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The Intergovernmental Panel on Climate Change (IPCC) has estimated between
9 and 88 cm of sea level rise over the next hundred years. Of this, only negative
19 to 11 cm is attributed to the largest ice masses on the planet, the Antarctic and
Greenland ice sheets. Over the last decade, dramatic activity in the outlet glaciers of
Greenland and the Antarctic Peninsula raise the possibility that these large ice sheets
will have a much greater contribution to sea level rise over the next century than was
predicted by the IPCC. Recent studies have shown these areas are exhibiting decadal
scale changes in response to climate forcings, whereas IPCC models show that ice is
not responsive to climate change over such short periods of time. Many believe the
IPCC type models fail to show short term climate responses due to the simplifications
they make to ice sheet mechanics. Here, we develop a higher-order model – a new ice
sheet model which contains all relevant flow physics. In order to gauge our progress,
we perform a verification of our model around a structured set of experiments. The
analysis reveals our model is performing well over a range of different scenarios.
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CHAPTER 1 INTRODUCTION

1.1 Introduction

In recent years, attention has been drawn to the Earth’s changing climate and the

potential impact such a change would have on its inhabitants. Of particular concern

is the effect that changing climate will have on sea level, as 11 of the world’s 15 largest

cities are located along the coast [Gornitz, 2000]. As such, a rise in sea level would

displace millions of people worldwide. In the western world, this has the greatest

impact on California, the gulf of Mexico, and Florida. A catastrophic rise in sea level

would displace several million people in these areas. However, the impact worldwide

is much more grim, as the population density is very high in areas such as Southeast

Asia. The same catastrophic sea level rise would displace hundreds of millions in

Asia. This type of flooding would topple established economies and overwhelm the

population of other metropolitan areas as people migrate inland.

The scenario presented above projects the global impact of sea level rise under

the assumption we take no steps to prevent against flooding. However, it is more

likely that these areas will attempt to defend against the rising sea. This can be

accomplished a number of ways, but the most common method of protection is the

construction of dikes or levees. However, construction of such structures is extremely

expensive. According to the Environmental Protection Agency (EPA), a 1 m rise
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Table 1.1 Summary of Results from the EPA’s Report on Sea Level Rise.
Costs in billions of dollars [Titus et al., 1991].

Baseline 50cm 100cm 200cm

No Shores Protected
Dryland Lost (sq mi) N.C. 3,315-7,311 5,123-10,330 8,191-15,39
Wetlands Lost (%) N.C. 17-43 26-66 29-76

Developed Areas Protected
Dryland Lost (sq mi) 1,470-4,686 2,200-6,100 4,100-9,200 6,400-13,500
Wetlands Lost (%) 9-25 20-45 29-69 33-80
Value of Lost Land 16-47 52-130 86-212 112-297
Wetlands 5-43 11-82 17-128 19-144
Undeveloped Land 6-19 13-34 21-71 29-121
Land for Dikes 0 9-33 14-48 22-74

Cost of Coastal Defense 4 55-123 143-305 402-645
Open Coast: Sand 4 15-81 27-146 59-284
Open Coast: Structures 0 29-36 62-170 257-316
Sheltered Shores: Dikes 0 5-13 11-33 30-101
Total Cost 20-51 128-232 270-475 576-880

If All Shores Protected
Wetlands Lost (%) N.C. 38-61 50-82 66-90

would cost between 270 and 475 billion dollars to defend worldwide. Table 1.1 shows

the summary of the EPA’s report on sea level rise, summarizing both the impact and

cost of sea level rise.

There are two major contributors to sea level, both directly influenced by climate.

First, thermal expansion takes place as water expands in volume as temperature

increases. The other influence is melt water from warming glaciers and ice sheets.

Presently, thermal expansion is responsible for the majority of sea level rise, though

glaciers play a significant role. However, our current understanding of the impact of

glaciers is limited. The contributors to sea level change are shown in figure 1.1.

Of primary concern are the two largest ice masses on the planet, Greenland and

Antarctica. The combined volume of ice from the two is staggering, equivalent to

approximately 75 m of sea level equivalent[Van Der Veen, 1999]. While it is highly
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Figure 1.1 The various contributors to sea level change.

unlikely the entire ice sheets will disappear in the short term, the stability of Green-

land and Antarctica is an open and fiercely argued issue. There is no agreed upon

forecast, as current ice sheet models are unable to resolve fast responses to climate

change.

Making matters more uncertain, we have little physical data from glaciers. They are

often located in remote and difficult areas to access, making long studies particularly

challenging. Making the task even more demanding is hauling the instrumentation

required for drilling and taking measurements. In addition to the logistics, gathering

the data is also a challenge. Ice sheets move at such slow speeds, and behave in

vastly different ways depending on where the measurements are taken, that it is hard

to obtain meaningful data.

The most critical missing data are time series on appropriately long scales. Glacia-

tion/deglaciation cycles (due to the Earth’s orbital obliquity) are roughly 100,000

years. Data gathering efforts have been limited to the last hundred years; we do not

have data over a sufficient length of time. In light of all these shortcomings, we have
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very little data and are forced to rely heavily on simulations.

1.2 Motivation

Reacting to global concern, the Intergovernmental Panel on Climate Change (IPCC)

released a climate assessment which included an investigation into sea level change.

They estimate between 9 and 88 cm of sea level rise over the next century, mostly at-

tributed to thermal expansion. The contribution from Greenland and Antarctica was

estimated at -19 to +11 cm, implying that these areas may either grow or shrink in

size over the next one hundred years. This sort of uncertainty does not provide read-

ers of the report with confidence in one outcome or the other. Figure 1.2 summarizes

the sea level predictions released by the IPCC.

Figure 1.2 The IPCC’s prediction of sea level rise over the next century.

However, recent dramatic activity in the outlet glaciers of Greenland and the
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Antarctic Peninsula raise the possibility that these large ice sheets will have a much

greater contribution to sea level rise over the next century than was predicted by the

IPCC. Studies have shown that these areas exhibit changes over much smaller time

scales than previously assumed, responding to climate forcings on a decadal scale

[Rignot et al., 2008, Rignot and Kanagaratnam, 2006]. Areas on the Antarctic penin-

sula, for example, have sped up dramatically in the last 15 years, as shown in figure

1.3. Previously, we believed that glaciers were not influenced by climate changes on

scales of less than a century.

Figure 1.3 Rate of elevation change of the Antarctic Ice Sheet from 1992 to
2003. Inset shows bedrock geometry, highlighting floating (light
gray), marine-base (mid-gray), and continental-based (black)
sectors [Shepherd and Wingham, 2007].
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Armed with this new knowledge of fast ice sheet response, we are skeptical of the

results published by the IPCC. The models used by the IPCC are generally believed

to not account for this recently discovered phenomenon due their simplification of ice

sheet mechanics. As a result, we propose that the estimations made by the IPCC

are possibly inaccurate. In response to the shortcomings of existing strategies, we

develop a higher-order ice sheet model that contains all the relevant flow physics. A

higher-order model is one that contains additional mechanical effects and does not

apply the shallow ice approximation, discussed in chapter 2.

1.3 Goals

There are several goals for this work, both in the short and long term. The immedi-

ate focus is developing a higher-order ice sheet model that is highly flexible, capable

of handling many different types of experiments. In order to achieve this goal we

must be establish that our model is working as desired by comparing our results to

those obtained from a structured set of experiments. The primary goal here is devel-

oping a model that can complete the experiments proposed by the Ice Sheet Model

Intercomparison Project for Higher-Order Models (ISMIP-HOM).

In addition to the short term goal, there are over-arching long term goals that

derive directly from the motivation for this work. We hope to establish a new model

with more realistic physics to improve the accuracy of ice sheet simulations. This

would allow us, or future researchers, to revisit the IPCC’s study and reevaluate the

impact glaciers will have on sea level rise.

Even more generally, this model will serve as an demonstration of the benefit, or

lack thereof, of incorporating the additional physics. It is possible that the additional

numerics have little impact on the simulations. We need to obtain measurements
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to quantify the impact, and weigh that against the cost, in terms of complexity,

efficiency, and robustness. This is currently an open question.

1.4 Benefits

Ice sheet models are the basis for predicting the evolution of the world’s glaciers.

These predictions can have a great impact on humanity, as policy makers use them

in drafting important legislation. The less uncertainty present in simulations, the

better the world can adapt to a changing environment. Our reliance on models in

crafting policy makes it necessary to have highly accurate solutions. Higher-order

ice sheet models, such as the one developed here, will pave the way for more correct

and realistic predictions. In turn, this will lead to quicker enactment of appropriate

policy.

This work will also benefit other researchers in the field, who can gain knowledge

from this effort. As mentioned in section 1.3, the ice sheet modeling community needs

to reach a conclusion on the benefit of higher-order models. Our work can be used

in combination with other higher-order models to determine the effect the additional

numerics have on simulations. The lessons learned by what worked well and what fell

short could be integrated into the next generation of ice sheet models.



8

1.5 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 provides an overview of the physics of ice, ice sheet modeling, and

an introduction to the software package being used.

• Chapter 3 details the numerical methods that define the model as well as the

software specific implementation.

• Chapter 4 describes the results of the research.

• Chapter 5 contains concluding observations, as well as direction for future

work.
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CHAPTER 2 OVERVIEW

2.1 Properties of Ice

Ice is defined as water frozen in a solid state. However, ice has properties of both a

solid and a liquid. While commonly viewed as an unmoving solid, it is more accurately

thought of as a highly viscous fluid. Due to its physical composition, ice behaves in

interesting ways, most notably in terms of flow.

2.1.1 Flow

Ice is a very slow moving liquid, with flow governed by the well established laws of

fluid dynamics. However, whereas most fluid dynamic problems deal with Newtonian

fluids where the stress and strain rates are linearly related, this is not the case with

ice. Ice is considered a non-Newtonian fluid; it has a non-linear viscosity. This

means that ice offers different resistance to deformation based on the amount and

direction of stress applied. These types of fluids create a highly non-linear situation,

where viscosity is needed to solve for velocity, however, viscosity is described in terms

of velocities. This circular dependency makes fluids with non-linear viscosity more

difficult to model than Newtonian fluids.

Due to the viscosity of ice, its flow is described by the Stokes equations, which

governs the flow of a fluid where viscous forces are very large compared to inertial

forces; acceleration can be ignored. Stokes flow is a simplification of the Navier-Stokes
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equations. The Stokes equations will be presented and discussed in greater detail in

chapter 3.

2.2 Ice Sheet Modeling

2.2.1 Shallow-Ice Approximation

Most current ice sheet models involve simplifications with respect to the mechanics

of ice flow. These simplifications are based on the shallow-ice approximation, which

operates under the assumption that the horizontal extent of an ice mass is much

greater than the thickness and that the slopes of the surface and bedrock are relatively

low [Le Meur et al., 2004].

These situations are represented well by so called low-order models. These models

consider the system to be only influenced by vertical stresses, where the force is

perpendicular to flow; horizontal shear stresses acting parallel to flow are ignored. In

addition, ice flow is driven solely by gravity, neglecting any other sources responsible

for flow, such as topographic features.

However, the shallow-ice approximation does not capture some key areas in ice

sheets where the most interesting and dynamic events occur, such as a region near

the grounding line or a divide [Pattyn, website]. Furthermore, according to Le Meur

et al., many mountain glaciers exhibit thicknesses equal to their width, rendering the

shallow-ice approximation inaccurate. Ultimately, shallow-ice approximation models

are inadequate for handling these types of situations.

2.2.2 Higher-Order Models

In order to accurately model areas of an ice sheet where the aspect ratio is large,

additional numerics beyond those included in shallow-ice approximation models must



11

be included. A higher-order model is one that incorporates further mechanics effects,

principally longitudinal shear stresses [Pattyn and Payne, 2006]. Further effects can be

introduced, such as allowing for basal sliding and implementing downstream features

that retard flow.

