
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2013 

An Investigation of Viscosity Using Measured Velocities on An Investigation of Viscosity Using Measured Velocities on 

Helheim Glacier Helheim Glacier 

Glen David Granzow 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Granzow, Glen David, "An Investigation of Viscosity Using Measured Velocities on Helheim Glacier" 
(2013). Graduate Student Theses, Dissertations, & Professional Papers. 4184. 
https://scholarworks.umt.edu/etd/4184 

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F4184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/4184?utm_source=scholarworks.umt.edu%2Fetd%2F4184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


AN INVESTIGATION OF VISCOSITY

USING MEASURED VELOCITIES ON HELHEIM GLACIER

By

Glen David Granzow

Bachelor of Science; Mechanical Engineering, University of New Mexico,
Albuquerque, New Mexico, 1980

Master of Science; Mechanical Engineering, University of New Mexico,
Albuquerque, New Mexico, 1982

Doctor of Philosophy; Applied Mathematics, Northwestern University,
Evanston, Illinois, 1997

Thesis

presented in partial fulfillment of the requirements
for the degree of

Master of Science
in Computer Science

The University of Montana
Missoula, Montana

December 2013

Approved by:

Sandy Ross, Dean of the Graduate School
Graduate School

Jesse V. Johnson, Chair
Computer Science

Douglas W. Raiford
Computer Science

Joel Harper
Geosciences



Granzow, Glen, M.S., Fall 2013 Computer Science

An Investigation of Viscosity Using Measured Velocities on Helheim Glacier

Chairperson: Jesse V. Johnson

Using recent measurements of the velocity of ice on the surface of Helheim Glacier,
located on the south-east coast of Greenland, the variation of viscosity, a material
property of the ice, is investigated. The investigation focuses on determining the value
of a parameter in Glen’s flow law, a constitutive equation widely used in numerical
models of ice sheets. Three different approaches are used: (1) Finite differences are
used in a direct approach, (2) A finite element model is used in an approach involving
an inverse problem, and (3) Nonlinear least squares fits of the velocity are used. The
parameter focused on, the exponent in Glen’s flow law, is assigned a value of three
in most ice sheet models but the results presented in this thesis suggest that the
behavior of ice (at least that in the fast moving portion of Helheim Glacier) might be
more accurately modeled using a significantly smaller value, 1.6.
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Chapter 1

Introduction

Background information and an overview of the thesis are presented.

1.1 Background

Glacial ice currently covers about 10% of the earth’s land. (Cuffey and Patterson [1]

are the source for this and other information in this introductory chapter.) Most of

this ice (more than 99% [2]) is in the ice sheets of Greenland and Antarctica, the rest

in alpine environments. Geologic evidence suggests that during the earth’s “ice ages”

much larger ice sheets existed.

Scientists have long been interested in the evolution of glaciers and ice sheets.

Recent evidence of global climate change has increased this interest by creating con-

cerns about the contribution that diminishing glacial ice volumes may make to rising

sea levels [3]. The growth and attenuation of glaciers and ice sheets involves more

than just freezing and melting; deformation of the ice, basal sliding, and calving (the

breaking away of ice from a glacier’s terminus) can be dominant processes.

Use of mathematical models is a key part of scientists’ current efforts to understand

the deformation of glacial ice. Field observations and laboratory experiments indicate

that in many respects ice acts like a (very viscous) liquid. Thus the equations of fluid

mechanics are used to model its behavior. (See, for example, Greve and Blatter [4].)

A key parameter in these equations is viscosity, a property of the fluid of interest.

Viscosity essentially describes the relationship between the rate at which the fluid

deforms (the technical term for this is the strain rate) in response to applied forces (or

more accurately, stresses). Some fluids’ behavior is accurately described using a single

1



number (i.e. a constant) for the viscosity but the behavior of ice is generally thought

to be more accurately modeled using a viscosity reflecting a nonlinear relationship

between strain rate and stress.

The most commonly used constituency equation describing glacial ice’s nonlinear

relationship between strain rate and stress is Glen’s Flow Law (or, more precisely,

“Nye’s generalization of Glen’s flow law” [5]) which can be expressed using an appro-

priate viscosity. But Glen’s flow law itself involves parameters whose values are not

well established.

Historically, data about glaciers and ice sheets was relatively scarce because col-

lecting information was difficult due to their remote locations and formidable environ-

ments. In recent years data has become more plentiful as remote sensing techniques

using air-borne and satellite mounted devices have been developed and implemented.

1.2 An Overview of the Thesis

In this thesis, surface velocities extracted from measurements made using Synthetic

Aperture Radar (SAR) [6] on board the TerraSAR-X satellite are used to investigate

the viscosity of ice in Helheim Glacier, located in south-eastern Greenland (see figure

1.1). The thesis contains chapters devoted to the following topics:

• Chapter 2: Using measured velocities and a mathematical model approxi-

mated using finite differences, the variation in viscosity along a transect of

Helheim Glacier is investigated and one of the parameters in Glen’s flow law is

evaluated.

• Chapter 3: The finite element method is used to solve for velocities along the

transect of Helheim Glacier using the viscosity variations found in Chapter 2.

This reproduces the measured velocities, verifying the finite element model and

that the viscosity variations can account for the velocities seen, at least if the

mathematical model is applicable.

• Chapter 4: An inverse problem is solved (using the finite element model from

chapter 3) to investigate the variation in viscosity along the transect of Helheim

Glacier. This might be expected to produce the same viscosity variations found

in Chapter 2 but the actual results differ in significant ways.

2



Figure 1.1: A map of Greenland. The small red rectangle indicates the location of
Helheim Glacier.
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• Chapter 5: Nonlinear least squares fits of the velocity along the transect of

Helheim Glacier are used to estimate the parameter of interest in Glen’s flow

law. The value obtained is very close to that obtained in Chapter 2.

• Chapter 6: Results are summarized in the final chapter. A brief description of

the results of applying the methods described in the thesis to Greenland outlet

glaciers other than Helheim is included.

Solution of the inverse problem in Chapter 4 is accomplished by writing it as an

optimization problem. The method used to solve the optimization problem requires

calculating derivatives of an objective function with respect to parameters in the

model. An adjoint method was used to find these derivatives. Appendix A, explaining

adjoint methods, is included at the end of the thesis.

Computations necessary for the analysis presented in this thesis were performed

by scripts written by its author in the Python programming language. All figures were

created using the matplotlib.pyplot package. The map in figure 1.1 was created with

the mpl toolkits.basemap package. Finite element modeling used the FEniCS dolfin

package [7, 8] and solution of the inverse problem utilized the scipy.optimize and

dolfin-adjoint [9] packages. The scipy.optimize module was also used while finding

the nonlinear least squares fits. Source code for scripts that perform most of the

calculations described in the thesis are provided in Appendix B.
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Chapter 2

Evaluating the Exponent in Glen’s
Flow Law Using Surface Velocities
on Helheim Glacier

A method is presented for evaluating the exponent in Glen’s flow law us-
ing measured surface velocities on a transect of a fast moving ice stream.
Applying the method to Helheim Glacier (in southeastern Greenland)
gives a value of 1.6, lower than the commonly used value 3.

2.1 Introduction

Glen’s flow law is a constitutive relation for ice, widely used in numerical models of

ice sheets, relating the components of the strain rate tensor, ε̇ij, to the components

of the deviatoric stress tensor, τij [1, 4, 5].

ε̇ij = Aτn−1τij (2.1)

Here A is a temperature dependent parameter and τ is the second invariant of the

deviatoric stress tensor. The exponent, n, in Glen’s flow law has been measured

in laboratories; the value most widely used in ice sheet models is three although

measured values have deviated significantly from this, ranging from 1.5 to 4.2 [10].

In this paper, measurements of surface velocity are used to evaluate the exponent in

Glen’s flow law. Thus the exponent is obtained for actual glacial ice whose physical

properties may differ from the ice used in laboratory experiments due to crystal

orientations and impurities.
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The relationship between the strain rate and the stress in a fluid are commonly

described using viscosity, a material property of the fluid. In a simple Newtonian fluid,

where the viscosity is constant, strain rate is proportional to stress. This corresponds

to a constant A and n = 1 in equation 2.1. The nonlinear relationship between

strain rate and stress described by equation 2.1 with n 6= 1 can be described using

a viscosity that varies with the effective strain rate (i.e. the second invariant of the

strain rate tensor). In this paper, the variation in the viscosity of ice along a transect

of Helmeim Glacier is deduced from measured surface velocities. From these same

surface velocities the effective strain rate is obtained, so the relationship between

viscosity and effective strain rate can be examined. This examination indicates that

Glen’s flow law is applicable between the shear margins of Helheim Glacier and allows

the exponent in Glen’s flow law to be evaluated.

The mathematical model used is based on the Stokes equations. Flow in the model

varies in only one direction, transverse to the flow, and temperature variations are

neglected.

2.2 Velocity Data

Figure 2.1 shows surface velocity data for Helheim Glacier obtained from the National

Snow and Ice Data Center [11]. A transect, indicated by the dashed red line in figure

2.1, was selected. This transect was judged to approximately satisfy two of the

assumptions made in the analysis presented in this paper; the glacier is flowing in

roughly a straight line with little variation of velocity in the direction of flow. The

magnitude of the surface velocity along the transect is shown in figure 2.2.

6



Figure 2.1: Surface velocity data for Helheim Glacier for the period from 2 September
2010 to 13 September 2010. The color scale gives the magnitude of the velocity in
meters/annum. Arrows indicate the direction of the velocity as well as its magnitude.
The dashed red line shows the transect used for this paper. The figure represents a
20 km by 20 km area. Grid spacing of the data is 100 meters.

7



Figure 2.2: Surface velocity (in meters/annum) along the transect of Helheim Glacier
shown as a dashed red line in figure 2.1. Only the region between the vertical dashed
lines was used in the analysis presented in this paper. The vertical dotted lines are
at the “shear margins”, defined here as the locations of the minima of viscosity (as
plotted in figure 2.3). These minima occur near the inflection points of the velocity
curve. The solid vertical line is at xm, the location of the maximum velocity.
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2.3 A Mathematical Model

Stokes equations represent Newton’s second law (ΣF = ma) for a fluid when the

inertial terms (ma) are negligible. There are three equations, one for each of the

coordinate directions x, y, and z. The equation representing the sum of forces in the

y direction is

∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+
∂

∂y

[
−p+ 2µ

∂v

∂y

]
+
∂

∂z

[
µ

(
∂w

∂y
+
∂v

∂z

)]
= −ρgy (2.2)

where µ is the viscosity, u, v, and w are the components of fluid velocity in the x, y,

and z directions respectively, p is pressure, ρ is the density of the fluid, and gy is the

component of gravity in the y direction.

In a three dimensional “full Stokes” ice model, the two additional Stokes equations

(for the x and z directions) would also be considered, and an equation representing

conservation of mass would be added to make four equations in the four unknowns

u, v, w, and p. Such a model would typically align the z-axis vertically so gy = 0.

In the present treatment, we consider a fast moving stream of ice flowing in a

straight line, in the direction opposite to the surface gradient. The z-axis is per-

pendicular to the upper surface of the ice, with the y-axis pointing in the direction

of flow. The x direction is horizontal, transverse to the flow. Here gy = gα where

α = sin (tan−1 |s|), s being the surface slope. We assume that there is no variation in

the direction of flow so all derivatives with respect to y in equation 2.2 are zero. We

also assume that derivatives in the z direction are zero, an assumption believed to be

reasonable for regions where basal friction is low. Under these assumptions equation

2.2 simplifies to

d

dx

[
µ

dv

dx

]
= −ρgα (2.3)

where the derivatives have now been written as ordinary derivatives since variation

is only in the x direction.

We will apply equation 2.3 to the portion of the transect between the dashed

vertical lines in figure 2.2. Assuming the surface slope (and thus α) is constant

along this portion of the transect, both sides of equation 2.3 can be integrated, with

the value of the constant of integration selected such that the resulting equation is

9



satisfied at xm the location of maximum velocity (where dv
dx

= 0). This gives

µ
dv

dx
= ρgα(xm − x) (2.4)

The region to which equation 2.4 is to be applied has been chosen such that the

location of the maximum velocity, xm, is the only place where dv
dx

= 0. At every point

other than xm equation 2.4 can be solved for the viscosity

µ =
ρgα(xm − x)

dv
dx

(2.5)

Let µm denote the viscosity of the ice at xm. While equation 2.5 cannot be applied

at xm (since that would involve dividing by zero) the viscosity is continuous at xm

so, applying L’Hôpital’s rule

µm = lim
x→xm

µ = lim
x→xm

ρgα(xm − x)
dv
dx

= lim
x→xm

−ρgα(
d2v
dx2

) = − ρgα
d2v
dx2

∣∣
xm

(2.6)

Dividing the corresponding sides of equations 2.5 and 2.6 gives an expression for the

ratio of the viscosity at a point x to the viscosity at xm

µ

µm
=

d2v
dx2

∣∣∣
xm

(x− xm)

dv
dx

(2.7)

Using the velocity data plotted in figure 2.2, finite differences were used to ap-

proximate the derivatives in equation 2.7 and the resulting calculated viscosity ratios

along the transect are shown in figure 2.3.
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Figure 2.3: Viscosity ratio for the region between the vertical dashed lines in figure
2.2 calculated using finite difference approximations to the derivatives in equation
2.7. The vertical dotted lines are at the minima of the viscosity ratio, considered
here to be the “shear margins.” The solid vertical line is at xm, the location of the
maximum velocity.
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2.4 Glen’s Flow Law

Glen’s flow law can be realized using the viscosity

µ =
1

2
A−

1
n ε̇−

n−1
n (2.8)

where A is the temperature dependent parameter in equation 2.1 and ε̇ is the second

invariant of the strain rate tensor which can be defined as

ε̇2 =
1

2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+
1

4

[(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2
]

(2.9)

The n in equation 2.8 is the same “exponent in Glen’s flow law” seen in equation

2.1. Under the assumptions that derivatives with respect to y and z are negligible

and there is no component of velocity except in the y direction (u = 0 and w = 0)

equation 2.9 simplifies to

ε̇ =
1

2

∣∣∣∣dvdx

∣∣∣∣ (2.10)

Substituting equation 2.10 into equation 2.8 then dividing both sides by µm shows

that Glen’s flow law predicts

µ

µm
=

1
2
A−

1
n

(
1
2

∣∣dv
dx

∣∣)−n−1
n

µm
= γ

∣∣∣∣dvdx

∣∣∣∣−n−1
n

(2.11)

where, if we neglect the dependence of A on temperature, γ is a constant. Taking the

logarithm of both sides of equation 2.11 and using the rules of logarithms

log
µ

µm
= log γ −

(
n− 1

n

)
log

∣∣∣∣dvdx

∣∣∣∣ (2.12)

According to equation 2.12, if µ
µm

is plotted versus
∣∣dv

dx

∣∣ on a log-log scale the curve

should be a line with slope

m = −
(
n− 1

n

)
(2.13)
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For a Newtonian fluid, having n = 1, the slope will be zero. As n approaches infinity,

the slope approaches negative one. Equation 2.13 can be solved for the exponent in

Glen’s flow law

n =
1

1 +m
(2.14)

The viscosity ratios µ
µm

for the transect through Helheim Glacier plotted versus x

in figure 2.3 can also be plotted versus
∣∣dv

dx

∣∣ (again using finite differences to approxi-

mate dv
dx

). This is done in figure 2.4.

A striking feature of figure 2.4 is that the data points corresponding to spacial

points between the shear margins (blue triangles) and the data points corresponding

to spacial points beyond the shear margins (red squares) are both aligned almost

linearly but with different slopes. For the region beyond the shear margin the slope

of the points is close to negative one which corresponds to the exponent in Glen’s

flow law becoming infinite. For the region between the shear margins the slope of the

points appears to correspond to an exponent in Glen’s flow law between one and two.

A linear least squares fit of these points has slope m = −0.359 which (according to

equation 2.14) corresponds to an exponent n = 1.56.
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Figure 2.4: The viscosity ratio µ
µm

plotted versus
∣∣dv

dx

∣∣ on a log-log scale for a transect of

Helheim Glacier. The blue triangles correspond to points between the shear margins
(shown as dotted vertical lines in figures 2.2 and 2.3). The red squares correspond
to points outside of the shear margins. Data points adjacent in space are connected
by line segments. As shown in equation 2.12, for fluids behaving according to Glen’s
flow law the points should fall on a line. The dashed lines in this figure have slopes
corresponding to Glen’s flow law exponents of n = 1, n = 2, n = 3, and n =∞.
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2.5 Concluding Remarks

The analysis presented provides a methodology for assessing the exponent in Glen’s

flow law using measured velocities. The linear arrangement of the blue triangles in

figure 2.4 with slope between zero and negative one suggests that Glen’s flow law is

applicable to the portion of Helheim Glacier between the shear margins. However,

the model appears to break down at the shear margins beyond which the exponent

in the flow law becomes infinite. A likely cause of the failure of the model beyond the

shear margins is that basal traction becomes important near the edges of the glacier

so that the ∂
∂z

term in equation 2.2 is not negligible in these outlying regions. But

note that basal traction is not necessary to produce the velocities seen in figure 2.2

including the concave upward portions outside the shear margins; they could (at least

from a mathematical viewpoint) be due to the viscosity variations shown in figure

2.3.

