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In mass spectrometry (MS) based proteomics, the identification and quantification of the 

molecules in a sample is possible with the accurate delineation of isotope signal groups 

known as isotopic envelopes. Many techniques attempt to discover isotopic envelopes 

with searches for known isotope signal patterns. An emerging approach, however, is to 

modularize the problem by first delineating individual isotope signals known as extracted 

ion chromatograms (XICs), then clustering XICs into isotopic envelopes. In both cases, 

existing approaches suffer from their dependence on user parameters and hard decision 

thresholds. We present XIC Clustering by Bayesian Network (XNet), a machine learning 

approach that uses a Bayes network to cluster XICs. XNet doesn’t require user 

parameters, and performs comparably with optimized alternatives. XNet’s learning model 

can be extended with additional ground truth data. We demonstrate XNet’s clustering 

performance against three prominent XIC clustering solutions: OpenMS Feature Finder 

Centroided, msInspect and MaxQuant. 
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Introduction 

  Mass spectrometry (MS) is a popular technique capable of identifying and quantifying 

many constituent molecules in a physical sample. MS is an excellent technique for chemical and 

biological investigations, such as drug development and biomarker detection. The technique 

takes place in a mass spectrometer instrument, wherein molecules are ionized and separated by 

mass. The electric current induced by the ions are detected alongside their masses, with current 

strength proportionate to ion abundance. Each ion produces a signal referred to as an extracted 

ion chromatograms (XIC). MS sample analysis yields 3-dimensional signals comprised of 

molecular intensities at given mass-to-charge (m/z) ratios per retention time (RT). In a raw MS 

output, points coalesce in the form of isotopic envelopes for each detected molecule (Figure 1) at 

each charge state (z). An isotopic envelope comprises a collection of signal groups referred to as 

extracted ion chromatograms, with each XIC corresponding to a particular isotope of the 

molecule. 

 

 

Figure 1: An isotopic envelope (shown in yellow, green and blue) consists of a set of extracted 

ion chromatograms (XICs) shown with dashed lines. XICs form along the RT (time) axis. 

Isotopic envelopes comprise XICs along the m/z axis linearly. 

  Segmentation of raw MS data points into isotopic envelopes yields a more accurate 

molecular quantification than other techniques, and may provide additional information to assist 
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in molecular identification. To date, MS identification and quantification is performed via 

labeling, targeting or ad-hoc manual segmentation. The profile view of an isotopic envelope 

presents an isotope pattern (Figure 2). An isotope pattern is a signature of a molecule, given by 

the masses (m/z) and naturally occurring relative intensities of the molecule’s isotopes. By 

matching theoretical, pre-computed isotope patterns (green pikes, Figure 2) with experimentally 

measured isotopic envelopes (black waveform, Figure 2) the identity of the molecule can be 

ascertained. Additionally, an integration of the isotopic envelope’s intensity measurements yields 

the overall abundance of associated molecule.  

 

Figure 2: Matching experimental (black waveform) and theoretical (green pikes) isotope patterns. 

Relative XIC intensity and XIC masses provided a molecular signature. 

  Labeling techniques (e.g. SILAC1, iTRAQ2) enable quantification of a specific set of 

compounds in a sample in various ways. SILAC1, for example, allows for the quantification of a 

labelled compound in a sample by introducing a label compound prior to mass spectrometer 

analysis. The label compound is a slightly modified version of the labelled compound, creating a 

marginally translated isotopic envelope amongst the labelled compound’s isotopic envelop. A 

specific quantity of the label compound is introduced, enabling absolute quantification of the 

expected compound by measuring via the intensity ratios between label and labelled isotopic 

envelope1. Labeling techniques such as SILAC are very limited. Generally, each labelled 
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compound must be identified and analyzed prior to quantification1, excluding labelling 

techniques from identification applications. Label compounds tend to be expensive, constraining 

the number of labelled compounds per experiment. Additionally, there are technical limitations 

on the amount of labeling that can be performed per experiment. Both factors restrict the 

coverage of labelling techniques to a small percentage per experiment.3 

  Targeting techniques occur at the instrumental level by diverting a subset of molecules 

for additional analysis based on local intensity maxima or otherwise. Tandem MS (MS/MS)4 is 

the primary targeting technique in MS data analytics. In some applications, such as proteomics, 

the mass of some precursor molecules is not informative enough to derive the molecule’s 

identity.4 For instance, proteins of identical molecular composition may have differing structures, 

presenting two or more different molecules with nearly or exactly the same masses. Many 

MS/MS applications attempt so enhance molecular information through collision induced 

dissociation (CID), in which precursor molecules are diverted into a secondary analyzer and 

fragmented by CID, creating product molecules.4 The behavior of CID is well understood, and so 

products of CID are more readily identified than their precursor molecules via database matching 

algorithms.4 Targeting is an attractive option for MS segmentation, however it too is constrained 

by technical and experimental limitations. Primarily, diversion of precursor molecules is very 

limited per experiment—a select class or set of molecules must be specified for diversion.4 Next, 

the typical inclusion of multiple precursor molecule signals in each MS/MS spectrum make 

identification of targeted compounds challenging, particularly for low abundance molecules. As a 

result, segmentation coverage is typically limited to around 10% of the whole sample.5 

  High-coverage segmentation is possible with ad-hoc manual segmentation. However, 

labor requirements render manual segmentation nonviable for high-throughput, high-coverage 

MS segmentation. Typical MS data files measure on the order of tens of gigabytes, containing 

hundreds of millions of data points.6 Manual segmentation requires manually processing every 

data point within a dataset; even with the expectation of a human being able to process groups of 

points at once (e.g. 100), and a liberal processing rate of 3 seconds per group, manual 

segmentation requires on the order of one person-year per dataset. MS datasets are expected to 

increase in size,6 so manual segmentation will continue to decrease in feasibility. 
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  Labelling methods cannot perform high-throughput quantification, both labeling and 

targeting methods cannot perform high-coverage identification/quantification, and manual 

segmentation techniques are intractable. Automated techniques for high-coverage MS 

segmentation are therefore needed. 

