
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2013

IMPLEMENTATION OF A VERTICALLY INTEGRATED ICE SHEET IMPLEMENTATION OF A VERTICALLY INTEGRATED ICE SHEET

MOMENTUM BALANCE MODEL MOMENTUM BALANCE MODEL

Joshua Charles Campbell
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Campbell, Joshua Charles, "IMPLEMENTATION OF A VERTICALLY INTEGRATED ICE SHEET MOMENTUM
BALANCE MODEL" (2013). Graduate Student Theses, Dissertations, & Professional Papers. 552.
https://scholarworks.umt.edu/etd/552

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/552?utm_source=scholarworks.umt.edu%2Fetd%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

IMPLEMENTATION OF A VERTICALLY INTEGRATED ICE SHEET

MOMENTUM BALANCE MODEL

By

Joshua Charles Campbell

Bachelor of Arts in Mathematics and Computer Science Mathematics

With Options in Abstract Mathematics and Combinatorics and Optimization,

The University of Montana, Missoula, MT, 2009

Thesis

presented in partial fulfillment of the requirements

for the degree of

Master of Science

in Computer Science

The University of Montana

Missoula, MT

Summer 2012

Approved by:

Dr. Sandy Ross, Dean

Graduate School

Dr. Jesse Johnson, Chair

Computer Science

Dr. Alden Wright

Computer Science

Dr. Marco Maneta

Geosciences

Campbell, Joshua Charles, M.S., August 2012 Computer Science

Implementation of a Vertically Integrated Ice Sheet Momentum Balance Model

Chairperson: Dr. Jesse Johnson

A new high-fidelity ice sheet momentum balance model meant for inclusion in the Glim-

mer community ice-sheet model is presented. As a component of the Community Earth

Systems Model the newly developed momentum balance will directly benefit from ice/o-

cean and ice/atmosphere coupling efforts occurring elsewhere. The objectives of this thesis

are to develop a model which converges quickly (quadratic convergence rates) for non-

Newtonian Stokes flow approximations, and to provide a clear and low-level discussion of

its derivation, variation and discretization.

The model utilizes the Finite Element Method to discretize variational forms of the first

variation arising from the Galerkin method and for vertically-integrated Stokes flow. The

model employs a hybridization of two commonly used approximations to Stokes flow. It

couples the Shallow Shelf Approximation (SSA) and Shallow Ice Approximation (SIA).

This approximation is then differentiated symbolically. Efficient sparse matrix formats

are manipulated directly to avoid invoking costly sorting routines in the underlying linear

solvers. The code was not only developed for standards-compliant FORTRAN 90 com-

pilers but also for automatic differentiation tools. The model is verified against published

model intercomparison projects.

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Jesse Johnson for his patience in answering many, many ques-

tions and his mentoring and guidance during the thesis project. Additionally, Dr. Glen

Granzow provided many hours of help, thoughts and encouragement. I would also like to

thank my family for their support and encouragement. This material is based upon work

supported by the National Science Foundation under Grant No. 0934662.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

CHAPTER 1 INTRODUCTION . 1

1.1 Thesis Organization . 2

1.2 Ice Sheet Modelling . 2

1.3 Approximation of the Momentum Balance 4

1.4 Overview of the Construction of the Model Equations 6

1.5 Design Considerations for the Implementation 10

1.6 Implementation Overview . 11

1.7 Related Work . 13

CHAPTER 2 Theoretical and Physical Foundation 17

2.1 Introduction . 18

2.2 Notation . 18

2.3 Ice Sheet Physics . 19

2.4 Vertical Integration of the Governing Equations 21

2.5 Vertical Shear Approximation . 27

2.6 Variational Principles and the Jacobian . 30

2.7 The Structure of the First Variation Form 40

iv

2.8 Finding the Weak Form for use in the Finite Element Method 46

2.9 Approximating and Solving . 52

CHAPTER 3 Software Implementation . 55

3.1 Overview . 56

3.2 Variables . 57

3.3 Routines, Functions and Macros . 72

3.3.1 Test Driver (First Phase) . 72

3.3.2 rect_grid_to_triangles . 73

3.3.3 Test Driver (Second Phase) . 73

3.3.4 fem_imr . 74

3.3.5 fem_l1l2 . 75

3.3.6 analyze_mesh . 79

3.3.7 init_k_sparsity . 80

3.3.8 duv_dz . 81

3.3.9 maybe_add_neighbor . 81

3.3.10 k_index . 82

3.3.11 Integration Routines . 82

3.3.12 External Routines . 82

3.3.13 Helper Macros . 83

3.3.14 plot.py . 83

CHAPTER 4 Results . 84

4.1 Results of the EISMINT Square Bay Test 85

4.2 Results of the ISMIP-HOM Test C . 85

4.3 Results of the ISMIP-HOM Test A . 88

v

CHAPTER 5 Conclusion . 90

5.1 Discussion . 91

5.1.1 Derivation . 91

5.1.2 Symbolic Differentiation . 91

5.1.3 Model Accuracy . 92

5.1.4 Future Directions . 92

BIBLIOGRAPHY . 94

vi

LIST OF TABLES

4.1 ISMIP-HOM Test C Numerical Results 85

4.2 ISMIP-HOM Test A 5km Numerical Results 89

vii

LIST OF FIGURES

1.1 Model Overview . 3

1.2 Two Paths to a Newton’s Method Solver 8

2.1 General Solution Process . 51

3.1 Call Graph . 58

4.1 EISMINT Square Bay Result Comparison 86

4.2 ISMIP-HOM Test C Result Comparison 87

4.3 ISMIP-HOM A Result Comparison 88

viii

1

CHAPTER 1 INTRODUCTION

2

1.1 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 1 provides an overview of this document, an overview of the model pre-

sented, motivates its construction discusses the related work.

• Chapter 2 describes the scientific principles and equations behind the model. These

begin with the upper half of Figure 1.1.

• Chapter 3 covers the implementation of the model. The model implementation com-

putes the momentum balance as in the bottom half of Figure 1.1.

• Chapter 4 provides model validation results.

• Chapter 5 reviews the features of this thesis, and covers possible future directions

for the implementation presented here.

1.2 Ice Sheet Modelling

It is clearly important to obtain accurate predictions of sea-level rise and the contribution

to that rise from ice sheets. Sea-level rise is a major component of climate change, and has

huge socio-economic impact. Mitigating the potential damage from sea-level rise of just

50cm is projected to cost hundreds of billions of dollars [Anthoff et al., 2010]. Even just

25cm of sea-level rise would necessitate either abandoning or protecting over 125000km2

from flooding [Bosello et al., 2007]. At the same time, the Greenland ice sheet alone could

raise the sea-level 7m if its entire mass was added to the ocean [Cazenave and Llovel,

2010].

The third largest contribution to future sea-level rise, after thermal expansion, and

glaciers and ice caps will be mass from ice sheets. This can happen in two ways: ice

3

Figure 1.1 Model Overview

4

either freezing or melting on the ice sheet, and ice flowing off of land and into the

ocean [Change, 2007]. In 2007 for the 4th IPCC report on climate change, however,

“quantitative projections [could not] be made with confidence” about accelerations of flow

in ice sheets due to ice shelf and ice sheet dynamics, including those caused by changes in

friction with the underlying bed.

In order to model the movement and changes in ice sheets, ice sheet models such as

GLIMMER-CISM are used. One part of such a model is the momentum balance solver,

responsible for computing the velocity of the ice. Momentum balance models, such as the

one presented in this thesis, treat ice as an incompressible fluid: ice behaves like a fluid on

scales of kilometers and over periods of years.

1.3 Approximation of the Momentum Balance

Incompressible fluids, including ice, are governed by Stokes’ equations. This is a system

of partial differential equations (PDEs) solved by three continuous functions defined on a

three-dimensional domain. The viscosity of ice, varies based on the strain under which it

is flowing, adding a fourth continuous function which is related to the first three by Glen’s

flow law.

Unfortunately, to solve Stokes’ equations, it is required that the viscosity of the fluid is

known, and the viscosity must be calculated based on the strain that the ice experiences

which is determined by relative velocities at nearby points in the ice. Therefore, the vis-

cosity and the velocity must be found simultaneously.

Solving these equations in three dimensions is often slow or unfeasible on a computer.

Furthermore it causes additional numerical difficulties arising from the fact that the ice is

typically much thinner than it is wide or long. This extreme aspect ratio complicates the

solution of three-dimensional PDEs numerically.

5

The Shallow Shelf Approximation and Shallow Ice Approximation are two classic par-

tial differential equation approximations to the full three-dimensional Stokes equations de-

scribed above for ice sheets. They both can be solved in two dimensions to approximate

the three dimensional flow of ice sheets. Additionally, they both have strengths and weak-

nesses.

The Shallow Shelf Approximation (SSA) assumes zero vertical shearing. This is known

as plug flow, because the top and bottom of the ice, as well as the entire column between

them move at the same velocity. However, the Shallow Shelf Approximation provides a

highly accurate approximation of the horizontal stresses and forces in ice with plug flow.

Conversely, the Shallow Ice Approximation (SIA) does not approximate horizontal

stresses in the ice, and is solely concerned with vertical shearing. Another advantage

of the Shallow Ice Approximation is that exact solution functions can be found without

relying on numerical solutions.

Therefore, the model presented in this thesis consists of both SSA and the SIA which

are coupled to each other to provide approximations of both horizontal stresses and vertical

shearing, in a combined formulation called L1L2. In this formulation they are coupled

in two ways: their contributions to ice velocity are summed, and their negative effects on

ice viscosity are also summed. This allows both be solved with a more accurate viscosity

approximation.

Unfortunately, all four PDE models are made nonlinear by Glen’s flow law, which gov-

erns the viscosity, and therefore, the velocity of ice. In order to solve nonlinear PDEs,

three techniques are commonly employed: fixed-point iteration, Newton’s method, and

Jacobian-Free Newton-Krylov (JFNK).

This thesis focuses on Newton’s method for two reasons: it has good performance

(asymptotically faster convergence to the solution in positive-definite regions) and yields

the full Jacobian which is useful for inverting the model. Inverting the model is the pro-

6

cesses of solving for one of the model inputs given that the velocities are known.

Fixed point iterations are slower and less likely to converge in a reasonable amount of

time. However, they consume less memory (by a constant) factor. JFNK methods are a

hybrid approach which attempts to yield the fast convergence of Newton’s method without

increasing memory footprint, however it does not form the full Jacobian and so the full

Jacobian cannot be used for any other purposes.

Since the model PDEs are solved by continuous functions, on a computer these func-

tions must be approximated by solving them at a finite number of locations. This is called

discretization and the model presented here is discretized by the Finite Element Method.

The Finite Element Method involves splitting the domain into non-overlapping polygons,

in this case triangles, and solving the equations at their vertices. The continuous function

solutions are approximated as the sum of trial functions which are piecewise-defined poly-

nomials (in this case, linear functions) summing to 1 at a vertex and taking on the value 0

over elements not incident to that vertex.

The Finite Element Method has several benefits. First, it allows the resolution (or ele-

ment size) at which we approximate the continuous solutions to vary in different regions of

the domain so that computational resources may be prioritized to some areas of ice and not

others. Second, it involves integrating over the domain which removes all second deriva-

tives from the equations being solved, leaving first derivatives as the highest derivative.

Last, it provides an implicit variational principle which can be minimized. This principle

is the residual, which represents the distance from the best solution.

1.4 Overview of the Construction of the Model Equations

In this document we present an ice sheet momentum balance model and its implemen-

tation, IceCamp. Specifically, the purpose of this model is to relate an estimate for the

7

velocity of the ice in the sheet given to estimates of its physical shape, properties and in-

teraction with the ocean and bed at a point in time. These models are implemented as

FORTRAN programs.

We present a fast, yet reasonably accurate, ice sheet momentum balance model. This

model strikes a compromise between fully 3-D models such as the one presented in

Lemieux et al. [2011], and models employing the Shallow Shelf Approximation (SSA) or

Shallow Ice Approximation (SIA).

Our model is based on several mathematical theories and approximations to the Stokes

equations for fluid flow. Starting with the Stokes equations, we first integrate them along

the vertical dimension to create a system of two equations as in MacAyeal [1997]. These

two equations define the momentum balance for a planar “map view” of an ice sheet which

will be solved for the velocities of that sheet. We then apply several approximations to

form the Shallow Shelf Approximation (SSA). In order to provide an approximation not

just for ice shelves but also for ice sheets, we incorporate the extra strain softening to form

the L1L2 approximation from Pollard and Deconto [2009]. For both SSA and L1L2 we

provide Fortran 90 software to solve for the velocities of the ice sheet given inputs of the

ice sheet’s physical properties and configuration at a point in time.

The model presented here differs from the model presented in Pollard and Deconto

[2009] in several ways. First, the full Jacobian is formed and Newton’s method is used.

Second, SIA is symbolically integrated and coupled to SSA. Third, the steps required to

reach the model from simpler models are described in detail. Fourth, we provide our own,

independent, implementation.

After forming the system of equations to be solved, we additionally find their first vari-

ations with respect to the velocities of the ice. This is a precise, symbolic, route to solving

the non-linear equations using Newton’s method.

Two ways of implementing a fast Newton’s Method-based solver for the system of

8

Original System → Finite Element Method → Picard Iteration Solver

↓ ↓
First Variation Automatic Differentiation

↓ ↓
Tangent Linear System → Finite Element Method → Newton’s Method Solver

Figure 1.2 Two Paths to a Newton’s Method Solver

nonlinear PDEs were originally considered. The first option was to implement a Picard

Iteration-based solver, and then use Automatic Differentiation tools to obtain a Jacobian

which can then be used with Newton’s Method. However, this option was not chosen.

Instead, we did not use Automatic Differentiation, and took an alternate approach, which

was to find the first variation manually and then apply the Finite Element Method to find

solutions of the tangent linear system for Newton’s Method. This method yields a better

understanding of the equations and mathematical machinery involved.

After the tangent linear system is found, we use the Finite Element Method as in Strang

[2007] to solve the system of equations for a finite set of points in the domain, characterized

by a triangular mesh. In fact, the entire implementation is heavily based on the techniques

presented in Strang [2007], and the author of this document suggests that text as the primary

reference to be used in understanding the techniques he has employed.

Specifically the elements employed are first-order, linear, triangular elements. These

elements are characterized by binomial linear piecewise-defined test and trial functions

φ(~x) and ψ(~x). These functions take a value of 1 at a vertex p j in the mesh, and are zero

for all other vertices. Between p and adjacent vertices they are a linear function from 1 to

0.

The solution to our set of partial differential equations

f1 (~u) = 0

9

f2 (~u) = 0

are functions ui (~x) of the plane (x1,x2). The Finite Element Method approximates equa-

tions as equations of the form

fk ≈
n

∑
l=1

Kkl

(
n

∑
j=1

Ui jψi j

)

φkl

where Kkl (. . .) is a scalar as is Ui j. In order to solve them using well known linear solver

routines, however, Kkl must be a discrete, affine function of~u. Unfortunately, the system of

equations we set out to solve are continuous and non-linear so they cannot be factored as

multiples of the form Kklui. Therefore we employ the Finite Element Method and Newton’s

method to repeatedly solve a discrete linear approximation of δ fi around a point u. In order

to obtain this linear approximation, we take the first variation of fi at a point u first:

δ f (~u)(~w) = lim
ε→0

f (~u+ εw)− f (u)

ε
=

d

dε

∣
∣
∣
∣
ε=0

f (u+ εw) .

Another mathematical technique employed is solving the weak form of the equations f

rather than solving f directly. This is necessary because f contains second derivatives and

the second derivative of Ui jφi j with respect to x is 0, which would result in solving the

system

0~u = 0

after applying the Finite Element Method, which is certainly possible, but not particularly

useful. In order to avoid this situation we solve instead the weak form of f which is

´

Ω f =
´

Ω 0. This is advantageous as the first derivative of a linear test (or trial) function is

merely a constant. This has the secondary advantage of putting f into a “variational form”

where the residual r = f (uguess)− 0 has a physical meaning which we are particularly

interested in, the excess force unaccounted for on the ice.

10

For the Picard iteration, we factor K into coefficients of Uiter+1 as far as possible, and all

remaining uses of U are estimated from the previous iterations solution Uiter. This process

of re-estimating U is repeated until |Uiter+1−Uiter|2 falls below a threshold. For Newton’s

method we repeatedly solve

0 = JU (W)≈

ˆ

Ω
δ f (~uiter)(~w) = 0

for the Newton update, ~w and then repeat the process with ~Uiter+1← ~U + ~W . This is the

approach described by Knoll and Keyes [2004]. We also use the weak form here,
´

Ω δ f , as

δ f also contains second derivatives with respect to~x.

For the L1L2 approximation, we add two additional sub-equations to compute the ver-

tical shearing terms ∂ui

∂x3
which are then used to adjust the viscosity of the ice. We do not

use the weak form of these equations since they do not contain second derivatives and are

already in the units we are interested in.

1.5 Design Considerations for the Implementation

FORTRAN was chosen because of its common use in the field of physical modelling.

