
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2008

A time series classifier A time series classifier

Christopher Mark Gore

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Gore, Christopher Mark, "A time series classifier" (2008). Masters Theses. 4609.
https://scholarsmine.mst.edu/masters_theses/4609

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4609&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4609?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A TIME SERIES CLASSIFIER

by

CHRISTOPHER MARK GORE

A THESIS

Presented to the Faculty of the Graduate School of

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2008

Approved by

Daniel R. Tauritz, Advisor
Ralph W. Wilkerson

Ray Luechtefeld

Copyright © 2008

Christopher Mark Gore

All Rights Reserved

iii

ABSTRACT

A time series is a sequence of data measured at successive time intervals. Time series

analysis refers to all of the methods employed to understandsuch data, either with the

purpose of explaining the underlying system producing the data or to try to predict future

data points in the time series. Time series analysis is applicable to many problems since

there are so many areas that require a more thorough understanding of a time series or the

prediction of future values of the time series. The most typical historical examples of time

series would be the weather and the financial markets but there are many more real-world

time series problems.

An evolutionary algorithm is a non-deterministic method ofsearching a solution

space, and modelled after biological evolutionary processes. A learning classifier system

(LCS) is a form of evolutionary algorithm that operates on a population of mapping rules.

We introduce the time series classifierTSC, a new type of LCS that allows for the modeling

and prediction of time series data, derived from Wilson’s XCSR, an LCS designed for use

with real-valued inputs. Our method works by modifying the makeup of the rules in the

LCS so that they are suitable for use on a time series. All of the operations (mutation,

crossover, etc.) applied to the rules also were changed fromtheir traditional forms.

We tested TSC on real-world historical stock data. The system would always return

a profit, but not as much as the stock market itself is capable of returning by the utilization

of an indexing fund. The stock market is a notoriously difficult system to model effectively

and therefore any positive results at all are notable, and never losing money in the long-term

is impressive in itself, often a difficult task for unskilledhuman traders.

Although this initial system appears incapable of producing monetary returns better

than that of the stock market itself and may not be the eventual solution, it does perform

well enough to demonstrate that the system is capable of learning in a very complex envi-

ronment. The inherent complexity of the market makes the system unusable for automated

trading, but this approach should prove to be useful in otherless challenging real-world

time series problems.

iv

ACKNOWLEDGMENTS

I would like to thank for all of their support and help my parents Charles and Carolyn

Gore, my wife Monica, and my advisor Daniel Tauritz.

†

v

TABLE OF CONTENTS

Page

ABSTRACT iii

ACKNOWLEDGMENTS iv

LIST OF ILLUSTRATIONS. .. vii

LIST OF TABLES.. .. viii

LIST OF ALGORITHMS.. .. ix

SECTION

1. INTRODUCTION.. .. 1

1.1. MOTIVATION.. .. 1

1.2. BACKGROUND 2

1.3. REINFORCEMENT LEARNING.. 2

1.3.1. Exploration versus Exploitation 3

1.3.2. The Whole Problem .. 3

1.4. EVOLUTIONARY ALGORITHMS 3

1.4.1. Learning Classifier Systems .. 4

1.4.2. ZCS .. 5

1.4.3. XCS .. 8

1.4.4. XCSR 10

2. TIME SERIES PREDICTION. .. 12

2.1. ARIMA AND OTHER STATISTICAL METHODS 12

2.2. ARTIFICIAL NEURAL NETWORKS 13

2.3. NON-LCS EVOLUTIONARY APPROACHES 14

2.4. LCS-BASED APPROACHES 14

2.4.1. XCS .. 14

2.4.2. XCSF. .. 14

3. APPROACH AND DESIGN OF THE TIME SERIES CLASSIFIER 16

3.1. FUNDAMENTAL OPERATIONS 16

3.1.1. TheSort OnAlgorithm.. 16

3.1.2. TheSort OrderAlgorithm 17

3.1.3. Rasterized Linear Paths Through Arrays 17
3.1.3.1. A purely horizontal path. 18

vi

3.1.3.2. A purely vertical path. 18
3.1.3.3. A traditional diagonal path. 18
3.1.3.4. Non-equal diagonal paths. 19
3.1.3.5. The Raster Line Algorithm. 19