  There are two major techniques for automated segmentation: isotope pattern searching 

and two-stage segmentation. Existing software packages that attempt to solve the problem of 

high-coverage automated MS segmentation are OpenMS Feature Finder Centroided (FFC),7 

SuperHIRN (discontinued),8 MaxQuant9 and msInspect.10 FFC and SuperHIRN both employ 

isotope pattern searching. In both products, candidate signal sets are compared to a database of 

precomputed isotope patterns. Precomputed isotope patterns are assigned a similarity score based 

on the difference in m/z and intensity values between corresponding peaks in the candidate and 

precomputed isotope patterns. The similarity score of the closest matching precomputed isotope 

pattern is used to assess the candidate signals. Searching for isotope patterns is a high-level 

approach to MS segmentation–XICs are isotopic envelopes are delineated in tandem rather than 

individually. Isotope pattern searching algorithms suffer from combinatoric complexity in the 

number of raw data points (N) and number of isotope patterns (M). Give the average isotope 

pattern cardinality (K), each combination of K data points must be must be compared to M 

isotope patterns. The resulting time complexity is 𝑀(
𝑁
𝐾

). 

  In two-stage segmentation, there are two modular steps: XIC segmentation and XIC 

clustering. MaxQuant and msInspect are two software packages that have adopted this approach. 

The first module segments raw MS data into XICs. The second module clusters the XICs into 

isotopic envelopes. Two-stage segmentation allows the user to choose the best-performing 

algorithm for each problem. In addition, the two-stage approach is far less computationally 

complex than pattern searching. Linear complexity solutions to XIC segmentation exist, and XIC 

clustering can be performed in an agglomerative manor with, at worst, quadratic complexity.  

  Regardless of the approach, most automated MS segmentation software packages suffer 

from the same two flaws: reliance on empirical data and hard thresholds. FFC, SuperHIRN, 

msInspect use empirically-derived, static datasets–such as an isotope pattern database–to 

approve, score or otherwise evaluate raw MS data. Employing a database enables the recognition 

of expected signals, but additionally determines a recognition boundary. Signals that are beyond 

the boundary (i.e. are not recorded within the database) will not be recognized, even if the signals 
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are legitimate. Insufficient database coverage directly translates to poor segmentation coverage; 

unrecognized signals are discounted or ignored. 

  Next, each software package is heavily parametrized. Each of FFC, SuperHIRN, 

MaxQuant and msInspect have many user parameters for MS segmentation, many of which 

perform as hard thresholds. For example, FFC exposes the minimum feature score parameter to 

the user, a threshold that excludes candidate isotopic envelopes (features) with insufficient scores.  

In most cases, users will rely on default settings for parameters without verification,11 likely 

resulting in a sub-optimal configuration. Presenting many parameters is dangerous because sub-

optimal configurations will often degrade experimental performance.11 Optimal configurations–

ones resulting in the highest possible accuracy—are theoretically possible with user-settings, but 

the performance of parametrized algorithms is unlikely to translate to practice.11 

  We present XIC Clustering by Bayesian Network (XNet), an XIC clustering module 

designed to participate in two-stage segmentation. XNet is a machine learning approach to XIC 

clustering that is designed to be adaptable, flexible, and independent of user parameters or hard 

thresholds. XNet uses a Bayes network to infer the likely composition of isotopic envelopes. As a 

machine learning model, the Bayes network in XNet is trainable on fully annotated ground truth 

data. Training makes XNet extensible, allowing XNet to adapt and improve as ground-truth MS 

segmentation data is obtained. In addition, extensibility allows XNet to train for specific 

applications. For portability, XNet is implemented in Java (version 8). 

 

Methods 

Latent Properties of an Isotopic Envelope 

  XNet is designed to make clustering decisions based on the latent properties of isotopic 

envelopes. The following properties are characteristic of all isotopic envelopes, providing a 

foundation for isotopic envelope recognition. The first two properties constrain the positioning of 

adjacent XICs—this term refers to the pairs of XICs nearest one another within an isotopic 

envelope. 

1. Valid XIC Separation: Each pair of adjacent XICs has an m/z separation of 
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. 

2. Consistent XIC Separation: Each pair of adjacent XICs has the same m/z separation 

throughout the isotopic envelope. 

3. Concurrent XIC Emergence: The profile (intensity trace along the RT axis) of each XIC 

should correlate, i.e. onset, apex and attenuate concurrently. 

  An XIC neighborhood for a given XIC can be determined using isotopic envelope 

properties 1 and 3. An XIC neighborhood for an XIC x is the set of all XICs that could feasibly 

be adjacent to x within an isotopic envelope, as defined by isotopic envelope properties 1 and 3. 