Since the model was intended to be able to be integrated with the GLIMMER-CISM ice

sheet model eventually, which is written in FORTRAN, FORTRAN was the obvious choice

for compatibility reasons.

However, FORTRAN also has other advantages, including its high performance [Bull

et al., 2001], static types, array bounds checking, and availability of automatic differenti-

ation tools such as OpenAD/F [Utke et al., 2008], though they are not employed in this

implementation. In fact, the Fortran 90 code is specifically written with the possible future

application of automatic differentiation tools in mind.

11

Even though it is written to be Fortran 90 compliant, some Fortran 90 features are in-

tentionally avoided, especially POINTER and ALLOCATABLE. This is intended to make it

easier to use with automatic differentiation tools in the future. Additionally, to allow for

easy reuse of the code in other projects, global variables are never used, in order to avoid

potential namespace conflicts.

Automatic Differentiation tools (AD tools) such as OpenAD/F [Utke et al., 2008] are

tools which accept source code as input, and output source code which is the derivative of

that code with respect to some input variable or parameter. Code is most easily handled

by AD tools when it does not use advanced language features such as objects, pointers,

references, recursion, or dynamic allocation.

In addition, the Community Earth Systems Model (CESM) community, of which

GLIMMER-CISM is a part, avoids relying upon external libraries. Since this model

is meant to be included, eventually, in GLIMMER-CISM, we only rely on two

libraries: a linear solver and a MergeSort routine. GLIMMER-CISM already provides

a variety of linear solvers, so this dependency would not add to the dependencies of

GLIMMER-CISM. The MergeSort routine is a single file, and easily re-implemented if

necessary. Using few dependencies means that many other components needed to be, and

were, implemented from scratch.

1.6 Implementation Overview

In order to solve the equations above the Fortran 90 code must do many things. It must

first set up the physical dimensions, shape, and properties of an ice sheet. Then it must

generate a triangular mesh over the domain of the ice sheet. Next, it must analyze the mesh

to determine various geometric properties. Then it must repeatedly form and solve affine

systems of the form 0 = KU −F and possibly 0 = JW −R if Newton’s method is selected

12

until the solution is acceptable.

Each equation requires computing the entries of Ki j and possibly Ji j which depend on

many factors. K and J are sparse matrices built in the sparse matrix format which they

will be eventually consumed in. Sparse matrices are never converted between formats.

These entries are the coefficients from an equation in the system of equations to be solved

which multiply a single pair of test and trial functions, themselves representing coefficients

of the velocity solution. The factors necessary for Ki j include the area of each element,

the previous guess as to how fast the ice is flowing at each point and on average for each

element, and the physical A or B value from Glen’s flow law for the ice at each vertex. The

A or B quantity depends on the temperature of the ice.

Additionally, Ki j depends on the viscosity at each point and on average over each ele-

ment, the extra viscosity due to vertical shearing for the L1L2 version of the code, driving

forces from the action of gravity on the ice, the friction with the bed, and the resulting

forces from that friction. The spatial derivatives of these items and various derived quan-

tities such as strain rates and averages are also required. For the L1L2 approximation, the

quantities ∂u1

∂x3
and ∂u2

∂x3
must be computed by code that was generated by a computer algebra

system.

For each point the code must also determine what boundary conditions apply and apply

them. These boundary conditions include borders with the sea and locations of known

velocity. In order to apply the boundary conditions at the border between the sheet and the

sea the implementation must first locate and compute the normal vectors of these borders.

It can apply known velocity boundary conditions using two methods.

Each time there is a quantity relating to φ and ψ and not their spatial derivatives, Gaussian

quadrature rules must be invoked to find the integral
´

e⊂Ω cφdψ where c and d are scalars.

In order to determine the vertices on the borders of the mesh and their normal vectors,

which are used where the ice borders the ocean, the mesh must be analyzed. First, the

13

elements on the borders must be found, which are precisely all of the elements with no

adjacent elements, then their incident edges on the borders. In order to find the entries of

K and J that must necessarily be 0, adjacency lists for every pair of equations and vertices

in the mesh must be generated.

Once the affine equations are formed, they are solved by an external library. If Newton’s

method is being employed, the residual function R must be computed first. The solution

must be checked for distance from the previous solution, and the entire process repeated

many times. Optionally, new vertices can be generated to divide elements that the imple-

mentation is having difficulty solving into additional elements. Finally, the solutions and

other diagnostic data must be written out to a file. A short python program is also included

to read this output file and display the output graphically.

1.7 Related Work

The works that this thesis depends on begin with Paterson [1983]. This reference con-

tains all the fundamentals of ice sheet physics that our model is based on, including all of

the relevant research that came before its publication. This includes our treatment of glacial

ice as a non-Newtonian fluid following Glen’s flow law.

We then proceed to apply techniques from another comprehensive book on the approxi-

mation and implementation of ice sheet models: MacAyeal [1997]. Specifically, we follow

the shallow-shelf approximation (SSA) derivation presented by MacAyeal quite closely.

MacAyeal also presents other approximations and a large number of implementation code

examples.

Strang [2007] contains most of the relevant theory and practice for the finite element

method (FEM), including code examples. The implementation presented in this thesis is

structured similarly to the FEM example presented in Strang. Strang also covers many

14

other related topics including fluid flow Modelling and finite differencing techniques.

Zienkiewicz and Taylor [2000] is a comprehensive resource on the finite element method.

It covers the fundamentals and theory of FEM in detail along with examples. Additionally,

it provides enhancements such as adaptive mesh refinement which are employed in this

thesis. Zienkiewicz and Taylor also present the theory of variational principles and forms.

In addition to the three books listed, this thesis depends on several other publications.

Pollard provides the L1L2 formulation in Pollard and Deconto [2009] which is used in this

thesis. L1L2 is an improvement to the SSA approximation first proposed by Hindmarsh

[2004]. In this work, Hindmarsh presents formulae for estimating the extra strain softening

that a fully three dimensional Stokes flow implementation would model directly. We apply

this approximation in our implementation.

Though the implementation presented in this thesis forms the full Jacobian instead of

employing a Jacobian-free technique for the solutions of Stokes flow, the implementation

is based on the theory described in Knoll and Keyes’s discussion of Jacobian-free methods.

Knoll and Keyes [2004] present a variety of approaches for efficiently solving non-linear

Stokes flow problems.

Habermann et al. [2012] inform the techniques employed in this thesis to form the sym-

bolic tangential linear system to SSA. This paper presents a method for iteratively solving

the SSA equations for the basal traction instead of for the velocity. In doing so, Habermann

et al. describes the transformations necessary for converting the forward SSA momentum

balance model, which is typically solved for velocity, into an inverse model which can be

solved for basal traction. Goldberg and Sergienko [2011] also provide a method for solving

an approximation of Stokes flow inversely for the basal traction.

Bueler and Brown [2009] provides a thorough discussion of the modelling of the basal

mechanics of ice sheets. This discussion includes general discussion of the treatment of

vertical shearing stresses within ice sheets. Bueler et al. also provide a comparison of the

15

shallow shelf approximation (SSA) and shallow ice approximation (SIA) approximation,

and their treatment of basal and vertical shear stresses.

The momentum balance model in this thesis is intended to eventually work within the

Glimmer community ice sheet model (Glimmer-CISM), presented in Rutt et al. [2009]

and Lipscomb et al. [2009]. This model contains more than just momentum balance mod-

els: it also models ice sheet thickness evolution over time, internal thermodynamics within

the ice sheet, basal hydrology, geothermal heat flux, and lithosphere elasticity. The imple-

mentation provided in this thesis takes these other factors as inputs meant to be calculated

by Glimmer-CISM in a future implementation.

Glimmer-CISM contains other momentum balance models, including the model pre-

sented in Lemieux et al. [2011]. Lemieux et al. employ finite differences and Jacobian-free

methods. In comparison, the model presented in this thesis employs finite elements and

explicit-Jacobian methods. Jacobian-free methods have the advantage of avoiding the ex-

plicit formation of the Jacobian and flatten the solution process by combining the linear

and nonlinear iterative solution processes, resulting in dramatic speed increases.

The implementation presented in this thesis is also designed to be easily adapted to

processing by automatic differentiation tools such as OpenAD/F. Some of the necessary

adaptations are described in Fagan et al. [2006].

Dukowicz et al. [2010] presents an approximation for ice sheet Stokes flow based on

variational principles. The variational principles employed are specific to the Stokes flow

equations and has a natural physical meaning. This technique minimizes the change in

energy. Conversely, this thesis employs a variational formulation arising from the finite

element method. This variational formulation is not specific to Stokes flow and minimizes

the solution residual.

Goldberg [2011] also presents a vertically integrated approximation to Stokes flow mo-

mentum balance model employing the minimization of a variational principle. This model

16

has similar goals to the model presented in this thesis and is validated with the same exper-

iments. However, Goldberg’s model is derived using variational principles other than the

finite element method and does not provide a Jacobian suitable for solution with Newton’s

method, instead relying entirely on fixed-point iteration.

17

CHAPTER 2 Theoretical and Physical Foundation

18

2.1 Introduction

2.2 Notation

A(T) Temperature-dependent ice rheological coefficient (s−1Pa−n of the order 10−15

to 10−20) (Pa = Pascals)

b Ice sheet base elevation (m)

e First variation of ε̇2

ep First variation of ε̇2
p

Gi Substitution variable for quotient rule

g Acceleration due to gravity (9.8 m/s2)

H Substitution variable for quotient rule

h Ice sheet thickness (m)

n Ice rheological exponent (varies, about 3)

P Pressure (Pascals)

s Ice sheet surface elevation (m)

T Temperature

Tp Substitution variable representing terms of τp

ti First variation of τi

ui Velocity along coordinate xi (m/a) (a = years, m/a = meters per year)

uibasal Velocity at the base along coordinate xi (m/a)

wi Change in velocity along coordinate xi (m/a)

wibasal Change in velocity at the base along coordinate xi (m/a)

x1,x2 Orthogonal horizontal coordinates (m)

x3 Vertical coordinates (m)

β2 Basal sliding coefficient in ISMIP-HOM sliding law

η Half viscosity

ρ Density of ice (∼ 910 kg/m3)

ρw Density of seawater (∼ 1028 kg/m3)

ε2
ν Viscosity normalization constant (a−2)

ε Scalar limit variable→ 0

ε̇ Effective strain rate, the second invariant of the strain rate tensor (a−1)

ε̇i j Strain rate components (a−1)

ε̇p Effective plane strain rate, the second invariant of the strain rate tensor with no

vertical terms (a−1)

19

σ Effective stress, the second invariant of the deviatoric stress tensor (Pa)

σi j Deviatoric stress components (Pa)

τi Force due to friction with the bed in the xi direction

τp Shorthand representing
(
τ2

2 + τ2
1 +η2ε̇2

p

)

ξ Vertical integration variable (m), also used to represent
ζ
ė2

ζ First variation of η

A . . .Z Substitution variables representing functions of~u

2.3 Ice Sheet Physics

The flow of ice is governed by the nonlinear Stokes equations for incompressible fluid

flow. From Paterson [1983]:

∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3
−

∂P

∂x1
= 0 (2.1)

∂σ12

∂x1
+

∂σ22

∂x2
+

∂σ23

∂x3
−

∂P

∂x2
= 0

∂σ13

∂x1
+

∂σ23

∂x2
+

∂σ33

∂x3
−

∂P

∂x3
= −ρg,

where σi j are the deviatoric stress components, ρ is the density of ice, g is the acceleration

due to gravity, and P is the pressure. By Paterson [1983] we have that

σi j =
σ

1−n
2

2A(T)
ε̇i j.

This is Glen’s flow law for ice. ε̇i j are strain rate components. A(T) is the temperature-

dependent ice rheological coefficient. Substituting this into equations 2.1 gives us:

20

σ
1−n

2

2A(T)

(
∂ε̇11

∂x1
+

∂ε̇12

∂x2
+

∂ε̇13

∂x3

)

−
∂P

∂x1
= 0 (2.2)

σ
1−n

2

2A(T)

(
∂ε̇12

∂x1
+

∂ε̇22

∂x2
+

∂ε̇23

∂x3

)

−
∂P

∂x2
= 0

σ
1−n

2

2A(T)

(
∂ε̇13

∂x1
+

∂ε̇23

∂x2
+

∂ε̇33

∂x3

)

−
∂P

∂x3
= −ρg

ε̇ = A(T)σn

We use the fact that 1
2
ε̇

1
2 = A(T) 1

2
σ

n
2 to see that

ε̇
1
2 = A(T)σ

n
2 ,

which gives us

σ
1−n

2

2A(T)
=

σ
1
2

2A(T)σ
n
2

=
A(T)

−1
n ε̇

1
2n

2ε̇
1
2

=
A(T)

−1
n

2ε̇
n−1
2n

. (2.3)

Substituting 2.3 into the system of equations 2.2 yields

A(T)
−1
n

2ε̇
n−1
2n

(
∂ε̇11

∂x1
+

∂ε̇12

∂x2
+

∂ε̇13

∂x3

)

−
∂P

∂x1
= 0 (2.4)

A(T)
−1
n

2ε̇
n−1
2n

(
∂ε̇12

∂x1
+

∂ε̇22

∂x2
+

∂ε̇23

∂x3

)

−
∂P

∂x2
= 0

A(T)
−1
n

2ε̇
n−1
2n

(
∂ε̇13

∂x1
+

∂ε̇23

∂x2
+

∂ε̇33

∂x3

)

−
∂P

∂x3
= −ρg.

We must also consider the upper and lower surfaces of the ice as boundary conditions.

We take the following equations from MacAyeal, which represent the necessary force bal-

ances on the upper and lower surfaces.

21

Surface boundary condition:

(ηε̇11−P)
∂s

∂x1
+ηε̇12

∂s

∂x2
−ηε̇13 = 0 (2.5)

ηε̇12
∂s

∂x1
+(ηε̇22−P)

∂s

∂x2
−ηε̇23 = 0

ηε̇13
∂s

∂x1
+ηε̇23

∂s

∂x2
− (ηε̇33−P) = 0

Basal boundary condition:

(ηε̇11−P)
∂b

∂x1
+ηε̇12

∂b

∂x2
−ηε̇13 = −ρgh

∂b

∂x1
(2.6)

ηε̇12
∂b

∂x1
+(ηε̇22−P)

∂b

∂x2
−ηε̇23 = −ρgh

∂b

∂x2

ηε̇13
∂b

∂x1
+ηε̇23

∂b

∂x2
− (ηε̇33−P) = ρgh

2.4 Vertical Integration of the Governing Equations

For the model we want a vertically-integrated set of equations that can be solved on the

plane. To this end, we start by integrating the Stokes equations 2.4 over the vertical.

ˆ s

b

[

A(T)
−1
n

2ε̇
n−1
2n

(
∂ε̇11

∂x1
+

∂ε̇12

∂x2
+

∂ε̇13

∂x3

)

−
∂P

∂x1

]

dx3 = 0 (2.7)

ˆ s

b

[

A(T)
−1
n

2ε̇
n−1
2n

(
∂ε̇12

∂x1
+

∂ε̇22

∂x2
+

∂ε̇23

∂x3

)

−
∂P

∂x2

]

dx3 = 0

ˆ s

b

[

A(T)
−1
n

2ε̇
n−1
2n

(
∂ε̇13

∂x1
+

∂ε̇23

∂x2
+

∂ε̇33

∂x3

)

−
∂P

∂x3

]

dx3 = −ρgh

We can factor equations 2.7 to (all variables of integration are x3, the vertical coordinate,

where unspecified)

22

η

[
ˆ s

b

(
∂ε̇11

∂x1
+

∂ε̇12

∂x2

)

dx3 +

ˆ s

b

∂ε̇13

∂x3
dx3

]

−

ˆ s

b

∂P

∂x1
dx3 = 0 (2.8)

η

[
ˆ s

b

(
∂ε̇12

∂x1
+

∂ε̇22

∂x2

)

dx3 +

ˆ s

b

∂ε̇23

∂x3
dx3

]

−

ˆ s

b

∂P

∂x2
dx3 = 0

η

[
ˆ s

b

(
∂ε̇13

∂x1
+

∂ε̇23

∂x2

)

dx3 +

ˆ s

b

∂ε̇33

∂x3
dx3

]

−

ˆ s

b

∂P

∂x3
dx3 = −ρgh.

Then, moving the integrals in 2.8 to the inside, evaluating the vertical integral over pressure,

and substituting averages for derivatives with respect to the vertical coordinate yields

∂

∂x1

ˆ s

b

ηε̇11 +
∂

∂x2

ˆ s

b

ηε̇12 +ηε̇13h−
∂

∂x1

ˆ s

b

Pdx3 = 0 (2.9)

∂

∂x1

ˆ s

b

ηε̇12 +
∂

∂x2

ˆ s

b

ηε̇22 +ηε̇23h−
∂

∂x2

ˆ s

b

Pdx3 = 0

∂

∂x1

ˆ s

b

ηε̇13 +
∂

∂x2

ˆ s

b

ηε̇23−η
(
ε̇11 + ε̇22

)
h− (Ps−Pb) = −ρgh..

