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Mirage: A Novel Multiple Protein Sequence Alignment Tool

Chairperson: Travis Wheeler

A fundamental problem in computational biology is the organization of many related
sequences into a multiple sequence alignment (MSA) [2]. MSAs have a range of research
applications, such as inferring phylogeny [22] and identifying regions of conserved sequence
that indicate functional similarity [18]. In the case of protein isoforms, MSAs are valu-
able tools for transitively annotating post-translational modifications (PTMs) by enabling
information transfer between known PTM sites and the sites that they align to [11].

For protein MSA tools, one challenging biological phenomenon is alternative splicing,
wherein identical genomic sequence will differentially select from a subset of available cod-
ing regions (exons), depending on the biochemical environment [21]. Traditional methods
struggle to align the islands of non-homologous sequence produced by alternative splicing,
and frequently compensate for the penalties incurred from aligning non-identical characters
by aligning small pieces of relatively similar sequence from alternative exons in a way that
avoids extreme gap penalties but falsely indicates sequence homology.

Presented here is Mirage, a novel protein MSA tool capable of accurately aligning alter-
natively spliced proteins by first mapping proteins to the genomic sequence that encoded
them and then aligning proteins to one another based on the relative positions of their cod-
ing DNA. This method of transitive alignment demonstrates an awareness of intron splice
site locations and resolves the problems associated with alternative splicing in traditional
MSA tools.
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CHAPTER 1 INTRODUCTION

A fundamental problem in computational biology is the organization of many related

sequences into a multiple sequence alignment (MSA) [2]. An MSA is a matrix in which

each row corresponds to one member of an input set of biologically related sequences and

columns display the common ancestry shared by the letters found in the column, using the

gap character (’-’) to signify an insertion or deletion (collectively, indel) that is required to

place other letters in shared columns.

Figure 1.1: A multiple sequence alignment.

Multiple sequence alignment is one of the classical problems of computational biology,

and some modern multiple sequence alignment tools can trace their lineages as far back as

30 years [10]. Traditionally, MSAs are computed using a scoring scheme that effectively

maximizes character identity within columns while minimizing the number of gaps, result-

ing in compact alignments that prefer occasional mismatches to long gaps [2]. In most

contexts, these methods generate accurate and informative alignments, but certain biolog-
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ical phenomena can contradict the logical underpinnings of traditional MSA heuristics and

cause tools to produce inaccurate alignments. For protein MSA tools, one such challenging

phenomenon is alternative splicing, wherein identical genomic sequence will differentially

select protein-coding exons from the available exon pool, depending on the biochemical

environment [21]. Alternatively spliced products of the same gene are commonly referred

to as “isoforms.”

EXON	A EXON	B EXON	C EXON	D

EXON	A EXON	B EXON	CEXON	D EXON	A EXON	D

Isoform	1 Isoform	2

Figure 1.2: Diagram of alternative splicing, where exons B and C are alternatively excluded from the protein
isoforms.

The capacity for alternative splicing is biologically advantageous, as it allows cells to

dynamically adjust the functional dispositions of certain genes in response to environmental

changes, such as the presence of a pathogen or the overexpression of another gene [21]. An

estimated 95% of human genes undergo some form of alternative splicing [15], which can

range from minor changes in the number of amino acids contributed by a specific exon

(alternative splice site usage) to the removal and addition of entire exons. The ubiquity

and variety of alternative splicing events make understanding the causes and functional

impacts of alternative splicing central to numerous biological research projects, and make

the ability to accurately and automatically transfer information across alternatively spliced

protein sequences through splice-aware multiple sequence alignments desirable.

PhosphoSite, for example, is a database of protein sequences dedicated to annotating

sites where post-translational modifications (PTMs) are known to occur [11]. PTMs are

augmentations made to individual amino acids that fine-tune protein behavior, and are
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difficult to detect because the physical difference between an amino acid that has been

modified with a PTM and one that has not is marginal. A valuable feature of PhosphoSite

is that it enables researchers to infer possible PTMs through the use of multiple protein

sequence alignments. If an amino acid with a known PTM in a mouse protein has a human

homolog (or an unannotated mouse homolog), then there is reason to suspect that the other

protein may also undergo modification at the homologous site, and an accurate alignment

of those proteins’ sequences would clearly and effectively communicate that homology. Ac-

curately transferring information about PTMs that occur on alternatively spliced exons is

facilitated by the ability to precisely align splice-isoforms both within and across species,

but this proves challenging for most MSA software packages.

Figure 1.3: A multiple sequence alignment of alternatively spliced BPAG1 isoforms, produced by Mirage.

The reason traditional MSA software tools struggle to align alternatively spliced pro-

teins is that they see mutually exclusive exons as sequences that should be aligned to one

another because the bounding exons shared by both isoforms are supposed to be aligned.

The benefits of aligning small pieces of relatively similar sequence from alternative exons

(and thus avoiding large indel costs) make overlaying alternative exons optimal under the

heuristics that guide traditional MSA tools, but produce MSAs that communicate false

sequence homology.

Over time, MSA tools have improved with regards to other shortcomings by implement-

ing clever methods for estimating the evolutionary distance between sequences [1], iter-

atively refining multiple sequence alignments [6], and quantifying alignment quality [19],

but without substantial changes to their algorithmic cores they will continually struggle to
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Figure 1.4: A sample page from the PhosphoSite website, providing information about the MLL5 gene and
indicating known PTMs on a human MLL5 isoform.

align alternatively spliced proteins. This is because all modern multiple protein sequence

alignment tools treat input sequences simply as strings from a biological alphabet, so that

they can apply indel models that roughly agree with insertion and deletion events on an

evolutionary timescale while remaining agnostic about the actual biological origins of the

sequences. These models are ubiquitously implemented using variations on the Needleman-

Wunsch dynamic programming algorithm [14], when generalized to accept multiple sequence

alignments as inputs.

Needleman-Wunsch aligns biological sequences by flood-filling a table with the cumula-

tive scores for the best possible alignments of each pair of the inputs’ prefixes, as illustrated

in Figure 1.6. Diagonal movements on the table represent that the corresponding charac-
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Exon	A Exon	C Exon	D

Exon	A Exon	B Exon	D

Exon	A Exon	D
Exon	A Exon	D

Figure 1.5: A model displaying how traditional MSA tools align alternatively spliced proteins in a way that
falsely communicates alternative exon homology, with a real-world example from an alignment of human
BPAG1 sequences produced by MUSCLE.

ters are aligned to one another (matches), whereas vertical movements represent insertions

relative to the sequence at the top and horizontal movements represent insertions relative to

the sequence on the side (gaps). Once the table has been completely filled, the best possible

alignment of the full input sequences is revealed by tracing a path backwards through the

table that follows the dependencies that yielded the final cell’s score.