Property 1 constrains adjacent XICs to be no further than 1 m/z apart (z = 1), with variance 

tolerance. Property 2 constraints adjacent XICs to emerge concurrently. This property is 

enforceable by requiring potential adjacent XICs to at least have overlap on the RT axis. 

Altogether, the XIC neighborhood for a given XIC is the set of all XICs that are within 1.1 

Daltons on the m/z axis (maximum m/z-separation with variance tolerance) and have overlap on 

the RT axis. 

 

Figure 3: The left isotopic envelope is standalone–clustering XIC neighborhoods alone would 

result in the correct envelope. The right image shows two isotopic envelopes with significant 

overlap in both the m/z and RT dimensions. 
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Step 1: Enumerate Edges 

  Clustering XICs into isotopic envelopes is a trivial process when considering a standalone 

envelope—one without nearby or overlapping envelopes (Figure 3, left). In this case, the union 

of each XIC’s neighborhood can determine the correct cluster. However, in many instances, 

isotopic envelopes emerge with significant overlap or adjacent to each other (see Figure 3. right). 

For this reason, XIC clustering algorithms must be capable of handling standalone, overlapping 

or adjacent isotopic envelopes. 

  XNet approaches the clustering problem graphically, modelling XICs as vertices. Edges 

are formed between XIC vertices that are potentially adjacent to each other (Figure 4B). The 

standalone/overlapping problem is approached by first creating preliminary clusters based on 

XIC neighborhoods. For each XIC in a dataset, an edge is enumerated between the XIC and all 

potentially adjacent XICs. For each XIC within the neighborhood with RT overlap and an m/z-

separation less than 1.1 Daltons, an edge is enumerated. Edges are stored in an undirected, 

weighted graph with XICs as nodes (see Figure 4B). Using connected component analysis, the 

graph is decomposed into preliminary clusters. 

 

Figure 4: XIC clustering groups nearby/overlapping XICs (A) into a preliminary cluster (B); each 

edge in the cluster is scored on its likelihood of connecting truly adjacent XICs. Culling and 

consistency analysis refine the preliminary cluster into isotopic envelopes (C). 

 

  The XICGrid object (Figure 5) is a data structure used to facilitate constant-time access to 

XIC neighborhoods. The XICGrid is statically configured with a cell-width (m/z-axis) equal to 

the maximum m/z-separation of adjacent XICs, plus 10% tolerance. The cell-height (RT axis) is 
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set to distinguish overlapping XICs from non-overlapping XICs. Each cell contains a list of XICs 

that overlap the cell’s data range (Figure 5C). An XIC’s neighborhood can be retrieved by 

collecting all other XICs within the XIC’s neighborhood cells. An XIC’s neighborhood cells are 

its containing cells, the left-adjacent cells and the right-adjacent cells (Figure 5D). 

  For any given MS data file, if k is the average XIC neighborhood size, each XIC must 

compare to k other XICs on average. Using the XICGrid on n XICs, XIC clustering has a linear 

complexity of O(kn), a vast improvement on the cubic and exponential complexities of standard 

clustering techniques. 

 

Figure 5: An XICGrid allows for constant-time retrieval of XIC neighborhoods. The isotopic 

envelopes in (A) are loaded into an XICGrid (B). All cells in which an XIC appears collects the 

XIC’s GUID (C). The neighborhood cells of XICs 3 and 4 are shown in (D) in orange and green, 

respectively. 
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Step 2: Score Edges–Bayesian Network 

  Preliminary clusters are likely to contain XICS from more than one isotopic envelope. 

Each edge is scored on its likelihood of connecting truly adjacent XICs. Edges are scored by a 

Bayesian network tailored to the problem of XIC clustering. 

  A Bayesian network is a machine learning model that captures the likelihoods of, and 

influences between, a set of random variables.12 Bayesian networks are useful for their ability to 

infer "most probable explanations"12 based on a set of observations. Bayesian networks 

illuminate the likely state of hidden (unobserved) variables given the states of evidence 

(observed) variables.12 In most settings, a Bayesian network is used as a query interface for 

predicting outcomes. 

 

Figure 6: The Bayes Net used for inferring the likelihood of two XICs being adjacent. Each node 

represents a random variable, whose outcomes are shown. m/z-separation (S) and correlation (C) 

are observable random variables, influenced by the hidden adjacent XICs (A) random variable. 

 

  A Bayesian network is represented as a directed acyclic graph (DAG), where nodes are 

random variables and arcs represent influences between random variables.12 Influencing nodes 

(arc source nodes) are referred to as parent nodes. Internally, a node’s random variable is 
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maintained as a conditional probability table (CPT);12 each parent random variable is a condition 

in the random variable’s CPT.12 In a well-crafted Bayesian network, random variables with 

theoretical or empirically observed influences are positioned as parents to the random variables 

they influence. 

  The Bayesian network shown in Figure 6 infers the likelihood of two XICs being 

adjacent. It consists of three random variables: adjacent XICs (A), m/z-separation (S) and XIC 

correlation (C). With these variables, the Bayesian network can accept the m/z-separation and 

correlation of two XICs, then return the likelihood of the two XICs being adjacent. Each edge 

generated during enumeration is scored by the likelihood its two XICs are adjacent (A = true). 

  Influences were assigned from A to S and A to C (Figure 6). Truly adjacent XICs will have 

an m/z-separation near to values 1/z and a high XIC correlation, whereas nonadjacent XICs will 

have an an m/z-separation other than 1/z and poor XIC correlation. These theoretical influences 

motivate the Bayesian network configuration. The resulting CPTs for this configuration are P(A), 

P(A|N) and P(A|N). 

