
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2012

MEASURING AND QUANTIFYING WEB APPLICATION DESIGN MEASURING AND QUANTIFYING WEB APPLICATION DESIGN

Craig A. McNinch
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
McNinch, Craig A., "MEASURING AND QUANTIFYING WEB APPLICATION DESIGN" (2012). Graduate
Student Theses, Dissertations, & Professional Papers. 657.
https://scholarworks.umt.edu/etd/657

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/657?utm_source=scholarworks.umt.edu%2Fetd%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

MEASURING AND QUANTIFYING WEB APPLICATION DESIGN

By

CRAIG ALAN MCNINCH

B.S. Computer Science, The University of Montana, Missoula, Montana, 2006

Thesis

presented in partial fulfillment of the requirements

for the degree of

Master of Science

In Computer Science

The University of Montana

Missoula, MT

Official Graduation Date July 2012

Approved by:

Sandy Ross, Associate Dean of The Graduate School

Graduate School

Dr. Joel Henry, Chair

Computer Science

Dr. Douglas Raiford

Computer Science

Dr. Shawn Clouse

Management Information Systems

ii

© COPYRIGHT

by

Craig Alan McNinch

2012

All Rights Reserved

iii

McNinch, Craig, M.S., Summer 2012 Computer Science

MEASURING AND QUANTIFYING WEB APPLICATION DESIGN

Chairperson: Dr. Joel Henry

Abstract:
The World Wide Web makes it easier for organizations and people to share

information across great distances at a minimal cost. In addition, governments and

businesses are beginning to offer services on the World Wide Web to their respective

populations and customers. Unlike traditional desktop based applications where the

programming language used are most likely Object Oriented (OO) based languages such

as C++ or Java, most web applications are built upon more lightweight scripting

languages. These languages typically don’t support all the OO features that more

traditional languages support. In addition, some web applications are dependent on

external web services or applications. These differences make it difficult to use

traditional measuring techniques such as Quality Measurements in Object Oriented

Design to quantify the complexity of a web application or its quality.

 This paper will propose a set of measurements derived from traditional Object

Oriented metrics such as QMOOD, and attempt to use them on two Content Management

Systems; Drupal and WordPress. These measurements will try to quantify the size and

complexity of the two content management systems and make comparisons between

them.

iv

Table of Contents
Abstract: .. iii

Table of Contents .. Error! Bookmark not defined.

List of Figures: ... v

List of Equations: ... v

List of Tables: ... v

1.0 Introduction ... 1

1.1 Thesis Organization ... 1

2.0 Literature Review .. 2

2.1 Traditional Measurements ... 2

2.2 Challenges with Web Based Applications... 6

2.3 PHP and Tools ... 7

3.0 The Content Management Systems ... 8

3.1 Drupal .. 10

3.2 WordPress ... 14

4.0 Measurements .. 20

4.1 Measurements Used... 20

4.2 Methods and Tools used .. 25

5.0 Measurement Results... 27

5.1 Size Measurements: ... 27

5.2 Complexity Measurements: ... 34

6.0 Analysis ... 41

6.1 Size Metrics: .. 41

6.2 Complexity Metrics: .. 44

7.0 Conclusion: .. 52

Bibliography ... 55

v

List of Figures:
Figure 1: Drupal Architecture. .. 11
Figure 2: WordPress “Loop” .. 16
Figure 3: LOC Average for WordPress .. 43
Figure 4: LOC Average for Drupal. .. 43
Figure 5:Instability Histogram for WordPress. ... 49

Figure 6: Instability Histogram for Drupal. .. 49

List of Equations:
Equation 1: Coupling Between Objects (CBO) ... 3

Equation 2: Lack of Cohesion of Methds (Original) (LCOM). ... 4
Equation 3: Lack of Cohesion of Methods (alternative) (LCOM2) 5

Equation 4: Cyclometric Complexity (CCN) .. 24
Equation 5: Instability (I) ... 25
Equation 6: Average ELOC ... 34

Equation 7: Response for Class (RFC) .. 45

Equation 8: Average CCN .. 46

List of Tables:
Table 1: Size Results for WordPress. ... 29
Table 2: Size Results for Drupal. .. 30
Table 3: Average Size for WordPress ... 31

Table 4: Average Size for Drupal ... 32
Table 5: Complexity for WordPress. .. 36

Table 6: Complexity for Drupal. ... 37
Table 7: Average Complexity, Instability, LCOM2 for WordPress. 38
Table 8: Average Complexity, Instability, LCOM2 for Drupal. 39

1

1.0 Introduction

 For several decades, software development revolved around object oriented (OO)

based applications. With OO based design, software engineers were able to abstract and

isolate sections of their code into “objects”. These objects allowed software engineers a

degree of flexibility in regards to the design, implementation, and testing of their

software. With the popularity of OO based languages, several tools and methods have

been developed to help measure the quality of their software such as QMOOD (Bansiva,

2002). While these tools are useful for OOP based applications the usage of them breaks

down when trying to use them on applications that do not conform strictly to OO

standards.

 This thesis will consider several such OO based measurements and attempt to use

them on two web based Content Management Systems (CMS). To do this, several files

from each CMS will be selected for the measurements. After the measurements have

been taken, the results will be analyzed and observations will be drawn and compared.

1.1 Thesis Organization

The organization of this thesis is as follows…

 Chapter 2 will cover research that has been conducted in the past regarding

measuring quality in application design and the challenges presented by today’s

technologies.

 Chapter 3 introduces the Drupal and WordPress Content Management Systems

and describes how each CMS is organized and built.

 Chapter 4 discusses the measurements and tools used

2

 Chapter 5 will list our results and any immediate observations of the

measurements.

 Chapter 6 presents our analysis of the measurements and attempt to draw

comparisons between WordPress and Drupal.

 Chapter 7 will contain our conclusions.

2.0 Literature Review

2.1 Traditional Measurements

Quality in application design is a critical area to measure since security,

scalability, and maintainability of the application depends on it. An application with a

higher measurement in design quality is generally cheaper to maintain compared to one

with a lower measurement. Several papers have been published proposing such metrics

for Object Oriented (OO) based applications. Chidamber and Kemerer proposed a set of

measurements to measure quality in OO design (Chidamber, 1994). In that paper, they

proposed the following measurements.

Weighted Methods Per Class (WMC)

WMC is a metric that measures the number of methods within the class and has a

weight assigned to each method. For the weight, the McCabe’s complexity measurement

is generally used to determine the complexity of the method (McCabe, 1976) . The range

of the measurement is 0 to N where N is a positive integer. A measurement of 0 indicates

3

that the class contains no methods and thus is the least complex while larger values of N

indicates a more complex class. This measurement will be used.

Depth of Inheritance Tree (DIT)

DIT is a metric that measures the length of the inheritance for a given class. The

range of the measurements is 0 to N where N is a positive integer. A measurement of 0

indicates that the class has no inheritance thus is the least complex while larger values of

N indicates a more complex class due to a deeper inheritance tree. This measurement

will not be used since the measurement requires explicit class declarations.

Number of Children (NOC)

NOC is a metric that counts the number of direct children that the class has. The

range of the measurement is 0 to N where N is a positive integer. A measurement of 0

indicates that the class has no children while larger values of N indicate a higher number

of child classes that depends on the measured class. This measurement will not be used

due to the same reasons why DIT is being omitted.

Coupling Between Object Classes (CBO)

CBO is a metric that counts the number of non-inherited connections between

objects. The equation to calculate the CBO is:

Equation 1:

CBO = Number of Links / Number of Classes

The range of the measurement is from 0 to N where N is a positive number. A

measurement of 0 indicates that the class has no couplings thus it is an isolated class

4

while greater values of N indicates a class that has many dependencies. This

measurement will not be used, but instead the afferent and efferent coupling

measurements will be used instead.

Response for a Class (RFC)

RFC is a metric that counts the number of local methods as well as remote

methods outside the class that the local methods within the class call. The range of the

measurement is 0 to N where N is a positive integer. A measurement of 0 indicates a

class with no local methods while greater values of N indicate a class with more local

methods or local methods that access a greater number of remote methods. This

measurement will be used in this paper.

Lack of Cohesion of Methods (LCOM)

LCOM is a metric that measures the commonality of the methods within a

specific class. The equation to calculate the LCOM is:

Equation 2:

LCOM = P – Q, if P > Q

LCOM = 0 otherwise

Where P is the number of disjoint variables accessed by methods in the class and Q is the

number of common variables accessed by methods in the class.

The range of the measurement is 0 to N where 0 indicates a cohesive class while larger

values of N indicate a less cohesive class.

This measurement received a lot of criticism since it was possible to have two

completely different classes with the LCOM measurement of zero. Several alternative

measurements for LCOM have been proposed. Henderson-Sellers, Constantine &

5

Graham proposed an alternative LCOM measurement called LCOM2 (Aivosto, 2011)

(Henderson-Sellers B., 1996). The definition for LCOM2 is as follows:

Equation 3:

Let M be the number of methods in a class

Let A be the number of attributes in a class

Let MA be the number of methods that accesses A

Let sum(MA) be the sum of all MA’s in the class

LCOM = 1 – sum(MA) / (M * A)

The range of LCOM2 is from 0 to 1 where a measurement of 0 is undefined and a

measurement of N between 0 and 1 is the percentage of methods that do not access a

specific attribute. Higher values of N indicate a less cohesive class. LCOM2 will be

used in this paper.