Prior to the advent of high-throughput sequencing and gene indexing, when large bodies

of biological data were unavailable to researchers, a sort of biological agnosticism about the

input sequences was a necessity for any broadly applicable MSA tool. Thanks to tools such

as genome annotations [8] and database-integrated sequence similarity search software [16],

however, it is now feasible to approach the problem of protein multiple sequence alignment

with the assistance of complementary data. Specific to the problem of aligning alternatively

spliced proteins, high-quality reference genomes can be combined with gene indexing files

or splice-aware single-sequence alignment tools to map protein sequences to their encoding

genomic DNA, and produce MSAs based on the relative genomic positions to which indi-
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A C T G A C G

A 1 0 -1 -2 -3 -4 -5

C 0 2 1 0 -1 -2 -3

G -1 1 0 2 1 0 -1

A -2 0 -1 1 3 2 1

C -3 -1 -2 0 2 4 3

A -4 -2 -3 -1 1 3 3

Sequence	1:		ACTGACG
Sequence	2:		ACGACA

A C G T

A 1 -3 -1 -3

C -3 1 -3 -1

G -1 -3 1 -3

T -3 -1 -3 1

Gap	Cost	=	-1

Score	matrix

ACTGACG
AC		GACAFinal	Alignment:

Figure 1.6: An illustration of the Needleman-Wunsch dynamic programming algorithm for the single DNA
sequence inputs ‘ACTGACG’ and ‘ACGACA.’

vidual amino acids mapped. Genomic mapping has previously only been used for protein

sequence alignment in the context of gene prediction, and to the best of our knowledge only

with the intention of removing uncommon isoforms from consideration when labeling new

sequences. Leveraging genomic data for the primary purpose of aligning protein sequences

represents a promising new avenue for improving multiple protein sequence alignments of

alternatively spliced protein products.

Presented here is Mirage (Multiple Isoform Alignment Tool Guided by Exon Boundaries),

a novel MSA software package that transitively aligns protein sequences according to the

genomic positions of their constitutive exons (i.e., through protein-to-genome mapping).

Protein-to-genome mapping, wherein each amino acid in a given protein sequence is assigned

to the codon triple on its species genome that most likely encoded it, allows Mirage to

recognize the underlying exonic structure of protein isoforms and use this information to

align isoforms in a way that preserves homology on the level of exons. As my results

demonstrate, this approach successfully addresses the fundamental challenge to multiple

protein sequence alignment that alternatively utilized exons pose, thus facilitating more

accurate information transfer between protein isoforms than has been possible with existing
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alignment tools. Improved annotation of post-translational modifications and other protein-

level biological phenomena will prove an exciting and direct impact of integrating Mirage

into annotation pipelines.

Mirage’s novel approach to protein sequence alignment provides the benefits of a theo-

retical guarantee that intra-species MSAs are correct (not just heuristically optimal) and a

marked improvement in inter-species MSA quality, attributable to Mirage’s ability to use

splice site data as an additional source of information during inter-species MSA production.

In addition to improving the quality of protein isoform alignments, Mirage is uniquely able

to detect and annotate “alternative reading frames,” a special category of alternative splice

site usage whereby different reading frames of the same genomic sequence are used to encode

substantially different peptides.

Mirage is designed to process large protein datasets in bulk batches, and is thus expected

to appeal to groups who host and curate databases (such as PhosphoSite) moreso than

small research labs. Of course, the information made available to small groups through

large data resources is often invaluable for their research, so the improvements that Mirage

will make to multiple protein sequence alignments provided through datacenters should

interest any researchers who interact with larger databases. Moreover, one of the eventual

aims of Mirage development is the addition of functionality for integrating new sequences

into existing Mirage MSAs or rapidly constructing splice-aware MSAs for small sets of

protein sequences, thus making Mirage more immediately helpful for groups researching

specific gene families. Mirage is algorithmically tailored to improve the quality of isoform

alignments, and, given the far-reaching benefits of improved isoform alignments, there is

every reason to make Mirage as widely useful as possible.
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CHAPTER 2 METHODS AND MATERIALS

2.1 Program Input

The input to Mirage consists of a FASTA-formatted database and a mapping file that as-

sociates individual species with a FASTA-formatted genome, along with an optional GTF-

formatted gene index file. Mirage imposes a specific naming convention to facilitate the

recognition of the species and gene family to which a protein belongs, whereby the name of

each protein sequence is a ‘|’-separated list with the third element being the species and the

final element being the gene family (e.g., “GN:KMT2E|MLL5|human|Q8IZD2|310949|MLL5”

names a human isoform of the MLL5 gene). Mirage also enforces several minor character

restrictions required for encoding lists as strings, and a “CleanMirageDB” script is included

in the Mirage package to confirm properly formatted protein database and highlight nam-

ing problems. Each line of the mapping file is a whitespace-separated triple where the first

element is a species name, the second element is a path to that species’ genome file, and

the third element is a path to that species’ gene index file (or a ‘-’ if no gene index is pro-

vided). Sequences whose species are not listed in the mapping file will still be aligned, but

using a traditional dynamic programming method instead of Mirage’s transitive alignment

approach.

Mirage’s naming constraints for protein sequences are partly used to ensure that it can

accurately recognize corresponding entries for each sequence’s gene family in the GTF-

formatted gene index file. GTF files identify, for a given species, where on that species’

reference genome particular proteins are believed to be encoded, along with a variety of

other data. These entries indicate, for a multitude of exons, the gene family to which an
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exon belongs, the chromosome on which that exon resides, and the range of nucleotide

positions on that chromosome that consititute the exon. While the exons enumerated in

a GTF file are oftentimes computationally predicted and thus potentially attributable to

computational errors, Mirage’s use of annotated exons involves a type of cross-validation

whereby only exons that can be perfectly incorporated into a full-protein mapping can

inform the final MSAs, reducing the potential for poorly predicted exons to affect Mirage’s

accuracy.

Below, we describe the steps taken by Mirage to turn these three input files into a set

of MSAs representing each gene family, following the pipeline illustrated in Figure 2.1.

Additionally, a breakdown of which Mirage components were developed specifically for

Mirage and which are existing tools integrated into the Mirage pipeline is provided in

Figure 2.2.

Clean Database

For each sequence

Species Guide

Species     Genome_file GTF_file

optional

.   .   .   .   .   

.   .   .   .   .   

2.  Map proteins to genome.  IF GTF 
file exists, try SPALN on the GTF-

indicated range.  If this fails, or if no 
GTF, use BLAT to pick candidate 

region, then SPALN to compute full 
spliced map.

1.  Quickly map protein to candidate 
exons identified by GTF file.

Store mapping of amino acids to codons 
on genome.  Capture splice sites.

3.  Merge mapped sequences into one MSA per 
species, based on genomic mapping.  Store each 

MSA in species-specific directory.

Store as unmapped 
sequence.

4.  Per species, add all unmapped 
sequences to MSA using profile global 

alignments.

5.  Merge species-specific MSAs into single 
MSA using splice-aware global profile 

alignment.

6.  Post-processing

Sequence’s 
species genome 

file exists?

Sequence’s 
species GTF file 

exists?

Full protein 
maps?

Yes

Yes

Yes

Yes

No

No

No

No

Full protein 
maps?

1. Quilter.pl, FindDiagonals.c :  Quilter manages the 
effort of mapping proteins to genome, 
accounting for splice sites.  FindDiagonals
identifies and stitches exon mappings for protein 
sequences, based on exon locations indicated by 
GTF file.