  Finally, each random variable must be populated with a set of outcomes. A is boolean in 

nature–two XICs are, or are not, adjacent–so A has the outcomes of true or false. The quantities 

recorded by S or C are numeric, however. S measures the separation between two XICs on the 

m/z axis, constrained by the XIC neighborhood to a maximum of 1.1m/z. S also has an inherent 

minimum of 0 m/z. C is measured using Pearson’s correlation coefficient, which has a range of 

[−1,1]. C’s outcomes reflects this range. Both S and C outcomes have a step size of .001. This 

step size is theoretically sufficient for distinguishing significantly distinct observations in S and C. 

The Bayesian network can infer the likelihood of two XICs being adjacent with the query P(A = 

true|S = s,C = c), given m/z-separation s and correlation c. Resulting from the query is a 

probability value in the range [0,1], the result of which is assigned to the edge as its edge score.  

  Determining P(A = true|S = s,C = c) is not immediately obvious, especially since the 

Bayesian network stores only P(A), P(S|A) and P(C|A). Bayesian inference is the process by 

which responding to the query P(A = true|S = s,C = c) becomes possible. In a Bayesian network, 

inference begins with the Conditional Probability Formula,13 which is shown for the query P(A = 

true|S = s,C = c) in equation 1. The following is a derivation of the query P(A = true|S = s,C = c) 

expressed in terms P(A), P(S|A) and P(C|A), starting from equation 1. 
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  (1) 

By the chain rule13 the numerator in equation 1 can be rewritten as: 

 

P(A = true,S = s,C = c) = P(A = true)P(S = s|A = true)P(C = c|S = s,A = true)                               (2) 

 

  Due to the common cause relationship13 between S and C, conditional independence is 

granted between S and C given A.13 In the case of equation 2, C is independent of S given A, 

implying the equivalence: 

 P(C = c|S = s,A = true) = P(C = c|A = true) (3) 

By substitution, equation 2 can be rewritten as: 

 P(A = true,S = s,C = c) = P(A = true)P(S = s|A = true)P(C = c|A = true) (4) 

  Each of the terms in the right hand side of equation 4 is within the known distributions 

P(A), P(S|A) and P(C|A). Derivation of the numerator can halt. 

  Determining the denominator P(S = s,C = c) in equation 1 requires summing P(S = s,C = c) 

over all values for the nuisance variable A,13 i.e. evaluating the expression: 

 

 ∑ 𝑃(𝐴 =  𝑛, 𝑆 =  𝑠, 𝐶 =  𝑐)𝐴
𝑎  (5) 

 

  As we have just demonstrated with the chain rule and conditional independence, the 

summed term can be transformed to: 

 ∑ 𝑃(𝐴 =  𝑎)𝑃(𝑆 =  𝑠|𝐴 =  𝑎)𝑃(𝐶 =  𝑐|𝐴 =  𝑎)𝐴
𝑎  (6) 

 

  Each term in equation 6 is known, completing derivation of the denominator. Substituting 

the derived numerator and denominator into equation 1 results in: 
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  (7) 

  Each CPT in equation 7 is stored in the Bayesian network, and so servicing the query P(A 

= true|S = s,C = c) is a matter of accessing the necessary probabilities and computing the result. 

By using equation 7, the likelihood of two XICs being adjacent can be assessed. 

Probability Models 

  There are three probability models available to populate the CPTs contained in the 

Bayesian network. Normally, machine learning models are trained on pre-existing ground truth 

data. Unfortunately, fully annotated ground truth MS1 data is quite scarce in Mass Spectrometry. 

The only way to attain fully annotated ground truth data is by manual segmentation, a very time 

intensive process. We have fully annotated ground truth data collected from the industry 

recognized UPS2 dataset14 by hand-labeling 1776 isotopic envelopes comprising 6682 XICs, 

from which the Bayesian network can be trained. This is not enough fully annotated ground truth 

data to effectively train the Bayesian Network. The number of observable outcomes is 2.2M 

(1100 separation outcomes * 2000 correlation outcomes), most outcomes would have a recorded 

likelihood of zero. To accommodate the lack of fully annotated ground truth data, XNet is 

equipped with three different probability models from which the Bayesian network can be 

populated. 

 

Bayesian Probability 

  In Bayesian probability theory, prior knowledge is used to form reasonable expectations 

on outcome likelihoods. XNet is equipped with a Bayesian probability model that does not 

require ground truth MS segmentation data to populate the CPTs in XNet’s Bayesian network. 

This model is founded on isotopic envelope properties 1 and 3 (the prior knowledge). It is 

reasonably expected for adjacent XICs (N = true) to have an m/z-separation of 1/z (property 1), 

and to have a high correlation (property 3). To reflect these expectations, a reasonably expected 

P(S|N = true) should favor values nearer to 1/z, and a reasonably expected P(C|N = true) should 

favor values nearer to 1. 
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Figure 7: Reasonably expected CPTs for m/z-separation S (A) and correlation C (B), given 

adjacent XICs A is true. Given A = true, S is expected to likely measure near 1/z for z ∈ 

{1,2,...,5}, and C is expected to likely measure near 1 with zero and negative measurements 

expected to be unlikely. 

