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Kreitzberg, Patrick A., M.S., June 2019 Computer Science

Zero-knowledge de novo algorithms for analyzing small molecules using mass spec-

trometry

Chairperson: Oliver Serang

In the analysis of mass spectra, if a superset of the molecules thought to be in a
sample is known a priori, then there are well established techniques for the identifi-
cation of the molecules such as database search and spectral libraries.

Linear molecules are chains of subunits. For example, a peptide is a linear molecule
with an “alphabet” of 20 possible amino acid subunits. A peptide of length six will
have 206 = 64, 000, 000 different possible outcomes. Small molecules, such as sugars
and metabolites, are not constrained to linear structures and may branch. These
molecules are encoded as undirected graphs rather than simply linear chains. An
undirected graph with six subunits (each of which have 20 possible outcomes) will
have 206 · 2(6

2) = 2, 097, 152, 000, 000 possible outcomes. The vast amount of complex
graphs which small molecules can form can render databases and spectral libraries
impossibly large to use or incomplete as many metabolites may still be unidentified.

In the absence of a usable database or spectral library, an the alphabet of subunits
may be used to connect peaks in the fragmentation spectra; each connection represents
a neutral loss of an alphabet mass. This technique is called “de novo sequencing” and
relies on the alphabet being known in advance.

Often the alphabet of m/z difference values allowed by de novo analysis is not
known or is incomplete. A method is proposed that, given fragmentation mass spec-
tra, identifies an alphabet of m/z differences that can build large connected graphs
from many intense peaks in each spectrum from a collection.

Once an alphabet is obtained, it is informative to find common substructures among
the peaks connected by the alphabet. This is the same as finding the largest isomor-
phic subgraphs on the de novo graphs from all pairs of fragmentation spectra. This
maximal subgraph isomorphism problem is a generalization of the subgraph isomor-
phism problem, which asks whether a graph G1 has a subgraph isomorphic to a graph
G2. Subgraph isomorphism is NP-complete.

A novel method of efficiently finding common substructures among the subspectra
induced by the alphabet is proposed. This method is then combined with a novel
form of hashing, eschewing evaluation of all pairs of fragmentation spectra. These
methods are generalized to Euclidean graphs embedded in Zn.
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CHAPTER 1 INTRODUCTION

Mass spectrometry (MS) is a method for finding the mass of analytes in a sam-

ple with the goal of characterizing the sample. These masses are often much too

small to use a conventional scale. A sample, which may first be fragmented into its

molecular pieces, is ionized. These ions are then separated based on their mass-to-

charge ratio (m/z); thus, mass spectrometry actually finds the m/z of the ions, not

simply the mass. There are multiple techniques to separate the ions by their m/z

values. One technique is time-of-flight (TOF) mass spectrometry. In a TOF machine

an ion’s m/z is calculated by sending it through a tube with an electric field across

it and calculating its velocity (figure 1.1). Tandem mass spectrometry (also known

as MS/MS) is a technique in which multiple rounds of mass spectrometry may be

performed on a sample. An earlier round of mass spectrometry can be used to select

intact molecules by “precursor” mass-to-charge, and then the analytes are fragmented

into the molecular components. The mass-to-charge of these fragments are estimated

using a subsequent round of mass spectrometry.

The data produced by mass spectrometry is a collection of spectra where each

spectrum is typically represented as a series of peaks with each peak representing

an ion. A peak’s placement along the m/z axis marks the ion’s m/z value and the

peak’s height is the intensity of the ion (figure 1.2). If the molecules in the sample

fragment when performing mass spectrometry, the output is typically referred to as
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Figure 1.1 Diagram of time-of-flight mass spectrometry. An ionized
sample is put into a tube which has a constant electric field across
it. The electric field causes the ionized sample to move through
the tube. From the constant electric field, the potential energy,
which is converted into kinetic energy, can be calculated. From
the potential and kinetic energy, the velocity, which depends on
the m/z of an ion, may be calculated. If two ions have the same
charge, the lighter one will reach a higher speed.

fragmentation spectra. Intensity values can be thought of as roughly proportional

to the abundance of the ion, so a single peak does not represent a single ion in the

sample, it may represent many ions with the same m/z value. The scale of the

intensity values are not necessarily the same for all mass spectrometry techniques or

all machines.

The difference between two peaks m/z value is also an m/z value. Sometimes, but

not always, this m/z value represents another ion in the sample, or one that used

to be in the sample such as a metabolite which was created then destroyed during

digestion. For example, if the difference between two peaks is the mass of water,

then it is possible the larger peak lost a water molecule with charge 1 to become the

smaller peak.

The mass spectrometric analysis of structured molecules is important for analysis

of glycoconjugates [1] and for drug discovery [2]. Often these methods cannot rely on
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m/z
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A

A

B
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Figure 1.2 On the left, a representation of a spectrum with a set
of peaks that are linked together by de novo sequenc-
ing. On the right, a graph with a bijection to the set of
peaks linked together by de novo sequencing A cartoon of
a typical representation of data generated by mass spectrometry
with peaks linked together by masses in the alphabet {A, B}.
Each peak represents an ion whose m/z value is the same as the
peak. The height of the peak is the intensity of the ion, which
can be thought of as roughly proportional to the abundance of
the ion. Peaks are linked by a mass in the alphabet if the differ-
ence in the peaks is equal to the mass divided by some charge.
The graph is created by forming a bijection between the nodes in
the graph and the set of peaks in the spectrum connected by de
novo sequencing. An edge exists between two nodes if the two
peaks they are projected onto are connected by an m/z value in
the alphabet.

machine-generated databases (as can often be done for peptide search) because of the

combinatoric nature of these small molecules, which would make a machine-generated

database far too large to use. Fragmentation trees may be used for analysis of small

molecules where databases may not exist or are too large, but they rely on enumer-

ating all molecular formulas that match the precursor mass [3]. Enumerating over

all molecular formulas for a precursor mass can become very costly, particularly for

a larger precursor mass or with a fairly imprecise mass-to-charge measurement; thus,

fragmentation trees may not be suitable in all cases. Spectral libraries generated by
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known small molecule content can be used, but they need to be painstakingly curated

from a myriad of potential molecules of interest; therefore, even if the resources are

available to do so, they may not be suitable for applications that include unexpected

compounds or reactions. Likewise, when an MS1 spectrum is generated by few intact

molecules, it may be possible to isolate the most abundant mass in the spectrum

using only Fourier analysis [4].

To date, de novo approaches, which link peaks in fragmentation spectra when they

are different by a mass in the alphabet, are the best tools for these problems. For

example, de novo peptide sequencing may be performed using an alphabet of 20 amino

acid masses, whereas de novo glycan analysis may be performed using an alphabet of

four common sugar residues. Once an alphabet is known, dynamic programming can

be used to link peaks for linearly chained molecules (e.g., peptides) [5][6] or arbitrarily

structured small molecules (e.g., sugars) [7][8]. The ability to use certain “characters”

in the alphabet can also be constrained to an arbitrary flow chart (for instance, it

may state that a peptide with more than two of a given amino acid should not be

considered) by performing dynamic programming on the Cartesian products between

the graph of linked peaks and the flow chart from the constraints [9]. Distinctions

between fragmentation spectra can also be used to build graphs for a given alphabet

by clustering spectra to find highly similar neighbor spectra and then attempting

to match small changes between these neighboring spectra using the given alphabet

[10]. Approaches reminiscent of this can be used to better characterize biochemical

pathways [11].

All above approaches need to know the alphabet, i.e., the masses considered during

the de novo; however, in a truly blind de novo application, this alphabet will not

be known. This is important when identifying active compounds and therapeutic

components in venoms [12] or plant products [13] and can similarly be significant
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when finding drug metabolites produced. Even fundamental chemical components

of the sugar alphabet (such as O-GlcNAc-P) were only discovered relatively recently

[14]; thus, if there are more undiscovered components of the sugar alphabet, then any

current sugar alphabet will be incomplete and a blind approach may be the only way

to use these undiscovered sugars in an alphabet.

Two approaches with partially blind aspects to them are the offset frequency func-

tion and spectral networks. The offset frequency function, introduced by Dančík et

al. [15], builds a de novo graph using the amino acid alphabet, and then builds the

empirical distribution of peak differences between peaks in the de novo peptide path

and peaks not in the de novo peptide path; however, this approach needs to know

the amino acid alphabet in advance. Spectral networks [16] are likewise used for the

analysis of peptides. For example, a pair of spectra matching peptides with either

overlapping sequences (e.g., EEAMPN and AMPNGGR)– or a pair of modified and un-

modified peptide spectra– can be matched by sequence overlap after database search

and then differing peaks in a spectral pair can elucidate sequence changes, modifica-

tions, etc. Like the offset frequency function, this approach relies on knowledge of

the amino acid alphabet and methods for sequencing peptide spectra (either de novo

or database search) via that amino acid alphabet.

In this paper we introduce an approach to perform blind de novo analysis of mass

spectra, and to estimate an alphabet from a collection of spectra (i.e., the “alphabet

projection of the spectra”). Our approach seeks to find the alphabet that would best

explain the most high-intensity peaks and simultaneously build the largest connected

graphs. This approach is also informative as to which peaks can be linked by this

alphabet; the graph produced by linking peaks in a de novo manner can be helpful to

inferring the chemical structure of a compound. In this manner, the method proposed

can also be seen as an unsupervised de novo approach (i.e., a de novo approach where
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the alphabet is not known in advance).

When de novo sequencing is applied to spectra it is possible some real structure

is connected to an extraneous peak by random chance. It is unlikely this same peak

is connected by random chance in multiple spectra, but the connected peaks in the

underlying structure should almost always be there if the compound is. This re-

curring structure is trustworthy; if found throughout multiple spectra, it is likely

to be important to the sample. Finding different compounds with similar chemical

structures may also play an important role in pharmacological research. For exam-

ple, the drugs Famprofazone and Deprenyl both metabolize into amphetamine and

methamphetamine which have very similar structures [17][18].

A new approach is introduced to efficiently find recurring chemical structures in

many spectra. The approach develops a new method for performing maximal sub-

graph isomorphism on de novo graphs from two spectra. It is then improved with

locality sensitive hashing to do this without comparing all pairs of fragmentation

spectra. This method is generalized to efficiently find isomorphic subgraphs among

graphs embedded in Zn.
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CHAPTER 2 METHODS

Variable Meaning

s(`) The indices of peaks in a fragmentation spectrum `.

m
(`)
i for i ∈ s(`) The m/z of peak i in spectrum s(`).

p
(`)
i for i ∈ s(`) The intensity of peak i in spectrum s(`).

D(`) The set of s(`), m(`), and p(`) for spectrum `.

m
(`)
j −m

(`)
i for i ∈ s(`), j ∈ s(`) The m/z difference between peaks j and i in spectrum s(`).

∆1,∆2,∆3, . . .∆d The alphabet of size d (units are mass, not m/z).

ε
The maximum allowed error tolerance in m/z; if two m/z
values are approximately equal, the absolute value of their
difference must be ≤ ε.

E
(`)
z,i,j,k for i ∈ s(`), j ∈ s(`), k ∈ {1, 2, . . . d}

1 if peaks i and j in spectrum s(`) can be connected by
difference ∆k using charge z; i.e., |m(`)

j −m
(`)
i −

∆k
z
| ≤ ε

for some charge state. 0 otherwise.

E
(`)
z The set of all edges for spectrum ` that use charge state z.

g(E
(`)
z ) = {e1, e2, . . .}

The collection of edges in the connected components of the
graph defined by E(`)

z .

θ

A hyper-parameter that can be tuned to influence the ac-
ceptance rate. θ = 0 will accept all proposed changes,
θ = ∞ will only accept changes that improve the likeli-
hood.

Table 2.1 This table defines the notation used throughout the pa-
per. In each spectrum s(`), a peak i ∈ s(`) has m/z value m(`)

i ,
with machine tolerance ε, and intensity p(`)

i ; the set of s(`), m(`)
i ,

and p(`)
i for all peaks in spectrum ` form D(`). The alphabet of

size d, ∆1,∆2,∆3, . . .∆d, is used to form a set of edges, E(`)
z , for

charge state z and the set of edges form connected components,
g(E

(`)
z ) = {e1, e2, . . . }, of the graph defined by E(`)

z .

We use the notation from Table 2.1 to formalize the alphabet projection problem:
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We use variables i and j to index peaks in the spectra, while we use variable k to

index the alphabet. For variables i and j, assume that the indices are ordered so that

the masses are sorted in ascending order: m(`)
j > m

(`)
i ↔ j > i.

2.1 Convex optimization

2.1.1 Linear and quadratic programming

Linear programming is a method to solve a class of optimization problems char-

acterized by an objective function and a set of constraints. For instance, if you are

a diary farmer, optimization can help you decide what amount of butter, 2% milk,

skim milk, etc. to create to maximize your profits. The constraints would be the

total amount of milk you have from your cows, how much milk-fat it takes to make

each product, etc. The solution will be a set of variables: volume of butter to make,

2% milk, skim milk, etc. and the optimal value of the objective function. Linear

programs (LPs) with linear constraints can be solved efficiently, even in the worst

case [19].

Formally, in linear programming the aim is to optimize an linear objective function

according to a set of constraints which are affine inequalities. An affine equation is a

linear equation plus a constant. The problems are usually represented using matrix

notation:
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minimize

cT · x

such that

A · x ≤ b

x ≥ 0.