When we apply the same steps to the basal boundary conditions 2.6, we get the following

boundary condition:

∂

∂x1

ˆ s

b

ηε̇11 +
∂

∂x2

ˆ s

b

ηε̇12 +ηε̇13h−
∂

∂x1

ˆ s

b

Pdx3 = ρgh
∂b

∂x1
(2.10)

∂

∂x1

ˆ s

b

ηε̇12 +
∂

∂x2

ˆ s

b

ηε̇22 +ηε̇23h−
∂

∂x2

ˆ s

b

Pdx3 = ρgh
∂b

∂x1

∂

∂x1

ˆ s

b

ηε̇13 +
∂

∂x2

ˆ s

b

ηε̇23−η
(
ε̇11 + ε̇22

)
h+ρgh = (Ps−Pb) .

Note that s− x3 is our effective depth.

We will now apply Leibniz’s rule as in pp100 of MacAyeal to the equations 2.9. Over-

braced terms are terms substituted from the surface boundary conditions 2.5 and under-

braced terms are terms substituted from the basal boundary conditions 2.10.

23

∂

∂x1

ˆ s

b

ηε̇11

Surface BC
︷ ︸︸ ︷

−ηε̇11
∂s

∂x1
+ηε̇11

∂b

∂x1
︸ ︷︷ ︸

Basal BC

(2.11)

+
∂

∂x2

ˆ s

b

ηε̇12

︷ ︸︸ ︷

−ηε̇12
∂s

∂x2
+ηε̇12

∂b

∂x2
︸ ︷︷ ︸

ηε̇13h
︷︸︸︷

+ε̇13−ε̇13
︸︷︷︸

−
∂

∂x1

ˆ s

b

Pdx3

︷ ︸︸ ︷

+P
∂s

∂x1
−P

∂b

∂x1
︸ ︷︷ ︸

= 0

∂

∂x1

ˆ s

b

ηε̇12−ηε̇12
∂s

∂x1
+ηε̇12

∂b

∂x1

+
∂

∂x2

ˆ s

b

ηε̇22−ηε̇22
∂s

∂x2
+ηε̇22

∂b

∂x2

+ηε̇23h+ ε̇23− ε̇23

−
∂

∂x2

ˆ s

b

Pdx3 +P
∂s

∂x2
−P

∂b

∂x2
= 0

η

[
ˆ

(
∂ε̇13

∂x1
+

∂ε̇23

∂x2

)

dx3 + ε̇33

]

−P = −ρg(s− x3)

Many terms of 2.11 cancel and we are left with

∂

∂x1

ˆ s

b

ηε̇11 +
∂

∂x2

ˆ s

b

ηε̇12 +ηε̇13h−
∂

∂x1

ˆ s

b

Pdx3 = ρgh
∂b

∂x1
(2.12)

∂

∂x1

ˆ s

b

ηε̇12 +
∂

∂x2

ˆ s

b

ηε̇22 +ηε̇23h−
∂

∂x2

ˆ s

b

Pdx3 = ρgh
∂b

∂x2

η

[
ˆ

(
∂ε̇13

∂x1
+

∂ε̇23

∂x2

)

dy+ ε̇33

]

+ρg(s− x3) = P.

24

We can now reduce the system to two equations 2.12 by substituting P to get

∂

∂x1

ˆ s

b

ηε̇11 +
∂

∂x2

ˆ s

b

ηε̇12 +ηε̇13h

−
∂

∂x1

ˆ s

b

[

η

(
ˆ

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3 + ε̇33

)

+ρg(s− x3)

]

dx3 = ρgh
∂b

∂x1

∂

∂x1

ˆ s

b

ηε̇12 +
∂

∂x2

ˆ s

b

ηε̇22 +ηε̇23h

−
∂

∂x2

ˆ s

b

[

η

(
ˆ

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3 + ε̇33

)

+ρg(s− x3)

]

dx3 = ρgh
∂b

∂x2
.

Replacing some vertically integrated terms with averages and move remaining integrals

of equations 2.13 to the inside, taking note of which terms are missing from MacAyeal’s

derivation of the Shallow Shelf Approximation (SSA) yields equations 2.13. These terms

are 0 because of the assumption of zero sheer in SSA, an assumption which we will apply

later.

∂

∂x1

ˆ s

b

ηε̇11 +
∂

∂x2

ˆ s

b

ηε̇12−ρg
∂

2∂x1
(b− s)2

(2.13)

+ηε̇13h−
∂

∂x1
η

ˆ s

b

ˆ ξ

0

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3dξ

︸ ︷︷ ︸

−
∂

∂x1
ηhε̇33 = ρgh

∂b

∂x1

∂

∂x1

ˆ s

b

ηε̇12 +
∂

∂x2

ˆ s

b

ηε̇22−ρg
∂

2∂x2
(b− s)2

+ηε̇23h−
∂

∂x2
η

ˆ s

b

ˆ ξ

0

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3dξ

︸ ︷︷ ︸

0 by zero-sheer approximation (SSA)

−
∂

∂x2
ηhε̇33 = ρgh

∂b

∂x2

25

We now apply the chain rule and flip both instances of b− s in equations 2.13:

∂

∂x1
ηhε̇11 +

∂

∂x2
hηε̇12−ρg(s−b)

∂

∂x1
(s−b) (2.14)

+ηε̇13h−
∂

∂x1
η

ˆ s

b

ˆ ξ

0

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3dξ

︸ ︷︷ ︸

−
∂

∂x1
ηhε̇33 = ρgh

∂b

∂x1

∂

∂x1
ηhε̇12 +

∂

∂x2
hηε̇22−ρg(s−b)

∂

∂x2
(s−b)

+ηε̇23h−
∂

∂x2
η

ˆ s

b

ˆ ξ

0

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3dξ

︸ ︷︷ ︸

0 by zero-sheer approximation (SSA)

−
∂

∂x2
ηhε̇33 = ρgh

∂b

∂x2

Then we substitute the incomressibility condition into the equations 2.14 and simplify. This

condition comes from assumed incomressibility of ice which allows us to make use of the

fact that ε̇33 = ε̇11 + ε̇22.

∂

∂x1
ηhε̇11 +

∂

∂x2
hηε̇12−ρgh

∂h

∂x1
(2.15)

+ηε̇13h−
∂

∂x1
η

ˆ s

b

ˆ ξ

0

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3dξ

︸ ︷︷ ︸

+
∂

∂x1
ηh
(
ε̇11 + ε̇22

)
= ρgh

∂b

∂x1

∂

∂x1
ηhε̇12 +

∂

∂x2
hηε̇22−ρgh

∂h

∂x2

+ηε̇23h−
∂

∂x2
η

ˆ s

b

ˆ ξ

0

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3dξ

︸ ︷︷ ︸

0 by zero-sheer approximation (SSA)

+
∂

∂x2
ηh
(
ε̇11 + ε̇22

)
= ρgh

∂b

∂x2

Collecting terms of 2.15 and making use of the fact that b+h = s yields:

26

∂

∂x1
ηh
(
2ε̇11 + ε̇22

)
+

∂

∂x2
hηε̇12 (2.16)

+ηε̇13h−
∂

∂x1
η

ˆ s

b

ˆ ξ

0

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3dξ

︸ ︷︷ ︸

= ρgh
∂s

∂x1

∂

∂x1
ηhε̇12 +

∂

∂x2
hη
(
2ε̇22 + ε̇11

)

+ηε̇23h−
∂

∂x2
η

ˆ s

b

ˆ ξ

0

[
∂ε̇13

∂x1
+

∂ε̇23

∂x2

]

dx3dξ

︸ ︷︷ ︸

0 by zero-sheer approximation (SSA)

= ρgh
∂s

∂x2
.

We then substitute the definition of ε̇i j into equations 2.16, which gives us the equations:

∂

∂x1

(

ηh

(

2
∂u1

∂x1
+

∂u2

∂x2

))

+
∂

∂x2

(

ηh

(
∂u1

∂x2
+

1

2

∂u2

∂x1

))

(2.17)

+η
1

2

(
∂u3

∂x1
+

∂u1

∂x3

)

−
∂

∂x1
η

ˆ s

b

ˆ ξ

0

[
1

2

(
∂u3

∂x1
+

∂u1

∂x3

)

+
1

2

(
∂u3

∂x2
+

∂u2

∂x3

)]

dx3dξ = ρgh
∂s

∂x1

∂

∂x2

(

ηh

(

2
∂u2

∂x2
+

∂u1

∂x1

))

+
∂

∂x1

(

ηh

(
∂u2

∂x1
+

1

2

∂u1

∂x2

))

+η
1

2

(
∂u3

∂x2
+

∂u2

∂x3

)

−
∂

∂x2
η

ˆ s

b

ˆ ξ

0

[
1

2

(
∂u3

∂x1
+

∂u1

∂x3

)

+
1

2

(
∂u3

∂x2
+

∂u2

∂x3

)]

dx3dξ = ρgh
∂s

∂x2
.

The last two terms of each equation in system 2.17 are approximated by zero in the the

Shallow Shelf Approximation (SSA):

∂

∂x1

(

ηh

(

2
∂u1

∂x1
+

∂u2

∂x2

))

+
∂

∂x2

(

ηh

(
∂u1

∂x2
+

1

2

∂u2

∂x1

))

= ρgh
∂s

∂x1
(2.18)

∂

∂x2

(

ηh

(

2
∂u2

∂x2
+

∂u1

∂x1

))

+
∂

∂x1

(

ηh

(
∂u2

∂x1
+

1

2

∂u1

∂x2

))

= ρgh
∂s

∂x2
.

27

2.5 Vertical Shear Approximation

We don’t wish to approximate all vertical derivatives as zero in equations 2.17, so from

Pollard we apply the approximation

∂u1

∂x3
= 2A

[

σ2
13 +σ2

23 +σ2
plane

] n−1
2

σ13 (2.19)

with

σ2
plane = η2ε̇2

plane

and

σi3 = τi

(
s− x3

s−b

)

= τih%.

The basal force due to friction along dimension i is τi. This defined by some sliding law

such as

τi = β2uibasal, (2.20)

which is a common sliding law. Therefore, the complete form of the approximation from

equation 2.19 that we apply is:

∂u1

∂x3
= −2A

[

(τ1h%)
2 +(τ2h%)

2 +η2ε̇2
plane

] n−1
2

τ1h% (2.21)

∂u2

∂x3
= −2A

[

(τ1h%)
2 +(τ2h%)

2 +η2ε̇2
plane

] n−1
2

τ2h%.

For brevity we will use

h% =
z−b

h
(2.22)

28

where z is the current height. h% is used as a variable of integration.

However we need the vertical average of these terms for our implementation so we inte-

grate equations 2.21 and divide by the height.

∂u1

∂x3
=

1

s−b

ˆ 0

1

(

2A
[

(τ1h%)
2 +(τ2h%)

2 +η2ε̇2
plane

] n−1
2

τ1h%

)

dh% (2.23)

∂u2

∂x3
=

1

s−b

ˆ 0

1

(

2A
[

(τ1h%)
2 +(τ2h%)

2 +η2ε̇2
plane

] n−1
2

τ2h%

)

dh%.

We perform the integration of equations 2.23 using the Maple Computer Algebra System,

which yields the following equations:

∂u1

∂x3
=

2hτ1A

(

ηn+1ε̇n+1
p −

(
τ2

2 + τ2
1 +η2ε̇2

p

) n+1
2

)

h
(
nτ2

1 +nτ2
2 + τ2

1 + τ2
2

) (2.24)

∂u2

∂x3
=

2hτ2A

(

ηn+1ε̇n+1
p −

(
τ2

2 + τ2
1 +η2ε̇2

p

) n+1
2

)

h
(
nτ2

1 +nτ2
2 + τ2

1 + τ2
2

)

It should be noted that when n = 3 the equations 2.24 reduce to

∂u1

∂x3
=

Aτ1

(
τ2

1 + τ2
2 +2η2ε2

p

)

2
(2.25)

∂u2

∂x3
=

Aτ2

(
τ2

1 + τ2
2 +2η2ε2

p

)

2
.

Other approximations for terms involving u3 can be obtained from MacAyeal sections 3.1

29

and 3.3 and by adding the base height:

u3 =
∂x3

∂t
= ∇ · (~ub)−∇ · (~u(x3−b)) (2.26)

u3 =
∂b

∂x1
u1 +

∂b

∂x2
u2−

∂u2

∂x2
(x3−b)−

∂u1

∂x1
(x3−b)

∂u3

∂x1
=

∂

∂x1

(
∂b

∂x1
u1 +

∂b

∂x2
u2−

∂u2

∂x2
(x3−b)−

∂u1

∂x1
(x3−b)

)

∂u3

∂x2
=

∂

∂x2

(
∂b

∂x2
u1 +

∂b

∂x2
u2−

∂u2

∂x2
(x3−b)−

∂u1

∂x1
(x3−b)

)

.

However, we will not apply these approximations in this discussion, instead we will ap-

proximate them as zero as in Pollard. The system of equations, combining equations 2.17,

2.24, and zero-approximations is:

∂

∂x1

(

ηh

(

2
∂u1

∂x1
+

∂u2

∂x2

))

(2.27)

+
∂

∂x2

(

ηh

(
∂u1

∂x2
+

1

2

∂u2

∂x1

))

= ρgh
∂s

∂x1
+ τ1

∂

∂x2

(

ηh

(

2
∂u2

∂x2
+

∂u1

∂x1

))

+
∂

∂x1

(

ηh

(
∂u2

∂x1
+

1

2

∂u1

∂x2

))

= ρgh
∂s

∂x2
+ τ2

from the Shallow Shelf Approximation,

2τ1A

(

ηn+1ε̇n+1
p −

(
τ2

2 + τ2
1 +η2ε̇2

p

) n+1
2

)

(
nτ2

1 +nτ2
2 + τ2

1 + τ2
2

) =
∂u1

∂x3

2τ2A

(

ηn+1ε̇n+1
p −

(
τ2

2 + τ2
1 +η2ε̇2

p

) n+1
2

)

(
nτ2

1 +nτ2
2 + τ2

1 + τ2
2

) =
∂u2

∂x3

30

from Pollard’s shearing approximation, and

ε2
ν +

(

∂u1

∂x1

)2

+

(

∂u2

∂x2

)2

+
1

4

(

∂u1

∂x2
+

∂u2

∂x1

)2

+
∂u1

∂x1

∂u2

∂x2
= ε̇2

p

ε̇2
p +

1

4

(

∂u1

∂x3

)2

+
1

4

(

∂u2

∂x3

)2

 = ε̇2

1

A
1
n

(

ε̇2
) n−1

2n

= η

for the non-linear viscosity calculation. In the equations 2.27, the first four approximation

equations are the equations to be solved, and the remaining three viscosity equations are

substituted into them.

2.6 Variational Principles and the Jacobian

In order to apply Newton’s method for a solution, we must find the first variation of the

system of equations. The first variation of an equation F is,

δF (u)(w) = lim
ε→0

F (u+ εw)−F (u)

ε
=

d

dε

∣
∣
∣
∣
ε=0

F (u+ εw) . (2.28)

Applying this principal to the equations 2.27 above we get, for the right hand sides,

31

d

dε
ρgh

∂zs

∂x1

∣
∣
∣
∣
ε=0

= ... (2.29)

d

dε
ρgh

∂zs

∂x2

∣
∣
∣
∣
ε=0

= ...

d

dε

∂

∂x3
(u1 + εw1)

∣
∣
∣
∣
∣
ε=0

= ...

d

dε

∂

∂x3
(u1 + εw1)

∣
∣
∣
∣
∣
ε=0

= ...

Equations 2.29 evaluate to:

0 = ... (2.30)

0 = ...

∂

∂x3

d

dε
(εw1)

∣
∣
∣
∣
∣
ε=0

=
∂w1

∂x3
= ...

∂

∂x3

d

dε
(εw2)

∣
∣
∣
∣
∣
ε=0

=
∂w1

∂x3
= ...