To investigate the effects of basal traction, a two-dimensional transverse model

could be used; perhaps solving an inverse problem for the basal traction and the

parameters in Glen’s flow law. This approach loses the simplicity of the current one-

dimensional model. The basal topography of Helheim Glacier includes a vee-shaped

trough so the ice is much thinner near the shear margins than near the center of the

glacier. Although not very precise, interpolation of a 1 km grid digital elevation map

[12] indicates that the thickness of the ice at the shear margins identified in figures

2.2 and 2.3 is less than 500 meters and these shear margins are near the edges of the

trough while, near the center of the trough, ice thickness is around 1600 meters.

Neglecting the dependence on temperature of the parameter A in equation 2.11

may be a significant error in the current analysis as strain heating may introduce

substantial temperature variations in the ice. Of course, other assumptions used in

the mathematical model may also introduce inaccuracies. These assumptions are:

1. Deformation of the ice is governed by the Stokes equations.

2. Flow is in a straight line in the direction opposite to the surface gradient.

3. Velocity and pressure do not vary in the direction of flow.

4. Velocity does not vary in the direction perpendicular to the surface.

5. Density of the ice and the surface slope are both constant along the transect.

15



6. Viscosity of the ice is finite and continuous.

7. Finite differences provide a good approximation to the derivative of velocity

with respect to the transverse coordinate (error in the approximation of the

second derivative is inconsequential).

8. The components of velocity in the horizontal direction transverse to the flow

and in the direction perpendicular to the surface are zero.

Using the velocity data shown in figure 2.1 the flow law exponent for the fast

moving ice was found to be 1.6, smaller than the value 3 usually used in ice sheet

models. The coefficient of determination for the linear least squares fit of the blue

triangles in figure 2.4 used to determine this exponent was R2 = 0.81.

The data shown in figure 2.1 represents the period from 2 September 2010 to 13

September 2010. The United States’ National Aeronautics and Space Administra-

tion (NASA) Making Earth System Data Records for Use in Research Environments

(MEaSUREs) program also provides similar velocity data for Helhiem Glacier for

other time periods [11]. The analysis described in this paper was applied, using the

same transect, for each of these other time periods. The average of the Glen’s flow law

exponents obtained was 1.6, agreeing with the exponent found using the 2 September

2010 to 13 September 2010 data set thus making it (the data set analyzed in detail

in this paper) somewhat representative of all of the data. For some of the data sets

the coefficient of determination was as low as R2 = 0.32 largely due to points near

the location of maximum velocity not falling linearly on a plot of µ
µm

versus |dv
dx
| (like

that in figure 2.4). Even in figure 2.4 there is a loop in the leftmost part of the curve

through the blue triangles which corresponds to the eight data points (four on each

side) closest to xm, the location of the maximum velocity. (These eight data points

represent a distance of about 1 km). The derivative of the velocity at these points

is relatively small making the finite difference approximations to this derivative more

susceptible to error in the data. This error in the approximation of the derivative

may be partly responsible for the somewhat jagged appearance of the curve in figure

2.3 near xm. With these eight points removed, the coefficient of determination of the

linear least squares fit of the ratio µ
µm

versus |dv
dx
| (on a log-log scale) increases from

R2 = 0.81 to R2 = 0.90 and the slope is m = −0.541 corresponding to an exponent in

Glen’s flow law of n = 2.18. For many of the data sets, deleting the eight data points

closest to the location of maximum velocity dramatically increased the coefficient of
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determination. Results of the analysis for all of the time periods for which data was

available are given in table 2.1.

This study has considered viscosity ratios, which are sufficient for examining the

exponent in Glen’s flow law and require only the velocity data. Using surface elevation

measurments the surface slope along the transect could be obtained and the value of

the viscosity of the ice could then be evaluated using equations 2.5 and 2.6. Using

these viscosities the value of the parameter A in equations 2.1 and 2.8 (i.e. Glen’s

flow law) could also be estimated.

Table 2.1: Glen’s flow law exponent, n, calculated for different data sets. Also given
is the coefficient of determination, R2, for the linear least squares fit of the data used
to calculate n. The columns labeled “Culled data” are results of analysis with the
eight data points closest to the the location of maximum velocity deleted. Bold font
identifies the data set presented in detail in this paper.

Data set All data Culled data
Start date - End date n R2 n R2

27 Jan 09 - 07 Feb 09 1.52 0.80 2.17 0.89
25 Apr 09 - 06 May 09 1.37 0.32 2.21 0.77
19 Jun 09 - 30 Jun 09 1.52 0.34 2.45 0.93
24 Aug 09 - 04 Sep 09 1.77 0.88 2.17 0.89
20 Nov 09 - 01 Dec 09 1.83 0.70 2.72 0.94
23 Apr 10 - 04 May 10 1.71 0.41 2.58 0.92
09 Jul 10 - 20 Jul 10 1.93 0.60 2.27 0.76
02 Sep 10 - 13 Sep 10 1.56 0.81 2.18 0.90
18 Nov 10 - 29 Nov 10 1.48 0.57 2.44 0.96
08 Mar 11 - 19 Mar 11 1.45 0.69 2.06 0.93
04 Jun 11 - 15 Jun 11 1.57 0.38 2.44 0.97
07 Jul 11 - 18 Jul 11 1.64 0.43 2.49 0.94
09 Aug 11 - 20 Aug 11 1.41 0.47 2.17 0.94
16 Nov 11 - 27 Nov 11 1.64 0.60 2.03 0.80
Mean 1.60 0.57 2.31 0.90
Standard deviation 0.16 0.18 0.20 0.07
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Chapter 3

A Forward Problem: Solving for
Velocity Given Viscosity

A finite element model is described and results generated using this
model are presented.

3.1 Introduction

In the preceding chapter, measured velocities and a mathematical model were used to

investigate the variation in viscosity along a transect of Helheim Glacier. If that anal-

ysis is correct, one should be able to use the viscosity variations found to reproduce

the measured velocities. That is the goal of the current chapter. A boundary value

problem is described and the finite element method is used to approximate solutions

to this boundary value problem. The approximate solution obtained agrees with the

measured velocity along the transect of Helheim Glacier. There are two reasons for

performing this analysis:

1. It provides a check that the analysis in the preceding chapter is correct.

2. The finite element model developed will be used in a subsequent chapter as a

component in the solution of an “inverse problem”.

3.2 A Boundary Value Problem

A “boundary value problem” is a type of problem consisting of a differential equation

that must be satisfied within a specified domain together with “boundary conditions”
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that must be satisfied on the boundary of this domain. Boundary value problems are

often used as a model of a physical system (as is the case here.)

In Chapter 2 a mathematical model was obtained from the Stokes equations by

making assumptions that derivatives with respect to y and z were negligible. The

resulting equation (equation 2.3) is the differential equation in the boundary value

problem considered in this chapter

d

dx

[
µ

dv

dx

]
= −ρgα for a < x < b (3.1)

Here a and b are the coordinates of the left and right edges of the portion of the

transect analysed in Chapter 2. (These locations are represented by the dashed

vertical lines in figures 2.2 and 2.3.) As in Chapter 2, the viscosity µ is a function

of x and ρgα is a constant. Unlike in Chapter 2, where the analysis was based on

a known velocity v, here it is assumed that µ and ρgα are known and the goal is

to solve for v. To complete the boundary value problem, boundary conditions assert

that the velocity at the lateral edges of the glacier are zero

v(a) = 0 (3.2)

v(b) = 0 (3.3)

In Chapter 2 the viscosity was determined to within a constant (that is, we found
µ
µm

but we don’t know µm) and no information was gained about ρgα. Dividing both

sides of equation 3.1 by µm gives

d

dx

[(
µ

µm

)
dv

dx

]
= −ρgα

µm
(3.4)

so in essence there is only one unknown constant,
ρgα

µm
. From a physical viewpoint

the differential equation of interest in this chapter is actually 3.4, but to avoid the

more complicated appearance of equation 3.4, it is mathematically equivalent to set

µm = 1 and use equation 3.1 instead.

The solution, v, to the boundary value problem (equations 3.1, 3.2, and 3.3)

varies linearly with ρgα. For example, if a solution, v(x), is known for a given value

of ρgα, then the solution with ρgα doubled is simply two times the original solution.

Using the viscosity ratio found in Chapter 2 for µ, one should be able to choose an
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appropriate value for ρgα so that the solution to the boundary value problem agrees

with the measured velocities along the transect of Helheim Glacier (i.e. the velocities

between the dashed vertical lines in figure 2.2.)

The boundary value problem (equations 3.1, 3.2, and 3.3) has the exact solution

v(x) = ρgα

∫ x

a

C − x̃
µ(x̃)

dx̃ (3.5)

where

C =

∫ b
a

x
µ(x)

dx∫ b
a

1
µ(x)

dx
(3.6)

but without a formula for µ(x) this solution has limited value. One could obtain

an approximation to the integrals using numerical quadrature but here a different

approach is used; an approximate solution to the boundary value problem is found

using the finite element method.

3.3 The Finite Element Method

The finite element method for approximating the solution to the boundary value

problem given in the preceding section is based on the assertion that if a function

v(x) satisfies the differential equation 3.1 then for every “test function” ψ(x) the

following integral equation is also satisfied∫ b

a

(
d

dx

[
µ

dv

dx

])
ψ(x)dx = −

∫ b

a

ρgαψ(x)dx (3.7)

Performing integration by parts on the left hand side of equation 3.7 gives

[
µ

dv

dx

]
ψ

∣∣∣∣b
a

−
∫ b

a

[
µ

dv

dx

]
dψ

dx
dx = −

∫ b

a

ρgαψdx (3.8)

so for every test function ψ(x) with ψ(a) = 0 and ψ(b) = 0

−
∫ b

a

[
µ

dv

dx

]
dψ

dx
dx = −

∫ b

a

ρgαψdx (3.9)

21



The next step in the finite element method is to approximate the solution v(x)

using a prescribed set of basis functions φk

v(x) =
n∑
k=0

vkφk(x) (3.10)

where the coefficients vk are constants that are to be found. Piecewise linear basis

functions are often used and were chosen for the current study

φk(x) =


0 if x ≤ xk−1
x−xk−1

xk−xk−1
if xk−1 < x ≤ xk

xk+1−x
xk+1−xk

if xk < x ≤ xk+1

0 if x > xk+1

(3.11)

where, for a uniform mesh such as that used here,

xk = a+

(
b− a
n

)
k (3.12)

The locations xk are refered to as “nodes” in the parlance of finite element methods.

The prescribed set of basis functions can also be used to approximate µ

µ(x) =
n∑
k=0

µkφk(x) (3.13)

but unlike v (which is the unknown in the boundary value problem) appropriate values

for the µk’s can be chosen immediately based on the known values of µ at discrete

points found in Chapter 2.

A piecewise linear approximation to the solution of the boundary value problem

is obtained by finding values for the n + 1 coefficients vk for k = 0, 1, 2, 3, . . . , n in

equation 3.10. The boundary conditions given by equations 3.2 and 3.3 are satisfied

by choosing v0 = 0 and vn = 0. To find values for the remaining n − 1 unknown

coefficients (vk for k = 1, 2, 3, . . . , n − 1) a system of n − 1 equations is solved.

These equations correspond to equation 3.9 with n − 1 different test functions ψ.

The test functions chosen are simply the basis functions, ψ(x) = φj(x) for j =

1, 2, 3, . . . , n − 1 (all of which satisfy the conditions ψ(a) = 0 and ψ(b) = 0.) With

the chosen approximations for v and µ (equations 3.10 and 3.13), and test function
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ψ(x) = φj(x), the derivatives and integrals in equation 3.9 can be evaluated in closed

form so a system of algebraic equations is obtained which can be solved for the desired

coefficients vk.

The FEniCS software package [7, 8] was used to execute the finite element method.

Using this package, a relatively simple Python script prescribing the “weak form” of

the differential equation (equation 3.9), the boundary conditions (equations 3.2 and

3.3), the number of finite elements n, and specifying that piecewise linear basis func-

tions are to be used, is sufficient to obtain an approximate solution to the boundary

value problem. The most challenging task in using FEniCS for this boundary value

problem is incorporating the data for µ.

3.4 The Solution of the Forward Problem

Velocities, v, found using the finite element method to approximate the solution to

the boundary problem given by equations 3.1, 3.2, and 3.3 when using the viscosity

ratio shown in figure 2.3 as µ are plotted in figure 3.1 together with the measured

velocities along the transect of Helheim Glacier for comparison. The value (approxi-

mately 443) of the right hand side of the differential equation (equation 3.1 or more

accurately from a physical standpoint equation 3.4) was chosen such that the max-

imum calculated velocity matches the maximum measured velocity. The calculated

velocities throughout the domain are in good agreement with the measured velocities

although they fall slightly below the measured values in some locations. One of these

locations is at the extreme left edge of the plot in figure 3.1 where the discrepancy is

due to the fact that the measured velocity at this location is 32 meters/annum but

the boundary condition (equation 3.2) in the model sets the velocity there to zero.

The curve representing the calculated velocities is somewhat smoother than the

curve representing the measured velocities because the calculated curve includes twice

as many points. This was done because the viscosity ratios found in Chapter 2 were

calculated at the midpoints of the velocity data. The finite element model includes

nodes at the points where viscosities were calculated as well as the at the points where

velocities had been obtained along the transect. A total of 101 nodes were used in the

finite element model (n = 100 in equation 3.10) corresponding to the 51 velocity data

points and 50 midpoints where viscosity was calculated in the analysis in Chapter 2.
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Figure 3.1: Velocities, v, found using the finite element method to approximate the
solution to the boundary problem given by equations 3.1, 3.2, and 3.3 are plotted as a
black dashed line. The solid red line shows the measured velocities along the transect
of Helheim Glacier for comparison.
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Chapter 4

An Inverse Problem: Solving for
Viscosity Given Velocity

An alternative method to that presented in Chapter 2 is used to in-
vestigate ice viscosity variations using measured surface velocities on
Helheim Glacier.

4.1 Introduction

In Chapter 2, measured surface velocities and a mathematical model were used to

investigate the variation in viscosity along a transect of Helheim Glacier. In the

current chapter the same measured surface velocities and a mathematical model very

similar to that used in Chapter 2 are used to, once again, investigate the variation in

viscosity along the same transect of Helheim Glacier. The primary difference is in the

approach taken and the numerical approximations used. In Chapter 2 the analysis

followed a direct approach and used finite differences. Here an inverse problem is

posed and solved. Solution of the inverse problem involves use of the finite element

method described in Chapter 3.

4.2 The Inverse Problem

Equations 3.1, 3.2, and 3.3 in Chapter 3 describe a boundary value problem. These

equations, an essential part of the inverse problem studied in the current chapter, are
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repeated here

d

dx

[
µ

dv

dx

]
= −ρgα for a < x < b (4.1)

v(a) = 0 (4.2)

v(b) = 0 (4.3)

The differential equation, 4.1, was derived (in Chapter 2, equation 2.3) from the

Stokes equation and is a mathematical model of the ice in Helheim Glacier: µ is the

ice viscosity and v is the velocity of the ice, both considered to vary in the direction x

which is transverse to the flow; ρ is the ice density, g is the acceleration of gravity, and

α is (essentially) the slope of the surface of the ice, all considered to be constants.

The (x) coordinates of the lateral boundaries of the glacier are given by a and b.

Equations 4.2 and 4.3 are boundary conditions that assert that the velocity of the

glacier is zero on its (lateral) edges.

In a typical problem in fluid mechanics, the viscosity is known and one solves for

the fluid velocity. This was the problem considered in Chapter 3 and was referred

to in the title of that chapter as a “forward problem”. Here we are interested in

the corresponding “inverse problem”; the fluid velocity is known and the viscosity is

unknown.

An iterative technique can be used to find approximate solutions of inverse prob-

lems. Conceptually, for the problem at hand, one would

1. “Guess” µ(x).

2. Solve the forward problem to find v(x).

3. If v(x) is in close agreement with the measured values, quit; the guessed µ is

an approximate solution to the inverse problem. Otherwise return to step 1.

Of course, one hopes that subsequent guesses are improvements over their predeces-

sors. Creating these guesses is an important part of the iterative process. A related

consideration is how to measure the “agreement with the measured values”. A com-

mon approach is to use

J =

∫ b

a

[v(x)− ṽ(x)]2 dx (4.4)

26



where ṽ(x) is the desired velocity (derived from the measured values; note that ṽ(x)

must be defined over the entire interval (a, b) but the measured values are only at

discrete points).

It can seen from equation 4.4 that J ≥ 0 and J = 0 if and only if v(x) = ṽ(x) for

all x ∈ (a, b). Thus the inverse problem can be posed as an optimization problem:

Find µ(x) such that the solution v(x) of the boundary value problem given
by equations 4.1, 4.2, and 4.3 minimizes the objective function J given
by equation 4.4.

Using the finite element method to approximate the boundary value problem (as

was done in Chapter 3), the optimization problem is discretized:

Find the coefficients µk in equation 3.13 such that the approximate solu-
tion v(x) of the boundary value problem minimizes the objective function
J given by equation 4.4.

Using the the basis functions (equation 3.11) to specify ṽ(x)

ṽ(x) =
n∑
k=0

ṽkφk(x) (4.5)

(cf. equations 3.10 and 3.13) facilitates evaluation of the integral in equation 4.4. The

coefficients ṽk are chosen using the measured velocities.