3.1.4. List Slices .. 20

3.2. DATA REPRESENTATION 21

3.3. RULE REPRESENTATION 22

3.4. MUTATION 22

3.5. CROSSOVER. .. 23

3.6. LEARNING PARAMETERS. .. 23

3.6.1. From XCS 23
3.6.1.1. General Parameters 23
3.6.1.2. Recalculating Fitness 24
3.6.1.3. Multi-Step Specific 24
3.6.1.4. GA Specific 24
3.6.1.5. Rule Set Specific. 25

3.6.2. From XCSR. .. 26

3.6.3. New in TSC .. 27

3.7. TRIVIALLY MODIFIED ALGORITHMS 27

3.8. THEMATCH?PREDICATE 30

3.9. THEGENERATE COVERING CLASSIFIERALGORITHM 31

3.10.THEMORE GENERAL?PREDICATE . 31

4. EXPERIMENTAL RESULTS .. 33

4.1. THE NATURE OF A REALISTIC TIME SERIES. 33

4.2. THE SIMPLISTIC INCREASING/DECREASING TESTS 33

4.3. THE STOCK MARKET .. 34

4.3.1. Reward Methods 36

4.3.2. GA Thresholds. .. 40

4.3.3. Crossover Probabilities .. 41

4.3.4. Mutation Probabilities 43

4.3.5. Exploration Probabilities .. 46

5. CONCLUSIONS AND FINAL RESULTS 48

6. FUTURE WORK.. .. 50

BIBLIOGRAPHY .. 53

VITA .. 56

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 ZCS’s basic structure .. 6

1.2 XCS’s basic structure .. 9

1.3 XCSR’s interval rules. .. 11

4.1 Increasing/decreasing method 4 sample plot. 34

4.2 Increasing/decreasing method 4 sample performance.. .. 35

viii

LIST OF TABLES

Table Page

4.1 Initial parameters for the TSC. .. 36

4.2 TSC results for reward methoda1. 37

4.3 TSC results for reward methoda2. 37

4.4 TSC results for reward methodb. .38

4.5 TSC results for reward methodc. .38

4.6 TSC results for reward methoddopt. 39

4.7 TSC results for reward methoddpess. 40

4.8 TSC results for a GA threshold of 35. 40

4.9 TSC results for a GA threshold of 45. 41

4.10 TSC results for a GA threshold of 50. 41

4.11 TSC results forχ = 0.3. 42

4.12 TSC results forχ = 0.5. 42

4.13 TSC results forχ = 0.7. 43

4.14 TSC results forχ = 0.9. 43

4.15 TSC results forµ = 0.06. 44

4.16 TSC results forµ = 0.08. 44

4.17 TSC results forµ = 0.10. 45

4.18 TSC results forµ = 0.15. 45

4.19 TSC results forµ = 0.20. 45

4.20 TSC results forPexplr = 0.1.. 46

4.21 TSC results forPexplr = 0.15. 46

4.22 TSC results forPexplr = 0.3.. 47

4.23 TSC results forPexplr = 0.4.. 47

5.1 TSC Final Parameters .. 48

ix

LIST OF ALGORITHMS

Algorithm Page

1.1 The evolutionary process. .. 4

3.1 Sort on. .. 17

3.2 Sort order. .. 17

3.3 Raster line. .. 20

3.4 List slice. .. 21

3.5 Generating covering classifiers. 31

1. INTRODUCTION

This thesis considers applying learning classifier systems(LCS’s) to the prediction

of time series data. A time series as used here is a sequence ofdata successively measured

through time. Time series analysis encompasses many methods that attempt to understand

such time series, aimed at either understanding the underlying theory present in the data

points or to make real-world predictions. Time series prediction is the use of a model to

predict future events based on known past events: to predictfuture data points before they

are measured. One standard example is the opening price of a share of stock based on its

past performance.

1.1. MOTIVATION

No LCS to date has been designed for time series data but instead they were generally

limited to Markov systems lacking any memory, which we viewed as a major limitation of

LCS’s. LCS’s are designed specifically with the concept of evolving an effective rule set

for a specified problem, which is specifically the sort of capability that would be desirable

for time series analysis and prediction: generating usefulrule sets.