2. Quilter.pl :  Uses BLAT and SPALN to find 
mappings of proteins to genomic exons.

3. MultiMSA.pl :  Create MSA from sequences 
successfully mapped by Quilter.pl, based on the 
genomic mapped location (transitive).

4. MultiSeqNW.c :  Align sequences or MSAs using 
profile-profile global alignment.

5. MultiSeqNW.c :  Same as above, with splice-site 
penalty.

6. FinalMSA.pl :  Clean up splice site “characters”; 
other post-processing.

Figure 2.1: Wire-frame diagram of the Mirage pipeline.
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Program Name	
(Order	of	Use)

Written	for Mirage	
(Programming	Language)

Pre-existing	
Software

Mirage	(top-level	script) Yes	(Perl) No

Quilter Yes	(Perl) No

FastDiagonals Yes	(C) No

SPALN No Yes

BLAT No Yes

MultiMSA Yes	(Perl) No

MultiSeqNW Yes	(C) No

FinalMSA Yes	(Perl) No

Figure 2.2: List of Mirage components, identifying whether they were written for Mirage or are pre-existing
tools.

2.2 Translated Mapping

Mirage’s first task is to map each protein sequence to its genome, which is handled by the

Perl script “Quilter.” Quilter iterates over the species listed in the mapping file, considering

each species independently in order to avoid the large memory overhead of simultaneously

storing the contents of every species’ GTF file. Quilter begins by scanning all of the protein

names for the given species and compiling a list of present gene families. Using this list,

Quilter then uses the “exon” entries of the GTF file to construct a hash table mapping each

gene family to a set of coding regions on the genome. These coding regions are organized

by chromosome and strand direction, so only biologically consistent mappings are possible.

Following construction of the hash table, Quilter iterates over the protein sequences and

maps each to the genome using one of three methods:
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2.2.1 Fast GTF-based Mapping

The preferred method relies on a C program named “FastDiagonals” that rapidly aligns

protein peptides to the specific exons indicated by the GTF file. Quilter provides the protein

and coding DNA sequences in single-sequence FASTA files as inputs to FastDiagonals, which

immediately reads them into memory. Each of the three forward reading frames (with strand

orientation based on GTF annotation) are iteratively translated into amino acid sequences

and searched against the protein for full-exon alignments with no more than 1 mismatch.

FastDiagonals requires each partial mapping of the protein to cover the full length of a

GTF-indicated exon because we assume that if an annotated exon is genuinely one of the

exons used to encode that protein, then the splicing machinery would have conformed to

that exon’s splice signalling and, by doing so, provide the full exon for translation. This

also greatly simplifies the combinatorics associated with identifying an optimal full-protein

mapping to the genome by significantly reducing the number of codons in consideration for

possibly encoding each amino acid.

The FastDiagonals mapping procedure begins with a “seeding” step where the first two

translated amino acids are searched against the full protein using a gapless dynamic pro-

gramming method and only those parts of the protein with at least one matching amino

acid are preserved as seeds. Each seed is stored as a tuple consisting of a starting position

in the protein sequence and a score, and a global counter tracks the length of all extending

seeds. Seeds are extended through the length of the translated exon until they either accu-

mulate 2 mismatches and are discarded, or else successfully align to the full length of the

exon. All successful mappings are scored with the half-bit BLOSUM62 match scores for the

protein-translated DNA alignment, and this score, along with the corresponding protein

and genome positions, are returned to Quilter. Figure 2.3 illustrates the FastDiagonals

algorithm.

After all of the indexed exons have been examined by FastDiagonals, Quilter will have

a set of partial translated mappings characterized by their protein ranges, DNA ranges,
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Figure 2.3: An illustration of how FastDiagonals identifies candidate exons for Quilter’s protein-to-genome
mapping.

and scores. Using a straightforward depth-first search algorithm, Quilter attempts to find

a set of partial mappings that can be stitched together to cover the full length of the

protein in a biologically consistent way (i.e., the mapping uses a collection of mapped exons

to completely cover the protein sequence, the mapped exons are sourced from the same

chromosome, in the same direction on the chromosome, such that the relative positions

of the exons on the genome correspond to the relative positions of the peptides that they

encode on the protein). This algorithm (modeled in Figure 2.4) conceptually treats each

peptide-to-exon alignment as a node in a graph, and draws a directed edge from every node

that ends with the ith amino acid of the protein to every node that begins with the i+ 1th

amino acid, with edges being weighted by the score of the partial mapping. Quilter then

traverses the graph in a depth-first manner, looking for the highest scoring path that covers
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the full length of the protein and recording the best observed scores at each visited node to

avoid unnecessary computation.

Protein: 1-22
DNA: A-B
Best: 30

Protein: 1-16
DNA: R-T
Best: 18

Protein: 3-10
DNA: U-V
Best: 0

Protein: 23-42
DNA: C-D
Best: 55

Protein: 11-27
DNA: W-X
Best: 0

START

Protein: 43-58
DNA: E-F
Best: 73

Protein: 43-58
DNA: G-H
Best: 75

Protein: 28-42
DNA: Y-Z
Best: 0

END

30

18

26

25 18

20

15
20

Figure 2.4: Conceptual diagram of the graph algorithm used by Quilter to identify an optimal splice-aware
protein-to-genome mapping.

Once Quilter finds an optimal set of partial mappings that can be stitched together to

cover the full length of the protein, it writes that mapping out to a file that includes the

sequence name, the method by which the hit was found, the chromosome and direction of

the hit, and a list of nucleotide positions that index the centers of each codon used in the

full-protein mapping. Figure 2.5 broadly illustrates the path from FastDiagonals output to

recording a mapping.

Because the full-length mapping exists as an ordered series of exon mappings, introns

are implied to exist between each partial mapping. The mapping file makes these introns

explicit by placing a ‘∗’ (Mirage’s splice-site character) at each break between two partial

mappings in the nucleotide list, enabling Mirage to take splice-sites into consideration during

subsequent stages of the alignment pipeline.
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Figure 2.5: Illustration of how Quilter uses FastDiagonals output to identify full protein-to-genome mappings.

2.2.2 GTF-based Mapping Using SPALN

In the event that FastDiagonals cannot produce a set of partial mappings that can be

stitched together to form a full-protein mapping, Quilter falls back on an external tool

called SPALN [5] to generate a translated alignment of the protein to the genome. SPALN

performs splice-aware translated sequence alignment (aligning protein sequence to chro-

mosomal DNA sequence) by incorporating splice-site signal into its alignment algorithm;

Quilter provides SPALN the protein sequence and a window (determined from the GTF

file) of genomic sequence that contains the coding regions indicated by the GTF file. It

then parses SPALN’s output to extract a full-protein mapping to the genome. In the event

that the SPALN does not succeed on its first mapping attempt, the cause is often that a

very long intron separates one or more exons from the region suggested by the GTF file. To
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overcome this concern, the window of genomic sequence is extended 400Kb in each direction

and SPALN search is repeated with this larger input.