Algorithms for solving optimization problems have been developed and continue

to be developed [13]. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was

chosen for use here. The primary purpose of these algorithms is effectively choosing

the sequence of “guesses” in an iterative process. Because the goal is to minimize

the objective function J , most efficient optimization algorithms (including the BFGS

algorithm) require information about how the objective function changes (locally) as

the problem parameters (in our case the µk’s) change. This information, which is a

collection of partial derivatives, ∂J
∂µk

for k = 0, 1, 2, 3, . . . , n, can be obtained using an

adjoint method. Adjoint methods are described in an appendix to this thesis.

4.3 A Solution of the Inverse Problem

A Python script was written to obtain an approximate solution to the discrete opti-

mization problem described in the preceding section. An important part of solving the

27



inverse problem is solving the forward problem with various µ(x)’s; this was accom-

plished using the finite element method described in Chapter 3, implemented using

the FEniCS dolfin module. The fmin bfgs function in the scipy.optimize module was

used to carry out the BFGS algorithm. Partial derivatives required by the BFGS

algorithm were obtained using the dolfin adjoint module.

A small technical detail: The viscosity of a fluid is a positive quantity. This

is not stipulated in equation 4.1. There are optimization algorithms that restrict

the parameters in the problem to positive quantities, even versions of the BFGS

algorithm, but this restriction was not enforced in the Python function chosen from

the scipy.optimize package to carry out the BFGS algorithm. Instead, to ensure that

the viscosity in our mathematical model is positive, µ in equation 4.1 was replaced

with η2

d

dx

[
η2 dv

dx

]
= −ρgα for a < x < b (4.6)

and the inverse problem was solved for η. The viscosity can then be obtained using

µ = η2 (4.7)

Thus µ remained positive, not only in the final solution, but throughout the iterative

process used to find it.

Before solving the inverse problem the measured velocities were normalized by

dividing by the maximum measured velocity. After solving, the solution, µ(x), was

normalized by dividing by µm = µ(xm) where xm is the location of the maximum

(calculated) velocity, to obtain viscosity ratios analogous to those found in Chapter

2. The initial “guess” of the viscosity was a constant, µ(x) = C (or, more accurately

stated for the final form of the inverse problem, η(x) =
√
C), where C was of the

order of magnitude of the average of the solution (µ(x)) obtained.

When the Python script was run, the final iteration of the BFGS algorithm gener-

ated the velocities plotted in figure 4.1 (which are very close to the measured values)

using the viscosity variations shown in figure 4.2. The viscosity ratio obtained in

Chapter 2 (cf. figure 2.3) is also plotted in figure 4.2 for comparison. The BFGS

algorithm took 616 iterations to reach this solution.
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Figure 4.1: The velocity, v, obtained when solving the inverse problem is plotted
as a dashed black line. The solid red curve shows the normalized velocity along
the transect of Helheim Glacier. A good match of the measured velocities has been
accomplished. The vertical dotted lines are at the “shear margins”, defined here as
the locations of the minima of viscosity (as plotted in figure 4.2).
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Figure 4.2: The viscosity ratio, µ
µm

, obtained by solving the inverse problem is plotted

as a green curve. The blue curve shows the viscosity ratio obtained in Chapter 2
for comparison. The vertical dotted lines are at the minima of the viscosity ratio,
considered here to be the “shear margins.”
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4.4 Tikhonov Regularization

An undesirable feature of the viscosity ratio curve in figure 4.2 obtained by solving

the inverse problem is that high frequency oscillations occur near its minima (i.e. at

the shear margins). Such high frequency oscillations are somewhat common when

numerically solving inverse problems. It is not expected that the viscosity of the ice

would vary in this way although if it did the velocity might not be affected much

(which is why the oscillations appear in the solution; at least in the finite element

approximation the velocity does not oscillate even though the viscosity does). To

reduce such oscillations a “regularization term” can be included in the objective

function of the optimization problem. The regularization term is designed to cause

the value of the objective function, which is being minimized, to grow if the undesired

oscillations are present. Thus, in the process of minimizing the objective function,

undesired oscillations are suppressed.

Within the oscillations
∣∣dµ

dx

∣∣ becomes large. So an effective regularization term

might penalize high values of
∣∣dµ

dx

∣∣. Since µ = η2 penalizing high values of
∣∣dη

dx

∣∣ would

also be appropriate. Instead of using absolute values (
∣∣dη

dx

∣∣), the smoother squaring

function (
[

dη
dx

]2
) is usually used. Adding a term penalizing high values of

[
dη
dx

]2
to

equation 4.4 creates the objective function

J =

∫ b

a

(
[v(x)− ṽ(x)]2 + γ

[
dη

dx

]2
)
dx (4.8)

Here γ is a positive coefficient weighting the regularization term. The objective of

the optimization problem becomes to minimize J in equation 4.8 instead of the J in

equation 4.4.

Choice of the value of γ affects the viscosity obtained and how well the calculated

velocities match the desired (measured) values. If γ is large, the solution of the

optimization problem will be a constant viscosity (dη
dx

= 0 everywhere so µ = η2 is

constant) and a parabolic velocity curve is obtained whose maximum value is close to

the maximum measured velocity but otherwise does not match the desired velocity

curve very well. See figure 4.3. At the other extreme, if γ = 0 the solution in figures

4.1 and 4.2 is obtained. For this study a very subjective method was used to choose γ;

values were tried until a velocity curve that was judged to be in acceptable agreement

with the measured velocities was calculated with a viscosity containing an acceptably
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Figure 4.3: The velocity, v, obtained when solving the inverse problem posed as an
optimization problem including a regularization term with a large value for γ is plotted
as a dashed black line. The solid red curve shows the normalized velocity along the
transect of Helheim Glacier. The calculated velocities do not match the measured
velocities very well. Since the viscosity for this approximation is essentially constant,
the associated viscosity ratio curve would be given by the solid black horizontal line
in figure 4.2
.
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small amount of oscillation. The resulting velocity and viscosity variation for the

selected value of γ are plotted in figures 4.4 and 4.5.

The calculated velocity in figure 4.4 is in good agreement with the measured

velocities within the shear margins but there are some noticeable discrepancies near

the ends of the domain (i.e. near the edges of the glacier). Only a small remnant of

the oscillations in the viscosity, so prevalent in figure 4.2, remains in figure 4.5, in the

form of a local maximum that occurs near the right shear margin. A local maximum

there is also seen in the viscosity ratio curve from Chapter 2 so it would seem that

there is some feature of the velocity that causes it.
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Figure 4.4: The velocity, v, obtained when solving the inverse problem posed as an
optimization problem including a regularization term is plotted as a dashed black
line. The solid red curve shows the normalized velocity along the transect of Helheim
Glacier. The calculated velocities match the measured velocities well except near
the edges. The vertical dotted lines are at the “shear margins”, defined here as the
locations of the minima of viscosity (as plotted in figure 4.5).
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Figure 4.5: The viscosity ratio, µ
µm

, obtained by solving the inverse problem posed as

an optimization problem including a regularization term is plotted as a green curve.
The blue curve shows the viscosity ratio obtained in Chapter 2 for comparison. The
vertical dotted lines are at the minima of the viscosity ratio, considered here to be
the “shear margins.”
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4.5 Evaluating the Exponent in Glen’s Flow Law

In Chapter 2 it was shown that if the one-dimensional mathematical model presented

in this thesis is appropriate and Glen’s flow law is applicable then a plot of the

viscosity ratio µ
µm

versus
∣∣dv

dx

∣∣ will be linear, with the slope of the line revealing the

value of the exponent in the flow law (see equation 2.12). The viscosity ratio µ
µm

plotted versus x in figure 4.5 can be plotted versus
∣∣dv

dx

∣∣ where v is the calculated

velocity in figure 4.4. Unlike in Chapter 2, instead of using finite differences to obtain
dv
dx

, here the finite element method is used to solve the differential equation ε = dv
dx

(where v is given by equation 3.10) for ε. The resulting plot is shown in figure 4.6.

The blue triangles on the left half of figure 4.6 correspond to the portion of Helheim

Glacier near the location of the maximum velocity. The almost horizontal arrange-

ment (slope m = 0) of these triangles suggest that the ice there is behaving similarly

to a Newtonian fluid (n = 1 in Glen’s flow law, see equation 2.14).

If the ice was a Newtonian fluid, the velocity curve would be a parabola. (The

solutions to equation 4.1 with constant µ are second order polynomials.) A least

squares fit of a second order polynomial to the 21 velocity data points around the

location of maximum velocity gives a good but not flawless fit to the velocity data

along the transect. See figure 4.7.
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Figure 4.6: The viscosity ratio µ
µm

from figure 4.5 plotted versus
∣∣dv

dx

∣∣ from figure 4.4

on a log-log scale. The blue triangles correspond to points between the shear margins
(shown as dotted vertical lines in figures 4.4 and 4.5). The red squares correspond
to points outside of the shear margins. Data points adjacent in space are connected
by line segments. As shown in equation 2.12, for fluids behaving according to Glen’s
flow law the points should fall on a line. The dashed lines in this figure have slopes
corresponding to Glen’s flow law exponents of n = 1 (for the horizontal line), n = 2,
n = 3, and n =∞ (for the line with slope −1).
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Figure 4.7: The solid red curve shows the velocity along the transect of Helheim
Glacier. The dashed black line represents a least squares fit of a second order poly-
nomial to the 21 data points around the location of maximum velocity (which is
indicated by the vertical solid black line). A more detailed view of this parabola is
available in panel (b) of figure 5.1.
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Chapter 5

Using Least-Squares Fits to
Evaluate the Exponent in Glen’s
Flow Law

After incorporating Glen’s flow law in the differential equation intro-
duced in Chapter 2 to model ice flow, the equation is solved, yielding an
algebraic equation for the velocity of the ice involving three parameters.
Choosing these parameters judiciously one can approximately match the
measured velocities along the transect of Helheim Glacier but the quality
of the match obtainable is influenced by the assumed value of the expo-
nent in Glen’s flow law. The value of the exponent in Glen’s flow law
which allows the best quality match is identified and presumed to be the
“actual” value of the exponent in Glen’s flow law for the ice in Helheim
Glacier. The value identified is 1.6, in agreement with the value for the
exponent in Glen’s flow law found in Chapter 2.

5.1 Introduction

At the close of Chapter 4 if was noted that if µ is constant then the solutions to the

equation

d

dx

[
µ

dv

dx

]
= −ρgα (5.1)

are second order polynomials. The best (in a least-squares sense) second order poly-

nomial fit to the central part of the velocity curve for the transect of Helheim Glacier

was shown in figure 4.7. If the representation of viscosity (µ) using Glen’s flow law
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(cf. equations 2.8, and 2.10)

µ =
1

2
A−

1
n ε̇−

n−1
n =

1

2
A−

1
n

(
1

2

∣∣∣∣dvdx

∣∣∣∣)−n−1
n

= γ̃

∣∣∣∣dvdx

∣∣∣∣−n−1
n

(5.2)

is invoked, this parabola represents velocities for n = 1. (In equation 5.2, γ̃ is a

constant, related to γ in equation 2.11 by γ̃ = µmγ. We assume in this chapter, as

we did earlier, that the ice is isothermal and the surface slope does not vary along

the transect.)

In this chapter, least squares fits of the central part of the velocity curve for the

transect of Helheim Glacier are calculated using values of the exponent (n) in Glen’s

flow law other than one. The value of n that allows the best least squares fit is deemed

the best value for the exponent in Glen’s flow law.

5.2 Solution of the Differential Equation

Obtaining the least squares fits described in the preceding section requires a closed

form solution to the differential equation that results from substituting equation 5.2

into equation 5.1

d

dx

[
γ̃

∣∣∣∣dvdx

∣∣∣∣−n−1
n dv

dx

]
= −ρgα (5.3)

As a first step, both sides of equation 5.3 are divided by the constant γ̃ and the

positive constant

C0 =
1

n+ 1

(
ρgα

γ̃

)n
> 0 (5.4)

is defined such that

C
1/n
0 (n+ 1)1/n =

[
1

n+ 1

(
ρgα

γ̃

)n]1/n

(n+ 1)1/n =
ρgα

γ̃
(5.5)

so equation 5.3 can be written as

d

dx

[∣∣∣∣dvdx

∣∣∣∣−n−1
n dv

dx

]
= −C1/n

0 (n+ 1)1/n (5.6)
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The reason for defining C0 with the rather complicated expression given by equa-

tion 5.4 is that the solution to equation 5.6 can be written in a relatively simple

form

v(x) = C2 − C0 |C1 − x|n+1 (5.7)

where C1 and C2 are arbitrary constants. Verifying that the v defined by 5.7 sat-

isfies equation 5.6 is complicated by the appearance of absolute values in both the

differential equation and its solution. However, by independently considering the two

possible cases, x ≤ C1 and x > C1, it is shown below that equation 5.7 is indeed the

solution to equation 5.6. First, consider the case x ≤ C1.

If x ≤ C1 then C1 − x ≥ 0 so |C1 − x| = C1 − x and (substituting into equation

5.7)

v(x) = C2 − C0 (C1 − x)n+1 (5.8)

which can be differentiated giving

dv

dx
= C0(n+ 1) (C1 − x)n ≥ 0 (5.9)

So
∣∣dv

dx

∣∣ = dv
dx

and

d

dx

[∣∣∣∣dvdx

∣∣∣∣−n−1
n dv

dx

]
=

d

dx

[(
dv

dx

)−n−1
n dv

dx

]
=

d

dx

(
dv

dx

) 1
n

=
d

dx
[C0(n+ 1) (C1 − x)n]

1
n = −C1/n

0 (n+ 1)1/n (5.10)

verifying that equation 5.6 is satisfied by the v given in equation 5.7 when x ≤ C1.

If x > C1 then C1 − x < 0 so |C1 − x| = x − C1 and (substituting into equation

5.7)

v(x) = C2 − C0 (x− C1)n+1 (5.11)

which can be differentiated giving

dv

dx
= −C0(n+ 1) (x− C1)n < 0 (5.12)

So ∣∣∣∣dvdx

∣∣∣∣ = C0(n+ 1) (x− C1)n (5.13)

41



and

d

dx

[∣∣∣∣dvdx

∣∣∣∣−n−1
n dv

dx

]
=

d

dx

{
[C0(n+ 1) (x− C1)n]

−n−1
n [−C0(n+ 1) (x− C1)n]

}
=

d

dx

{
−C1/n

0 (n+ 1)1/n(x− C1)
}

= −C1/n
0 (n+ 1)1/n (5.14)

verifying that equation 5.6 is satisfied by the v given in equation 5.7 when x > C1.

Note that if n = 1, the absolute value in equation 5.7 is not necessary (since

|x|2 = x2 for all x) and the solution v(x) is a second order polynomial. This agrees

with the earlier claim that the velocity curve (v versus x) for a Newtonian fluid

(n = 1) is a parabola (a result more easily obtained by simply integrating equation

5.1 twice, assuming µ is a constant.)

The parameters C1 and C2 in equation 5.7 have easily understood meanings; C2 is

the maximum value obtained by v(x) and C1 is the value of x at which the maximum

is attained.

5.3 Least Squares Fits

Least squares fits are used when one has data believed to be modeled by a mathemat-

ical function that contains parameters whose values are not known a priori. The goal

is to use the data to find the values of the parameters such that the mathematical

function matches the data as well as possible. For least squares fits the measure of

how well the function matches the data is the sum of the squares of the residuals

(described below and defined by equation 5.15). Introducing some mathematical no-

tation, the situation is that there exists some data, consisting of a set of (x, y) pairs,

{(x1, y1), (x2, y2), . . . , (xN , yN)} and a function f(x) which contains some parameters

Ck for k = 0, 1, 2, . . . ,m. If the parameters are assigned values, the function f(x)

can be evaluated at each xk. The difference between a calculated value f(xk) and the

associated yk is called a “residual”. In a least squares fit one finds the values of the

parameters which minimize the sum of the squares of the residuals

S =
N∑
k=1

(f(xk)− yk)2 (5.15)

For the ice along the transect of Helheim Glacier each data pair is a location along

the transect together with the velocity at that location. If the ice is assumed to be
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a Newtonian fluid the appropriate function to use as a model of the flow is a second

order polynomial

f(x) = C2x
2 + C1x+ C0 (5.16)

and goal is to find the values of C0, C1, and C2 that minimize S defined by equation

5.15. The procedure used to minimize S is based on the fact that at the minimum

the partial derivatives of S with respect to each of the parameters Ck is zero. Thus

the solution to the minimization problem is the solution to the system of equations

∂S

∂C0

= 0 (5.17)

∂S

∂C1

= 0 (5.18)

∂S

∂C2

= 0 (5.19)

When f(x) is a polynomial (as in equation 5.16) these equations are linear algebraic

equations that can be solved directly. This was done to generate the fit in figure 4.7.

A non-Newtonian model of the ice incorporating Glen’s flow law is given by the

solution to the differential equation in section 5.2 (equation 5.7). This model can be

used in place of the polynomial above

f(x) = C2 − C0 |C1 − x|n+1 (5.20)

Once again, the values of C0, C1, and C2 that minimize the sum of the squares of

the residuals (S in equation 5.15) can be found by solving the system of equations

5.17, 5.18, and 5.19. But with f(x) given by equation 5.20 this requires finding

an approximate solution to a set of nonlinear algebraic equations using an iterative

technique. In the Python script used to generate the results in the following section,

the fsolve function from the scipy.optimize package was used to find the approximate

solution. Alternately, the BFGS algorithm used in chapter 4 can be used to solve the

problem of minimizing S.