 Additionally several other measurements have been proposed to measure OO

design. In the report, OO Design Quality Metrics, Martin mentions the use of afferent

couplings (AC), efferent couplings (EC), and instability (I) within classes (Martin, 1994).

AC = Number of remote classes that depends on the selected class.

EC = Number of remote classes that the selected class depends on.

I = A number between 0 and 1 which indicates how vulnerable the selected class

is to change.

This paper will use the measurements proposed by Martin and details about each

measurement will be discussed in chapter 4.

Finally, in the paper, A Hierarchical Model for Object-Oriented Design Quality,

Bansyia and Davis proposed a model called QMOOD that evaluates the quality of

application design under the following attributes:

 Reusability – Can the software be applied to new problems?

 Flexibility – Can changes be incorporated to the software?

6

 Understandability – Can the design be easily learned?

 Functionality – Can certain features be accessed in a controlled manner?

 Extendability – Can new additions be added with minimal effort?

 Effectiveness – Does the software achieve desired functionality?

While these attributes can be easily applied to most OO based designs, applying them to

less than ideal OO designs could pose a challenge. However, a portion of measurements

used in QMOOD are based off Chidamber and Kemerer’s measurements.

2.2 Challenges with Web Based Applications

In recent years, the web has made it easier for organizations and people to share

and disseminate information across great distances at minimal cost (USLegal, 2012). As

more organizations utilize the web for their daily operations, the amount of data and

content posted to the web increases dramatically and becomes difficult to manage. From

basic blogs managed by individuals to elaborate business-to-business (B2B) applications

hosted by large enterprises, the web is becoming a major conduit to conduct business and

to promote social interaction (Monaco, 2012). Unlike traditional OO based applications

where the design of the application is conveniently laid out as a series of objects, web

based applications are typically a mix of static content, pages with embedded code, and

classes. This makes it difficult to apply OO based measurements to web applications.

Several studies have been made in trying to apply measurements from OO based

designs to web based applications. One study by Alessandro Marchetto looked into

applying OO based measurements to web based applications (Marchetto, 2004). In the

study, Marchetto proposed a suite of measurements which were derived off traditional

OO measurements such as the ones proposed by Chidamber and Kemerer. In order to

7

apply these measurements to web based applications, Marchetto applied a method to

isolate code fragments and treated them as modules. From there, he applied the modified

metrics to obtain his results. This paper will look into using a similar approach and treat

files within a content management system as a class.

2.3 PHP and Tools

PHP is one of the most heavily used languages for web applications. PHP was

originally developed by Rasmus Lerdorf in 1994 as a series of scripts to make it easier for

him to manage his website (The PHP Group, 2012). PHP is a weakly typed, server-side

scripting language that can be embedded in HTML to produce dynamic content.

Between 2000 and 2010, there have been two major releases of the language. The first

was PHP 4.0, released in 2000. PHP 4 was very popular at the time and many content

management systems used it within their architecture. PHP 4 supported some Object

Oriented (OO) declarations but lacked certain, explicit declarations. In 2004, PHP 5.0

was released to the public and introduced more OO features. Some of these features that

PHP 5.0 included were private and protected variable declarations, abstract classes, final

classes, and interfaces. In addition, setters and getters have been standardized.

Additionally, the error handling in PHP 5 is significantly better than in previous versions.

Several tools have been developed for PHP that have made it easier to collect

measurements from PHP based applications. PHP Depend developed by Manuel Pichler

is one such tool that collects measurements across a wide range of metrics (Pichler,

2011). More information for PHP Depend can be found in chapter 4. A second tool

called PHP Unit is a unit testing framework for PHP that supports several OO based

measurements (Sebastian, 2011). This paper will not include PHP Unit since it is

8

sensitive to explicit class declarations and thus makes it difficult to collect the necessary

measurements. Additionally PHP Depend covers the same measurements used by PHP

Unit.

3.0 The Content Management Systems
With an increasing volume of information being presented on the web, the need

for tools to manage this information becomes ever more important. Content Management

Systems (CMS) are one such tool that helps to make it easier for businesses and

organizations to manage this information (DocForge, 2011).

A CMS is an application, typically hosted on a web server that is responsible for

maintaining information on a web page or web application. Most content management

systems have the following attributes:

 Security - Manage permissions to administrators, publishers, and contributors.

 Workflow - Ensure that multiple people can edit content on the CMS in parallel.

 Templating - Ability to apply visual style to content being edited.

 Modularity – Ability to extend features by adding modules.

 Media Management - Aid in the ease of storage of web assets.

 Rich Text Editing - Aid in the ease of use in standard editing of web pages.

Users, without knowledge of web languages, should be able to update content on

the CMS.

 Scalability – Ability to use different databases, hosting environments.

 Content Distribution – Ability to share content via APIs or other syndication

methods.

9

In General, a CMS helps to abstract away the technical knowledge required to manage

content on the web.

There are many types of Content Management Systems currently in use. They

range from enterprise level, proprietary systems to free, open source systems. Two

popular CMS product’s that this paper will focus on is Drupal and WordPress. Drupal is

a fully developed, module-based CMS that is widely used across a wide range of sites.

These websites could range from complex E-Commerce sites that host complex web

applications to simple blogs. WordPress, on the other hand, is a simpler CMS system

that mostly focuses on blogs and sites that deal with content publication, but is also

capable on managing more complex websites and web applications. Both, Drupal and

WordPress uses PHP and is generally hosted in a Linux, Apache, MySQL, and PHP

(LAMP) environment.

When Drupal and WordPress was created, PHP 4 was the version in use. Due to

limitations with PHP 4, the developers on both Drupal and WordPress took a procedural

approach in the construction of the Content Management Systems. Later, PHP 5 was

released which included more object oriented programming features.

For our comparison, WordPress and Drupal were chosen since they are two of the

most widely used Content Management Systems on the web (W3Techs, 2012). A lot of

businesses rely on them when developing and maintaining websites, so it is beneficial if a

comparison between WordPress and Drupal could be made. Another CMS called Joomla

Was considered, and it was ranked as the second largest CMS on the web, but it was

omitted due to time constraints and the file structure between Joomla and Drupal did not

allow for a more direct comparison compared to Drupal and WordPress.

10

3.1 Drupal

 Drupal is an open source, Content Management System that relies on modules to

extend its functionality (Hunter, L. 2008). It is implemented in PHP and requires a

MySQL or a PostgreSQL database. As of this writing, Drupal 6 is the current version of

Drupal in use, with version 7 under development.

 When Drupal was created, PHP 4.0 was in use. This made it difficult for the

developers to use a completely object oriented approach to the design of the CMS, due to

the limited object oriented abilities in PHP 4.0. They instead, opted for a module based

system, where each module represented a class which contained “hooks” on each module

for message passing. In other words, each module in the Drupal CMS will be considered

a pseudo class, and the hooks would be considered event handlers to access and use that

pseudo class. This helps to enforce isolation of certain Drupal core functions and

encourages the use of an Application Programming Interface (API) to call Drupal

modules.

 Drupal works by waiting for a request through its “index.php” file. When a

request is sent to Drupal, the CMS will load a pseudo bootstrapping file that loads all the

necessary functions and files needed to fulfill the given request. It will then load the

menu system which will determine what functionality the request requires. From there,

the menu system will load the necessary node data from the database. The menu system

will then call all necessary modules to process the node data. After receiving the results

from the modules, the menu system will then authenticate the user submitting the request

and pass the results to the theme generator. After getting the results from the theme

generator, the menu system will then pass the HTML results back to the web server,

which is then sent back to the client’s web browser via an HTTP response.

11

Figure 1: Architecture of the Drupal CMS system. Before any pages are rendered, data is retrieved

via a generic data node. From there, modules can use the data for their own purposes before being

passed on to the next level. On the Blocks and Menus level, Navigation items are assigned to the page

before being passed through the authentication level. Once authorized, the page moves to the

Theme/Template level where styling is then applied to the page.

Additionally, Drupal comes with a set of core modules. These modules contain

enough functionality to start a basic website without the need of additional modules.

Some of these modules are used for the following…

12

 authentication of users

 statistics on site usage

 management of content for blogs, forums, and polls

 applying themes to content,

 management of multiple sites

 Search Engine friendly URLs where a given URL on a Drupal site would look

like http://www.domain.com/mysubpage/ instead of

http://www.domain.com/node.php?ID=mysubpage

 RSS feed aggregator

 Management of user profiles such as their login, account information, and any

rights that might be associated with them.

While some functionality for Drupal is in its core modules, the bulk of the work

requested is handled by a set of “include” files. These include files contain the necessary

functions to process the requests to the CMS, interact with the necessary modules,

communicate with the database, and use the theme generator to display the results back to

the user. These “include” files are the files that will be measured. Below is a list of these

“include” files that the Drupal CMS uses.

Bootstrap.inc – This include file is loaded for every Drupal request. It includes all the

necessary functions needed by the request. From here, other include files will be loaded.

http://www.domain.com/mysubpage/
http://www.domain.com/node.php?ID=mysubpage

13

Common.inc – Loaded by the bootstrap.inc file, contains all the common functions

needed by the CMS.

Cach.inc – Handles the main caching of content on the Drupal CMS. Can be extended

by using other Drupal modules.

Database.inc – General wrapper for database specific files, such as database.mysql.inc,

database.mysqli.inc, or database.pgsql.inc.

File.inc – Handles the file management capabilities of Drupal. It is responsible for

loading files such as theme or data files.