While higher-order models contain addition mechanical effects, they still make

some simplifications to ice flow equations [Pattyn and Payne, 2006]. For instance,

the higher-order model proposed by Pattyn 2003 he applies the hydrostatic approx-

imation in the vertical, implying that the variational stress is neglected. This type

of assumption can have a large impact on certain simulations, particularly in “re-

gions where the flow regime changes, such as near the ice divide or near the margin”

[Pattyn, 2003].

In contrast to simplified higher-order models, full Stokes models make no such

assumptions. They include all relevant stresses as well as additional forces driving

acceleration. These types of models are valid for all types of simulations, but introduce

considerably more complexity in implementation and are often time consuming to run.

Due to the difficulty in implementation, very few full Stokes models exist.

2.3 COMSOL Multiphysics

2.3.1 Overview

Comsol Multiphysics is a software package used for modeling systems in physics

and engineering. It is a general finite element solver, capable of modeling many

common systems out of the box, as well as allowing for others through the addition

of modules. Most notably, Comsol allows for user to specify their own partial

differential equations (PDEs) and couple them with external data and geometries.

Figure 2.1 shows the many different types of simulations available to a user.
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Figure 2.1 The Comsol Model Navigator lets the user choose from many
types of multi-physics simulations.

The software provides power through both predefined modeling interfaces and with

its flexibility and avenues for customization. There are existing interfaces for various

applications including fluid flow, where simulations can be set up and run in short

periods of time. Figure 2.2 shows the main Comsol application set up in Navier-

Stokes mode. Conversely, the user also has full access to the inner workings, both in

terms of the physics and the solver. Furthermore, material properties, source terms,

and boundary conditions can be all uniquely specified by the user [com, website].

Other notable features include full control of meshing, the ability to view post-

processing results, and a comprehensive interface to Matlab. A final prominent

feature of Comsol worth mentioning is the scripting language built-in to the ap-

plication. This allows users to write scripts to specify model parameters, build user

interfaces, and to visualize and analyze their data. For all of the reasons discussed,

Comsol is an excellent resource for modelers.
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Figure 2.2 The main screen of the Comsol application.

2.3.2 Limitations

Though Comsol has a great deal of built in facilities for modeling, it is not without

its limitations. In developing this model, we are confined to work inside these limi-

tations and tasked with overcoming them. The intent of this work is to implement a

full Stokes ice sheet model using Comsol, however, full Stokes flow is not inherent to

the software. Instead, we must achieve this through combining our understanding of

ice mechanics with the inner workings of Comsol’s Navier-Stokes mode. The details

of the implementation are discussed in chapter 3.

Additionally, the unstructured mesh which the finite element solver uses can be

troublesome. For certain domains, the length of the glacier can be much greater

than its thickness, causing the mesh to be stretched considerably in the horizontal

dimension. As such, refining the mesh in the vertical adds a non-trivial number of
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vertices, resulting in more computation nodes and extending run time. For example,

the mesh presented in figure 2.3 has adequate resolution horizontally but poor vertical

resolution. Further refinement would introduce unwanted complexity.

Figure 2.3 An example mesh where the ice is considerably wider than it is
thick.

The cost of mesh complexity can be measured in terms of model execution. While

complexity in a mesh often equates to a longer simulation, that is not the greatest

concern. Instead, a highly complex mesh can often result in a run that never converges

to a solution. This is the case when domains such as the one shown in figure 2.3 are

evolved over time. While performing time evolution, the grid points that constitute

the mesh tend to overlap, effectively folding over each other. This produces inaccurate

results or leads to model runs that never finish.

In order to overcome this limitation, we introduce a coordinate transformation to

take all variability out of defining a domain. By doing so, we greatly simplify the un-

derlying mesh. Figure 2.4 demonstrates the effects of the coordinate transformation.

The transformed mesh has greater clarity and simplicity, leading to more efficient

execution, and most importantly, convergence. This scheme will ultimately allow for
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performing time dependent experiments, making it a pivotal step in obtaining the

goals of the research. The coordinate transformation is detailed in chapter 3.

Figure 2.4 A comparison of the standard and transformed mesh. Notice
the simplicity and clarity present in the mesh from the rescaled
coordinate system.
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CHAPTER 3 METHODS

3.1 Numerics

The majority of current large scale ice sheet models are based on the SIA, where ice

flow is driven by gravity and almost no shearing exists near the surface. A higher-order

ice sheet model is one that considers longitudinal stresses in addition to horizontal

plane shear stress [Pattyn and Payne, 2006]. Furthermore, lower-order models do not

account for interactions at the margins of sliding ice or downstream obstacles. As a

result, these models do a poor job of modeling these situations.

Though current higher-order models do consider additional stresses, they also make

reductions in the numerics to reduce complexity. For example, the model proposed by

Pattyn in 2003 applies the hydrostatic approximation in the vertical, implying that

variational stress is neglected [Pattyn, 2003]. Our model makes no such assumptions,

including all relevant stresses. A discussion of the numerics of our model follows.

3.1.1 Field Equations

As discussed in chapter 2, the flow of a fluid is described by the Navier-Stokes

equations. The flow of ice, considered a non-Newtonian fluid with a non-linear vis-

cosity, is described by a simplified version of Navier-Stokes, called simply the Stokes

equations. The equations are based on Newton’s second law, which states that the

net force on an object is proportionate to the rate of change of its linear momentum,
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most commonly written as

F =
d

dt
(mv), (3.1)

where F is the net force, m is the mass of the object, and v is the velocity vector.

Following directly from Newton’s second law, the Stokes equations represent con-

servations of mass and momentum, written as

∇ · v = 0, (3.2)

∇ · σ = F, (3.3)

where ∇ is a vector differential operator written as

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂, (3.4)

v is the velocity vector (u,v,w), σ is the stress tensor, and F is the external force.

For the domain being modeling, we are concerned with stress, which is force per unit

area, written as

F = ρg. (3.5)

where g is gravitational acceleration and ρ is the density of ice.

The stress tensor, σ is a three dimensional array which describes the various stresses

acting on the ice, written as

σ =




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




(3.6)

where the subscripts indicate the axis perpendicular to the plane the force is acting
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Table 3.1 Constants Used in the Model
Symbol Constant Value Units

ρ ice density 910 kg m−3

g gravitation constant 9.81 m s−2

A ice ‘hardness’ 1e−16 Pa−3a−1

L length of domain experiment specific m
n exponent in Glen’s flow law 3
ε prevents floating-point overflow 1e−18

upon as well as the direction of the force. For example, σxy represents a force acting

perpendicular to the x axis in the y direction. It is important to note that σii are

normal stresses and the remaining terms represent shear stress. Furthermore, there

is redundancy due to symmetry, where σij = σji.

Treating ice as an incompressible fluid with constant density, the equation for

conservation of momentum can be rewritten as

∇ · σ = ρg, (3.7)

by substituting known quantities into equation 3.3.

By considering a Cartesian coordinate system (x, y, z) with the z-axis denoting

the vertical dimension, we can also rewrite conservation of mass (3.2) as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (3.8)

Furthermore, by applying the same coordinate system and considering gravitational

acceleration only important in the vertical direction, momentum conservation (3.3)
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becomes

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= 0, (3.9)

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

= 0, (3.10)

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

= ρg. (3.11)

Next, we introduce Glen’s flow law, also referred to as the constitutive law of ice.

It relates stress to strain rate as follows,

ε̇ij = Aτn−1
e τij (3.12)

where ε̇ij is the strain rate, A is the flow parameter, τe is the second invariant of

the stress tensor, n is the flow law constant, and τij is the deviatoric stress tensor (σ

with influence from pressure removed). In this model, we only consider isothermal

experiments; the value for A is constant. The constants are used in this model are

summarized in table 3.1.

In modeling ice sheets, we are primarily concerned with shearing forces acting on the

ice mass. As such, it is convenient to separate the stress tensor into two components.

This is accomplished by subtracted the mean normal pressure component, resulting in

τij, the deviatoric stress tensor [Lund, 2000]. The mean normal pressure component

is written as

Pmn = −σxx + σyy + σzz
3

, (3.13)

where the normal stresses are summed and averaged. The effect of mean normal



20

stresses are then removed, leaving

τ = σ + IPmn, (3.14)

where I is the 3x3 identity matrix. This scheme emphasizes the forces of shearing

rather than pressure.

The dynamic viscosity of ice is directly related to the constitutive law, written as

η =
1

2
A−1/n(ε+ ε̇e)

(1−n)/n), (3.15)

where ε̇
(1−n)/n)
e is the second invariant of the strain rate tensor and ε is a small constant

(1e−18) which ensures finite viscosity. Finally, we can relate the deviatoric stress to

viscosity and strain rate as follows

τij = 2τ ε̇ij, (3.16)

which concludes our treatment of field equations.

3.1.2 Boundary Conditions

For experiments conducted here, periodic boundary conditions are used at the edges

of the domain, simulating an infinite system. In the 2D case, what flows out the right

side flows into the left. The surface of the ice is considered stress-free, described as

σ · ns = 0, (3.17)
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where ns is the normal vector to the surface. The bed is a no-slip boundary, written

as

v = 0, (3.18)

meaning there is no velocity over the bedrock in any direction.

However, for some experiments, ice is allowed to slide over the bed. Basal sliding

is achieved through a friction coefficient and the following friction law,

β2t · v = t · (σnb) (3.19)

where β2 is a positive scalar quantity, t are the unit tangent vectors, and nb are the

unit normal vectors pointing into the bedrock [Pattyn et al., 2008].

3.1.3 Coordinate Transformation

For numerical convenience and to improve element quality in the finite element

solver, this model works on a transformed domain. Rather than explicitly defining

the domain, a 1x1 square (in the 2D case) or a 1x1x1 cube (in the 3D case, see figure

3.1) is used and a transformed coordinate system captures the true geometry. The

transformation, described here in two dimensions, but easily extended to three, maps

(x, z) → (x′, z′) where

x′ =
x

L
, (3.20)

z′ =
z − b
s− b , (3.21)

where L is the horizontal extend and s and b represent the surface and bed. The

vertical coordinate z′ is defined such that z′ = 1 at the surface and z′ = 0 at the bed.
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Figure 3.1 A conceptual model of the coordinate transformation in three
dimensions.

In addition to coordinate scaling, all function derivatives must also be transformed

to reflect the change in coordinates. Using the chain rule, the derivatives for x and z

transform to

∂f

∂x
=

∂f

∂x′
∂x′

∂x
+
∂f

∂z′
∂z′

∂x
, (3.22)

∂f

∂z
=

∂f

∂x′
∂x′

∂z
+
∂f

∂z′
∂z′

∂z
, (3.23)

where the simple derivatives, ∂z′/∂z, ∂x′/∂x, and ∂x′/∂z are written as

∂z′

∂z
=

∂

∂z

(
z − s
H

)
=

1

H
, (3.24)

∂x′

∂x
=

∂

∂x

(
x

L

)
=

1

L
, (3.25)

∂x′

∂z
=

∂

∂z

(
x

L

)
= 0. (3.26)
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The derivation of ∂z′/∂x is less straightforward and shown below for clarity.

∂z′

∂z
= (z − b) ∂

∂x
+

1

(s− b)
∂

∂x
(z − b)

= − (z − b)
(s− b)2

(
∂s

∂x
− ∂b

∂x

)
− 1

(s− b)
∂b

∂x

= −(z − b)
(s− b)

1

(s− b)
(
∂s

∂x
− ∂b

∂x

)
− 1

H

∂b

∂x

= − z
′

H

(
∂s

∂x
− ∂b

∂x

)
− 1

H

∂b

∂x

= − 1

HL

(
(1− z′) ∂b

∂x
+ (z′)

∂s

∂z

)
(3.27)

Finally, we introduce a convenience variable ax = ∂z′/∂x [Pattyn, 2003].