  Figure 7 displays reasonably expected CPTs P(S|A = true) and P(C|A = true). P(S|A = 

true) is populated with a series of normal curves, each with a mean of 1/z and standard deviation 

of 0.01. There is one normal curve per z ∈ {1,2,...,5}, each with a corresponding mean at 1/z. 

Normal curves were chosen to emulate reasonably expected dissipation in probability as S 

departs from 1/z,z ∈ {1,2,...,5}. The standard deviation 0.01 was selected so that subtle deviations 

in m/z-separation received an adequate probability penalty, and so that interference between 

normal curves was minimized (see the normal curves at 1/4 and 1/5 in Figure 7). Semantically, 

this instantiation of P(S|A = true) implies that given truly adjacent XICs (A = true), m/z-

separation outcomes near 1/z are most likely, with likelihood dissipating as m/z-separation 

departs from 1/z. P(C|A = true) is populated proportionately to the rectified linear unit function–

a popular activation function for neural networks15–because it emulates the reasonably expected 

probabilities of P(C|A = true): given a truly adjacent XICs (A = true), higher correlations are 

more likely, and negative correlations are just as unlikely as no correlation (C = 0.0). To avoid 

zero-scores, all outcomes in both CPTs are initialized with a small starting value. 
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Frequentist Probability 

  In frequentist probability theory, outcome likelihood is based on the outcome’s observed 

propensity, i.e. the proportion of times the outcome has been observed. Frequentist theory is the 

backbone of all machine learning models, where prediction models are trained on prelabeled 

ground truth data. The frequentist probability model in XNet is no different; given fully 

annotated ground truth data, XNet uses the contained observations to initialize the Bayesian 

network’s CPTs. An XNet user can instruct XNet to train on such a dataset. 

  XNet is able to persistently store, load and update a frequentist probability model derived 

from fully annotated ground truth data in the form of a JSON file. In the event of training, XNet 

will output a JSON file containing the network’s CPTs. The persisted model can be reloaded for 

further XIC clustering, or further trained in the event of ground truth data. XNet comes pre-

packaged with a default JSON probability file, storing the frequentist probability model observed 

from the fully annotated ground truth UPS2 dataset. The model contained within this file is ready 

to be used in XIC clustering, and can be extended. 

 

Hybrid Probability 

  Finally, XNet allows for a hybrid probability model combining both the Bayesian and 

frequentist approach. The hybrid model allows the reasonably expected CPTs to be extended by 

ground truth observations. The intent of this approach is to compensate for the scarcity of fully 

annotated ground truth data with the Bayesian model, and use whatever ground truth data is 

available for fine-tuning. 

  Logistically, the hybrid model operates nearly identically to the frequentist model; a 

JSON file persists the probability model and allows for reuse and updating. The only difference 

is that the model is initialized to have the CPTs of the Bayesian Probability Model. 

 

Step 3: Cull Edges 

  Preliminary clusters are likely to contain more than one isotopic envelope. More 

specifically, isotopic envelopes within 1.1 on the m/z axis and within 0.5 on the RT axis will be 

assigned to the same preliminary cluster. Culling is performed on each preliminary cluster to 
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extract the isotopic envelopes within. Each of the resulting clusters is referred to as a culled 

cluster. 

Procedure 

  Culling iteratively processes a preliminary cluster’s edges in descending order of edge 

score. Each iterated edge is accepted (Figure 8), dubbing the edge’s XICs adjacent within an 

isotopic envelope. The highest scoring edge at each iteration is the most likely pair of adjacent 

XICs; culling uses the score of each edge as a heuristic to determining the most likely isotopic 

envelopes. 

  If an XIC is completed, the XIC’s unaccepted edges are culled from the preliminary 

cluster (Figure 8). A culled edge represents two XICs that are unlikely to be adjacent. Culling a 

completed XIC’s edges removes one or more unlikely XIC combinations, and prevents the 

completed XIC from receiving any more accepted edges. An XIC in a cluster is deemed complete 

if it meets one of three conditions: 

 

1. Has the maximum m/z among non-complete XICs and has an accepted edge of lesser m/z. 

2. Has the minimum m/z among non-complete XICs and has an accepted edge of greater m/z. 

3. Has two accepted edges, one in either m/z-direction. 

  Satisfying any of the above conditions confirms that the XIC has acquired its maximum 

number of accepted edges, and each of the XIC’s unaccepted edges are to be culled. Iteration 

proceeds until no more edges remain in the preliminary cluster (Figure 8D). 
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Figure 8: Culling of a preliminary cluster containing two isotopic envelopes with XICs 

(represented as nodes) {a, b, c} and {d, e, f}. At each step, the edge with the highest edge score is 

accepted (shown as bold edges). If an XIC is complete (shown as bold nodes), all connected 

edges are culled. Shaded nodes represent non-complete minimum/maximum m/z XICs. 

  

  In addition, iterated edges are culled if they create a double adjacency for any XIC. A 

double adjacency is when an XIC has two accepted edges in an m/z-direction. Double 
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adjacencies are disallowed because an XIC cannot have two adjacent XICs in one m/zdirection 

within an isotopic envelope. In a double adjacency scenario, the higher scoring edge will be 

collected by virtue of the descending order of iteration. 

 

Edge Cases 

  The preceding edge culling algorithm does not capture edge cases satisfying each of the 

following criteria: 

1. The envelope has charge state z0 and there exists another charge state z1 and an integer n 

such that z0 = nz1. 