An integer linear program (ILP) is an LP in which all the variables are confined to

be integers. Minimum vertex cover can be reduced to an ILP, proving that solving

ILPs is NP-hard. For a graph G(e, v), the minimum vertex cover problem finds a

set of nodes in G such that every edge in G is connected to a node in the set. The

following ILP can solve minimum vertex cover:

minimize ∑
v∈V

yv (2.1a)

subject to

∀uv ∈ E, yv + yu ≥ 1 (2.1b)

∀v ∈ V, yv ≥ 0 (2.1c)

∀v ∈ V, yv ∈ Z (2.1d)

In ILP (2.1), yv is an indicator variable which is which is at least one if vertex v is

included in the set cover. Constraint (2.1b) forces at least one vertex for every edge

to be in the set cover. Constraints (2.1c) and (2.1d) force yv to be either zero or at
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least one. Then minimizing over the sum of the indicator variables is the same as

finding the minimum set cover.

Mixed integer programs (MILP) are linear programs where some variables are con-

tinuous and some are confined to be integers. MILPs are also NP-hard as they are a

generalized version of ILPs.

A quadratic program (QP) is similar to an LP but the objective function has

quadratic terms. In general, solving QPs is NP-hard [20]; though, there are special

cases where they can be solved efficiently.

If an LP, ILP, MILP, or QP has quadratic constraints then the program is “quadrat-

ically constrained” and their abbreviations are prefixed with “QC”. Making more gen-

eral constraints is typically considered more difficult than doing so to the objective

function.

2.1.2 Original quadratically constrained linear program

The first approach towards finding an alphabet was to use convex optimization

to minimize the size of the alphabet while maximizing the number of high intensity
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peaks connected by the alphabet. This was the very first formulation of a QCLP:

minimize

‖∆‖2 (2.2a)

subject to∑
i

piqi ≥ γ (2.2b)

∀i, qi ≤
∑
j,k

e
(`)
i,j,k (2.2c)

∀i, qi ∈ {0, 1} (2.2d)

∀i, j, k, e(`)
i,j,k ∈ {0, 1} (2.2e)

∀k, ∀i 6= j ∈ s, − ε ≤ e
(`)
i,j,k (mj −mi −∆k) ≤ ε (2.2f)

∀k ∈ {1, 2, . . . n}, ∆k ∈ {1×N, 2×N, . . . , d×N}. (2.2g)

The inputs s, n, γ, ε are all seen as constant by the linear program. qi values are

binary indicator variables which are 1 if peak i is touched by a ∆ in the alphabet.

Constraint (2.2b) requires the sum of the intensities of peaks connected by the al-

phabet to be at least γ, which is a hyper-parameter. Constraint (2.2f) forces the ∆k

values to be near mj −mi for some i, j ∈ s and then constraint (2.2f) turns on e(`)
i,j,k

if mi and mj can be connected by ∆k.

These constraints set up the bounds of the problem, then the linear program will

minimize the alphabet in order to minimize the objective function.

Constraint (2.2g) was never implemented but could further refine the alphabet by

only allowing values which were multiples of a neutron mass; however, this would

not always be realistic, for there are plenty of compounds which are not an integer

multiple of the neutron mass (e.g. the atomic mass of alanine is 70.4...×N).
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2.1.3 Minimal quadratically constrained linear program

In order to reduce the number of variables of (2.2), the QCLP was compressed to an

equivalent problem that excludes the qi variables. Constraint (2.3d) has a quadratic

term, e(`)
i,j,k ·∆k, so the problem is still QC.

minimize

‖∆‖2 (2.3a)

subject to∑
i

pi ·

(∑
j 6=i,k

(e
(`)
i,j,k + e

(`)
j,i,k)

)
≥ 1 (2.3b)

∀i, j, k, e(`)
i,j,k ∈ {0, 1} (2.3c)

ε ≥ e
(`)
i,j,k(mj −mi −∆k) ≥ −ε. (2.3d)

2.1.4 Lagrangian relaxation

Lagrangian relaxation is a method of approximating a problem with a difficult

constraint by using a series of problems with simpler constraints and more complex

objective functions. The new problem should be many times faster to solve so that

in between iterations the parameters can be adjusted. In this case we use Lagrangian

relaxation to move the quadratic constraints ε ≥ e
(`)
i,j,k(mj −mi −∆k) ≥ −ε into the

objective function. Each new term in the objective function is multiplied by a unique

Lagrange multiplier λi,j,k. In the view of the quadratic program solver the Lagrange

multipliers are constants, weighting the influence of the constraints moved into the

objective function. The multipliers are iteratively updated outside the QP solver.

λi,j,k are adjusted after each time the simpler problem is solved. The adjustments
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are made using gradient ascent over the lambda values; therefore, we want to reward

constraints which have large lambda values. Since we are minimizing, we want the

large lambda values to be multiplied by a negative value so we make the terms in the

objective value be negative when the constraint is obeyed.

Constraint Lagrangian objective function term

ε ≥ ei,j,k · (mj −mi −∆k) λi,j,k · (ei,j,k · (mj −mi −∆k)− ε)

−ε ≤ ei,j,k · (mj −mi −∆k) λi,j,k · (−ei,j,k · (mj −mi −∆k)− ε)

Unfortunately, this causes a problem because the two Lagrangian terms cancel each

other out to sum to a constant. Thus, we have to combine the two constraints into

one. This can be done simply by squaring the (mj −mi −∆k) term and subtracting

ε2 (this did not seem to differ from using the absolute value function).

The downside is now we have a cubic function since we have the term e
(`)
i,j,k ·∆2

k.

We also want to encourage more peaks to be turned on. A trick in convex optimiza-

tion is to introduce a term into the objective function, M · r, where M , a constant,

is large and r, a variable, is between 0 and 1. To optimize the problem, r will want

to be lowered in order to shrink M · r. We use this to encourage more connectivity

by adding the constraint
∑

i pi · qi +M · r ≥ γ. This encourages more qi values to be

turned on in order to lower the objective function while holding the constraint. This



14

leads to the following QP:

minimize

‖∆‖2 +
∑
i,j,k

λ2
i,j,k,0 · e

(`)
i,j,k((mj −mi −∆k)

2 − ε) +M · r (2.4a)

subject to∑
i

pi · qi +M · r ≥ γ (2.4b)

∀i, qi ∈ {0, 1} (2.4c)

∀i, j, k, e(`)
i,j,k ∈ {0, 1} (2.4d)

∀i, qi ≤
∑
i,j,k

(e
(`)
i,j,k + e

(`)
j,i,k) (2.4e)

0 ≤ ∆k ≤ max
k

(∆k) (2.4f)

0 ≤ r ≤ 1. (2.4g)

2.1.5 Minimizing over indicator variables

Minimizing over ‖∆‖2 will keep the alphabet small in size, but it will also select

∆k values which are small in magnitude; this is something we do not want to favor.

In order to minimize the cardinality of the alphabet, and not the values in it, we can

minimize over some binary variables bk which are set to 1 if the corresponding ∆k is

used in the alphabet. Thus (2.4a) becomes

∑
k

bk +
∑
i,j,k

λ2
i,j,k,0 · e

(`)
i,j,k((mj −mi − bk ·∆k)

2 − ε) +M · r.
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2.1.6 An edge-centric model: incentivizing larger graphs

In order to promote connectivity, which promotes more non-zero e(`)
i,j,k terms, we

add the following term to the objective function: C/(
∑

i,j,k e
(`)
i,j,k), for some constant

C � 1. This term will dominate the objective function for large enough C so the

priority for minimization will be to increase the denominator.

2.1.7 Battle of solvers: Mathematica versus CPLEX

Up until this point we were using Mathematica to solve the optimization problems.

Before Lagrangian relaxation Mathematica would hang on any problem with d > 16.

Once we switched to CPLEX the runtimes were dramatically better. CPLEX is made

by IBM and is a state-of-the-art convex optimization solver.

2.1.8 Removing quadratic constraints

Now using CPLEX, we are able to return to the pre-Lagrangian relaxation version

which was an LP with quadratic constraints. The quadratic constraint (2.3d) was

made of a binary variable multiplied by a continuous variable. In this case it is

possible to relax the QP to an LP [21].

Let b be a binary variable and x a continuous variable where L and U are the lower

and upper bounds for x, respectively. The term b ·x can be relaxed by being replaced

with a new continuous variable, z, and adding the following constraints:

z ≤ U · b

z ≥ Lb

z ≤ x− L · (1− b)

z ≥ x− U · (1− b).
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We can implement this trick to replace the quadratic constraint (2.3d) with con-

straints (2.5c) through (2.5h) by substituting zi,j,k for e(`)
i,j,k ·∆k.

2.1.9 Maximize number of edges and finding unique masses through

constraints

Here, we maximize over the edge indicator variables to try and improve the amount

of edges turned on. Constraint (2.7i) is added which allows only one ∆k to connect

the same peak pair so redundant alphabet masses do not help the objective function.

These two constraints combine to enable the LP to find all unique masses.

minimize ∑
i,j,k

bk − γ
∑
i,j,k

·e(`)
i,j,k (2.5a)

subject to

∀i, j, k, e(`)
i,j,k ∈ {0, 1} (2.5b)

∀i, j, k, zi,j,k ≤ ε (2.5c)

∀i, j, k, zi,j,k ≥ −ε (2.5d)

∀i, j, k, zi,j,k ≤ e
(`)
i,j,k(mj −mi) (2.5e)

∀i, j, k, zi,j,k ≥ e
(`)
i,j,k(mj −mi −max

k
(∆k)) (2.5f)

∀i, j, k, zi,j,k ≥ (mj −mi −∆k)− (mj −mi) · (1− e(`)
i,j,k) (2.5g)

∀i, j, k, zi,j,k ≤ (mj −mi −∆k)− (mj −mi −max
k

(∆k)) · (1− e(`)
i,j,k)

(2.5h)

∀i, j, 1 ≥
∑
k

e
(`)
i,j,k (2.5i)

∀i, j, k, bk ≥ e
(`)
i,j,k (2.5j)
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2.1.10 Two step method of finding the best ∆s and then minimizing

the alphabet

Inspired by the Lagrangian mentality of solving many smaller problems, we mod-

ified our approach to only solve (2.5) for one ∆k at a time (2.6). This first pass

creates an alphabet which is not minimized in size but maximized in number of peaks

connected. The second pass (2.7) is used to minimize the alphabet whose values are

now all constant but can be minimized in size by excluding some masses.

In the first pass, the bk indicator variables are now useless, so we modify (2.5a) by

removing the first term and constraint (2.7i). After each iteration, k, all constraints

have the terms removed for pairs i, j such that ε ≥ mj−mi−∆k ≥ −ε is satisfied. This

has the effect of having significantly fewer constraints and variables which decrease

even more over time.

Let Ik and Jk be the set of i and j values, respectively, such that ε > |mj−mi−∆h|

for h ∈ {0, .., k − 1} where k is the current iterations of the first pass. Then the LP
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being optimized in each iteration of the first pass is as follows:

minimize

− γ
∑
i,j

·e(`)
i,j,k (2.6a)

subject to

∀i ∈ I, j ∈ J e
(`)
i,j,k ∈ {0, 1} (2.6b)

∀i ∈ I, j ∈ J, zi,j,k ≤ ε (2.6c)

∀i ∈ I, j ∈ J, zi,j,k ≥ −ε (2.6d)

∀i ∈ I, j ∈ J, zi,j,k ≤ e
(`)
i,j,k(mj −mi) (2.6e)

∀i ∈ I, j ∈ J, zi,j,k ≥ e
(`)
i,j,k(mj −mi −max

k
(∆k)) (2.6f)

∀i ∈ I, j ∈ J, zi,j,k ≥ (mj −mi −∆k)− (mj −mi) · (1− e(`)
i,j,k) (2.6g)

∀i ∈ I, j ∈ J, zi,j,k ≤ (mj −mi −∆k)− (mj −mi −max
k

(∆k)) · (1− e(`)
i,j,k).

(2.6h)

After (2.6) has been solved d times to find an alphabet, the following LP is solved
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to minimize the alphabet:

minimize ∑
k

bk − γ
∑
i,j,k

·e(`)
i,j,k (2.7a)

subject to

∀i, j, k, e(`)
i,j,k ∈ {0, 1} (2.7b)

∀i, j, k, zi,j,k ≤ ε (2.7c)

∀i, j, k, zi,j,k ≥ −ε (2.7d)

∀i, j, k, zi,j,k ≤ e
(`)
i,j,k(mj −mi) (2.7e)

∀i, j, k, zi,j,k ≥ e
(`)
i,j,k(mj −mi −max

k
(∆k)) (2.7f)

∀i, j, k, zi,j,k ≥ (mj −mi −∆k)− (mj −mi) · (1− e(`)
i,j,k) (2.7g)

∀i, j, k, zi,j,k ≤ (mj −mi −∆k)− (mj −mi −max
k

(∆k)) · (1− e(`)
i,j,k)

(2.7h)

∀i, j, k, bk ≥ e
(`)
i,j,k. (2.7i)

2.1.11 Maximum vertex cover approach

A bipartite graph is a graph where the nodes can be separated into two classes such

that there are no edges between two nodes in the same class. Here, the two classes

are the collection of ∆k values and the collection of edge indicator variables (2.1).

The goal of this model is to maximize the coverage of the edge indicator variables

class by selecting the best subset of the ∆ class.

All values mj−mi have been calculated in advance and each ∆k has been assigned

to a unique (within ε) mj−mi value. In this model, the alphabet values are limited to

be below 400Da; this is a way to limit the number of variables and improve the speed.