Xmlrpc.inc – manages the XML RPC calls. XML RPC is similar to HTTP calls, but

uses XML to send the messages to the receiving application.

Unicode.inc – Manages the Unicode Character set. Unicode is an agreed standard of

characters. It is generally used in international environments where ASCII, or other

character sets are insufficient.

Theme.inc – The main theme engine of the Drupal CMS. Its responsibility is to take

data from the layer beneath it and apply formatting to it. This will involve loading the

necessary style sheets needed, and for placement of the content in defined regions.

14

Session.inc – Manages the session state of the user. This usually involves creating,

updating and destroying user sessions.

Path.inc – Manages the paths in the Drupal CMS. It also supports path aliasing.

Menu.inc – Handles the menu system in Drupal such as navigation menus. In addition, it

is responsible for the dispatching of events and calls.

Module.inc – Handles the management of modules in the Drupal CMS. Its

responsibilities include the loading, enabling, disabling, and listing of modules.

Form.inc – handles the form generation, validation, and processing of forms in the

Drupal CMS system.

3.2 WordPress

 WordPress is a Content Management System that focuses on Blogs or simple

websites that publishes information to the masses (WordPress.org, 2012). Unlike Drupal,

WordPress doesn’t have an elaborate set of “core” modules to extend its functionality

right out of the box. It, instead, relies on “plugins” to extend its functionality from the

basic blog system that it was designed for. A plugin in WordPress is very similar to a

module in Drupal. It is nothing more than a PHP file that accesses the WordPress API to

extend its functionality. The goal in outsourcing some of its functionality to plugins is to

15

reduce the complexity of the CMS core system and focus the core on its intended

functionality which is the management and publishing of content to the blog or website.

 Similar to Drupal, WordPress was implemented when PHP 4.0 was in wide use.

This made it hard for the developers of WordPress to use a strictly OO based approach in

developing the software. While the majority of PHP files in WordPress lack a standard

class definition, there are several files that do contain classes. In addition, a level of

isolation has been attempted where the code belonging to a particular function is isolated

in its own PHP file and not combined with other code in the same file. As of this

writing, WordPress 3.0 is the current version in use.

 While WordPress is simpler than Drupal in regards to “out of the box”

functionality, the underlining architecture is very similar. These similarities are: the

abstraction of databases by the use of database classes, managing and applying themes to

content, management of data, caching of content, Unicode support, file management, and

XML Remote Procedure Call (RPC) handling. In addition, WordPress includes a

common library of functions and a “bootstrapping” approach in the loading and serving

of content. In addition, WordPress also uses a “hook” system to connect plugins into the

core WordPress API. This is similar to Drupal’s system where modules for a particular

function could interact via “hooks” to the main API.

Since WordPress is focused on managing blogs, it renders pages differently than

Drupal. A big difference is that it uses a “loop” to load blog posts and comments

(WordPress.org, 2012). Following the figure below, WordPress will load the header, the

navigation “sidebar” and the footer. Between the header and footer, WordPress will loop

through the selected list of information to be rendered on the page. Within the loop, there

16

could be nested loops which could be used to list comments or any other information. In

comparison, Drupal will not use a loop to render the page, but instead pull the data

directly from the database. This is because WordPress was designed towards websites

that contain multiple “entries” on a single page, such as blog entries. Drupal, on the other

hand, only needs data for a specific article or data node, thus it won’t use a loop to

retrieve that specific piece of information.

Figure 2: A page rendered through WordPress passes through the WordPress “Loop”. This occurs

by rendering the header of the page first, and then loop through all entries on the page. Finally

navigation items are applied to the page and the footer is then added. This is a typical process for

Blogs, but can be used for individual pages since WordPress only needs to loop through the content

once.

Similar to Drupal, the core of the execution in WordPress is in a set of “include”

files. These files handle everything from interaction of databases to the management of

17

comments and posts. Below is a list of important files used by WordPress to implement

website functionality.

Index.php – The default page for every WordPress call. It passes the execution off to

wp-blog-header.php

WP-blog-header.php – A Simple file that loads the WP-load.php file for bootstrapping

and execution of the request, and then calls the template-loader.php file for styling.

WP-load.php – Similar to Drupal’s bootstrapping file, this file handles the bootstrapping

of modules and loads any necessary functions. This page is executed on every page call.

WP-settings.php – While WP-load.php is defined as the bootstrapping file in

WordPress, this file will do the actual work in loading the necessary modules, classes,

and any other procedural functions to process the request.

Bookmark.php – Include file that handles the bookmarking of blog posts and the

“permalinks” associated with every post.

Cache.php – Handles the caching of pages and posts. Similar to Drupal, this include

could be extended with Plugins. In addition a class called “WP Object Cache” is used to

hold all cached objects in a central location.

18

Capabilities.php – Handles the permissions used in WordPress and manages the

assignment of permissions to certain users. Several classes are also contained in this file

such as WP_Roles, WP_Users, and WP_Role.

Category.php – Manages the category meta-data used in posts. Blog posts are usually

categorized into categories for easy navigation and searching of posts.

Classes.php – General PHP file that includes several classes commonly used in the

CMS. These classes are listed as follows…

 WP – Sets up the WordPress Environment.

 WP_Error – Container to detect any errors thrown in WordPress and encapsulates

it.

 Walker – Class that Displays tree like structures.

 Walker_Page – Creates an HTML list of pages.

 Walker_pagedropdown – Creates an HTML dropdown of pages.

 Walker_category – Creates an HTML list of categories.

 Walker_categorydropdown – Creates an HTML dropdown of categories.

 WP_Ajax_Response – Returns an XML response to an AJAX request.

 WP_MatchesMapRegEx – helper class to remove the need to use eval in query

strings.

19

Plugin.php – Similar to Drupal’s module.inc file, it is responsible for loading, activating,

and deactivating plugins in the WordPress CMS. It is also responsible in managing the

hooks for plugins as well as the action and filter calls.

Pluggable.php – A default set of functions that handle the logged in user’s information.

It can be extended with third-party plugins.

Formatting.php – Handles the formatting of the outputted text. It includes several

functions for formatting of Unicode characters.

Query.php – Similar to Drupal’s database.inc file, this file manages the database calls to

the database. Unlike Drupal, It only supports MySQL.

Theme.php – Handles the theme generation and application of theme elements to the

outputting data.

User.php – Manages the authentication of the user in the CMS.

Functions.php – Similar to common.inc in Drupal, this file contains a list of commonly

used functions used in the WordPress CMS.

20

4.0 Measurements
 The goal of this paper is to extract measurements from Drupal and WordPress and

attempt to draw comparisons between the two content management systems. This

chapter will list the measurements used in this paper and describe our methods and tools

in obtaining these measurements.

4.1 Measurements Used

 In traditional OO based desktop software, there is a large set of tools and test

suites that are used to measure the quality of the software. Tools such as the ones

proposed by Chidamber and Kemerer as well as the QMOOD model proposed by

Bansiva made it possible to measure, and to some extent, quantify OO design. For

example, you can capture the number of remote method calls from a given class. The

number of remote method calls could indicate the complexity of a given class since a

higher count would mean that the class will have more external dependencies. The

higher the number, the more sensitive the class will be to these external dependencies.

 While OO based tools can easily be applied to OO based programs, trying to

apply these measurements to web based scripting languages is more difficult. This is due

to the lack of certain OO features in these languages. This is especially true with PHP

4.0, where several noticeable OO features such as private or protected declarations,

abstract classes, constructors, and destructors, were lacking.

While this presented a challenge, the developers of both Drupal and WordPress

tried to adhere to an OO based design in their respective content management systems

and tried to follow through with it during implementation. Several workarounds have

21

been made during implementation. Instead using explicit class declarations, they tried to

isolate code in individual files. An example of this would be that all the caching handled

by the CMS is routed through the cache.php file and not through a class called cache.

This is critical since it is possible to treat these files as classes despite lacking explicit

class declarations (Bob, 2005).

In addition, they also tried to enforce abstraction and isolation between the

underlining databases and code. In Drupal’s case, developers even attempted to apply

widely used and well accepted design patterns to their design (such as the bridge,

singleton, façade, and the commonly used Model View Controller patterns).

 Since the developers of WordPress and Drupal attempted to design their software

with OO in mind, a good portion of the measurements used in QMOOD can be used to

assess the quality of their CMS product. In addition, a good portion of QMOOD that

deals with the size of the application can be applied directly without any modifications.

 The measurements listed below include a series size metrics that simply

determine the size of a given attribute. In addition a series of measurements derived from

chapter 2 will be used as well. Below are their definitions.

Lines of Code (LOC)

 This is the most basic size based measurement. It simply measures the lines of

code in a given class or file. This includes everything, from Server-Side Lines of code

(SLOC), Comment Lines of Code, (CCLOC), and Executable Lines of Code (ELOC).

Executable Lines of Code (ELOC)

22

 This is a basic size measurement that will measure the number of lines of

executable code in a given file. Executable lines of PHP code will be measured. This

measurement will not include lines of commented code.

Commented Lines of Code (CLOC)

 This is a basic measurement that only counts the lines of comments in a given

class or file. This paper took it a step further and also counted the number of comments

inside each function or method. This will help determine if the comments are generally

descriptive for the functions or methods, or if the executable code within the function or

method is properly commented.

Response for Class (RFC)

This measurement captures how many methods are called when an operation

within a class is invoked. The more methods needed, the higher the complexity. In web

applications, a good portion of the files in the application will most likely be files instead

of classes.

