
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2012

Simplifying the Campus Experience through Mobility Simplifying the Campus Experience through Mobility

Corrine Erin Olson
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Olson, Corrine Erin, "Simplifying the Campus Experience through Mobility" (2012). Graduate Student
Theses, Dissertations, & Professional Papers. 886.
https://scholarworks.umt.edu/etd/886

This Professional Paper is brought to you for free and open access by the Graduate School at ScholarWorks at
University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional
Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please
contact scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/886?utm_source=scholarworks.umt.edu%2Fetd%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

SIMPLIFYING THE CAMPUS EXPERIENCE THROUGH MOBILITY

By

CORRINE ERIN OLSON

Bachelor of Science in Computer Science, University of Montana, Missoula, MT, 2010

Professional Paper

presented in partial fulfillment of the requirements
for the degree of

Master of Science

in Computer Science

The University of Montana
Missoula, MT

May 2012

Approved by:

Sandy Ross, Associate Dean of The Graduate School

Graduate School

Doctor Min Chen, Chair
Computer Science

Professor Michael Cassens

Computer Science

Doctor Martin Fromm
Media Arts

 ii

Olson, Corrine, Master of Science, May 2012 Computer Science

Abstract

Chairperson: Dr Min Chen

Committee: Michael Cassens, Martin Fromm

The student experience at the University of Montana is rewarding, but uniquely challenging due
to the size of the campus and the nature of many of the buildings. My goal is to design a project
to simplify the life of the average student by providing a mobile application built for the Android
platform. The project will provide students with tools to facilitate their educational experience
and life on campus.

This application will display the campus map and the user's location based on the phone's GPS
or wireless controller using the Google Maps API. The map will allow users to pull different
points of interest from web services that already exist and display them on the mobile device.
The campus news feed will be consumed by the application and displayed in a mobile-friendly
way for users to peruse as well. Students will have access to different modes of transportation
to and from the University, such as bus routes, bike/walk trails, and parking for personal
vehicles. The final product will be an application supporting the daily navigation and
transportation needs of the University of Montana student, allowing them to find campus
information at the touch of a finger. This project is a progressive step towards increasing the
mobile nature of our society, and bringing education into the mobile revolution through the use
of open source tools and frameworks.

 iii

Contents
Figures and Tables .. iv

Introduction ... 1

The Problem ... 2

Why Android? .. 3

Requirements ... 5

Functional Requirements ... 6

Data Requirements .. 7

Usability Requirements .. 8

Hardware Requirements .. 8

Design... 9

Application Structure ... 9

Documentation .. 11

Web Services .. 12

Risks ... 13

Implementation ... 14

Development Environment .. 16

Results .. 17

Testing .. 26

Usability Testing ... 26

Testing Plan .. 26

Recording Transcriptions .. 27

Questionnaire Results ... 30

Black-box Testing ... 32

Conclusions .. 35

Future of the Project .. 35

Assessment of Solution .. 36

References ... 38

Appendix A: Testing Task List ... 40

Appendix B: Questionnaire .. 41

Appendix C: IRB Approval .. 43

Appendix D: UML Diagram ... 47

 iv

Figures
Figure 1: Graph showing growth of smartphone audience. .. 1

Figure 2: Architecture of the Android operating system. .. 5

Figure 3: Twitter Android application dashboard design. ... 9

Figure 4: Flow of the user interface. .. 10

Figure 5: UML Diagram for DashboardActivity and the activities that inherit from it. 11

Figure 6: Command design pattern UML representation (Johns). .. 12

Figure 7: Pie chart showing platform share of active Android devices. .. 16

Figure 8: Shows a home screen on an Android device showing launcher icon for UMobile

application. .. 16

Figure 9: Close up of UMobile launcher icon. .. 17

Figure 10: Home screen loading dialog for news headlines. ... 17

Figure 11: Home screen after headlines are loaded. ... 18

Figure 12: Campus activity screen when first opened. .. 20

Figure 13: Examples of browser intents for Academic Planner and a News story example. 19

Figure 14: Example of KML overlay displaying food on campus and showing placemark

information. ... 21

Figure 15: Transportation screen displaying popular commuter options. 22

Figure 16: News screen showing campus new stories. ... 23

Figure 17: Shared Preferences for RSS Feed subscription choices. ... 24

Figure 18: Search results demonstrating all available sections. .. 25

Tables

Table 1: Google Android API levels along with corresponding versions of Android. 15

Table 2: Data capture from video transcription and testing session notes. 28

Table 3: Tester responses to the post-test questionnaire. .. 31

Table 4: Black-box test cases and results. .. 33

 1

Introduction

Cell phone use is on the rise, with more than 83 percent of American adults owning some kind

of cell phone, and 35 percent owning smartphones, according to a recent survey performed by

the Pew Research Center. Smartphones have become increasingly popular worldwide, with the

number of high-tech gadgets available increasing with every passing year. Between June 2010 to

June 2012, the smartphone audience increased by more than 53 percent according to comScore

(Figure 1). With this in mind, I wanted to build something that the students, faculty, and visitors

to the University of Montana could use whenever they felt the need.

The University of Montana (UM) in Missoula has a very large and moderately complex campus

ecosystem. Our 220-acre campus serves more than 15,000 students, both undergraduate and

graduate alike, not to mention the many employees, faculty, and visitors that spend time here.

With over 60 buildings on campus, finding needed information if unfamiliar with UM can be a

daunting task. I distinctly remember wandering around looking for my next class as a freshman,

with a paper map clutched in my hands my only guide. If an application incorporating a campus

Figure 1: Graph showing growth of smartphone audience.

 2

map, points of interest, and a building search had existed, it would have greatly simplified the

initial campus experience.

The need for an application to address the challenges of campus evolved into a plan of

implementation for a mobile application, with the ultimate goal of creating a product ready for

public release after approval. To this end, the Information Technology department decided to

sponsor the project, while offering the full support of their very intelligent and experienced

team of developers.