The complete form of the first order derivatives can be find using substitution into

equations 3.22 and 3.23, written as

∂f

∂x
=

1

L

∂f

∂x′
+ ax

∂f

∂z
, (3.28)

∂f

∂z
=

1

H

∂f

∂z
. (3.29)

Finally, the second order derivatives are shown below. The derivation of bx,

∂2f/∂x2, ∂2f/∂z2, and ∂2f/∂z∂x can be obtained using an approach similar to that
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employed in finding the first order derivatives [Pattyn, 2003].

bx =
1

L

∂ax
∂x′

+ ax
∂ax
∂z′

, (3.30)

∂2f

∂x2
=

1

L

∂2f

∂x′2
+

2ax
L

∂2f

∂z′∂x′
+ a2

x

∂2f

∂z′2
+ bx

∂f

∂z′
, (3.31)

∂2f

∂z2
=

1

H2

∂2f

∂z′2
, (3.32)

∂2f

∂z∂x
=

1

HL

(
∂f

∂z′∂x′
+ Lax

∂2f

∂z′2
− 1

H

∂f

∂z′
∂H

∂x′

)
. (3.33)

3.2 COMSOL Multiphysics

Now that the numerical methods have been specified, they need to be implemented

and integrated into Comsol. One can begin from the fluid mechanics mode, how-

ever there are several key changes and additions required. The first step in setting

up the model is defining the geometry of the subdomain and establishing periodic

boundary conditions. Next, a user must add required constants, scalar expressions,

subdomain and boundary settings, as well as modifying the equation system for both

the subdomain and boundaries.

3.2.1 Constants

Our model has several parameters that do not change during a simulation. These

are stored in Comsol as constants, which are accessible everywhere in the application.

Constants are defined in one location for easy reference and modification. Figure 3.2

shows a screenshot of the constants used for a specific model run, and includes the

physical constants specified in table 3.1 as well as several convenience variables. Any

additional constants required for an experiment are to be included here as well.
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Figure 3.2 The dialog where model constants are added.

3.2.2 Scalar Expressions

Equations that support the model are entered as scalar expressions. These define

expressions such as the surface, bed, ice thickness, as well as the numerous deriva-

tive transformations. As with constants, scalar expressions are convenience variables

which provide the facility to easily make changes and add new expressions. Further-

more, scalar expressions persist outside of the sub domain (defined by the boundaries

of the geometry), insulating them from domain changes.

The scalar expressions also include Comsol specific variables. For example, in

Comsol ux stands for ∂u/∂x, px stands for ∂p/∂x, and so forth. Also present in the

scalar expressions are built-in functions such as sin and atan which are the sine and

arctangent functions, as well as and diff which computes derivative values. Figure

3.3 shows a screen shot of the scalar expressions used for a particular experiment.

Note how the equations defined as scalar expressions reference model constants.

For consistency, similar naming conventions are used for introducing new variables

which mimic the structure of Comsol expressions. For example, uxp is short for

ux′ and represents ∂u/∂x′. Likewise, uxxp represents ∂u/∂x′∂x′, with the rest of

the expressions easily identified by applying this convention. Adopting this naming

scheme allows for simplicity and readability when replacing the terms in the under-
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lying physics of the system.

Figure 3.3 The dialog where scalar expressions are added.

A final important note is the implementation of the dynamic viscosity of ice, η,

present in the scalar expressions. It is labeled eta nonlinear, and is described in

terms of velocity derivatives and constants A, n, and ε, defined as Comsol constants.

This term is responsible for the highly non-linear situation, where velocity values are

needed to define the viscosity, while simultaneously the viscosity must be known in

order to solve for velocity.

3.2.3 Subdomain Settings

Subdomain settings define several important parameters for the simulation. It is

here where the density, viscosity, and external forces are entered. Furthermore, initial

conditions are defined here, shown in figure 3.5. The parameters used for this model

are shown in figure 3.4. Again, notice the use of constants and scalar expression in
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defining the subdomain settings. As discussed in section 3.1.1, the driving force in

the simulation is gravitational acceleration in the z direction.

Figure 3.4 The dialog where subdomain changes are made.

Additionally, the subdomain settings window is the location where Stokes flow

is activated. By default, Comsol is set to Navier-Stokes mode when solving a fluid

flow problem. However, as discussed in chapter 2, ice is best represented by a reduced

version of Navier-Stokes, referred to as the Stokes equations. By setting the value of ρ

equal to zero in the subdomain settings, the equation for conservation of momentum

is effectively reduced to that described by Stokes flow. The density of ice is captured

by the force term Fz.

3.2.4 Boundary Settings

In order to proceed with an simulation, the conditions at the boundaries must be

specified. The boundary settings dialog is where boundary conditions are defined. For

example, if the ice is frozen to the bedrock, a no-slip boundary is applied to the bed,

as shown in figure 3.6. Notice the equation displayed in the upper left, which defines

the behavior for the bed. This is in agreement with equation 3.18. For simulations
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Figure 3.5 The dialog where initialization parameters are set.

where sliding is allowed, the bed is defined as a stress boundary and modifications

are made to the boundary equation system, described in section 3.2.5.2.

Figure 3.6 Setting a no slip surface boundary.

The boundaries at the surface and sides are most commonly set as open, stress free

boundaries, shown in figure 3.7. Notice the equation in the dialog appears different

than equation 3.17. By setting the quantity f0 = 0, we reduce the right hand side to

zero, while changes previously made to the subdomain settings are in effect, modifying
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the left hand side to the desired expression. This type of condition implies no stress

at the boundary.

3.2.5 Equation System

After specifying model constants/scalar expressions and defining subdomain/boundary

settings, changes to the equation system must be made. Comsol performs simula-

tions on the geometry defined, so changing the equation system is required in order to

achieve the coordinate transformation. Without modifications, the simulation would

be carried out for the explicit geometry rather than the transformed domain.

Figure 3.7 Setting an open boundary.

3.2.5.1 Subdomain Equations

The physics behind the model are implemented as subdomain equations. More

specifically, Stokes flow is implemented by the subdomain equations. In order to ac-

commodate the coordinate transformation, the function derivatives in the subdomain

equation system must be updated. Our transformed derivatives, which are defined as

scalar expressions, will need to replace the default numerics supplied by Comsol.
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However, not every term in the equation system must be modified. The important

terms are F, Γ, V ns, and divU ns, the last two being vorticity and divergence of

velocity, located under the Variable tab. After these have been specified, clicking the

Differentiate button will propagate all the necessary changes to the other terms. The

other terms are of lesser importance, as they are derived from F and Γ. Figure 3.8

shows the dialog where changes are made to the subdomain equation system.

Figure 3.8 The dialog where subdomain equation changes are made.

Outside of simply changing every occurrence of a function derivative to its trans-

formed variety, other changes must be made. This is due to the following equation in

Comsol,

∇ · Γ = F. (3.34)

The problem lies in Comsol using ∇ = ∂/∂xî + ∂/∂zĵ for the explicitly defined

geometry, rather than our ∇′ = ∂/∂x′̂i+ ∂/∂z′ĵ which reflects the coordinate trans-

formation. Modifications to F and Γ are required to reconcile this difference.

The first step is to modify F so the external forces are acting on the transformed
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geometry. The modification to F is as follows

F1 = Fx − ax−2η(∂u/∂x′) + p

dz
, (3.35)

F2 = Fz − ax−η(∂w/∂x′)(∂u/∂z′)
dz

, (3.36)

where F3 remains unchanged. These modifications reflect the difference between the

true force as calculated by Comsol and a small amount of additional force present

in the true geometry.

Next, Γ is updated to reflect the change of coordinates. Primarily, the changes

involved using the transformed derivatives, but we also introduce scaling terms, re-

quired by the substitution of ∇′. Changes to Γ are

Γ11 = (−2η(∂x/∂x′) + p)/L, (3.37)

Γ12 = (η(∂x/∂z′) + (∂w/∂x′))/H, (3.38)

Γ21 = (η(∂w/∂x′) + (∂u/∂z′))/L, (3.39)

Γ22 = (−2η(∂w/∂z′) + p)/H, (3.40)

Γ31 = 0, (3.41)

Γ32 = 0. (3.42)

Finally, the equations for vorticity and divergence of velocity must be updated with

the transformed derivatives. This step simply changes the default function derivatives

to the transformed derivatives we defined as scalar expressions. With these changes in

place, the underlying physics will be in agreement with the coordinate transformation.
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3.2.5.2 Boundary Equations

In addition to the subdoimain equations, changes to the boundary equations for the

surface need to be made to account for the coordinate transformation. Since Comsol

calculates surface normal vectors based on the geometry defined, our transformed

domain would lead to incorrect normals. In order to overcome this circumstance, we

must compute normal vectors for the true surface, calculated as follows,

ss =

(
ds

dx

)
/L, (3.43)

ns′x = − ss√
1 + s2

s

, (3.44)

ns′z =
1√

1 + s2
s

. (3.45)

where ss is the slope of the surface, and ns′x and ns′z are the x and z component of

the vector normal to the surface.

Figure 3.9 The dialog where boundary equation changes are made.

Once the normals vectors are calculated, they must be added to the boundary

equations dialog box, shown in figure 3.9. The term of interest in the equation system
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is G, which must be modified if the model is to reflect the proper surface normals.

The modifications needed for correct surface normals are

G1 = (−nsx + ns′x)((−2η
∂u

∂x′
+ p)/L) + (−nsz + ns′z)(η(

∂u

∂z′
+
∂w

∂x′
)/H), (3.46)

G2 = (−nsx + ns′x)(η(
∂w

∂x′
+
∂u

∂z′
)/L) + (−nsz + ns′z)((−2η

∂w

∂z′
+ p)/H), (3.47)

G3 = 0. (3.48)

For simulations that require basal sliding, changes must also be made to the bound-

ary at the bed. The same problem of miscalculated normals present in the surface

exist at the bed. A similar approach must be employed in finding the bed normals,

calculated as

bs =

(
db

dx

)
/L, (3.49)

nb′x = − bs√
1 + b2

s

, (3.50)

nb′z =
1√

1 + b2
s

. (3.51)

where bs is the slope of the bed, and nb′x and nb′z are the x and z component of the
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vector normal to the bed. The changes to G are as follows

G1 = ηnbz(
∂u

∂z′
+
∂w

∂x′
)/H + η(nb′2x − nb′2z )(

∂u

∂z′
+
∂w

∂x′
)− . . . (3.52)

2nb′xnb
′
z(2η

∂u

∂x′
)− (−unb′z + wnb′x)β

2,

G2 = −nbz(−2η
∂w

∂z′
+ p)/H + η(nb′2x − nb′2z )(

∂u

∂z′
+
∂w

∂x′
)− . . . (3.53)

2nb′xnb
′
z(2η

∂u

∂x′
)− (−unb′z + wnb′x)β

2,

G3 = 0. (3.54)

These changes complete the Comsol implementation.
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CHAPTER 4 RESULTS

4.1 Verification

It is critical that we take measures to ensure our model is working correctly. Tradi-

tionally, this is done by comparing model results with observed data. However, that

would require high resolution historical data spanning 100,000 years. In the absence

of physical data for comparison, we must rely on established solutions. Current crite-

rion exist in the form of a set of structured experiments. The research presented here

focuses on verification using the Ice Sheet Model Intercomparison Project - Higher-

Order Models.

4.1.1 ISMIP-HOM

In order to establish benchmarks and detect weaknesses in the numerical methods of

higher-order ice sheet models, the Ice Sheet Model Intercomparison Project - Higher-

Order Models (ISMIP-HOM) was released in early 2006. The project is a set of

experiments released to the public - any modeler who wanted to participate was

welcome. Though each experiment was specified in detail, each participant was free

to use techniques of their choice in reaching a solution – as long is it was considered a

higher-order model. The experiments are accessible for many types of models, valid

for both finite element and finite difference methods, and are independent of grid type

(regular or irregular) [Pattyn and Payne, 2006].
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Twenty contributors submitted results, which were published in The Cryosphere

Discussions in 2008. Of the twenty participants, twelve used full Stokes models.