Filling in the left hand sides of equations 2.27 and applying 2.28 to them, we get:

32

0 =
d

dε

∂

∂x1

(

2η(~u+ ε~w)h

(

2
∂

∂x1
(u1 + εw1)+

∂

∂x2
(u2 + εw2)

))∣
∣
∣
∣

(2.31)

+
d

dε

∂

∂x2

(

η(~u+ ε~w)h

(
∂

∂x2
(u1 + εw1)+

1

2

∂

∂x1
(u2 + εw2)

))∣
∣
∣
∣
ε=0

0 =
d

dε

∂

∂x2

(

2η(~u+ ε~w)h

(

2
∂

∂x2
(u2 + εw2)+

∂

∂x1
(u1 + εw1)

))∣
∣
∣
∣
ε=0

+
d

dε

∂

∂x1

(

η(~u+ ε~w)h

(

2
∂

∂x2
(u1 + εw1)+

1

2

∂

∂x1
(u2 + εw2)

))∣
∣
∣
∣
ε=0

∂w1

∂x3
=

d

dε

2τ1A

(
[
ηn+1 (~u+ ε~w)

][
ε̇n+1

p (~u+ ε~w)
]
−
(
τ2

2 + τ2
1 +η2ε̇2

p

) n+1
2

)

(
nτ2

1 +nτ2
2 + τ2

1 + τ2
2

)

∣
∣
∣
∣
∣
∣
∣
∣
ε=0

∂w2

∂x3
=

d

dε

2τ1A

(

η(~u+ ε~w)n+1 ε̇(~u+ ε~w)n+1
p −

(
τ2

2 + τ2
1 +η2ε̇2

p

) n+1
2

)

(
nτ2

1 +nτ2
2 + τ2

1 + τ2
2

)

∣
∣
∣
∣
∣
∣
∣
∣
ε=0

For the sake of brevity we will define the following functions representing first variations

of functions employed by the above equations:

ζ(~u,~w) =
d

dε
η(~u+ ε~w)

∣
∣
∣
∣
ε=0

(2.32)

e(~u,~w) =
d

dε
ε̇2 (~u+ ε~w)

∣
∣
∣
∣
ε=0

(2.33)

ep (~u,~w) =
d

dε
ε̇2

p (~u+ ε~w)

∣
∣
∣
∣
ε=0

(2.34)

t (~u+ ε~w) =
d

dε
τi (~u+ ε~w)

∣
∣
∣
∣
ε=0

(2.35)

Note that for the common sliding law, by applying the first variation 2.28 to equation 2.20,

we get:

ti = β2wibasal. (2.36)

33

We also define the function

τ
n+1

2
p (~u+ ε~w) =

(
τ2

2 (~u+ ε~w)+ τ2
1 (~u+ ε~w)+η2(~u+ ε~w)ε̇2

p(~u+ ε~w)
) n+1

2 (2.37)

and its first variation

tp (~u,~w) =
d

dε
τ

n+1
2

p (~u+ ε~w)

∣
∣
∣
∣
ε=0

. (2.38)

Proceeding with the differentiation of 2.31, we obtain:

34

0 =
∂

∂x1

(

η(~u+ ε~w)h

(

2
∂

∂x1

d

dε
(u1 + εw1)+

∂

∂x2

d

dε
(u2 + εw2)

))∣
∣
∣
∣
ε=0

(2.39)

+
∂

∂x1

(

ζ(~u,~w)h

(

2
∂

∂x1
(u1 + εw1)+

∂

∂x2
(u2 + εw2)

))∣
∣
∣
∣
ε=0

+
∂

∂x2

(

η(~u+ ε~w)h

(
∂

∂x2

d

dε
(u1 + εw1)+

1

2

∂

∂x1

d

dε
(u2 + εw2)

))∣
∣
∣
∣
ε=0

+
∂

∂x2

(

ζ(~u,~w)h

(
∂

∂x2
(u1 + εw1)+

1

2

∂

∂x1
(u2 + εw2)

))∣
∣
∣
∣
ε=0

0 =
∂

∂x2

(

η(~u+ ε~w)h

(

2
∂

∂x2

d

dε
(u2 + εw2)+

∂

∂x1

d

dε
(u1 + εw1)

))∣
∣
∣
∣
ε=0

+
∂

∂x2

(

ζ(~u,~w)h

(

2
∂

∂x2
(u1 + εw1)+

∂

∂x2
(u2 + εw2)

))∣
∣
∣
∣
ε=0

+
∂

∂x1

(

η(~u+ ε~w)h

(
∂

∂x2

d

dε
(u1 + εw1)+

1

2

∂

∂x1

d

dε
(u2 + εw2)

))∣
∣
∣
∣
ε=0

+
∂

∂x1

(

ζ(~u,~w)h

(
∂

∂x2
(u1 + εw1)+

1

2

∂

∂x1
(u2 + εw2)

))∣
∣
∣
∣
ε=0

∂w1

∂x3
=

(
G′1H−G1H ′

)
/H2

∂w2

∂x3
=

(
G′2H−G2H ′

)
/H2

G1 = 2τ1A

(

η(~u+ ε~w)n+1 ε̇(~u+ ε~w)n+1
p − τ

n+1
2

p

)∣
∣
∣
∣
ε=0

G′1 = 2t1A

(

ηn+1ε̇n+1
p − τ

n+1
2

p

)∣
∣
∣
∣
ε=0

+ 2τ1A
(
(n+1)

[
ζnε̇n+1

p +ηn+1en
p

]
− tp

)∣
∣
ε=0

G2 = 2τ1A

(

η(~u+ ε~w)n+1 ε̇n+1
p (~u+ ε~w)− τ

n+1
2

p

)∣
∣
∣
∣
ε=0

G′2 = 2t2A

(

ηn+1ε̇n+1
p − τ

n+1
2

p

)∣
∣
∣
∣
ε=0

+ 2τ2A
(
(n+1)

[
ζnε̇n+1

p +ηn+1en
p

]
− tp

)∣
∣
ε=0

H =
(
n
[
τ2

1 (~u+ ε~w)
]
+nτ2

2 + τ2
1 + τ2

2

)∣
∣
ε=0

H ′ = (2n [τ1 (~u+ ε~w)] [t1 (~u,~w)]+2nτ2t2 +2τ1t1 +2τ2t2)ε=0

35

In the next step we apply the condition ε = 0 so where in the previous step, equations 2.39

had η, ε̇, and τi computed as functions of ~u+ ε~w, in the next step they return to being

functions of~u. Their variations ζ, ė and ti, however, remain functions of (~u,~w):

36

0 =
∂

∂x1

(

η(~u)h

(

2
∂

∂x1
(w1)+

∂

∂x2
(w2)

))

(2.40)

+
∂

∂x1

(

ζ(~u,~w)h

(

2
∂

∂x1
(u1)+

∂

∂x2
(u2)

))

+
∂

∂x2

(

ν(~u)h

(
∂

∂x2
(w1)+

1

2

∂

∂x1
(w2)

))

+
∂

∂x2

(

ζ(~u,~w)h

(
∂

∂x2
(u1)+

1

2

∂

∂x1
(u2)

))

0 =
∂

∂x2

(

η(~u)h

(

2
∂

∂x2
(w2)+

∂

∂x1
(w1)

))

+
∂

∂x2

(

ζ(~u,~w)h

(

2
∂

∂x2
(u1)+

∂

∂x2
(u2)

))

+
∂

∂x1

(

η(~u)h

(
∂

∂x2
(w1)+

1

2

∂

∂x1
(w2)

))

+
∂

∂x1

(

ζ(~u,~w)h

(
∂

∂x2
(u1)+

1

2

∂

∂x1
(u2)

))

∂w1

∂x3
=

(
G′1H−G1H ′

)
/H2

∂w2

∂x3
=

(
G′2H−G2H ′

)
/H2

Gi = 2τiA

(

η(~u)n+1 ε̇(~u)n+1
p − τ

n+1
2

p

)

G′i = 2 [ti (~u,~w)]A

(
[
ηn+1 (~u)

][
ε̇n+1

p (~u)
]
− τ

n+1
2

p (~u)

)

−2 [τi (~u)]A(n+1)
(
[ηn (~u)] [ζ(~u,~w)]

[
ε̇n+1

p (~u)
])

−2 [τi (~u)]A(n+1)
([

ηn+1 (~u)
][

ε̇n
p (~u)

]
[ėp (~u,~w)]

)

−2 [τi (~u)]A [ti]

H =
(
n
[
τ2

1 (~u)
]
+nτ2

2 + τ2
1 + τ2

2

)

H ′ = 2n [τ1 (~u)] [t1 (~u,~w)]+2nτ2t2 +2τ1t1 +2τ2t2

37

By simplifying equations 2.60 we get

G′i = 2tiA

(
[
ηn+1

][
ε̇n+1

p

]
− τ

n+1
2

p

)

−2τiA(n+1)ηnε̇n
p [ζε̇p]

−2τiA(n+1)ηnε̇n
p [ηėp]

−2τiA [tp] .

We must apply the same variational process 2.28 to obtain ζ from equation 2.32:

ζ(~u,~w) =
d

dε

A(T)
−1
n

2(ε̇2)
n−1
2n (~u+ ε~w)

∣
∣
∣
∣
∣
ε=0

(2.41)

=

(
1−n

2n

)
B

2

[(
ε̇2
)
(~u)
] 1−3n

2n
[(

ė2
)
(~u,~w)

]
,

where B = A(T)
−1
n . We note that this implies that

ζn =

(
1−n

2n

)n
1

2A

[(
ε̇2
)
(~u)
] 1−3n

2
[(

ė2
)
(~u,~w)

]
(2.42)

Applying the same variational process 2.28 to obtain ė2 from equation 2.33:

ė2 (~u,~w) =
d

dε

2ε̇2
p +

1

4

(

∂u1

∂x3

)2

+
1

4

(

∂u2

∂x3

)2

∣
∣
∣
∣
∣
∣
ε=0

(2.43)

= ė2
p +

1

2

(

∂u1

∂x3

)(

∂w1

∂x3

)

+
1

2

(

∂u2

∂x3

)(

∂w2

∂x3

)

,

38

and we obtain ė2
p from 2.34:

ė2
p =

d

dε

ε2
ν +

(

∂u1

∂x1

)2

+

(

∂u2

∂x2

)2

+
1

4

(

∂u1

∂x2
+

∂u2

∂x1

)2

+
∂u1

∂x1

∂u2

∂x2

∣
∣
∣
∣
∣
∣
ε=0

(2.44)

Equations 2.45–2.49 show the steps of differentiating equation 2.44.

ė2
p =

d

dε

(
∂

∂x1
(u1 + εw1)

)2

+

(
∂

∂x2
(u2 + εw2)

)2
∣
∣
∣
∣
∣
ε=0

(2.45)

+
d

dε

1

4

(
∂

∂x1
(u2 + εw2)+

∂

∂x2
(u1 + εw1)

)2
∣
∣
∣
∣
∣
ε=0

+
d

dε

(
∂

∂x1
(u1 + εw1)

)(
∂

∂x2
(u2 + εw2)

)∣
∣
∣
∣
ε=0

ė2
p =

d

dε

([
∂u1

∂x1

]2

+2
∂u1

∂x1

∂

∂x1
(εw1)+

[
∂

∂x1
(εw1)

]2
)∣
∣
∣
∣
∣
ε=0

(2.46)

+
d

dε

([
∂u2

∂x2

]2

+2
∂u2

∂x2

∂

∂x2
(εw2)+

[
∂

∂x2
(εw2)

]2
)∣
∣
∣
∣
∣
ε=0

+
d

dε

1

4

([
∂u2

∂x1

]2

+2
∂u2

∂x1

∂

∂x1
(εw2)+

[
∂

∂x1
(εw2)

]2
)∣
∣
∣
∣
∣
ε=0

+
d

dε

1

4

([
∂u1

∂x2

]2

+2
∂u1

∂x2

∂

∂x2
(εw1)+

[
∂

∂x2
(εw1)

]2
)∣
∣
∣
∣
∣
ε=0

+
d

dε

1

4

(

2

[
∂u2

∂x1

∂u1

∂x2
+

∂u2

∂x1

∂

∂x2
εw1 +

∂

∂x1
εw2

∂u1

∂x2
+ ε2 ∂w2

∂x1

∂w1

∂x2

])∣
∣
∣
∣
ε=0

+
d

dε

(
∂

∂x1
(u1 + εw1)

)(
∂

∂x2
(u2 + εw2)

)∣
∣
∣
∣
ε=0

39

ė2
p =

(

2
∂u1

∂x1

∂

∂x1
(w1)+2ε

[
∂

∂x1
(w1)

]2
)∣
∣
∣
∣
∣
ε=0

(2.47)

+

(

2
∂u2

∂x2

∂

∂x2
(w2)+2ε

[
∂

∂x2
(w2)

]2
)∣
∣
∣
∣
∣
ε=0

+
1

4

(

2
∂u2

∂x1

∂

∂x1
(w2)+2ε

[
∂

∂x1
(w2)

]2
)∣
∣
∣
∣
∣
ε=0

+
1

4

(

2
∂u1

∂x2

∂

∂x2
(w1)+2ε

[
∂

∂x2
(w1)

]2
)∣
∣
∣
∣
∣
ε=0

+
1

4

(

2

[
∂

∂x1
u2

∂

∂x2
w1 +

∂

∂x1
w2

∂

∂x2
u1 +2ε

∂w2

∂x1

∂w1

∂x2

])∣
∣
∣
∣
ε=0

+

(
∂

∂x1
(w1)

)(
∂

∂x2
(u2 + εw2)

)

+

(
∂

∂x1
(u1 + εw1)

)(
∂

∂x2
(w2)

)∣
∣
∣
∣
ε=0

ė2
p =

(

2
∂u1

∂x1

∂

∂x1
(w1)

)

(2.48)

+

(

2
∂u2

∂x2

∂

∂x2

(

w(τ2
1+τ2

2+2η2ε2
p)2

))

+
1

4

(

2
∂u2

∂x1

∂

∂x1
(w2)

)

+
1

4

(

2
∂u1

∂x2

∂

∂x2
(w1)

)

+
1

4

(

2

[
∂

∂x1
u2

∂

∂x2
w1 +

∂

∂x1
w2

∂

∂x2
u1

])

+

(
∂

∂x1
(w1)

)(
∂

∂x2
(u2)

)

+

(
∂

∂x1
(u1)

)(
∂

∂x2
(w2)

)

40

ė2
p = 2

∂u1

∂x1

∂w1

∂x1
+2

∂u2

∂x2

∂w2

∂x2
(2.49)

+
1

2

(
∂u1

∂x2

∂w1

∂x2
+

∂u1

∂x2

∂w2

∂x1
+

∂u2

∂x1

∂w1

∂x2
+

∂u2

∂x1

∂w2

∂x1

)

+
∂u1

∂x1

∂w2

∂x2
+

∂u2

∂x2

∂w1

∂x1

=

(

2
∂u1

∂x1
+

∂u2

∂x2

)
∂w1

∂x1
+

(

2
∂u2

∂x2
+

∂u1

∂x1

)
∂w2

∂x2
+

1

2

(
∂u1

∂x2
+

∂u2

∂x1

)
∂w2

∂x1
+

1

2

(
∂u1

∂x2
+

∂u2

∂x1

)
∂w1

∂x2

We note that

ėp =
d

dε

[√

ε̇2
p

]
∣
∣
∣
∣
ε=0

(2.50)

=
1

2
√

ε̇2
p

ėp =
ė2

p

2ε̇p

Similarly,

ė =
ė2

2ε̇
. (2.51)

For tp we apply the same variation 2.28 yet again to equation 2.38:

tp (~u,~w) =
d

dε

(
τ2

2 (~u+ ε~w)+ τ2
1 +η2(~u+ ε~w)ε̇2

p(~u+ ε~w)
) n+1

2

∣
∣
∣
∣
ε=0

(2.52)

=

(
n+1

2

)
(
τ2

2 (~u)+ τ2
1 +η2(~u)ε̇2

p(~u)
) n−1

2

·(2 [τ1 (~u)] [t1 (~u,~w)]+2 [τ2 (~u)] [t2 (~u,~w)]+T)

where

T = 2η(~u) ε̇p(~u)(η(~u) ėp(~u,~w)+ζ(~u,~w) ε̇p(~u)) . (2.53)

2.7 The Structure of the First Variation Form

Since we intend to solve this system of equations by using the first variation as a linear

approximation to the system at a specific point, it is necessary to break the equations into

41

linear combinations of ∂w1

∂x1
, ∂w2

∂x2
, ∂w2

∂x1
, and ∂w1

∂x2
. In this section we investigate the structure

of these equations to that end. In order to keep the equations of manageable complexity we

define the following substitution variables:

A =

(

2
∂u1

∂x1
+

∂u2

∂x2

)

(2.54)

B =

(

2
∂u2

∂x2
+

∂u1

∂x1

)

C =
1

2

(
∂u1

∂x2
+

∂u2

∂x1

)

E =
1

2

(

∂u1

∂x3

)

F =
1

2

(

∂u2

∂x3

)

N = η(~u)h

R = 2Aτi (n+1)
(
τ2

2 + τ2
1 +η2ε̇2

p

) n−1
2

S = [2Aτi (n+1)]

[

ηnε̇n
p +ηε̇p

(
τ2

2 + τ2
1 +η2ε̇2

p

) n−1
2

]

T = 2A

(
[
ηn+1 (~u)

][
ε̇n+1

p (~u)
]
− τ

n+1
2

p (~u)

)

X = ξ(~u)h

This allows us to substitute quantities from 2.54 into equation 2.49.

ė2
p = A

∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
. (2.55)

and for ė2 we can substitute into equation 2.33:

ė2 = A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3
. (2.56)

42

Then, letting

ξ(~u) =

(
1−n

2n

)
b

2

[
ε̇2 (~u)

] 1−n
2n −1

(2.57)

we will use the substitution

ζ(~u,~w) = ξ(~u) ė2 (~u,~w) . (2.58)

And, with the substitutions 2.54–2.58, equation 2.53 becomes becomes

T = 2η2 (~u) ε̇p(~u)

(

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2

)

(2.59)

+2η(~u) ε̇2
p(~u)ξ(~u)

(

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

)

.