The Problem

A significant problem for people who spend time at the University of Montana is the abundance

of information, juxtaposed with the relative lack of easy access to most of it. Finding needed

information on the mobile web is daunting, especially on the University of Montana website,

which is not optimized for mobile viewing. This information is gleaned not only from personal

experience, but from conversations with other students. This presents a challenge – which

information is most useful and frequently used, and how can it be presented in a mobile format

which is both easy to use and easy to understand?

Determining the most useful information to include in the application required more than a bit

of thought, as well as a good deal of discussion with the IT department. Some of the

functionality originally envisioned, such as implementing a mobile version of Academic Planner,

was deemed outside the scope of the project’s current iteration due to the security

considerations involved with the NetID system (although the planner system is something they

wish to support in the future). After a great deal of discussion and reviewing feasibility of

implementation on a number of features, and going through cycles of review, the main

components of the mobile application were solidified:

 3

 Academic Planner

 Campus map

 Transportation

 News

 Search

Once these components were identified, the next goal became paring down which information

to display for these topics, and how much of the data was available in a mobile friendly form

(which will be discussed in the Web Services section).

Now that the problem was defined, the issue of which mobile operating system (OS) to develop

became tantamount. Unlike some of the more challenging questions in the design process, this

one did not require an undue amount of time to answer. The Android platform, an open source

operating system designed by the search giant Google, became the target.

Why Android?

Part of the reason Android was chosen is its developer-friendly, open-source nature. It costs

nothing to set up a development environment, and that includes free emulator capabilities, and

the capacity to launch development applications to actual Android devices. No upfront costs

meant less time waiting for funding, and more time becoming familiar with the SDK and the IDE

the default IDE for Android is Eclipse, the very popular and open source IDE, with around

250,000 users currently according the Eclipse usage statistics.

The other reason Android was chosen is market presence. Very recently, Android took over 50

percent of the smartphone market in February of 2012 (Wasserman). More than 200 million

activated devices are running Android, with more than 550,000 new devices coming online

every day. With this kind of market saturation, and with the only true competitor, Apple, having

 4

upfront costs associated with development, Android became the obvious choice. Taking a closer

look at the inner workings of the OS gives a feel for its structure and the services available for

developers.

The Android OS is built on a Linux kernel, and includes not only the operating system, but also

other key applications and middleware. The features, as detailed in the Android Developer

Guide, are as follows:

 Application framework enabling reuse and replacement of components, which is the

core of all Android applications

 Dalvik virtual machine optimized for mobile devices, the virtual machine is what

actually runs applications on Android device

 Integrated browser based on the open source WebKit engine, which is used to view

information not consumable in any other form

 Optimized graphics powered by a custom 2D graphics library; 3D graphics based on the

OpenGL ES 1.0 specification, allowing applications to display user interfaces

 SQLite for structured data storage, which will be needed for the next iteration of this

project

 Media support for common audio, video, and still image formats, which the application

will take advantage of for its GUI

 GSM Telephony which has no effect on this application, as the development is taking

place on a Verizon phone (CDMA, not GSM)

 Bluetooth, EDGE, 3G, and Wi-Fi without which the web services the application relies

upon would not function

 5

 Camera, GPS, compass, and accelerometer, the application uses the GPS to show the

user’s current position on campus

 Rich development environment including a device emulator, tools for debugging,

memory and performance profiling, and a plugin for the Eclipse IDE, all of which were

integral in the development of the application

The overall system architecture (Figure 2) of the Android system makes development an

involved, but enjoyable process. The available libraries and key applications (such as the phone

or browser) make incorporating functionality into implementation very straightforward.

Figure 2: Architecture of the Android operating system.

 6

Requirements

This section defines the requirements for the system, including the functional, data, usability

(non-functional), and hardware requirements. All of these requirements are integral to the

design of the system, and must be formed before implementation.

Functional Requirements

Functional requirements are tasks the application should allow the user to perform. The users’

should be able to perform the following actions:

 Launch application

 View recent headlines

 Access Academic Planner

 View campus map

o See current location on map

o View points of interest

 Art

 Bus stops

 Food

 Printing

 Wi-Fi

 View transportation resources

o View ASUM bus locations

o View Mountain Line bus information

o View bike information

o View parking information

 7

 View news

o Change news subscriptions

o Refresh news

o View original news story

 View information about application

 Search

o People

o Places

 View place on map

o Acronyms

o Featured Links

Data Requirements

By using content provided in the form of web services, which could be queried or pulled much

like a database, the data requirements for the project were minimal. The use of web services –

online content providers – at least in this stage of development, did not require a database,

although there is certainly functionality that may benefit from database support in the future.

The current design would not be difficult to modify in order to accommodate future database

integration.

The only data consideration needed is the use of Shared Preferences within the Android

framework. Shared Preferences can be used by any application on the Android phone and are

stored on the phone’s internal memory in key value pairs. The Shared Preferences should only

be used to store a small amount of data to limit the footprint of the application on the user’s

device. The only data being stored using this method is the user’s preference for news

 8

subscriptions. Accessing this data is easy, as the Android SDK allows specification of preference

pages in XML and handles all user input behind the scenes. Retrieving preference data is also

simple by requesting a Shared Preferences object and specifying the key. Shared preference

data is preserved between sessions and is only removed if the application is uninstalled.

Another detail worth mentioning is the nature of the application (web service based) requires an

internet connection (3G or Wi-Fi) to use the features. While the application does pull most of its

data from the internet, it also caches all but the search results locally, and only replaces them if

the application is stopped or the user chooses to refresh them.

Usability Requirements

Usability requirements, or non-functional requirements, define how an application should

behave. They also reflect how well the application allows users to complete tasks and how fully

functional the system is. The application should:

 Allow first time users to identify key features

 Not overly drain the battery

 Respond in a timely manner to user interaction

 Limit errors the user can make

 Provide feedback when things are loading to prevent user confusion

 Allow users to quickly learn how to accomplish tasks

 Alleviate user stress

 Display informative message for user if the application fails to pull information

 Be robust

Hardware Requirements

 9

The hardware must follow a number of minimum specifications in order to work with the

implementation of the application:

 Running Android 2.2 (Froyo) or newer

 GPS capabilities

 Wi-Fi or 3G connectivity

 Valid email account setup

 Google Maps installed

Design

The design of the application is essentially what is known a mashup. A mashup is an application

that combines multiple pre-existing services to create something new, and more useful. The

fundamental design of the application included the implementation of multiple University web

services and data adapted to the Android environment.