2.2.3 Mapping Using BLAT+SPALN

Quilter’s final fallback, and the method used for species without an associated GTF

file, is to use the fast sequence similarity search tool BLAT [7] to identify the location of

an alignment seed that suggests a region of the genome that contains the DNA encoding

the protein sequence. SPALN is then used to search for a splice-aware alignment of the

protein to that region of the genome, and, similarly to the GTF-assisted SPALN runs, the

indicated genomic region is extracted with successively larger windows of surrounding the

seed location (100Kb, 1Mb, and 10Mb in each direction) until a high-quality full-protein

mapping is identified. Figure 2.6 illustrates how this combination of BLAT and SPALN is

used to identify a coding region of the genome for a given protein and produce a splice-aware

mapping of the protein to that region.

If a protein still fails to map to the genome after pulling in a 10Mb window around the

BLAT-indicated region, it is designated as a “miss” and its name is added to a file listing

all sequences that failed to map and will be incorporated into their gene family alignments

using a dynamic programming approach. Thus, for every protein sequence belonging a

species with an associated genome, Quilter will either “hit” by mapping each amino acid in

the protein to a codon’s central nucleotide or else identify that sequence as a “miss.”

2.2.4 Quilter Parallelism

Because the input sequences to Quilter are considered independently from one another,

Quilter employs a straightforward “embarrassingly parallel” parallelism whereby each pro-

cess is given an equal fraction of the input database and is responsible for mapping all

sequences beginning in its fraction. Each of Quilter’s parallel processes write their results

to private “hit” and “miss” files, which is concatenated into final hit and miss files by
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Figure 2.6: BLAT identifies probable coding regions for unmapped proteins, which SPALN searches to
identify a protein-to-genome mapping.

the master process once all of the child processes have terminated. To ensure that each

process has a roughly equal workload, Mirage generates temporary species-specific protein

databases prior to running Quilter so that an uneven distribution of species in the full

protein database will not negate the efficiency of using parallel processes.

2.3 Transitive Alignment

Once Quilter has finished mapping proteins to their genomes, Mirage uses the Perl script

“MultiMSA” to construct an intra-species MSA for every gene family with at least one

member that successfully mapped to the genome. The inputs to MultiMSA are a mapping

file produced by Quilter and the protein sequence database. MultiMSA begins by reading

the full mapping file and placing each entry (consisting of a sequence name, chromosome

and direction, and the mapping itself) in a hash table using gene family names as keys. This
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Figure 2.7: A conceptual illustration of transitive alignment, where two protein sequences are individually
aligned to the genome and subsequently aligned to one another based on their genome mappings.

hash table places a moderately large memory overhead on MultiMSA but pays for itself by

avoiding the massive speed penalty that would be incurred by scanning the full mapping

file once per gene family. Once this guiding hash table has been constructed, MultiMSA

iterates over the gene families transitively aligning the genome-mapped sequences.

Each of MultiMSA’s transitive alignments are built using a hash table where the keys

are nucleotide indices and each entry in the table is a list of pairs that consists of a numeric

sequence identifier (i.e., the sequence’s row number in the MSA) and the amino acid char-

acter from that sequence associated with the key nucleotide. Once every mapped sequence

from a gene family has been added to this hash table, the keys are sorted (ascending for

forward strand, descending for reverse complement) and traversed in order. Each entry

in the hash table converts naturally into an MSA column (as depicted in figure 13)—the
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identifier-character pairs communicate which characters will be aligned in which rows, and

gap-characters are placed in every row that is not represented—and thus this ordered traver-

sal of the hash table allows for quick MSA construction. Whenever the difference between

adjacent keys (i.e., nucleotide indices) is larger than 3 (the length of a codon), a splice

junction is inferred and a column consisting entirely of splice-site characters is appended

to the MSA to represent an intron. Finally, terminal splice-site columns are added to both

ends of the final MSA, so that every exon is flanked by a column of splice-site characters,

and the MSA is written to a file in a species-specific directory.

100,000
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100,002

100,003

200,000

200,001

200,002

(1:A),		(2:A)

(1:R),		(2:R)
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(1:L),		(2:L)

(1:K),		(3:K)

(1:I),		(3:I)

(1:T),		(3:T)

A R Q L * K I T

A R Q L * - - -

- - - - * K I T

100,006

100,003

100,000

100,009

125,000

125,003

125,006

Figure 2.8: Illustration of how sorted hash keys allow MultiMSA to naturally construct a transitive multiple
protein sequence alignment.

The data independence between the individual gene families allows for straightforward

process parallelization similar to Quilter by evenly dividing the gene families across the

processes.
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2.4 Aligning Sequences that Did Not Map to a Genome

After MultiMSA has finished constructing the transitive MSAs for a species, Mirage itera-

tively aligns any sequences that failed to map to their genomes to their species’ gene family

MSAs through a sequence-to-profile alignment method based on the classic Needleman-

Wunsch sequence alignment algorithm [14]. The C program “MultiSeqNW” is used at this

stage of the Mirage pipeline, and takes as input two FASTA-formatted files, of which one

is the gene family alignment produced by MultiMSA and the other is the unmapped se-

quence. Matches between profile columns are scored using half-bit BLOSUM62 scores and

heterogeneous profile columns are scored proportionally to their non-gap character compo-

sitions (e.g., aligning a profile column “R-RK-” to a single sequence character “R” scores

2/3(RR) + 1/3(KR)). Figure 2.9 depicts one iteration of sequence-to-profile alignment using

a dynamic programming method.

Specific to Mirage’s transitive alignment method, splice-characters have a match score of

zero when aligned to one another and a match score of negative infinity when aligned to

non-splice-characters, guaranteeing that an amino acid can never be aligned to an intron.

Affine gap penalties are used so that the penalty for beginning a gap (-11) is greater than

the penalty for extending a gap (-1 per extension). Starting a gap at a splice site incurs a

gap-start penalty that scales with the distance to the closest splice site in the other profile

(-5 times 2 to the power of the distance to the closest splice site, with a maximum penalty

of -200), unless the other profile is a single sequence with no splice markers (i.e., failed

to map to the genome), in which case there is no additional penalty for starting a gap at

a splice site column. These special splice site considerations preserve the splice-awareness

of MultiMSA’s transitive alignments by encouraging MultiSeqNW to align introns to one

another and maintain strong exon delineation, while enjoying from the greater generality

that comes with taking a dynamic programming approach to multiple protein sequence

alignment.

In addition to aligning all unmapped proteins to their species-specific gene family MSAs,
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Figure 2.9: The iterative dynamic programming procedure Mirage uses to incorporate unmapped protein
sequences into their gene families’ MSAs.

MultiSeqNW is also used to generate gene family MSAs for every species that was not

provided a genome. Through the use of MultiSeqNW, Mirage is thus able to incorporate

every protein sequence from the input database into a species-specific gene family MSA,

regardless of that protein’s ability to map to a genome.

2.5 Inter-Species Alignment and Finalization

Once every sequence from the input database has been incorporated into a species-specific

gene family MSA, Mirage’s final task is aligning gene family MSAs across species to produce

its final splice-aware multiple protein sequence alignments. Once again, process parallelism

is employed and gene families are divided equally across processes which iteratively use Mul-
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tiSeqNW to merge gene families’ species-specific MSAs with their final MSAs, as illustrated

in Figure 2.10.
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Figure 2.10: MultiSeqNW is used to produce inter-species MSAs.