2. The envelope has XICs x0 and x1 with an m/z-separation of 1/z0 and correlation c0. 

3. The envelope has XIC x2 where x0 and x2 have an m/z-separation of 1/z1 and corre- 

lation c1. 

4. c0 < c1 

  An example edge case is provided in Figure 9, with z0 = 4, z1 = 2, and n = 2. Nonadjacent 

XICs x0 and x2 score higher than adjacent pairs (x0,x1) and (x1,x2). Figure 9A shows the result of 

culling on this particular cluster: x1 is excluded from the resultant envelope. 

  Modifications to the edge scoring step incorporate these edge cases. First, the precision of 

edge scores is deliberately reduced from the thousandth to the tenth by rounding to the nearest 

tenth. The score is multiplied by ten for readability. As a result, each edge’s score is now in the 

set of integers {0..10}. Obviously, the loss in precision results in many edge score ties (e.g. all 

edges score 10 after score rounding in Figure 9B). Ties are arbitrated in favor of edges with a 

lesser m/z-separation. 
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Figure 9: An edge case requiring score rounding and m/z-separation favoring. XICs X0 and X1 

have a valid m/z-separation (0.25). X0 and X2 also have a valid m/z-separation (0.5). X0 and X2 

have a stronger correlation, therefore a higher edge score. (A) Using the original ranking results 

in an incorrect cluster. (B) With score rounding and favoring lesser m/z-separations, the correct 

cluster is achieved. 

 

Step 4: Consistency 

  The final step in XNet is to ensure that all culled clusters are consistent with isotopic 

envelope properties 2 and 3. Culling is designed to dissect preliminary clusters that contain 

overlapping envelopes. However, due to the circumstantial alignment of XIC neighborhoods, it is 

possible for preliminary clusters to contain a chain of two or more isotopic envelopes that are 
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within 1.1 Daltons on the m/z axis and do not overlap (Figure 10 A, D). In such cases, it is 

possible to identify separations inconsistent with isotopic envelope properties 2 and 3. That is, if 

a culled cluster does not have consistent m/z-separation (violating property 2) or has discordant 

XIC emergence (violating property 3) then the culled cluster contains two or more envelopes. 

  Consistency analysis is performed on each culled cluster to detect and correct instances of 

nearby, non-overlapping envelopes. First, m/z-separation analysis (Figure 10B) is performed by 

iterating through the cluster, ensuring that each XIC-separation matches the previous (initialized 

by the first XIC-separation). If an XIC-separation is encountered that does not match the 

previous, then the cluster is split at the edge that presented the inconsistent separation (Figure 

10B). After a split, the next XIC-separation re-initializes the process. 

  After m/z-separation analysis, each culled cluster is subjected to apex analysis (Figure 

10E). The apex of an XIC is the most intense point in the XIC. Apex analysis enforces isotopic 

envelope property 3 (concurrent emergence) without employing arbitrary thresholds via a single 

criterion: within an isotopic envelope, each XIC’s apex must fall within the RT-range of all 

previous XICs. Due to transitivity, the criterion can be restated: each XIC’s apex must fall within 

the RT-range of the smallest (in terms of RT) previous XIC. Apex analysis is performed by 

iterating through the cluster, ensuring that each XIC’s apex is within the RT-range of smallest, 

previous XIC (initialized by the first XIC). If an XIC’s apex escapes the constraining RT-range, 

then the cluster is split at the edge between the escaping XIC and the previous XIC (Figure 10E). 
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Figure 10: The two cases of culled clusters that are inconsistent with the properties of isotopic 

envelopes. (A) exhibits nearby, non-overlapping, apex-consistent envelopes composing a single 

culled cluster (B). m/z-separation analysis (B) results in splitting the culled cluster into the two 

true isotopic envelopes (C). (D) exhibits nearby, non-overlapping, m/z-separation consistent 

envelopes composing a single culled cluster. Apex analysis (E) results in the two true isotopic 

envelopes. 

 

Results 

  A hand-labelled version of the UPS214 dataset, containing fully annotated ground truth 

data on 1776 isotopic envelopes comprising 6682 XICs was used for quantitative evaluation. 

XNet was compared with the XIC clustering modules of MaxQuant,9 msInspect10 and FFC7 in 

terms of XIC clustering efficacy. XNet was evaluated once for each probability model– 

Bayesian, Frequentist and Hybrid. SuperHIRN,8 MzMine16 and Hardklor were considered for 

m/z m/z 

R
T

 

R
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evaluation; however, SuperHIRN was discontinued, and both MzMine and Hardklor are too 

involved to be considered automated. 

  First, each module was evaluated on accuracy of XIC clustering. In this context, accuracy 

is defined as: 

  (8) 

  An important consideration in evaluating XIC clustering is efficacy across various 

magnitudes of XIC intensity. In many contexts (such as biomarker discovery), low-intensity 

signals tend to be the most significant. Due to tenuous signal strength and rarity, these signals 

also tend to be the most difficult to accurately segment. The clustering accuracy of each module 

across several orders of XIC intensity magnitude was evaluated individually to stratify 

performance by intensity. Overall accuracy was additionally recorded. 