These models showed a particularly strong agreement with each other as well as

with analytical solutions1 [Pattyn et al., 2008]. This makes these experiments an

excellent resource for verifying the correctness of this work. Due to the success of

the ISMIP-HOM, the experiments have become a valuable resource for verification.

This research will primarily be focused on verification with one of the submittors, Dr.

Jesse Johnson, due to the availability of both his model and data.

4.1.1.1 Experiment B

Experiment B considers a slab of ice with mean thickness H = 1000 with a linearly

sloping surface. The basal topography consists of a series of sinusoidal bumps. The

geometry is defined as

zs(x, y) = −x tan(α), (4.1)

zb(x, y) = zs(x, y)− 1000 + 500 sin(ωx), (4.2)

where α = 0.5◦ and ω = 2π/L. The experiment is performed for domains of increasing

length, with L = 5, 10, 20, 40, 80, and 160 km.

Periodic boundary conditions are implemented at the edges, with the sides and the

surface being open, stress free boundaries. The ice is frozen to the bedrock in this

experiment, corresponding to no velocity (vb = 0) at the bed. An example domain

where L = 40,000 m is shown in figure 4.1.

The surface velocity for all length scales is shown in figure 4.2. There is a high

1An analytical solution exists for only one of the experiments, which was not considered in this
work.
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Figure 4.1 An example domain for ISMIP-HOM experiment B with L =
40,000 m.

level of variability in the solutions for shorter domains of L = 5 and L = 10 km.

However, the differences present are influenced by the type of model used. The full

Stokes models, denoted as FS in the legend, agree strongly with each other. As the

horizontal extent of the topography increases, the variability in solutions reached by

different models decreases.

In addition to the variability in solutions, another interesting outcome is present in

the domain of length L = 5 km. While experiments conducted on domains of greater

length show a strong correlation in the qualitative shape of the curves, that is not

the case with the 5 km domain. While the results from full Stokes models are tightly

clustered, there is a much higher level of variability in the non-full Stokes solutions.

The extrema shown by the group of models denoted as NFS are considerably different

than that of the majority of full Stokes and other non-full Stokes models alike. This

sort of discrepancy between models appears unique to the dimensions of this particular
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Figure 4.2 Results for ISMIP-HOM experiment B. Surface velocity for dif-
ferent length scales L [Pattyn et al., 2008]. Our results shown
in red.

domain.

Surface velocity for all domain lengths produced by our model is shown in red in

figure 4.2. A cursory glance reveals that our results are equivalent to those produced

by full Stokes models. However, as with the published data, intricacies in the results

are found in the smaller domains. For domains greater than L = 10 km, our results are

highly similar. The velocities on the 10 km domain are also quite similar, with only

a small dip near x = 0.75 that appears slightly more exaggerated on the transformed

geometry. The same pronounced dip in velocity is present on the 5 km domain.

However, our results are tightly clustered with other full Stokes solutions.

An emerging trend suggests that domains with a large aspect ratio are more diffi-

cult to model. It is promising that full Stokes models are reaching nearly the same

solutions. However, the other groups of models are also computing results in agree-



39

ment with each other, though at times contrasting with full Stokes solutions. Without

an analytical solution, we are left to speculate as to which solution is more believable

or realistic. Answering this question remains a priority in the field.

Figure 4.3 ISMIP-HOM results for experiment B. Surface velocity for differ-
ent length scales L [Pattyn et al., 2008]. Shaded area represents
one standard deviation from the mean from full Stokes models.
Our results shown in blue.

Figure 4.3 represents a more quantitative look at the results. The shaded area

depicts one standard deviation from the mean of all full Stokes models. As expected,

the smaller domains of L = 5 and L = 10 km show the greatest variability. As

the domain length increases, the shaded region becomes smaller, becoming nearly

non-visible for the largest domains. Our results are shown in blue, located inside the

shaded region for all domain lengths. This demonstrates a strong agreement between
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our solution and the mean of full Stokes contributors to the ISMIP-HOM.

In addition to velocity, pressure is computed everywhere in the ice mass. However,

it turns out that pressure is not a very interesting result. This doesn’t come as

a surprise, as our model is concerned with deviatoric stress, where influence from

pressure is removed. Figure 4.4 shows pressure at the bed for L = 40 km for both

the true and transformed domains. Pressure is identical in both instances. In fact,

pressure is always the same regardless of domain length. Researchers in the field are

primarily interested in flow, so the focus for the remainder of the work will be on

velocity.

Figure 4.4 Pressure at the bed for ISMIP-HOM experiment B from both
the true and transformed domain with L = 40 km.

With our focus narrowed, we investigate the full velocity field rather than a cross

section. Figure 4.5 depicts the results from Johnson’s model. A trend is clearly

visible; velocity is fastest where the ice is thickest and slows in thin areas. We also

see a velocity gradient present that increases from the bed up towards the surface,

due to ice frozen to the bedrock. Velocity increases along with horizontal extent,

however not in a linear fashion, summarized in table 4.1.
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Table 4.1 Maximum Velocity for ISMIP-HOM Experiment B (m/yr)

True Domain Transformed Domain

L = 5 km 12.261 12.252
L = 10 km 24.553 24.286
L = 20 km 47.564 47.481
L = 40 km 73.828 73.801
L = 80 km 94.857 95.052
L = 160 km 108.021 108.468

The same trend present in the solution from Johnson’s model appears in our results.

This is positive confirmation that our transformed domain is “feeling” the effects of the

topography. Our results are almost identical, both qualitatively and quantitatively,

disagreeing by only tenths of a meter per year. Interestingly, the differences found in

the surface velocity for the 5 km domain are not as obvious in the full velocity field.

Across all lengths of domains, the full velocity fields tend to agree slightly better than

comparing only surface velocity. This implies we might need to employ more careful

treatment with respect the boundary conditions at the surface. Figure 4.6 shows the

velocity fields for the transformed domain.

Our results for ISMIP-HOM experiment B are encouraging; our model produces

output that is in agreement with established solutions. It appears a limitation of our

model exists for domains of high aspect ratio. It is difficult to reach that conclusion

though, as it is unclear how to measure the accuracy of our outcome when no ana-

lytical solution exists. It is entirely possible that our solution is more realistic than

the current benchmarks, but also possible our results are less plausible. Furthermore,

the differences in surface velocity between our model and others also give us cause

for concern. However, it is clear that these perceived shortcomings are minor and our

model is performing well.
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Figure 4.5 Velocity field (m/yr) results from ISMIP-HOM experiment B
with Johnson’s model for different length scales L.

Figure 4.6 Velocity field (m/yr) results from ISMIP-HOM experiment B
with the transformed domain for different length scales L.
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4.1.1.2 Experiment D

Experiment D involves ice flow over simple topography where the surface and bed

are linear and parallel. The surface and bed are described by

zs(x, y) = −x tan(α), (4.3)

zb(x, y) = zs(x, y)− 1000. (4.4)

Again, periodic boundary conditions exist at the edges and the surface is an open

boundary. What is unique about this experiment is the ice is allowed to slide over

the bed. The basal friction field is defined as

β2 = 1000 + 1000 sin(ωx). (4.5)

where ω = 2π/L. A high value for β2 corresponds to a large amount of friction

between the ice and bedrock.

Whereas the previous exercise was concerned with the effect of topography on the

flow of ice, this experiment is interested in the influence of basal sliding. The domain,

shown in figure 4.7, is a simplistic one. By eliminating surface and bed features,

the effects of sliding are isolated. Where the friction is very high, the ice is nearly

frozen to the bed. However, when the friction is low we expect the ice to speed up

dramatically in that region.

The maximum velocity found by both Johnson’s and our model is shown in figure

4.8 and summarized in table 4.2. Unlike the previous experiment, there is large

amount of discrepancy in the outcomes. Other than the maximum velocity increasing

with length of domain, there is no common trend in the data produced by the two

models. Excluding the 40 and 160 km domains, our model predicted higher velocities
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Figure 4.7 An example domain for ISMIP-HOM experiment D with L =
40,000 m.

than Johnson’s. However, the results from our model implies there is an asymptotic

limit to the velocity whereas Johnson’s solution implies no such bound. Our data

seem more consistent with the results from experiment B, which also showed velocities

approaching an upper limit.

Curiously, the two models reach almost identical solutions for the 40 km domain.

Johnson’s model reaches this outcome with a considerable speed increase from the

Table 4.2 Maximum Velocity for ISMIP-HOM Experiment D (m/yr)

True Domain Transformed Domain

L = 5 km 8.559 16.438
L = 10 km 9.04 20.672
L = 20 km 12.284 28.373
L = 40 km 40.969 40.259
L = 80 km 61.202 96.075
L = 160 km 150.272 105.94
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Figure 4.8 Maximum velocity for ISMIP-HOM experiment D for both the
true and transformed domain for all lengths L.

20 km domain, equivalent to a 234% increase. Our model, however, depicts only a

42% increase for the same domain change. Due to the large variability in the other

data points, the near perfect correlation for the 40 km domain is likely attributed to

coincidence.

Figure 4.9 shows the surface velocities for all domain lengths. There is a much

higher level of variability present in this experiment than found in experiment B, both

between the different types of models and in results obtained from the same model

type. This implies that different schemes exist for handling sliding, which produce

contrasting outcomes. Our results, shown in red, appear to blend in well with the

ISMIP-HOM contributors in all domains except L = 160 km. From analyzing the

160 km domain, it is clear that our solution is wrong for that domain.

Taking a closer look at how our results compare to the modelers of the ISMIP-HOM,

figure 4.10 shows our results compared with the mean of all full Stokes models. In
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Figure 4.9 Results for ISMIP-HOM experiment D. Surface velocity for dif-
ferent length scales L [Pattyn et al., 2008]. Our results shown
in red.

contrast to experiment B, the shaded area representing one standard deviation from

the mean is quite large for all domains. For the domains L = 5, L = 10, and

L = 80km, our results (shown in blue) lie inside the shaded area, demonstrating

strong agreement with other full Stokes modelers. However, the other three domains

show significant portions of our results lying outside of the shaded region. It is clear

that the magnitude of the velocities found using our model are inconsistent with the

mean of the ISMIP-HOM contributors.

Continuing the comparison between models, next we investigate the similarities

and differences in the full velocity fields. Rather than considering all six domains as

in experiment B, here we focus on one short and one long domain, the 5 an 80 km

specifically. Figure 4.11 shows the velocity field for the true and transformed 5 km

domain. Qualitatively, the results are very similar. Both depict a region of slower
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velocity due to high friction at the border of the right side and continuing into the

left. Furthermore, the streamlines look quite similar for both. Clearly, the spatial

element of sliding is being captured by our model while it appears to struggle with

the magnitude.

Figure 4.10 ISMIP-HOM results for experiment B. Surface velocity for dif-
ferent length scales L [Pattyn et al., 2008]. Shaded area rep-
resents one standard deviation from the mean from full Stokes
models. Our results shown in blue.

The results from the 80 km experiment are consistent with those from the 40 km

domain. Visually, our results look very similar to Johnson’s, with an area of increased

velocity near the right side. The streamlines are also fairly agreeable between the two,

becoming more and more sinusoidal as the distance from the bed increases. This is

further indication that our model is accommodating basal sliding.
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Figure 4.11 Velocity field for ISMIP-HOM experiment D for both the true
and transformed domain with L = 5 km. Streamlines are indi-
cated in white.

Figure 4.12 Velocity field for ISMIP-HOM experiment D for both the true
and transformed domain with L = 80 km. Streamlines are
indicated in white.
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Defining and implementing sliding is still relatively unknown to ice sheet modelers.

It was the most difficult aspect of implementation for us, as we were never able

to reach convergence with the non-linear solver. However, we were able to reach

a solution by setting the dynamic viscosity to a realistic constant. There are two

possible reasons for this. First, Comsol is unable to reconcile the numerics on the

transformed domain. Second, and more likely, there is an error present in our scheme.