Lack of Cohesion in methods (LCOM2)

This metric tries to determine how closely related the methods are in a class. In

other words, if a class contains multiple methods, do these methods use a common set of

attributes? If a class contains methods that share a common set of attributes, then that

class is considered highly cohesive. A class that contains methods that do not share the

same set of attributes is considered highly incohesive. Criticism for this measurement

23

was discussed in chapter 2 and an alternative version of LCOM called LCOM2 was used

instead. The equation for LCOM2 is located under Equation 3: in chapter 2.

Number of Local Methods (NLM)

This is a count of all local methods in a class or file. It is a basic metric but does

give an indication if a class or file might have too few or too many methods or functions.

If the count is low, it might indicate that the methods could go into a different, more

relevant class. If the count is too high, it might indicate that the methods in the class

could be split off into a new class.

Number of Remote Methods (NRM)

This is a count of all remote method calls in a class or file. This metric is just like

the NLM metric except that it counts the number of method calls to objects OUTSIDE

the file or class.

Number of Attributes (NOA)

Similar to NLM but we count the number of attributes in each class. Obviously,

if there’s a large number of attributes in the class, it might indicate a higher level of

complexity. A small number of attributes might indicate that the class is nothing more

than an abstract class or interface. For our web applications, since you cannot explicitly

declare an attribute private, they had to use global variables within the file.

McCabe Cyclomatic Complexity Model: (CCN)

24

This is a classic measurement of the complexity of a given source code. This

measurement captures the number of distinct paths could be traversed through a code

segment. While there is a formal definition of this measurement (McCabe, 1976), a

common count of this complexity metric could be obtained by counting the number of

conditional statements and add 1 to the total. The equation to calculate CCN goes as

follows:

Equation 4:

CCN = D + 1

Where D is the number of decision statements in a given code fragment.

Counting Weighted Methods (CWM)

This measurement is just like the NOM measurement with the exception that we

add weights to the count. The weights will be derived from the McCabe Complexity

metric of the given method. In other words, the weights on each method are initially set

to 1. The weights are then updated to reflect the McCabe’s complexity score for the

given method.

Afferent Coupling (AC)

Afferent Coupling is basically a measurement of how many classes or entities that

depends on a given class. A high count indicates that the class might have many

responsibilities and any changes to the class might have a high impact on the entire

application.

Efferent Coupling (EC)

25

Similar to Afferent Coupling except this metric counts the number of

dependencies going out of a given class. A high EC indicates that the class or entity is

highly dependent on other classes or entities, and any changes to the application would

carry a higher risk in breaking the class.

Instability (I)

From the afferent and efferent measurements you can derive a new measurement

called “Instability”. Instability is a measurement to determine how resilient a class is to

change. The formula to determine the instability of a class is very simple.

Equation 5:

I = EC / (AC + EC)

AC = the total number of afferent couplings

EC = the total number of efferent couplings

The range for I is from 0 to 1 where 0 means that the class is completely stable and 1

meaning that the class is completely instable.

4.2 Methods and Tools used

 In order speed up the gathering of our measurements, several tools were used.

One of these tools is PHP Depend. PHP Depend is a quality assessment tool that

analyzes static PHP code, and then applies several QMOOD based measurements on the

analyzed code. Several measurements captured in PHP Depend are listed below.

 LOC – Lines of Code

 ELOC – Lines of Executable Code

 CLOC – Lines of Commented Code

26

 NOM - Number of methods

 CCN – Cyclometric Complexity

 CCN2 – Cyclometric Complexity with Conditional statements included.

With the exception of CCN, the measurements listed in 4.1 were used. For the CCN

measurement, an alternative complexity measurement was used called CCN2. Unlike

CCN, CCN2 would consider the Boolean operators in a conditional statement and treat

them as unique paths. In other words, the statement (x > 1 OR X < -1) would count as

one path in CCN, but it would count as two paths in CCN2.

 PHP Depend is more flexible with PHP projects that utilize the OO features in

PHP 5. It can evaluate entire projects and generate useful charts and graphs as well as

XML data for the measurements listed in 4.1. Since Drupal and WordPress were built

before PHP 5 was released, PHP Depend was not able to automate these measurements.

Additionally, PHP Depend was capable of making Afferent and Efferent Coupling

measurements as well, but since Drupal and WordPress didn’t use the “class” construct in

most of their files, PHP Depend could not automate this measurement. Despite these

limitations, PHP Depend saved us a lot of time on our size measurements as well as our

Cyclometric Complexity (CCN2) measurements. Finally to verify the accuracy of PHP

Depend, several PHP code snippets were analyzed by the tool and the results were

compared against results from a manual walkthrough.

 While PHP Depend saved us a lot of time in gathering most of our measurements,

several measurements were more difficult to obtain, and unfortunately, tools to automate

the gathering of these measurements are non-existent for the job at hand. The number of

27

remote method calls (NRM), and the number of efferent and afferent couplings (EC and

AC respectively) in a given module took more time than other measurements gathered by

PHP Depend. For the number of remote methods calls and the efferent couplings of a

given module, a code walkthrough on our selected files had to be conducted. This was

time consuming and possibly less accurate due to possible human error. As for the

Afferent Coupling measurement, Adobe Dreamweaver was used to find and list all calls

to the given method. Dreamweaver is a common web editor for websites and it has the

ability to search through the entire project for a specific method and return a list of results

(Adobe, 2012).

5.0 Measurement Results
This chapter will cover the measurement results that were gathered for this paper.

The first part of this chapter will cover the measurements regarding the size of the

selected modules such as the number of lines of code, the number of methods, and

several other related metrics. The second part of this chapter will cover measurements

regarding the complexity of the modules such as the dependencies between the modules,

and the complexity of our measured code.

5.1 Size Measurements:

 The tables in this section list results that deal primarily with the size of the

modules that are being measured. These measurements are as follows.

 The lines of code (LOC),

 The number of lines of commented code (CLOC)

 The lines of executable code (ELOC)

28

 The number of methods or functions in a given file (NLM).

These size measurements are useful in determining other measurements such as

the number of defects per line of code. Additionally this helps to normalize other

measurements. An example of this is if someone looks at a given method in a class and

noticed that the cyclometric complexity count in the method is very high compared to the

other methods in the class. They might wrongly assume that the method is unnecessarily

complex, while in truth, the method has a higher LOC value compared to the other

methods in the class. This is one reason why it is important to gather these measurements

regarding the size of the classes and files.

29

Table 1: Our results for the size measurements from the WordPress content management system.

The results show the lines of code (LOC), the commented lines of code (CLOC), the executable lines

of code (ELOC), the number of local methods (NLM), the number of attributes (NOA), and the

number of global and constant variables counted in the selected files. The totals for each metric are

listed at the bottom of this table. Global variables are defined by the PHP “global” declaration while

constants are defined by the “define” declaration.

File LOC CLOC ELOC NLM NOA Globals constants

index.php 18 13 2 0 0 0 0

wp-blog-header.php 20 5 5 0 0 0 0

wp-load.php 54 22 17 0 0 0 1

wp-config.php 76 48 15 0 0 0 12

atomlib.php 288 11 219 13 18 0 0

author-template.php 343 148 153 12 0 4 0

bookmark-template.php 255 117 109 2 0 0 0

bookmark.php 377 116 218 7 0 2 0

cache.php 167 113 38 10 0 0 0

Cache.php - WP Object Cache 268 154 84 10 4 0 0

canonical.php 346 83 222 2 0 4 0

capabilities.php - WP_Roles 216 124 74 9 5 2 0

capabilities.php - WP_Role 103 64 29 4 2 1 0

capabilities.php - WP_User 384 226 124 13 11 2 0

capabilities.php 322 98 192 6 0 1 0

category-template.php 977 394 474 14 0 3 0

category.php 368 196 125 14 0 0 0

classes.php - WP 492 185 246 10 9 10 0

classes - WP_Error 172 95 59 8 2 0 0

classes.php - Walker 383 147 183 9 3 0 0

classes.php - Walker_Page 97 43 43 4 2 0 0

classes.php - walker_pagedropdown 97 43 43 1 2 0 0

classes.php - walker_category 139 45 74 4 2 0 0

classes.php - walker_categoryDropDown 43 20 20 1 2 0 0

classes.php - WP_Ajax_Response 129 47 70 3 1 0 0

classes.php - WP_MatchesMapRegEx 84 54 23 4 4 0 0

plugin.php 705 420 221 20 0 4 0

pluggable.php 1792 626 933 44 0 9 0

formatting.php 2850 1153 1481 73 0 7 0

query.php 751 376 264 37 0 12 0

theme.php 1386 579 636 54 0 18 0

user.php 737 286 351 17 0 10 0

functions.php 3641 1455 1810 115 0 16 0

compat.php 163 16 117 12 0 1 0

TOTAL: 18075 7434 8635 532 67 106 13

30

Table 2: Our results for the size measurements from the Drupal content management system. The

results show the lines of code (LOC), the commented lines of code (CLOC), the executable lines of

code (ELOC), the number of local methods (NLM), the number of attributes (NOA), and the number

of global and constant variables counted in the selected files. The totals for each metric are listed at

the bottom of this table. Global variables are defined by the PHP “global” declaration while

constants are defined by the “define” declaration.