With the cooperation of the IT department, the application

design went very smoothly. The first issue was dividing the

application into components or modules. In that way,

individual parts of the application could be implemented

on a piecewise basis.

Application Structure

When designing the format of the application, the evolving

Android standards were taken into account. With the

introduction of Android 4.0, also known as Ice Cream

Sandwich, Google has released a set of standards to bring

Figure 3: Twitter Android application

dashboard design.

 10

some clarity to the Google Marketplace, including design patterns for popular user interfaces.

 Android 4.0 includes several design patterns that became popular in older versions, making

them much easier to implement. Among these design patterns is the dashboard design. The

simple dashboard design is extremely versatile with a high level of usability, being employed by

such apps as Twitter (Figure 3) and Facebook. The mobile application was designed to use the

same pattern, as users would most likely already be familiar with it, and the design provides a

clean interface.

The first goal of designing a dashboard is deciding the most important functions of the

application. The most used functionality should be visible to the user right away on the home

screen (dashboard) of the application. The most prominent features of the application are

Academic Planner, Campus Map, Transportation, and News. Because there are only four main

Figure 4: Flow of the user interface.

 11

features, the dashboard design was amended to include a number of recent headlines from the

news feeds as well.

Documentation

The first design deliverable created was a flow chart (Figure 4) showing the general steps in the

interface, most of which are activities or intents (Android intents start activities or applications,

activities are the basic screen class in Android). The flow chart is representative of the large

picture as the user navigates away from the main dashboard screen.

A very detailed complete UML diagram is included in the Appendices; however there are certain

pieces of the design and diagram worth discussing. In particular, the structure of the Dashboard,

and its respective screens are interesting. Another point of interest is dashboard activity is the

main driver for the user interface, from which all the other screen activities (home, features,

search, about) are derived.

Figure 5: UML Diagram for DashboardActivity and the activities that inherit from it.

 12

Figure 6: Command design pattern UML representation (Johns).

There is also a Custom

Application replacing the

default application as the basis

of the entire system. Android

allows writing a custom

implementation in order to

use the singleton design

pattern while programming.

Singleton patterns allow the

application to maintain single copies of certain variables in order to share them between

screens without having to pass the data back and forth.

Finally, another important design decision was choosing to implement the same event handling

system the IT department employs in their own Java programming solutions: the command

pattern (Figure 6). Using the command pattern allows the system to handle actions and

responses using handlers through the command interface. While the pattern makes the system

more complicated at first, the code maintainability and reliability is greatly enhanced.

Web Services

The use of web services required a few custom objects necessary to contain results from parsing

some of the feeds, such as the News item, which contains multiple objects of the Item class.

These objects are how the parsing responses of the RSS feed XML are stored for the application

to display.

Another object of similar structure is the SearchResult object, which contains Places. The search

web service is a brilliant piece of code where a query is simply made a part of the URL, along

 13

with a preference for the return of a JSON or XML object. The simplicity of this design makes

implementation much easier, as all it requires is a simple HTTP call to the server.

 The final object class is the CampusOverlay, which extends the Android ItemizedOverlay object

for the parsing of the points of interest KML files from the University Map Beta. The object was

necessary due to the lack of Google Maps API being able to handle KML or KMZ files. Hopefully

in the future, this functionality will be added, so custom parsing is not necessary on the part of

the developer.

Risks

The main risk of the design comes from its dependence on web services. Without an internet

connection, either Wi-Fi or 3G, the application will cease to function. Another possible issue is

the web services’ host server becoming unresponsive. If the application is unable to contact the

server, then the application is useless. To ensure the user has feedback in this case, the

application notifies the user if they lose network connection, informing them the application

requires internet access.

While loss of service is likely to happen, as web servers notoriously crash, this loss is currently

the only foreseeable risk with the chosen design. The risk is the same challenge that many web-

driven applications face, and must address by notifying the user in the most informative way

possible. For example, do not allow the application to crash and require a Force Close, as this

makes the user think something is wrong with the application, not the services it depends upon

to execute.

Another possible risk is any change to the way the data is released by the web service. For

example, if the format of the XML in the RSS feeds is suddenly changed, this change could

 14

possibly affect the way the news displays. Most of these feeds, however, are stable, so risk is

minimal at this time.

Implementation

The first step in implementing the system was to choose a target Android API level. The API level

indicates what framework the application can use to interact with the underlying Android

system. As defined by the Google Android Developer’s documentation, a framework API

includes the following components:

 A core set of packages and classes

 A set of XML elements and attributes for declaring a manifest file

 A set of XML elements and attributes for declaring and accessing resources

 A set of Intents

 A set of permissions that applications can request, as well as permission

enforcements included in the system

One consideration easing the process of selecting an API was Google’s retention of backwards

compatible components. Backwards compatibility allowed the selection of an older version of

Android while retaining a significant portion of the market share. Table 1 contains all of the API

levels and the Android versions they represent.

Before making the decision as to what version of Android to design for, the current market

share of the different releases had to be taken into consideration. To this end, Google has a

platform distribution page showing the number of active devices using different versions of

Android.

 15

Table 1: Google Android API levels along with corresponding versions of Android.