An LCS is an evolutionary algorithm that operates on a population comprised of rules

referred to as the rule set: this rule set is used to attempt toclassify a situation. The first

LCS was created by Holland [1] shortly after he created genetic algorithms (GA’s) [2], one

of the classical types of evolutionary algorithms. Holland’s first LCS originally used a GA

as the evolutionary device. Our system as described here also uses a GA for evolution,

although it has been modified from the original form.

Holland’s original LCS was quite complicated and failed to produce quality results

for most real-world problems. Because of this, the study of LCS’s was somewhat inactive

until Wilson introduced ZCS [3], a re-imagining of Holland’s original LCS distilled to its

most basic elements. Wilson’s ZCS was capable of producing acceptable results on certain

problems and was simple enough to easily understand, reinvigorating LCS research.

2

A few years after introducing ZCS, Wilson modified it introducing XCS [4], which is

currently one of the best performing and most popular LCS types. Wilson’s XCS was based

on ZCS but with several important modifications mostly aimedat improving the accuracy

of the rules produced and also for a more full coverage of the problem space by the rules. A

significant portion of the LCS’s being worked on today are modifications or enhancements

of Wilson’s XCS.

One such enhancement of XCS is known as XCSR [5], which was also developed by

Wilson. XCSR improves upon XCS by allowing it to operate withreal-valued ranges for

input instead of on the traditional ternary alphabet so common to LCS’s, consisting oftrue,

false, and a covering symbol (usually represented as # or∗).

1.2. BACKGROUND

The system presented here is derived from Wilson’s XCSR, which is an extension of

Wilson’s XCS, which in turn was derived from Wilson’s ZCS. ZCS, XCS, XCSR, and this

system are all learning classifier systems (LCS’s), a crossover of the fields of evolutionary

computation (EC) and reinforcement learning (RL), both of which are quite large fields on

their own. We will describe in this section the previous works this system was built upon.

1.3. REINFORCEMENT LEARNING

Reinforcement learning [6] is the process of learning how tomap situations to actions

to maximize a numerical reward. The learning system is not told which actions to take, as

in most forms of machine learning, but instead must discoverwhich actions yield the most

reward by exploration. In the most interesting and challenging cases, actions may affect

not only the immediate reward but also the next situation and, through that, all subsequent

rewards. The two primary distinguishing characteristics of reinforcement learning are:

1. trial-and-error search and

2. delayed reward.

Reinforcement learning is defined not by characterizing learning methods, but by charac-

terizing a learning problem. We consider any method that is well suited to solving that

problem to be a reinforcement learning method. The idea is tocapture the most important

3

aspects of the problem facing the learning agent interacting with its environment to achieve

its goal. Such an agent must be able to:

1. perceive the state of the environment,

2. act on the environment, and

3. have a goal or goals relating to the state of the environment.

Tersely put:sensation, action, andgoal.

1.3.1. Exploration versus Exploitation. A primary challenge is the trade-off

between exploration and exploitation. A reinforcement learning agent will prefer actions

that it has tried in the past and found to be effective in producing reward in order to reliably

obtain more reward. But to discover such actions, it has to try actions that it has not selected

before. The agent has toexploit existing knowledge to obtain reward, but it also must

exploreto make better action selections in the future. Neither exploration nor exploitation

can be pursued exclusively without failure. The agent must try a variety of actions and

progressively favor those that appear to be best. On a stochastic task, each action must be

tried many times to gain a reliable estimate of its expected reward.

1.3.2. The Whole Problem. Reinforcement learning explicitly considers the

whole problem of a goal-directed agent interacting with an uncertain environment, start-

ing with a complete, interactive, goal-seeking agent, instead of considering subproblems

without addressing how they might fit into a larger picture. All reinforcement learning

agents have explicit goals, can sense aspects of their environments, and can choose actions

to influence their environments. From the beginning, the agent operates with significant

uncertainty about its environment. For learning research to make progress, important sub-

problems have to be isolated and studied, but they should be subproblems that play clear

roles in complete, interactive, goal-seeking agents, evenif all the details of the complete

agent cannot yet be filled in.