File LOC CLOC ELOC NLM NOA Globals constants

index.php 39 10 21 0 0 0 0

Bootstrap.inc 1028 462 450 31 0 12 18

Common.inc 2380 1120 1073 74 0 6 3

cache.inc 169 90 69 3 0 1 0

database.inc 320 148 149 7 0 6 1

database.mysqli.inc 430 197 192 20 0 2 0

database.mysql.inc 448 206 198 20 0 2 0

file.inc 1105 281 739 19 0 1 7

database.pgsql.inc 438 206 187 21 0 3 0

install.pgsql.inc 135 24 92 2 0 0 0

xmlrpcs.inc 319 77 226 11 0 0 0

xmlrpc.inc 488 115 351 21 0 0 0

unicode.inc 509 182 288 17 0 1 3

theme.inc 1125 403 590 35 0 5 3

tablesort.inc 195 88 94 7 0 0 0

session.inc 174 74 75 10 0 1 0

path.inc 208 101 89 8 0 0 0

pager.inc 423 218 165 10 0 3 0

module.inc 423 191 197 14 0 0 0

menu.inc 1401 492 747 37 0 3 0

locale.inc 1662 302 1264 40 0 1 0

install.mysqli.inc 137 23 95 2 0 0 0

install.mysql.inc 142 25 97 2 0 0 0

install.inc 745 218 457 22 0 8 14

image.inc 347 101 204 15 0 0 0

form.inc 1620 592 881 55 0 4 0

TOTAL: 16410 5946 8990 503 0 59 49

31

Table 3: Size measurements for the WordPress CMS broken down to percentages. Averages for the

%CLOC, %ELOC, and the average LOC/NLM are weighted averages based off the lines of code

(LOC)

Filename LOC CLOC
%

CLOC ELOC
 %

ELOC NLM
avg

LOC/NLM

index.php 18 13 72.22% 2 11.11% 0 NA

wp-blog-header.php 20 5 25.00% 5 25.00% 0 NA

wp-load.php 54 22 40.74% 17 31.48% 0 NA

wp-config.php 76 48 63.16% 15 19.74% 0 NA

atomlib.php 288 11 3.82% 219 76.04% 13 15.23

author-template.php 343 148 43.15% 153 44.61% 12 12.58

bookmark-template.php 255 117 45.88% 109 42.75% 2 53.50

bookmark.php 377 116 30.77% 218 57.82% 7 30.85

cache.php 167 113 67.66% 38 22.75% 10 3.60

Cache.php - WP Object Cache 268 154 57.46% 84 31.34% 10 7.80

canonical.php 346 83 23.99% 222 64.16% 2 109.50

capabilities.php - WP_Roles 216 124 57.41% 74 34.26% 9 7.33

capabilities.php - WP_Role 103 64 62.14% 29 28.16% 4 6.25

capabilities.php - WP_User 384 226 58.85% 124 32.29% 13 8.60

capabilities.php 322 98 30.43% 192 59.63% 6 31.66

category-template.php 977 394 40.33% 474 48.52% 14 20.57

category.php 368 196 53.26% 125 33.97% 14 8.78

classes.php - WP 492 185 37.60% 246 50.00% 10 23.50

classes - WP_Error 172 95 55.23% 59 34.30% 8 6.87

classes.php - Walker 383 147 38.38% 183 47.78% 9 19.77

classes.php - Walker_Page 97 43 44.33% 43 44.33% 4 9.75

classes.php - walker_pagedropdown 97 43 44.33% 43 44.33% 1 10.00

classes.php - walker_category 139 45 32.37% 74 53.24% 4 17.50
classes.php -

walker_categoryDropDown 43 20 46.51% 20 46.51% 1 16.00

classes.php - WP_Ajax_Response 129 47 36.43% 70 54.26% 3 22.33

classes.php - WP_MatchesMapRegEx 84 54 64.29% 23 27.38% 4 4.25

plugin.php 705 420 59.57% 221 31.35% 20 10.95

pluggable.php 1792 626 34.93% 933 52.06% 44 19.20

formatting.php 2850 1153 40.46% 1481 51.96% 73 20.26

query.php 751 376 50.07% 264 35.15% 37 54.23

theme.php 1386 579 41.77% 636 45.89% 54 11.72

user.php 737 286 38.81% 351 47.63% 17 20.47

functions.php 3641 1455 39.96% 1810 49.71% 115 15.73

compat.php 163 16 9.82% 117 71.78% 12 9.75

Averages: 536.6 221.2 41.23% 255.1 47.55% 15.6 20.45

32

Table 4: Size measurements for the Drupal CMS broken down to percentages. Averages for the

%CLOC, %ELOC, and the average LOC/NLM are weighted averages based off the lines of code

(LOC)

Filename LOC CLOC % CLOC ELOC % ELOC NLM avg LOC/NLM
index.php 39 10 25.64% 21 53.85% 0 NA

Bootstrap.inc 1028 462 44.94% 450 43.77% 31 13.90
Common.inc 2380 1120 47.06% 1073 45.08% 74 14.44

cache.inc 169 90 53.25% 69 40.83% 3 22.66
database.inc 320 148 46.25% 149 46.56% 7 21.00

database.mysqli.inc 430 197 45.81% 192 44.65% 20 9.55
database.mysql.inc 448 206 45.98% 198 44.20% 20 9.85

file.inc 1105 281 25.43% 739 66.88% 19 38.47
database.pgsql.inc 438 206 47.03% 187 42.69% 21 8.90

install.pgsql.inc 135 24 17.78% 92 68.15% 2 46.00
xmlrpcs.inc 319 77 24.14% 226 70.85% 11 23.18

xmlrpc.inc 488 115 23.57% 351 71.93% 21 16.66
unicode.inc 509 182 35.76% 288 56.58% 17 16.70

theme.inc 1125 403 35.82% 590 52.44% 35 16.71
tablesort.inc 195 88 45.13% 94 48.21% 7 13.28
session.inc 174 74 42.53% 75 43.10% 10 7.40

path.inc 208 101 48.56% 89 42.79% 8 11.00
pager.inc 423 218 51.54% 165 39.01% 10 16.40

module.inc 423 191 45.15% 197 46.57% 14 14.00
menu.inc 1401 492 35.12% 747 53.32% 37 19.54
locale.inc 1662 302 18.17% 1264 76.05% 40 31.57

install.mysqli.inc 137 23 16.79% 95 69.34% 2 46.50
install.mysql.inc 142 25 17.61% 97 68.31% 2 47.50

install.inc 745 218 29.26% 457 61.34% 22 20.09
image.inc 347 101 29.11% 204 58.79% 15 13.53

form.inc 1620 592 36.54% 881 54.38% 55 16.29

Averages:

631.15 228.692 36.23% 345.8 54.78% 19.35 19.62

33

The files selected in the tables above are some of the core files for Drupal and

WordPress. They are responsible for a wide range of responsibilities such as

authentication, caching, database operations, and display of content to the user.

There are several things to note in the tables listed above. In table 2 you will

notice that there are no attributes defined in Drupal. This is due to the Drupal team

deciding to omit the use of classes in their core PHP files. Secondly, constants for both

WordPress and Drupal are defined by using the PHP “define” statement. Thirdly, more

lines of WordPress code have been analyzed than Drupal code. This is due in part that

several PHP files in WordPress contain several classes in each file while a file in Drupal

constitute as one class. Additionally the column called “globals” is the number of global

variables defined by the PHP “global” statement.

For the commented lines of code (CLOC) Drupal has an average near 36% while

WordPress has an average near 41%. From this observation it appears that both

applications have a good amount of CLOC in their classes.

The next item is the percentage of executable lines of code (ELOC). Close to 55%

of code in the files measured in Drupal are executable lines of code versus roughly 47%

in WordPress. One thing that you should keep in mind is that the higher the percentage

of ELOC is the lower the percentage of CLOC.

 Our third measurement is the average number of ELOC for each method in a

class. Similar to CLOC, there is no optimal number of LOC for a given function. Too

much LOC in a given function indicates that the function might be too complex and

should be broken up while too little LOC indicates that the function might be too trivial.

34

In determining the average number of ELOC for a given function in a class the following

equation is used.

Equation 6:

n

i
ELOCin

1
/1

Where n is the number of functions in a given class and ELOCi is the number of lines of

executable code in a given function.

 Drupal had an average of 19.62 lines of executable code per function. WordPress

got an average of 20.45 lines of executable code per function.

5.2 Complexity Measurements:

 The next set of measurements primarily deals with the complexity of the classes

and files that were analyzed. The following metrics were used in our complexity

measurements.

 The number of remote methods called (NRM)

 The response for a class (RFC)

 The lack of cohesion in methods (LCOM2)

 The number of afferent couplings (AC)

 The number of efferent couplings (EC)

 The cyclometric complexity (CCN2)

 Instability (I)

Table 5 lists our complexity metrics for the WordPress Content Management

System while the Table 6 lists our complexity metrics for the Drupal Content

35

Management System. Finally table 7 and table 8 lists the averages in complexity for

WordPress and Drupal respectively.

36

Table 5: Complexity measurements for WordPress listing the Response For Class (RFC), Lack of

Cohesion Of Methods (LCOM2), Number of Remote Methods (NRM), Number of Local Methods

(NLM), Afferent Coupling (AC), and Efferent Coupling (EC). The last row contains the totals for

the measurements across the files analyzed.