43

Rewriting the main equations 2.39 we get:

0 =
∂

∂x1

(

N

(

2
∂

∂x1
(w1)+

∂

∂x2
(w2)

))

(2.60)

+
∂

∂x1

(

X A

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

+
∂

∂x2

(

N

(
∂

∂x2
(w1)+

1

2

∂

∂x1
(w2)

))

+
∂

∂x2

(

X C

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

0 =
∂

∂x2

(

N

(

2
∂

∂x2
(w2)+

∂

∂x1
(w1)

))

+
∂

∂x2

(

X B

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

+
∂

∂x1

(

N

(
∂

∂x2
(w1)+

1

2

∂

∂x1
(w2)

))

+
∂

∂x1

(

X C

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

∂w1

∂x3
=

(
G′1H−G1H ′

)
/H2

∂w2

∂x3
=

(
G′2H−G2H ′

)
/H2

Gi = 2τiA

(

η(~u)n+1 ε̇(~u)n+1
p −

(
τ2

2 (~u)+ τ2
1 (~u)+

[
η2 (~u)

][
ε̇2

p (~u)
]) n+1

2

)

G′i = T ti

−S [ξε̇p] ė
2

−S

[

η

2ε̇p
2

]

ė2
p

−R [τ1t1 + τ2t2]

H =
(
n
[
τ2

1 (~u)
]
+nτ2

2 + τ2
1 + τ2

2

)

H ′ = 2n [τ1 (~u)] [t1 (~u,~w)]+2nτ2t2 +2τ1t1 +2τ2t2.

44

Furthermore, G′i of equations 2.60 can be simplified to:

G′i = T [ti (~u,~w)] (2.61)

−R τ1t1

−R τ2t2

−S

[

η

2ε̇p
2
+ξε̇p

](

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2

)

−S [ξε̇p]

(

E
∂w1

∂x3
+F

∂w2

∂x3

)

It should be noted that when n = 3, equations 2.60 become much simpler:

Gi = Aτ1

(
τ2

1 + τ2
2 +2η2ε2

p

)
(2.62)

H = 2

G′i = A ·
(
ti
(
τ2

1 + τ2
2 +2η2ε2

p

))

+2Aτi ([τ1 (~u)] [t1 (~u,~w)]+ [τ2 (~u)] [t2 (~u,~w)])

+2Aτi2ηξε2
pe2

+2Aτiη
2e2

p

G′i = A ·
(
ti
(
τ2

1 + τ2
2 +2η2ε2

p

))

+2Aτi ([τ1 (~u)] [t1 (~u,~w)]+ [τ2 (~u)] [t2 (~u,~w)])

+2Aτiη
[
2ξε2

p +η
]
(

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2

)

2Aτiη
[
2ξε2

p

]

(

E
∂w1

∂x3
+F

∂w2

∂x3

)

H ′ = 0

So when n = 3, we can simplify some of the substitutions 2.54:

45

R = 8Aτi

(
τ2

2 + τ2
1 +η2ε̇2

p

)
(2.63)

S = [8Aτi]
[
η3ε̇3

p +ηε̇p

(
τ2

2 + τ2
1 +η2ε̇2

p

)]

T = 2A
([

η4 (~u)
][

ε̇4
p (~u)

]
− τp (~u)

)

For clarity, we can apply the common sliding law to equations 2.60:

∂w1

∂x3
=

(
G′1H−G1H ′

)
/H2 (2.64)

∂w2

∂x3
=

(
G′2H−G2H ′

)
/H2

Gi = 2β2uiA

(

ηn+1ε̇n+1
p −

(
β4u2

1 +β4u2
2 +
[
η2
][

ε̇2
p

]) n+1
2

)

G′i = T
[
β2wibasal

]

−R τ1

[
β2w1basal

]

−R τ2

[
β2w2basal

]

−S

[

η

2ε̇p
2
+ξε̇p

](

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2

)

−S [ξε̇p]

(

E
∂w1

∂x3
+F

∂w2

∂x3

)

H = β2
(
nu2

1 +nu2
2 +u2

1 +u2
2

)

H ′ = 2((n+1)u1w1 +(n+1)u2w2)

Si = 2A(n+1)ui

τp = u2
1 +u2

2 +η2(~u)ε̇2
p(~u)

These are the equations solved by the implementation in Picard iteration mode.

46

2.8 Finding the Weak Form for use in the Finite Element Method

In order to prepare system 2.60 for solution using the Finite Element Method we put the

equations in variational form using Galerkin’s Method, the first step of which is to multiply

by test functions φi and integrate.

0 =

¨

[

φ1
∂

∂x1

(

N

(

2
∂w1

∂x1
+

∂w2

∂x2

))]

dΩ (2.65)

+

¨

Ω
φ1

∂

∂x1

(

X A

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

dΩ

+

¨

Ω
φ1

∂

∂x2

(

N

(
∂w1

∂x2
+

1

2

∂w2

∂x1

))

dΩ

+

¨

Ω
φ1

∂

∂x2

(

X C

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

dΩ

0 =

¨

Ω
φ2

∂

∂x2

(

N

(

2
∂

∂x2
(w2)+

∂

∂x1
(w1)

))

dΩ

+

¨

Ω
φ2

∂

∂x2

(

X B

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

dΩ

+

¨

Ω
φ2

∂

∂x1

(

N

(
∂

∂x2
(w1)+

1

2

∂

∂x1
(w2)

))

dΩ

+

¨

Ω
φ2

∂

∂x1

(

X C

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

dΩ

0 =

¨

Ω

[

φ3

(
G′1
H

)

−
∂w1

∂x3
−

G1H ′

H2

]

dΩ

0 =

¨

Ω

[

φ4

(
G′2
H

)

−
∂w2

∂x3
−

G2H ′

H2

]

dΩ

We then apply Green’s first identity to equations 2.65 in order to eliminate second deriva-

tives:

47

0 =

¨

Ω

[
∂φ1

∂x1

(

N

(

2
∂w1

∂x1
+

∂w2

∂x2

))]

dΩ (2.66)

+

¨

Ω

∂φ1

∂x1

(

X A

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

dΩ

+

¨

Ω

∂φ1

∂x2

(

N

(
∂w1

∂x2
+

1

2

∂w2

∂x1

))

dΩ

+

¨

Ω

∂φ1

∂x2

(

X C

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

dΩ

−

˛

∂Ω

[

φ1

(

N

(

2
∂w1

∂x1
+

∂w2

∂x2

))

nx1

]

dΓ

−

˛

∂Ω
φ1

(

X A

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

nx1
dΓ

−

˛

∂Ω
φ1

(

N

(
1

2

∂w1

∂x2
+

∂w2

∂x1

))

nx2
dΓ

−

˛

∂Ω
φ1

(

X C

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

nx2
dΓ

0 =

¨

Ω

∂φ2

∂x2

(

N

(

2
∂w2

∂x2
+

∂w1

∂x1

))

dΩ

+

¨

Ω

∂φ2

∂x2

(

X B

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

dΩ

+

¨

Ω

∂φ2

∂x1

(

N

(
∂w1

∂x2
+

1

2

∂w2

∂x1

))

dΩ

+

¨

Ω

∂φ2

∂x1

(

X C

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

dΩ

−

˛

∂Ω
φ2

(

N

(

2
∂w2

∂x2
+

∂w1

∂x1

))

nx1
dΓ

−

˛

∂Ω
φ2

(

X B

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

nx1
dΓ

−

˛

∂Ω
φ2

(

N

(
∂w1

∂x2
+

1

2

∂w2

∂x1

))

nx2
dΓ

−

˛

∂Ω
φ2

(

X C

[

A
∂w1

∂x1
+B

∂w2

∂x2
+C

∂w2

∂x1
+C

∂w1

∂x2
+E

∂w1

∂x3
+F

∂w2

∂x3

])

nx2
dΓ

48

It should be noted that Gi, H, H ′, R , S , T , η, ε̇p, ξ and τi in system 2.66 are functions

only of ~u, and therefore are constant for the first variation at a single point. It is important

for solution to be clear about the factors of the test and trial (w) functions. One more

factorization gives us the weak form of the first variation of the system 2.27. This is an

affine system of the form

0 = J−~c (2.67)

where

J1,1 = [2N +X AA]
∂φ1

∂x1

∂w1

∂x1
+X AC

∂φ1

∂x1

∂w1

∂x2

+X AC
∂φ1

∂x2

∂w1

∂x1
+[N +X C C]

∂φ1

∂x2

∂w1

∂x2

J1,2 = X AC
∂φ1

∂x1

∂w2

∂x1
+[N +X AB]

∂φ1

∂x1

∂w2

∂x2

+

[
1

2
N +X C C

]
∂φ1

∂x2

∂w2

∂x1
+X AC

∂φ1

∂x2

∂w2

∂x2

J1,3 = X AE
∂φ1

∂x1

∂w1

∂x3
+X C E

∂φ1

∂x2

∂w1

∂x3

J1,4 = X AF
∂φ1

∂x1

∂w2

∂x3
+X C F

∂φ1

∂x2

∂w2

∂x3

49

J2,1 = X C A
∂φ2

∂x1

∂w1

∂x1
+

[
1

2
N +X C C

]
∂φ2

∂x1

∂w1

∂x2

+[N +X BA]
∂φ2

∂x2

∂w1

∂x1
+X BC

∂φ1

∂x2

∂w1

∂x2

J2,2 = [N +X C C]
∂φ1

∂x1

∂w2

∂x1
+X C B

∂φ1

∂x1

∂w2

∂x2

+X C B
∂φ1

∂x2

∂w2

∂x1
+[2N +X BB]

∂φ1

∂x2

∂w2

∂x2

J2,3 = X BE
∂φ2

∂x1

∂w1

∂x3
+X BF

∂φ2

∂x2

∂w1

∂x3

J2,4 = X C E
∂φ2

∂x1

∂w2

∂x3
+X C F

∂φ2

∂x2

∂w2

∂x3

J3,1 =
[
T β2−R τ1β2

]
φ3w1basal−S

[

η

2ε̇p
2
+ξε̇p

](

Aφ3
∂w1

∂x1
+Cφ3

∂w1

∂x2

)

J3,2 =
[
R τ2β2

]
φ3w2basal−S

[

η

2ε̇p
2
+ξε̇p

](

Bφ3
∂w2

∂x2
+Cφ3

∂w2

∂x1

)

J3,3 = −S [ξε̇p]

[

Eφ3
∂w1

∂x3

]

J3,4 = −S [ξε̇p]

[

F φ3
∂w2

∂x3

]

J4,1 =
[
R τ1β2

]
φ4w1basal−S

[

η

2ε̇p
2
+ξε̇p

](

Bφ4
∂w2

∂x2
+Cφ4

∂w2

∂x1

)

J4,2 =
[
T β2−R τ2β2

]
φ4w2basal−S

[

η

2ε̇p
2
+ξε̇p

](

Aφ4
∂w1

∂x1
+Cφ4

∂w1

∂x2

)

J4,3 = −S [ξε̇p]

[

Eφ4
∂w1

∂x3

]

J4,4 = −S [ξε̇p]

[

F φ4
∂w2

∂x3

]

50

and c =

(

[2N +X AA] ∂w1

∂x1
+[N +X AB] ∂w2

∂x2
+X AC

[
∂w1

∂x2
+ ∂w2

∂x1

])

φ1nx1

. . .

+
(

[N +X C C] ∂w1

∂x2
+
[

1
2
N +X C C

]
∂w2

∂x1
+X C A ∂w1

∂x1
+X C B ∂w2

∂x2

)

φ1nx2

. . .

+
(

X AE ∂w1

∂x3
+X C E ∂w1

∂x3

)

φ1nx1
+
(

X AF ∂w2

∂x3
+X C F ∂w2

∂x3

)

φ1nx2

(

[2N +X BB] ∂w2

∂x2
+[N +X BA] ∂w1

∂x1
+X BC

[
∂w1

∂x2
+ ∂w2

∂x1

])

φ2nx1
+ · · ·

+
(

[N +X C C] ∂w2

∂x1
+
[

1
2
N +X C C

]
∂w1

∂x2
+X C A ∂w1

∂x1
+X C B ∂w2

∂x2

)

φ1nx2

. . .

+ · · ·
(

X AE ∂w1

∂x3
+X C E ∂w1

∂x3

)

φ2nx1
+
(

X BF ∂w2

∂x3
+X BF ∂w2

∂x3

)

φ2nx2

−G1H ′

H2

−G2H ′

H2

.

We may also use a different sliding law such as the one in Pollard and Deconto [2009],

however this requires the substitution of the much more complex:

φ3w1 ←

[

φ3w1

((
1−m

2m

)
∣
∣u2

1 +u2
2

∣
∣

1−3m
2m 2u2

1

∣
∣u2

1 +u2
2

∣
∣

1−m
2m

)]

(2.68)

+

[

φ3w2

(
1−m

2m

)
∣
∣u2

1 +u2
2

∣
∣

1−3m
2m 2u2u1

]

φ4w2 ←

[

φ4w1

(
1−m

2m

)
∣
∣u2

1 +u2
2

∣
∣

1−3m
2m 2u2u1

]

+

[

φ4w2

((
1−m

2m

)
∣
∣u2

1 +u2
2

∣
∣

1−3m
2m 2u2

2 +
∣
∣u2

1 +u2
2

∣
∣

1−m
2m

)]

for the weak form. As desired, J is in fact the linear approximation of the Jacobian of the

planar form of the Stokes equations with approximations applied at a point.

51

Figure 2.1 General Solution Process

52

2.9 Approximating and Solving

In this chapter, we presented a derivation of the field equations, which, assuming n = 3

and the common linear sliding law, take the form

∂

∂x1

(

ηh

(

2
∂u1

∂x1
+

∂u2

∂x2

))

(2.69)

+
∂

∂x2

(

ηh

(
∂u1

∂x2
+

1

2

∂u2

∂x1

))

= ρgh
∂s

∂x1
+β2u1basal

∂

∂x2

(

ηh

(

2
∂u2

∂x2
+

∂u1

∂x1

))

+
∂

∂x1

(

ηh

(
∂u2

∂x1
+

1

2

∂u1

∂x2

))

= ρgh
∂s

∂x2
+β2u1basal

Aτ1

(
τ2

1 + τ2
2 +2η2ε2

p

)

2
=

∂u1

∂x3

Aτ2

(
τ2

1 + τ2
2 +2η2ε2

p

)

2
=

∂u2

∂x3
.

To these equations we apply the Finite Element Method by multiplying by a test function,

replacing the solution variables with a trial function, and integrating over the domain. Op-

tionally, we can follow the procedure in sections 2.7 and 2.8 to compute the first variation

for use with Newton’s Method.

In order to use the variational form we obtain by applying the Finite Element Method

to solve the field equations, we must first divide the planar domain into non-overlapping

convex polygonal elements, such as triangles.

Then, we define the test functions θik and trial functions ψ jl to be piece-wise defined

polynomials, such that they form a basis for the finite solution vector U and finite forcing

vector F . These two vectors contain an element for each solution variable at each vertex

of each element. The test and trial basis functions must be continuous on the interior of

every element. This allows yields an approximation of the continuous functions ui by a

53

piecewise-continuous function Uθ, where θ is the basis matrix.

The remainder of the solution process is performed numerically. An overview of the

numerical solution process is shown in Figure 2.1. However, the implementation may be

much more complicated than this summary: FEM and boundary condition code requires

many supporting numerical computations.

Third, we must compute the matrix K and forcing vector F such that each Ki jkl is the

definite integral of the field equations over the product θikψ jl for some specific solution

variable pair (i, j) and vertex pair (k, l).

Fourth, we search using some method to find the U which minimizes the residual R:

R = K(U)U−F,

which can be achieved by several methods including Picard iteration and Newton’s

Method. Newton’s method further requires the Jacobian of K(U) with respect to U . The

full integration-ready form of J is defined in equation 2.67. The procedure for solving

K(U)U = F using Newton’s Method is:

• compute the residual R← K(Uguess)Uguess−F ,

• compute the Newton’s update ∆← J(U)−1R,

• apply the update to the guess Uguess←Uguess+∆,

• repeat steps 1-3 until R is sufficiently small.

Finally, we must modify K and F to apply boundary conditions. Possible boundary

conditions include Dirichlet boundary conditions, Calving Front boundary conditions and

periodic boundary conditions.

Dirichlet boundary conditions force the solution of a particular point or region of the ice

moving at a specific velocity. This is useful, for example, when the velocity of some parts

54

of the ice sheet is known in advance. Dirichlet boundary conditions can be applied in two

ways: overwriting the row equation of KU = F with the equation 1 ·u =V for a numerical

value V , or by adding the equation λ1 · u = λV . The second method uses the Lagrange

multiplier λ, a sufficiently large predefined value.