After every species-specific MSA for a gene family has been merged into that family’s final

inter-species MSA, a cleanup script is used to remove splice site markers and make minor

aesthetic corrections to the alignment (e.g., merging complementary amino/gap columns

from opposite sides of a splice site). The resulting inter-species MSAs are stored as AFA

files in a directory named “FinalMSAs.”

2.6 Investigating Alternative Reading Frames

Exons typically consist of a single open uninterrupted run of codon triples (i.e., an open

reading frame, ORF) flanked by splice sites, but occasionally a gene will have one or more



22

associated exons that encode amino acids in two or three open reading frames that are

shifted off one another by a single nucleotide.

T T C T C C T T A G C C T A G A A T A A A T A C T G T T A C G G T A G G T C C T G

Non-coding	
intronic	sequence

Non-coding	
intronic	sequence

‘AG’	dinucleotide	
canonically	marks	

3’	splice	site

‘GT’	dinucleotide	
canonically	marks	

5’	splice	site

Open	reading	frame

Cryptic	splice	sites	allow	for	
alternative	splice	site	selection

Figure 2.11: Model illustrating a standard open reading frame flanked by canonical ‘AG/GT’ splice sites
and containing cryptic splice sites that would allow for alternative splicing.

A C T G C A T A T C C G A T G C C A G C

T A Y P M P . .	.	.	.
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A C T G C A T A T C C G A T G C C A G C
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ORF	1

ORF	2

Figure 2.12: Diagram modeling how multiple open reading frames, and thus different proteins, can be
encoded by the same DNA sequence to produce alternative reading frames.

These alternative reading frames (ARFs) are a curious form of biological efficiency and

little is understood about them [9], partly due to their difficulty to detect using exist-

ing tools. As amino acid sequences, protein isoforms with ARF exons look exactly like
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the more common alternative splicing phenomenon of mutually-exclusive exons, and thus

character-based analyses are incapable of annotating occurrences of ARFs. Because ARFs

share coding nucleotides, however, Mirage is able to recognize candidate ARFs as overlap-

ping frame-shifted peptides while constructing its transitive intra-species MSAs. Whenever

Mirage detects a candidate ARF it determines which of the overlapping reading frames is

less frequently observed (distinguishing between the “alternative” and “standard” reading

frames) and records the candidate ARF’s amino acid indices in its sequence’s name field.

Mirage thus highlights putative ARF-containing sequence for future analysis, warranted

because many protein sequences are generated using predictive software rather than di-

rect observation (e.g., using mass spectrometry data), such that some putative ARFs may

simply be software artifacts.

One method for validating putative ARFs is to examine whether the corresponding ge-

nomic sequence in a species different from the one in which the ARF was identified also

displays overlapping open reading frames. Comparing genomic sequence between divergent

species is possible through the use of “lift-over” files from the UCSC genome browser [8],

which encode alignments between reference genomes. Collaboration with Kaitlin Carey, a

post-baccalaureate researcher in the Wheeler lab group, has led to the development of a

pipeline for (1) recording ARF-associated DNA in one species, (2) identifying and extract-

ing the corresponding DNA in a distantly related species, typically seeking putative human

ARFs on the mouse genome, (3) translating each of the extracted DNA’s forward reading

frames, and (4) reporting whether that DNA also encodes multiple ORFs. While further

analysis will be needed to prove that translations of both reading frames occur in nature,

the absence of point mutations that preserve only one of the reading frames for 90 million

years (the time since the last common ancestor of humans and mice) [8] provides strong

support for the notion that these ARFs have some selected function.
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CHAPTER 3 RESULTS

3.1 Test Dataset and Hardware

Mirage’s performance has been tested using a dataset comprised of 80,779 protein se-

quences from the UniprotKB database [17]. This dataset includes sequences representing

35 species and 21,980 gene families, of which 18,253 have at least 2 sequences attributed to

them.

Species Genome	Version	 Number	of	
Sequences

Percent	of	
Database

Human GRCh38/hg38	 42,435 52.53
Mouse GRCm38/mm10 27,361 33.87
Rat RGSC	6.0/rn6 10,258 12.70
Chicken Gallus_gallus-5.0/galGal5 93

0.77

Cow UMD_3.1.1/bosTau8	 274
Dog Broad	CanFam3.1/canFam3 43
Horse Broad/equCab2 4
Pig SCSC	Sscrofa11.1/susScr11 107
Rabbit Broad/oryCun2 85
Sheep ISGC	Oar_v3.1/oviAri3 15
Other	Species - 104 0.13

Figure 3.1: Composition of the protein dataset by species.

We downloaded genomes for the 10 most prevalent species from the UCSC Genome

Browser (downloaded from http://hgdownload.cse.ucsc.edu/downloads.html), and acquired

gene indexing files for human, mouse, and rat from Ensembl (public release 87, located at
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ftp://ftp.ensembl.org/pub/release-87 and downloaded on 2/1/2017) [24]. Tests were run in

a virtual Linux Ubuntu environment on a server housed at the University of Montana with

64 cores and 2 TB of shared RAM.

3.2 Assessing Alignment Quality

Mirage

Clustal-Omega

MAFFT

MUSCLE

Figure 3.2: Comparable segments of the multiple sequence alignments for the BPAG1 gene family produced
(from top to bottom) by Mirage, Clustal-Omega, MAFFT, and MUSCLE (MSA visualizations produced by
AliView). Only human sequences are displayed.

Qualitative comparisons of Mirage’s MSAs with MSAs produced by Clustal-Omega [19],

MAFFT [6], and MUSCLE [1] (three of the most popular protein MSA tools) provide the

best illustration that Mirage’s splice-aware transitive alignments are far better at charac-

terizing the similarities between protein isoforms than alignments produced using dynamic

programming. Mirage clearly illuminates the exonic structures of protein sequences and
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intelligently recognizes homologous exons from evolutionarily divergent species in a way

that cannot be expected from other MSA tools.

Multiple sequence alignments are notoriously difficult to quantitatively benchmark [2].

Percent identity is an intuitive quality metric when comparing MSAs of protein isoforms

because all isoforms are derived from the same genomic source, so peptide differences must

come from rare post-transcriptional modification (e.g., A-to-I editing [12]), so correct align-

ments (especially within species) should consist almost entirely of identical columns. Com-

paring percents identity over all MSA columns, Mirage consistently outperforms its com-

petitors, achieving near-100% column identity within intra-species alignments. Intra-species

alignments generally display 100% column identity when transitively aligned by Mirage, so

the incorporation of sequences that failed to map to the genome using dynamic program-

ming explains why Mirage does not achieve 100% identity for its intra-species alignments.

Species Mirage	and	
FasterMirage

Clustal-
Omega

MAFFT MUSCLE

Human 99.7 96.9 97.6 97.1
Mouse 99.7 97.7 98.2 97.8
Rat 99.3 96.6 96.6 95.6
Full	Database 85.5 82.9 83.8 83.3

Figure 3.3: Percents identity over all MSA columns for the three main species’ intra-species alignments and
for the full set of inter-species MSAs.

One measure of alignment accuracy is the density of exons in intra-species alignments.