5.4 Results

Least squares fits of equation 5.7 (i.e. equation 5.20) to the 21 data points around

the location of maximum velocity on the transect of Helheim Glacier indicated by the
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dashed red line in figure 2.1 were performed for the velocity data from 2 September

2010 to 13 September 2010 (plotted in figure 2.2) using values of n from 0.5 to 3.5.

The resulting velocity curves for selected values of n are shown in figure 5.1. The fit

in panel (b) of figure 5.1, representing a Newtonian fluid, is the same parabola shown

in figure 4.7. A trend can be seen in figure 5.1: For small values of n (such as n = 0.5

in panel (a)) the fit is too “pointy” at its maximum to match the data and as n is

increased the fit becomes “flatter” at its maximum until, for large values of n (such

as n = 3 in panel (d)) the fit is too flat to match the data.

The minimal sum of the squares of the residuals (equation 5.15 evaluated using

the parameter values of the least squares fit) provides a measure of the quality of a

least squares fit, with smaller values indicating better fits. In this thesis a measure

derived from the minimal sum of the squares of the residuals, an average size of the

residuals, is reported

E =

√
S

N
=

√∑N
k=1(f(xk)− yk)2

N
(5.21)

(The definition of E resembles that of the standard deviation which is an average of

the size of the deviations from the mean.) The notation E is meant to suggest an

average error in the curve fitted to the data. A fit with a large value of E has more

error than a fit with a small value of E; small values of E are desirable. Values of E

are included for each least squares fit in figure 5.1. The measure of error, E, was also

calculated for other fits with prescribed values of the exponent (n) in Glen’s flow law

over the entire range n = 0.5 to n = 3.5 and are plotted versus n in figure 5.2. The

plot in figure 5.2 reflects the trend described earlier; small values of n, near n = 0.5

result in high values of E (because the fit is too “pointy”) and large values of n, near

n = 3.5, also result in high values of E (because the fit is too “flat”). In between,

a minimal value of E is achieved at n = 1.6. Because it is the best fit, the velocity

curve for this value was included in figure 5.1. Note that this value of the exponent

in Glen’s flow law, n = 1.6, agrees with that found in Chapter 2.

The data used so far in this chapter (and plotted as red curves in figure 5.1) repre-

sents the period from 2 September 2010 to 13 September 2010. As mentioned in Chap-

ter 2, the United States’ National Aeronautics and Space Administration (NASA)

Making Earth System Data Records for Use in Research Environments (MEaSUREs)

program also provides similar velocity data for Helhiem Glacier for other time periods
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Figure 5.1: Least squares fits of v(x) = C2 − C0 |C1 − x|n+1 (equation 5.7) to the
21 data points around the location of maximum velocity on the transect of Helheim
Glacier for Glen’s flow exponents n = 0.5, n = 1, n = 1.6, and n = 3. In each part the
solid red curve is the velocity along the transect of Helheim Glacier and the dashed
black curve is the least squares fit to the data. E is a measure of the error in the fit
(see equation 5.21).
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Figure 5.2: A measure of the error in the least squares fits, E (defined in equation
5.21), is plotted versus the prescribed exponent in Glen’s flow law n for least squares
fits like those shown in figure 5.1.
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[11]. The analysis described in this chapter was applied, using the same transect, for

each of these other time periods. Results of the analysis, specifically the minimal

value of E and the value of n at which it was obtained, for all of the time periods for

which data was available are given in table 5.1.

Table 5.1: The minimal value of E (a measure of the error in the fit) and the value
of n (the exponent in Glen’s flow law) at which it was obtained are reported for
least squares fits of v(x) = C2 − C0 |C1 − x|n+1 (equation 5.7) to data for all time
periods for which NASA MEaSUREs data for Helheim Glacier was available. Bold
font identifies the data set presented in detail in this thesis.

Data set
Start date - End date n E
27 Jan 09 - 07 Feb 09 1.70 15.6
25 Apr 09 - 06 May 09 1.61 15.2
19 Jun 09 - 30 Jun 09 1.23 13.6
24 Aug 09 - 04 Sep 09 1.69 19.2
20 Nov 09 - 01 Dec 09 1.59 8.1
23 Apr 10 - 04 May 10 1.54 13.7
09 Jul 10 - 20 Jul 10 1.62 17.1
02 Sep 10 - 13 Sep 10 1.63 12.1
18 Nov 10 - 29 Nov 10 1.57 14.9
08 Mar 11 - 19 Mar 11 1.51 14.7
04 Jun 11 - 15 Jun 11 1.10 21.7
07 Jul 11 - 18 Jul 11 1.48 10.5
09 Aug 11 - 20 Aug 11 1.32 9.2
16 Nov 11 - 27 Nov 11 1.84 12.8
Mean 1.53 14.2
Standard deviation 0.19 3.5
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Chapter 6

Conclusion

A recapitulation of the methods used and conclusions reached in the
thesis is given followed by a brief discussion of applying the methods to
glaciers other than Helheim.

6.1 Summary

Measured surface velocities were used to investigate the variation of viscosity along a

transect of Helheim Glacier, located on the south-east coast of Greenland. The anal-

ysis is based on an ordinary differential equation derived from the Stokes equations

using the assumption that flow varies only in the transverse direction; variations along

the flow and perpendicular to the surface of the ice are assumed to be negligible. This

assumption is believed to be realistic near the center of the transect of the glacier but

may not be appropriate near its edges. Thus the analysis and results focus on the

fast moving portion of the glacier between the shear margins.

Using the mathematical model, the value of the exponent in Glen’s flow law (a

widely used constitutive equation for ice rheology) can be estimated from the mea-

sured velocities. Three different numerical approaches were used to perform this

estimation:

1. Finite differences were used in a direct approach.

2. A finite element model was used in an approach involving an inverse problem.

3. Nonlinear least squares fits of the data were used.

Temperature variations were not considered.
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Most numerical simulations of ice sheets use a value of three for the exponent in

Glen’s flow law. The results of the analysis in this thesis suggest that the behavior

of ice in Helheim Glacier would be more accurately modeled using a smaller value. If

true, this conclusion probably also applies elsewhere.

The best estimate of the exponent in Glen’s flow law using the direct approach

approximating derivatives with finite differences is n = 1.6. This value was confirmed

using the nonlinear least squares fits of the data. Goldsby and Kohlstedt [14] describe

a “superplastic” flow regime of ice for which they find an exponent of 1.8 (from

laboratory experiments) and state that they believe that this regime is appropriate

for glaciers and ice sheets. Our value, 1.6, is close to Goldsby and Kohlstedt’s value,

1.8. The approach using a finite element model to solve an inverse problem indicates

that the exponent in Glen’s flow law for the ice near the center of the transect is

1.0; that is, the fast moving ice behaves as a Newtonian fluid. All three approaches

indicate that the amount of “shear thinning” is less than that predicted by the widely

used value n = 3.

6.2 Other Glaciers

The analysis and results in the thesis were presented for Helheim Glacier only. The

MEaSUREs data set available for download from the National Snow and Ice Data

Center also contains velocity data for most of the other outlet glaciers of the Greenland

Ice Sheet. The data is organized into 45 study sites (one of which features Helheim

Glacier) for dates from January 2009 to November 2011. A cursory examination of

all of the study sites was undertaken, applying the first and third approaches listed

above (a direct approach using finite differences, and nonlinear least squares fits of

the data) to various transects of represented glaciers.

The mathematical model relies on the assumption that the ice flows in a straight

line with no variation in velocity in the direction of flow. For many of the glaciers,

finding a transect where these assumptions were even approximately met was impos-

sible. The analysis also requires that there is no variation in velocity in the direction

perpendicular to the surface of the ice. This assumption will not hold if basal traction

is appreciable and is probably not appropriate for slower moving glaciers.

If the assumptions in the mathematical model incorporating Glen’s flow law (see

Chapter 5) are met, the velocity along the transect will be given by equation 5.7
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(repeated below)

v(x) = C2 − C0 |C1 − x|n+1 (6.1)

This function has a single maximum (at x = C1). For many transects of Greenland

outlet glaciers the velocity has two or more local maxima indicating that the assump-

tions are not met. Other transects feature very “pointed” velocity curves such that

the best least squares fit of equation 6.1 to the fastest part of the velocity curve is

that with n ≈ 0.

In the cursory examination of all of the study sites no glaciers were identified for

which the analysis undertaken produced as consistent results as Helheim Glacier. By

“consistent” I mean not only that the two approaches produced similar estimates

of the exponent in Glen’s flow law that were approximately equal for different time

periods, but also that nearby transects also provided similar results.

The values for the exponent in Glen’s flow law, n, generated by analysing transects

of various glaciers ranged from zero to greater than three. The value n = 1.6 which

was produced for Helheim Glacier was reproduced for some other glaciers but certainly

not for all. The fact that the value of n produced by the analysis is dramatically

different for different glaciers and even different for different transects of the same

glacier is interpreted as meaning that the assumptions of the model are not satisfied

by most glaciers.
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Appendix A

Adjoint Methods

An introduction to Adjoint Methods, which are used to find the gradi-
ent of an objective function as required by optimization algorithms. Ex-
amples are included, culminating in a data assimilation problem from
glaciology.

A.1 Introduction1

Suppose you have a problem involving a collection of parameters p (bold font indicates

a vector) whose solution is u = F(p). You want to find the parameters p that

minimize (or maximize) a given (scalar) function g(u). Since u is a function of the

parameters p, we can think of g as a function of p. (Formally we could introduce a

new function g̃(p) = g(F(p)) but we believe the presentation is clearer, albeit less

rigorous, without it.) Most efficient algorithms used to optimize g require knowledge

of ∂g
∂pk

for each of the parameters pk (components of p.) Adjoint methods can be used

to find these derivatives. We write this collection of partial derivatives as a vector
∂g
∂p

=
(
∂g
∂p1
, ∂g
∂p2
, · · · , ∂g

∂pm

)
. In the matrix multiplications in this introductory section,

this and other vectors are represented by column matrices.

The Jacobian matrix of the function F that maps the parameters p to the solution

1Most of the ideas in this introductory section are taken from section 3 of reference [15].
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u is defined as

∂u

∂p
=


∂u1
∂p1

∂u1
∂p2

· · · ∂u1
∂pm

∂u2
∂p1

∂u2
∂p2

· · · ∂u2
∂pm

...
. . .

...
∂un
∂p1

∂un
∂p2

· · · ∂un
∂pm


This Jacobian matrix can be used to approximate changes in the solution u resulting

from small changes in the parameters p. For an individual component of the solution

u,

∆ui =
∂ui
∂p1

∆p1 +
∂ui
∂p2

∆p2 + · · ·+ ∂ui
∂pm

∆pm

The approximate changes for all components can be written compactly (using matrix

multiplication) as

∆u =
∂u

∂p
∆p

To find the desired derivatives ∂g
∂p

, consider

g(u) = g(u1, u2, . . . , un)

= g(u1(p1, p2, . . . pm), u2(p1, p2, . . . pm), . . . , un(p1, p2, . . . pm))

Using the chain rule

∂g

∂pk
=

∂g

∂u1

∂u1

∂pk
+

∂g

∂u2

∂u2

∂pk
+ · · ·+ ∂g

∂un

∂un
∂pk

Note that the derivatives of the components of u with respect to pk are the elements

of the kth column of the Jacobian matrix ∂u
∂p

. We can write the desired derivatives

compactly using the transpose (also called the adjoint2) of the Jacobian matrix

∂g

∂p
=

(
∂u

∂p

)T
∂g

∂u

Use of the adjoint of a Jacobian matrix seems to be where Adjoint Methods get

their name.

2The adjoint of a matrix Z whose elements are complex numbers is the transpose of the matrix
whose elements are the complex conjugates of the elements of Z. For real valued matrices, such as
the Jacobian matrices in this paper, the transpose and the adjoint are the same.
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The method can be illustrated by a simple example where the function F mapping

the parameters p to the solution u is given explicitly.

Example 1:

Suppose u =

[
p2

1 + p2

p1p2

]
and g(u) = u1 + u2

2. We want to find
∂g

∂p
=

[
∂g
∂p1
∂g
∂p2

]
.

To calculate ∂g
∂p

using the adjoint method we begin by finding the Jacobian matrix

∂u

∂p
=

[
2p1 1
p2 p1

]
and

∂g

∂u
=

[
1

2u2

]
=

[
1

2p1p2

]
Then

∂g

∂p
=

(
∂u

∂p

)T
∂g

∂u
=

[
2p1 p2

1 p1

] [
1

2p1p2

]
=

[
2p1 + 2p1p

2
2

1 + 2p2
1p2

]
To check this solution we find ∂g

∂p
directly using

g(u) = u1 + u2
2 = (p2

1 + p2) + (p1p2)2

from which we find

∂g

∂p1

= 2p1 + 2p1p
2
2

and

∂g

∂p2

= 1 + 2p2
1p2

A.2 A Typical Situation3

Often the problem to be solved (whose solution is u = F(p)) is expressed as a system

of n equations, f(u,p) = 0. For this problem we still have a function g(u) for which

we want to find the optimal parameters p and thus need ∂g
∂p

=
[
∂g
∂p1

∂g
∂p2
· · · ∂g

∂pm

]
. To

3Most of the ideas in section A.2 are taken from section 8.7 of reference [16].
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be consistent with the matrix equations below, we have now written this collection

of derivatives as a row matrix. We can obtain the elements of this row matrix using

the chain rule (as in section A.1)

∂g

∂pk
=

∂g

∂u1

∂u1

∂pk
+

∂g

∂u2

∂u2

∂pk
+ · · ·+ ∂g

∂un

∂un
∂pk

and the entire collection of derivatives can be written as

∂g

∂p
=
∂g

∂u

∂u

∂p

The factors ∂g
∂ui

are obtained by differentiating g(u) but the factors ∂ui
∂pk

must be

determined from f(u,p) = 0. If we take the total derivative of both sides of the

equation fi(u,p) = 0 with respect to pk we obtain

dfi
dpk

=
∂fi
∂u1

∂u1

∂pk
+
∂fi
∂u2

∂u2

∂pk
+ · · ·+ ∂fi

∂un

∂un
∂pk

+
∂fi
∂pk

= 0

Doing this for every combination of the n elements of u and the m elements of p

results in nm equations that can be represented compactly as

∂f

∂u

∂u

∂p
+
∂f

∂p
= 0

That is,
∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂un

∂f2
∂u1

. . .
...

. . .
...

∂fn
∂u1

∂fn
∂u2

· · · ∂fn
∂un



∂u1
∂p1

∂u1
∂p2

· · · ∂u1
∂pm

∂u2
∂p1

. . .
...

. . .
...

∂un
∂p1

∂un
∂p2

· · · ∂un
∂pm

+


∂f1
∂p1

∂f1
∂p2

· · · ∂f1
∂pm

∂f2
∂p1

. . .
...

. . .
...

∂fn
∂p1

∂fn
∂p2

· · · ∂fn
∂pm



=


0 0 · · · 0

0
. . .

...
. . .

...
0 0 · · · 0


This equation can be solved for the ∂ui

∂pk
factors

∂u

∂p
= −

(
∂f

∂u

)−1
∂f

∂p
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needed to obtain our goal

∂g

∂p
=
∂g

∂u

∂u

∂p
=
∂g

∂u

(
−
(
∂f

∂u

)−1
∂f

∂p

)

Here ∂g
∂u

is a 1× n (row) matrix, ∂f
∂u

is n× n, and ∂f
∂p

is n×m. To avoid multiplying

the two large matrices we perform the multiplication in the order

∂g

∂p
= −

(
∂g

∂u

(
∂f

∂u

)−1
)
∂f

∂p

with the product λT = ∂g
∂u

(
∂f
∂u

)−1
found by solving the adjoint problem(
∂f

∂u

)T
λ =

(
∂g

∂u

)T
Note that ∂f

∂u
is a Jacobian matrix; once again obtaining the desired partial deriva-

tives ( ∂g
∂p

) uses the transpose (that is, adjoint) of a Jacobian matrix. Also note that

this Jacobian matrix is the one used in Newton’s method to (approximately) solve

f(u,p) = 0 (with fixed p) iteratively.