20

Δ0

Δ1

Δ2

e(0)0,1,1
e(0)0,2,2
e(0)0,3,0
e(0)0,4,0

e(0)1,3,3
e(0)1,4,0

e(0)1,2,1

Figure 2.1 Diagram of the bipartite relationship modeled in a linear pro-
gram (2.8). An edge connects a ∆ value to an edge indicator
variable e(`)

i,j,k if ∃z ∈ {1, 2, 3} s.t. |mj −mi −∆k/z| ≤ ε.

Now, ∆k in the linear program is a binary variable indicating whether or not ∆k will

be in the alphabet. Constraint (2.8f) limits the number of turned on ∆k values to d,

the size of the alphabet. This means that we do not minimize the alphabet, instead

it is set to a fixed size. An edge exists between ∆k and e(`)
i,j,k in the bipartite graph if

∃z ∈ {1, 2, 3} s.t. |mj−mi−∆k/z| ≤ ε. This is the first model to take charge, z, into

account. Edge indicator variables which do not have an edge in the bipartite graph

are removed (i.e. e(`)
i,j,k does not exist if ∀z ∈ {1, 2, 3}, |mj −mi −∆k/z| > ε). Thus,

there are many less e(`)
i,j,k variables but many many more ∆k variables. This is now an

ILP where all variables are binary; this is sometimes called a binary linear program

or zero-one linear program.

Here, qi indicator variables are used again to indicate if peak i is touched by a mass

in the alphabet. Constraint (2.8i) forces qi to be turned on if any edge connecting

peak i is on. ∆k indicator variables are forced on if any edge indicator variable which

uses ∆k is turned on through constraint (2.8g). ∆k must be forced to turn on if any

edge indicator variables which connect peaks using ∆k are turned on. This can be
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done by using the constraint
∑
i,j,k

e
(`)
i,j,k ≤ ∆K ; however, this would limit the amount of

edges using ∆k to one. A large constant, M , is used in constraint (2.8g) to allow all

edge indicator variables which use ∆k to be turned on and still satisfy the constraint∑
i,j,k

e
(`)
i,j,k ≤M ·∆K .

In order to promote a connected graph, and not just a series of disconnected edges,

the ai variables are used along with (2.8e) and (2.8h). Constraint (2.8h) says that if

any edge touching peak i is turned on, then at least one more edge must be turned

on or ai must be turned on. Then (2.8e) forces at most one ai to be on, meaning

all but one peak must have either zero or strictly more than one edge connecting

it. In this way, each peak must be connected to at least one other peak, forcing one

big connected graph. Multiple connected graphs may be allowed by increasing the

right-hand-side of (2.8e).
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minimize

−
∑
i,j

e
(`)
i,j (2.8a)

subject to

∀k, ∆K ∈ {0, 1} (2.8b)

∀i, j, k, e(`)
i,j,k ∈ {0, 1} (2.8c)

∀i, ai, qi ∈ {0, 1} (2.8d)∑
i

ai ≤ 1 (2.8e)

∑
k

∆k ≤ d (2.8f)

∑
i,j,k

e
(`)
i,j,k ≤M ·∆K (2.8g)

∀i, j, k, `, ai,` +
∑
j,`

(e
(`)
i,j>i,` + e

(`)
j<i,i,`) ≤ 2qi (2.8h)

∀i, `,
∑
j

(e
(`)
i,j>i,` + e

(`)
j>i,i,`) ≤M · qi. (2.8i)

2.2 A max-flow/min-cut formulation

Here, we utilize graph-cuts in order to obtain an alphabet. A graph cut is a

separation of the nodes of the graph into two disjoint subsets. We form weighted,

directed graphs based on ∆k values, edges, peaks, and peak intensities. The ∆k values

are not variables, but are a constant, calculated from m
(`)
j −m

(`)
i for some i, j, and `.

Redundant ∆k values (ones within ε of each other) are merged together. We include

a source node labeled “NOT USED”, and a sink node labeled “USED”. Graph cuts we

look at will always put the NOT USED and USED nodes into different sets which we
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label the “not used” and the “used,” respectively. We want to find the minimum cut,

which is the graph cut that minimizes the sum of the weights of the edges which go

from the not used nodes to the used nodes. The used nodes form the alphabet and

the minimization of the cut will be what optimizes the alphabet.

The max-flow min-cut theorem states that the maximum amount of flow passing

from the source to the sink is equal to the total weight of the edges in the min-cut

[22]. An efficient way to find the min-cut is to solve for the max-flow by formulating

the max-flow problem as an LP and solving via convex optimization. In contrast, the

max-cut problem is NP-hard [23].

If a model has both ∆k nodes and edge nodes, e(`)
i,j , they are connected with a

weight of ∞ if |m(`)
j −m

(`)
I − ∆k| ≤ ε. The weight is infinite because including the

∆k in the alphabet necessarily forms the edge; so this can never be cut.
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2.2.1 Edge and peak centric model

NOT USED

Δ1
Δ0 Δ2

e0,1

q0 q1

θ θ

e1,2

q2

θθ

e3,4

q3 q4

USED

∞∞ ∞
e3,5

θ θ

q5

θ θ

∞

p0
p1 p2 p3 p4 p5

α α α

Figure 2.2 Edge and peak centric graph-cut model used to find a min-

imum alphabet. All solid green edges between qi nodes have a

weight of β. The dotted dark red line represents a graph cut

which would generate ∆ = {∆0,∆1} and the dashed dark green

line represents a graph cut which would generate ∆ = {∆0}.

Large connected graphs are encouraged by the use of the β

weighted edges.

An edge-and-peak centric model (2.2) has nodes for the ∆k values, the edges, and

the peaks. These peaks are connected to edge nodes with a weight of θ. The ∆k values

are connected to the NOT USED node with a weight of α, which can be considered a

prior on including the ∆k in the alphabet. Peaks are connected to each other with a

weight of β and connected to the USED node with a weight equal to their intensity.

This model discourages removing ∆k nodes by requiring the cut of multiple θ, β, and

pi values. Connectivity is encouraged through the use of the β weight; to disconnect
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peaks requires adding β to the cut.

Then each pair of edges which are adjacent to each other (i.e. e
(0)
0,1 and e

(0)
1,3) are

connected with an edge weight of β. For clarity, the β labels were left off of the figure

but all solid green edges have a weight of β.

2.2.2 Edge centric model

NOT USED

Δ1
Δ0 Δ2

e0,1 e1,2 e3,4

USED

∞∞ ∞
e3,5

∞

p0p1

p1p2 p3p4 p3p5

α α α

β β
β

Figure 2.3 Edge-centric graph-cut model used to find a minimum al-

phabet. The dotted dark red line represents a graph cut which

would create the alphabet ∆ = {∆0,∆1} and the dashed dark

green line represents a graph cut which would create the alpha-

bet ∆ = {∆0}. Large connected graphs are encouraged by the

use of the β weighted edges.

A more edge centric model (2.3) does not include any nodes for the peaks. Instead

the edge nodes are connected to the USED node with a weight of the product of the

peak intensities connected by the edge. This greatly reduces the number of edges and

nodes in the graph compared to 2.2.
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This model discourages removing ∆k nodes by forcing a cut through β values and

the peak intensity products connecting the edges to the USED node. Larger connected

graphs are encouraged through the use of the β edges which have to be cut if two ∆k

values create adjacent edges but only one is to be in the alphabet.

2.2.3 Edge centric model with extra connectedness incentive

NOT USED

Δ1
Δ0 Δ2

e0,1 e1,2 e3,4

USED

∞∞ ∞
e3,5

∞

α α α

β

e0,1e1,2 e3,4e3,5

β β β

β·p0·p1·p1·p2
β·p3·p4·p3·p5

Figure 2.4 Edge-centric graph-cut with extra connectedness incen-

tive model used to find a minimum alphabet. Model is similar

to 2.3 with an extra layer of nodes between the edge nodes and

the USED node. This extra layer is to discourage cutting be-

tween two ∆k nodes which form adjacent edges which connect

high intensity peaks.

Another edge-centric model (2.7) was implemented to try and discourage breaking

apart ∆k nodes which form adjacent edges of three high intensity peaks.
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2.2.4 Emphasizing ∆-to-∆ edge model

NOT USED

Δ1Δ0 Δ2

e0,1 e1,2 e3,4

USED

∞

e3,5

p0p1+p1p2

α α αα

∞ ∞ ∞

p3p4 p3p5

βΔ0Δ1 βΔ1Δ2

Figure 2.5 A dynamic ∆-to-∆ edge graph-cut model used to find a

minimum alphabet. In this model the edges connecting ∆ node

to ∆ node are not uniform but are based on how often edges

generated by the two ∆ values touch each other.

A model with dynamic edges connecting ∆k nodes is used to try and focus the

graph-cut around the ∆k nodes since they are what creates the alphabet. The edges

now have a uniform prior, α, and the ∆k nodes are connected to USED by the sum

of the products of each peak-pair it connects. The edge between the ∆i and ∆j is

weighted according to the amount of adjacent edges the two form. For each pair of

adjacent edges generated by the two nodes, the weight is increased by adding the

product of the intensities of the three peaks touched by the edges. This is meant to

encourage large connected graphs by making ∆i, ∆j pairs harder to cut if they form

many adjacent edge pairs. Using one of those ∆i in the alphabet means the other ∆j

is strongly incentivized to be included.
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2.2.5 Energy minimization model

NOT USED

Δ1Δ0

USED

αΔ1
αΔ0

βΔ0 βΔ1

δΔ0,Δ1

Figure 2.6 Energy minimization inspired graph-cut model used to

find a minimum alphabet.

This model was inspired by an energy minimization simulation. The weight con-

necting the ∆k node to NOT USED is considered the energy included in the system if

the ∆k is used in the alphabet (because cutting it would mean using ∆k). Similarly,

the weight connecting ∆k to USED would be considered the energy required to not

use ∆k in the alphabet.

The energy to use a ∆k node is
∑
i,j,`

pipj, normalized by dividing by the largest such

energy for any ∆k. The energy to not use ∆k is calculated so the energy to use and

not use ∆k is equal to one.

The edge between the ∆i and ∆j is weighted according to the amount of adjacent

edges the two form. For each pair of adjacent edges generated by the two nodes, the

weight is increased by adding the product of the intensities of the three peaks touched

by the edges. Then, after all ∆-∆ weights have been calculated they are all divided

by the average value. This is in order to normalize the values.
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2.2.6 Normalized graph-cut model

NOT USED

Δ1Δ0

USED

Σpi

i {e(Δ0)

U

e(Δ1)}

σ+Σ
i,j e(Δ0)

pipj

σ
σ+Σ

i,j e(Δ0)

pipj

σ
σ+Σ

i,j e(Δ1)

pipj

Σ
i,j e(Δ0)

pipj

σ+Σ
i,j e(Δ1)

pipj

Σ
i,j e(Δ1)

pipj

Figure 2.7 A normalized graph-cut model used to find a minimum al-

phabet. The edge weight connecting a ∆k node to NOT USED

is considered the prior. The other edges are also normalized and

used to discourage cutting ∆k from the alphabet.

This model was an attempt to morph the energy minimization model into a nor-

malized probabilistic model. Each ∆k node is connected to NOT USED with a

weight of σ/

(
σ +

∑
i,j∈e(∆k)

pipj

)
∈ [0, 1] and connected to USED with a weight of( ∑

i,j∈e(∆k)

[pipj

)
/

(
σ +

∑
i,j∈e(∆k)

pipj

)
∈ [0, 1]. Similarly, a pair ∆i, ∆j are connected

(by two edges of opposite direction) with a weight equal to the sum of the intensi-

ties of the peaks which are touched by both an edge generated by ∆i and an edge

generated by ∆j.
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2.3 Markov chain Monte Carlo

Each neutral loss alphabet ∆ = δ is the same constant, given size, d, and deter-

ministically produces a graph consisting of the edges E; these edges connect every

pair of peaks within one spectrum if the m/z difference between the peaks is within

ε of the m/z difference created by dividing alphabet mass ∆k by charge z:

E
(`)
z,i,j,k =


1 |m(`)

j −m
(`)
i −

∆k

z
| ≤ ε

0 else.

The edges E can be found deterministically once ∆ and D are known; for this

reason,

Pr(D|∆ = δ) = Pr(D|∆ = δ, E = e) = Pr(D|E = e).

We assume that all spectra s(1), s(2), . . . (and their masses and intensities) are condi-

tionally independent from one another given the graph induced by E:

Pr(D|∆ = δ) = Pr(D|E = e)

= Pr(D(1), D(2), . . . |E = e)

=
∏
`

Pr(D(`)|E = e)

=
∏
`

Pr(s(`),m(`), p(`)|E = e).

Conditional independence of the spectra given the edges is fairly reasonable, because

it resembles the fact that, given the sample content (which is informed through the

graph of connected peaks), the production of one fragmentation spectrum does not

interfere with the process by which other fragmentation spectra are produced. Even

the caveat, competition between abundant analytes in data-dependent acquisition
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(DDA), applies more to which precursors will be selected for fragmentation rather

than how peaks in those fragmentation spectra can be connected.

We seek, δ∗ a maximum a posteriori (MAP) estimate of ∆:

δ∗ = argmax
δ

Pr(∆ = δ|D)

= argmax
δ

∏
`

Pr(D(`)|∆ = δ) · Pr(∆ = δ)

= argmax
δ

∏
`

Pr(s(`),m(`), p(`)|∆ = δ) · Pr(∆ = δ).

