that goes into soil storage Raster
soil_max_wat Soil compartment maximum water capacity Raster
ck0 Immediate runoff Vector
ck1 Fast runoff Vector
ck2 Groundwater runoff Vector
hl1 Groundwater water storage threshold Vector
perc Groundwater peculation Vector
K Wave celerity Vector
e Wave dispersion Vector

based output. Table A.1 categorizes each model output as a vector based (one value

per polygon) or raster-based (one value per pixel) output, while Table A.2 does the

same for parameters.

Precipitation/Snowpack To determine the amount of precipitation that becomes

snowfall and which amount becomes rainfall, minimum and maximum temperature

data are compared to a critical temperature threshold 𝑇𝑐.
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𝑆𝑛𝑜𝑤𝑡
𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃 𝑡
𝑗 𝑇𝑚𝑎𝑥𝑡

𝑗 < 𝑇𝑐𝑗

𝑃 𝑡
𝑗 *

𝑇𝑐𝑗−𝑇𝑚𝑖𝑛𝑡
𝑗

𝑇𝑚𝑎𝑥𝑡
𝑗−𝑇𝑚𝑖𝑛𝑡

𝑗
𝑇𝑚𝑖𝑛𝑡

𝑗 < 𝑇𝑐𝑗 < 𝑇𝑚𝑎𝑥𝑡
𝑗

0 𝑇𝑚𝑖𝑛𝑡
𝑗 > 𝑇𝑐𝑗

(A.1)

𝑅𝑎𝑖𝑛𝑡
𝑗 = 𝑃 𝑡

𝑗 − 𝑆𝑛𝑜𝑤𝑡
𝑗 (A.2)

Where variables and parameters with a subscript 𝑗 are spatially distributed and are

at unique gridpoint 𝑗 and variables and parameters with a superscript 𝑡 are time-

dynamic. 𝑃 is precipitation (mm d−1), 𝑇𝑚𝑎𝑥 is maximum air temperature (∘C),

𝑇𝑚𝑖𝑛 is minimum air temperature, 𝑆𝑛𝑜𝑤 is precipitation as snowfall (mm d−1), and

𝑅𝑎𝑖𝑛 is liquid precipitation. Any snowfall during one day 𝑡 contributes to the snow-

pack’s snow water equivalent (𝑆𝑊𝐸, (mm)):

𝑆𝑊𝐸𝑡
𝑖 = 𝑆𝑊𝐸𝑡−1

𝑖 + 𝑆𝑛𝑜𝑤𝑡
𝑗∆𝑡 (A.3)

A degree day model is utilized to simulate snowpack melt. Snowpack begins to

melt when the average air temperature exceeds air temperature threshold 𝑇𝑚.

𝑀𝑒𝑙𝑡𝑡𝑗 = 𝑑𝑑𝑓𝑗 * (𝑇𝑎𝑣𝑡𝑗 − 𝑇𝑚𝑗)] for 𝑇𝑎𝑣𝑡𝑗 > 𝑇𝑚𝑗 (A.4)

𝑅𝑎𝑖𝑛𝑡
𝑗 = 𝑃 𝑡

𝑗 − 𝑆𝑛𝑜𝑤𝑡
𝑗 (A.5)

Where 𝑀𝑒𝑙𝑡 represents water released from the snowpack (mm d−1), 𝑇𝑎𝑣 is average air

temperature over the time step (∘C), and 𝑑𝑑𝑓 is the degree day factor (mm d−1 ∘C−1).

𝑑𝑑𝑓 is an empirical parameter controlling the snowmelt rate per degree of air temper-

ature above temperature threshold 𝑇𝑚.

Melt from the snowpack at time 𝑡 is subtracted from the snowpack and added to

the amount of ponded water:
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𝑃𝑜𝑛𝑑𝑡𝑗 = 𝑃𝑜𝑛𝑑𝑡−1
𝑗 + (𝑀𝑒𝑙𝑡𝑡𝑗 + 𝑅𝑎𝑖𝑛𝑡

𝑗)∆𝑡 (A.6)

𝑆𝑊𝐸𝑡
𝑗 = 𝑆𝑊𝐸𝑡

𝑗 −𝑀𝑒𝑙𝑡𝑡𝑗∆𝑡 (A.7)

Where 𝑃𝑜𝑛𝑑 (mm) represents liquid water ponding at the surface.

Soil processes Ponded water infiltrates into the soil and is either placed in the

soil system or is added to the topsoil compartment where it generates speedy runoff.

The fraction of ponded water that infiltrates is an exponential function of the relative

water storage already in the soil:

∆𝑆𝑀 𝑡
𝑗 = 𝑃𝑜𝑛𝑑𝑡𝑗 *

(︂
1 −

𝑆𝑀 𝑡
𝑗

𝐹𝐶𝑡
𝑗

)︂𝛽

(A.8)

(A.9)

where 𝑆𝑀 (mm) is the amount of water in the soil compartment and 𝐹𝐶 (mm) is the

maximum capacity of water the soil compartment can hold before water begins per-

colating to the groundwater system. 𝑏𝑒𝑡𝑎 (dimensionless) is an empirical parameter.