Platform Version API Level VERSION_CODE

Android 4.0.3 15 ICE_CREAM_SANDWICH_MR1

Android 4.0, 4.0.1,
4.0.2

14 ICE_CREAM_SANDWICH

Android 3.1.x 12 HONEYCOMB_MR1

Android 3.0.x 11 HONEYCOMB

Android 2.3.4 10 GINGERBREAD_MR1

Android 2.3.3

Android 2.3.2 9 GINGERBREAD

Android 2.3.1

Android 2.3

Android 2.2.x 8 FROYO

Android 2.1.x 7 ECLAIR_MR1

Android 2.0.1 6 ECLAIR_0_1

Android 2.0 5 ECLAIR

Android 1.6 4 DONUT

Android 1.5 3 CUPCAKE

Android 1.1 2 BASE_1_1

Android 1.0 1 BASE

When the original research was done in August of 2011, the pie chart showed Froyo (Android

2.2) as the dominant platform, with more than two thirds of active devices using it. Currently,

the share of Froyo is much lower, as Figure 7 shows, but is still a dominant platform.

Due to the backwards compatibility of the Android API’s, the decision was made to implement

the application using API level 8. To ensure the compatibility with the new platform leader, the

project was also tested on devices running Android 2.3.3.

 16

Development Environment

Once the API decision was made, the development environment had to be set up. Developing

for Android can be done in a number of ways, but the option chosen for the application is

considered the standard by most mobile developers. The first step is downloading the Android

SDK, which allows the download of the frameworks to use,

and the Google API’s that correspond to them (such as Google

Maps). The SDK also includes the device manager where

emulators can be setup and run for testing of applications.

Once the Android SDK is installed, a version of Eclipse, an

open-source IDE available in a number of different versions

and flavors, needs to be downloaded. For Android

development either the Classic or Java version is

recommended, and both have been tested with the

application.

Once the steps have been followed, the final piece of the

Figure 7: Shows a home screen on an

Android device showing launcher icon

for UMobile application.

Figure 8: Pie chart showing platform share of active Android devices.

 17

Android development environment is the Android ADT plugin for Eclipse. The plugin is

downloaded within eclipse, and allows the development, debugging, and execution of Android

applications.

The programming language for Android development is, by default, Java.

Eclipse is a very useful IDE for Java development, and once the pieces are

assembled, it also performs well as an Android development

environment.

Results

The resulting application from the implementation is a useful, light-weight system providing

support for students, employees, and visitors to the University of Montana, with a focus on

students. The current section will walk through the application and talk about navigating

through the application and will give an overview of the application’s functionality.

A not about the application worth mentioning is the name

UMobile will most likely not be the permanent name of the

application. The question has been put to the University

administration, but the response is still being awaited.

The first interaction with the program comes when the user

wants to launch the application (Figure 8). The University of

Montana clock tower logo was used in accordance with the

publication standards.

 Although care was take n to only use the correct coloring of

the logo, its appearance on a dark background or light

Figure 9: Close up of

UMobile launcher icon.

Figure 10: Home screen loading dialog

for news headlines.

 18

background had to be taken into account. By highlighting

the logo in white, the launcher icon shows up well on both

light and dark backgrounds, which, when colored plain

maroon, was not the case (Figure 9).

Tapping the icon, if added to a home screen on the device

or from the application menu, launches the main activity

of the application. The main activity is the dashboard

activity, which takes time to load the news items in order

to display the top stories (Figure 10).

Whenever there is a loading dialog, a new thread has been

spawned in order to handle the fetching of external data. If

this is not done, Android runs everything on the UI thread and – if a process takes a long time –

the UI hangs until completion, giving the user the feeling that the application is broken or has

crashed. By separating the longer processes, such as grabbing and parsing the RSS feeds, the

user gets some feedback as to why they cannot interact with UI right away.

The other choice for implementation of the task would have been to use the AsynchronousTask

class and completely unblock the UI while it is pulling the data. However, using the

asynchronous method caused other concerns, as the UI was dependent upon the information

coming from the processes needing to be asynchronously run; thus blocking the UI makes more

sense to reduce errors based on multiple threads trying to access the same information.

Once the headlines have loaded, the user is presented with the dashboard of the home screen

(Figure 11). This interface is very clean, and all of the functionality is plain for the user to see. As

Figure 11: Home screen after headlines

are loaded.

 19

previously discussed in the design section, the home screen uses a classic dashboard design

pattern, with an action bar at the top of the application perpetuated throughout the system.

Throughout this project, there are places where Android intents call outside Android core

functionality, such as phone dialer, email services, and internet browser. These intents call

outside activities the same way internal activities are called, allowing the user to go back to

application from an external intent easily using the back button on the device.

An example of an intent is the browser, which is used throughout the application. It is executed

when the Academic Planner icon is tapped, as there is no mobile support currently for the

application. The browser intent is also executed when the user taps a headline on the home

screen or the news screen (Figure 12).

Figure 12: Examples of browser intents for Academic Planner and a News story example.

 20

Figure 13: Campus activity screen when

first opened.

The campus map activity is one of the more complex

screens in the application. This activity extends the Google

Maps API MapActivity class, allowing the application to

draw maps using Google’s data.

The main object of the map screen (Figure 13) is to allow

the user to see where they are on campus using the

standard location symbol on mobile, a blue dot with a blue

circle indicating the level of accuracy. Location is only

displayed if the user has their GPS turned on.

The other goal the map screen was to provide the user a

way to look at points of interest, as stated in the

requirements section. All this data was available in KML format on UM’s beta website on the

beta campus map. The problem, however, arises from the mobile Google Maps API being unable

to handle KML files like it’s larger, internet-based relative. Because of this lack of functionality,

the KML files had to be parsed much like the RSS feeds and fed into CampusOverlay object.

When the user selects a category from the “What are you looking for?” dropdown menu, the

overlay is displayed.

 21

The application also employs the icons the beta campus map uses to represent the placemark

categories (Figure 14). When a placemark is tapped, the information that the University has

about the location is displayed in a window (Figure 14). Some placemarks, like the art category,

also had images in their descriptions. Due to the limitations of the placemark windows,

however, the images could not be displayed, and had to parsed out of the descriptions.

The campus map activity also has another function that will be discussed when the search

activity is later discussed. The map defaults to fill the device screen with the campus map,

whatever size that may be. It also defaults to fit all of the placemarks into the device screen,

making sure the user can always see the points of interest regardless of device screen density or

resolution.