Example 2:

Suppose f1(u1, u2, p1, p2) = u1 + u2 + p1

f2(u1, u2, p1, p2) = u3
1 − u2 + p2

g(u1, u2) = u2
1 + u2

2

The system of equations f1(u1, u2, p1, p2) = 0 and f2(u1, u2, p1, p2) = 0 has a solution,

(u1, u2), that depends on the parameters p1 and p2. Changing the values of the

parameters p1 and p2 causes the values of the variables u1 and u2 to change and thus

the value of g(u1, u2) also changes. We want to find

∂g

∂p
=

[
∂g

∂p1

∂g

∂p2

]
To calculate ∂g

∂p
using the adjoint method we begin by finding the Jacobian matrix

∂f

∂u
=

[
1 1

3u2
1 −1

]
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along with

∂f

∂p
=

[
1 0
0 1

]
and

∂g

∂u
=
[
2u1 2u2

]
Next we write the adjoint problem

(
∂f
∂u

)T
λ =

(
∂g
∂u

)T
[
1 3u2

1

1 −1

] [
λ1

λ2

]
=

[
2u1

2u2

]
and solve it to find [

λ1

λ2

]
=

[
2u2 + 2u1−2u2

3u21+1
2u1−2u2
3u21+1

]
The desired derivatives are now found from

∂g

∂p
= −

(
∂g

∂u

(
∂f

∂u

)−1
)
∂f

∂p
= −λT ∂f

∂p

= −
[
2u2 + 2u1−2u2

3u21+1
2u1−2u2
3u21+1

] [1 0
0 1

]
=
[
−2u2 − 2u1−2u2

3u21+1
−2u1−2u2

3u21+1

]
To appreciate the meaning of these derivatives we consider a couple of specific

value pairs for the parameters p1 and p2. First, if p1 = 0 and p2 = 0, the equation

f(u,p) = 0 has solution u = 0 so g(u) = 0. Since

g(u1, u2) = u2
1 + u2

2 ≥ 0 (for any u1 and u2)

g(u) = 0 must be a global minimum so we expect ∂g
∂p

= 0. Indeed, substituting u1 = 0

and u2 = 0 into our expression

∂g

∂p
=
[
−2u2 − 2u1−2u2

3u21+1
−2u1−2u2

3u21+1

]
confirms this.

To gain further appreciation of ∂g
∂p

we consider a graphical representation of our

example problem. If we plot solutions of

f1(u1, u2, p1, p2) = u1 + u2 + p1 = 0
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in the (u1, u2) plane we obtain a line with slope −1 and vertical intercept −p1. If we

plot solutions of

f2(u1, u2, p1, p2) = u3
1 − u2 + p2 = 0

in the (u1, u2) plane we obtain a cubic curve that crosses the vertical axis at p2 with

slope 0. The solution to the system of equations f(u,p) = 0 is represented by the

point where the line and the cubic curve cross. The function g gives the square of

the distance from the origin so circles centered on the origin represent contours of

constant g. Curves for p1 = −2, p2 = 0 and g = 2 are shown in figure A.1. As can be

seen from figure A.1, for this value of p, the solution of f(u,p) = 0 is u = (1, 1). If

we increase p1, the line with slope 1 will move down in the figure so the solution point

will follow the cubic curve, decreasing its distance from the origin so g decreases. On

the other hand, if we increase p2, the cubic curve will move up so the solution point

will follow the line with slope -1 which is tangent to the (dashed) circle representing a

contour of constant g. Thus we expect ∂g
∂p1

< 0 and ∂g
∂p2

= 0. Substituting the solution

u1 = 1 and u2 = 1 into our expression

∂g

∂p
=
[
−2u2 − 2u1−2u2

3u21+1
−2u1−2u2

3u21+1

]
gives ∂g

∂p
=
[
−2 0

]
confirming this. The reader is encouraged to use the graphical

representation to find other parameter pairs where one of the components of ∂g
∂p

is

zero and use the expression for ∂g
∂p

to confirm their findings.
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u1

u2

Figure A.1: Curves for the problem presented in Example 2 with p1 = −2, p2 = 0,
and g(u) = 2.
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A.3 A Numerical Example

In this section we use finite differences to approximate the boundary value problem

c2u
′′ + c1u

′ + c0u = p(x) for 0 < x < 1, and u(0) = a0, u(1) = a1

where

p(x) = p0 + p1x+ p2x
2 (a second order polynomial).

After computing an approximate solution for particular values of the parameters c2,

c1, c0, p0, p1, p2, a0, and a1, we use the adjoint method to calculate the rate of

change of a function of the solution, g(u), as we vary these parameters. Two different

functions are considered: (1) g is the value of u at the midpoint of the domain,

g(u) = u(1
2
), and (2) g is the average value of u, g(u) =

∫ 1

0
u(x)dx.

To apply the finite difference method to our differential equation we divide the

domain [0, 1] into n subintervals each with length ∆x = 1
n
. The endpoints of these

subintervals are x0, x1, . . . , xn where xk = k∆x. We denote approximate values of

u at each of these points as uk. The first derivative u′ at xk is approximated by

uk
′ =

uk+1 − uk−1

2∆x

The second derivative u′′ at xk is approximated by

uk
′′ =

uk−1 − 2uk + uk+1

∆x2

Substituting these approximations into the differential equation gives

c2

(
uk−1 − 2uk + uk+1

∆x2

)
+ c1

(
uk+1 − uk−1

2∆x

)
+ c0uk = p (xk)

which can be rearranged to( c2

∆x2
− c1

2∆x

)
uk−1 +

(
− 2c2

∆x2
+ c0

)
uk +

( c2

∆x2
+

c1

2∆x

)
uk+1 = p (xk)

a linear algebraic equation that can be written for each of the interior points k =

1, 2, . . . , n− 1. At the endpoints of the domain we assert u0 = a0 and un = a1. This

collection of equations can be written compactly as Au = b where A is a tridiagonal
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matrix, and u and b are column matrices. The matrix equation can be solved (using

Gaussian elimination and back substitution, for example) for u giving an approxima-

tion to the solution of the boundary value problem.

Following the procedure in the preceding paragraph for the (somewhat arbitrary)

parameter values c2 = 1, c1 = −2, c0 = 1, p0 = 1, p1 = 1, p2 = −5, a0 = 0, and

a1 = 0 generates the approximation shown in figure A.2.

We can use the adjoint method to find the rate of change of a function of u with

respect to the parameters c2, c1, c0, p0, p1, p2, a0, and a1. We consider first the

simple function g(u) = un/2 ≈ u
(

1
2

)
.

To utilize the procedure described in section A.2, the system of equations repre-

sented by the matrix equation Au = b is written in the form f(u,p) = 0 by subtract-

ing the right hand sides from both sides each equation. Here p = [c2 c1 c0 p0 p1 p2 a0 a1].

To find ∂g
∂p

we need three matrices:

∂f

∂u
= A =



1 0 0 0 0 · · · 0(
c2

∆x2
− c1

2∆x

) (
− 2c2

∆x2
+ c0

) (
c2

∆x2
+ c1

2∆x

)
0 0 · · · 0

0
(
c2

∆x2
− c1

2∆x

) (
− 2c2

∆x2
+ c0

) (
c2

∆x2
+ c1

2∆x

)
0 · · · 0

...
. . .

0 0 0 0 · · · 0 1



∂f

∂p
=



0 0 0 0 0 0 −1 0

u0−2u1+u2
∆x2

u2−u0
2∆x

u1 −1 −x1 −x2
1 0 0

u1−2u2+u3
∆x2

u3−u1
2∆x

u2 −1 −x2 −x2
2 0 0

...
un−2−2un−1+un

∆x2
un−un−2

2∆x
un−1 −1 −xn−1 −x2

n−1 0 0

0 0 0 0 0 0 0 −1


∂g

∂u
= [0 0 0 · · · 0 0 1 0 0 · · · 0 0 0]

After solving the adjoint problem(
∂f

∂u

)T
λ =

(
∂g

∂u

)T
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x

u

Figure A.2: Solution to the boundary value problem u′′ − 2u′ + u = 1 + x− 5x2 for
0 < x < 1, and u(0) = 0, u(1) = 0. The solid curve is the exact solution, the black
circles are an approximate solution found using finite differences with n = 20.
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for λ we can calculate
∂g

∂p
= −λT ∂f

∂p

The results for the example problem whose solution is shown in figure A.2 are given

in Table A.1.

The values of the partial derivatives found using the adjoint method were verified

by perturbing the parameters one at a time. For each parameter (c2, c1, c0, p0, p1,

p2, a0, and a1) an additional finite difference approximation was calculated with that

parameter increased by 0.01 giving new values of u. Calling these new values ũ we

can approximate the partial derivative of g with respect to the perturbed parameter

by g(ũ)−g(u)
0.01

. As seen in Table A.1, these approximations are very close to the values

found using the adjoint method.

To calculate the partial derivatives of g(u) =
∫ 1

0
u(x)dx we use (the composite)

Simpson’s rule to approximate this integral,

g(u) =
∆x

3
[u0 + 4u1 + 2u2 + 4u3 + 2u4 + · · ·+ 2un−2 + 4un−1 + un]

from which we have
∂g

∂u
=

∆x

3
[1 4 2 4 2 · · · 2 4 1]

Again, ∂g
∂p

= −λT ∂f
∂p

where λ is the solution of the adjoint problem
(
∂f
∂u

)T
λ =(

∂g
∂u

)T
. Results are included in Table A.1.
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Table A.1: Partial derivatives for g(u) = u
(

1
2

)
and g(u) =

∫ 1

0
u(x)dx

using a finite difference approximation to the boundary value problem
c2u
′′ + c1u

′ + c0u = p0 + p1x + p2x
2 for 0 < x < 1, and u(0) = a0, u(1) = a1

with c2 = 1, c1 = −2, c0 = 1, p0 = 1, p1 = 1, p2 = −5, a0 = 0, and a1 = 0.

g(u) = u
(

1
2

)
g(u) =

∫ 1

0
u(x)dx

Partial Value from Numerical Value from Numerical
derivative adjoint method verification adjoint method verification

∂g
∂c2

0.04372056 0.04315389 0.02133546 0.02104484
∂g
∂c1

0.00762168 0.00763637 0.00424091 0.00424846
∂g
∂c0

-0.00262876 -0.00263144 -0.00157897 -0.00158068
∂g
∂p0

-0.12775518 -0.12775518 -0.08625040 -0.08625040
∂g
∂p1

-0.05862544 -0.05862544 -0.04027710 -0.04027710
∂g
∂p2

-0.03210644 -0.03210644 -0.02305057 -0.02305057
∂g
∂a0

0.82464012 0.82464012 0.71847410 0.71847410
∂g
∂a1

0.30311507 0.30311507 0.36777630 0.36777630
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A.4 A Data Assimilation Example From

Glaciology

Mathematical models of glaciers typically include parameters which are difficult to

estimate directly from field measurements. For example, some type of frictional co-

efficient is required at the base of the glacier where the ice rests upon the earth. The

basal traction (described mathematically using this frictional coefficient) affects the

velocity of the ice throughout the glacier. Thus it is plausible to use the more easily

measured velocity at the upper surface of the glacier to determine the frictional coef-

ficient. In this concluding section we present an example problem using a simplified

geometry to demonstrate the use of the adjoint method to accomplish this.

The example problem is related to a benchmark problem called “Experiment D”

from the Ice Sheet Model Intercomparison Project for Higher Order Models (ISMIP-

HOM) [17]. In ISMIP-HOM Experiment D, a sheet of ice with uniform thickness

1000 meters is resting on a plane inclined at an angle of 0.1◦. A domain of length

20 km with periodic boundary conditions at each end is considered. A mathematical

model is used to predict the velocity of the ice, which varies not only throughout

the thickness of the ice but also along the length of the domain due to variations

in basal traction. There is no variation in the horizontal direction transverse to the

inclination.

In ISMIP-HOM Experiment D, the basal traction is prescribed and ice velocities

are calculated. We call this a “forward problem.” Here we are interested in a related

“inverse problem”: given the surface velocity, find the basal traction.

The model used is a finite element approximation of Stokes’ equation4 along with

conservation of mass. Basal traction is modeled using the boundary condition

µ
∂u

∂y
= β 2u

where µ is the viscosity (which varies according to Glen’s flow law5), u is the velocity

component along the incline, and β 2 is a frictional coefficient (y is the coordinate

4Stokes’ equation represents Newton’s second law,
∑

F = ma, for a viscous fluid when the inertial
term, ma, is negligible.

5Glen’s flow law is a nonlinear constitutive equation used to model the relationship between stress
and strain rates in ice. This relationship is temperature dependent but the model used here assumes
that the ice is isothermal.
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direction perpendicular to the inclined plane supporting the ice sheet.) In ISMIP-

HOM experiment D

β 2 = 1000 + 1000 sin

(
2πx

L

)
where L is the length of the domain (20 km for the problem presented here.) This

frictional coefficient is plotted as a heavy black line in the lower left portion of figure

A.3. The upper left portion of figure A.3 shows the velocity component u at the

(top) surface of the ice for a solution of the “forward” problem (using β 2 = 1000 +

1000 sin
(

2πx
L

)
) plotted as a heavy black line.

Now, for the inverse problem. Suppose we are given the surface velocity component

u plotted as a heavy black line in the upper left portion of figure A.3. We hope to

use this information to discover the basal friction coefficient β 2 (plotted as a heavy

black line in the lower left portion of figure A.3.) To do so we pose the problem as

an optimization problem: Find β 2 such that the surface velocity component u found

by solving the “forward” problem minimizes the error given by:

g(u) =

∫ L

0

(u− ud)2 dx

where ud is the desired surface velocity. To discretize the function β 2 a trigonometric

expansion is used,

β 2 = p0 +

n/2∑
k=1

p2k−1 sin

(
2πkx

L

)
+ p2k cos

(
2πkx

L

)
A variety of algorithms for solving optimization problems exist [18]. Here we choose

the Broyden-Fletcher-Goldfarb-Shano (BFGS) algorithm which uses partial deriva-

tives of the objective function (g(u)) with respect to the parameters (pk’s) that can be

varied. These partial derivatives ( ∂g
∂pk

) are exactly what the adjoint method described

in the previous sections can provide. Starting with a “guess” for β 2, an approximate

solution to the inverse problem is obtained by repeating the following steps:

1. Solve the “forward” problem with the current estimate of β 2.

2. Evaluate the error g(u).

3. Evaluate the partial derivatives ∂g
∂pk

using the adjoint method.
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u

β 2

x

g(u)

pk

iterate

Figure A.3: Solution of an inverse problem. The component of the ice velocity in the
direction parallel to the bed (u, in meters per annum) at the (top) surface of the ice is
shown in the upper left. This velocity evolves towards the desired solution (the heavy
black curve) as the basal traction (β 2, plotted in the lower left) is changed. The upper
right shows the error (g(u)) decreasing as the coefficients (pk) in the trigonometric
expansion of β 2 (shown in the lower right) change.
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4. Calculate an improved estimate of β 2 (that is, the pk’s) according to the BFGS

algorithm.

The results of applying this process are shown in figure A.3. The initial guess was

β 2 = 1000; that is, p0 = 1000 and pk = 0 for 1 ≤ k ≤ n where, here, n = 30. The gray

curves in the left portion of figure A.3 show approximations of u and β 2 as the process

progressed. The original guess of β 2 = 1000 (represented by a horizontal line in the

lower left portion of figure A.3) resulted in the bottommost horizontal line in the

upper left portion of figure A.3. As the estimate of β 2 improves the curves approach

the desired values plotted as heavy black curves. The upper right portion of figure

A.3 shows the error g(u) decreasing throughout the process. Further improvement

can be made by allowing more steps. The lower right portion of figure A.3 shows the

evolution of the coefficient (pk) values. The upper curve represents p0 which starts

at 1000, dips down for a while but returns to a value very near 1000. The curve that

increases from zero to near 1000 represents p1. The remainder of the curves, which

remain near zero, represent p2 through p30. In the optimal solution these values are

all zero, but the largest, p9, was 34.8 when the process was terminated. Again, further

improvement can be made by allowing more steps.
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Appendix B

Source Code

Source code for Python scripts that carry out most of the calculations
described in the thesis are provided.

B.1 helheim.py

The Python script helheim.py performed the calculations and created the figures for

Chapter 2, “Evaluating the Exponent in Glen’s Flow Law Using Surface Velocities

on Helheim Glacier”. Prior to running this script, data files were downloaded from

the National Snow and Ice Data Center, see

http://nsidc.org/data/docs/measures/nsidc0481 joughin/

and saved in the directory structure accessed by the script. If “w” is included as a

command line argument, helheim.py writes the files velocity.data and viscosity.data

read by the scripts used for subsequent chapters.