As a result of our simplification of viscosity, our results are to be viewed in a

speculative context. By using a constant viscosity, the exact values of the velocity

become less meaningful. However, the distribution of velocity across the ice mass

predicted by our model is unaffected by the constant viscosity, due to very little

deformation occurring when ice is allowed to slide. Our model appears to excel at

predicting the spatial and qualitative effects of basal sliding. Ironing out the issues

in sliding remains a focus of our work.
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4.1.1.3 Experiment E

Experiment E simulates a temperate glacier in the European Alps named Haut

Glacier d’Arolla. In this experiment, the surface and bed are governed by external

data physically taken from the glacier. The bed has zero basal velocity (β2 =∞,vb =

0) and there are no boundary conditions at the edges, where the thickness and velocity

are zero. The domain is depicted in figure 4.13.

Figure 4.13 The domain for ISMIP-HOM experiment E, Haut Glacier
d’Arolla in the European Alps.

The boundary conditions at the edges present a problem for our model. Due to

the coordinate transformation, there are scaling terms of 1/H occurring numerous

times in the equation system. This creates a conflict when there are areas of ice with

zero thickness, as dividing by zero often causes problems with computer simulations.

Rather than modifying our model by adding a small epsilon value to the numerous

occurrences of 1/H, we modified the data slightly so there were no locations in the
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ice mass with zero thickness.

Figure 4.14 shows the surface velocity from the contributors to the ISMIP-HOM

with our results in red and blue. There is a strong agreement between the submittors

to the ISMIP-HOM, evidenced by the similar surface velocity as well as the narrow

shaded area in the graph on the right, denoting one standard deviation from the

mean. Our results, while similar, fall outside of one standard deviation for most

values of x. This slight difference further suggests an error present in our scheme. In

addition, there is an interesting occurrence near the bottom right corner where our

model appears to overlook a sharp decrease in velocity, instead showing a smooth

reduction. This is minor, however, and most likely attributed to our model using

finite thickness at the edges.

Figure 4.14 Left: Arolla surface velocity (m/yr). Right: Shaded area de-
picts one standard deviation from the mean [Pattyn et al.,
2008]. In both cases, our results are shown in red.

The full velocity fields are displayed in figure 4.15. For this simulation, a reader

must really use their imagination to see the similarities in the results. This is a artifact
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of the coordinate transformation; one must imagine the solution for the transformed

domain stretched considerably in the horizontal. The same velocity distribution is

present in both, with the fastest moving ice near the center where it is thickest, then

slowing down to nearly zero over the last 20%. Our model is predicting slightly slower

values than Johnson’s model, particularly in higher velocity areas.

Figure 4.15 Comparison of Arolla velocity field (m/yr) for both the true
and transformed domains.

Successfully modeling this scenario is a promising result. If our model was unable

to handle geometry measured from real glaciers, one would be entirely justified in

questioning its value. However, we have demonstrated the capability of modeling do-

mains existing in nature, a necessary step if we are to model areas in Greenland and

Antarctica in the future. As with the previous two experiments, there are slight incon-

sistencies in our solutions which may be attributed to an error in our implementation

– such as our treatment of boundary conditions – or may be of no consequence.
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CHAPTER 5 CONCLUSIONS AND FUTURE

DIRECTIONS

5.1 Conclusions

The verification of our model around a structured set of experiments has demon-

strated its ability to handle a range of different scenarios. It excelled at modeling

the simple topography of experiment B, producing results that match our conceptual

understanding of ice flow as well as the efforts of the ice sheet modeling commu-

nity. Basal sliding proved a more difficult dynamic to capture, but our results are

promising. It appears that minor changes are all that is necessary to remedy the

shortcomings. Lastly, implementing the Arolla experiment highlighted the ability of

our model to handle realistic topography. It is clear from the analysis that our model

is performing well.

In addition to the strengths of our model, we have learned several weaknesses. This

knowledge is almost more important, as it provides focus for improvement. The major

flaw in our model occurs when ice is allowed to slide over the bed. While our results

show realistic velocity distribution, we were unable to reach a solution using a non-

linear viscosity. The model would come tantalizingly close to convergence, suggesting

that only a small error persists.

The results from verification also indicate other errors might exist. We would expect

our results to match closely with those achieved by other full Stokes models, though
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our solutions were slightly different, specifically in the Arolla experiment. This may

be attributed to Comsol being unable to reconcile the numerics on the transformed

domain, leading to slight deviations in outcome. However, our results suggest that

the source is our treatment of the boundary conditions. Specifically, in the translation

between the true and transformed normal vectors and the required modification to

the equation system.

In light of the shortcomings, the most important conclusion is a positive one. Our

model has demonstrated the ability to handle various scenarios using a transformed

coordinate system. This type of scheme will ultimately allow for greater power and

flexibility, as the uniform dimensions of the geometry reduces variability and produces

a superior triangular mesh. This is especially pivotal for performing time dependent

experiments, where the domain is free to evolve over time. Our efforts lay the ground-

work for these types of simulations in the future.

5.2 Future Directions

Undoubtedly, there are many avenues for future work. The work described here

represents our first efforts, the initial step in an iterative process of development.

However, the logical next step would be a careful review and analysis of the numerics

of our model and the resulting implementation. This would be most beneficial with

an emphasis on improving the boundary conditions and rectifying the mechanics of

basal sliding.

In addition, it would be helpful and beneficial to “un-transform” the results for

visualization purposes. In other words, the results would be viewed on the true

geometry, rather than the unit square. This would make results much clearer, as it

would be easier to draw conclusions in the proper geometric context. Furthermore,
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one could perform a quantitative comparison between our results and others if they

were on a similar grid. Our current comparison methods of full velocity fields are

strictly observational.

Beyond developing solutions to existing shortcomings, future work should focus

on extending the applicability of the model. Though our work focused on two-

dimensional experiments, it is critical to have a model capable of three-dimensional

simulations. The transition to three-dimensional domains appears to be straightfor-

ward, as the numerics of our model are specified generically and are easily extended.

Finally and most importantly, our model must be extended to work with exper-

iments of free surface evolution. Running time dependent simulations is critical,

especially in terms of predicting sea level change. In order to achieve this goal, our

flow model must coupled with thermodynamic elements. Fortunately, adding the ef-

fects of heat is considerably easier than solving for flow. This step is currently being

developed, and promising progress is being made.
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APPENDIX A Model Reports

The following pages contain model reports generated by COMSOL for each of the

three ISMIP-HOM experiments.



Domain transformation

1. Table of Contents

Title - Domain transformation
Table of Contents
Model Properties
Constants
Geometry
Geom1
Periodic Conditions
Solver Settings
Postprocessing
Equations
Variables

2. Model Properties

Property Value
Model name Domain transformation

Author Jesse Johnson and James Fishbaugh

Company University of Montana

Department Computer Science

Reference  

URL  

Saved date Mar 18, 2008 12:11:20 PM

Creation date Jan 25, 2008 11:40:16 AM

COMSOL version COMSOL 3.4.0.248

File name: /home/jfishbaugh/documents/research/ISMIP-HOM/expBtransform/2D/expBtransform_2D_40.mph

Application modes and modules used in this model:

Geom1 (2D)
Incompressible Navier-Stokes

2.1. Model description

This model uses a coordinate transformation to allow a 1x1 to represent more complicated geometry. This model incorporates a
no-slip bed as well as continuous boundaries on the sides. Equations for the surface and bed, along with the length of domain,
allow the square domain to mimic the true domain. Transformed velocity and pressure derivatives are used in place of the original
derivatives at Physics->Equation System->Subdomain Settings. In addition, transformed surface normals are inserted at
Physics->Equation Settings->Boundary Settings.

2.2. Model Result

In the simplest case, change the bed and surface equations as well as the length variable to represent the domain you are 
interested in modeling. For more complicated simulations, you may have to change boundary condtions as well.

3. Constants

Name Expression Value Description
L 40000  Length of domain (meters)

freq (2*pi)/L  Frequency

alpha 0.5*(pi/180)  Surface angle with horizontal

rho_ice 910  Density of ice

g 9.81  Gravity

epsilon 1e-18  Prevents numerical explosion in eta_nonlinear if gradients all zero

A 1e-16  Ice 'hardness'

n 3  Glen's flow law exponent

4. Geometry

Number of geometries: 1



4.1. Geom1

4.1.1. Point mode

4.1.2. Boundary mode



4.1.3. Subdomain mode

5. Geom1

Space dimensions: 2D

Independent variables: x, z, y

5.1. Scalar Expressions



Name Expression Description
bed surf-1000+500*sin(freq*x*L) Equation that defines the bed

surf -(x*L)*tan(alpha) Equation that defines the surface

eta_nonlinear 1/2*A^(-1/n) * (uxp^2 + .25*(uzp+ 
wxp)^2+epsilon)^((1-n)/(2*n))

Viscosity of ice

H surf-bed Thickness of ice

p0 rho_ice*g*H*(1-z) Initial pressure

theta atan(-1/(diff(surf,x))) Angle used for computing surface normals

ax -(z*diff(surf,x)+(1-z)*diff(bed,x))/(H*L) Transformed dz'/dx where 
z'=(z-bed)/(surf-bed)

uxp ux/L+ax*uz Transformed du/dx

wxp wx/L+ax*wz Transformed dw/dx

uzp uz/H Transformed du/dz

wzp wz/H Transformed dw/dz

bx diff(ax,x)/L+ax*diff(ax,z) Convienence derivative with respect to x

uxxp uxx/L^2+2*ax*uxz/L+ax^2*uzz+bx*uz Transformed d^2u/dx^2

wxxp wxx/L^2+2*ax*wxz/L+ax^2*wzz+bx*wz Transformed d^2w/dx^2

uzzp uzz/H^2 Transformed d^2u/dz^2

wzzp wzz/H^2 Transformed d^2w/dz^2

uzxp (uxz+L*ax*uzz-uz*diff(H,x)/H)/(H*L) Transformed d^2u/dxdz

wxzp (wxz+L*ax*wzz-wz*diff(H,x)/H)/(H*L) Transformed d^2w/dxdz

pxp px/L+ax*pz Transformed dp/dx

pzp pz/H Transformed dp/dz

nxp sin(theta) Calculates the x surface normals

nzp cos(theta) Calculates the z surface normals

5.2. Mesh

5.2.1. Mesh Statistics

Number of degrees of freedom 17547
Number of mesh points 1977

Number of elements 3832

Triangular 3832

Quadrilateral 0

Number of boundary elements 120

Number of vertex elements 4

Minimum element quality 0.692

Element area ratio 0.204



5.3. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

5.3.1. Application Mode Properties

Property Value
Default element type Lagrange - P

2
 P
1

Analysis type Stationary

Corner smoothing Off

Frame Frame (ref)

Weak constraints Off

Constraint type Ideal

5.3.2. Variables

Dependent variables: u, w, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,'w'), shlag(1,'p')