2.3.1 Non-combinatorial approach

The following is a non-combinatorial approach, meaning ∆0,∆1, ... do not influence

each other and so can be solved for separately rather than as a joint d-dimensional

vector ∆. This non-combinatorial approach can be executed by empirically estimating

the distribution ofm/z differencesm(`)
j −m

(`)
i over all spectra `. This can be performed

in an unweighted manner (all (i, j) pairs contribute equally to the distribution) or in

a weighted manner (an (i, j) pair has contribution proportional to p(`)
j · p

(`)
i ). Because

exactly overlapping differences are improbable, the non-combinatorial approach treats

two differences as equal if they are within ε of one another. The process of finding all

differences m(`)
j −m

(`)
i can be done efficiently using the fast Fourier transform (FFT)

by binning the spectrum by m/z then convolving the spectra with itself.

The alphabet ∆1,∆2, . . .∆d is estimated as the top d peaks in the empirical dis-

tribution after being sorted by either count in the unweighted case or the sum of

the proportional p(`)
j · p

(`)
i values in the weighted case. It is important to note that

this non-combinatorial approach only cares about the number of occurrences of the

∆ values, does not take into account the connectivity of any graphs which are formed

by the edges induced by ∆.
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2.3.2 Combinatorial approach

The non-combinatorial approach does not incentivize building of large connected

graphs, such as long amino acid chains in a peptide, or large forking substructures

in glycoconjugate spectra [7]. A combinatorial approach can be used to incentivize

large connected graphs.

2.3.2.1 Efficient graph construction

For each spectrum D(`), we efficiently build the graph of all possible connected

peaks. In each spectrum D(`) and for each charge state z, we create an edge E(`)
z,i,j,k if

and only if

|m(`)
j −m

(`)
i −

∆k

z
| < ε.

This connects two peaks whose m/z difference is within ε of the predicted m/z dif-

ference from alphabet mass ∆k using charge z.

Of course, for any charge state z and some fixed spectrum ` consisting of n peaks,

edges can be trivially formed in Θ(n · n · d); however, by sorting the m(`) values and

the ∆ values, this can be sped up: By proposing the peaks m(`)
i and m

(`)
j first, we

know that we’re looking for an alphabet mass with ∆k

z
within ε of m(`)

j −m
(`)
i ; because

the search for ∆k can be processed on the sorted array, this can be accomplished in

Θ(n · n · log(d)) steps. Likewise, if we first propose starting peak m(`)
i and alphabet

mass ∆k, then we are searching for the ending peak m(`)
j with m/z value within ε of

m
(`)
i + ∆k

z
; this can be accomplished in Θ(n · d · log(n)) steps. This problem is closely

related to the famous 3SUM problem (here we have a generalization because it allows

matches within ε instead of requiring exact matches as the classic 3SUM problem

does). Interestingly, there exists no known solution to the classic 3SUM problem in

O(n2−Ω(1)) [24]. Furthermore, the “within ε” criteria does not easily accomodate use
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of hashing (used to achieve one O(n2) algorithm) or other advanced approaches.

In practice, we accelerate the log2 search for each spectrum by computing a dense

table of the cumulative counts of peaks with m/z at or below some target m/z value

x. This table has bin widths of α:

c
(`)
t = |{i : m

(`)
i ≤ t · α}|.

If α ≥ ε, we can then use this table to find bounds on indices with which we seed the

log2 search: The lower bound index for matches will be found by c(`)
x·α−α. The upper

bound index for matches will be found by c(`)
x·α+α.

Using these bound values, we finish with two log2 searches: one searches for the

first peak with m/z crossing x− ε, and the other searches for the last peak with m/z

not crossing x + ε. In practice, we observe a substantial speedup, even when the

number of peaks in the spectrum is relatively few (Table 2.2). This c(`) table has the

effect of uniformizing the m/z search space; for some distributions of m/z values, this

can make the lookup run in constant time.

Furthermore, because the n peaks are stored in contiguous, sorted order (in an

array, not a balanced binary search tree), we can define all ending peaks j that would

be within ε of starting peak i using alphabet mass ∆k and record them with only two

integers: the beginning of the matching window and the size of the matching window.

This likewise introduces a considerable speed advantage over using a linked list of

peak indices (which would not be cache localized). By choosing a large enough α,

constructing a c(`) table for fragmentation spectrum ` takes space roughly equivalent

to the sorted m/z array, m(`), and the intensity array, p(`).An α which is sufficiently

small will create a table which is too large to fit into cache, causing cache misses and

slowing the search (this happens for α = 0.0001 in table 2.2). Too large of an α can
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create a large space for the two log searches, similarly slowing the search.

Alpha Naïve search Log search Binned-log search
Average runtime(s) 0.0001 0.45861 0.08461 0.01541

0.005 0.45841 0.08472 0.00862
0.01 0.45902 0.08344 0.00780
0.02 0.45873 0.08342 0.00712
0.05 0.45826 0.08483 0.00738
0.1 0.45838 0.08464 0.00778
0.5 0.45919 0.08490 0.01304
1 0.45847 0.08479 0.01820

Table 2.2 Runtimes to find a peak in a spectrum within ε = 0.01Da
of the target m/z value, repeated for 220 such searches on
a spectrum with 1,000 peaks. Note that for α < ε the size of
the window returned by the search must be widened to find the
correct peak.

As a result of this, on a spectrum of the size in Table 2.2, we get an 11.7-fold

speed-up over a standard log search.

2.3.2.2 MAP estimation using sampling

In order to find the best alphabet we could simply try all alphabets. However, for

the larger of the two datasets we analyzed there are 58,051,970 possible peak pairs.

Then for an alphabet of size d there would be
(

58,051,970
d

)
≈ O(58, 051, 970d) possible

alphabets. For an alphabet of size 16 the number of possible alphabets is larger than

the number of particles in the universe and this dataset of size 1,891 is relatively small

for mass spectrometry where it is not uncommon to have millions of spectra.

Since it is not feasible to try all alphabets, we use a Markov chain Monte Carlo

(MCMC) method to approximate the distribution Pr(D,∆ = δ′). Specifically, the

MCMC method we use is Gibbs sampling[25] because we want to propose one new

∆k|∆1,∆2, . . .∆k−1,∆k+1, . . .∆d per iteration. For each univariate cross-section, the

changes to ∆k are proposed and accepted via Metropolis-Hastings [26].
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Each ∆k is proposed from one of three proposal functions (with the choice of

proposal function selected at uniform):

1. Select anm/z from the intensity-weighted distribution used for the non-combinatorial

approach (selected from all possible m/z differences, not just the top d).

2. Scale ∆k to have an equivalent m/z value at some charge state. E.g., if ∆k = 3,

it may propose 1 (from z = 3 to z = 1), 2 (from z = 3 to z = 2), . . . or 9 (from

z = 1 to z = 3).

3. Select a random peak in some connected component for some charge state and

then chooses a new value for ∆k that would create a new edge incident to that

peak, thereby adding a new edge to the connected component.

The first and third proposal functions are topologically equivalent in that they

have the same solution space to pull ∆k from; however, the third solution is greedy

and guarantees that the value it selects will connect a peak to some already existing

connected component, the first proposal function does not make this guarantee.

The updated joint probability Pr(D,∆ = δ′) is compared with the current joint

probability Pr(D,∆ = δ). If Pr(D,∆ = δ′) > Pr(D,∆ = δ), then the new ∆k = δk is

accepted; otherwise the probability of accepting the new ∆k = δk is

Pr(D,∆ = δ′)

Pr(D,∆ = δ)
.

A value proportional to the joint probabilities can be computed as the product

between a prior on ∆ and a likelihood proportional to Pr(D|∆).
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2.3.2.3 Likelihood model

Here we model the process by which E creates the peaks in spectrum `. We

partition E(`) into E(`)
1 , E

(`)
2 , . . ., connected components for each charge state z:

Pr(D(`)|E(`)) =
∏
z

Pr(D(`)|E(`)
z ).

We compute Pr(D(`)|E(`)
z ) as the likelihood of the graph using a particular charge

state z. Let g(E
(`)
z ) be a collection of the edges in each connected component of

the graph formed by E(`)
z . We define the likelihood of the graph formed when using

that particular charge state to be the sum of the likelihoods over these connected

components:

Pr(D(`)|E(`)
z ) =

∑
g∈g(E(`)

z )

Pr(D(`)|G = g).

Lastly, we define the likelihood of a single connected component g using a single

charge state z on a single spectrum ` using the intensities of the peaks joined by each

edge:

Pr(D(`)|G = g) =
∏

(i,j)∈g

pi · pj.

The values pi and pj have been normalized by dividing by the minimal intensity

value.

With a simple example one can see how this model motivates an alphabet that

seeks to form larger connected graphs instead of many smaller graphs which may

have more edges. Lets look at two scenarios, both with only z = 1 charge state. The

first is a graph with four peaks and four edges. The second is a set of two graphs

each with three peaks and two edges. Let all peaks in both examples have the same

intensity, p. Then the likelihood of the first scenario is (p ·p) ·(p ·p) ·(p ·p) ·(p ·p) = p8.



37

The second scenario will have likelihood (p · p) · (p · p) + (p · p) · (p · p) = 2p4. For large

p, p8 � 2p4.

2.3.2.4 Prior model

The prior model has three requirements, which together produce a prior of either

0 or 1: The first requirement is that all alphabet masses be ≥ 1 − ε. This restricts

alphabets to larger masses; being that smaller masses often have no chemical sig-

nificance, if we do not enforce this, small masses may be selected because they are

actually differences between actual alphabet masses. The second requirement is that

no two masses in the alphabet produce similar m/zvalues at any charge considered

(for example, ∆1 = 1.00860,∆2 = 2.01720 would not be possible in the same al-

phabet). This prevents doubling (or tripling, etc.) up on a single alphabet mass

strongly supported by the spectra. The third requirement is that no alphabet results

be within 0.5Da of one another (e.g., ∆1 = 1,∆2 = 1.1 would not be possible in the

same alphabet).

Pr(∆) =


1 ∀k,∆k ≥ 1− ε

0 else
·
∏
k1 6=k2


1 ∀z1, z2,

∆k1
·z1

∆k2
·z2 6∈ [1− ε, 1 + ε]

0 else

·
∏
k1 6=k2


0 |∆k1 −∆k2 | < 1

2

1 else

For faster runtime, we encode the prior model using the random proposal distri-

bution. Given the current alphabet ∆, we propose an alphabet ∆′ that is identical

in all but one character ∆k, which has been changed. We do this by first randomly

choosing k, the index that will be changed, and then proposing δ′k a new value for ∆k.
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The new value is proposed by one of the three proposal functions described above.

When exactly one value in the current alphabet (∆t) can produce an m/z value too

similar to the newly proposed mass (for some charge states z1, z2), we could simply

reject the proposal as having a zero prior probability; however, that approach can

lead to fixation in local optima of the likelihood surface, because it can be difficult to

exchange an alphabet mass with a multiple of itself that would produce an equivalent

m/z at a different charge state. Instead, it is more efficient to simply assign at index

k = t to overwrite ∆t if the proposal is accepted. When two or more values in the

current alphabet can produce an m/z too similar to the newly proposed mass (for

some charge states z1, z2), then the modification to the alphabet would lower the

prior probability to 0; therefore, the proposal is simply repeated without building the

graphs or computing the likelihood.

The prior probability is completely accounted for in the proposal step, and thus we

may substitute Pr(D|∆) for Pr(D,∆).

2.3.2.5 Adjusting likelihood steepness using θ

In traditional Metropolis-Hastings, a proposal from ∆ to ∆′ will be accepted with

probability
Pr(D,∆′)

Pr(D,∆)
,

accepting the proposal certainly when Pr(D,∆′) ≥ Pr(D,∆). We allow for this to be

distorted using hyperparameter θ, accepting the proposed change from ∆ to ∆′ with

probability (
Pr(D,∆′)

Pr(D,∆)

)θ
.

The motivation behind including θ is that the MCMC will not mix well if the surface is

too steep, and will not find the optimum efficiently if the surface is not steep enough.
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In this manner, θ = 0 results in always accepting proposed changes and θ = ∞

results in only accepting changes that immediately improve the joint probability. In

the experiments outlined here, we use θ = 1, but offer the ability to set θ to different

values at the command line.

Additionally, our software implementation outputs the acceptance rate of proposals

as well as the average deviation between log(Pr(D,∆′)) and log(Pr(D,∆)) to help

adjust θ. For example, if you want to set θ to get roughly a 50% acceptance rate and

you know that the previous run gave an average deviation between log(Pr(D,∆′))

and log(Pr(D,∆)) of x, then ex =
(

Pr(D,∆′)
Pr(D,∆)

)
and you can solve (ex)θ = 0.5 for θ.

The same objective could be accomplished using simulated annealing where a loose

θ value turns hard according to some carefully selected cooling curve which allows for

the most probably outcome to be expected with probability of one if the simulation

is ran long enough [27].

Ranking masses in ∆

If desired by the user, using a flag at runtime, the frequency in which masses are

in the alphabet may be written to in a file. This may be used to create a ranking of

the ∆ values based on how many iterations of the Gibbs sampler they stayed in the

alphabet. This is done for all masses, not just the masses in the final alphabet.

2.3.2.6 Mapping ∆ m/z values to canonical masses

Inferring masses from mass-to-charge gaps is difficult, because two masses may

look identical at different charge states. For this reason, the combinatorial approach

sometimes finds integer multiples or fractions of a mass instead of the mass itself.

For example, water has a mass of roughly 18.01057Da; however, the combinatorial

approach may find some ∆k = 36.02114 = 2 · 18.01057. Generally, if multiple charge
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states of neutral water losses are well represented, we would expect using ∆k =

18.01057 will produce a superior likelihood compared to using ∆k = 36.02114, and

therefore the combinatorial approach would eventually choose the canonical mass;

however, there are cases where using ∆k = 36.02114 may produce a higher likelihood.