# This script reads Helheim surface velocity data files downloaded from

# ftp://sidads.colorado.edu/pub/DATASETS/nsidc0481_MEASURES_greenland_V01/

# described at

# http://nsidc.org/data/docs/measures/nsidc0481_joughin/

# It then extracts velocities along a transect and calculates viscosity

# information along this transect.

# Written by Glen Granzow on May 29, 2013.

from matplotlib import pyplot

from struct import unpack

from sys import argv as command_line_arguments

import numpy, glob, os.path
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discard_points = ’d’ in command_line_arguments

write_output_file = ’w’ in command_line_arguments

########################################################

# Get the names of available data files and select one #

########################################################

def menu(options, default=1):

print ’<<<< OPTIONS >>>>’

field_width = str(len(str(len(options))))

for i in range(len(options)):

print (’%’+field_width+’d: %s’) % (i+1, options[i])

try:

return options[int(raw_input(’Enter option (1-%d): ’ % len(options)))-1]

except:

print ’Using default:’, options[default-1], ’\n’

return options[default-1]

directory = ’/home/glen/python/fenics/icestream/TSXdata/’

available_files = glob.glob(directory+’TSX_E66.50N*’)

available_files = [x[-1] for x in map(os.path.split, available_files)]

original_data_set = ’TSX_E66.50N_02Sep10_13Sep10’

default = 1 + available_files.index(original_data_set)

print ’The original data set used was’, original_data_set,

print ’(option %d)\n’ % default

filename = menu(available_files, default=default)

filename = os.path.join(directory, filename, filename)

print ’\nReading files:\n’, filename, ’\n’

######################

# Read a geodat file #

######################

input_file = open(filename+’.vx.geodat’)

line = input_file.readline()

while line:

print line,

if line[0] not in (’#’, ’;’) and ’nx’ not in dir():
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nx, ny = map(int, line.split())

line = input_file.readline()

input_file.close()

n = nx*ny

bytes = 4*n

###########################

# Read the velocity files #

###########################

def readVelocityFile(extension):

input_file = open(filename+extension, ’rb’)

raw_data = input_file.read(bytes)

input_file.close()

format = ’>’+str(n)+’f’ # Note: ’>’ indicates big-endian, ’f’ is float

data = numpy.array(unpack(format, raw_data))

masked_data = numpy.ma.masked_array(data, mask=(data<-1e9))

return masked_data.reshape(ny,nx)

vx = readVelocityFile(’.vx’) # x-component

vy = readVelocityFile(’.vy’) # y-component

v = (vx*vx+vy*vy)**0.5 # magnitude

########################################

# Zoom in on the magnitude and plot it #

########################################

xmin, xmax = 200, 400

ymin, ymax = 200, 400

v = v[ymin:ymax,xmin:xmax]

ny, nx = v.shape

pyplot.ion()

pyplot.figure(1)

pyplot.clf()

pyplot.imshow(v, origin=’lower’)

pyplot.colorbar().set_label(’|v| (m/year)’)

pyplot.xticks(())

pyplot.yticks(())

pyplot.axis((0,nx,0,ny))
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# Add some arrows pointing in the direction of flow

pyplot.quiver(range(0,xmax-xmin,10), range(0,ymax-ymin,10),

vx[ymin:ymax:10,xmin:xmax:10], vy[ymin:ymax:10,xmin:xmax:10])

#####################

# Plot the transect #

#####################

x = (89, 59)

y = (105, 145)

midpoint = (sum(x)/2, sum(y)/2)

slope = -1.0/(float(y[1]-y[0])/float(x[1]-x[0]))

def line(x):

return (x-midpoint[0])*slope + midpoint[1]

pyplot.plot((0,nx), map(line,(0,nx)), ’r’, linewidth=2, dashes=(10,6))

#########################################

# Get the velocities along the transect #

#########################################

def interpolate(x, y):

return (1-x)*y[0] + x*y[1]

t, v_t = list(), list()

ds = 0.1*(1+slope*slope)**0.5

for i in range(nx):

y = line(i)

j = int(y)

if j >= ny-1:

break

if v.mask[j,i] or v.mask[j+1,i]:

continue

z = interpolate(y-j, v[j:j+2,i])

t.append(i*ds)

v_t.append(z)
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pyplot.figure(2)

pyplot.clf()

pyplot.plot(t, v_t, ’-’)

pyplot.xlim(xmax=t[-1])

pyplot.xlabel(’distance along the transect (km)’)

pyplot.ylabel(’|v| (m/year)’)

pyplot.ylim(ymin=-500)

#####################################################

# Write the velocities along the transect to a file #

#####################################################

if write_output_file:

print ’writing velocity.data’

output_file = open(’velocity.data’, ’w’)

for i in range(len(t)):

output_file.write(’%f %f\n’ % (t[i], v_t[i]))

output_file.close()

#####################################################

# Find and plot viscosity ratios within the glacier #

#####################################################

peak = numpy.argmax(v_t)

d2udx2 = (v_t[peak-1] - 2*v_t[peak] + v_t[peak+1])/(ds*ds)

print ’d2udx2 =’, d2udx2

for i in range(peak-5, 0, -1):

if v_t[i-1] > v_t[i]:

left_edge = i

break

for i in range(peak+5,len(t)):

if v_t[i+1] > v_t[i]:

right_edge = i

break

ratio = (right_edge-left_edge)*[0]

dudx = (right_edge-left_edge)*[0]
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for i in range(left_edge, right_edge):

dudx[i-left_edge] = (v_t[i+1]-v_t[i])/ds

ratio[i-left_edge] = d2udx2*(t[i]+ds/2-t[peak])/dudx[i-left_edge]

pyplot.figure(3)

pyplot.clf()

pyplot.plot([x+ds/2 for x in t[left_edge:right_edge]], ratio, ’-’)

pyplot.yscale(’log’)

pyplot.axhline(1, color=’black’, linestyle=’-’)

pyplot.xlabel(’distance along the transect (km)’)

pyplot.ylabel(’$\mu / \mu_m$’)

########################################

# Write the viscosity ratios to a file #

########################################

if write_output_file:

print ’writing viscosity.data’

output_file = open(’viscosity.data’, ’w’)

t_mid = [x+ds/2 for x in t[left_edge:right_edge]]

for i in range(len(ratio)):

output_file.write(’%f %f\n’ % (t_mid[i], ratio[i]))

output_file.close()

########################################################

# Investigate the relation between viscosity and du/dx #

########################################################

pyplot.figure(4)

pyplot.clf()

pyplot.plot(numpy.abs(dudx),ratio,’-’, color=’gray’)

pyplot.xscale(’log’)

pyplot.yscale(’log’)

pyplot.xlabel(’$|dv/dx|$’, fontsize=15, labelpad=0)

pyplot.ylabel(’$\mu/\mu_m$’, fontsize=15)

def fit_line(x, y, *args):

pyplot.plot(x, y, *args)

nnegative = sum([yy<=0 for yy in y])

if nnegative > 0: # use masked arrays
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print ’\nWARNING: Point(s) removed due to nonpositive ratio (%d)’ % nnegative

numpy_ = numpy.ma

else:

numpy_ = numpy

x, y = map(numpy_.log10, (x,y))

p = numpy_.polyfit(x,y,1)

r = numpy_.corrcoef(x,y)[0,1]

R2 = r*r

print ’p =’, p, ’ n =’, 1/(p[0]+1)

print ’R squared =’, R2

return p

m = peak-left_edge

valley = (numpy.argmin(ratio[:m-5]), (m+5)+numpy.argmin(ratio[m+5:]))

fit1 = fit_line(map(abs,dudx[:valley[0]]+dudx[valley[1]+1:]),

ratio[:valley[0]]+ratio[valley[1]+1:], ’sr’)

if discard_points:

fit2 = fit_line(map(abs,dudx[valley[0]+1:m-4]+dudx[m+4:valley[1]]),

ratio[valley[0]+1:m-4]+ratio[m+4:valley[1]], ’^b’)

else:

fit2 = fit_line(map(abs,dudx[valley[0]+1:valley[1]]),

ratio[valley[0]+1:valley[1]], ’^b’)

# Find the point where the two fit lines cross

x = (fit1[1]-fit2[1])/(fit2[0]-fit1[0])

y = numpy.polyval(fit1, x)

# Draw lines through this point with slopes corresponding to Glen’s flow law exponents

pyplot.figure(4)

xmin, xmax, ymin, ymax = pyplot.axis()

def line(xx):

return 10**(y + slope*(numpy.log10(xx)-x))

for n in (1,2,3,’$\infty$’):

if n == ’$\infty$’:

slope = -1

else:

slope = -(n-1.0)/n

pyplot.plot((xmin, xmax), map(line, (xmin, xmax)), ’--’, color=’gray’)
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pyplot.text(1.8*xmin, 1.1*line(1.8*xmin), ’n = ’+str(n))

pyplot.axis((xmin, xmax, 7*ymin, ymax))

##########################################################

# Add vertical lines to the velocity and viscosity plots #

##########################################################

for figure in (2,3):

pyplot.figure(figure)

pyplot.axvline(t[peak], color=’black’)

pyplot.axvline(t[left_edge], color=’black’, linestyle=’--’)

pyplot.axvline(t[right_edge], color=’black’, linestyle=’--’)

pyplot.axvline(t[left_edge+valley[0]]+ds/2, color=’gray’, linewidth=1.5, dashes=(2,3))

pyplot.axvline(t[left_edge+valley[1]]+ds/2, color=’gray’, linewidth=1.5, dashes=(2,3))

try:

__IPYTHON__

except:

raw_input(’Press ENTER to end the program’)

B.2 forward1D.py

The Python script forward1D.py created the figure in Chapter 3, “A Forward Problem:
Solving for Velocity Given Viscosity”. This script reads the files velocity.data and
viscosity.data written by helheim.py.

# This script solves the boundary value problem problem:

# d/dx(mu du/dx) = C with u(0) = u(L) = 0.0

# where mu is the viscosity found by helheim.py.

# Written by Glen Granzow on July 29, 2013.

from dolfin import *

from matplotlib import pyplot

from sys import argv as command_line_arguments

######################

# Read File Function #

######################

def read_file(filename):

input_file = open(filename, ’r’)
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line = input_file.readline()

data = list()

while line:

data.append(map(float, line.split()))

line = input_file.readline()

input_file.close()

return zip(*data)

############################################################

# An Expression type object that does linear interpolation #

############################################################

class Interpolate1D(Expression):

def __init__(self, x, y, verbose=0):

# x = a list of independent variable values

# y = a list of the corresponding dependent variable values

self.data = [x, y]

self.verbose = verbose

def eval(self, values, x):

if x[0] < self.data[0][0]:

values[0] = self.data[1][0]

if self.verbose:

print ’WARNING: Interpolate1D is extrapolating!’, x[0], ’<’, self.data[0][0]

if self.verbose > 1: raw_input(’Press ENTER to continue’)

elif x[0] > self.data[0][-1]:

values[0] = self.data[1][-1]

if self.verbose:

print ’WARNING: Interpolate1D is extrapolating!’, x[0], ’>’, self.data[0][-1]

if self.verbose > 1: raw_input(’Press ENTER to continue’)

else:

for i in range(1,len(self.data[0])):

if x[0] <= self.data[0][i]:

alpha = (self.data[0][i]-x[0])/(self.data[0][i]-self.data[0][i-1])

values[0] = alpha*self.data[1][i-1] + (1-alpha)*self.data[1][i]

return

################

# Main Program #

################
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if __name__ == ’__main__’:

# Read the measured velocities from file

x_velocity, velocity = read_file(’velocity.data’)

x_velocity, velocity = x_velocity[50:101], velocity[50:101]

domain = (x_velocity[0], x_velocity[-1])

n_elements = 2*(len(velocity)-1)

# Plot the measured velocities

pyplot.ion()

pyplot.figure(1)

pyplot.clf()

pyplot.plot(x_velocity, velocity, ’-r’, linewidth=3)

pyplot.ylim(ymin=-500)

pyplot.xlabel(’$x\ \ (km)$’, fontsize=15)

pyplot.ylabel(’$v\ \ (m/year)$’, fontsize=15)

pyplot.xlim(domain)

# Set up and solve the Finite Element model

mesh = IntervalMesh(n_elements, *domain)

V = FunctionSpace(mesh, ’Lagrange’, 1)

u = TrialFunction(V)

v = TestFunction(V)

x_viscosity, viscosity = read_file(’viscosity.data’)

mu = Interpolate1D(x_viscosity, viscosity, True)

if ’x’ in command_line_arguments:

# An equivalent way to incorporate the viscosity data

print ’Using an alternate way to incorporate the viscosity data’

from numpy import array

midpoint_interpolants = (array(viscosity[:-1])+array(viscosity[1:]))/2

mu = Function(V)

mu.vector()[0] = viscosity[0]

mu.vector()[1:-1:2] = array(viscosity)

mu.vector()[2:-1:2] = midpoint_interpolants

mu.vector()[-1] = viscosity[-1]

solution = Function(V)
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boundary_conditions = DirichletBC(V, Constant(0.0), ’on_boundary’)

if ’b’ in command_line_arguments:

# Use the measured velocities at the endpoints as boundary conditions

boundary_conditions = [DirichletBC(V, Constant(velocity[0]),

’on_boundary && near(x[0],%f)’ % domain[0]),

DirichletBC(V, Constant(velocity[-1]),

’on_boundary && near(x[0],%f)’ % domain[-1])]

# The constant 443 was chosen to match the maximum measured velocity

L = Constant(443.247856338) * v * dx

a = mu * u.dx(0) * v.dx(0) * dx

solve(a == L, solution, boundary_conditions)

# Plot the calculated velocities

pyplot.plot(mesh.coordinates(), solution.vector().array(), ’--k’, linewidth=3)

print ’maximum measured velocity/maximum calculated velocity =’,

print max(velocity)/max(solution.vector())

# Plot mu

if ’p’ in command_line_arguments:

pyplot.figure(2)

pyplot.clf()

pyplot.plot(x_viscosity, viscosity, ’-r’)

pyplot.plot(mesh.coordinates(), project(mu,V).vector().array(), ’-b’)

pyplot.yscale(’log’)

pyplot.xlim(domain)

try:

__IPYTHON__

except:

raw_input(’Press ENTER to exit the program’)

B.3 inverse1D.py

The Python script inverse1D.py created all but the last figure in Chapter 4, “An
Inverse Problem: Solving for Viscosity Given Velocity”. This script reads the files
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velocity.data and viscosity.data written by helheim.py.

# This script solves an ODE constrained optimization problem:

# Find eta such that the solution to

# d/dx(eta^2 du/dx) = -c with u(0) = u(L) = 0.0 and constant c

# minimizes J = integral from 0 to L of (u - g(x))^2 (+ optional regularization)

# where g(x) is the surface velocity on Helheim Glacier.

# Written by Glen Granzow on July 30, 2013.

from dolfin import *

from dolfin_adjoint import *

from matplotlib import pyplot

from scipy.optimize import fmin_bfgs

from sys import argv, stdout

import numpy

set_log_active(True)

##############################################

# Read the measured velocity data from file. #

##############################################

from forward1D import read_file, Interpolate1D

x_velocity, velocity = read_file(’velocity.data’)

x_velocity, velocity = x_velocity[50:101], velocity[50:101]

v_max = max(velocity)

velocity = [v/v_max for v in velocity] # normalize the velocity

g = Interpolate1D(x_velocity, velocity, True) # the goal

##########################################

# Define the "forward" problem and solve #

# with eta equal to a constant function. #

##########################################

domain = (x_velocity[0], x_velocity[-1])

n_elements = 2*(len(velocity)-1)

c = 1.0

adj_reset() # reset dolfin_adjoint

mesh = IntervalMesh(n_elements, *domain)
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V = FunctionSpace(mesh, ’Lagrange’, 1)

u = TrialFunction(V)

v = TestFunction(V)

eta = Function(V) # eta is the square root of the viscosity,

eta.vector()[:] = 3.0 # initialized to a constant

solution = Function(V)

boundary_conditions = DirichletBC(V, Constant(0.0), ’on_boundary’)

if ’b’ in argv:

print ’\nUsing measured velocities as boundary conditions\n’

boundary_conditions = [DirichletBC(V, Constant(velocity[0]),

’on_boundary && near(x[0],%f)’ % domain[0]),

DirichletBC(V, Constant(velocity[-1]),

’on_boundary && near(x[0],%f)’ % domain[-1])]

L = Constant(c) * v * dx

a = eta * eta * u.dx(0) * v.dx(0) * dx

solve(a == L, solution, boundary_conditions)

################################################################

# Plot the "goal" which is the measured velocities on Helheim. #

################################################################

pyplot.ion()

pyplot.figure(1)

pyplot.clf()

if ’f’ in argv: # Puts each plot in a separate figure

pyplot.xlabel(’$x \ \ (km)$’, fontsize=15)

pyplot.ylabel(’$v$’, fontsize=15)

linewidth = 3

else:

pyplot.subplot(221)

linewidth = 1.5

pyplot.plot(mesh.coordinates(), project(g,V).vector().array(),

’r’, linewidth=linewidth)

pyplot.ylim(-0.1,1.1)

pyplot.xlim(domain)

######################################################

# Define the functional, J, that is to be minimized. #
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######################################################

if (’t’ in argv): # Tikhonov Regularization

try:

alpha = float(argv[-1])

except:

alpha = 2.0e-6

print ’\nThe weight of the Tikhonov regularization term is’,

print ’alpha = %g\n’ % alpha

J = (solution-g)**2*dx + Constant(alpha)*eta.dx(0)**2*dx

else:

J = (solution-g)**2*dx

#####################################

# Solve the "inverse problem", i.e. #

# find the optimum function eta. #

#####################################

set_log_active(False)

def error(coefficients):

stdout.write(’.’)

stdout.flush()

adj_reset()

eta.vector()[:] = coefficients

solve(a == L, solution, boundary_conditions)

return assemble(J)

def derivatives(coefficients):

d = compute_gradient(Functional(J*dt[FINISH_TIME]),

InitialConditionParameter(eta))

return d.vector().array()

coefficients = eta.vector().array()

optimum = fmin_bfgs(error, coefficients, derivatives, gtol=1e-6)

#####################

# Plot the results. #

#####################

# Plot the velocity, u (found using the optimal eta) versus x.
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pyplot.plot(mesh.coordinates(), solution.vector().array(), ’--k’,

linewidth=linewidth)