1.4. EVOLUTIONARY ALGORITHMS

In artificial intelligence (AI), evolutionary algorithms (EA’s) are a style of generic

population-based meta-heuristic optimization algorithms whose processes are inspired by

those of natural biological evolution. The primary mechanisms employed in EA’s to evolve

a population of possible solutions towards an optimal one are:

4

1. parent selection based on fitness,

2. recombination,

3. mutation, and

4. and survivor selection based on fitness.

Evolution serves as a powerful metaphor and demonstrates great creativity in both the nat-

ural world and in the world of computer science.

In normal biological evolution the environment that the population exists in exerts

various pressures on the individuals in the population thatdetermines the likelihood that

any particular individual will manage to survive long enough to reproduce, and it is through

this process that the fitness of an individual in the population must be determined: relative

to its environment. In an EA, the environment relates to the problem we wish to solve, the

individuals in the population encode potential solutions to that problem, and their fitness is

their quality as a solution to the problem. By mimicking the methods of natural evolution

in this manner we can often arrive at good solutions. The basic evolutionary process is

outlined in Algorithm 1.1.

1. Initialize the population, either with randomly-generated or seeded candidate solutions
or both.

2. Evaluate the fitness of each member of the population.
3. repeat
4. Select members of the population to act as parents. This is typically related to the

relative fitness of the parents in some way.
5. Recombine the genetic material of the parents, producing offspring to be added to

the population.
6. Mutate some or all of the newly-created offspring.
7. Evaluate the fitness of the offspring.
8. Select survivors from the current population or a subset thereof, often only the

newly-created offspring, to survive to the next generation.
9. until some specified termination condition is satisfied.

Algorithm 1.1. The evolutionary process.

5

1.4.1. Learning Classifier Systems. A learning classifier system is a type of EA

in which a description of a current situation is used in an attempt to map that description to

some classification or action. This is achieved through simulated evolutionary processes,

where the population being evolved consists of various rules; our entire population forms

a rule set, and we apply concepts from Darwinism to our individual rules. This is known

in learning classifiers as theMichigan approach[7]. The other primary method employed,

where each individual is an entire solution, and therefore awhole rule set, is known as

thePittsburgh approach. We use a modification of XCSR here, which uses the Michigan

approach, and therefore so do we.

1.4.2. ZCS. ZCS is azeroth level classifier systemoriginally proposed in [3].

ZCS preserves most of the functionality of traditional LCS’s, but it is a very simplified

version, which aids in the understanding of the classifier and its actions. This was a very

useful contribution, because many of the problems with LCS’s before then were their overly

complex and detailed nature. A good short summary of ZCS can be found in [7], and this

summary is based primarily on that. The basic structure of ZCS is graphically illustrated in

Figure 1.1.

In ZCS there is no message list, a much-welcomed simplification of the traditional

LCS. This comes with a cost: there is no explicit method for transmitting information

between cycles without the message list. This makes the interface entirely dependent on

the interface of the system with its environment, and thus assumes a Markov process. This

is most definitely an invalid assumption for real-world traded markets and for other time-

series data.

Each ruler is of the formr = (c,a,s) where:

• c is the condition matched by the ruler and is comprised of elements from some

alphabet, typically{0,1,#}, where # is the matching symbol, matching both 0 and 1;

• a is the action that the ruler recommends;

• ands is the real-valued strength measurement of the ruler, s∈ R, which determines

how much of a vote ruler has in selecting the action to pursue.

In each time cyclet the match setMt is found, a subset of the population,Mt ⊆ P,

with P being the entire population of rules, the rule set. The members at time cyclet of

6

Figure 1.1. ZCS’s basic structure

the match setMt can be divided into disjoint subsets based on the action theyrecommend.

With a finite set of possible actions

A = {a0,a1, . . . ,a|A|} (1)

andA ′ ⊆ A where

A
′ = {a′0,a

′
1, . . . ,a

′
|A ′|} (2)

comprises all of the actions represented in the match setMt . For any specific actiona′i

represented in the match setMt we can form the set of all members of the match set that

recommend actiona′i, represented asMt,a′i
⊆Mt with

Mt,a′i
=
{

r : r ∈Mt ∧ar = a′i
}

. (3)

The fitness of an actiona′i ∈ A
′ is then

fitness(a′i) = ∑
∀r∈Mt,a′i

sr , (4)

7

the sum of the fitness of all of the rulesr that recommend that particular action present in

Mt,a′i
. The action to take is selected in a fitness-proportionate method, choosing the action

a′ with the greatest fitness. IfMt = /0 then covering must take place; a random rule that

matches the current situation is created by initially settingc to exactly the current situation

and then replacing a few elements ofc at random with the # symbol, and that suggests a

randomly-selected action.