For example, if three peaks indicate a double neutral loss of water peaks a, b, c at xTh,

(x + 18.01057)Th, and (x + 36.02114)Th), then ∆k = 36.02114 can connect a → c

using a charge state of z = 1 and also connect a→ b and b→ c using a charge state

of z = 2. If the z = 3 charge state is not well represented (using ∆k = 36.02114 will

not find gaps of size 9.0075Th produced by water at a charge state of z = 3), then

the model will prefer ∆k = 36.02114 to ∆k = 18.01057.

For this reason, before we report the final mass alphabet ∆, for each ∆k ∈ ∆, we

compare the masses ∆k

1
, ∆k

2
, ∆k

3
, ..., ∆k

c
where c is the value of the max charge used in

the Gibbs sampler. For each of the new candidate masses, ∆′k, the graphs produced

over all spectra for its charge states ∆′k
z=1

,
∆′k
z=2

,
∆′k
z=3

, ...,
∆′k
z=c

are built. If ∆k

1
and its charge

states produce the most edges, we report the mass as ∆k (unchanged); if ∆k

2
and its

charge states produce the most edges, we report the mass as ∆k

2
. In this manner,

double neutral losses, double mass differences, and dimers do not force us to report

multiples or fractions of the mass of interest.

2.3.3 Finding recurring structures via similar subgraphs

Given the ∆ collection estimated by the Gibbs sampler, we are able to use the de

novo approach to connect as many peaks as possible in each spectrum at every charge

state of interest. On each spectrum and for each charge state, we record all connected

components.

From this collection of graphs, we would like to find large connected components

that are isomorphic to one another (i.e., one graph is the same as the other, but with
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renamed vertices); however, graph isomorphism is a difficult problem: although it is

not known if it is NP-complete, it is thought to be recalcitrant enough to be employed

in cryptography [28].

For this reason, finding large, recurring structures in the de novo graphs appears

difficult. This is made more difficult if we generalize to the optimization variant in

which we find the largest isomorphic subgraphs of each graph, rather than scoring

each as “isomorphic” or “not isomorphic”.

2.3.3.1 Finding graph isomorphism with cross-correlation of sub-

spectra

Fortunately, the graphs that we are using have a metric property in which distances

are preserved. For instance, if a graph connects peaks at 2Th, 6Th, and 9Th, then

any isomorphic graph must connect peaks of the form xTh, (x+ 4)Th, and (x+ 7)Th

(e.g., 90Th, 94Th, and 97Th). For this reason, we can use cross-correlation of the

subspectra (i.e., the peaks that correspond to nodes in our graph) to discover the

largest isomorphic subgraph. The cross-correlation shifts the two subspectra over one

another and computes the dot product at each shift. The shift that produces the

maximum dot product solves for x, and the peaks that align at that shift indicate

corresponding nodes in the two subgraphs.

Using this approach, we can efficiently score pairs of connected components for

similarity.

2.3.3.2 A locality-sensitive hashing approach to clustering subgraphs

We could use this cross-correlation approach to find the largest isomorphic sub-

graphs on all pairs of connected components found in all spectra; however, the run-

time of this would be quadratic in the total number of connected components found
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(and this would be far more than quadratic in the number of spectra); this is not

efficient enough to be applied to many spectra.

For this reason, we generalize locality-sensitive hashing (LSH) to find subspectra

that have a high maximum value in the cross-correlation (the maximum value of

the cross-correlation is the measure of subgraph isomorphism described immediately

above).

LSH encodes objects (i.e., subspectra) as large vectors by binning them by m/z.

The probability that a random plane cuts between two such vectors is 1− ψ
π
, where ψ

is the angle between the two vectors [29, 30]; therefore, by applying a random plane

to an object, we get 1 bit of information for that object (e.g., a 0 is encoded by being

on the negative side of the vector normal to the plane, a 1 is encoded by being on

the positive side of the vector normal to the plane). We can apply this procedure b

times, thereby producing a b-length bit-string label for each object, and thus binning

each object into one of 2b bins. If several planes are applied, there is only a small

probability that two dissimilar objects would reach the same bin. This has recently

been applied to clustering mass spectra [31].

This standard LSH approach to clustering mass spectra cannot be applied in our

case because we do not know the shift between a pair of subspectra that would allow

them to align and produce a high dot product; LSH does not work in this case.

We introduce a means by which we can cluster spectra that allows spectra to be

placed into a similar bin even when they are shifted. Given a vector a (from binning

a spectrum) and a vector b (from binning a second spectrum) where both have length
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n, we note the value of index k for each discrete Fourier transform (DFT):

Ak =
n−1∑
i=0

ai · e−i·k·
2π
n

√
−1

Bk =
n−1∑
i=0

bi · e−i·k·
2π
n

√
−1.

We note a ≡ b, i.e., a is equivalent to b up to rotation, if ∃u : a(i+u) mod n = bi.

Thus we have

Bk =
n−1∑
i=0

a(i+u) mod n · e−i·k·
2π
n

√
−1

=
n−1∑
i=0

ai · e−(i−u)·k· 2π
n

√
−1,

because we can equivalently shift the ai terms forward or the e−i·k·
2π
n

√
−1 terms back-

ward by u. Thus

Bk =
n−1∑
i=0

a(i+u) mod n · e−i·k·
2π
n

√
−1 · eu·k·

2π
n

√
−1

= Ak · eu·k·
2π
n

√
−1,

i.e., rotating a sequence will simply change the phases of each index of the DFT.

If we ignore the phase of each term in the DFT (using the magnitudes |Ak| and |Bk|

at each index, known in signal processing as the “power spectra”), then two objects

that are identical up to rotation must look identical.

Thus, we use fast Fourier transform (FFT) [32] to create the power spectrum of each

subspectrum derived from a connected component, and then use LSH to bin similar

power spectra. Bins that contain subspectra coming from many large connected

graphs are indicative of de novo results that are likely reproduced in multiple spectra
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and multiple charge states. These recurring subgraphs give insight into common

chemical structures found with the inferred alphabet ∆ (Figure 2.8).

Importantly, the cost of running the above procedure (ignoring the cost of perform-

ing the FFT for each subspectrum corresponding to a connected component) will be

linear in the number of connected components investigated, an improvement from

quadratically many computationally difficult graph isomorphism problems.

2.4 Edge-maximal isomorphic subgraphs on embeddings in Zd

LetG = (V,E) be a Euclidean graph (or, alternatively, a weighted Euclidean graph)

embedded into Zd. Excluding the degenerate case where vertices have 0 distance to

one another, each vertex must correspond to a unique location in Zd such that the

distance between any pair of vertices in the graph (using number of edges if G is

unweighted and weighted distance if G is weighted) is preserved by the distances of

the vertex locations in the embedding. Let this embedding take the form of a function

f from nodes to Zd.

Give an f to perform the embedding, the edges of the graph can be encoded as a

tensor T (G) ∈ Zd × Zd = Z2d as an adjacency tensor:

T (G)f(a),f(b) =


1, (a, b) ∈ E

0, else.

We say that two embeddings, T (G1) and T (G2), are “oriented” with respect to

one another if the axes and directions of the embeddings are aligned. Thus, any

isomorphic subgraphs g1 = (v1, e1), g2 = (v2, e2) of G1, G2 (respectively) will have

vertices shifted from one another. Thus any oriented isomorphic subgraph will have

∃s =∈ Zd such that all matched nodes in the isomorphism align in space: ∀x ∈
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Figure 2.8 An LSH approach to finding similar subgraphs. In the left
column, three spectra are shown with the subspectra (shown in
color), which are peaks contained in a connected component pro-
duced by building the graph with the estimated mass alphabet
∆. The second column shows only those peaks in the subspec-
trum. The third column shows the absolute values of the DFTs
of the subspectra. Each of these power spectra is dot producted
with a random hyperplane, and the sign of the resulting value is
used to produce a single bit. When two connected components
have large subgraphs isomorphic to one another, their subspec-
tra must be shifted versions of each other, and thus their power
spectra must be nearly identical. Two subspectra drawn (first
and second rows) are similar in this manner, producing similar
power spectra and thus a low probability of being separated by a
random hyperplane. Repeating this process with several differ-
ent random hyperplanes and concatenating the bits produces a
hash, which has a high probability of binning together connected
components that have substantial subgraph isomorphism.
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v1,∀y ∈ v2,∈ Zd : y = x + (s, s). Note that the edge embeddings are ∈ Z2d and so

we shift by (s, s) because both start and end vertices must be shifted identically to

preserve the graphs.

Given these oriented embeddings, the edge-maximal isomorphic subgraph can be

found via the cross-correlation between T (G1) and T (G2). Let C = T (G1) ~ T (G2)

denote the cross-correlation between T (G1 and T (G2). For any shift s ∈ Zd,

C(s,s) =
∑

w,y:w+(s,s)=y

T (G1)w · T (G2)y

=
∑
w

T (G1)w · T (G2)w+(s,s).

Thus C(s,s) is a dot product of the shifted adjacency tensor T (G1) on the adjacency

tensor T (G2). Because the tensors have 1 where edges exist and 0 where edges do not

exist, each shifted dot product counts the number of edges bijective to one another

when T (G1) is shifted by s relative to T (G2).

By the definition of orientedness, each considered isomorphic subgraph must have

some s whereby T (G1) has been shifted by s to align the vertex locations with their

corresponding vertices in T (G2). Thus the edge-maximal isomorphic subgraphs must

be found at some shift s∗, at which Cs∗,s∗ will be maximal. Conversely, the entry s∗ at

which Cs is maximized corresponds to the shift with which the isomorphic subgraph

with the largest number of edges is found.

Thus the shift producing the node bijection with greatest number of matching edges

can be found by computing C by performing FFT convolution in Z2d and searching

C for the index of form (s∗, s∗), at which it attains maximal value. Likewise, given

this shift, the matching nodes can be found by locating the nonzero entries in the dot

product between the tensors.
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2.4.1 Exploiting sparsity

Storing edge embeddings in Z2d can requires substantial space and performing

convolution in Z2d can require substantial time. We can simultaneously exploit a

sparsity in both the edge embeddings and in the cross-correlation, in which we only

visit indices of the form (s, s) where s ∈ Zd.

We perform this by first transforming the tensor embeddings from starting vertex

and ending vertex pairs into bijective (and orientation-preserving) embeddings on

vertex differential and starting vertex pairs. That is,

T ′(G)f(b)−f(a),f(a) =


1, (a, b) ∈ E

0, else.

C ′s =
∑

(w,x),(y,z):(w+s,x+s)=(y,z)

T (G1)(w,x) · T (G2)(y,z)

=
∑
(w,x)

T (G1)(w,x) · T (G2)(w+s,x+s)

=
∑
(w,x)

T ′(G1)(x−w,w) · T ′(G2)(x−w,w+s)

=
∑
a

T ′(G1)a ~ T ′(G2)a.

That is, we count the bijective edges at shift s ∈ Zd by counting the edges (via dot

product) that have the same differential and the same start location after applying

the shift. This can be performed by summing several cross-correlations. These cross-

correlations are on tensors ∈ Zd; furthermore, the edge embeddings themselves can

now be stored in a sparse manner by using a dictionary of edge differentials to vertex

start locations. Storage will thus be reduced to Zd when the graphs are sparse, but
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without preventing the benefit of FFT tensor convolution, which can only be applied

on arrays.

Thus, when considering a pair of tensor embeddings T ′(G1) and T ′(G2), we can

find the isomorphism with the largest number of matching edges by finding the s∗ at

which C ′s∗ is maximal.

2.4.2 A shift-invariant LSH encoding

When considering n graphs, we can use the FFT-convolution-based approach above

to find pairs of graphs with large edge-maximal isomorphic subgraphs by simply trying

all
(
n
2

)
graph pairs; however, when n is large, the number of pairs will become too

large to efficiently use this approach.

In order to reduce the number of pairwise matchings we use LSH to first bin the

graphs and only compare all pairs in the same bin. LSH relies on each graph being

represented as a vector in Rm such that graphs with a large number of isomorphic

edges must be close to one another. LSH exploits the fact that any two points in Rm

will share a plane with the origin, and thus the normalized points can be thought

of as separated by an angle ψ on the unit sphere (sampled by sampling from several

independent Gaussians and normalizing so that ‖ · ‖2 = 1). The probability that a

random vector on the unit sphere will have dot products with different sign is 1− ψ
π
,

because the dot product will ignore any axes not in the plane with the origin[29, 30].

Thus, several such random vectors on the sphere can be generated to form a hash for

each object: a negative dot product with the random vector will append a 0 bit to

the object’s hash and a nonnegative dot product will append a 1 bit to the object’s

hash. Thus, k random vectors will produce k-bit hashes for each object in O(n ·k ·m)

time (which will be faster than n2 when the number of graphs n � k ·m). Objects

with a small angle between them have a much higher probability of hashing into the
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same bin. Thus, by performing a few replicates of this strategy, the probability that

near neighbors do not reach the same bin in at least one replicate becomes small;

meanwhile, the expected number of objects that land in the same bin remains small,

and thus few pairs must be compared.

The adjacency tensors themselves are not suitable for direct hashing because shifted

graphs will have a large angle between them using the Z2d representation; however,

the fact that each graph pair can be compared using convolution indicates that they

will have significant overlap in the frequency domain.

Given two vectors a and b, we write their frequency domain representations as

follows:

Ak =
n−1∑
i=0

ai · e−i·k·
2π
n

√
−1

Bk =
n−1∑
i=0

bi · e−i·k·
2π
n

√
−1.