  The XIC clustering modules of MaxQuant and FFC both present a number of user 

parameters that must be set before executing clustering, whereas XNet and MsInspect are free 

from parameters. Many of MaxQuant and FFC’s parameters perform as hard thresholds that 

control program decisions. While tunable user parameters allow for optimization, it is unrealistic 

to expect a user to optimize parameters.11 In most cases, a user will rely on default settings,11 

which are very unlikely to be optimal. If a user decides to attempt manual configuration of user 

parameters, the optimal value is generally unknown and difficult to derive.11 In either case, severe 

performance degradation can result from sub-optimal configurations11 . 

  A set of configurations were evaluated for both MaxQuant and FFC to discern the impact 

of sub-optimal parameter settings. MaxQuant’s XIC module has 2 integer and 3 continuous user 

parameters. FFC has 24 user parameters total: 12 integer, 10 continuous, and 2 nominal. Integer 

parameters were tested on a range from 0 to double the default value (i.e. +/- 100% of the 

default). Continuous user parameters were tested on a range of 5 values. Each range spanned 

from 0 to double the default value. Both integer and continuous parameter ranges were bounded 

by any provided minimum/maximum constraints. Nominal parameters were tested on all 

provided values. 

  The resulting set of configurations for MaxQuant contained 3500 configurations, each of 

which was tested. The resulting set of configurations for FFC is vast, however, with 
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approximately 1025 configurations. Evaluation of one FFC execution requires on the order of an 

hour to complete, and so thoroughly evaluating FFC’s configuration set is intractable. To 

compensate, 80 randomly selected configurations were chosen from the configuration set and 

tested. 

  This section relies on a number of terms describing similar entities, repeated frequently. 

For clarity and brevity, the following acronyms will be used in reference: 

1. IER (Resultant Isotopic Envelope): An isotopic envelope resulting from the completed XIC 

clustering process. 

2. IET (True Isotopic Envelope): An isotopic envelope existing and segmented within the fully 

annotated ground truth dataset. 

3. XICT (True XIC): An XIC existing and segmented within the fully annotated ground truth 

dataset. 

  Assessing the number of correctly clustered XICT is not trivial. With inaccuracies 

expected, an IER might not match any IET exactly, and it might contain XICT from multiple 

IET (see Figure 11). Each IET must be paired with an IER that best represents it. Then, each XICT 

within an IER can be assessed by comparing its latent IET to the IER’s paired IET. An XICT is 

considered correctly cluster if it’s IER is paired with IET, otherwise the XICT is incorrectly 

clustered. 

  Pairing IET to IER is a matter of majorities. For each IER, each contained XICT contribute a 

vote for its IET. The IER is paired with the elected IET. It is possible for multiple IER to attempt to 

pair with the same IET, however an IET cannot pair with more than one IER; ties are settled in 

favor of the IER with more votes for the contended IET. The conceding IER is unpaired. Any XICT 

contained in an unpaired IER are considered incorrectly clustered (IER 3, Figure 11). 
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Figure 11: Evaluation of a hypothetical XIC clustering scenario with two ground truth isotopic 

envelopes (IET) {0, 1, 2, 3, 4, 5} and {6, 7, 8, 9}. Each partition represents a resultant isotopic 

envelope (IER) assigned by a clustering module. Each IER pairs with an IET by majority vote by its 

XICT (shown as nodes). IER 3 has a majority IET 1, however IER 1 has more votes for IET 1; IER 3 is 

left unpaired (denoted as null). An XICT is correctly clustered if its IER is paired with its IET. The 

resulting accuracy is 60%. 

  Evaluation of XNet, MaxQuant and msInspect concentrated solely on each software 

package’s XIC clustering module. Each module was given as input all XICT within the fully 

annotated ground truth dataset so that the resulting IER could be evaluated against the IET using 

the above procedure. 

  OpenMS FFC does not employ a modular approach to automated signal segmentation; 

there is no XIC clustering module where XICT could be inputted. Instead, the entire unlabelled 

UPS2 dataset had to be inputted into OpenMS FFC. The result is a featureXML file containing a 

set of IER, each comprising a set of resultant XIC (XICR). In order to evaluate this result, each 

XICT must be paired with an XICR. This pairing assigns each XICT to an IER, each of which can be 

evaluated using the procedure described above. 

  Pairing an XICT with an XICR entails searching for the closest matching XICR. The 

following match metric was designed to determine match quality. 

  (9) 

The match quality metric promotes XIC pairs that show high overlap in the RT dimension and 

nearness in the m/z dimension. Each XICT is paired with the XICR with the highest match quality. 
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If there is contention over an XICR, the contest is resolved in favor of the XICT with higher match 

quality. The conceding XICT is left unpaired. From here standard clustering assessment resumes, 

with one minor difference: XICT with a null pair are considered incorrect. 

  All computer resources were dedicated when performing comparisons. Hardware 

configuration: Dell XPS 8900, 8-processor Intel Core i7-6700K CPU @ 4.00GHz, 256GB SSD, 

Xubuntu 16.04 (all evaluations except MaxQuant, performed on Windows 10), 32GB RAM. 

 

XNet XIC Clustering Accuracy 

 

Figure 12: XIC clustering accuracy for each of XNet’s probability models. The Bayesian model 

scores the highest at 95.3%, followed closely by the hybrid model at 95.2%, and finally the 

frequentist model measures 75.2% accuracy. 

 

  Figure 12 displays the overall XIC clustering accuracy for XNet using each probability 

model (Bayesian, frequentist, hybrid). The Bayesian probability model scored the highest at 

95.3%, followed closely by the Hybrid model at 95.2%. The frequentist model is less effective, 

recording an accuracy of 75.2%. The Bayesian model proved to be the most effective probability 

model with the available quantity of fully annotated ground truth. 
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  Figure 13 displays the number of correctly clustered XICs per order of XIC intensity. 