# Plot the viscosity ratio versus x.

if ’f’ in argv:

pyplot.figure(3)

pyplot.clf()

pyplot.xlabel(’$x \ \ (km)$’, fontsize=15)

pyplot.ylabel(’$\mu / \mu_m$’, fontsize=15)

else:

pyplot.subplot(223)

x_viscosity, viscosity = read_file(’viscosity.data’)

pyplot.plot(x_viscosity, viscosity)

pyplot.yscale(’log’)

pyplot.axhline(1, color=’black’)

m = numpy.argmax(solution.vector().array())

eta_m = optimum[m]

print ’m =’, m, ’where x =’, mesh.coordinates()[m],

print ’v =’, solution.vector()[m], ’eta =’, eta_m

mu_m = eta_m*eta_m # viscosity at x_m (eta is the square root of viscosity)

print ’average eta is’, sum(optimum)/len(optimum)

viscosity_ratio = [x*x/mu_m for x in optimum]

print ’viscosity was normalized by dividing by mu_m =’, mu_m

pyplot.plot(mesh.coordinates(), viscosity_ratio)

pyplot.xlim(domain)

# Find the "shear margins" (minima of viscosity)

minima = (numpy.argmin(viscosity_ratio[:m]),

m+numpy.argmin(viscosity_ratio[m:]))

if ’t’ not in argv or alpha < 0.1: # plot vertical lines at the shear margins

for plot in (1,3):

if ’f’ in argv:

pyplot.figure(plot)

else:

pyplot.subplot(220+plot)

for minimum in minima:
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pyplot.axvline(mesh.coordinates()[minimum], color=’black’,

linewidth=1.5, dashes=(2,3))

# Plot the viscosity ratio versus |du/dx|

if ’f’ in argv:

pyplot.figure(2)

pyplot.clf()

pyplot.xlabel(’$|dv/dx|$’, fontsize=15, labelpad=0)

pyplot.ylabel(’$\mu / \mu_m$’, fontsize=15)

else:

pyplot.subplot(222)

dudx = project(solution.dx(0),V)

abs_dudx = map(abs,dudx.vector())

pyplot.loglog(abs_dudx, viscosity_ratio, color=’gray’)

pyplot.plot(abs_dudx[:minima[0]], viscosity_ratio[:minima[0]], ’sr’,

abs_dudx[minima[1]+1:], viscosity_ratio[minima[1]+1:], ’sr’)

pyplot.plot(abs_dudx[minima[0]+1:minima[1]],

viscosity_ratio[minima[0]+1:minima[1]], ’^b’)

margin = 1.5

xmin, xmax = min(abs_dudx)/margin, margin*max(abs_dudx)

ymin, ymax = min(viscosity_ratio)/margin, margin*max(viscosity_ratio)

pyplot.axis((xmin, xmax, ymin, ymax))

# Draw lines with slopes corresponding to Glen’s flow law exponents

p = numpy.polyfit(numpy.log10(abs_dudx[:minima[0]]+abs_dudx[minima[1]+1:]),

numpy.log10(viscosity_ratio[:minima[0]]+viscosity_ratio[minima[1]+1:]),1)

print ’p =’, p

x_intercept = -p[1]/p[0]

def line(x):

return 10**(slope*(numpy.log10(x)-x_intercept))

for n,x,y in zip((1,2,3,’$\infty$’),(0.0023,0.0023,0.009,0.028),(1.1,6.5,10,10)):

if n == ’$\infty$’:

slope = -1

else:

slope = -(n-1.0)/n

pyplot.plot((xmin, xmax), map(line, (xmin, xmax)), ’--’, color=’gray’)

pyplot.text(x, y, ’n = ’+str(n))
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try:

__IPYTHON__

except:

raw_input(’Press ENTER to exit the program’)

B.4 curvefit.py

The Python script curvefit.py performed the calculations and created the figures in
Chapter 5, “Using Least-Squares Fits to Evaluate the Exponent in Glen’s Flow Law”.
This script reads the file velocity.data written by helheim.py.

# Fit the curve associated with Glen’s flow law

# to the velocity data output by helheim.py.

# Written by Glen Granzow on August 9, 2013.

# Valid command line arguments:

# ’a’ - Use absolute value in v(x).

# ’b’ - Use scipy’s fmin_bfgs instead of fsolve.

# ’f’ - Create a figure for the thesis.

# ’l’ - Loop over values of n.

# ’z’ - Zoom in on the plot of v versus x.

# If the last three command line arguments are numbers, they are used as

# an initial guess of A, B, and C, which are the parameters in v(x).

from matplotlib import pyplot

from scipy import optimize

import numpy, sys

##########################

### Read File Function ###

##########################

def read_file(filename):

input_file = open(filename, ’r’)

line = input_file.readline()

data = list()

while line:

data.append(map(float, line.split()))

line = input_file.readline()

input_file.close()

return zip(*data)
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####################

### MAIN PROGRAM ###

####################

if __name__ == ’__main__’:

# Read the measured velocities from file.

x_velocity, velocity = read_file(’velocity.data’)

# Get user input.

if ’l’ in sys.argv or ’f’ in sys.argv: # special case: loop over values of n

n_points = 21

n = 0.5

sys.argv.append(’a’)

else:

try:

n_points = int(raw_input(’Enter the number of points to fit: ’))

except:

n_points = 21

try:

n = float(raw_input("Enter the exponent in Glen’s flow law: "))

except:

n = 1.0

# Fit the curve.

i_m = numpy.argmax(velocity)

i_first = i_m - n_points/2

i_last = i_first + n_points

print ’Fitting’, len(velocity[i_first:i_last]),

print "points for Glen’s flow law with n =", n

def v(A,B,C,x):

if ’a’ in sys.argv:

return B - C*abs(A-x)**(n+1)

else:

return B - C*(A-x)**(n+1)
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def Error(ABC): # Sum of the squares of the residuals

global fit_values

A, B, C = ABC

fit_values = map(lambda x: v(A,B,C,x), x_velocity[i_first:i_last])

return sum([(v_fit - v_data)**2 for v_fit, v_data

in zip(fit_values,velocity[i_first:i_last])])

def dEdv(A,B,C,j):

return 2 * (v(A,B,C,x_velocity[j]) - velocity[j])

def dvdA(A,B,C,j):

if ’a’ in sys.argv:

return (-1)**(x_velocity[j]<=A) * C*(n+1)*abs(A-x_velocity[j])**n

else:

return - C*(n+1)*(A-x_velocity[j])**n

def dvdB(A,B,C,j):

return 1

def dvdC(A,B,C,j):

if ’a’ in sys.argv:

return -abs(A-x_velocity[j])**(n+1)

else:

return -(A-x_velocity[j])**(n+1)

def dEdA(A,B,C): # f1(A,B,C)

return sum([dEdv(A,B,C,k)*dvdA(A,B,C,k) for k in range(i_first,i_last)])

def dEdB(A,B,C): # f2(A,B,C)

return sum([dEdv(A,B,C,k)*dvdB(A,B,C,k) for k in range(i_first,i_last)])

def dEdC(A,B,C): # f3(A,B,C)

return sum([dEdv(A,B,C,k)*dvdC(A,B,C,k) for k in range(i_first,i_last)])

try:

initial_guess = numpy.array(map(float, sys.argv[-3:]))

except:

A = x_velocity[i_m]

B = velocity[i_m]

deltaX = 0.5*(x_velocity[i_last-1]-x_velocity[i_first])

deltaV = B - 0.5*(velocity[i_first] + velocity[i_last-1])

C = deltaV/deltaX**(n+1)
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initial_guess = numpy.array((A,B,C))

# Solve the system of equations:

# f1(A,B,C) = 0, f2(A,B,C) = 0, and f3(A,B,C) = 0.

def system_of_equations(ABC):

A,B,C = ABC

return numpy.array((dEdA(A,B,C), dEdB(A,B,C), dEdC(A,B,C)))

print ’initial_guess =’, initial_guess

if ’b’ in sys.argv:

A,B,C = optimize.fmin_bfgs(Error, initial_guess, system_of_equations)

else:

A,B,C = optimize.fsolve(system_of_equations, initial_guess)

print ’A =’, A, ’\nB =’, B, ’\nC =’, C

# Calculate the sum of the squares of the residuals.

SS = Error((A,B,C))

E = (SS/n_points)**0.5

print ’SS_res = %.1f \nE = %.1f’ % (SS, E)

# Plot the results.

pyplot.ion()

pyplot.figure(1)

pyplot.clf()

i, j = i_m-28, i_m+23

pyplot.plot(x_velocity[i:j], velocity[i:j], ’-r’, linewidth=3)

pyplot.plot(x_velocity[i_first:i_last], fit_values, ’--k’, linewidth=3)

pyplot.xlabel(’$x \ \ (km)$’, fontsize=15)

pyplot.ylabel(’$v \ \ (m/year)$’, fontsize=15)

if ’z’ in sys.argv:

pyplot.subplots_adjust(bottom=0.25)

pyplot.axis((x_velocity[i_first-1], x_velocity[i_last], 4200, 5200))

pyplot.text(8.57, 4330, ’$n = %g$’%n, fontsize=20)

pyplot.text(8.55, 4235, ’$\overline{E} = %.1f$’%E, fontsize=20)

else:

pyplot.subplots_adjust(bottom=0.1)

pyplot.axis((x_velocity[i_m-28], x_velocity[i_m+22], -500, 5500))

pyplot.axvline(x_velocity[i_m], color=’black’)
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pyplot.grid(True)

# Loop over n to find minimum E

if ’l’ in sys.argv:

n_list, E_list = list(), list()

for n in numpy.linspace(0.5,3.5,301):

initial_guess = numpy.array((A,B,C))

A, B, C = optimize.fsolve(system_of_equations, initial_guess)

SS = Error((A,B,C))

E = (SS/n_points)**0.5

print ’n = %.2f, A = %.1f, B = %.1f, C = %.1f, E = %.1f’ % (n,A,B,C,E)

n_list.append(n)

E_list.append(E)

index = numpy.argmin(E_list)

print ’\nMinimum E = %f at n = %f’ % (E_list[index], n_list[index])

pyplot.clf()

pyplot.plot(n_list, E_list, linewidth=1.75)

pyplot.ylim(ymax=40)

pyplot.xlabel(’$n$’, fontsize=20)

pyplot.ylabel(’$\overline{E}$ (m/year)’, fontsize=20)

pyplot.grid(True)

# Loop to create a figure for the thesis

if ’f’ in sys.argv:

pyplot.figure(2, figsize=(8.125, 1.75*6.125))

pyplot.clf()

pyplot.subplots_adjust(bottom=0.05, top=0.95)

subplot = 411

for n in (0.5,1,1.6,3):

initial_guess = numpy.array((A,B,C))

A, B, C = optimize.fsolve(system_of_equations, initial_guess)

SS = Error((A,B,C))

E = (SS/n_points)**0.5

print ’n = %.2f, A = %.1f, B = %.1f, C = %.1f, E = %.1f’ %(n,A,B,C,E)

pyplot.subplot(subplot)

pyplot.plot(x_velocity, velocity, ’-r’, linewidth=3)

pyplot.plot(x_velocity[i_first:i_last], fit_values, ’--k’, linewidth=3)

pyplot.axis((x_velocity[i_first-1], x_velocity[i_last], 4400, 5200))

pyplot.text(8.43, 5080, ’(’+’abcd’[subplot-411]+’)’, fontsize=20)
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pyplot.text(8.60, 4570, ’$n = %g$’%n, fontsize=20)

pyplot.text(8.58, 4435, ’$\overline{E} = %.1f$’%E, fontsize=20)

pyplot.ylabel(’v (m/year)’)

pyplot.grid(True)

subplot += 1

pyplot.xlabel(’x (km)’)

try:

__IPYTHON__

except:

raw_input(’Press ENTER to end the program’)

B.5 adjoint.py

The Python script adjoint.py performed the calculations and created the figure in
Section A.3, “A Numerical Example”, of Appendix A, “Adjoint Methods”.

# This script approximates the solution to the boundary problem

# c_2 u" + c_1 u’ + c_0 u = f(x), u(0) = a_0, u(1) = a_1

# where f(x) = p_0 + p_1 x + ... + p_n x^n (a polynomial)

# using finite differences.

# The adjoint method is then used to find dg/dc, dg/dp, and dg/da

# for g = u(0.5) and g = average(u).

# Written by Glen Granzow on October 15, 2012.

from copy import deepcopy

from matplotlib import pyplot

from math import sqrt, sin, cos, exp

#############################

### POLYNOMIAL OPERATIONS ###

#############################

def polynomial(p, x): # a recursive method for polynomial evaluation

if len(p) == 1:

return p[0]

return p[0] + x * polynomial(p[1:],x)

def f(x):

return polynomial(p, x)

# The rest of the polynomial operations were written to test the
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# particular solution part of the exact solution.

def derivative(p):

return [k*p[k] for k in range(len(p))][1:]

def add(a, b):

if len(a) > len(b):

return_value = deepcopy(a)

for k in range(len(b)):

return_value[k] += b[k]

else:

return_value = deepcopy(b)

for k in range(len(a)):

return_value[k] += a[k]

return return_value

def times(a, p):

return [a * coefficient for coefficient in p]

def check_particular_solution():

u = exact_solution.coefficients

u_prime = derivative(u)

u_double_prime = derivative(u_prime)

print ’\nChecking the particular solution...’

print add(times(c[2], u_double_prime),

add(times(c[1], u_prime), times(c[0], u)))

print ’should match p’

print p

######################

### EXACT SOLUTION ###

######################

class Exact_solution():

# The form of the homogeneous solution depends on the discriminant

# of the characteristic equation, r^2 + c1 r + c0 = 0.

def homogeneous_solution_0(self, x):

return exp(self.alpha*x)*(self.A*cos(self.omega*x)

+ self.B*sin(self.omega*x))
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def homogeneous_solution_1(self, x):

return (self.A+self.B*x)*exp(self.r*x)

def homogeneous_solution_2(self, x):

return self.A*exp(self.r1*x) + self.B*exp(self.r2*x)

# The particular solution is a polynomial.

# If c0 = 0 and c1 = 0 it has degree two greater than the degree of f.

# If c0 = 0 but c1 is not zero it has degree one greater than f.

# Otherwise its degree is the same as the degree of f.

def particular_solution(self, x):

return polynomial(self.coefficients, x)

# Initialization

def __init__(self, c, p):

if c[2] == 0:

raise ValueError(’c[2] must be nonzero.’)

# Find the coefficients in the particular solution.

if c[1] == 0 and c[0] == 0:

self.coefficients = [0,0] + [p[k]/(c[2]*(k+1)*(k+2)) for k in range(len(p))]

elif c[0] == 0:

self.coefficients = [p[-1]/len(p)/c[1]]

for k in range(len(p)-2, -1, -1):

self.coefficients.append(

(p[k]/(k+1) - c[2]*(k+2)*self.coefficients[-1])/c[1])

self.coefficients.append(0.0)

self.coefficients.reverse()

else:

self.coefficients = [p[-1]/c[0]]

if len(p) > 1:

k = len(p)-2

self.coefficients.append(

(p[k] - c[1]*(k+1)*self.coefficients[-1])/c[0])

for k in range(len(p)-3, -1, -1):

self.coefficients.append(

(p[k] - c[1]*(k+1)*self.coefficients[-1] -

c[2]*(k+1)*(k+2)*self.coefficients[-2])/c[0])

self.coefficients.reverse()
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# Select the appropriate form for the homogeneous solution and set

# the constants A and B to satisfy the boundary conditions.

self.discriminant = c[1]*c[1] - 4*c[2]*c[0]

if self.discriminant < 0:

print ’u(x) = exp(alpha*x) * (A*cos(omega*x) + B*sin(omega*x))’

self.alpha = -c[1]/(2.0*c[2])

self.omega = sqrt(-self.discriminant)/(2.0*c[2])

self.A = a[0]-self.particular_solution(0.0)

self.B =((a[1]-self.particular_solution(1.0))/exp(self.alpha)

- self.A*cos(self.omega)) / sin(self.omega)

self.homogeneous_solution = self.homogeneous_solution_0

elif self.discriminant == 0:

print ’u(x) = (A + B*x) * exp(r*x)’

self.r = -c[1]/(2.0*c[2])

self.A = a[0] - self.particular_solution(0.0)

self.B = (a[1] - self.particular_solution(1.0))/exp(self.r) - self.A

self.homogeneous_solution = self.homogeneous_solution_1

else: # self.discriminant > 0

print ’u(x) = A*exp(r1*x) + B*exp(r2*x)’

self.r1 = (-c[1] + sqrt(self.discriminant))/(2.0*c[2])

self.r2 = (-c[1] - sqrt(self.discriminant))/(2.0*c[2])

matrix = [[None, 1.0, 1.0], [exp(self.r1), exp(self.r2), 0.0]]

rhs = [a[0] - self.particular_solution(0.0),

a[1] - self.particular_solution(1.0)]

self.A, self.B = solve_tridiagonal(matrix, rhs)

self.homogeneous_solution = self.homogeneous_solution_2

# Evaluation

def __call__(self, x):

return self.particular_solution(x) + self.homogeneous_solution(x)

#########################

### MATRIX OPERATIONS ###

#########################

def finite_difference_matrices(c, p, a):
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A = [[None, 1, 0]] # first row of tri-diagonal matrix A in Ax = b

b = [a[0]] # first row of right hand side vector b in Ax = b

for row in range(1,n-1):

x = float(row)/(n-1)

A.append([c[2]/dx_squared-c[1]/(2*dx), c[0]-2.0*c[2]/dx_squared,

c[2]/dx_squared+c[1]/(2*dx)])

b.append(polynomial(p, x))

A.append([0, 1, 0]) # the last 0 is not really in the matrix

b.append(a[1])

return A, b

def solve_tridiagonal(A, b):

# Gaussian elimination

A[0][2] /= A[0][1]

for row in range(1, len(A)):