We note a ≡ b, i.e., a is equivalent to b up to rotation, if ∃u : a(i+u) mod n = bi.

Thus we have

Bk =
n−1∑
i=0

a(i+u) mod n · e−i·k·
2π
n

√
−1

=
n−1∑
i=0

ai · e−(i−u)·k· 2π
n

√
−1,

because we can equivalently shift the ai terms forward or the e−i·k·
2π
n

√
−1 terms back-

ward by u. Thus

Bk =
n−1∑
i=0

a(i+u) mod n · e−i·k·
2π
n

√
−1 · eu·k·

2π
n

√
−1

= Ak · eu·k·
2π
n

√
−1,
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i.e., rotating a sequence will simply change the phases of each index of the DFT.

If we ignore the phase of each term in the DFT (using the magnitudes |Ak| and |Bk|

at each index, known in signal processing as the “power spectra”), then two objects

that are identical up to rotation must look identical.

Thus, we use fast Fourier transform (FFT)[32] to create the power spectrum of

each adjacency tensor derived from a connected component, and then use LSH to

bin similar power spectra. Importantly, the cost of running the above procedure

(ignoring the cost of performing the FFT for each graph in the set) will likely be

∈ o(n2) in the number of graphs investigated, an improvement from quadratically

many computationally difficult graph isomorphism problems.

By observing where the FFT would be employed in the cross-correlation between

the T ′ tensor embeddings, we transform the embedding for graph i into the frequency

domain via the d-dimensional FFT and then converting to a power spectrum:

F (G)a = |FFT (T ′(Gi)a)|.

We perform LSH for this graph by sampling several random Gaussians ga,` N (0, 1):

bit_hash(Gi) =


1,

∑
a

∑
` ga,` · |FFT (T ′(Gi)a)|` ≥ 0

0, else.

A k-bit hash for each graph is completed by concatenating k bit_hashes. Note that

the Gaussians should be sampled once for each all objects to receive a single bit hash

and resampled for each subsequent bit concatenated by the LSH.
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CHAPTER 3 RESULTS

3.1 Data

All results were obtained from running the models on the following two datasets.

3.1.1 Manually curated glycoconjugate spectra from human urine

Thousands of glycoconjugate spectra from human urine were manually curated by

an expert to find 62 with strong evidence of glycoconjugates [7]. A priori, four sugar

residue masses (Hexose, HexNAc, dHex, and NeuAc), as well as the neutron mass

(whose mass is roughly the shift to produce isotope peaks) are the only masses we

expect. Note that these masses were not provided for analysis, but are only used to

validate the resulting masses found.

3.1.2 Horseradish peroxidase glycoprotein standard spectra

Glycoprotein stain (Pierce Glycoprotein Staining Kit, catalog number 24562) con-

taining horseradish peroxidase (UNIPROT accession P00433[33]) was analyzed on

an ABSciex Triple TOF 5600+, producing 1,891 fragmentation spectra (similarly to

[34]).
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3.2 Convex optimization

All results from this section were obtained by running the models only on the

glycoconjugate data.

3.2.1 Minimal quadratically constrained linear program (M2.1.3)

n d Correct Incorrect Unique Time(s)
10 3 3 0 3 10.011
10 5 3 0 3 17.342
13 5 4 0 4 31.548
12 16 0 16 0 95.159
15 16 0 16 0 172.383

Table 3.1 Runtimes and outcome from M2.1.3 when using Mathematica. n
is the number of peaks in the spectrum and d is the maximum size
of alphabet allowed. Correct is the number of alphabet masses
which fit between two peaks within ε−0.1. Unique is the amount
of the correct answers which were unique masses.

3.2.2 Lagrangian relaxation (M2.1.4)

n d Iterations Step-size Correct Incorrect Unique Edges Time(s)
5 10 10 0.1 5 2 4 9 48.148
10 10 10 0.1 9 0 6 101 324.671
30 16 10 0.1 - - - - 835.197

Table 3.2 Runtimes and outcome from M2.1.4. n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within ε−0.1. Unique is the amount of the correct answers
which were unique masses.
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3.2.3 Minimizing over indicator variables (M2.1.5)

‖∆‖2

∑
k

bk

25.12 20.02
18.65 17.95
20.22 16.78

Table 3.3 Alphabets when ran with ‖∆‖2 in the objective function versus∑
k

bk in the objective function. There were 10 peaks with an

alphabet of size 3.

n d Iterations Step-size Correct Incorrect Unique Edges Time(s)
4 5 10 0.1 2 2 2 2 29.954
10 5 10 0.1 0 5 - - 99.384
10 10 10 0.1 1 9 1 2 291.228
15 15 0 0.1 0 0 0 0 error

Table 3.4 Runtimes and outcome from M2.1.5. n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within ε−0.1. Unique is the amount of the correct answers
which were unique masses.

3.2.4 An edge-centric model: incentivizing larger graphs (M2.1.6)

n d Iterations Step-size Correct Incorrect Unique Edges Time(s)
5 10 10 0.1 1 1 1 3 50.456
10 10 10 0.1 6 0 6 7 321.131
15 10 0 0.1 0 0 0 0 error

Table 3.5 Runtimes and outcome from M2.1.6. n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within ε−0.1. Unique is the amount of the correct answers
which were unique masses.
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3.2.5 Maximize number of edges and finding unique masses through

constraints (M2.1.9)

n d Correct Incorrect Unique Edges Time(s)
10 5 5 0 5 5 0.17
15 5 5 0 5 7 0.46
20 5 5 0 5 13 11.23
30 5 5 0 5 25 stopped at 11.16
10 10 10 0 10 10 59.01

Table 3.6 Runtimes and outcome from M2.1.9. n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within ε−0.1. Unique is the amount of the correct answers
which were unique masses.

3.2.6 Two step method of finding the best ∆s and then minimizing the

alphabet (M2.1.10)

n d Correct Incorrect Unique Edges Time(s)
10 5 5 0 5 7 0.14
20 5 5 0 5 20 0.329
50 5 5 0 5 65 11.393
100 5 5 0 5 70 180.10

Table 3.7 Runtimes and outcome from M2.1.10. n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within ε−0.1. Unique is the amount of the correct answers
which were unique masses.
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3.2.7 Maximum vertex cover approach (M3.2.7)

Mass value
0.91967
1.90000
2.91732
3.87359
23.8847
35.91240
71.98874
83.86975

Table 3.8 Output alphabet of size 8 using the bipartite graph model
(M3.2.7). The program took 27.08 minutes to run on all un-
filtered spectra from the glycoconjugate dataset.

3.3 A max-flow/min-cut formulation

For all graph cut models we were unable to get any useful results. They would

all almost always choose an alphabet of either zero masses or all masses available.

The energy minimization model and the normalized model would sometimes choose

an alphabet in between but that would still be all but just a handful of delta values,

resulting in an alphabet of several hundred masses.

3.4 Markov chain Monte Carlo

The values in the results are reported using five decimal places, despite having

machine tolerances of 0.02Da and 0.05Da. The reason for this is that we often find

masses to a much higher precision. This is because if we have a set of masses which

are within machine tolerance of the monoisotopic mass of water and connect at least

one pair of peaks in a spectrum, then the distribution of the masses in the set should
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Rank ∆ Frequency label
1 42.01047 16000
2 84.02204 16000
3 188.01611 16000
4 130.00746 15997
5 0.98410 15953 Neutron/Deamidation
6 18.00746 15952 Water
7 162.04746 15905 Hexose
8 94.03555 15894

Table 3.9 Results from ranking masses in ∆ for 62 glycoconjugate
spectra. This table shows the rankings of the masses by fre-
quency of presence in ∆. The higher the frequency, the more
times this mass (or a mass within ε of it) was included in the
alphabet. This was run with ε = 0.02Da and d = 8.

center around the true monoisotopic mass of water. For example, in the alphabet

for the 62 expert-curated spectra which uses ε = 0.02Da we find water at a mass of

18.01068Da which is 0.000115Da from the monoisotopic mass of water and we find a

mass of 30.01058Da which is accurate to the value of a serine/glycine substitution,

30.010565Da, for four digits [35].

Ranking masses in ∆

Tables 3.9 and 3.10 show the rankings of masses in alphabets for the 62 glycoconju-

gate spectra and 1,891 glycoprotein spectra, respectively. In both instances the Gibbs

sampler was ran for 16,000 iterations. Taking into account the alphabet sizes for the

two tables (8 and 16, respectively) you can see which masses were highly desirable.

With some masses were in almost every iteration they must have been proposed early,

this shows why having a great proposal function is crucial. These rankins are saved

to file before the mapping to canonical mass step.
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Rank ∆ Frequency label
1 162.05000 16000 Hexose
2 228.07500 15997 2× N
3 0.98210 15996 Neutron/Deamidation
4 18.01130 15986 Water
5 42.00810 15909
6 30.02500 15899
7 180.06330 15756
8 57.00000 15721 G
9 23.00420 15692
10 144.06510 15650
11 790.37500 15648
12 202.10000 15590
13 17.01790 15569
14 720.25740 13857
15 2.07260 9725
16 839.37500 8935

Table 3.10 Results from ranking masses in ∆ for 1,891 glycopro-
tein spectra. This table shows the rankings of the masses by
frequency of presence in ∆. The higher the frequency, the more
times this mass (or a mass within ε of it) was included in the
alphabet. This was run with ε = 0.05Da and d = 16.

Efficiency of LSH when hashing pairs of similar and dissimilar graphs

Now, we look at how effective this LSH method is at putting a pair of similar, but

shifted, graphs into the same bin versus a pair of very different graphs (figure 3.1).

De novo sequencing was performed on spectra taken from the 1,891 glycoprotein data

set with the alphabet from table 3.14. The graphs are bijective to the subspectra and

are created by isolating the peaks connected by the alphabet. Each node in a graph

represents a peak in a spectrum, with an edge connecting two nodes in the graph

if the peaks in the spectrum are connected by a mass in the alphabet. Graphs 1

and 2 are very similar, but not exactly the same, and are shifted by roughly 300Da.

Graph 3 is almost completely different from the first two. For hashes with different

number of bits (i.e. different number of cutting planes) all pairs were binned together
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at a different rate with the pair of similar graphs always being binned together at a

significantly higher rate than any pair involving the dissimilar graph.
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Figure 3.1 Effectiveness of LSH on binning together pairs of sim-
ilar, but shifted, graphs and pairs of dissimilar graphs.
Three subspectra were created by applying de novo sequencing
on the 1,891 glycoprotein spectra with the alphabet from table
3.14. Graphs 1 and 2 are very similar subspectra (44 out of 55
similar peaks) but are shifted by roughly 300Da. Graph 3 is
a very different subspectra from graphs 1 and 2. In subfigure
3.1(d) the percentage of times each pair of graphs are binned
together is plotted versus the number of bits in each hash. In
the subspectra, the different colored peaks represent being con-
nected by ∆k/c values of different charge.

Below we look at the results from two datasets; both used 32 threads. The manually

curated glycoconjugate dataset has 62 spectra and was run with ε = 0.02Da. The
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horseradish peroxidase glycoprotein has 1,891 spectra and was run with ε = 0.05Da.

Both datasets are available at the site listed in the “available” section. The ε values

are machine-dependent and were recommended by the scientists who produced the

data (Dr. Froehlich for the glycoconjugate dataset and Dr. Shu and Dr. Yang for

glycoprotein dataset). In each fragmentation spectrum, we remove peaks that are

below 1% of the maximum intensity in that spectrum.

3.4.1 Manually curated glycoconjugate spectra from human urine

Thousands of glycoconjugate spectra from human urine were manually curated by

an expert to find 62 with strong evidence of glycoconjugates [7]. A priori, four sugar

residue masses (Hexose, HexNAc, dHex, and NeuAc), as well as the neutron mass

(whose mass is roughly the shift to produce isotope peaks) are the only masses we

expect. Note that these masses were not provided for analysis, but are only used

to validate the resulting masses found. A more detailed explanation of the sample

preparation is available in [7].

Non-combinatorial results are shown with d = 8 for both the unweighted and

weighted approaches (Table 3.11).

The combinatorial approach was run for 16 epochs per thread. Each epoch used

1000 iterations. The total real runtime of the analysis was 4 minutes. Combinatorial

approach alphabet results are shown with d = 8 (Table 3.12).

Examples of recurring structures found using LSH with the d = 8 alphabet projec-

tion (i.e., the alphabet reported in Table 3.12) are shown in Figure 3.2.
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Rank Mass Molecule
1 0.99686 Neutron/Deamidation
2 18.00686 Water
3 0.49686
4 60.01686
5 42.00686
6 162.04686 Hexose
7 27.98686
8 36.01686

16 17.01686 Ammonia
110 203.07686 HexNAc
923 146.06686 dHex

1,765 291.09686 NeuAc

Rank Mass Molecule
1 0.99686 Neutron/Deamidation
2 18.00686 Water
3 0.49686
4 162.04686 Hexose
5 60.01686
6 88.00686
7 36.01686
8 30.00686

17 17.01686 Ammonia
136 203.08686 HexNAc
832 146.06686 dHex

1,522 291.09686 NeuAc

Table 3.11 Most frequent d = 8 gap pairs (i.e., mj −mi) on 62 expert-cu-
rated glycoconjugate spectra. The left table ranks using the
unweighted frequency of gaps and the right table weights each
gap by the product of peak intensities pi ·pj. Masses are rounded
to 5 decimal points.