Theoretically, alignments of protein isoforms should exhibit long runs of ungapped amino

acids or (where an exon has been excluded) long runs of gap characters, so the relative

density of exons can serve as a proxy measurement of isoform alignment accuracy when

information about exon boundaries is known, as illustrated in Figure 3.4.

To calculate relative exon density, we identified the amino acid index ranges for mapped
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Figure 3.4: Incorrect alignments of protein isoforms will increase the distance between the first and last
amino acids in cases of alternatively-utilized exons.

exons and computed the distances between those amino acids in Mirage intra-species align-

ments and other tools’ intra-species alignments. Figure 3.5 displays the average percentage

increases in observed exon length in intra-species MSAs with respect to Mirage MSAs across

all exons and across alternatively-utilized exons (i.e.,, exons in the same gene family that

are never incorporated into the same translated protein).

Average	Increase	in	
Overall	Exon	Length
over	Mirage	(%)

Average	Increase	in	
Alternatively-Utilized Exon	
Length	over	Mirage	(%)

Human Mouse Rat Human Mouse Rat

Clustal-Omega 3.1 2.9 3.9 53.4 57.0 64.9

MAFFT 24.8 26.0 13.0 198.0 227.1 108.4

MUSCLE 15.4 16.6 8.3 190.9 215.2 106.6

Figure 3.5: Average distance increase (as a percentage) between the first and last amino acids of exons in
intra-species MSAs relative to Mirage alignments.
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The ability to extract information about intron locations from Mirage intra-species align-

ments also allows us to examine how frequently traditional tools bleed exons into one another

by tracking changes in splicing “pinch points,” where splice sites are flanked on both sides

by non-gap characters in the same sequence, as illustrated in Figure 3.6. These sites indi-

cate amino acids between which there is no coding DNA for the given gene family on the

genome, and thus MSAs that either fail to align those amino acids or insert other characters

between them may be thought of as incorrectly bleeding exons into one another.

Exon	A Exon	B Exon	D

P L G * V D T A E * - - - - * - - - -

P L G * - - - - - * S Y L E * M A A G

P L G * V D T A E * - - - - * M A A G

P L G * V D T A E * - - - - * M A A G

Exon	C

Figure 3.6: Model illustrating splicing “pinch points.”

Recording the indices associated with “pinch” amino acids in Mirage intra-species align-

ments allowed us to track the frequency of errors associated with these sites in the intra-

species MSAs generated by other tools, displayed in Figure 3.7. Pinch points that are

“split-apart” have gap characters inserted between them, indicating that another sequence

has been falsely aligned to the intronic sequence that separates the last and first amino acids

of the exons. “Unaligned” pinch points are groups of pinch points from multiple sequences

that should be aligned to one another (such as the three “GV” pinch amino acids in Figure

3.6) but were not correctly aligned. Unaligned pinch points, when incorrectly aligned to

non-pinch point sequence, effectively place an intron in the middle of the other sequence’s

exon.
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MSAs	with	At	Least	One	Pinch	
Point	Error	

(%)

MSAs	with	At	Least	One	Split-
Apart	Pinch	Point	

(%)

MSAs	with	Unaligned	Pinch	
Points	
(%)

Human Mouse Rat Human Mouse Rat Human Mouse Rat
Clustal-Omega 5.0 5.3 11.7 4.2 4.6 9.6 1.0 0.7 3.4

MAFFT 10.0 9.7 9.7 9.1 9.0 7.6 1.1 0.7 2.7

MUSCLE 10.4 10.8 11.8 9.0 9.5 10.4 2.0 1.9 4.1

Figure 3.7: MSAs with exon bleeding detected by errors in their alignments of “pinch” amino acids.

3.3 Protein-to-Genome Mapping

Mirage requires just under 20 hours to produce multiple sequence alignments for the

full protein database when using 32 processes; the vast majority of this time (over 99%) is

spent computing the protein-to-genome mappings that form the basis for Mirage’s transitive

intra-species alignments.

Most of Quilter’s runtime is related to running the mapping programs FastDiagonals and

SPALN and parsing their output. While aligning the human sequences to their genome,

Quilter ran FastDiagonals over 40 million times and SPALN nearly 200 thousand times. The

average amount of wall time spent per system call to each program is roughly equal (around

0.01 seconds), although the amount of time spent processing SPALN’s outputs to identify

a protein-genome mapping is about 10 times longer than FastDiagonals per program call.

I refer to the amount of wall time elapsed between the start and completion of a system

call to run a program as the “program time.” Program time is included in the “associated

time,” which is the total amount of wall time elapsed between Quilter preparing the input

files for the program and having completed its analysis of the program output.

The computational overhead associated with producing splice-aware protein-to-genome
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Species Quilter MultiMSA Sum	Percent	of	Total	
Runtime

(19h,	46m,	18.32s)Hours Minutes Seconds Minutes Seconds
Human 14 49 33.31 2 2.75 75.16
Mouse 3 47 51.58 3 2.88 19.46
Rat - 43 52.33 - 54.37 3.77
Chicken - 1 8.10 - 3.56 0.10
Cow - 2 34.66 - 12.27 0.23
Dog - 2 14.16 - 2.06 0.19
Horse - 2 1.19 - 0.24 0.17
Pig - 2 59.18 - 4.83 0.26
Rabbit - 2 59.02 - 5.82 0.26
Sheep - 2 5.67 - 0.86 0.18
TOTAL 19 37 19.47 6 29.63 99.79

Figure 3.8: Breakdown of wall-clock time Mirage uses to generate intra-species transitive protein sequence
alignments.

mappings causes Mirage to run noticeably slower than other MSA tools, as seen in Figure

3.10. To help address this weakness, Mirage has a “fast” option that prevents it from using

FastDiagonals, so that all of its protein-to-genome mappings are generated by SPALN.

Mirage is highly successful at mapping the three species with gene indexing files, with

97.7% of human proteins, 93.3% of mouse proteins, and 90.9% of rat proteins mapping to

their respective genomes, but struggles to identify high-quality protein-to-genome mappings

for other species.

3.4 Addressing SPALN Errors

Given that excising FastDiagonals from its pipeline reduces Quilter’s runtime by nearly

2/3, it is worth considering whether Quilter should generally default to using SPALN and

abandon FastDiagonals altogether. Further complicating Quilter’s primary reliance on Fast-

Diagonals is the fact that GTF exons are often computationally predicted, such that Fast-

Diagonals mappings cannot always claim to have greater scientific credibility than SPALN

mappings. The primary issue with SPALN, and the reason why FastDiagonals will remain
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FastDiagonals
Species Total	Associated	

Compute	Time
Total	Program	
Compute	Time

Number	of	
Program	Calls

Average	
Associated	Time	
Per	Program	Call	

(Seconds)

Average	
Program	Time	
Per	Program	
Call	(Seconds)

H M S H M S
Human 271 54 49.27 116 22 32.60 40,307,881 0.024 0.010

Mouse 70 26 30.77 27 50 43.27 12,869,566 0.020 0.008

Rat 8 18 16.06 2 29 59.46 2,053,708 0.015 0.004

SPALN
Species Total	Associated	

Compute	Time
Total	Program	
Compute	Time

Number	of	
Program	Calls

Average	
Associated	Time	
Per	Program	Call	

(Seconds)