Actual evapotranspiration (𝐴𝐸𝑇 , mm d−1) is calculated at the same time. Actual

evapotranspiration reduces the amount of water storage in the soil and, just like

∆𝑆𝑀 𝑡
𝑗 , is informed by the degree of saturation in the soil (𝑆𝑀 over 𝐹𝐶).

𝐴𝐸𝑇 𝑡
𝑗 = 𝑃𝐸𝑇 𝑡

𝑗 *
(︂

𝑆𝑀 𝑡
𝑗

𝐹𝐶𝑗 * 𝐿𝑃𝑗

)︂𝑙

(A.10)

(A.11)

where 𝑃𝐸𝑇 is potential evapotranspiration (mm d−1)) and 𝑙 (dimensionless) is an

empirical parameter. Soil water storage dynamics and the amount of surface water

that generates fast runoff are controlled by infiltration and actual evapotranspiration:
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𝑆𝑀 𝑡
𝑗 = 𝑆𝑀 𝑡

𝑗 + ∆𝑆𝑀 𝑡
𝑗 − 𝐴𝐸𝑇 𝑡

𝑗∆𝑡 (A.12)

𝑂𝑉 𝐿𝑡
𝑗 = 𝑃𝑜𝑛𝑑𝑡𝑗 − ∆𝑆𝑀 𝑡

𝑗 (A.13)

where 𝑂𝑉 𝐿 (mm) represents water that recharges the near-surface runoff-generating

compartment.

Groundwater Compartments and runoff generation The groundwater system

is comprised of two ground-water compartments that generate outflow. The top

compartment’s outflow represents both immediate runoff, which joins runoff in the

current timestep, and fast runoff, which joins runoff through the runoff rates 𝑄0

and 𝑄1. The lower compartment’s outflow represents baseflow. These processes are

performed at the HRU level, which means overland flow and soil moisture values, both

of which are represented over the raster grid, are averaged over overlaid polygonal

subwatersheds representing HRUs. Spatial arithmetic that averages soil water storage

over all grid cells 𝑗 contained within a given polygonal HRU 𝑘 is indicated by angle

brackets < . >. The mass balance and percolation of water from the upper to the

lower compartment of the groundwater system is implemented as:

𝑅𝑒𝑐ℎ𝑡
𝑘 =< 𝑂𝑉 𝐿𝑡

𝑗 >𝑘 + < 𝑚𝑎𝑥(𝑆𝑀 𝑡
𝑗 − 𝐹𝐶𝑗, 0) >𝑘 (A.14)

𝑆𝑈𝑍𝑡
𝑘 = 𝑆𝑈𝑍𝑡−1

𝑘 + 𝑅𝑒𝑐ℎ𝑡
𝑘 + 𝑃𝑜𝑛𝑑𝑡𝑘 −𝑄0𝑡

𝑘∆𝑡−𝑄1𝑘∆𝑡− 𝑃𝐸𝑅𝐶𝑘 (A.15)

𝑆𝐿𝑍𝑡
𝑘 = 𝑆𝐿𝑍𝑡−1

𝑘 + 𝑃𝐸𝑅𝐶𝑘 −𝑄2∆𝑡 (A.16)

𝑅𝑒𝑐ℎ (mm) represents water storage in the fast runoff generating near-surface com-

partment, 𝑆𝑈𝑍 (mm) represents the storage in the upper groundwater compartment,

and 𝑆𝐿𝑍 (mm) represents water storage in the lower groundwater compartment in

HRU 𝑘 at time step 𝑡. 𝑄0, 𝑄1, and 𝑄2 (mm d−1) are each unique runoff rates. 𝑄0 rep-

resents the soil surface runoff rate, 𝑄1 represents the upper soil compartment runoff
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rate, and 𝑄2 lower soil compartment runoff rate. These are calculated as follows:

𝑄0𝑡
𝑘 = 𝑚𝑎𝑥((𝑆𝑈𝑍𝑘 −𝐻𝐿1𝑘) * 1

𝐶𝐾0𝑘

, 0.0) (A.17)

𝑄1𝑡
𝑘 = 𝑆𝑈𝑍𝑘 *

1

𝐶𝐾1𝑘

(A.18)

𝑄2𝑡
𝑘 = 𝑆𝐿𝑍𝑘 *

1

𝐶𝐾2𝑘

(A.19)

𝑄𝑎𝑙𝑙𝑡𝑘 = 𝑄0𝑡
𝑘 + 𝑄1𝑡

𝑘 + 𝑄2𝑡
𝑘 (A.20)

𝐻𝐿1 (mm) is an empirical parameter controlling a water storage threshold that trig-

gers the generation of fast runoff. 𝐶𝐾0, 𝐶𝐾1, and 𝐶𝐾2 (d) are empirical parameters

that represent the characteristic drainage times of the soil surface, upper compart-

ment, and lower compartment respectively.