File RFC NRM NLM CCN AC EC

index.php 0 0 0 1 0 1

wp-blog-header.php 0 0 0 2 0 2

wp-load.php 0 0 0 6 0 4

wp-config.php 0 0 0 2 0 1

atomlib.php 15 2 13 61 1 2

author-template.php 25 13 12 51 13 8

bookmark-template.php 10 8 2 28 4 6

bookmark.php 23 16 7 64 8 6

cache.php 17 7 10 10 20 1

Cache.php - WP Object Cache 11 1 10 26 1 1

canonical.php 41 39 2 144 0 9

capabilities.php - WP_Roles 12 3 9 19 3 2

capabilities.php - WP_Role 8 4 4 7 3 2

capabilities.php - WP_User 20 7 13 33 11 4

capabilities.php 17 11 6 58 88 6

category-template.php 35 21 14 88 23 13

category.php 26 12 14 39 22 6

classes.php - WP 36 26 10 95 6 9

classes - WP_Error 10 0 8 21 37 0

classes.php - Walker 9 0 9 67 2 0

classes.php - Walker_Page 10 6 4 14 2 4

classes.php - walker_pagedropdown 2 1 1 2 0 1

classes.php - walker_category 9 5 4 28 0 4

classes.php - walker_categoryDropDown 2 1 1 4 0 1

classes.php - WP_Ajax_Response 8 5 3 17 1 3

classes.php - WP_MatchesMapRegEx 8 4 4 5 0 0

plugin.php 23 3 20 68 153 2

pluggable.php 112 68 44 244 97 20

formatting.php 86 13 73 296 155 7

query.php 53 16 37 82 4 6

theme.php 80 26 54 190 18 13

user.php 59 42 17 115 32 12

functions.php 177 62 115 507 156 18

compat.php 18 6 12 36 16 3

Totals: 962 428 532 2419 876 169

37

Table 6: Complexity measurements for Drupal listing the Response For Class (RFC), Lack of

Cohesion Of Methods (LCOM2), Number of Remote Methods (NRM), Number of Local Methods

(NLM), Afferent Coupling (AC), and Efferent Coupling (EC). The last row contains the totals for

the measurements across the files analyzed.

File RFC NLM NRM CCN AC EC

index.php 0 0 0 6 0 1

Bootstrap.inc 50 31 19 130 83 10

Common.inc 105 74 31 334 146 14

cache.inc 10 3 7 18 4 3

database.inc 16 7 9 43 40 6

database.mysqli.inc 33 20 13 42 37 5

database.mysql.inc 33 20 13 45 37 6

file.inc 32 19 13 119 7 4

database.pgsql.inc 36 21 15 47 37 6

install.pgsql.inc 4 2 2 13 0 2

xmlrpcs.inc 18 11 7 53 1 2

xmlrpc.inc 24 21 3 83 1 2

unicode.inc 19 17 2 83 15 2

theme.inc 73 35 38 156 49 12

tablesort.inc 13 7 6 35 9 4

session.inc 17 10 7 27 1 2

path.inc 14 8 6 29 42 4

pager.inc 17 10 7 48 17 3

module.inc 24 14 10 60 32 6

menu.inc 57 37 20 245 12 8

locale.inc 66 40 26 235 0 12

install.mysqli.inc 4 2 2 14 0 2

install.mysql.inc 4 2 2 14 0 2

install.inc 54 22 32 144 53 12

image.inc 20 15 5 47 2 4

form.inc 116 55 61 308 37 6

Totals 859 503 356 2378 662 140

38

Table 7: Averages for the Number of Remote Methods (NRM), Afferent Coupling (AC), Efferent

Coupling (EC), and Executable Lines of Code (ELOC) across files in WordPress. The weighted

average for Instability (I) is based on the number of executable code (ELOC), while the weighted

average for the Lack of Cohesion of Methods (LCOM2) is based off the Number of Local Methods

(NLM)

File NRM AC EC CCN2 Instability LCOM2 ELOC

index.php 0 0 1 1 NA NA 2

wp-blog-header.php 0 0 2 2 NA NA 5

wp-load.php 0 0 4 6 NA NA 17

wp-config.php 0 0 1 2 NA NA 15

atomlib.php 2 1 2 61 0.67 1.00 219

author-template.php 13 13 8 51 0.38 0.85 153

bookmark-template.php 8 4 6 28 0.60 1.00 109

bookmark.php 16 8 6 64 0.43 0.79 218

cache.php 7 20 1 10 0.05 1.00 38

Cache.php - WP Object Cache 1 1 1 26 0.50 0.75 84

canonical.php 39 0 9 144 1.00 0.38 222

capabilities.php - WP_Roles 3 3 2 19 0.40 0.59 74

capabilities.php - WP_Role 4 3 2 7 0.40 0.17 29

capabilities.php - WP_User 7 11 4 33 0.27 0.78 124

capabilities.php 11 88 6 58 0.06 0.50 192

category-template.php 21 23 13 88 0.36 0.76 474

category.php 12 22 6 39 0.21 1.00 125

classes.php - WP 26 6 9 95 0.60 0.86 246

classes - WP_Error 0 37 0 21 0.00 NA 59

classes.php - Walker 0 2 0 67 0.00 0.78 183

classes.php - Walker_Page 6 2 4 14 0.67 1.00 43

classes.php - walker_pagedropdown 1 0 1 2 1.00 1.00 43

classes.php - walker_category 5 0 4 28 1.00 1.00 74

classes.php - walker_categoryDropDown 1 0 1 4 1.00 1.00 20

classes.php - WP_Ajax_Response 5 1 3 17 0.75 0.33 70

classes.php - WP_MatchesMapRegEx 4 0 0 5 0.00 0.63 23

plugin.php 3 153 2 68 0.01 0.73 221

pluggable.php 68 97 20 244 0.17 0.96 933

formatting.php 13 155 7 296 0.04 0.98 1481

query.php 16 4 6 82 0.60 0.90 264

theme.php 26 18 13 190 0.42 0.98 636

user.php 42 32 12 115 0.27 0.88 351

functions.php 62 156 18 507 0.10 0.97 1810

compat.php 6 16 3 36 0.16 0.83 117

Averages 12.59 25.76 5.21 71.47 0.26 0.89 255.12

39

Table 8: Averages for the Number of Remote Methods (NRM), Afferent Coupling (AC), Efferent

Coupling (EC), and Executable Lines of Code (ELOC) across files in Drupal. The weighted average

for Instability (I) is based on the number of executable code (ELOC), while the weighted average for

the Lack of Cohesion of Methods (LCOM2) is based off the Number of Local Methods (NLM)

File NRM AC EC CCN2 Instability LCOM2 ELOC

index.php 0 0 1 6 NA NA 21

Bootstrap.inc 19 83 10 130 0.11 0.81 450

Common.inc 31 146 14 334 0.09 0.86 1073

cache.inc 7 4 3 18 0.43 0.33 69

database.inc 9 40 6 43 0.13 0.98 149

database.mysqli.inc 13 37 5 42 0.12 0.83 192

database.mysql.inc 13 37 6 45 0.14 0.83 198

file.inc 13 7 4 119 0.36 0.95 739

database.pgsql.inc 15 37 6 47 0.14 0.92 187

install.pgsql.inc 2 0 2 13 1.00 1.00 92

xmlrpcs.inc 7 1 2 53 0.67 1.00 226

xmlrpc.inc 3 1 2 83 0.67 1.00 351

unicode.inc 2 15 2 83 0.12 0.71 288

theme.inc 38 49 12 156 0.20 0.93 590

tablesort.inc 6 9 4 35 0.31 1.00 94

session.inc 7 1 2 27 0.67 0.80 75

path.inc 6 42 4 29 0.09 1.00 89

pager.inc 7 17 3 48 0.15 0.60 165

module.inc 10 32 6 60 0.16 1.00 197

menu.inc 20 12 8 245 0.40 0.90 747

locale.inc 26 0 12 235 1.00 0.98 1264

install.mysqli.inc 2 0 2 14 1.00 1.00 95

install.mysql.inc 2 0 2 14 1.00 1.00 97

install.inc 32 53 12 144 0.18 0.94 457

image.inc 5 2 4 47 0.67 1.00 204

form.inc 61 37 6 308 0.14 0.95 881

Averages: 13.69 25.46 5.38 91.46 0.38 0.91 345.77

40

From tables 7 and 8, the average number of remote method calls (NRM) between

Drupal and WordPress are very close having 13.69 calls on average for Drupal and 12.59

calls on average for WordPress. Using the number of remote method called from a given

class and the number of local methods in a given class, you can determine the “Response

for Class” of the class. Drupal has an average of 33.04 RFC calls for a given class and

WordPress has an average of 28.29 RFC calls for a given class.

For our Cyclometric Complexity Measurement (CCN2), Drupal has an average

CCN2 of 91.46 for a given class while WordPress has an average CCN2 of 71.47 for a

given class. We obtained these results by using PHP Depend to obtain a CCN2 value for

the class and then obtain an average from all the classes measured. From these results, it

seems that Drupal, on average, has a higher cyclometric complexity than WordPress.

For our afferent (AC) and efferent calls (EC), Drupal has an average of 25.46

afferent calls per class and an average of 5.38 efferent calls per class. WordPress has an

average of 25.6 afferent calls per class and 5.21 efferent calls per class. As you can see,

the number of afferent and efferent calls in Drupal and WordPress are very close.

For Instability (I), Drupal has .38 for the average instability for each class while

WordPress has .21 for the average instability for each class. Please note that these results

reflect the files and classes that are listed in the tables above.

For our Lack of cohesion measurement (LCOM2) Drupal has a weighted average of

.91 while WordPress has a weighted average of .89. The higher the measurement, the

less cohesive the methods in the file or class are.