Average	
Program	Time	
Per	Program	
Call	(Seconds)

H M S H M S
Human 16 1 16.34 - 35 17.60 199,072 0.290 0.011

Mouse 6 7 3.11 - 11 10.74 85,446 0.258 0.008

Rat 3 21 5.66 - 2 14.61 29,651 0.407 0.005

BLAT	+	SPALN
Species Total	Associated	

Time
Total	BLAT	Program	

Time
Total	SPALN	
Program	Time

Number	of	
SPALN	Program	

Calls

Average	Associated	
Time	Per	SPALN	
Program	Call,	

Including	BLAT	Time	
(Seconds)

M S M S M S

Human 7 29.26 3 17.98 - 0.85 98 4.58
Mouse 14 49.42 10 34.74 - 2.48 198 4.49
Rat 11 54.36 7 20.90 - 0.71 138 5.18

Figure 3.9: Runtime comparisons of FastDiagonals, SPALN, and BLAT+SPALN for translated mapping in
Quilter.

Human Mouse Rat Chicken Cow Dog Horse Pig Rabbit Sheep
FastDiagonals 74.5 72.5 65.4 - - - - - - -
SPALN 23.1 20.5 24.5 - - - - - - -
SPALN+BLAT 0.1 0.3 1.0 15.0 5.1 2.3 0 8.4 4.7 0
Miss 2.3 6.7 9.1 85.0 94.9 97.7 100 91.6 95.2 100.0

Figure 3.10: Percentage of sequences mapped to their genomes, by mapping method.
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Hours Minutes Seconds
Mirage 19 46 18
FasterMirage 6 37 25
Clustal-Omega 14 23 18
MAFFT 1 44 44
MUSCLE 2 7 53

Figure 3.11: Comparison of Mirage runtimes to other MSA tools, dividing work across 32 cores.

as Quilter’s default mapping approach for the time being, is that there is a collection of

characteristic errors associated with SPALN that erode our confidence in exclusively relying

on its mappings. One may note in Figure 3.9 that the time required to parse SPALN output

is 10 times greater than the amount of time that SPALN needs to run, due primarily to the

amount of error-checking required to ensure that SPALN output is correct.

Perhaps the most pervasive issue presented by SPALN is the identification of “micro-

exons,” which are falsely asserted mappings of 1 to 3 amino acids to non-synonymous

putative exons on the genome, frequently occurring in clusters, as in the SPALN output

depicted in Figure 3.11. Micro-exons appear to be a product of SPALN over-penalizing the

usage of non-canonical splice sites by genuine proteins, causing it to map amino acids from

one end of an exon to any sufficiently-sized segment of genomic sequence that happens to

be flanked by the canonical ‘AG-GT’ splice signal. To recover from micro-exons, Quilter

has to check the length of each exon called by SPALN, and, wherever there is a cluster of

micro-exons, identify the nearest sensible exons upstream and downstream from the micro-

exon cluster and check whether or not they can be extended to encode the amino acids

stranded on the micro-exons.

Another troubling bug in SPALN’s output is that it occasionally misrepresents the per-
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Figure 3.12: Example of a common SPALN error where amino acids are aligned without identity to a series
of putative “micro-exons” that can be as short as short as a single codon.

cent identity of its mappings, with no observable pattern in either the frequency or degree of

misrepresentation. Rather than immediately filtering out low-quality (¡97% identity) map-

pings based on SPALN’s reported percent identity, Quilter has to fully read and process

all SPALN output before computing the percent identity to determine whether or not the

mapping met its quality threshold. SPALN typically computes high-quality mappings, so

requiring Quilter to parse all SPALN output does not drastically impact Quilter’s over-

all runtime, but it is nevertheless worrisome to see SPALN struggling to report its own

alignment quality.

A final observation about SPALN output, and one which may turn out to be more of a

feature than a bug, is that SPALN will occasionally the terminal exon(s) of a protein to

map to the strand opposite the one that the other exons mapped to. While these alignments

look bizarre, they are often high-quality and sufficiently long to challenge the assumption

that they are spurious computational artifacts, thus warranting additional bioinformatic

analysis as a future research topic.

As I note in my Future Directions, a near-term project is the development of a replacement

for SPALN that will improve each of the errors that have been identified throughout the

course of SPALN’s employment within Quilter. The release of this SPALN replacement will

likely coincide with an update of Mirage that replaces both FastDiagonals and SPALN with
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my improved translated alignment software, thus reducing the runtime of default Mirage

while avoiding the computational overhead and epistemic quandries associated with SPALN.

In the meantime, Mirage will rely on FastDiagonals as its default method for identifying

high-quality protein-to-genome mappings.

3.5 Alternative Reading Frames

Alternative reading frames (ARFs) are open reading frames that overlap on the genome

but encode different protein peptides by using codons that are offset from one another by

1 or 2 nucleotides. We have observed that putatitive ARFs can span multiple exons, with

the notable feature that proteins never appear to alternate between the use of standard

and alternative exons reading frames in a multi-exonic ARF region. This may indicate

that genuine ARFs are used to alter protein functionality on the scale of entire functional

domains, since we would otherwise expect to observe occasional interpolations of standard

and alternative reading frames.

It is unknown whether there is a general biological function that can be broadly attributed

to ARFs, but our preliminary surveys of the peptides encoded by putative ARFs suggest

that they may frequently be used to encode intrinsically disordered peptides. Encoding

disordered sequence would allow ARFs to remove functionality associated with the standard

reading frame while preserving necessary structural features for the other domains in the

protein to function normally. This is analogous to more typical forms of alternative exon

utilization, insofar as ARFs would make minor adjustments to protein functionality, but

with the advantage of recycling genomic sequence for “spacer” peptides instead of encoding

them separately from the standard, functional sequence. Whether ARFs can be widely

associated with loss-of-function or if some ARFs provide alternative functional domains is

an exciting open question whose answer may be established, in part, by Mirage.

Mirage’s method of transitive alignment uniquely enables it to indicate putative ARFs

during intra-species MSA generation. 2,926 putative ARFs have been identified in the
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Uniprot dataset, with 2,267 gene families (10.3% of all families) exhibiting at least one

ARF of 5 or more amino acids. The majority of putative ARFs use 2 overlapping reading

frames, but a small number use all three reading frames, including a 3-frame ARF in the

human MLL5 gene that encodes 131 overlapping amino acids and has is encoded by DNA

that is conserved in the mouse genome (Note: much of the analysis of ARFs was performed

in collaboration with Kaitlin Carey).

ARF	Length	
(amino	acids)	

5-34 35-64 65-94 95-124 125-154 155---725

Number	of	ARFs	 1,375 1,046 295 101 27 13

Figure 3.13: Length distribution of the 2,858 2-reading frame ARFs identified in our test database.

ARF	Length	
(amino	acids)

5-14 15-24 25-34 35-44 45-54 55---131

Number	of	
ARFs

26 21 10 2 4 5

Figure 3.14: Length distribution of the 68 3-reading frame ARFs identified in our test database.