Figure 14: Example of KML overlay displaying food on campus and showing place mark information.

 22

Figure 15: Transportation screen displaying

popular commuter options.

The next screen to discuss is the transportation

screen (Figure 15). Getting to and from the

Univeristy of Montana is a challenge that everyone

who has spent time on campus has run into at one

time or another. There are many ways to get to and

from campus and all of them can be trouble for

those unfamiliar with them. The application

provides information for some of the more popular

transportation methods to or from campus,

including ASUM and Mountain Line bus information,

parking information, and bicycle information.

The ASUM us system is University run, and as such,

there was already some support for commuters. The

IT department had already designed a bus tracking system enabling users to see the route and

location of buses, including the Park n’ Ride and the U Dash. The public bus system in Missoula,

the Mountain Line bus system, has also implemented a small mobile site for users to check on

the status of buses, lookup routes, and other useful functionality.

 23

Both the parking and bicycling information are

located on the University of Montana website, as

there are no mobile resources (yet) for the

information. As such, all of the transportation

screen icons launch the Android browser intent,

sending the user to the respective resource and

allowing easy return to the application by use of

the back button.

The news screen (Figure 16) has a loading dialog

just like the home screen for news downloading

and parsing. Each story displays a date, a

headline that links to the story’s page, and gives

a description of the story.

The news page also has a settings button and a

refresh button in the action bar. The settings button takes the user to the shared preferences

(Figure 17) that allow the user to choose which RSS feeds to subscribe to for news stories, while

the refresh button allows the application to check for new news stories.

Figure 16: News screen showing campus new stories.

 24

The preference page is generated from an XML

shared preferences file. It automatically saves

the user’s preferences when the user checks or

unchecks boxes.

One choice that should be emphasized is the

subscription to Disability Services’ (DSS) Access

Updates feed, which gives updates on outages

that effect campus accessibility, such as elevator

outages.

Due to the multiple formats of date used

between the different RSS feeds, custom date

format parsing must be done for each type of

news feed in order to be converted to the

cohesive date format of choice. The news screen

is the most data intensive of all of the activities in the application, and as such can take longer to

load than the others. For this reason, the news object is stored in the application so it does not

need to be re-pulled and re-parsed everytime the user enters the home screen or news screen.

The final piece of functionality in the application is extremely useful in multiple situations. There

is a search button in the action bar opening the search screen, where the user may search for

anything on campus whether it is a person, place, or thing. This search is implemented using the

campus web service, as previosuly discussed in the design section, and makes use of a JSON

object which the search service returns.

Figure 17: Shared Preferences for RSS Feed

subscription choices.

 25

The service divides the results into sections: featured links, acronyms, people, and locations.

With individual results such as people, email addresses are linked to messaging intents, while

phone numbers are linked to the phone dialer (Figure 18). Locations, on the other hand, load

the campus map with a maroon placemark on the location the user selected. The location intent

allows the user to look for a particular location and see where they are in relation to it.

The remaining screen is the About screen, which explains the purpose of the application and

gives credit to the people and organizations that made this project possible. The About screen is

located on the action bar and represented by the ? icon.

Figure 18: Search results demonstrating all available sections.

 26

This completes the discussion of the implementation. The remaining factor to discuss allowing

users to test the implentation and see how successfully the application performs as a usable and

useful tool for students of the University of Montana.

Testing

The following section explores the testing done on the UMobile application. In order to get

optimal feedback on the system, the testing focused on the functionality and requirements from

the design phase. In order to emphasize these aspects of testing, usability and black box testing

were chosen in order to showcase the uses of the project.

Modular testing was also employed throughout the development process, with the code being

tested for functionality, robustness, and maintainability. This allowed the application to be built

in functioning blocks independent of one another. Black-box testing, on the other hand, allowed

an overall functional look at the entirety of the application, including modular interaction, while

usability testing put the application into the hands of actual users in order to determine its

functionality.

Usability Testing

Usability testing uses testers to find issues with the functionality and ease of use. In this case,

the testing was done with the help of five student volunteers. The goal of the testing was to

determine whether the application was usable by students with no previous experience with the

application, and variable experience with Android devices.

Testing Plan

The following questions identify the problems the testing hopes to find:

 Is the control scheme obvious to the user?

 27

 Does the user understand how to complete simple tasks?

 Do the menus make sense to the user?

 Can the user find what they are looking for?

In order to perform the tests, the research had to be approved by the Institute Review Board

(IRB) due to the testing involving human research subjects. The approval for the study and the

informed consent form (ICF), and other testing materials provided to each subject can be found

in the Appendices.

The tests were predominately performed in SS 402. The procedure for the testing is as follows:

1. Introduce the study, and allow the test subject to read over the ICF and sign.

2. Explain the test procedure and provide task sheet.

3. Fasten the Go Pro camera to the test subjects head and begin recording.

4. Allow user to complete tasks, talking out loud during the session.

5. Complete post-test interview.

6. Ask the user to complete a questionnaire.

After the session is complete and the tester has been thanked, the video is copied from the

camera to make room for the next session, and the application is reset. The following sections

explore the results of the usability testing.

Recording Transcriptions

Notes were taken during testing while observing the subject and while viewing the recordings

further ensured no usability issues were overlooked by seeing exactly how the user interacted

 28

with the application. Using the Go Pro camera for testing was an ingenious idea introduced was

discussed in Yolanda Reimer’s Human Computer Interaction course.

Table 2 shows each task and each participant’s performance of the task including any issues or

comments they had during use. The total time to complete tasks is also included for reference.

For more details on the tasks performed, please reference Appendix A.

Table 2: Data capture from video transcription and testing session notes.