Mass value Manual interpretation Known a priori? Monoisotopic mass
1.00328 Neutron Yes 1.00860

17.00746 Ammonia No 17.02655
18.01068 Water No 18.01057
30.01058
42.01071
88.01555

162.04746 Hexose Yes 162.05282
203.06746 HexNAc Yes 203.07943

Table 3.12 Results when running the combinatorial approach on 62 ex-
pert-curated glycoconjugate spectra with d = 8. Because the
combinatorial approach assigns no ranks to the masses, they are
reported in ascending order. Masses are rounded to 5 decimal
points. Masses known a priori are labeled; these masses were
not provided to the model, but instead are known true positives
in advance.
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(b) Spectrum 1 Graph

(c) Spectrum 2 (d) Spectrum 2 Graph

(e) Graph of Common Subgraphs

Figure 3.2 Example similar subgraph pair found using LSH on
results from 62 expert-curated glycoconjugate spec-
tra. Two spectra (a,c) and their corresponding de novo graphs
(b,d) found using the combinatorial approach. Spectra are
drawn with peaks used in the graph colored red and un-
used peaks colored green. LSH is used to find this match-
ing pair, and fast convolution finds the largest isomorphic sub-
graph in the pair (e). A minimal amount of peaks were re-
moved from (b,d) for legibility. The top subspectrum is from
“120810_JF_HNU142_16.5710.5710.3” and the bottom is from
“120810_JF_HNU142_16.6444.6444.4.”
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(a) Spectrum 1 (b) Spectrum 1 Graph

(c) Spectrum 2 (d) Spectrum 2 Graph

(e) Graph of Common Subgraphs

Figure 3.3 Example similar subgraph pair found using LSH on re-
sults from 1,891 glycoprotein standard spectra. Two spec-
tra (a,c) and their corresponding de novo graphs (b,d) found us-
ing the combinatorial approach. Spectra are drawn with peaks
used in the graph colored red and unused peaks colored green.
LSH is used to find this matching pair, and fast convolution finds
the largest isomorphic subgraph in the pair (e). Some peaks were
removed from (b,d) for legibility. The top subspectrum is from
“Locus:1.1.1.2518.2” and the bottom is from “Locus:1.1.1.8343.2”
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3.4.2 Horseradish peroxidase glycoprotein standard spectra

Glycoprotein stain (Pierce Glycoprotein Staining Kit, catalog number 24562) con-

taining horseradish peroxidase (UNIPROT accession P00433[33]) was analyzed on

an ABSciex Triple TOF 5600+, producing 1,891 fragmentation spectra (similarly to

[34]).

The data were provided and processed blind without knowledge of its sample ori-

gins, only that sugars were present; like the 62 curated spectra, these sugars were not

used in the analysis, only in the validation of the results. Thus, like the first data

set, the only a priori expected masses are of four common sugar residues (Hexose,

HexNAc, dHex, and NeuAc), as well as the neutron mass. It is important to note

that the presence of amino acids was not expected.

Non-combinatorial results are shown with d = 16 for both the unweighted and

weighted (Table 3.13) approaches.

The amino acids found with the d = 16 alphabet projection (i.e., the alphabet

reported in Table 3.14) are G,T,I/L,N, and K/Q (K and Q are listed together

because the machine’s ε is too large to differentiate between the two for the mass

found). These amino acids can form a chain, LNGNL, which are the 241st through

245th amino acids in the peptide sequence. This includes the glycosylation site at the

244th amino acid (the second asparagine in LNGNL ) in the sequence [33]. The amino

acid chain TLNTT can also be produced from the alphabet. This chain covers the

226th through the 230th amino acids in the peptide sequence which includes another

glycosylation site occurs at the 228th amino acid in the peptide sequence.

The weighted non-combinatorial approach, which found more amino acids than

the unweighted non-combinatorial approach, was only able to find I/L, T, and A.

Because of the lack of asparagine found by either non-combinatorial approach, neither
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one is able to build an amino acid chain which covers any of the glycosylation sites

for this peptide.

Examples of recurring structures found using LSH with the d = 16 are shown in

Figure 3.3.

Examples of two subspectra, from two different spectra, and their connected de

novo graphs, which include the amino acid chain LNGNL, are shown in Figure 3.4.

Rank Mass Molecule
1 18.00000 Water
2 0.02500
3 0.97500 Neutron/Deamidation
4 113.07500 I/L
5 203.07500 HexNAc
6 17.02500 Ammonia
7 17.00000 Ammonia
8 1.00000 Neutron/Deamidation
9 0.05000

10 101.02500 T
11 0.00000
12 18.02500 Water
13 17.97500 Water
14 27.97499
15 113.05000 I/L
16 203.05000 HexNAc
18 162.05000 Hexose
54 146.05000 dHex

914 291.12500 NeuAc

Rank Mass Molecule
1 18.00000 Water
2 0.02500
3 203.07500 HexNac
4 113.07500 I/L
5 0.97500 Neutron/Deamidation
6 17.02500 Ammonia
7 0.00000
8 17.00000 Ammonia
9 0.05000

10 162.05000 Hexose
11 101.02500 T
12 35.99999
13 1.00000 Neutron/Deamidation
14 203.05000 HexNac
15 41.02499
16 17.97500 Water
53 146.05000 dHex

1,112 291.10500 NeuAc

Table 3.13 Most frequent d = 16 gap pairs (i.e., mj−mi) on 1,891 glycopro-
tein standard spectra. The left table ranks using the unweighted
frequency of gaps and the right table weights each gap by the
product of peak intensities pi · pj. Masses are rounded to 5 dec-
imal points.

The combinatorial approach was run for 16 epochs per thread. Each epoch used

1000 iterations. The total real runtime of the analysis was 4 hours for d = 16 and

10.6 hours for d = 64. The acceptance rate eventually decays, and similar results

may be achievable with lower runtimes.
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Mass value Manual interpretation Known a priori? Monoisotopic mass
1.02500 Neutron Yes 1.00860
1.94080

12.01713
18.00000 Water No 18.01056
30.02305
42.02500
57.00000 G No 57.02146
96.05000

101.04583 T No 101.04767
102.05000
113.06250 I/L No 113.08406
114.05188 N No 114.04292
128.06040 K/Q No 128.09496/128.058578
162.06580 Hexose Yes 162.04746
180.08750
240.10286

Table 3.14 Results when running the combinatorial approach on 1,891 gly-
coconjugate spectra with d = 16. Masses, they are reported
in ascending order. Masses are rounded to 5 decimal points.
Masses known a priori are labeled; these masses were not pro-
vided to the model, but instead are known true positives in
advance.
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(a) Spectrum 1 (b) Spectrum 1 Graph

(c) Spectrum 2 (d) Spectrum 2 Graph

(e) Spectrum 3 (f) Spectrum 3 Graph

Figure 3.4 Subgraphs with an amino acid chain matching glyco-
sylation sites. Three spectra (a,c,e) and their corresponding
de novo graphs (b,d,f) found using the combinatorial approach.
The top two spectra contain the amino acid chain LNGNL and
the bottom contains the amino acid chain TLNTT. Graphs use
red edges to mark charge z = 1, green edges for z = 2, and
blue edges for z = 3. The nodes colored in – yellow represent
nodes touched by the amino acid chain. Figures (a,b) came
from spectrum titled “Locus:1.1.1.8405.3” , figures (c,d) came
from spectrum titled “Locus:1.1.1.8036.2”, and figures (e,f) came
from “Locus:1.1.1.2523.2.”
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3.5 Edge-maximal isomorphic subgraphs on embeddings in Zd

3.5.1 Solving edge-maximal isomorphic subgraph via cross-correlation

To test our methods we generated pairs of random graphs embedded in Z2. In

Table 3.15 we compared the runtimes over pairs of graphs with similar amount of

nodes. The brute force method iterated over all possible node bijections in the two

graphs and counted the matching edges, which has exponential time complexity. The

grid size is the maximum placement for a node; this is important because it controls

the size of the adjacency tensor. The FFT approach is significantly faster and scales

better for number of nodes while having 100% accuracy; however, the FFT is a

divide and conquer algorithm which scales in speed and memory with the grid size

(Table 3.16).

Embedding |V1| |V2| Brute Force FFT
32x32 5 8 0.10575 0.0052809
32x32 6 9 1.04943 0.0053590
32x32 7 10 11.8022 0.0053147
32x32 7 12 73.87356 0.0052950
32x32 7 13 147.53414 0.0052731

Table 3.15 Runtimes to find edge-maximal isomorphic subgraph match-
ings on graph pairs with different numbers of vertices, |V1|, |V2|.
Brute force uses all possible node bijections, whereas FFT uses
FFT-based cross-correlation on the Zd embedding.

Embedding Number Nodes Time Embedding Number nodes Time
32x32 100 0.06189 256x256 100 3.11040
64x64 100 0.16379 256x256 200 6.20085

128x128 100 0.69817 256x256 300 9.27673
256x256 100 3.12268 256x256 400 12.6026
512x512 100 18.8930 256x256 500 15.59189

1024x1024 100 102.573 256x256 600 18.4465
2048x2048 100 500.327 256x256 700 22.6432

Table 3.16 How FFT-based cross-correlation runtimes scale for finding
edge-maximal isomorphic subgraphs between a pair of graphs
with different embedding tensor dimensions and different num-
bers of nodes.
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Figure 3.5 LSH matching quality for graphs embedded ∈ Z2 using 4-bit
shift-invariant LSH. The left panel is run on proper supergraph–
subgraph pairs, where the larger graph has 120 nodes and 812
edges. In this panel, subgraphs were found by randomly remov-
ing edges. The right panel compares, the right panel is run on
graph pairs where both have 120 nodes and 812 edges. In this
panel, the second graph was found by removing edges and then
adding random new edges. LSH was performed 256 times to
empirically estimate the probability that the graphs were binned
together.

3.5.2 Finding graph pairs with highly isomorphic subgraphs via LSH

Figure 3.5 uses random graphs to demonstrate the effectiveness of the power spec-

trum as feature space for a shift-invariant LSH. Note that small changes to a graph

(e.g., removing an edge) can correspond to a non-trivial angle change between the

two graphs in their power spectrum embeddings ∈ Rm; thus, even similar graphs may

be separated by a plane. For this reason, we can run a few full repetitions of LSH;

the probability of a close match not colliding in at least one repetition will become

small. The approach is trivially parallelizable; although we do not exploit that in this

manuscript, it can mitigate the runtime penalty of performing replicate LSH runs.

Table 3.17 demonstrates that the LSH approach achieves a significant reduction in

runtime while consistently finding graphs with large isomorphic subgraph matchings.
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Avg. Nodes Avg. edges Hashes Total Match rank FFT time LSH time Hash time
115 200 256 60 50 228.79458 47.97628 20.70615
143 300 256 47 29 291.55601 53.53428 26.15016
166 501 256 65 30 387.70664 86.29910 35.68782
206 401 256 42 28 372.05800 64.14751 33.16835
213 600 256 69 40 359.85256 82.97930 33.27186
158 500 512 151 90 335.60315 163.0908 60.66355
101 502 1024 78 57 333.87344 163.9954 110.6452

Table 3.17 Finding graph pairs with large edge intersection. 32 graphs (496
possible comparisons) were run using FFT between all pairs and
using a 4-bit LSH hash. “Total” indicates the number of pairs
that had non-trivial subgraph isomorphisms. “Match rank” in-
dicates the number of these top graphs recovered by LSH (e.g.,
3 indicates that the largest 3 graphs were recovered by LSH).
“LSH time” takes into account the time to calculate the hashes
as well as the subsequent pairwise comparisons in each hash bin;
“Hash time” reflects only the hashing step (which can be reduced
significantly using parallelization), to underscore the ability to
improve the LSH approach.
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CHAPTER 4 DISCUSSION

4.1 Convex optimization

4.1.1 Minimal quadratically constrained linear program (M2.1.3)

From M2.1.3, this quadratically constrained linear program works well for samples

that are much too small to be interesting. Unfortunately, the data do not become

interesting until they are much too large to be run using this model.

4.1.2 Lagrangian relaxation (M2.1.4)

Before we applied Lagrangian relaxation, we attempted to relax the problem by

allowing the edge indicator variables to be continuous in [0, 1]. If this worked, we

would have a linear program with only continuous variables, which can be solved

efficiently. Unfortunately, this can not work as a relaxed e(`)
i,j,k variable in constraint

2.3d is able to cheat the system. It was allowed to shrink as small as it could so that

the middle term would be less than ε regardless of ∆k. Then ∆k was free to be any

value.

This first Lagrangian relaxation 2.1.5 formulation was not much of an improvement

over the quadratically constrained LP. This was to be expected as it is still a QP which

is very difficult to solve.

The Lagrangian multipliers helped for some runs, but they often would not converge

for many iterations, causing terrible runtimes. However, the solver would often get
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an alphabet with several correct masses (correct meaning there were two peaks whose

mass difference was within ε of the alphabet mass) after the first iteration, but this

alphabet would often change completely.

4.1.3 Minimizing over indicator variables (M2.1.5)

The second model to use Lagrangian relaxation (2.1.5) was created with the purpose

of minimizing over the size of the alphabet and not the magnitude of the alphabet

masses. This did have the intended effects because the alphabet when optimized

over the indicator variables had larger values. Larger mass values are not necessarily

desired, but there should not be a bias against them.

The major problem with the previous model was the speed and lack of convergence

with the Lagrangian multipliers, neither of these were fixed with this new model.

4.1.4 An edge-centric model: incentivizing larger graphs (M2.1.6)

The third model to use Lagrangian relaxation was modified from the previous model

simply by adding C/(
∑

i,j,k e
(`)
i,j,k) to the objective function. This certainly helped as

this model turned on over twice as many edges and, importantly, incentivised more

unique masses.