Calving Front boundary conditions are applied by adding force to F to account for the

hydrostatic pressure of the seawater and ice front interface. This force is [MacAyeal, 1997]

~n
ρgh2

2

(

1−
ρ

ρw

)

. (2.70)

~n is the normal vector to the ice sheet boundary. This force must be integrated over the

adjacent calving front edges of elements on the boundary before being added to F in this

discretized finite element formulation.

Periodic boundary conditions are not applied explicitly to K or F . In IceCamp, the

implementation presented in this thesis, they are not treated as boundary conditions at all.

In a geometry with a periodic domain, there are simply elements which span the periodic

“boundary”, maintaining a pure torroidal topology. The final form of K(U) contains values

which come from integrating over non-zero test and trial functions as they wrap around the

periodic “boundary.”

55

CHAPTER 3 Software Implementation

56

3.1 Overview

This chapter describes the software implementation, IceCamp, of the model presented in

the previous chapter. First, an overview of the organization of the code is given. Then each

variable used in the implementation is listed, along with a description of what that variable

contains. Third, each routine implemented is described in detail including that routines

responsibilities and the calculations and algorithms employed by that routine. The routines

are listed in depth-first call order.

Figure 3.1 gives a visual depiction of the organization of the subroutines in the software

implementation. It also gives an overview of each step those subroutines make and what

their responsibilities are.

Processing begins in the software implementation with the test driver. This driver is

responsible for setting up a test scenario. Specifically, it must set up the domain size

and resolution. Then a triangular mesh is generated by rect_grid_to_triangles.

rect_grid_to_triangles calls the second phase of the test driver which provides

per-point data such as thickness, traction, boundary conditions, and Glen’s flow law A

parameter.

fem_imr is then invoked. It begins iteratively refining meshes and calling fem_l1l2

to solve the momentum balance problem on those meshes. fem_imr relies on an external

library, mrgrnk.f90 to perform sort operations.

fem_l1l2 solves the momentum balance problem for a given input mesh and input

data. It does this by first invoking analyze_mesh to analyze the mesh geometry and

init_k_sparsity to build the sparsity pattern of the matrices. analyze_mesh depends

on a helper function, maybe_add_neighbor to maintain sorted, unique, lists.

fem_l1l2 also depends on Gaussian quadrature integration functions, duv_dz, and an

external linear solver library. duv_dz is a function automatically generated by the Maple

57

computer algebra system to calculate quantities that fem_l1l2 depends on.

Finally, a python script, plot.py is provided to plot the output of the FORTRAN code.

3.2 Variables

accel_grav the acceleration due to gravity, g.

a_factor the A factor used in the expansion of the equations to be solved as in equa-

tions 2.54.

all_p array of every index into the p array.

approx_ice_visc initial guess for the viscosity of ice ≈ 2η.

approx_vel_sqr initial guess for the velocity squared (|~u|2).

Area area of the current element e.

B Glen’s flow law B parameter used by used by duv_dz.

b array of points on the boundary in the eismint_square_bay2 test by index into p.

basal_traction_coeff basal traction amount for points in p with the same index.

Units and exact meaning depends on sliding law being applied.

basal_traction_imr basal traction amount for points in p_imr with the same in-

dex. Units and exact meaning depends on sliding law being applied.

basal_sliding_epsilon εb, the extra velocity amount to be added to prevent the

friction with the bed from becoming infinite.

basal_sliding_exp exponent of Pollard’s basal sliding formula.

58

l1l2.F90

Test Driver

Phase 1

Test Driver

Phase 2

rect_grid_to_triangles

duv_dz

fem_imr

fem_l1l2

maybe_add_neighbor

ana lyze_mesh

init_k_sparsity

in t_quad

mrgrnk.f90

MRGRNK

SLAP Library

DSDBCG

BEGIN PROGRAM

Set domain s ize and resolut ion

END PROGRAM

Genera te t r i angu la r mesh

Set th ickness ,

t ract ion,

boundary condit ions,

A pa ramete r

Zero a l l output variables

Compute vert ical deformation

Compute ver t ical equat ion matr ix

contr ibut ions and deformation per point

Compute domain s ize

Compute e lement residuals f rom point residuals

Set physical constants ,

a lgor i thm parameters ,

and convienence var iables

Sort e lements by res idual

Is residual acceptable

or max mesh re f inement

i t e ra t ions r eached ?

Merge sor t and r e turn r ank

Outpu t g eome t ry

 Y e s

Genera t e n ew po in t s

a t the cent roid o f the

e lemen t s w i th t he

worst res iduals

 No

Outpu t po in t da ta
Fill in point data and

guesses for new points

Compute ini t ial B parameter values

Initialize guess, solution, and residual

For each e lement:

add neighbor points to neighbor l is ts ,

compute minimum edge length

Copy solut ion to guess and reset l inear problem

and jacobian matrices and forcing arrays

Compute veloci ty squared and

basal t raction coefficients for each point

Compute per -e lement da ta :

geomet ry ,

test funct ion derivat ives,

2-D and 3-D s t ra in ra tes ,

ice viscosity,

th ickness ,

basal t ract ion,

velocities,

problem and jacobian matrix contributions

(for each coupled equation ordered pair) ,

surface derivatives,

force due to gravity,

contribution to vertical equation coefficients,

contribution to point surface derivatives,

contribution to point viscosities,

and contr ibut ion to point s t rain

Gauss ian quadra ture ru le in tegra t ion

Compute boundary condit ion contribution to forcing arrays

Apply dirichlet boundary conditions by either

langrangians or forced equali ty

to mat r ices and a r rays

Compute t rue res idual

Linear solve

Compute so lu t ion update Double precision Bi-Conjugate Gradient Solve

Is residual acceptable

or max nonlinear solve

i t e ra t ions r eached ?

 No

Return last solut ion,

second to last residual ,

and l as t update increment vec tors

per point

 Y e s

Accumulate l ist of sorted,

unique ne ighbors
Add each point to i ts own neighbor l is t

For each e lement:

build l ist of neighbor elements

For each s ide of each e lement:

determine i f tha t edge i s a boundary

Build l ist of boundary points

and the i r normals

Build matrix sparsi ty pat tern:

for every ordered pair of

point-equation pairs

for which the points a re neighbors

and the equat ions d irect ly coupled

mark a mat r ix e lement non-zero

and add t o t he nonzero e l ement coun t

Figure 3.1 Call Graph

59

basal_sliding_exp_param m, parameter of the exponent of Pollard’s basal sliding

formula.

basal_sliding_exp_diff exponent of the derivative of Pollard’s basal sliding for-

mula.

b_e_all array of points on the east boundary in the eismint_square_bay2 test driver

by index into p.

bed bed elevation for points in p with the same index in meters.

bed_imr bed elevation for points in p_imr with the same index in meters.

b_factor the B factor used in the expansion of the equations to be solved as in equa-

tions 2.54.

bi iterator, index into the b array.

bj iterator, index into the b array.

b_n_all array of points on the north boundary in the eismint_square_bay2 test by

index into p.

b_ne array of points on the north-east boundary in the eismint_square_bay2 test by

index into p.

b_nw array of points on the north-west boundary in the eismint_square_bay2 test by

index into p.

boundary_point_nx array of normal vectors projected onto the x1 dimension with

same index as the b array. Vector magnitude is proportional to half the average length

of the incident edges.

60

boundary_point_ny array of normal vectors projected onto the x2 dimension with

same index as the b array.

boundary_triangles array of elements (triangles) on the mesh boundary.

b_s_all array of points on the south boundary in the eismint_square_bay2 test by

index into p.

b_se array of points on the south-east boundary in the eismint_square_bay2 test by

index into p.

b_sw array of points on the south-west boundary in the eismint_square_bay2 test by

index into p.

b_w_all array of points on the west boundary in the eismint_square_bay2 test by

index into p.

b_wne array of points on the north, west, and east boundaries in the

eismint_square_bay2 test by index into p.

bX basal drag in the x1 direction value used by duv_dz.

bY basal drag in the x2 direction value used by duv_dz.

C 3× 3 inverse matrix of Pe. Contains the slopes of the linear test (and trial) functions

which are nonzero on the element e. C[i,j] is the value of

∂φ j

∂xi−1
=

∂ψ j

∂xi−1
.

calving_front array of points (vertices) by index into p on the calving front.

61

c_factor the C factor used in the expansion of the equations to be solved as in equa-

tions 2.54.

cgret vector of return values of duv_dz. cgret[i] is the current estimate of ∂ui
∂x3

.

coeffs slopes of the test and trial functions to be integrated by the various quadrature

rules.

converr estimate of the error in the linear solution returned by DSDBCG.

domain what domain the test and trial functions should be integrated over by the various

quadrature rules.

delta_U solution update vector for Newton’s method.

detPe determinant of the Pe matrix.

dirichlet list of points (vertices) by index into p with dirichlet boundary conditions.

dirichlet_val dirichlet boundary condition values for each variable to apply to the

points in dirichlet with the same index.

domain_ew width of domain in meters from east to west.

domain_ns height of domain in meters from north to south.

ds_dx ∂s
∂x1

for the current element e. This is the surface slope in the x1 direction.

ds_dx_fudge adjustment applied to surface derivative calculations in the x1 direction

after calculations based on surface elevation array. This is used to convert a flat sheet

into an infinite (periodic) sloped sheet for the ISMIP-HOM tests.

ds_dy ∂s
∂x2

for the current element e. This is the surface slope in the x2 direction.

62

ds_dy_fudge adjustment applied to surface derivative calculations in the x2 direction.

du_dx
∂u1

∂x1
for the current element e.

du_dy
∂u1

∂x2
for the current element e.

du_dz
∂u1

∂x3
for the current element e.

dv_dx
∂u2

∂x1
for the current element e.

dv_dy
∂u2

∂x2
for the current element e.

dv_dz
∂u2

∂x3
for the current element e.

E 2-D strain rate used by duv_dz.

e2dstrain 2-D strain rate ėp for the current element e.

e3dstrain 3-D strain rate ė for the current element e.

edgei iterator. Current edge of the current element.

edge_nx x1 component of the normal vector of the current edge on the mesh boundary.

edge_ny x2 component of the normal vector of the current edge on the mesh boundary.

element_basal_coeff basal traction amount for the vertices in the current element

e. Exact meaning depends on the basal traction formula selected.

element_basal_coeff_diff derivative of the basal traction amount with respect to

the magnitude of the velocity for the vertices in the current element e. Exact meaning

depends on the basal traction formula selected.

element_basal_final derivative of the basal traction force with respect to the ve-

locity for for the vertices in the current element e.

63

element_thickness thicknesses for the vertices in the current element e.

element_u1vels velocity estimates for the vertices in the current element e in the x1

direction.

element_u2vels velocity estimates for the vertices in the current element e in the x2

direction.

element_vt product of the thickness and the viscosity for the vertices in the current

element e. N in equations 2.54.

error_estimate estimate of the error in the current ~U solution vector.

error_estimate_imr estimate of the error in the current ~U solution vector with re-

fined mesh points.

F forcing vector.

Fb forcing vector temporary copy.

final_tol final tolerance for the linear solver’s convergence criterion. Used once the

nonlinear solution begins to converge.

flow_law_A Glen’s flow law A parameter to use for the ice sheet.

flow_law_B Glen’s flow law B parameter, calculated from the A parameter.

flow_law_epsilon ε, the extra strain amount to be added to prevent the viscosity from

becoming infinite.

flow_law_exponent Glen’s flow law n parameter controlling the non-linearity.

FX elliptical component of the first equation used by duv_dz.

64

FY elliptical component of the second equation used by duv_dz.

grounded grounding flag for points (vertices) in p with the same index.

0 sheet is floating.

(0,1) sheet is partially grounded.

1 sheet is grounded.

grounded_imr grounding flag for points (vertices) in p_imr with the same index.

guess guess for the solution of the ~U solution vector.

guess_imr guess for the solution of the ~U solution vector with new points from refined

mesh.

ice_density the density of ice, ρ.

ice_visc the viscosity of ice at each point in p by the same index ≈ 2η.

ice_visc_zeta the ζ factor of the equations to be solved as in equation 2.58.

ierr integer error code, returned by DSDBCG.

iK array of row numbers with the same indexing as vK. See the description of the SLAP

column-compressed format in section 3.3.7.

initial_tol initial tolerance for the linear solver’s convergence criterion until the non-

linear solution begins to converge.

invDet inverse of the determinant of the Pe matrix.

imri iterator, tracks the current iterative mesh refinement iteration.

iter linear solver iteration count, returned by DSDBCG.

65

is_boundary_point array of flags indicating if each element in p with the same index

has an implicit boundary condition.

ismip_size period length of domain, both east to west and north to south.

Set to 0 if domain is not periodic.iwork scratch space for the DSDBCG routine.

Je sub-matrix of the J matrix for the current element e.

jK array of indexes into jK. See the description of the SLAP column-compressed format

in section 3.3.7.

Ke sub-matrix of the K matrix for the current element e.

ki iterator, index into the iK and vK arrays.

lagrange_multiplier the lagrange multiplier, λ, used for applying boundary condi-

tions.

linear_order number of elements in the U array. Order of the K matrix.

linear_tol tolerance for the linear solver’s convergence criterion. Passed to the

DSDBCG routine.

list list of neighbors to updated by maybe_add_neighbor.

m number of rows of vertices to divide the domain into from north to south.

max_imriter the maximum number iterative mesh refinements to perform.

max_neighbors the maximum order of any vertex in the mesh, including additional

vertices created by iterative mesh refinement.

max_nliter the maximum number of nonlinear (Newton’s or Picard’s) iterations to run

in fem_l1l2.

66

max_nliter_imr the maximum number of nonlinear (Newton’s or Picard’s) iterations

to run in fem_l1l2 with an automatically refined mesh.

max_p maximum number of vertices (points) in the new, refined mesh.

max_p_growth parameter controlling maximum growth of the p array during iterative

mesh refinement.

max_t maximum number of elements (triangles) in the new, refined mesh.

max_t_growth parameter controlling maximum growth of the t array during iterative

mesh refinement.

maxx maximum x1 coordinate of any vertex in p.

maxy maximum x2 coordinate of any vertex in p.

mi iterator, current east-west running row.

minx minimum x1 coordinate of any vertex in p.

miny minimum x2 coordinate of any vertex in p.

min_edge_length the length of the shortest edge of the current element e.

mode_tol nonlinear convergence threshold used to determine when the linear conver-

gence tolerance should be reduced.

mu viscosity of ice 2η.

n number of columns of vertices to divide the domain into from east to west; also in

duv_dz, Glen’s flow law parameter n.

67

neighbors the adjacency list for every vertex in the mesh, plus the vertex’s self, by

the same index as p. The length of neighbors[pi,:] for any particular pi is

nr_neighbors[pi].

ni iterator, current north-south running column.

nl_resid scalar representing the l2-norm of the residual estimate for the current ~U so-

lution vector.

nr_b number of points (vertices) on the boundary.

nr_bmp_nz number of possible nonzero coefficients of φiψ j∀i, j. This is the number of

nonzero coefficients in the block matrix stencil.

nr_bmp_nz0d number of possible nonzero coefficients of φiψ j where φiψ j does not di-

rectly depend on adjacent vertices. These occur when the system to be solved has

equations not in the weak form.

nr_bmp_nz2d number of possible nonzero coefficients of φiψ j where φiψ j directly de-

pends on adjacent vertices. These occur for all equations in the weak form.

nr_b_wne number of points on the north, west, and east boundaries in the

eismint_square_bay2 test.

nr_boundary_triangles the number of elements (triangles) on the mesh boundary.

nr_calving_front number of points (vertices) on the calving front.

nr_dirichlet number of points (vertices) with dirichlet boundary conditions.

nliter iterator, current nonlinear (Picard or Newton) iteration.

68

nr_neighbors the order of every vertex in the mesh, plus one to include the vertex’s

self, by the same index as p.

nr_p number of points (vertices) in the mesh.

nr_p_imr number of points (vertices) in the new, refined mesh.

nr_point_triangles number of elements (triangles) incident to a point (vertex).

nr_t number of triangles (elements) in the mesh.

nr_t_imr number of triangles (elements) in the new, refined mesh.

nr_v number of variables (test functions) in the system to be solved.

nr_v_0d number of variables (test functions) in the system to be solved which do not

depend on adjacent vertices.

nr_v_2d number of variables (test functions) in the system to be solved which depend

on adjacent vertices.

old_to_new_ratio parameter controlling how many old elements should be consid-

ered for the creation of a single new element.

p list of points’ (vertices’) (x1,x2) coordinates.

p_2dstrain 2-D strain rates (ėp) for each point (vertex).

pa used to keep track of vertices incident to an element, index into the p array.

pb used to keep track of vertices incident to an element, index into the p array.

pc used to keep track of vertices incident to an element, index into the p array.

p_ds surface derivative vectors for each point (vertex) rather than over an element.

69

p_duv_dz average vertical shear estimates ≈ ∂ui

∂x3
returned by duv_dz.