Task Description
Participant Performance

1 2 3 4 5

1 Start App Easy to
recognize

Easy to
recognize

Took a while
to find icon

Easy to
recognize

Easy to
recognize

2 Explore
News

No trouble Found easily,
back button

to return
made sense

Found easily,
had to be

prompted on
use of back

button

Found easily Disliked
refresh,
counter-
intuitive,
could not

select story

3 Search ISB Looked for
search on

home screen,
took a

moment to
find in action

bar

Thought the
search icon

in action bar
was obvious

Easily found Went to
campus map

before
search

Took a while
to find
search

4 Find SS Recognized
location link

in search and
found SS on

map

Found
building and
recognized

location link

Recognized
location links

Used map to
find

Recognized
location links

in search

5 Academic
Planner

Easily found Easily found Easily found Easily found Easily found

 29

6 Find Foley Had trouble
pressing the

phone
number

instead of
the email,

links a little
small, found
bug in search
(space causes

error)

Found bug in
search with

spaces

Easily found Easily found Easily found

7 Find
Broadway

Park n' Ride

Easily found,
wanted to

zoom in but
couldn’t

Easily found Tried
searching

before
transportation

Went to
transportatio
n, didn’t see
Park n' Ride,

did not
complete

task

Easily found

Time (min:sec) 4:48 5:58 6:20 5:20 4:23

The testing went extremely well, and a great deal of information was gathered from the

recordings. The overall trends were encouraging: everyone had positive experiences with the

application, even if they had some suggestions for improvement. There was also a wide variety

of experience amongst the testers, which was a goal of the usability testing. Two had Android

phones, one had a Windows 7 phone, one had an iPhone, and one had no mobile platform

experience at all. All the testers were current students of the University of Montana, including

both undergraduate and graduate level students. Despite this attempt at wide sampling, the

testing showed a very small amount of variance in the time it took to complete the tasks, with a

range of four minutes and 23 seconds to six minutes and 20 seconds. With a difference of just

under two minutes for such a wide variety of mobile device experience, the application

demonstrated itself to be very usable.

Also included in the recordings were the post-test interviews. While most of the feedback was

very positive, there were some ideas for improvements worth mentioning:

 30

 Add search to main page as a feature

 Improve the news loading

 Do not lock the user out of the UI on the main and news pages during loading

 Refreshing news page should be done automatically, especially if the user updates the

subscription preferences (counter-intuitive)

 Hitting enter button on the search page should be an alternative to tapping the search

button

The feedback ascertained from the users was very valuable, and pointed out some usability

issues that would need to be addressed before public release of the application. The testers also

found a minor bug that escaped the initial application testing: when a space is entered into the

search box, the application force-closes (crashes) with no warning or feedback for the user.

While the crash happened in the first tests, the task was changed in order to avoid spaces in the

search box for future tests.

In summary, the testing was extremely useful in determining where the application still needed

work. The test sessions revealed a small bug and some improvements that could be made, both

of which will be discussed in the Conclusions section. After the interview was complete, the

tester was allowed to remove the camera for the final part of the study, the questionnaire.

Questionnaire Results

After the recording session was complete, the testers were asked to complete a short survey

about the application. Please refer to Appendix B for the questionnaire. Table 3 shows the

answers to each question and the average score of each question. The questionnaire uses a

scale from one to six, with one being the worst and six being the best. There was also a single

 31

yes or no answer question asking whether the user felt they accomplished all of the tasks

successfully. All of the testers answered the question in the affirmative.

Table 3: Tester responses to the post-test questionnaire.

Question
Participants

Averages
1 2 3 4 5

1 Yes Yes Yes Yes Yes Yes

2 6 5 6 5 6 5.6

3 6 6 6 6 6 6.0

4 6 5 6 - 6 5.8

5 5 6 6 6 6 5.8

6 3 5 4 5 6 4.6

7 5 5 6 5 6 5.4

8 4 5 6 4 6 5.0

9 4 2 6 6 4 4.4

10 6 6 6 6 6 6.0

11 5 6 6 5 6 5.6

The questionnaire results were also exceedingly positive. The average score overall was 5.4 out

of 6, which extremely encouraging in terms of the testers’ enjoyment of the application. The

lowest score on the questionnaire was number nine, which asked the user if all functions

worked without error. Due to the discovery of the search bug during usability testing, the lower

score is explainable, and thus not truly relevant. The highest scores were on questions three and

ten – six and six respectively – both of which related to the ease of use and navigation around

the application. This indicates that the choice of the dashboard design pattern was well

conceived and resulted in a very user-friendly application.

The combination of usability testing and committee commentary led to a number of fixes and

updates being implemented before black-box testing:

 Adding a notification for no network access on the home screen informing the user the

application is web based and will not function without internet access

 32

o Required adding new permission to the Android manifest in order to access the

network state

 Re-evaluating and changing the threading for the news page and the headlines on the

main page to a safely interruptible and superior coding strategy

 News now refreshes if the user changes their preferences (able to implement due to

new thread handling)

 Search bug fixed

o The Apache Common Lang 3.1 library has a string utility allowing HTML

encoding, although this did not include spaces (had to be handled separately)

 Search event now fires if the user clicks done on the keyboard, not just if the button is

clicked

Black-box Testing

Black-box testing is integral to the software development process. This form of testing is also

known as functional or behavioral testing, and focuses on the programs ability to accomplish the

tasks it is required to do. While typically this testing is best done by someone with no knowledge

of the code and knows nothing about the structure of the underlying architecture, as long as the

programmer remains unbiased and does not just test for what they programmed the application

to do, black-box testing is possible. The tester should only be concerned with the input and

output of a given task, with the program itself being an impenetrable black-box.

The goal of this testing is to determine if the project meets the initial requirements laid out in

the design phase of the project. To this end, tests must be designed, expected results identified,

and actual results received through interaction with the application. The first step in black-box

 33

testing is determining the test cases. These should be derived directly from the requirements.

Once this is done, a formatted table should be used to record the test cases and their results:

Table 4: Black-box test cases and results.