4.1.5 Removing the quadratic constraint

Using a trick for replacing a quadratic term in which one variable is a binary

indicator variable and the other is continuous, we were able to make a problem with

only linear constrained.

There are still binary edge indicator variables so our problem is a MILP. Also, most

of the variables before removing the quadratic constraint were the edge indicator vari-

ables. There is one new z
(`)
i , j, k continuous variable for each edge indicator variable,
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so there are almost twice as many variables as before. There are also four more con-

straints for each of the new z
(`)
i , j, k variables. This significant increase in variables

and constraints dampens the impact made by removing the quadratic constraint.

4.1.6 Maximize number of edges and finding unique masses through

constraints (M2.1.9)

In model 2.1.9 we switched solvers from Mathematica to CPLEX. For this model

the last constraint was added which dissallowed two alphabet masses to cover the

same peak pair. This worked well as all alphabets masses are fully unique, so this

model was a success in this aspect. Similar to previous models, the speed is still

lacking. Also, minimizing over the indicator variables bi was nullified by maximizing

the amount of edge variables turned on and a correct value of γ which would allow

some, but not all, masses was very hard to tune.

4.1.7 Two step method of finding the best ∆s and then minimizing the

alphabet (M2.1.10

This was by far the best model for a standard MILP implementation. Finding

only one mass value at a time meant drastically reducing the amount of alphabet

mass variables and edge indicator variables. These quantities are further reduced

each iteration as peak pairs were taken away by previously found masses.

We want to optimize over hundreds of peaks across hundreds or thousands of spec-

tra. Despite the massive speed-up over previous models, the model was still not fast

enough. Since the first pass optimization was never fast enough, the second pass was

never implemented.
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4.1.8 Maximum vertex cover approach (M3.2.7)

The bipartite graph optimization model (3.2.7) was by far the best convex optimiza-

tion model. It was fast enough to find an alphabet of 8 masses on the glycoconjugate

dataset which consists of 62 spectra with different charges 1,2, and 3 in less than half

an hour.

The model was left too unconstrained to find a great alphabet. For example, one

alphabet mass can be a multiple of another which leads to masses like 23.8847 and

35.91240 which are very close to twice carbon (12.00Da) and twice water (18.01057).

In the future we may revisit this model to see if we can efficiently encode some further

constraints such as no redundant masses or disallowing one mass to be the sum of

two others, etc.

Despite clever methods such as branch-and-bound, binary linear programs are still

NP-hard and become a nightmare for large problem sizes, for this reason we aban-

doned this model as well.

We attempted to relax the bipartite graph optimization by letting the binary vari-

ables be continuous variables between 0 and 1. This ILP has a linear objective function

and linear constraints so a true LP version could potentially be very fast. However,

we were not able to get the edge indicator variables to be pushed into {0, 1}. This is

because constraints 2.8h and 2.8i want to keep many edge indicators at at low, but

non-zero, value.

4.2 A max-flow/min-cut formulation

Though we did not find any great results for the graph-cut models, we still hold

out hope. Intuitively, they feel like a good fit. We can weight edges between ∆ nodes

and the USED and NOT USED nodes by how well the alphabet mass connects peaks
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in the data and weight edges between ∆ nodes based on how many pairs of adjacent

edges they share. Then use an efficient min-cut algorithm to solve the problem.

Unfortunately, it has been hard finding the right model.

For earlier models, it became apparent that in order for the model to work, the α

and β values could not be uniform across the model. This caused the models output

to be based entirely on which is larger: α times the number of all possible masses or

the sum of all edge weights pipj. If the former is larger, then the alphabet would be

empty. If the latter is larger, then the alphabet consist of all possible masses.

In the future we hope to work more on these graph-cut models. None of these mod-

els may be correct, but we believe graph-cuts should somehow solve the minimum

alphabet problem. One forseeable problem is having datasets which can form millions

of possible alphabet masses. In this case, it may be best to solve each spectra sepa-

rately then adjust all spectra’s edge weights based on shared alphabet mass values.

After many iterations the edge weights may converge to a well defined alphabet.

4.3 Markov chain Monte Carlo

4.3.1 An alphabet for 62 expert-curated spectra including neutron, wa-

ter, sugars, and more

Even though no masses or chemical knowledge were provided to the combinatorial

approach and we only expected four sugar resides and the neutron mass in advance,

our approach finds masses close to water and ammonia on the 62 expert-curated

spectra. The mass we do find that is within ε of the mass of a Neutron is also within

ε of the mass difference caused by deamidation. Deamidation is a modification to

amino acids where a nitrogen and a hydrogen are replaced by an oxygen with a mass

difference of 0.984Da. These are both plausible, particularly since this data came
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from a urine sample. We also find masses close to Hexose and to HexNAc in this

data. While the non-combinatorial approach does not assign a high rank to HexNAc,

the combinatorial approach finds it with d = 8 because the connectivity improvement

of HexNAc is superior enough to justify its low frequency and incidence to low-

intensity peaks. Interestingly, we also find a mass at 88.01555Da. This matches the

difference between several pairs of saccharide oxonium ions [36]: Neu5Ac (292.103Da)

- HexNAc+ (204.087Da) = 88.0162Da, [Neu5Ac-H2O]+ (274.092Da) - [HexNAc-H2O]+

(186.076Da) = 88.0159Da. Those are instances where the alphabet mass connects

two whole glycan oxonium ions, but it also connects [HexNAc-2H2O]+ (168.066Da) to

256.082Da and [HexNAc - C2H4O2]+ to 232.081Da. It appears that Neu5Ac generates

a series of oxonium ions 292.103Da, 274.092Da, 256.082Da, and 232.081Da. The

second and third result from the loss of a water molecule and the last results from the

loss of two carbons. HexNAc generates series of oxonium ions 204.087Da, 186.076Da,

168.066Da, and 144.065Da. Similar to Neu5Ac the first two mass shifts are due to

the loss of water molecules and the final shift is due to the loss of two carbon.

The other two unknown masses are 30.01058Da and 42.01071Da. 30.01058Da is

very close to the isotopic mass of H2CO, 30.010565Da. There are a few different

things which can create a neutral loss of H2CO: the molecule hydroxymethyl, a

serine and glycine substitution, a glycine and serine substitution, or a formaldehyde

induced modification[35].

Similar to 30.010565Da, there are a few known modifications which could create

the 42.01071Da neutral loss: a glutamic acid and serine substitution or acetylation

[35]. Similar to 88.01555Da, there may be other analytes or differences between two

other mass changes which form 30.010565Da and 42.01071Da.
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4.3.2 An alphabet for 1,891 glycoprotein standard spectra including

neutron, amino acids, sugars, and more

On the 1,891 glycoprotein standard spectra, our approach discovers multiple amino

acid masses without prior knowledge that are in the samples contained peptides.

For d = 16 the combinatorial approach found glycine, arginine, and one or both

of Lysine/Glutamine when neither non-combinatorial approach did. However, the

weighted non-combinatorial approach found alanine which the combinatorial ap-

proach did not. Both the combinatorial and non-combinatorial approaches found

isoleucine/leucine and threonine.

the fact that the combinatorial approach finds glycine and arginine is important

because the amino acids in the alphabet can form the chains LNGNL and TLNTT.

LNGNL covers the 241st through 245th amino acids in the peptide sequence which

includes the glycosylation site at the 244th amino acid (the second asparagine in

LNGNL ) in the sequence [33]. Similarly, TLNTT covers the 226th through the 230th

amino acids in the peptide sequence which includes another glycosylation site occurs

at the 228th amino acid in the peptide sequence.

Both of the 30.02305Da and 42.02500 mass differences are within ε of the mass

differences discussed in the previous section so all possible explanations of those mass

differences apply here as well. Similar to the alphabet for the 62 expert-curated

spectra, the mass found which is within ε of a neutron mass is also within ε of

deamidation.

4.3.3 Future improvements

Possible improvements to the model include parameterizing a penalty on masses

too close to one another or even triplets of masses where ∆1 ≈ ∆2 + ∆3. The user
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could supply a list of peaks in which the program should favor or be forced to connect

such as a precursor peak.

Since the method allows for us to seed the initial masses from the combinatorial

approach, there will probably be benefit to seeding them with the results of the non-

combinatorial approach or to seeding them with available prior knowledge (i.e., the

neutron mass and the four sugar residues) or with any masses known to be in the

sample a priori.

Neither dataset was charge deconvolved. However, charge deconvolution would

allow the graph building method to only connect peaks by ∆k

z
when the two peaks

have charge equal to z.

An approach to making our method semi-supervised could be as follows: First, run

the program as it currently is to get an original alphabet. Second, try and find a

known molecule in the alphabet (i.e. through mass decomposition) and populate a

new alphabet with a family of molecules based on this known molecule. For example,

if you blindly find an amino acid, then rerun the program with an alphabet larger

than 21, seeding the first 21 with the amino acid masses (use “-f” flag to protect

the seeded alphabet masses). Similarly, if you blindly find a sugar, then rerun the

program while seeding the alphabet with sugar masses. This could be particularly

useful for finding something like a post-translational modification on a peptide once

an original alphabet containing amino acids is found.

4.3.4 Recurring subgraphs

By finding an alphabet ∆ and subgraphs that have a high degree of isomorphism

to one another (Figure 3.2 and Figure 3.4), we find results consistent with stan-

dard sugar trees [7]. Because we expect a good alphabet ∆ to produce connected

components from different spectra with large isomorphic subgraphs, then it may be
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possible to invert this notion: by first clustering spectra that have similar peaks (up

to mass shifts), then we could possibly use those clustered spectra to help estimate

the alphabet ∆.

The convolutional/LSH approach proposed here may also be used to find spectra

containing graphs with graph products [9]. This may be useful for inferring chemical

structure from the graphs built in this paper.

4.4 Edge-maximal isomorphic subgraphs on embeddings in Zd

When considering a specific embedding pair, the FFT-convolution-based approach

for finding edge-maximal isomorphic subgraphs is superior to the brute force method

even for very small graphs and scales much better.

When considering several pairs, the results of 256 4-bit hashes shows the LSH

discriminates among graphs. It is more likely to bin graphs with larger edge-maximal

isomorphic node bijections than smaller. In this manner, the shift-invariant LSH

approach reduces the runtime while still finding a significant quantity of the graphs

with large subgraph isomorphisms.

Figure 3.5 demonstrates that the hashing function is effective at finding similar

graphs together; however, the probability of two graphs being split by a plane given

the number (or percentage) of isomorphic edges similarity has only been observed em-

pirically and has not been derived and could prove useful for improving the hashing

method. A theoretical bound on this probability could help develop further embed-

dings for graphs that accomplish superior LSH discrimination in fewer hashes.

We use the power spectrum in order to bin the graphs, but this has a few flaws.

When an FFT is converted to a power spectrum, the phase information is lost. For

this reason, it is possible that two different graphs may produce the same power
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spectrum. An approach that uses a different feature space for LSH or that keeps

this discarded phase information in a shift-invariant manner would eliminate these

spurious collisions. One option that would also reduce the need for a dense embedding

would be to store the graph in a fully sparse manner and then compute several random

frequency components of the Fourier transform; different graphs that coincidentally

produce the same power spectrum may not overlap at other frequencies not visited

by the FFT.

Our shift-invariant LSH method assumes the graphs are in the proper orientations

relative to each other to result in the maximal isomorphic subgraph matching. There

may be some way we can overcome this assumption, one possible avenue may be to

project onto a unit sphere, where discretization over angles would permit rotation

instead of shifting. One-dimensional embeddings only have two possible orientations

(left-to-right and right-to-left), and so the approach proposed here already solves the

oriented problem with d = 1.

While everything here has been on the discussion of Euclidean graphs embedded in

Zd it is possible to use similar methods on graphs embedded in Rd by performing naive

discrete d–dimensional Fourier transform on fully sparse adjacency tensor rather than

dense d-dimensional FFT. Alternatively you could bin the graphs and use as vectors;

this has been done successfully on de novo graphs from mass spectra, which can be

embedded in R1[37].
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CHAPTER 5 SOURCE CODE AVAILABILITY

Links to resources for source code will attempt to be kept stable at https://

patkreitzberg.com. Specific source code repositories are mentioned below:

Mass spectrometry alphabet projection

The source code and data used for Markov chain Monte Carlo methods can be

found at https://bitbucket.org/orserang/peak-bagger or https://

PatKreitzberg@bitbucket.org/PatKreitzberg/peak-bagger.git. This

includes C++ code for both the non-combinatorial and combinatorial approaches,

python scripts for plotting and annotating spectra, and python scripts for per-

forming LSH hashing to find recurring subgraphs in the spectra. Code and data are

provided with an MIT license.

Edge-maximal isomorphic subgraphs on embeddings in Zd

Source code (MIT license) is available here: https://PatKreitzberg@bitbucket.

org/PatKreitzberg/edge-maximal-subgraph-isomorphism.git.

https://patkreitzberg.com
https://patkreitzberg.com
https://bitbucket.org/orserang/peak-bagger
https://PatKreitzberg@bitbucket.org/PatKreitzberg/peak-bagger.git
https://PatKreitzberg@bitbucket.org/PatKreitzberg/peak-bagger.git
https://PatKreitzberg@bitbucket.org/PatKreitzberg/edge-maximal-subgraph-isomorphism.git
https://PatKreitzberg@bitbucket.org/PatKreitzberg/edge-maximal-subgraph-isomorphism.git
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