Pe position matrix for a single element. This is always of the form

1 p1,1 p1,2

1 p2,1 p2,2

1 p3,1 p3,2

where pi, j is the x j coordinate of the ith vertex incident to the element e.

p_ellipticals storage for various parts of the elliptical equations (the first two equa-

tions) so that these calculations may be reused later by duv_dz.

periodic flag indicating if domain is periodic

0 not periodic.

1 periodic domain.

pi iterator, index into the p array.

pic value of the mathematical constant π, the ratio of a circle’s circumference to its di-

ameter.

p_imr list of new points’ (vertices’) (x1,x2) coordinates for new refined mesh.

pint index into the p array of the internal (not on the mesh boundary) vertex incident to

the current element e.

point_triangles list of elements (triangles) incident to a point (vertex).

pvecs temporary vector storage. Unused.

70

pvec temporary storage for point information: this is used to avoid recomputation of

various quantities which will be needed later by duv_dz.

p_visc viscosity values for each point (vertex).

R residual vector.

Rb temporary copy of the residual vector.

RX surface forcing in the x1 direction value used by duv_dz.

RY surface forcing in the x2 direction value used by duv_dz.

resid_estimate estimate of the residual in the current ~U solution vector.

resid_estimate_imr estimate of the residual in the current ~U solution vector includ-

ing points in the refined mesh.

rghdsdx ρgh ∂s
∂x1

for the current element e.

rghdsdy ρgh ∂s
∂x2

for the current element e.

rwork scratch space for the DSDBCG routine.

seawater_density the density of seawater, ρw.

seed random number generator seed.

sliding_law flag determining which sliding law to apply.

1 apply the sliding law from Pollard.

2 apply the sliding law from ISMIP-HOM: force is proportional to β2~u.

t list of triangles. 3-tuples of indices into the p array.

71

t_imr list of triangles in the new, refined mesh. 3-tuples of indices into the p_imr array.

t_area list of areas for each element (triangle) with the same index as t array.

t_err list of error estimates for each element (triangle) with the same index as t array.

thickness sheet thickness for points in p with the same index in meters.

thickness_imr sheet thickness for points in p_imr with the same index in meters.

ti iterator, index into the t array.

t_old old t list during iterative mesh refinement.

t_rank ranked list of elements (triangles) with same index as t array.

triangle index of element sharing a vertex with current element e.

triangle_neighbors list of elements adjacent to an element.

use_guess flag indicating whether guess has usable values in it.

U solution vector.

Ub solution vector temporary copy.

uv_ok flag indicating whether we should output ~U velocity solutions: this output is sup-

pressed if it is all a single value because that breaks plot.py.

vel_sqr the velocity squared (|~u|2) for each point (vertex) in the mesh by the same index

as p.

vi iterator, index on variable number (test function number).

vj iterator, index on variable number (trial function number).

72

vJa array of values of the J matrix. See the description of the SLAP column-compressed

format in section 3.3.7.

vK array of values of the K matrix. See the description of the SLAP column-compressed

format in section 3.3.7.

vKa temporary copy of vK.

wrap_extras tuple of (x_wrap_extra, y_wrap_extra).

wraps tuple of (x_wrap, y_wrap).

x_wrap wrapping point for periodic boundary condition on x1.

x_wrap_extra wrapping margin width for periodic boundary condition on x1.

y_wrap wrapping point for periodic boundary condition on x2.

y_wrap_extra wrapping margin width for periodic boundary condition on x2.

3.3 Routines, Functions and Macros

3.3.1 Test Driver (First Phase)

The first phase of the test driver routine is responsible for setting domain geometry and

resolution and calling rect_grid_to_triangles. There are currently three test drivers

provided for this purpose: eismint_square_bay , ismip_hom_a, and ismip_hom_c,

representing the EISMINT and ISMIP-HOM tests they are named after, respectively.

The test drivers are also responsible for passing their correct second phase test driver

routine as a reference to rect_grid_to_triangles. This allows them to share the

rect_grid_to_triangles routine, which calculates the size of the data structures

necessary to hold the triangle grid without needing to allocate memory explicitly.

73

We employ this technique, which is specific to FORTRAN, throughout the code. First,

a subroutine calculates the size of arrays that will be required later and stores those dimen-

sions in integers. The first routine then calls another subroutine, passing the integers into

it, and the second subroutine defines local arrays using those integers to specify dimen-

sions. This has the effect of dynamically allocating arrays of unknown size efficiently on

the stack. The primary purpose of this technique in IceCamp is to enable easier analysis of

routines by automated static analysis tools such as automatic differentiation tools. For this

reason, at no point does IceCamp ever employ ALLOCATABLE arrays or pointers.

3.3.2 rect_grid_to_triangles

rect_grid_to_triangles performs the second step required to setup the simulation.

It calculates the number of vertices and triangles in the initial mesh, and populates the

triangle and vertex lists for the initial mesh.

The initial mesh is an even spaced grid of rectangles where each rectangle is divided in

half along one diagonal. For each rectangle it chooses either the northwest to southeast

diagonal or the northeast to southwest diagonal at random. This is done for debugging

purposes: it helps test that the rest of the code can handle arbitrarily oriented and wound

elements. Finally, rect_grid_to_triangles calls the subroutine that was passed in as an

argument, typically this is the second phase of the test driver.

3.3.3 Test Driver (Second Phase)

Now that the domain geometry is set up, the second phase of the test driver is respon-

sible for filling in details of the sheet’s geometry, such as bed elevation, sheet thickness,

basal traction, grounded areas, A parameter, and boundary conditions. There are currently

three test drivers provided for this purpose: eismint_square_bay2, ismip_hom_a2, and

ismip_hom_c2. eismint_square_bay2 describes a flat, floating ice sheet which with zero

74

velocity dirichlet boundary conditions on three sides and a force balance between ice and

seawater on the fourth side. This is equivalent a square bay with the ice nailed to the shore.

ismip_hom_c2 and ismip_hom_a2 describe a square, periodic, grounded sheet on a slope

with either basal traction or basal elevation varying with a vertical and horizontal sine func-

tion. The second phase of the test driver then calls fem_imr which ends the set-up phase

of the operation of the model.

3.3.4 fem_imr

The fem_imr routine is responsible for performing iterative mesh refinement, calling

the core L1L2 FEM solver on a mesh, deciding when the solution is acceptably accurate

and outputting the solution. fem_imr contains the main outermost loop of the system,

which runs the L1L2 FEM solver repeatedly on different meshes until residual vectors of

acceptably small magnitude are reached.

fem_imr recomputes the domain geometry from the mesh vertex list. This is done so

that fem_imr does not depend on drivers to do these calculations beforehand. It then calls

fem_l1l2 with the initial mesh. Based on the residual vector returned by fem_l1l2 it then

iteratively refines the mesh and reruns the solver until either the magnitude of the residual

vector falls below a threshold or a maximum iteration count is reached.

This process involves first computing an element-wise residual vector, where each ele-

ment’s residual is the l2-norm of the residual of its vertices, sorting this vector, and then

splitting the worst elements. The number of elements split is determined by the ratio

old_to_new_ratio. Each element is split into three elements with a new vertex at the

center of the old element. Once an element is split, values for all of the geometric and

boundary properties of the new vertex are estimated, including the basal traction, whether

the element is grounded, its thickness, base elevation and a starting velocity estimate.

After the splitting process is complete, fem_l1l2 is called again on the new mesh. Once

75

iterative mesh refinement exhausts its allowed number of iterations, fem_imr is responsible

for outputting the geometry (of the final mesh) and the final velocities in both the x1 and x2

directions, the magnitude of the velocity, error estimates and residuals for each point to a

text file.

3.3.5 fem_l1l2

fem_l1l2 is the largest routine in IceCamp and is responsible for solving the L1L2

equations using the Finite Element Method on a given triangle mesh. It does this in two

stages: first it analyzes the mesh and builds data structures which it will reuse at every

iteration of the solution process, then it iteratively solves the nonlinear L1L2 equations

using either Newton’s Method or Picard iteration.

The first thing calculated by fem_l1l2 is nr_k_nz which determines the maximum num-

ber of nonzero elements that can appear in the linear K and J matrices based on the trian-

gular mesh received. This ensures that later processing steps have enough memory to build

these sparse matrices. Then fem_l1l2 calls analyze_mesh and init_k_sparsity to ex-

tract information from the mesh geometry, such as implied boundaries and build the K and

J sparsity pattern.

Depending on compile-time options, fem_l1l2 works by either a Picard iteration or by

Newton’s Method. As shown in Figure 1.1, in Newton’s Method mode it forms both the

K matrix, by integrating the weak form of system 2.27 and the J matrix by integrating

system 2.67. In Picard iteration mode, it only forms K.

fem_l1l2 then enters its main loop which implements the nonlinear solution process

using either Newton’s Method or Picard iteration. The first step of this loop is to calculate

various quantities for each point which will be used later: the current estimated velocity

squared and the current estimate of basal traction magnitude. The next step of the loop is

responsible for filling in the K and J matrices. It performs this step on an element-wise

76

basis even though each entry in K and J represent coefficients of a system of equations on

each vertex. It does this by accumulating the contribution to each K and J entry from each

element.

Various quantities relating to each element are calculated: the element’s area, the slopes

and volumes of each test (or trial) function that is nonzero at that element, various factors

employed by the equations, the approximate viscosity across the entire element, its average

thickness, and its average velocity. If the element is on a periodic boundary, the positions

of its individual vertices are first recomputed. The elements area is computed by taking the

determinant of its position matrix. The slopes of the test and trial functions are computed

by inverting the same position matrix.

For the first nonlinear iteration, the ice viscosity, 2-D strain rate and 3-D strain rate are a

hard-coded default. For every subsequent iteration they are based on the actual strain rates

given the velocity solution of the previous iteration.

Then the precise contributions to K and J are formed in 3× 3 submatrices Ke and Je

through a system of C Preprocessor macros. These macros factor out code that would

otherwise be extremely repetitive by multiplying the correct factors against the correct test

function derivatives or proportions for any particular pair of equations in the system to be

solved. Then, Ke and Je are added to the appropriate subset of K and J.

The C Preprocessor macros employed are SETUP_ELT_SUBMAT and

SETUP_ELT_SUBMATIJ. SETUP_ELT_SUBMAT sets all of Ke or Je at once by run-

ning SETUP_ELT_SUBMATIJ once for each of the nine entries in Ke or Je, and storing them.

SETUP_ELT_SUBMAT takes seven arguments: the matrix to store to, four coefficients which

depend on the factors for the specific trial function and test function derivative product

being produced, a scalar to scale every factor by and a 3 element vector which will be

averaged and used to scale the volume of the trial function and test function product. The

four coefficients come from the factorization of the weak form of the system into multiples

77

of φiψ j where φi is a test function and ψ j is a trial function. For example, when forming

Ke for φ1u1, we consider the coefficients of

hν

(

4
∂φ1

∂x1

∂u1

∂x1
+0

∂φ1

∂x1

∂u1

∂x2
+0

∂φ1

∂x2

∂u1

∂x1
+1

∂φ1

∂x2

∂u1

∂x2

)

+β2φ1u1 (3.1)

+φ1 f
(
ui 6=1

)
= ...

︸ ︷︷ ︸

used in other Kecalculations

we call SETUP_ELT_SUBMAT with the arguments
(
Ke,4,0,0,1,hν,β2

)
. These calculations

are similar to the ones used to compute convenience variables du_dx, dv_dx, du_dy, dv_dy,

du_dz and dv_dz, except with additional scaling factors. Unlike the convenience variables,

they are also multiplied by the test functions φi and their derivatives to compute off-diagonal

entries.

Next, quantities related to external forcings are computed for the current element. These

are the surface slope, and force due to gravity: ρgh ds
dxi

. Unfortunately, these calculations

are made quite complex due to the possibility of a periodic boundary condition which

induces a torroidal topology on the entire problem. In this case, the effective elevation and

location of each vertex must be computed. This depends on the element currently being

considered, and whether it spans the periodic boundary. These values are then accumulated

into the F forcing vector, and some calculations are saved for the Pollard L1L2 3D strain

rate estimation code which is run point-wise, not element-wise.

The fourth set of calculations are done on a point-wise basis. Elements of K and J that

couple equations from the system 2.27 are set to 1. Then duv_dz is called which estimates

the Pollard L1L2 3D strain rate adjustment and saves it to the F forcing vector. Then,

points in the implied boundary set are assumed to be boundaries with the ocean and a

floating sheet force balance is calculated and saved to the F forcing vector.

The last set of precalculations in the main loop are applied only to points on the implied

78

boundary or points with explicit boundary conditions set. These boundary conditions can

be applied in one of two ways: the first being to set the Ki, j matrix element to 1 and the

Fi vector element to the value to be applied as a boundary condition. The second is to

use Lagrangian multipliers to apply the boundary condition by adding λ to the Ki, j matrix

element and adding λ ·v to the Fi vector element, where v is the value we wish to apply. For

example, for a Dirichlet boundary condition at a particular vertex, the K-matrix elements

representing the ui velocity equations would be adjusted, as would the F vector elements

representing their value.

Whether or not Lagrange multiplier boundary conditions are applied instead of forced

boundary conditions depends on whether the C Preprocessor flag LAGRANGEBC is defined.

This can be adjusted at the top of the source file or on the compiler command line.

Now that the matrices and vectors for the two equations KU = F and JW = R are ready,

the main loop then enters the phase where it actually solves for U or W . First, R=KUprev−

F is computed. The matrix-vector product is performed by a call to DSMV. Uprev is merely

the previous iteration’s U solution. Not that this is solution is preserved across iterations,

and even across calls to fem_l1l2.

Then, if Newton’s method is being employed, JW = R is solved for W and applied to U

as U ←U +W . Otherwise, KU = F is re-solved with an updated K and F based on the

previous iteration’s solution for U . This is the Picard iteration. These linear solutions are

computed by DSDBCG, a double-precision, iterative, preconditioned, bi-conjugate gradient

solver. For this purpose, minimum residual solvers are not appropriate: their aggressive

solutions cause patterns in the residual which interfere with effectiveness of the Newton

iteration.

Finally the l2-norm of the change in U from the previous iteration to the current is

compared against the threshold in mode_tol and final_tol. If it is lower than those

thresholds, or the maximum number of nonlinear iterations has been reached, fem_l1l2

79

terminates, returning U , R and Uprev−U .

It should be noted that the nonlinear iteration passes different convergence thresholds to

the linear solver depending on the residual computed by the nonlinear iteration. Once a

sufficiently small residual is produced, the linear solver convergence threshold is reduced

to produce a more accurate solution.

Whether or not Newton’s method is applied instead of a Picard iteration depends on

whether the C Preprocessor flag NEWTONS is defined. This can be adjusted at the top of the

source file or on the compiler command line.

3.3.6 analyze_mesh

The analyze_mesh routine is employed by fem_l1l2 before looping to efficiently pre-

compute data structures based on the mesh structure. These structures are: an adjacency

list describing which vertices are neighbors, which vertices are implied boundary points

(points on the edge of the mesh), and normal vectors for those boundary points.

First, an adjacency list is built vertices to each other and an incidence list for vertices

to elements is built by iterating over each element and adding its points to the appropriate

list. This is necessary since fem_imr only requires an incidence list of elements to vertices.

This first loop computes the inverse of that list. fem_imr also ensures that each vertex

is counted as its own neighbor. Each list’s sub-list is built by the maybe_add_neighbor

routine to maintain a specific ordering which will be required by the init_k_sparsity

routine.

Next, for each edge in each triangular element, analyze_mesh finds the neighboring

element across that edge from the current element. It does this by considering every other

element sharing a vertex in the current edge with the current element, and checking if the

other vertex incident with that particular edge is also shared. This is done on an elements

basis.

80

Third, boundary points are found, listed, and their normal vectors are computed. This is

done by scanning all boundary edges. Boundary edges are the edges of an element without

a neighboring element across that edge. For each of these boundary edges, its incident

vertices are added to the list of boundary vertices. The normal vector of the edge times its

length is computed and added to the normal vector of both incident vertices. Using this

technique, by the time the loop terminates, an each boundary vertex’s normal vector has

been computed as the sum of the incident boundary edges.

Finally, all normal vectors divided by the number of incident edges. This is necessary to

compensate in the case of a single boundary vertex having more than two incident boundary

edges. Though geometry with this property should be considered pathological, the code

does attempt to handle it as well as it can.

3.3.7 init_k_sparsity

The init_k_sparsity subroutine precomputes the K and J matrix sparsity patterns.

These matrices are stored in SLAP’s compressed column format, and we assemble them

directly into this format. Assembling the matrices in this format instead of triad format

dramatically improves performance of the solver since the matrices do not need to be sorted

and take up a minimal amount of space. Additionally, since the K and J matrices have the

same sparsity pattern, they can share data structures.

Briefly, the compressed column format consists of 3 one-dimensional arrays, in the code

they are referred to as iK, jK and vK. If K is an n× n matrix, jK is an array of length

n+ 1. Each element of jK is an index of iK representing the start of that column in iK.

iK is an array of length nr_k_nz. Each element of iK represents a a row number, and

the corresponding element of vK is the value of that element of K. For example, if we

wished to get or set Ki j we would get or set vK [x] where x is such that iK [x] = i and

jK[j+ 1] ≥ x ≥ jK[j]. Furthermore, each section of iK representing a column j is sorted

81

with the element on the diagonal, which must exist, first, and then in row order. This

enables efficient location of individual elements of K, especially those on the diagonal.