Interior boundaries not active

Locked Boundaries: 3

5.3.3. Boundary Settings

Boundary 1, 4 2 3
Type Open boundary Wall Open boundary

opentype ntotstress novisc ntotstress

stresstype totstress totstress ntotstress

5.3.4. Subdomain Settings

Locked Subdomains: 1

Subdomain 1
Integration order (gporder) 4 4 2

Constraint order (cporder) 2 2 1

Density (rho) 0

Dynamic viscosity (eta) eta_nonlinear

Volume force, z-dir. (F_y) -rho_ice*g

6. Periodic Conditions

6.1. Geom1

6.1.1. Source Boundary: 4

Name Value
Expression u

Transformation type Linear

Destination, Boundary 1 (Geom1) u

Source vertices 4, 3

Destination vertices 2, 1

Name ucon

6.1.2. Source Boundary: 4

Name Value
Expression w

Transformation type Linear

Destination, Boundary 1 (Geom1) w

Source vertices 4, 3

Destination vertices 2, 1

Name wcon

6.1.3. Source Boundary: 4

Name Value
Expression p



Transformation type Linear

Destination, Boundary 1 (Geom1) p

Source vertices 4, 3

Destination vertices 2, 1

Name pcon

7. Solver Settings

Solve using a script: off

Analysis type Stationary
Auto select solver On

Solver Stationary

Solution form Automatic

Symmetric auto

Adaption Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver

Parameter Value
Pivot threshold 0.1

Memory allocation factor 0.7

7.2. Stationary

Parameter Value
Linearity Automatic

Relative tolerance 1.0E-6

Maximum number of iterations 75

Manual tuning of damping parameters Off

Highly nonlinear problem On

Initial damping factor 1.0E-4

Minimum damping factor 1.0E-8

Restriction for step size update 10.0

7.3. Advanced

Parameter Value
Constraint handling method Elimination

Null-space function Automatic

Assembly block size 5000

Use Hermitian transpose of constraint matrix and in symmetry detection Off

Use complex functions with real input Off

Stop if error due to undefined operation On

Store solution on file Off

Type of scaling Automatic

Manual scaling  

Row equilibration On

Manual control of reassembly Off

Load constant On

Constraint constant On

Mass constant On

Damping (mass) constant On

Jacobian constant On

Constraint Jacobian constant On

8. Postprocessing



9. Equations

9.1. Boundary

Dependent variables: u, w, p

9.1.1. Boundary: 3

g coefficient

(-nx_ns+nxp)*((-2*eta_ns*uxp+p)/L)+(-nz_ns+nzp)*(-eta_ns*(uzp+wxp)/H)-diff(-2*eta_ns*uxp+p,z)*ax
(-nx_ns+nxp)*(-eta_ns*(wxp+uzp)/L)+(-nz_ns+nzp)*((-2*eta_ns*wzp+p)/H)-diff(-eta_ns*(wxp+uzp),z)*ax

0

9.2. Subdomain

Dependent variables: u, w, p

9.2.1. Subdomain: 1

Diffusion coefficient (c)

u w p
-diff(-2*eta_ns*uxp+p,uxp), 
-diff(-eta_ns*(uzp+wxp),uxp), 
-diff(-2*eta_ns*uxp+p,uzp), 
-diff(-eta_ns*(uzp+wxp),uzp)

-diff(-2*eta_ns*uxp+p,wxp), 
-diff(-eta_ns*(uzp+wxp),wxp), 
-diff(-2*eta_ns*uxp+p,wzp), 
-diff(-eta_ns*(uzp+wxp),wzp)

-diff(-2*eta_ns*uxp+p,pxp), 
-diff(-eta_ns*(uzp+wxp),pxp), 
-diff(-2*eta_ns*uxp+p,pzp), 
-diff(-eta_ns*(uzp+wxp),pzp)

-diff(-eta_ns*(wxp+upz),uxp), 
-diff(-2*eta_ns*wzp+p,uxp), 
-diff(-eta_ns*(wxp+uzp),uzp), 
-diff(-2*eta_ns*wzp+p,uzp)

-diff(-eta_ns*(wxp+uzp),wxp), 
-diff(-2*eta_ns*wzp+p,wxp), 
-diff(-eta_ns*(wxp+uzp),wzp), 
-diff(-2*eta_ns*wzp+p,wzp)

-diff(-eta_ns*(wxp+uzp),pxp), 
-diff(-2*eta_ns*wzp+p,pxp), 
-diff(-eta_ns*(wxp+uzp),pzp), 
-diff(-2*eta_ns*wzp+p,pzp)

0 0 0

Absorption coefficient (a)

u w p
-diff(-rho_ns*(u*uxp+w*uzp),u) -diff(-rho_ns*(u*uxp+w*uzp),w) -diff(-rho_ns*(u*uxp+w*uzp),p)

-diff(F_y_ns-rho_ns*(u*wxp+w*wzp),u) -diff(F_y_ns-rho_ns*(u*wxp+w*wzp),w) -diff(F_y_ns-rho_ns*(u*wxp+w*wzp),p)

-diff(-divU_ns,u) -diff(-divU_ns,w) -diff(-divU_ns,p)

Source term (f)

F_x_ns-diff(-2*eta_ns*uxp+p,z)*ax



F_y_ns-diff(-eta_ns*(wxp+uzp),z)*ax

-divU_ns

Conservative flux convection coeff. (al)

u w p
-diff(-2*eta_ns*uxp+p,u), 
-diff(-eta_ns*(uzp+wxp),u)

-diff(-2*eta_ns*uxp+p,w), 
-diff(-eta_ns*(uzp+wxp),w)

-diff(-2*eta_ns*uxp+p,p), 
-diff(-eta_ns*(uzp+wxp),p)

-diff(-eta_ns*(wxp+uzp),u), 
-diff(-2*eta_ns*wzp+p,u)

-diff(-eta_ns*(wxp+uzp),w), 
-diff(-2*eta_ns*wzp+p,w)

-diff(-eta_ns*(wx+uz),p), 
-diff(-2*eta_ns*wz+p,p)

0, 0 0, 0 0, 0

Convection coefficient (be)

u w p
-diff(-rho_ns*(u*uxp+w*uzp),uxp), 
-diff(-rho_ns*(u*uxp+w*uzp),uzp)

-diff(-rho_ns*(u*uxp+w*uzp),wxp), 
-diff(-rho_ns*(u*uxp+w*uzp),wzp)

-diff(-rho_ns*(u*uxp+w*uzp),pxp), 
-diff(-rho_ns*(u*uxp+w*uzp),pzp)

-diff(F_y_ns-rho_ns*(u*wxp+w*wzp),uxp), 
-diff(F_y_ns-rho_ns*(u*wxp+w*wzp),uzp)

-diff(F_y_ns-rho_ns*(u*wxp+w*wzp),wxp), 
-diff(F_y_ns-rho_ns*(u*wxp+w*wzp),wzp)

-diff(F_y_ns-rho_ns*(u*wxp+w*wzp),pxp), 
-diff(F_y_ns-rho_ns*(u*wxp+w*wzp),pzp)

-diff(-divU_ns,uxp), -diff(-divU_ns,uzp) -diff(-divU_ns,wxp), -diff(-divU_ns,wzp) -diff(-divU_ns,pxp), -diff(-divU_ns,pzp)

Conservative flux source term (ga)

(-2*eta_ns*uxp+p)/L, -eta_ns*(uzp+wxp)/H
-eta_ns*(wxp+uzp)/L, (-2*eta_ns*wzp+p)/H

0, 0

10. Variables

10.1. Boundary

Name Description Expression
K_x_ns Viscous force per area, x component eta_ns * (2 * nx_ns * ux+nz_ns * (uz+wx))

T_x_ns Total force per area, x component -nx_ns * p+2 * nx_ns * eta_ns * ux+nz_ns * eta_ns * (uz+wx)

K_z_ns Viscous force per area, z component eta_ns * (nx_ns * (wx+uz)+2 * nz_ns * wz)

T_z_ns Total force per area, z component -nz_ns * p+nx_ns * eta_ns * (wx+uz)+2 * nz_ns * eta_ns * wz

10.2. Subdomain

Name Description Expression
U_ns Velocity field sqrt(u^2+w^2)

V_ns Vorticity wxp-uzp

divU_ns Divergence of velocity field uxp+wzp

cellRe_ns Cell Reynolds number rho_ns * U_ns * h/eta_ns

res_u_ns Equation residual for u rho_ns * (u * uxp+w * uzp)+pxp-F_x_ns-eta_ns * (2 * uxx+uzz+wxz)

res_sc_u_ns Shock capturing residual for u rho_ns * (u * uxp+w * uzp)+pxp-F_x_ns

res_w_ns Equation residual for w rho_ns * (u * wxp+w * wzp)+pzp-F_y_ns-eta_ns * (wxx+uzx+2 * wzz)

res_sc_w_ns Shock capturing residual for w rho_ns * (u * wxp+w * wzp)+pzp-F_y_ns

beta_x_ns Convective field, x component rho_ns * u

beta_z_ns Convective field, z component rho_ns * w

Dm_ns Mean diffusion coefficient eta_ns

da_ns Total time scale factor rho_ns

taum_ns GLS time-scale nojac(0.5 * h/max(rho_ns * U_ns,6 * eta_ns/h))

tauc_ns GLS time-scale nojac(0.5 * U_ns * h * min(1,rho_ns * U_ns * h/eta_ns))



Domain transformation

1. Table of Contents

Title - Domain transformation
Table of Contents
Model Properties
Constants
Geometry
Geom1
Periodic Conditions
Solver Settings
Postprocessing
Equations
Variables

2. Model Properties

Property Value
Model name Domain transformation

Author Jesse Johnson and James Fishbaugh

Company University of Montana

Department Computer Science

Reference  

URL  

Saved date Apr 24, 2008 10:51:46 PM

Creation date Jan 25, 2008 11:40:16 AM

COMSOL version COMSOL 3.4.0.248

File name: /home/jfishbaugh/documents/research/ISMIP-HOM/expDmostrecent.mph

Application modes and modules used in this model:

Geom1 (2D)
Incompressible Navier-Stokes

2.1. Model description

This model uses a coordinate transformation to allow a 1x1 to represent more complicated geometry. This model incorporates a no-slip bed as well as
continuous boundaries on the sides. Equations for the surface and bed, along with the length of domain, allow the square domain to mimic the true
domain. Transformed velocity and pressure derivatives are used in place of the original derivatives at Physics->Equation System->Subdomain
Settings. In addition, transformed surface normals are inserted at Physics->Equation Settings->Boundary Settings.

2.2. Model Result

In the simplest case, change the bed and surface equations as well as the length variable to represent the domain you are interested in modeling. For
more complicated simulations, you may have to change boundary condtions as well.

3. Constants

Name Expression Value Description
L 5000  Length of domain (meters)

freq (2*pi)/L  Frequency

alpha 0.1*(pi/180)  Surface angle with horizontal

rho_ice 910  Density of ice

g 9.81  Gravity

epsilon 1e-18  Prevents numerical explosion in eta_nonlinear if gradients all zero

A 1e-16  Ice 'hardness'

n 3  Glen's flow law exponent

4. Geometry

Number of geometries: 1

4.1. Geom1



4.1.1. Point mode

4.1.2. Boundary mode



4.1.3. Subdomain mode

5. Geom1

Space dimensions: 2D

Independent variables: x, z, y

5.1. Scalar Expressions

Name Expression Description
bed surf-1000 Equation that defines the bed

surf -(x*L)*tan(alpha) Equation that defines the surface

eta_nonlinear 1/2*A^(-1/n) * (uxp^2 + .25*(uzp+ wxp)^2+epsilon)^((1-n)/(2*n)) Viscosity of ice