Test

Description Expected Results
Actual
Results

1 Preconditions: Application is installed
on Android device
User taps on the application icon

Application launches, user sees
the home screen (dashboard)

Pass

2 Preconditions: Test case 1 successful,
user has network connection
User can see recent headlines on
home screen and clicks on one

News headlines and the
selected story load successfully

Pass

3 Preconditions: User is on home
screen, user has network connection
User taps Academic Planner icon

Academic Planner loads Pass

4 Preconditions: User is on home
screen, user has network connection
and GPS turned on
User taps the Campus Map icon

Campus map loads and shows
current location of user

Pass

5 Preconditions: Test case 4 successful
User selects Art from points of
interest dropdown

Campus map shows art place
marks

Pass

6 Preconditions: Test case 4 successful
User selects Bus stops from points of
interest dropdown

Campus map shows bus stop
place marks

Pass

7 Preconditions: Test case 4 successful
User selects Food from points of
interest dropdown

Campus map shows food place
marks

Pass

8 Preconditions: Test case 4 successful
User selects Printing from points of
interest dropdown

Campus map shows printing
place marks

Pass

9 Preconditions: Test case 4 successful
User selects Wi-Fi from points of
interest dropdown

Campus map shows Wi-Fi place
marks

Pass

10 Preconditions: User is on home
screen, user has network connection
User taps Transportation icon

Transportation dashboard loads Pass

11 Preconditions: Test case 10 successful
User taps ASUM bus icon

ASUM bus tracker loads Pass

12 Preconditions: Test case 10 successful
User taps Mountain Line bus icon

Mountain Line mobile site loads Pass

13 Preconditions: Test case 10 successful
User taps Bike icon

UM bike info page loads Pass

 34

14 Preconditions: Test case 10 successful
User taps Parking icon

UM parking info page loads Pass

15 Preconditions: User is on home
screen, user has network connection
User taps News icon

News page loads Pass

16 Preconditions: Test case 15 successful
User taps refresh button

News page reloads Pass

17 Preconditions: Test case 15 successful
User taps settings button

News preference page opens Pass

18 Preconditions: Test case 17 successful
User changes preferences and returns
to News page

News page reloads with news
preferences

Pass

19 Preconditions: Test case 15 successful
User taps on story link

Story loads Pass

20 Preconditions: Test case 15 successful
and there is more than one page of
stories
User swipes up or down on screen

News page should scroll Pass

21 Preconditions: User is on a screen
with the action bar
User taps the question mark button

About page loads Pass

22 Preconditions: User is on a screen
with the action bar, user has network
connection
User taps the magnifying glass button

Search page loads Pass

23 Preconditions: Test case 22 successful
User taps the text box and types a
search term then hits enter or the
search button

Soft keyboard pops up allowing
the user to enter their search,
then when user hits done or the
search button the keyboard
disappears and the search
results load

Pass

24 Preconditions: Test case 23
User taps on a person’s email

Email application opens with
message to person chosen

Pass

25 Preconditions: Test case 23
User taps on a person’s phone
number

Phone dialer opens with number
in the dial field

Pass

26 Preconditions: Test case 23
User taps on a location link

Campus map loads, zooms in
and place marks the building

Pass

27 Preconditions: User is on a screen
with the action bar other than home
User taps home button

Home screen loads Pass

28 Preconditions: Test case 2
User taps back button (on device)

Returns to last screen Pass

29 Preconditions: Test case 1 and no
network connection

Notifies user the application will
not function properly

Pass

 35

The results of the testing were positive. While black-box testing is usually done after usability

testing, this testing was done after in order to incorporate the user feedback before doing a final

functionality testing. This means that the bugs found during usability testing were found and

fixed before doing this iteration of testing.

Conclusions

Throughout the paper, the entire process of developing a mobile application has been discussed

from defining a problem to be solved, to implementing and testing the resulting system. The

discussion allows an understanding of the UMobile project from inception to completion. While

this application has evolved in a workable solution to a very real problem, there are still issues

to address.

Future of the Project

As revealed in testing, there are some changes that need to be made, and others that, upon

consideration of the user feedback during usability testing should be made. The main

recommendations for changes are as follows:

 Remove headlines from the home screen and add a search feature icon (keep search n

the action bar as well)

 Add another feature to pair with the search feature on the dashboard

 Change the news loading to an asynchronous task that does not lock the user out the

interface while updating

 Add user-defined news refresh interval to the shared preferences

 Add text size shared preference for search and news screens so users with bigger fingers

can have more room to click on links.

 36

While the original intent was to have the Academic Planner available in a more mobile friendly

way, the Information Technology Department stated at the current stage, Academic Planner was

far outside the scope of the project. There is almost nothing to make this easier (no available

web services) and just getting the security approval to login with the NetID system employed by

the University is extremely difficult. A requirement for future development would be the

implementation of a system for mobile devices – such as a mobile web version – that can be

accessed from multiple mobile platforms.

Another notable suggestion would be the employment of a campus-wide survey asking students

what information they access most frequently, and which information they would like to have in

a mobile application. Having the development of this application be driven by student needs

would be the perfect realization of the project’s goal.

Assessment of Solution

Overall, the project developed offers a functional proof-of-concept to the University of

Montana, showing the administration that not only is a mobile application possible, the results

were well received by a small, diverse group of student. The application displays all of the

functionality defined in the requirements, and exemplifies user-centered design in its usability

and practicality.

This application successfully provides answers to numerous challenges that confront students of

the University of Montana. The IT department will be continuing work on this project, and will

hopefully implement some the future recommendations mentioned in next section. The

application allows users to find people, places, and things on campus, while providing a

centralized location to access information most needed on a regular basis.

 37

During development, many students expressed a need for just such an application not only on

Android, but all mobile devices. This indicates the success of the endeavor undertaken by the

implementing this project – to provide an application to simplify the campus experience through

mobility.

 38

References
"Android - Developers ." Android . Google, n.d. Web. 17 Apr. 2012.

<http://www.android.com/developers>.

"Android Developers." Android Developers. Google, n.d. Web. 1 Sept. 2011.

<http://developer.android.com/index.html>.

"comScore Reports February 2012 U.S. Mobile Subscriber Market Share - comScore, Inc."

comScore, Inc. - Measuring the Digital World. N.p., 3 Apr. 2012. Web. 17 Apr. 2012.