Sort order is computed by maybe_add_neighbor as called by analyze_mesh.

The init_k_sparsity subroutine constructs this data structure by initializing iK, jK

and vK in index order. First it inserts the diagonal entry for each test function and vertex i

combination. Then, for each combination of that test function, any trial function, that vertex

i and any vertex j that may be non-zero, it adds an entry to iK in sort order and initializes the

corresponding element of vK to zero. It makes use of the fact that only neighboring vertices

as computed by analyze_mesh can cause non-zero entries. Additionally, it consults the

bmp (block matrix pattern) matrix, which defines whether a test function and trial function

pair interact in the weak form of the system to be solved. bmp can be considered a stencil

that is applied once for every edge in the finite element mesh.

3.3.8 duv_dz

This subroutine was produced by the Maple computer algebra system. It requires

the current viscosity estimate, surface forcings, 2-D SSA strain rate approximation,

the temperature-dependent Glen’s flow law B parameter, Glen’s flow law exponent n

parameter, and the basal drag vector. It uses these to produce and return an estimation of

∂u1

∂x3
and ∂u2

∂x3
. The Maple input used to produce the statements in duv_dz is included in the

source repository and as an Appendix.

3.3.9 maybe_add_neighbor

This subroutine maintains a list of points neighboring a single point in sorted array order:

the vertex itself first, and then sorted by indices of neighboring vertices. It is currently im-

plemented as an inefficient single iteration insertion sort. Since neighbor lists are of limited

length this doesn’t post a significant performance concern. It depends on max_neighbors

82

being set appropriately so that there is enough space in the array for the maximum degree

of all vertices plus one.

3.3.10 k_index

This function locates the index of vK representing Ki, j or returns an error if Ki, j is as-

sumed to be zero.

3.3.11 Integration Routines

IceCamp includes various routines to perform integration. There are three quadrature

rules and an exact formula, which was produced by Maple. These routines are designed

to integrate the product of two affine functions of a two dimensional space over a given

domain. Specifically, a test and a trial function are normally supplied, along with scaling

coefficients for each.

3.3.12 External Routines

Three external routines are employed by l1l2.F90: DSDBCG, DSMV, and MRGRNK. DSDBCG

solves an affine system of the form

A~X = ~C

by the iterative bi-conjugate gradient method using double-precision numbers. DSMV calcu-

lates double-precision matrix vector product using matrices in compressed column format.

MRGRNK sorts a vector using the merge sort algorithm and returns another vector of indices

into the original vector in sort order.

83

3.3.13 Helper Macros

The three C Preprocessor Macros VPtoI, ItoV and ItoP are convenience functions to

map variable (trial function) and point (vertex) indices to row or column indices of the K

or J matrices back. VPtoI produces a row (or column) index from a variable index, point

index pair. ItoV produces a variable index from a row index. ItoP produces a point index

from a row index. Additionally, the convenience function SURFACE is defined to return the

surface elevation at a point.

3.3.14 plot.py

plot.py is a short utility written in Python to plot the output of l1l2.F90 to the display.

84

CHAPTER 4 Results

85

Maximum u1

IceCamp Pattyn et al. µ nσ

5km 17.23 12.14 0.97

10km 16.66 15.39 0.84

20km 19.53 18.31 1.02

40km 29.83 28.48 0.76

80km 61.63 60.99 0.11

160km 145.63 141.38 0.19

Table 4.1 ISMIP-HOM Test C Numerical Results

4.1 Results of the EISMINT Square Bay Test

Figure 4.1 shows the results of the software implementation presented here side by side

with the expected results from the EISMINT square bay test. The plots for the expected

results are taken directly from Rommelaere [1998]. The EISMINT square bay test is a

200km square bay which has 0 velocity on three sides, and a calving front force balance

boundary on the south side. Everywhere on the interior is a 500m thick floating ice shelf.

4.2 Results of the ISMIP-HOM Test C

Figure 4.3 shows the results of the software implementation presented in this thesis over-

laid on top of the results from other models presented in Pattyn et al. [2008]. One interesting

thing to note is that, as discussed in Pattyn et al., the surface velocity field in the 5km test

is anti-correlated to the basal friction. However, in the model presented here there is both a

correlated and anti-correlated signal present in the 10km test results.

Table 4.1 shows where the maximum horizontal velocity in the direction of ice flow pro-

duced by this implementation lies in comparison with other models in Pattyn et al.. It lists,

for each domain size, the maximum for this implementation, the mean of the maximums

for the models in Pattyn et al. and how many standard deviations outside of that mean this

implementation’s maximum lies.

86

Top left: the standard (expected) EISMINT results for the East-West velocity field. Top

right: IceCamp (the implementation presented in this thesis) results for the East-West ve-

locity field. Bottom left: the standard (expected) EISMINT results for the North-South

velocity field. Bottom right: IceCamp results for the North-South velocity field. Velocities

in m/a.

Figure 4.1 EISMINT Square Bay Result Comparison

87

IceCamp with various models from the ISMIP-Hom comparison project. FS is the mean of

various full-stokes models, and NFS is the mean of approximation models.

Figure 4.2 ISMIP-HOM Test C Result Comparison

88

Figure 4.3 ISMIP-HOM A Result Comparison

4.3 Results of the ISMIP-HOM Test A

Figure 4.3 shows the results of the software implementation presented in this thesis over-

laid on top of the results from the Shallow Ice Approximation (SIA) results for all domain

sizes from Pattyn et al. [2008]. This figure demonstrates a bug in the current implementa-

tion that causes the approximation to regress to the SIA when basal sliding is negligible.

This figure illustrates the presence of the SIA implicit in the vertical shear terms.

Table 4.2 shows the results of IceCamp on the 5km ISMIP-HOM A test with near the

expected results for SIA (199.69m a−1) at high β2 values. The expected maximum values

are 14.65± 0.19m a−1 for full-Stokes models [Pattyn et al., 2008]. This table also shows

the relationship between the two types of flow in the current implementation: sliding goes

89

Maximum u1 Velocities in m a−1

β2 Sliding Shearing Surface

109 0.000118 122.662919 122.663036

108 0.001178 122.659613 122.660791

107 0.011778 122.558307 122.570085

106 0.117398 121.355896 121.473294

105 1.133685 109.286043 110.419728

104 9.248845 59.349738 68.598583

103 76.592625 33.724529 110.317154

102 735.333031 29.849443 765.182474

101 7319.097179 29.435381 7336.043234

1 73173.247236 29.393673 73156.310658

Table 4.2 ISMIP-HOM Test A 5km Numerical Results

to 0 at high β2 values, as expected, and shearing is responsible for all flow. As β2 decreases,

we see sliding go to infinity, and shearing converge to exactly twice the expected full-Stokes

solution.

90

CHAPTER 5 Conclusion

91

5.1 Discussion

5.1.1 Derivation

This thesis includes the full derivation of all discrete systems employed by the imple-

mentation. This derivation includes many intermediate algebraic manipulations missing

from other treatments of the Shallow-Shelf Approximation and L1L2 approximation. The

author felt that this was important for both validation and as a resource for future treatments

of the same or similar systems. Other derivations can be very difficult to comprehend as

they are very short, and combine many steps into a single step with little or no commentary.

The derivation includes explicit mentions of when, where, and how approximations,

discretizations, and boundary conditions are applied to the original system of equations.

This is intended to allow future work to start at any of these points by choosing alternate

approximations, discretizations and boundary conditions.

5.1.2 Symbolic Differentiation

We provide in this thesis a symbolically differentiated first variation of the Jacobian of

the L1L2 model equations. This symbolically differentiated form is suitable for application

in any variational form, not only the weak form as applied using the finite element method.

Furthermore, it is suitable for any discretization, not only a finite element discretization.

Simply applying the discretization of choice to the first variation presented will yield the

Jacobian of the same discretization of the original system.

Additionally, by using symbolic differentiation, we avoided the complications of auto-

matic differentiation. By avoiding automatic differentiation, we keep the code simple for

use with automatic differentiation tools to be applied later, in order to differentiate with re-

spect to other variables. This can be used, for example, for sensitivity analysis with respect

to various parameters, such as the tricky n exponent parameter used in Glen’s flow law.

92

Avoiding Jacobian-free techniques has the disadvantage of requiring the formation of

the Jacobian but also has advantages. The biggest advantage is that the Jacobian includes

a local linear approximations of the full coupling between all four solution variables. This

coupling includes the coupling of the viscosity to all four solution variables implicitly. This

allows Newton’s method to work on all discretized variables simultaneously, including

implicit ones such as the ice viscosity. No fixed point iteration is required for any part of

the solution. This choice is in contrast to other implementations such as the one presented

in Lemieux et al. [2011], which still requires fixed-point iteration to obtain values for the

ice viscosity while using a Jacobian-free Newton-Krylov method to solve the velocity field

~u.

5.1.3 Model Accuracy

The model output is accurate. It matches the published results of full-Stokes models for

ISMIP-HOM test C at all domain sizes except 10km, where it is still transitioning from the

anti-correlated signal to the correlated signal exhibited on larger domains. However, it still

achieves an accurate maximum velocity. Additionally, it’s output matches the results of the

EISMINT square-bay test.

ISMIP-HOM test A results match the analytic solution from the Shallow Ice Approxima-

tion (SIA) instead of the full-Stokes solution currently due to a bug in the implementation.

However the bug does not affect the validity of the derivation presented in section 2.

5.1.4 Future Directions

The largest deficiency in the current implementation of the model is its lack of paral-

lelization. Hopefully, this can mostly be addressed simply by modifying the implemen-

tation to use a parallel linear solver such as one included in a library such as PETSc

or Trillinos. We do not expect this to be difficult as long as that solver understands the

93

SLAP column-compressed format or another format which can be generated from column-

compressed format easily. The implementation depends on building sparse matrices di-

rectly in an ordered format to maintain efficiency. Using sparse format conversion routines

which re-sort the matrix representation would have a large performance impact on the im-

plementation.

94

BIBLIOGRAPHY

D. Anthoff, R.J. Nicholls, and R.S.J. Tol. The economic impact of substantial sea-level

rise. Mitigation and Adaptation Strategies for Global Change, 15(4):321–335, 2010.

F. Bosello, R. Roson, and R.S.J. Tol. Economy-wide estimates of the implications of cli-

mate change: Sea level rise. Environmental and Resource Economics, 37(3):549–571,

2007.

Ed Bueler and Jed Brown. Shallow shelf approximation as a “sliding law” in a thermome-

chanically coupled ice sheet model. Journal of Geophysical Research, 114(F3):F03008,

2009.

J.M. Bull, L.A. Smith, L. Pottage, and R. Freeman. Benchmarking Java against C and

Fortran for scientific applications. In Proceedings of the 2001 joint ACM-ISCOPE con-

ference on Java Grande, pages 97–105. ACM, 2001.

A. Cazenave and W. Llovel. Contemporary sea level rise. Annual Review of Marine Sci-

ence, 2:145–173, 2010.

I.P.O.C. Change. Climate change 2007: the physical science basis. Agenda, 6:07, 2007.

John K Dukowicz, Stephen F Price, and William H Lipscomb. Consistent approximations

and boundary conditions for ice-sheet dynamics from a principle of least action. Journal

of Glaciology, 56(197):480–496, 2010.

95

Michael Fagan, Laurent Hascoet, and Jean Utke. Data representation alternatives in seman-

tically augmented numerical models. In Source Code Analysis and Manipulation, 2006.

SCAM’06. Sixth IEEE International Workshop on, pages 85–94. IEEE, 2006.

Daniel N Goldberg. A variationally derived, depth-integrated approximation to a higher-

order glaciological flow model. Journal of Glaciology, 57(201):157–170, 2011.

Daniel N Goldberg and Olga V Sergienko. Data assimilation using a hybrid ice flow model.

The Cryosphere, 5:315–327, 2011.

Marijke Habermann, David Maxwell, and Martin Truffer. Reconstruction of basal prop-

erties in ice sheets using iterative inverse methods. Journal of Glaciology, 58(210):

795–807, 2012.

RCA Hindmarsh. A numerical comparison of approximations to the stokes equations used

in ice sheet and glacier modeling. J. Geophys. Res, 109(10.1029), 2004.

D.A. Knoll and D.E. Keyes. Jacobian-free newton–krylov methods: a survey of approaches

and applications. Journal of Computational Physics, 193(2):357–397, 2004.

Jean-François Lemieux, Stephen F. Price, Katherine J. Evans, Dana Knoll, An-

drew G. Salinger, David M. Holland, and Antony J. Payne. Implementa-

tion of the jacobian-free newton-krylov method for solving the first-order ice

sheet momentum balance. Journal of Computational Physics, 230(17):6531

– 6545, 2011. ISSN 0021-9991. doi: 10.1016/j.jcp.2011.04.037. URL

http://www.sciencedirect.com/science/article/pii/S0021999111002853.

William Lipscomb, Robert Bindschadler, Ed Bueler, David Holland, Jesse Johnson, and

Stephen Price. A community ice sheet model for sea level prediction: Building a next-

generation community ice sheet model; los alamos, new mexico, 18-20 august 2008.

http://www.sciencedirect.com/science/article/pii/S0021999111002853

96

Eos, Transactions American Geophysical Union, 90(3):23–23, 2009. ISSN 2324-9250.

doi: 10.1029/2009EO030004. URL http://dx.doi.org/10.1029/2009EO030004.

D.R. MacAyeal. Eismint: Lessons in ice-sheet modeling. University of Chicago, Illinois,

392, 1997.

W.S.B. Paterson. The Physics of Glaciers. Pergamon, 1983. URL

http://books.google.com/books?id=Bl9YMAEACAAJ.

F Pattyn, L Perichon, A Aschwanden, B Breuer, B De Smedt, Olivier Gagliardini, G Hilmar

Gudmundsson, R Hindmarsh, A Hubbard, JV Johnson, et al. Benchmark experiments for

higher-order and full stokes ice sheet models (ismip-hom). The Cryosphere Discussions,

2(1):111–151, 2008.

D. Pollard and R.M. Deconto. A coupled ice-sheet/ice-shelf/sediment model applied to a

marine-margin flowline: forced and unforced variations. Glacial Sedimentary Processes

and Products:(Special Publication 39 of the IAS), 23:37, 2009.

SF Price, AJ Payne, and A Shepherd. A three-dimensional, first-order model of ice flow:

Numerical implementation, validation, and initial application to iceland and greenland.

In AGU Fall Meeting Abstracts, volume 1, page 06, 2007.

Vincent Rommelaere. Ice shelf models intercomparison, setup of the expirements. In

Philippe Huybrechts, editor, Report of the Third EISMINT Workshop on Model Inter-

comparison, Grindelwald, Switzerland, September 1998.

IC Rutt, M Hagdorn, NRJ Hulton, and AJ Payne. The glimmer community ice sheet model.

J. geophys. Res, 114:F02004, 2009.

G. Strang. Computational science and engineering. Wellesley-Cambridge Press Wellesley,

MA, 2007.

http://dx.doi.org/10.1029/2009EO030004
http://books.google.com/books?id=Bl9YMAEACAAJ

97

J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wun-

sch. Openad/f: A modular open-source tool for automatic differentiation of fortran

codes. ACM Transactions on Mathematical Software (TOMS), 34(4):18, 2008.

OC Zienkiewicz and R Taylor. The finite element method 5th edition, volume 1: The basis,

section 14.4, 2000.

	IMPLEMENTATION OF A VERTICALLY INTEGRATED ICE SHEET MOMENTUM BALANCE MODEL
	Let us know how access to this document benefits you.
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	INTRODUCTION
	Thesis Organization
	Ice Sheet Modelling
	Approximation of the Momentum Balance
	Overview of the Construction of the Model Equations
	Design Considerations for the Implementation
	Implementation Overview
	Related Work

	Theoretical and Physical Foundation
	Introduction
	Notation
	Ice Sheet Physics
	Vertical Integration of the Governing Equations
	Vertical Shear Approximation
	Variational Principles and the Jacobian
	The Structure of the First Variation Form
	Finding the Weak Form for use in the Finite Element Method
	Approximating and Solving

	Software Implementation
	Overview
	Variables
	Routines, Functions and Macros
	Test Driver (First Phase)
	rect_grid_to_triangles
	Test Driver (Second Phase)
	fem_imr
	fem_l1l2
	analyze_mesh
	init_k_sparsity
	duv_dz
	maybe_add_neighbor
	k_index
	Integration Routines
	External Routines
	Helper Macros
	plot.py

	Results
	Results of the EISMINT Square Bay Test
	Results of the ISMIP-HOM Test C
	Results of the ISMIP-HOM Test A

	Conclusion
	Discussion
	Derivation
	Symbolic Differentiation
	Model Accuracy
	Future Directions

	BIBLIOGRAPHY