H surf-bed Thickness of ice

p0 rho_ice*g*H*(1-z) Initial pressure

theta atan(-1/(diff(bed,x))) Angle used for computing surface normals

ax -(z*diff(surf,x)+(1-z)*diff(bed,x))/(H*L) Transformed dz'/dx where z'=(z-bed)/(surf-bed)

uxp ux/L+ax*uz Transformed du/dx



wxp wx/L+ax*wz Transformed dw/dx

uzp uz/H Transformed du/dz

wzp wz/H Transformed dw/dz

bx diff(bed,x)/L bed slope

uxxp uxx/L^2+2*ax*uxz/L+ax^2*uzz+bx*uz Transformed d^2u/dx^2

wxxp wxx/L^2+2*ax*wxz/L+ax^2*wzz+bx*wz Transformed d^2w/dx^2

uzzp uzz/H^2 Transformed d^2u/dz^2

wzzp wzz/H^2 Transformed d^2w/dz^2

uzxp (uxz+L*ax*uzz-uz*diff(H,x)/H)/(H*L) Transformed d^2u/dxdz

wxzp (wxz+L*ax*wzz-wz*diff(H,x)/H)/(H*L) Transformed d^2w/dxdz

pxp px/L+ax*pz Transformed dp/dx

pzp pz/H Transformed dp/dz

nxp -bx/sqrt(1+bx^2) x component bed normal

nzp 1/sqrt(1+bx^2) z component bed normal

5.2. Expressions

5.2.1. Boundary Expressions

Boundary 2
beta2 1000*(1+sin(freq*x*L))

taub T_x_ns*nxp+T_z_ns*nzp

uTangent -u*nzp+w*nxp

5.3. Mesh

5.3.1. Mesh Statistics

Number of degrees of freedom 4464
Number of mesh points 510

Number of elements 958

Triangular 958

Quadrilateral 0

Number of boundary elements 60

Number of vertex elements 4

Minimum element quality 0.692

Element area ratio 0.204

5.4. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

5.4.1. Application Mode Properties

Property Value
Default element type Lagrange - P

2
 P
1

Analysis type Stationary



Corner smoothing Off

Frame Frame (ref)

Weak constraints Off

Constraint type Ideal

5.4.2. Variables

Dependent variables: u, w, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,'w'), shlag(1,'p')

Interior boundaries not active

Locked Boundaries: 2-3

5.4.3. Boundary Settings

Boundary 1, 4 2 3
Type Open boundary Stress Open boundary

walltype noslip mvwall noslip

opentype ntotstress novisc ntotstress

stresstype totstress ntotstress ntotstress

5.4.4. Subdomain Settings

Locked Subdomains: 1

Subdomain 1
Integration order (gporder) 4 4 2

Constraint order (cporder) 2 2 1

Density (rho) 0

Dynamic viscosity (eta) 1e6

Volume force, z-dir. (F_y) -rho_ice*g

6. Periodic Conditions

6.1. Geom1

6.1.1. Source Boundary: 4

Name Value
Expression u

Transformation type Linear

Destination, Boundary 1 (Geom1) u

Source vertices 4, 3

Destination vertices 2, 1

Name ucon

6.1.2. Source Boundary: 4

Name Value
Expression w

Transformation type Linear

Destination, Boundary 1 (Geom1) w

Source vertices 4, 3

Destination vertices 2, 1

Name wcon

6.1.3. Source Boundary: 4

Name Value
Expression p

Transformation type Linear

Destination, Boundary 1 (Geom1) p

Source vertices 4, 3

Destination vertices 2, 1

Name pcon

7. Solver Settings

Solve using a script: off

Analysis type Stationary
Auto select solver On

Solver Stationary

Solution form Automatic

Symmetric auto

Adaption Off

7.1. Direct (UMFPACK)



Solver type: Linear system solver

Parameter Value
Pivot threshold 0.1

Memory allocation factor 0.7

7.2. Stationary

Parameter Value
Linearity Automatic

Relative tolerance 1.0E-6

Maximum number of iterations 75

Manual tuning of damping parameters Off

Highly nonlinear problem Off

Initial damping factor 1.0

Minimum damping factor 1.0E-4

Restriction for step size update 10.0

7.3. Advanced

Parameter Value
Constraint handling method Elimination

Null-space function Automatic

Assembly block size 5000

Use Hermitian transpose of constraint matrix and in symmetry detection Off

Use complex functions with real input Off

Stop if error due to undefined operation On

Store solution on file Off

Type of scaling Automatic

Manual scaling  

Row equilibration On

Manual control of reassembly Off

Load constant On

Constraint constant On

Mass constant On

Damping (mass) constant On

Jacobian constant On

Constraint Jacobian constant On

8. Postprocessing

9. Equations

9.1. Boundary

Dependent variables: u, w, p

9.1.1. Boundary: 2

q coefficient



u w
-diff(eta_ns*(uzp+wxp)*nz_ns/H+(nxp^2-nzp^2)*eta_ns*(uzp+wxp)-2*nx*nz*(2*eta_ns*uxp+p)-(-u*nzp+w*nxp)*beta2,u) -diff(eta_ns*(uzp+wxp)*nz_ns/H+(nxp^2-nzp^2)*eta_ns*(uzp+wxp)-2*nx*nz*(2*eta_ns*uxp+p)-(-u*nzp+w*nxp)*beta2,w)

0 0

0 0

g coefficient

eta_ns*(uzp+wxp)/H*nz_ns+(nxp^2-nzp^2)*eta_ns*(uzp+wxp)-2*nxp*nzp*(2*eta_ns*uxp)-(-u*nzp+w*nxp)*beta2
-nz_ns*(-2*eta_ns*wzp+p)/H+(nxp^2-nzp^2)*eta_ns*(uzp+wxp)-2*nxp*nzp*(2*eta_ns*uxp)-(-u*nzp+w*nxp)*beta2

0

Constraint (constr = 0) (constr)

0
u*nxp+w*nzp

0

9.1.2. Boundary: 3

q coefficient

u w
-diff((nxp-nx_ns)*(-2*eta_ns*uxp+p)/L-(nzp-nz_ns)*eta_ns*(uzp+wxp)/H,u) -diff((nxp-nx_ns)*(-2*eta_ns*uxp+p)/L-(nzp-nz_ns)*eta_ns*(uzp+wxp)/H,w)

-diff(-(nxp-nx_ns)*eta_ns*(wxp+uzp)/L+(nzp-nz_ns)*(-2*eta_ns*wzp+p)/H,u) -diff(-(nxp-nx_ns)*eta_ns*(wxp+uzp)/L+(nzp-nz_ns)*(-2*eta_ns*wzp+p)/H,w)

0 0

g coefficient

(nxp-nx_ns)*(-2*eta_ns*uxp+p)/L+(nzp-nz_ns)*(-eta_ns*(uzp+wxp)/H)
(nxp-nx_ns)*(-eta_ns*(wxp+uzp)/L)+(nzp-nz_ns)*(-2*eta_ns*wzp+p)/H

0

9.2. Subdomain

Dependent variables: u, w, p

9.2.1. Subdomain: 1

Diffusion coefficient (c)

u w p
-diff(-2*eta_ns*ux+p,ux), 
-diff(-eta_ns*(uz+wx),ux), 
-diff(-2*eta_ns*ux+p,uz), 
-diff(-eta_ns*(uz+wx),uz)

-diff(-2*eta_ns*ux+p,wx), 
-diff(-eta_ns*(uz+wx),wx), 
-diff(-2*eta_ns*ux+p,wz), 
-diff(-eta_ns*(uz+wx),wz)

-diff(-2*eta_ns*ux+p,px), 
-diff(-eta_ns*(uz+wx),px), 
-diff(-2*eta_ns*ux+p,pz), 
-diff(-eta_ns*(uz+wx),pz)

-diff(-eta_ns*(wx+uz),ux), 
-diff(-2*eta_ns*wz+p,ux), 
-diff(-eta_ns*(wx+uz),uz), 
-diff(-2*eta_ns*wz+p,uz)

-diff(-eta_ns*(wx+uz),wx), 
-diff(-2*eta_ns*wz+p,wx), 
-diff(-eta_ns*(wx+uz),wz), 
-diff(-2*eta_ns*wz+p,wz)

-diff(-eta_ns*(wx+uz),px), 
-diff(-2*eta_ns*wz+p,px), 
-diff(-eta_ns*(wx+uz),pz), 
-diff(-2*eta_ns*wz+p,pz)

0 0 0

Absorption coefficient (a)

u w p
0 0 0

-diff(F_y_ns,u) -diff(F_y_ns,w) -diff(F_y_ns,p)

-diff(-divU_ns,u) -diff(-divU_ns,w) -diff(-divU_ns,p)

Source term (f)

F_x_ns-diff(-2*eta_ns*uxp+p,z)*ax
F_y_ns-diff(-eta_ns*(wxp+uzp),z)*ax

-divU_ns

Conservative flux convection coeff. (al)

u w p
-diff(-2*eta_ns*ux+p,u), -diff(-eta_ns*(uz+wx),u) -diff(-2*eta_ns*ux+p,w), -diff(-eta_ns*(uz+wx),w) -diff(-2*eta_ns*ux+p,p), -diff(-eta_ns*(uz+wx),p)

-diff(-eta_ns*(wx+uz),u), -diff(-2*eta_ns*wz+p,u) -diff(-eta_ns*(wx+uz),w), 
-diff(-2*eta_ns*wz+p,w)

-diff(-eta_ns*(wx+uz),p), 
-diff(-2*eta_ns*wz+p,p)

0, 0 0, 0 0, 0

Convection coefficient (be)

u w p
0, 0 0, 0 0, 0

-diff(F_y_ns,ux), -diff(F_y_ns,uz) -diff(F_y_ns,wx), -diff(F_y_ns,wz) -diff(F_y_ns,px), -diff(F_y_ns,pz)

-diff(-divU_ns,ux), -diff(-divU_ns,uz) -diff(-divU_ns,wx), -diff(-divU_ns,wz) -diff(-divU_ns,px), -diff(-divU_ns,pz)

Conservative flux source term (ga)

(-2*eta_ns*uxp+p)/L, -eta_ns*(uzp+wxp)/H



-eta_ns*(wxp+uzp)/L, (-2*eta_ns*wzp+p)/H

0, 0

10. Variables

10.1. Boundary

Name Description Expression
K_x_ns Viscous force per area, x component eta_ns * (2 * nx_ns * ux+nz_ns * (uz+wx))

T_x_ns Total force per area, x component -nx_ns * p+2 * nx_ns * eta_ns * ux+nz_ns * eta_ns * (uz+wx)

K_z_ns Viscous force per area, z component eta_ns * (nx_ns * (wx+uz)+2 * nz_ns * wz)

T_z_ns Total force per area, z component -nz_ns * p+nx_ns * eta_ns * (wx+uz)+2 * nz_ns * eta_ns * wz

10.2. Subdomain

Name Description Expression
U_ns Velocity field sqrt(u^2+w^2)

V_ns Vorticity wxp-uzp

divU_ns Divergence of velocity field uxp+wzp

cellRe_ns Cell Reynolds number rho_ns * U_ns * h/eta_ns

res_u_ns Equation residual for u rho_ns * (u * ux+w * uz)+px-F_x_ns-eta_ns * (2 * uxx+uzz+wxz)

res_sc_u_ns Shock capturing residual for u rho_ns * (u * ux+w * uz)+px-F_x_ns

res_w_ns Equation residual for w rho_ns * (u * wx+w * wz)+pz-F_y_ns-eta_ns * (wxx+uzx+2 * wzz)

res_sc_w_ns Shock capturing residual for w rho_ns * (u * wx+w * wz)+pz-F_y_ns

beta_x_ns Convective field, x component rho_ns * u

beta_z_ns Convective field, z component rho_ns * w

Dm_ns Mean diffusion coefficient eta_ns

da_ns Total time scale factor rho_ns

taum_ns GLS time-scale nojac(0.5 * h/max(rho_ns * U_ns,6 * eta_ns/h))

tauc_ns GLS time-scale nojac(0.5 * U_ns * h * min(1,rho_ns * U_ns * h/eta_ns))
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2. Model Properties

Property Value

Model name Domain transformation
Author Jesse Johnson and James Fishbaugh
Company University of Montana
Department Computer Science
Reference  
URL  
Saved date Mar 17, 2008 1:49:45 PM
Creation date Jan 25, 2008 11:40:16 AM
COMSOL version COMSOL 3.4.0.248

File name: /home/jfishbaugh/documents/research/ISMIP-HOM/arrollaMax.mph

Application modes and modules used in this model:

Geom1 (2D)
Incompressible Navier-Stokes

2.1. Model description

This model uses a coordinate transformation to allow a 1x1 to represent more complicated geometry. This model
incorporates a no-slip bed as well as continuous boundaries on the sides. Equations for the surface and bed, along
with the length of domain, allow the square domain to mimic the true domain. Transformed velocity and pressure
derivatives are used in place of the original derivatives at Physics->Equation System->Subdomain Settings. In
addition, transformed surface normals are inserted at Physics->Equation Settings->Boundary Settings.