<http://www.comscore.com/Press_Events/Press_Releases/2012/4/comScore_Reports_Februar

y_2012_U.S._Mobile_Subscriber_Market_Share>.Felker, Donn, and Joshua Dobbs. Android

application development for dummies. Hoboken, N.J.: Wiley, 2011. Print.

Johns, Trevor . "File:Command Design Pattern Class Diagram.png - Wikipedia, the free

encyclopedia." Wikipedia, the free encyclopedia. N.p., 21 Mar. 2008. Web. 23 Apr. 2012.

<http://en.wikipedia.org/wiki/File:Command_Design_Pattern_Class_Diagram.png>.

Komatineni, Satya, and Dave MacLean. Pro Android 3. New York: Apress :, 2011. Print.

Lidwell, William, Kritina Holden, and Jill Butler. Universal principles of design. Gloucester, Mass.:

Rockport, 2003. Print.

Mednieks, Zigurd R., and Laird Dornin. Programming Android. Sebastopol, Calif.: O'Reilly, 2011.

Print.

Meike, Blake. "Programming Android Examples." github. O'Reilly's, n.d. Web. 1 Sept. 2011.

<https://github.com/bmeike/ProgrammingAndroidExamples>.

Reimer, Yolanda. "User-Centered Design." Human Computer Interaction. University of Montana.

Social Sciences 362, Missoula, MT. 28 Feb. 2012. Class lecture.

Reimer, Yolanda. "User-Centered Design – Testing." Human Computer Interaction. University of

Montana. Social Sciences 362, Missoula, MT. 10 Apr. 2012. Class lecture.

Smith, Aaron. "Americans and Their Cell Phones | Pew Research Center's Internet & American

Life Project." Pew Research Center's Internet & American Life Project. N.p., 15 Aug. 2011. Web.

9 May 2012. <http://pewinternet.org/Reports/2011/Cell-Phones.aspx>.

"U.S. Smartphone Audience Growth ." The comScore Data Mine | Colorful, bite-sized graphical

representations of the best discoveries we unearth from our data.. N.p., 8 Aug. 2012. Web. 25

Feb. 2012. <http://www.comscoredatamine.com/2011/08/u-s-smartphone-audience-growth/>.

 39

"Usage Data Collector Usage Report." Eclipse - The Eclipse Foundation open source community

website.. N.p., 21 Feb. 2011. Web. 9 May 2012.

<http://www.eclipse.org/org/usagedata/usage.php>

Wasserman, Todd. "Android Tops 50% Market Share in the U.S. [STUDY] ." Social Media News

and Web Tips – Mashable – The Social Media Guide. Mashable Tech, 4 Apr. 2012. Web. 1 Mar.

2012. <http://mashable.com/2012/04/04/android-breaks-50-market-share/>.

Williams, Laurie. "Testing Overview and Black-box Testing." A (Partial) Introduction to Software

Engineering Practices and Methods. 2008-2009 (Fifth) Edition ed. N/A: NCSU CSC326 Course

Pack, 2006. 33-59. Print.

 40

Appendix A: Testing Task List

Task 1

For the first task, please open the application with the launcher icon.

Task 2

Please explore the news section. Try selecting a story for more information.

Task 3

You need to know what the acronym ISB stands for. Try searching for it to find out.

Task 4

Cyberbear tells you your class takes place in SS. Find out what this building is and where it is

located.

Task 5

Please try entering academic planner and logging in. When done, log out and return to the

application.

Task 6

You need to find the phone number for someone named Foley. Please try this now and select it

as if you were making a call. When done, hit back to return to the application.

Task 7

You need to find out where the Broadway Park n’ Ride is currently. Please try this and return to

the application when done.

Complete!

Please feel free to play around with application before filling out the questionnaire. If you have

comments, please write them on the form. If you find any bugs, please write those down in the

comments section as well, along with any information on the nature of the bug you are willing

to provide. Thank you for your time!

 41

Appendix B: Questionnaire

Before leaving today, please fill out this questionnaire. If you don’t have time to stay and
complete it, please take it with you, complete it, and return it to Corrine Olson’s box in the CS
Office (SS 401).

I would like to thank you for generously volunteering your time to participate in this usability
testing. Your input will be invaluable in the development of the mobile UM application. I
hope that you found it to be an interesting and enjoyable experience!

Question 1 Do you feel that you successfully completed all the tasks on the task sheet?

Yes No

Question 2 In relation to other software I have used, I found the prototype to be:

Very difficult to use 1 … 2 … 3 … 4 … 5 … 6 Very easy to use

Question 3 I found the prototype to be:

Very difficult to use 1 … 2 … 3 … 4 … 5 … 6 Very easy to use N/A

Question 4 The menu items were well organized and functions were easy to find.

Strongly disagree 1 … 2 … 3 … 4 … 5 … 6 Strongly agree

Question 5 I immediately understood the function of each menu item.

Strongly disagree 1 … 2 … 3 … 4 … 5 … 6 Strongly agree

Question 6 All of the functions I expected to find in the menus were present.

Strongly disagree 1 … 2 … 3 … 4 … 5 … 6 Strongly agree

Question 7 The buttons were well organized and easy to find.

Strongly disagree 1 … 2 … 3 … 4 … 5 … 6 Strongly agree

Question 8 I immediately understood the function of each button.

Strongly disagree 1 … 2 … 3 … 4 … 5 … 6 Strongly agree

 42

Question 9 All of the functions worked without error:

Strongly disagree 1 … 2 … 3 … 4 … 5 … 6 Strongly agree

Question 10 I found navigating around the application to be:

Very difficult 1 … 2 … 3 … 4 … 5 … 6 Very easy

Question 11 My overall impression of the prototype is:

Very negative 1 … 2 … 3 … 4 … 5 … 6 Very positive

Comments

 43

Appendix C: IRB Approval

 44

 45

 46

 47

Appendix D: UML Diagram

 48

 49