Figure 3.15: Mirage transitive alignment of three human MLL5 sequences, displaying 120 of 131 amino acids
in a putative 3-reading frame ARF.

Our lift-over analyses of human ARFs have also produced promising results on the verac-

ity of putative ARFs identified by Mirage. We plotted (Figure 3.16, red dots) the correlation

between the lengths of exons reported in the GTF file and the frequency with which exons

of a given length had at least two overlapping open reading frames in the same strand direc-

tion. Unsurprisingly, there is a strong negative correlation, since the likelihood of a “stop”
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codon occurring on a string of random nucleotides increases with the string’s length, and

non-standard reading frames in non-ARF exons can be approximately characterized as ran-

dom nucleotide strings. We then isolated the exons that Mirage had identified as encoding

putative ARFs and used the lift-over analysis pipeline to extract the corresponding exons

in the mouse genome and compute how frequently the ARF-associated mouse exons also

encoded at least two open reading frames (Figure 3.16, blue dots). While a small number of

putative human ARFs did not correspond to mouse exons with multiple viable open reading

frames, almost every putative human ARF identified by Mirage was conserved in the mouse

genome. This suggests that many of the ARFs we have identified may represent genuine

cases of remarkable efficiency in biological coding.

Figure 3.16: Graph showing differences in the frequency of multiple ORFs in all human exons compared to
mouse exons identified as homologous to human exons with putative ARFs.

We further examined the frequency with which putative human ARFs correspond to

open reading frames in lifted-over mouse DNA, allowing for variable-length windows of
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genomic sequence that only code in one reading frame to surround the region where multiple

open reading frames overlap, as illustrated in Figure 3.17. We found that extending the

permissible distance between the splice sites associated with the overlapping open reading

frames can bring the percentage of putative human ARFs that correspond to ARF-viable

mouse DNA up to 97.8% (when allowing offsets up to 45 bases from either end, excluding

the one or two nucleotides necessary for the shift in reading frame) from the already exciting

value of 89.7% (only allowing an offset of 3 nucleotides on either end).

ORF	1

ORF	2
INTRON INTRON

ORF	1	
3’SS

ORF	2	
3’SS

ORF	2	
5’SS

ORF	1	
5’SS

Figure 3.17: Splice sites for alternative reading frames may be offset from one another by several nucleotides.

Maximum	Number	of	Bases	
from	Either	End

(Allowing	±2	for	Reading	
Frame	Offset)

Corresponding	Mouse	
Genomic	Sequences
with	Multiple	Open	
Reading	Frames	(%)

3 89.7
6 93.2
9 95.7

12 96.0
15 96.2
18 96.4
21 96.6
45 97.8

Figure 3.18: Percentages of putative human ARFs with lifted-over mouse genomic sequence that has multiple
open reading frames, varying the permissible amount of flanking non-coding sequence.



38

CHAPTER 4 FUTURE DIRECTIONS

4.1 An Improved Translated Sequence Alignment Tool

Mirage’s protein-to-genome mapping phase relies on the translated sequence alignment

tool SPALN to identify high-quality spliced protein-genome alignments for proteins whose

GTF entries failed to produce a full-protein mapping. SPALN is the strongest member of

a small class of splice-aware translated alignment tools, none of which appear to be under

active development [3, 20]. While presently the best in its category, SPALN also exhibits a

number of characteristic flaws that occasionally filter into its output alignments and require

substantial recovery work on the part of Mirage. Clusters of “micro-exons” comprised of

fewer than 4 amino acids, inconsistent nucleotide indexing, misreported percents identity,

and spontaneous changes in DNA strand direction are all features of SPALN output that

Mirage has been programmed to detect and (where possible) correct. Mirage’s extensive

wrapper script guarantees that the protein-to-genome mappings it derives from SPALN

are high-quality, but replacing SPALN with an improved tool for splice-aware translated

alignment will be a necessary advancement for Mirage and for future bioinformatics appli-

cations. My most immediate research aim is to develop a splice-aware translated alignment

software tool that will integrate probabilistic models of species-specific splice-site patterns

with biochemical analyses of splice-site recognition proteins in order to achieve fast and

accurate exon prediction, combined with the use of cutting-edge datastructures to optimize

my alignment tool’s speed and memory usage.

An additional component of this improved alignment tool will be an efficient method for

aligning RNA and cDNA to the genome. This is a closely-related problem to protein-to-
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genome mapping, as cDNA and RNA (specifically, spliced mRNA) alignment also require

attentiveness to splice signalling and the exonic structure of genomic DNA. Many labs

that research proteins focus on RNA, primarily producing and analyzing RNAseq data

instead of directly acquiring amino acid sequences from mass spectrometry, so a splice-

aware sequence-to-genome alignment tool benefits from the ability to work with all three

biological alphabets. My software will still work with these sequences on the level of trans-

lated proteins, as this produces a computationally simpler problem, but using additional

post-processing to confirm that the nucleotide-to-genome alignments are as sensible as the

translated protein-to-genome alignment. This generality will give my software wide appeal

to protein and RNA research groups in addition to improving the speed and quality of

Mirage by replacing FastDiagonals and SPALN.

4.2 Splice-Aware Translated Sequence Homology Search in HMMER

The HMMER software suite is a toolkit designed for database homology search through

the use of probabilistic models called hidden Markov models (HMMs), and is one of the

most widely used bioinformatics software packages [3]. For a given set of query sequences,

HMMER is able to rapidly and accurately identify evolutionarily-related sequences in a large

database and precisely quantify the statistical significance of each sequence pair’s similarity.

A recent addition to the HMMER suite is the translated search tool “thmmer” developed by

Walt Shands under the guidance Dr. Travis Wheeler at the University of Montana, the lead

developer of HMMER’s DNA search tool “nhmmer” [24]. The addition of splice-awareness

to thmmer translated homology search will greatly improve the program’s functionality and

have substantial scientific impact.

Following the development of my standalone translated alignment tool, I will be well-

positioned to develop novel probabilistic graphical models for searching collections of protein

HMMs against DNA sequence databases that will effectively account for intron splicing while

evaluating sequence homology. The successful software implementation of these models
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will involve researching algorithms for the efficient application of splice-aware translated

database search to large-scale bioinformatics datasets. The culmination of this project will

be integrating splice-aware translated homology search into a full release on the HMMER

webserver through collaboration with Rob Finn at the European Bioinformatics Institute.

4.3 ARF Research

The unexpected abundance of alternative reading frames (ARFs) revealed by Mirage has

provided the Wheeler lab group with an exciting opportunity for original bioinformatics

research. Over the past few months I have begun working with Kaitlin Carey, an advanced

undergraduate with a background in molecular biology, towards verifying purported ARFs

indicated by Mirage and examining the extent to which DNA encoding multiple reading

frames is conserved across highly diverged species. We are extremely excited by the prelim-

inary results, including the identification of a stretch of DNA that has 3 forward reading

frames capable of encoding 131 amino acids and that is perfectly conserved between humans

and mice. Ongoing research into the actual frequency with which alternative reading frames

are translated and the effects that they have on protein behaviors will be an informative

application of the Mirage pipeline towards a cutting-edge biological curiosity.
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