41

Finally, Looking at the tables above you will notice that for some values for

LCOM2 or Instability, there is an “NA” listed. This means that we could not determine

the value for the selected file or class. Also, an LCOM2 measurement with a “NA”

indicates that the file does not have any classes or methods defined. In other words, the

PHP file is not designed to be a class or something resembling a class. While this is

problematic it is not uncommon for web applications to have files with no methods

defined since a good portion of the pages are usually nothing more than a script with

static content.

6.0 Analysis
 The previous chapter listed several tables containing our measured results for

WordPress and Drupal. This chapter will look into these results more closely and try to

draw observations from our measurements as well as making comparisons between

Drupal and WordPress with our results.

6.1 Size Metrics:

Chapter 5 presented several size measurements for WordPress and Drupal. One

measurement listed was the percentage of commented lines of code (CLOC). Drupal had

an average CLOC of 36% across all files while WordPress had an average CLOC of

41%. There are no definite guidelines to the ratio of commented lines of code versus

total lines of code, but it is ideal to have comments describing each class or method as

well as in non-trivial areas of code. It appears that both WordPress and Drupal has

sufficient amount of commenting in the code. This is useful since both products are

open-source which allows them to be modified for specific purposes. Modifying an

42

application with minimal commenting will pose a challenge since it typically takes longer

to understand the code being used.

 Looking at the executable lines of code (ELOC), Drupal had an average ELOC of

55% compared to 47% in WordPress. There is no definite guide on what percentage of

code has to be executable. However, notice that totaling both the CLOC and the ELOC

in Drupal or WordPress does not yield a result of 100%. The missing percentage could

be explained by empty lines of code in the files or lines of non-PHP code. Such code

could be HTML, Javascript, or plain text.

 One area of importance is the number of lines of code (LOC) in a given method.

A method with a high LOC value might indicate an overly complex method which might

benefit a refactor. Drupal had on average 19.62 lines of code compared to 20.49 lines of

code for WordPress. These measurements are so close together that they could be

considered equal. However, looking at the results in table 2 you will see that the

canonical.php file in WordPress has an average of 109.5 LOC per method. This is

considerably higher than Drupal’s largest value of 47.50 LOC per method which is

located in the install.mysql.inc file. Additionally, we can look at the distribution of the

average LOC per method for both WordPress and Drupal. Looking at figure 3 you can

see that a majority of the methods in WordPress has a LOC lower than 40. Looking at

figure 4 all the methods for Drupal has a LOC value between 0 and 50. This is good

since you rarely will encounter a method with a large LOC value. Methods with a

smaller LOC value are easier to understand and maintain.

43

Figure 3: Histogram showing the average lines of code per method in WordPress. The bars represent

the number of methods that have a measured LOC within the given range.

Figure 4: Histogram showing the average lines of code per method in Drupal. The bars represent the

number of methods that have a measured LOC within the given range.

44

6.2 Complexity Metrics:

 There is no good way in determining what is nominal for the Number of Remote

Methods (NRM) and Response for Class (RFC) measurements. Generally, the higher the

measurement for both NRM and RFC, the more complex the class is. This is due to the

higher number of dependencies the class has with other classes within the application. At

first glance, it appears that WordPress has a lower value for the NRM and RFC

measurements and thus an average class in WordPress is considered “less complex” than

a class in Drupal. While this might be the case, the measurements will need to be

analyzed in more detail.

In obtaining the NRM measurement, a code walkthrough had to be performed on the

selected class. The total remote methods calls were then listed for each local method

within the class. For the results in the previous paragraph, all the remote method calls

were simply added in a given class and averaged out across all selected classes. The

problem with this approach is that some classes will contain more local methods than

other classes hence a higher NRM count. A better approach is to get the average NRM

across all the local methods within the class and average out the averages. This resulted

in .77 remote method calls per local method in Drupal versus 1.48 remote method calls

per local method in WordPress. This contradicts the earlier results of 13.69 and 12.59

respectively and indicates that WordPress has more external dependencies on a given

local method compared to Drupal hence its complexity will be higher than Drupal.

As for the RFC measurement, a similar fallacy applies since the RFC measurement

is based on a worst case scenario where a given method call in a class could possible

45

invoke all local methods within the class and all remote methods called by the class.

Simply put…

Equation 7:

RFC = NRM + NLM

The fallacy in this logic is that it is unlikely that there will be a method call that will

invoke all the local and remote methods within the class. This creates an illusion that a

class with more local methods will be more complex than a class with fewer local

methods. There is a more accurate way to determine the RFC of a class by tracing

through the method call stacks within a class and using the maximum result. The

problem with this approach is that it is a time consuming method and will be difficult to

apply in real world situations. On the other hand most sources simply determine the RFC

by looking at the absolute worst-case scenario for the RFC which is simply applying a

ceiling to the possible number of local and remote method calls. This is the same method

that was used and while it may not be as accurate, it helps to get a general idea on which

classes might be more complex than others.

 The next measurement will be the “Cyclometric Complexity Model” (CCN2)

measurement. This measurement measures the number of unique paths a given code

segment could follow. This is important for testing purposes as well as to determine if a

particular code segment might be too complex and should be refined.

While these results are helpful, they don’t take into account the size of the classes

being measured. In other words, a larger class will most likely have a larger CCN2 value

than a smaller class due to its size. In order to obtain a more accurate result, the number

46

of lines of executable code (ELOC) should be factored into this measurement. This is

possible by using the following formula…

Equation 8:

n

i

ELOCiiCCNn
1

/2/1

n = the total number of classes analyzed,

CCN2i = our Cyclometric Complexity result in the selected class and

ELOCi = the number of lines of executable code in the selected class.

Results from using this formula will range from zero and one. A value of zero means that

there are no unique paths through the code. This is impossible since by default, there is at

least one path through a selected code segment. On the other hand, a result of one means

that every line of executable code is a unique path. This is considered a worst-case

scenario.

This method resulted in a CCN2 of .26 per line of executable code for Drupal

versus .30 per line of executable code for WordPress. This contradicts our earlier results

and it appears that WordPress is more complex than Drupal.

The next set of measurements will be the Efferent and Afferent Couplings (EC

and AC respectively). Unlike CCN2 which measures the complexity within a class, the

EC and AC metrics measures the complexity of the class in terms of its dependencies and

dependents of the class. In short, the measurement looks at how complex the

relationships are from the selected class to other classes within the application. Unlike

previous measurements, these measurements will be taken on the class level and not at

47

the method level. This is because the goal of these measurements is to determine how

susceptible our selected classes are when other classes in the application are altered.

Something to be noted here is that for these measurements, the average number of

afferent couplings is typically higher than the number of efferent couplings. This is

because any class outside our selection of files in Drupal or WordPress can call our

selected class. Since there are more classes outside the file sampling for both Drupal and

WordPress, the number of AC calls will be higher than EC calls.

As mentioned in chapter 2, Instability (I) is a measurement to determine how

resilient a class is to change. For the weighted average in each class, Drupal got .38

while WordPress got .26 for instability. So, a question regarding this metric is what

should be considered a nominal value? At first glance, one would consider that an

average result closer to zero would be ideal since most classes will be considered more

“stable”. If that is the case, WordPress will be considered more stable and thus changes

to WordPress would be easier to implement than Drupal. The problem with this

reasoning is that for every stable class that exists, there has to be a class that depends on

it therefore not all classes will be considered stable (Martin, 1994). We can have

completely stable classes, with no dependents, but the class will become useless since

nothing will be using the class.

A more realistic situation is that you will have a set of classes that will be considered

stable and a set of classes that are considered instable. In an essence, the goal is to make

our instability measurement for a selected class approach either zero or one, and away

from the middle. Since we got an average across all measured classes of .38 and .26 for

48

Drupal and WordPress respectively, it seems that they might be trying to do that. But, we

can go a step further and generate histograms from our instability measurements.

49

Figure 5: Histogram showing the distribution of classes in WordPress with a specific Instability.

Instability values closer to 1 indicates an unstable class while values closer to 0 indicates a stable

class. Notice the spikes at .1 and 1 while a majority of the measurements fall between .2 and .8.

Figure 6: Histogram showing the distribution of classes in Drupal with a specific Instability.

Instability values closer to 1 indicates an unstable class while values closer to 0 indicates a stable

class. Note that there are several classes in Drupal that have Instability value higher than .7 but

there are also classes with a very low instability value. This distribution indicates that some of these

non-stable classes might depend on the more stable classes.

50

 Ideally the histograms should show a double curve or a distinctive “V” shape

instead of a single bell curve. Looking at the graph for Drupal you can see that there

might be a weak double curve forming with .2 and .7 being the peaks. It is very difficult

to tell, and in order to get a more accurate answer, more classes will need to be included

in the measurements. As for WordPress, you can see spikes at .1 and 1, with a slight

curve peaking at .4.

The values of 1 in WordPress and Drupal are most likely due to files being

nothing more than installers. These files have no dependencies but will depend on other

classes or files. With that being factored in, it appears that WordPress might not have a

much defined set of stable and instable classes within the CMS. In other words, it seems

that Drupal might have taken some effort to separate their stable, core classes away from

their more instable, dependent classes. In Drupal, a few of the files in the .1 to .2 range

are database.inc (.13), common.inc (.09), and unicode.php (.12). These files are

considered critical to the CMS since database.inc handles database operations,

common.inc holds a common set of methods used in Drupal, and unicode.php handles the

encoding of information in the CMS. Less stable files in Drupal are xmlrpc.inc (.67), and

session.inc (.67). These files typically handle syndication and session management

which in turn might depend on database and caching. Finally, a surprising finding is that

cache.inc in Drupal has an instability measurement of .43. This is considered high for a

class that has the potential to have numerous dependencies. An explanation could be that

cahce.inc might depend on database, or even session management but more information

is needed.