A[row][1] -= A[row][0] * A[row-1][2]

b[row] -= A[row][0] * b[row-1]

A[row][2] /= A[row][1]

b[row] /= A[row][1]

# Back substitution

for row in range(-2, -(len(A)+1), -1):

b[row] -= A[row][2] * b[row+1]

return b

def transpose(A): # only for a tridiagonal matrix

for row in range(1, len(A)):

A[row-1][2], A[row][0] = A[row][0], A[row-1][2]

return A

def multiply(a, B):

# a is a row matrix, B is a rectangular matrix

return_value = len(B[0]) * [0]

for column_of_B in range(len(B[0])):

for row_of_B in range(len(B)):

return_value[column_of_B] += a[row_of_B] * B[row_of_B][column_of_B]

return return_value

def dot(a, b):

return sum([aa*bb for aa, bb in zip(a,b)])
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####################

### MAIN PROGRAM ###

####################

if __name__ == ’__main__’:

# Parameters:

c = (1.0, -2.0, 1.0) # coefficients in the differential equation

p = (1.0, 1.0, -5.0) # coefficients of the polynomial f

a = (0.0, 0.0) # boundary condition values

print ’\nc = %s\np = %s\na = %s\n’ % (c, p, a)

# Print some information about the exact solution.

exact_solution = Exact_solution(c, p)

for item in dir(exact_solution):

if isinstance(eval(’exact_solution.’+item), float):

print item, ’=’, eval(’exact_solution.’+item)

print ’coefficients =’, exact_solution.coefficients

check_particular_solution()

# Calculate an approximate solution.

n = 21 # number of nodes

dx = 1.0/(n-1) # node spacing

dx_squared = dx*dx

A, b = finite_difference_matrices(c, p, a)

copy_of_A = deepcopy(A) # save a copy for the adjoint method

approximate_solution = solve_tridiagonal(A, b)

# Plot the exact and approximate solutions

pyplot.ion()

pyplot.clf()

xx = [i/100.0 for i in range(101)]

pyplot.plot(xx, map(exact_solution, xx), ’k-’)

xx = [i/float(n-1) for i in range(n)]
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pyplot.plot(xx, approximate_solution, ’ok’)

pyplot.xticks([k/10.0 for k in range(11)])

pyplot.grid(True)

# pyplot.xlabel(’x’)

# pyplot.ylabel(’u’)

# Use the adjoint method to find partial derivatives.

def print_partial_derivatives(dgdcpa):

print ’dgdc =’, dgdcpa[:len(c)]

print ’dgdp =’, dgdcpa[len(c):-2]

print ’dgda =’, dgdcpa[-2:]

dfdcpa = [(len(c)+len(p))*[0.0]+[-1,0]]

u = approximate_solution

for k in range(1,n-1):

x = float(k)/(n-1)

dfdcpa.append([u[k], (u[k+1]-u[k-1])/(2*dx),

(u[k-1]-2*u[k]+u[k+1])/dx_squared] +

[-x**k for k in range(len(p))] + [0,0])

dfdcpa.append((len(c)+len(p))*[0.0]+[0,-1])

# First, use g = u(0.5)

dgdu = n * [0.0]

index = n/2

dgdu[index] = 1.0

A = deepcopy(copy_of_A)

lamda = solve_tridiagonal(transpose(A), dgdu)

dgdcpa = [-z for z in multiply(lamda, dfdcpa)]

x = float(index)/(n-1)

print ’\nFor g = u(%f):’ % x

print_partial_derivatives(dgdcpa)

if c[0] == 0.0 and c[1] == 0.0:

exact_dgdp = [c[2]*(x**k-x)/k/(k-1) for k in range(2,2+len(p))]

print ’exact dgdp =’, exact_dgdp

# Next, use g = average(u)
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for quadrature in ("trapezoidal rule", "Simpson’s rule"):

if quadrature == "trapezoidal rule":

dgdu = map(lambda z: z/(n-1), [0.5] + (n-2)*[1.0] + [0.5])

else:

dgdu = map(lambda z: z/(3.0*(n-1)), [1] + (n-2)/2*[4,2] + [4,1])

A = deepcopy(copy_of_A)

lamda = solve_tridiagonal(transpose(A), dgdu)

dgdcpa = [-z for z in multiply(lamda, dfdcpa)]

print ’\nFor g = average(u) using’, quadrature

print_partial_derivatives(dgdcpa)

if c[0] == 0.0 and c[1] == 0.0:

exact_dgdp = [-c[2]*(0.5-1.0/(k+3))/(k+2)/(k+1) for k in range(len(p))]

print ’exact dgdp =’, exact_dgdp

# Check the partial derivatives numerically by perturbing the

# parameters one at a time.

perturbation = 0.01

numerical_dgdcpa = [[],[],[]]

trapezoidal_rule = map(lambda z: z/(n-1), [0.5] + (n-2)*[1.0] + [0.5])

simpsons_rule = map(lambda z: z/(3.0*(n-1)), [1] + (n-2)/2*[4,2] + [4,1])

integral = (dot(trapezoidal_rule, approximate_solution),

dot(simpsons_rule, approximate_solution))

plot = False

for k in range(len(c)+len(p)+len(a)):

parameters = list(c + p + a)

parameters[k] += perturbation

A, b = finite_difference_matrices(

parameters[:len(p)], parameters[len(p):-2], parameters[-2:])

new_u = solve_tridiagonal(A, b)

if plot:

pyplot.plot(xx, new_u, ’--’)

numerical_dgdcpa[0].append((new_u[index]-u[index])/perturbation)

numerical_dgdcpa[1].append((dot(trapezoidal_rule, new_u)-integral[0])/perturbation)

numerical_dgdcpa[2].append((dot(simpsons_rule, new_u)-integral[1])/perturbation)

print ’\nNumerical estimates:’

for k in range(3):

print
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print_partial_derivatives(numerical_dgdcpa[k])

try:

__IPYTHON__

except:

raw_input(’Press ENTER to exit the program’)

B.6 ismiphomD.py

The Python script ismiphomD.py creates a figure like that in Section A.4, “A Data
Assimilation Example From Glaciology”, of Appendix A, “Adjoint Methods”. Note:
This script has been modified (to enable it to run using the most recent versions of
the dolfin and dolfin-adjoint packages) since the figure in Section A.4 was actually
created; the output from the script given here differs marginally from that in the text.

# This script finds the basal traction from the surface velocity

# in ISMIPHOM Experiment D.

# This version writes beta_squared in the form:

# beta_squared = C_0 + sum [C_(2i-1) sin(omega_i x) + C_(2i) cos(omega_i x)]

# where omega_i = i * 2 * pi /length, for i = 1, 2, ..., n.

# and finds the C_k’s using Scipy’s implementation of the BFGS method

# (which uses derivatives provided by dolfin-adjoint.)

# Written by Glen Granzow on November 7, 2012.

# Modified on August 14, 2013 to accommodate changes in FEniCS.

from dolfin import *

from dolfin_adjoint import *

from numpy import array

from scipy.optimize import fmin_bfgs

from matplotlib import pyplot

from sys import argv as command_line_arguments

from sys import stdout

verbose = True

set_log_level(INFO)

set_log_active(True)

################################

# Plotting and input functions #

################################
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def plotUvsX(y_coordinate):

x = mesh.coordinates()[:nx+1,0]

y = [solution(x_coordinate, y_coordinate)[0] for x_coordinate in x]

pyplot.plot(x, y, color=’gray’)

y = [goalFunction(x_coordinate, y_coordinate)[0] for x_coordinate in x]

pyplot.plot(x, y, linewidth=2, color=’black’)

pyplot.ylabel(’u’)

def plotError(error, iterate=[-1], previous=[None]):

if iterate[0] > 0:

pyplot.plot([iterate[0]-1]+iterate, previous+[error], color=’black’)

pyplot.xlim(0, max(30, len(iterates)-1))

pyplot.yscale(’log’)

pyplot.grid(True)

iterate[0] += 1

previous[0] = error

def plotCoefficients(coefficients, iterate=[-1], previous=[]):

colors = ’bgrcmy’

if iterate[0] > 0:

for i in range(len(coefficients)):

pyplot.plot([iterate[0]-1]+iterate, [previous[i]]+[coefficients[i]],

colors[i%len(colors)])

previous[i] = coefficients[i]

pyplot.xlim(0, max(30, len(iterates)-1))

pyplot.grid(True)

else:

for c in coefficients:

previous.append(c)

iterate[0] += 1

pyplot.xlabel(’iterate’)

def plotBetaSquared(c):

x_coordinates = mesh.coordinates()[:nx+1,0]

f = beta_squared.replace(’Expression("’, ’’).replace(’[0])"’, ’’)

y = [eval(f) for x in x_coordinates]

pyplot.plot(x_coordinates, y, color=’gray’)

c = [1000, 1000] + (len(c)-2)*[0]

y = [eval(f) for x in x_coordinates]

pyplot.plot(x_coordinates, y, linewidth=2, color=’black’)

pyplot.xlabel(’x’)

pyplot.ylabel(’$\\beta\,^2$’)
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def plot4(coefficients, error):

pyplot.subplot(221)

plotUvsX(height)

pyplot.subplot(222)

plotError(error)

pyplot.subplot(223)

plotBetaSquared(coefficients)

pyplot.subplot(224)

plotCoefficients(coefficients)

pyplot.draw()

def menu(options, default=3):

print ’<<<< OPTIONS >>>>’

for i in range(len(options)):

print str(i+1) + ’.’, options[i]

option = raw_input(’Enter option (1-’+str(len(options))+’): ’)

try:

return options[int(option)-1]

except:

return options[default-1]

def prompt(message, default=[5], type=int):

response = raw_input(message)

if len(response) == 0:

return default

try:

return map(type,response.split())

except:

return default

####################

# Model Parameters #

####################

lengths = (5.0e3, 10.0e3, 20.0e3, 40.0e3, 80.0e3, 160.0e3)

mesh_size = ((16,16), (16,16), (32,16), (32,8), (64,8), (64,4))

print ’\nPlease select the domain size.\n’

length = menu(lengths)

nx, ny = mesh_size[lengths.index(length)]
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height = 1000.0 # Ice thickness

n = 3.0 # Exponent in Glen’s flow law

A = 1.0e-16 # Flow parameter

B = A**(-1.0/n) # Coefficient in effective viscosity

rho = 910.0 # Density of ice

g = 9.81 # Gravitational constant

alpha = 0.1*pi/180.0 # Angle of inclination

string = ’\nPlease enter the number of terms to be used in the ’ +\

’trigonometric expansion of beta squared: ’

nTerms = prompt(string, default=[nx-1])[0]

coefficients = [1000.0, 1000.0] + (nTerms-2)*[0.0]

beta_squared = ’(c[0]’

if len(coefficients) > 1:

for i in range(1,len(coefficients)):

omega = 2*((i+1)/2) * pi / length

if i % 2 == 1:

string = ’%s + c[%d]*Expression("sin(%s*x[0])")’

else:

string = ’%s + c[%d]*Expression("cos(%s*x[0])")’

beta_squared = string % (beta_squared, i, omega)

beta_squared = beta_squared + ’)’

print ’\nbeta_squared =’, beta_squared

print ’\nc =’, coefficients

#########################################

# Create mesh and define function space #

#########################################

if verbose:

print ’\nCreating the mesh and function space ...’

stdout.flush()

mesh = RectangleMesh(0.0, 0.0, length, height, nx, ny)

# Classes for boundary conditions

if verbose:

print ’Defining classes for the boundary conditions ...’

103



stdout.flush()

TOP = 1

BOTTOM = 2

class TopBoundary(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near(x[1], height)

class BottomBoundary(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near(x[1], 0)

class PeriodicBoundary(SubDomain):

def inside(self, x, on_boundary):

return near(x[0],0) and on_boundary

def map(self, x, y):

y[0] = x[0] - length

y[1] = x[1]

boundary = MeshFunction("size_t", mesh, mesh.topology().dim()-1)

boundary.set_all(0)

TopBoundary().mark(boundary, TOP)

BottomBoundary().mark(boundary, BOTTOM)

# The function space accommodates the three unknowns:

# 1. The x component of velocity (u)

# 2. The y component of velocity (v)

# 3. Pressure (p)

pbc = PeriodicBoundary()

velocity = VectorFunctionSpace(mesh, "Lagrange", 2, constrained_domain=pbc)

pressure = FunctionSpace(mesh, "Lagrange", 1, constrained_domain=pbc)

functionSpace = MixedFunctionSpace((velocity, pressure))

velocity = functionSpace.sub(0)

pressure = functionSpace.sub(1)

bc = DirichletBC(velocity.sub(1), Constant(0), boundary, BOTTOM)

ds = Measure(’ds’)[boundary]

#######################################
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# Create the trial and test functions #

#######################################

if verbose:

print ’Creating the trial and test functions ...’

stdout.flush()

uvp = TrialFunction(functionSpace)

phi = TestFunction(functionSpace)

solution = Function(functionSpace)

(u, v), p = split(uvp)

(phi1, phi2), phi3 = split(phi)

##################################

# Define the variational problem #

##################################

if verbose:

print ’Defining the variational problem ...’

stdout.flush()

def invariant_squared(u,v):

return 0.50*(u.dx(0)**2 + v.dx(1)**2) \

+ 0.25*(u.dx(1)+v.dx(0))**2 \

+ Constant(1.0e-20)

viscosity = Constant(0.5*B)*invariant_squared(u,v)**((1.0-n)/(2.0*n))

c = [Constant(a) for a in coefficients]

a = ((2*viscosity*u.dx(0)-p)*phi1.dx(0) + viscosity*(v.dx(0)+u.dx(1))*phi1.dx(1)

+ (2*viscosity*v.dx(1)-p)*phi2.dx(1) + viscosity*(u.dx(1)+v.dx(0))*phi2.dx(0)

+ (u.dx(0)+v.dx(1))*phi3 ) * dx \

+ eval(beta_squared) *u*phi1 * ds(BOTTOM)

a -= (Constant(rho*g*sin(alpha))*phi1 - Constant(rho*g*cos(alpha))*phi2) * dx

F = action(a, solution)

J = derivative(F, solution, uvp)

problem = NonlinearVariationalProblem(F, solution, bc, J)

solver = NonlinearVariationalSolver(problem)
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solver.parameters[’newton_solver’][’maximum_iterations’] = 10

solver.parameters[’newton_solver’][’absolute_tolerance’] = 1.0e-3

solver.parameters[’newton_solver’][’relative_tolerance’] = 5.0e-4

#################################

# Solve the variational problem #

#################################

if verbose:

print ’Solving the variational problem ...’

stdout.flush()

set_log_active(’l’ in command_line_arguments)

# Solve to find the desired surface velocities

solver.solve()

goalFunction = Function(functionSpace)

goalFunction.vector()[:] = solution.vector().array()

# Use BFGS optimization to find the original coefficients

string = ’\nPlease enter a guess for the coefficients of the ’ +\

’trigonometric expansion of beta squared: ’

coefficients = prompt(string, default=[1000.0], type=float)

if len(coefficients) > nTerms:

coefficients = coefficients[:nterms]

print ’Only the first %d terms will be used:’ % nTerms

elif len(coefficients) < nTerms:

coefficients += (nTerms - len(coefficients)) * [0.0]

pyplot.ion()

pyplot.figure(1)

pyplot.clf()

def f(coefficients):

global functional

adj_reset()

for i in range(nTerms):

c[i].assign(coefficients[i])

print (’c = [’+len(c)*’ %8.5g’+’]’) % tuple([float(cc) for cc in c])

stdout.flush()
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try:

nIterations = solver.solve()[0]

except RuntimeError as message:

print message

print ’Trying again with an initial guess of zero everywhere.’

adj_reset()

solution.vector()[:] = 0.0

nIterations = solver.solve()[0]

form = ((solution[0]-goalFunction[0])**2)*ds(TOP)

functional = Functional(form*dt[FINISH_TIME])

error = assemble(form)

plot4(coefficients, error)

iterates.append((coefficients, error))

print ’error = %f (%d iterations)’ % (error, nIterations)

return error

def derivatives(coefficients):

gradient = list()

for i in range(nTerms):

gradient.append(compute_gradient(functional, ScalarParameter(c[i]), forget=False))

print (’D = [’+nTerms*’ %8.5g’+’]’) % tuple(gradient)

return array(map(float,gradient))

c[1].assign(0.0)

iterates = list()

solution.vector()[:] = 0.0

f(coefficients)

optimum = fmin_bfgs(f, coefficients, derivatives, gtol=1e-3, maxiter=30)

print ’optimum =’, optimum

pyplot.figure(2)

pyplot.clf()

pyplot.subplot(221)

plotUvsX(height)

pyplot.subplot(223)

plotBetaSquared(optimum)

pyplot.subplot(224)

pyplot.plot(abs(optimum[::2]), ’o-’, label=’cos’)

pyplot.plot(range(1,len(optimum[1::2])+1), abs(optimum[1::2]), ’o-’, label=’sin’)

pyplot.yscale(’log’)

pyplot.legend(loc=’best’)

pyplot.xlabel(’frequency’)
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pyplot.grid(True)

print ’min(optimum[2:]) =’, min(optimum[2:])

print ’max(optimum[2:]) =’, max(optimum[2:])

try:

__IPYTHON__

except:

raw_input(’Press ENTER to end the program’)
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