Total outflow from any given HRU 𝑘 on day 𝑡 is distributed over time in order to

produce the catchment response. This is accomplished through the convolution the

output of HRU 𝑘 by triangular standard unit hydrograph with base 𝑀𝑏𝑎𝑠𝑒.

𝑄𝑡
𝑗 =

𝑀𝑏𝑎𝑠𝑒∑︁
𝑖=1

𝑄𝑎𝑙𝑙𝑡−𝑖+1
𝑗 𝑈(𝑖) (A.21)

𝑈(𝑖) =

⎧⎨⎩
4

𝑀2
𝑏𝑎𝑠𝑒

* 𝑖 0 < 𝑖 < 𝑀𝑏𝑎𝑠𝑒/2

− 4
𝑀2

𝑏𝑎𝑠𝑒
* 𝑖 + 4

𝑀𝑏𝑎𝑠𝑒
𝑀𝑏𝑎𝑠𝑒/2 < 𝑖 < 𝑀𝑏𝑎𝑠𝑒

(A.22)

where 𝑈 is a triangular hydrograph of area 1 and a base integer 𝑀𝐴𝑋𝐵𝐴𝑆 (d)

representing the duration of the hydrograph.

A.0.2 Routing component

Muskingum-Cunge routing model is utilized to route runoff responses generated from

the 𝐻𝑅𝑈s through the stream network. Each stream reach 𝑘 has a storage given by:
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𝑆𝑡
𝑘 = 𝐾 [𝑒𝑄𝑖𝑛 + (1 − 𝑒)𝑄𝑜𝑢𝑡] , (A.23)

which is a discharge-storage equation where 𝐾 (d) and 𝑒 (dimensionless) are pa-

rameters controlling the celerity and dispersion of the wave routed through the channel

respectively.

In this model, the discharge-storage relationship is substituted with a finite-

difference form of the continuity equation 𝑆𝑡+1
𝑗 −𝑆𝑡

𝑗

Δ𝑡
= 𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡 to facilitate a multi-

reach system with lateral inflows injected to the upstream of reach dreaming 𝐻𝑅𝑈 𝑗

at an average constant rate through timestep 𝑡 𝑞𝑡+1
𝑗 . The result of this is:

𝑄𝑡+1
𝑗 [𝐾𝑗(1 − 𝑒𝑗) + 0.5∆𝑡] + 𝑄𝑡+1

𝑗−1 [𝐾𝑗𝑒𝑗 − 0.5∆𝑡] (A.24)

= 𝑄𝑡
𝑗 [𝐾𝑗(1 − 𝑒𝑗) − 0.5∆𝑡] + 𝑄𝑡

𝑗−1 [𝐾𝑗𝑒𝑗 + 0.5∆𝑡] (A.25)

+ 𝑞𝑡+1
𝑗 [𝐾𝑗(1 − 𝑒𝑗) + 0.5∆𝑡] (A.26)

Each 𝐻𝑅𝑈 contains one reach with both an upstream and a downstream node.

Streamflow reaches 𝑗 = 1, ..., 𝐽 are integrated with respect to time using a first-order

explicit finite difference scheme. The system of 𝐽 equations can be assembled as a

linear system:

AQt+1 = B (A.27)

Qt+1 is a vector of unknown streamflows at time 𝑡 + 1 solved each time step

for every reach in 𝐽 . The vectors A and B are functions of the model states and

parameters at 𝑡:
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A ≡ (a + Φb)𝑇 (A.28)

B ≡ (d + Φc)𝑇Q𝑡 + I(a⊙ q𝑡+1) (A.29)

where Φ is a 𝐽𝑥𝐽 sparse connectivity (0,1)-matrix defining which pairs of nodes are

connected. Flow direction is from row nodes to column nodes. All rows representing

upstream nodes of 𝐻𝑅𝑈𝑠 that drain an outlet node are zeros. Lastly:

a = I(K−K⊙ e) + 𝑑𝑡 * 0.5 (A.30)

b = I(K⊙ e) − 𝑑𝑡 * 0.5 (A.31)

c = I(K−K⊙ e) − 𝑑𝑡 * 0.5) (A.32)

d = I(K⊙ e) + 𝑑𝑡 * 0.5 (A.33)

K is an identity matrix of order 𝐽 . 𝑒 and K are column vectors holding parameters

𝑒 and 𝐾 for every reach in 𝑁 . The ⊙ operator denotes the Schur (elementwise)

product between two vectors. The solution of (A.27) will become unstable if ∆𝑡 >

2 * 𝐾𝑗 * (1 − 𝑒𝑗). To guard against this an an adaptive time stepping scheme was

implemented. In this adaptive scheme the default timestep is reduced by an integer

fraction until the stability condition is satisfied within all reaches.
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