Each data point for MaxQuant and OpenMS FFC represent a different user parameter 

configuration. The XNet measurements presented represent the top-performing Bayesian 

probability model. 

 
Figure 13: XIC clustering accuracy across orders of XIC intensity, evaluated with modulated 

parameter settings. The total number of XICs per order of intensity is shown by a solid vertical 

line. MaxQuant and OpenMS FFC have many user parameters, plots for either software are 

histograms over clustering accuracy. MaxQuant and OpenMS FFC show a wide range of 

accuracies across all configurations, with each software’s default configuration accuracy shown 

by dotted lines. XNet and MsInspect do not have user parameters; only a single configuration can 

be evaluated per software, represented by dashed vertical lines. XNet outperforms OpenMS FFC, 

MsInspect, and nearly all configurations of MaxQuant. 

 

  There are two observations to behold in Figure 13. First, regardless of order of intensity, 

XNet consistently outperforms MsInspect, XNet outperforms FFC under all configurations, and 

MaxQuant under almost all configurations. Second, user parameter settings play a major role in 

determining XIC clustering performance. While MaxQuant can be configured to perform at 

upwards of 90%, misconfiguring MaxQuant can lead to accuracies below 30%. FFC suffers from 

user parameters more dramatically. Most configurations resulted in 0 correctly clustered XICs. 

The maximum recorded overall accuracy for OpenMS FFC occurred once at 77%. 
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Future Work 

  Currently, XNet is capable of providing client applications with a confidence metric on 

each resultant XIC cluster; however, this functionality was not prioritized. Depending on the 

intent of the confidence metric, it could be calculated as the average edge score, minimum edge 

score, sum of edge scores, or other collective formula. If more specificity was desired, each edge 

could be returned with its score. With both a collective cluster score and edge scores, suspect 

clusters could be manually inspected with edge scores highlighting low-confidence edges. 

  The notion of manual feedback on a subset of instances is not novel, it is a concept know 

as active learning.17 In machine learning, the active learning technique is one in which a machine 

learning model queries an oracle (usually a human) for a label on selected instances.17 The results 

of the query can then be used to improve the machine learning model. XNet is a prime candidate 

for active learning equipped with uncertainty sampling,17 where instances with the least certainty 

are selected for query. Using the edge confidence metric described above, XNet could iteratively 

improve the frequentist or hybrid probability models, both general and domain-specific. Training 

on low confidence (or certainty) instances alleviates the difficulty of obtaining ground truth data, 

while maintaining a schedule for improvement.17 

 

Discussion and Conclusion 

  XNet is a machine learning approach to XIC clustering based on a Bayesian network. 

XNet is designed around the latent properties of isotopic envelopes to capture the statistical 

propensity of isotopic envelope composition. This propensity is modelled in three ways. The first 

model is constructed in accordance with Bayesian probability theory, where reasonable 

expectations determine likely outcomes. Next, fully annotated ground truth data populates the 

frequentist probability theory approach, using observed outcomes to determine likelihood. 

Finally, a hybrid of the two allows for the frequentist model to be initialized with the Bayesian 

model, such that the Bayesian model can be fine-tuned. 

  XNet is the first XIC clustering module based on a trainable machine learning model. The 

intended result is that XNet can, and will, improve as more fully annotated ground truth data 

becomes available. Upon acquiring and training on additional fully annotated ground truth data, 

XNet’s statistical understanding of XIC clustering will improve. We anticipate that given enough 
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ground truth MS segmentation data, XNet’s frequentist or hybrid probability model will surpass 

the Bayesian probability model in terms of XIC clustering performance. 

  XNet can leverage this adaptability in order to specialize to specific domains. If it were to 

appear beneficial, a multitude of probability files could be developed, each with a domain of 

aptitude. The advent of a fully annotated ground truth dataset would train the probability file 

corresponding to the dataset’s domain, and could additionally contribute to a general probability 

file. The dynamic nature of a machine learning approach allows for growth in applicability that 

cannot be achieved by a static design. 

  XNet does not employ hard thresholds. XNet’s internal parameters are limited, based on 

the properties of isotopic envelopes, and data-invariant. XICGrid’s cell width is based on isotopic 

envelope principle 1, and the cell height does not affect clustering performance. The reasonably 

expected CPTs in the Bayesian probability model are crafted by the properties of isotopic 

envelopes, and can be replaced by CPTs observed by ground truth data. XNet is averse to static 

constants and configurations, and where they must be used they are data-invariant. 

  XNet with the untrained Bayesian probability model performs comparably to MaxQuant 

under optimized user parameters, both of which are the top-performing XIC clustering modules. 

XNet is distinguished from MaxQuant because its efficacy will translate into the real world. 

Since XNet is essentially parameterless–the only parameter is the choice of probability model, 

and the Bayesian model should remain selected–the high accuracy recorded herein will translate 

automatically to further experimentation. The performance recorded for MaxQuant, and other 

parameter-laden modules, will not automatically translate to the real world. We’ve demonstrated 

the catastrophic effect that sub-optimal parameters can have on performance, and users are very 

unlikely to use optimal settings.11 XNet’s performance is noteworthy, even before considering its 

consistency. 
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