51

 For WordPress, it appears that a majority of the classes have close to the same

number of efferent couplings as afferent couplings and thus an instability measurement

closer to .5. Files with lower instability measurements are cache.php (.05),

capabilities.php (.06) and plugin.php (.01). cache.php in WordPress appears considerably

more stable than cache.inc in Drupal, but there is a class called WP_Object_Cache in

WordPress which has an instability measurement of .5. This is close to the same

measurement as the cache.inc file used in Drupal. Capabilities.php handles

authentication and role assignment while plugin.php handles plugin management. These

classes are considered critical to WordPress with numerous dependents. With the

exception of files with a measurement value of 1, the following files or classes have a

higher instability measurement. Atomlib.php (.67), classes.php (.6), WP_Ajax_response

(.75). AtomLib.php handles syndication, classes.php contains several utility methods,

and WP_Ajax_Response, handles AJAX calls. These files would most likely need access

to underlying database, file, or caching functionality therefore they are highly dependent

on other files or classes in the CMS.

 Another common OO measurement that exists is the “abstractness” of a class (A).

It is simply the number of abstract declared classes over the total number of classes

within the file selection. This measurement was not included in this paper since PHP 4

did not support the abstract keyword. PHP 5, on the other hand, does support the

“abstract” keyword, so this measurement will work for PHP 5 based web applications,

but since Drupal and WordPress was built around the time of PHP4, it was get used.

The final measurement is the Lack of Cohesion of Methods (LCOM2)

measurement. WordPress has a weighted average of .89 while Drupal had a weighted

52

average of .91 for the LCOM. The weighted average takes into consideration the number

of local methods that each class has. Looking at the values, one could argue that since

WordPress did explicitly declare classes in some of their files compared to Drupal that

they may have took some effort in ensuring that the methods in their classes are closely

related. The problem is that developers for Drupal also took into consideration isolating

code into files and making sure that closely related methods are located in the appropriate

files. Finally, a measurement of .89 and .91 for WordPress and Drupal is considered too

close to draw comparisons since the measurements were taken in less than ideal

circumstances. In particular, the lack of explicit class and attribute declarations in

Drupal.

7.0 Conclusion:

 The resulting measurements from Drupal and WordPress are interesting since

many of the results in their measurements are close. So the question is, what content

management system is better? From our analysis in chapter 6, it appears that Drupal has

a slight edge regarding keeping code size to a minimum in its methods. In Figure 3:

Histogram showing the average lines of code per method in WordPress. The bars

represent the number of methods that have a measured LOC within the given range. you

can see a few outliers for WordPress compared to Figure 4 in Drupal. Additionally for

the Instability, there is an argument that Drupal took some effort in stabilizing classes or

files that are critical to the CMS such as the database class. Figure 5 shows this

separation to a degree compared to WordPress where a considerable number of files and

classes fall towards the middle in Figure 6.

53

 One item that should be pointed out was that WordPress did on several occasion

use explicit class declarations compared to Drupal which did not. An argument could be

made that an application that uses explicit object oriented statements would result in a

higher quality product. The measurement results in this paper say otherwise. While

WordPress did not use class declarations throughout the CMS, the measurements

between Drupal and WordPress were pretty comparable. Looking at the averages in

Table 3 and Table 4 as well as the average complexity measurements in Table 7 and

Table 8 you can see that a lot of averages between Drupal and WordPress were close.

There are differences in the measurements, but nothing that really stood out as alarming.

One reason for this is that the Drupal development team took a considerable

amount of time on planning and designing the CMS. They took the lack of OO features

into consideration and omitted explicit OO calls (Bob, 2005). WordPress did use

explicit class definitions, but they did not use it throughout. This does not mean that they

took a more ad-hoc approach in their design of the CMS. What it means is that if

WordPress did use class declarations throughout the CMS, the measurement results could

be different. For now, the results in this paper are close

So which content management system is better? It depends on what you want to

do with it. If you need to make a modification in a certain area such as caching, or

database operations, you should look at the results in chapter 5 more closely. In

particular, look at the files or classes that you want to make the modifications. If you’re

trying to make a business decision on what CMS to use, it could be either. As mentioned

earlier, the measured results between Drupal and WordPress are too close to call. This is

54

not bad since decision makers can rule out this attribute in their decision making process

and focus on other areas such as cost, hosting, or support.

 Object oriented design and programming has been around for some time and

several tools and measurements have been proposed and used in measuring quality in OO

design. With the rise of web based applications, it makes it difficult to use these

measurements in less than ideal OO designs. However, with a little modification to the

measurements such as treating files as classes, you can use these measurements to a

degree. There is still a lot of work to do in this area, and while there are tools that could

measure quality in PHP based applications such as PHP Unit of PHP Depend, they are

still too rigid to be used on numerous web applications.

 Finally, the World Wide Web is a fast moving environment and it tends to lean

towards the “bleeding edge” of application development. With this fast paced

environment, tools and methods will become obsolete in a short time. It is then ideal to

see if these tools and methodologies could be agile enough to keep pace with the changes

that are yet to come.

55

Bibliography
Adobe. (2012). Adobe Dreamweaver. Retrieved August 1, 2012, from Adobe:

http://www.adobe.com/dreamweaver

Aivosto. (2011). Cohesion Metrics. Retrieved May 20, 2011, from aivosto.com:

http://www.aivosto.com/project/help/pm-oo-cohesion.html

B., S. (2011). PHP Unit. Retrieved 06 01, 2011, from PHP Unit: http://www.phpunit.de

Bansiva, J. D. (2002, January). A Hierarchical Model for Object-Oriented Design Quality

Assessment. IEE Transactions on Software Engineering, 28(1), 4-17.

Chidamber, S. K. (1994, June). A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, 20(6), 476-493.

DocForge. (2011, August). Content Management Systems. Retrieved July 15, 2012, from

DocForge: http://docforge.com/wiki/Content_management_system

Ghosheh, E. B. (2008). Design Metrics for Web Application Maintainability

Measurement. AICCSA '08 Proceedings of the 2008 IEEE/ACS International

Conference on Computer Systems and Applications. . Washington DC: ACM.

Group, T. P. (2011). History of PHP and Related Projects. Retrieved May 3, 2011, from

php.net: http://us2.php.net/history

Henderson-Sellers B., C. L. (1996). Coupling and Cohesion (Towards a Valid Metrics

Suite for Object-Oriented Analysis and Design). In Object-Oriented Systems (pp.

143-158).

Hunter, L. (2008). The Drupal Overview. Retrieved May 1, 2011, from Drupal.com:

http://www.drupal.org/node/265726

Li, W. H. (1993). Object Oriented Metrics Which Predict Maintainability. Department of

Computer Science, Virginia Polytech Institute and State University.

Lincke, R. L. (2007). Compendium of Software Quality Standards and Metrics - Version

1.0. Retrieved May 2, 2011, from Arisa.se: http://www.arisa.se/compendium

Manual, P. (2012). Software Metrics Supported by PHP Depend. Retrieved July 1, 2012,

from pdepend.org: http://www.pdepend.org/documentation/software-

metrics/index.html

Marchetto, A. (2004). A Concerns-based Metrics Suite for Web Applications.

INFOCOMP journal of computer science, 4(3).

http://www.adobe.com/dreamweaver
http://www.aivosto.com/project/help/pm-oo-cohesion.html
http://docforge.com/wiki/Content_management_system
http://us2.php.net/history
http://www.drupal.org/node/265726
http://www.arisa.se/compendium
http://www.pdepend.org/documentation/software-metrics/index.html
http://www.pdepend.org/documentation/software-metrics/index.html

56

Martin, R. (1994). OO Design Quality Metrics.

McCabe, T. (1976, July). A Complexity Measurement. IEEE Transactions on Software

Engineering, 2(4), 308-320.

Monaco, A. (2012, June). A View Inside the Cloud. Retrieved August 1, 2012, from

IEEE: http://w3techs.com/technologies/cross/content_management/ranking

Palmer, J. (2002, June). Website Usability, Design, and Performance Metrics.

Information Systems Research, 13(2).

Pichler, M. (2011). PHP Depend. Retrieved May 5, 2011, from PHP Depend:

http://www.pdepend.org

USLegal. (2012). Digital Distribution Law & Legal Definition. Retrieved August 1,

2012, from USLegal: definitions.usLegal.com/d/digital-distribution

W3Techs. (2012, July). Usage of Content Management Systems Broken Down by

Ranking. Retrieved July 28, 2012, from W3Techs:

http://w3techs.com/technologies/cross/content_management/ranking

WordPress.org. (2010). About WordPress. Retrieved May 1, 2011, from WordPress.org:

http://WordPress.org/about

WordPress.org. (2010). The Loop. Retrieved May 1, 2011, from WordPress.org:

http://codex.WordPress.org/The_Loop

http://w3techs.com/technologies/cross/content_management/ranking
http://www.pdepend.org/
http://w3techs.com/technologies/cross/content_management/ranking
http://wordpress.org/about
http://codex.wordpress.org/The_Loop

	MEASURING AND QUANTIFYING WEB APPLICATION DESIGN
	Let us know how access to this document benefits you.
	Recommended Citation

	1