2.2. Model Result

In the simplest case, change the bed and surface equations as well as the length variable to represent the domain 
you are interested in modeling. For more complicated simulations, you may have to change boundary condtions as
well.

3. Constants

Name Expression Value Description

L 5000  Length of domain (meters)
freq (2*pi)/L  Frequency
alpha 0.5*(pi/180)  Surface angle with horizontal



rho_ice 911  Density of ice
g 9.81  Gravity
epsilon 1e-18  Prevents numerical explosion in eta_nonlinear if gradients all zero
A 1e-16  Ice 'hardness'
n 3  Glen's flow law exponent

4. Geometry

Number of geometries: 1

4.1. Geom1

4.1.1. Point mode



4.1.2. Boundary mode

4.1.3. Subdomain mode



5. Geom1

Space dimensions: 2D

Independent variables: x, z, y

5.1. Scalar Expressions

Name Expression Description

bed bedf(x*L) Equation that defines the bed
surf surff(x*L) Equation that defines the surface
eta_nonlinear 1/2*A^(-1/n) * (uxp^2 + .25*(uzp+ 

wxp)^2+epsilon)^((1-n)/(2*n))
Viscosity of ice

H max(surf-bed,3) Thickness of ice
p0 rho_ice*g*H*(1-z) Initial pressure
theta atan(-1/(diff(surf,x))) Angle used for computing surface 

normals
ax -(z*diff(surf,x)+(1-z)*diff(bed,x))/(H*L) Transformed dz'/dx where 

z'=(z-bed)/(surf-bed)
uxp ux/L+ax*uz Transformed du/dx
wxp wx/L+ax*wz Transformed dw/dx
uzp uz/H Transformed du/dz
wzp wz/H Transformed dw/dz
bx diff(ax,x)/L+ax*diff(ax,z) Convienence derivative with respect to 

x
uxxp uxx/L^2+2*ax*uxz/L+ax^2*uzz+bx*uz Transformed d^2u/dx^2
wxxp wxx/L^2+2*ax*wxz/L+ax^2*wzz+bx*wz Transformed d^2w/dx^2
uzzp uzz/H^2 Transformed d^2u/dz^2
wzzp wzz/H^2 Transformed d^2w/dz^2
uzxp (uxz+L*ax*uzz-uz*diff(H,x)/H)/(H*L) Transformed d^2u/dxdz
wxzp (wxz+L*ax*wzz-wz*diff(H,x)/H)/(H*L) Transformed d^2w/dxdz
pxp px/L+ax*pz Transformed dp/dx
pzp pz/H Transformed dp/dz
nxp sin(theta) Calculates the x surface normals
nzp cos(theta) Calculates the z surface normals



5.2. Mesh

5.2.1. Mesh Statistics

Number of degrees of freedom 4464

Number of mesh points 510
Number of elements 958
Triangular 958
Quadrilateral 0
Number of boundary elements 60
Number of vertex elements 4
Minimum element quality 0.692
Element area ratio 0.204

5.3. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

5.3.1. Application Mode Properties

Property Value

Default element type Lagrange - P
2
 P
1

Analysis type Stationary
Corner smoothing Off
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

5.3.2. Variables

Dependent variables: u, w, p, nxw, nyw



Shape functions: shlag(2,'u'), shlag(2,'w'), shlag(1,'p')

Interior boundaries not active

Locked Boundaries: 1, 3-4

5.3.3. Boundary Settings

Boundary 1 2 3

Type Wall Wall Open boundary
intype uv p uv
outtype p p p
opentype ntotstress novisc ntotstress
stresstype ntotnflow totstress ntotstress
Normal inflow velocity (U0in) 0 1 1

Boundary 4

Type Wall
intype uv
outtype ntotstress
opentype ntotstress
stresstype ntotnflow
Normal inflow velocity (U0in) 1

5.3.4. Subdomain Settings

Locked Subdomains: 1

Subdomain 1

Integration order (gporder) 4 4 2
Constraint order (cporder) 2 2 1
Density (rho) rho_ice
Dynamic viscosity (eta) eta_nonlinear
Volume force, z-dir. (F_y) -rho_ice*g

6. Interpolation Functions

6.1. Interpolation Function: bedf

Interpolation method: Piecewise Cubic

Data source type: File

x f(x)

6.2. Interpolation Function: surff

Interpolation method: Piecewise Cubic

Data source type: File

x f(x)

7. Solver Settings

Solve using a script: off

Analysis type Stationary

Auto select solver On
Solver Stationary
Solution form Automatic
Symmetric auto
Adaption Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver



Parameter Value

Pivot threshold 0.1
Memory allocation factor 0.7

7.2. Stationary

Parameter Value

Linearity Automatic
Relative tolerance 1.0E-6
Maximum number of iterations 75
Manual tuning of damping parameters Off
Highly nonlinear problem On
Initial damping factor 1.0E-4
Minimum damping factor 1.0E-8
Restriction for step size update 10.0

7.3. Advanced

Parameter Value

Constraint handling method Elimination
Null-space function Automatic
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling  
Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
Mass constant On
Damping (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

8. Postprocessing



9. Equations

9.1. Boundary

Dependent variables: u, w, p

9.1.1. Boundary: 1

9.1.2. Boundary: 3

g coefficient

(nx_ns-nxp)*((-2*eta_ns*uxp+p)/L)+(nz_ns-nzp)*(-eta_ns*(uzp+wxp)/H)

(nx_ns-nxp)*(-eta_ns*(wxp+uzp)/L)+(nz_ns-nzp)*((-2*eta_ns*wzp+p)/H)
0

9.1.3. Boundary: 4

9.2. Subdomain

Dependent variables: u, w, p

9.2.1. Subdomain: 1

Diffusion coefficient (c)

u w p

-diff(-2*eta_ns*ux+p,ux), 
-diff(-eta_ns*(uz+wx),ux), 
-diff(-2*eta_ns*ux+p,uz), 
-diff(-eta_ns*(uz+wx),uz)

-diff(-2*eta_ns*ux+p,wx), 
-diff(-eta_ns*(uz+wx),wx), 
-diff(-2*eta_ns*ux+p,wz), 
-diff(-eta_ns*(uz+wx),wz)

-diff(-2*eta_ns*ux+p,px), 
-diff(-eta_ns*(uz+wx),px), 
-diff(-2*eta_ns*ux+p,pz), 
-diff(-eta_ns*(uz+wx),pz)

-diff(-eta_ns*(wx+uz),ux), 
-diff(-2*eta_ns*wz+p,ux), 
-diff(-eta_ns*(wx+uz),uz), 
-diff(-2*eta_ns*wz+p,uz)

-diff(-eta_ns*(wx+uz),wx), 
-diff(-2*eta_ns*wz+p,wx), 
-diff(-eta_ns*(wx+uz),wz), 
-diff(-2*eta_ns*wz+p,wz)

-diff(-eta_ns*(wx+uz),px), 
-diff(-2*eta_ns*wz+p,px), 
-diff(-eta_ns*(wx+uz),pz), 
-diff(-2*eta_ns*wz+p,pz)

0 0 0



Absorption coefficient (a)

u w p

-diff(-rho_ns*(u*ux+w*uz),u) -diff(-rho_ns*(u*ux+w*uz),w) -diff(-rho_ns*(u*ux+w*uz),p)
-diff(F_y_ns-rho_ns*(u*wx+w*wz),u) -diff(F_y_ns-rho_ns*(u*wx+w*wz),w) -diff(F_y_ns-rho_ns*(u*wx+w*wz),p)
-diff(-divU_ns,u) -diff(-divU_ns,w) -diff(-divU_ns,p)

Source term (f)

F_x_ns-ax*diff((-2*eta_ns*uxp+p),z)

F_y_ns-ax*diff((-eta_ns*(wxp+uzp)),z)
-divU_ns

Conservative flux convection coeff. (al)

u w p

-diff(-2*eta_ns*ux+p,u), 
-diff(-eta_ns*(uz+wx),u)

-diff(-2*eta_ns*ux+p,w), 
-diff(-eta_ns*(uz+wx),w)

-diff(-2*eta_ns*ux+p,p), 
-diff(-eta_ns*(uz+wx),p)

-diff(-eta_ns*(wx+uz),u), 
-diff(-2*eta_ns*wz+p,u)

-diff(-eta_ns*(wx+uz),w), 
-diff(-2*eta_ns*wz+p,w)

-diff(-eta_ns*(wx+uz),p), 
-diff(-2*eta_ns*wz+p,p)

0, 0 0, 0 0, 0

Convection coefficient (be)

u w p

-diff(-rho_ns*(u*ux+w*uz),ux), 
-diff(-rho_ns*(u*ux+w*uz),uz)

-diff(-rho_ns*(u*ux+w*uz),wx), 
-diff(-rho_ns*(u*ux+w*uz),wz)

-diff(-rho_ns*(u*ux+w*uz),px), 
-diff(-rho_ns*(u*ux+w*uz),pz)

-diff(F_y_ns-rho_ns*(u*wx+w*wz),ux), 
-diff(F_y_ns-rho_ns*(u*wx+w*wz),uz)

-diff(F_y_ns-rho_ns*(u*wx+w*wz),wx), 
-diff(F_y_ns-rho_ns*(u*wx+w*wz),wz)

-diff(F_y_ns-rho_ns*(u*wx+w*wz),px), 
-diff(F_y_ns-rho_ns*(u*wx+w*wz),pz)

-diff(-divU_ns,ux), -diff(-divU_ns,uz) -diff(-divU_ns,wx), -diff(-divU_ns,wz) -diff(-divU_ns,px), -diff(-divU_ns,pz)

Conservative flux source term (ga)

(-2*eta_ns*uxp+p)/L, (-eta_ns*(uzp+wxp))/H

(-eta_ns*(wxp+uzp))/L, (-2*eta_ns*wzp+p)/H
0, 0

10. Variables

10.1. Boundary

Name Description Expression

K_x_ns Viscous force per area, x component eta_ns * (2 * nx_ns * ux+nz_ns * (uz+wx))
T_x_ns Total force per area, x component -nx_ns * p+2 * nx_ns * eta_ns * ux+nz_ns * eta_ns * (uz+wx)
K_z_ns Viscous force per area, z component eta_ns * (nx_ns * (wx+uz)+2 * nz_ns * wz)
T_z_ns Total force per area, z component -nz_ns * p+nx_ns * eta_ns * (wx+uz)+2 * nz_ns * eta_ns * wz

10.2. Subdomain

Name Description Expression

U_ns Velocity field sqrt(u^2+w^2)
V_ns Vorticity wxp-uzp
divU_ns Divergence of velocity field uxp+wzp
cellRe_ns Cell Reynolds number rho_ns * U_ns * h/eta_ns
res_u_ns Equation residual for u rho_ns * (u * ux+w * uz)+px-F_x_ns-eta_ns * (2 * uxx+uzz+wxz)
res_sc_u_ns Shock capturing residual for u rho_ns * (u * ux+w * uz)+px-F_x_ns
res_w_ns Equation residual for w rho_ns * (u * wx+w * wz)+pz-F_y_ns-eta_ns * (wxx+uzx+2 * wzz)
res_sc_w_ns Shock capturing residual for w rho_ns * (u * wx+w * wz)+pz-F_y_ns
beta_x_ns Convective field, x component rho_ns * u
beta_z_ns Convective field, z component rho_ns * w
Dm_ns Mean diffusion coefficient eta_ns
da_ns Total time scale factor rho_ns
taum_ns GLS time-scale nojac(0.5 * h/max(rho_ns * U_ns,6 * eta_ns/h))
tauc_ns GLS time-scale nojac(0.5 * U_ns * h * min(1,rho_ns * U_ns * h/eta_ns))