The credit assignment scheme used by ZCS is somewhat involved, and is referred to

as animplicit bucket brigade. It attempts to reward sequences which lead to reward from

the environment and which are short. First, the rules in the populationP but excluded from

the match setMt are originally unchanged:

s′r = sr∀r /∈Mt . (5)

Next, the rules in the match setMt but excluded from the action setAt (those advocating

weaker actions than the one chosen) have their strengths reduced by a factorτ ∈ [0,1):

s′r = τsr∀r ∈Mt \At . (6)

Then the strength of the rules in the current action setAt have a fractionβ ∈ [0,1) of their

strengths transferred to the members of the previous actionsetAt−1, reduced by a factor

γ ∈ [0,1):

s′r = (1−β)sr∀r ∈ At , (7)

s′′r = s′r +
γ ∑∀r∈At

βsr

|At−1|
∀r ∈ At−1. (8)

Finally, any feedbackPt from the environment is reduced byβ and distributed to the rules

in the current action setAt :

s′′′r = s′′r +
βPt

|At|
∀r ∈ At . (9)

A mostly standard GA is run on the population (the rule set) periodically, with parent

selection directly related tos and death selection inversely relateds. The new rules are

usually assigned the mean of their parents’ strength initially.

8

1.4.3. XCS. ZCS has many positive features, especially its simplicity and the

benefits derived from its cooperative fitness sharing, but there are some notable drawbacks,

primarily that it usually will not evolve a complete mappingof the environmental states and

allowable actions to the possible rewards, often quickly selects local optima, and breeds

across niches, as noted in [4]. These drawbacks led Wilson toheavily modify ZCS into

what is called XCS [4]. In XCS, several of the deficiencies in ZCS are addressed. The

basic structure of XCS is graphically illustrated in Figure1.2.

In ZCS, the GA is run on the entire population, apanmicticapproach [7, p. 155].

This is ineffective for most problems, so in XCS the GA was runonly in the current match

set at the time step that the GA is run in the initial version ofXCS, and only in the current

action set at the time step that the GA is run in the later variants of XCS. We run the GA on

the current action set in this work. This allows for a more accurate rule set to be evolved,

since each niche is best viewed as its own sub-problem.

In ZCS, a rule is allowed to survive by the GA on the basis of itspayoff. This

is problematic, since it biases against rules early in a chain of events that are eventually

profitable, and because rules that may be the most appropriate for an event might have a

relatively low payoff. This caused ZCS to often fail to create a complete mapping and fail

to evolve accurate generalizations. This is remedied in XCSby creating a fitness measure

for the rules, separate from the predicted payoff, used by the GA.

Each ruler is now of the more complex form

r = (c,a, p,ε,F,exp, ts,as,n), (10)

where:

• c is the condition matched by the ruler, comprised of elements from some alphabet

such as{0,1,#}, where # is the matching symbol, matching both 0 and 1.

• a is the action that the ruler recommends.

• p is the predicted payoff.

• ε is an estimate of the prediction error.

• F is the fitness used by the GA. It is vital that the fitness used bythe GA is a measure

of theaccuracyof the rule, and not a measure of themagnitudeof the rule, where the

9

Figure 1.2. XCS’s basic structure

magnitude of a rule is how active that rule is in relation to the rest of the rules in the

rule set, since a rule with greater magnitude but lower accuracy can be a detriment

to the system. For example, a rule that always matched every situation (all #’s in

the condition) but only accurately predicted 51% of the situations would have high

magnitude but low accuracy.

• expis the experience of the rule, a count of the number of times since this classifier’s

creation that it has belonged to the action set.

• ts is a time stamp of the last occurrence of a call to the GA in an action set that this

classifier was a part of, as the generational number.

• as is an estimate of the average action set size this classifier has belonged to.

• n is the numerosity of this macro-classifier. This is how many traditional micro-

classifiers this macro-classifier represents. Groups of entirely identical normal clas-

sifiers (the micro-classifiers) are subsumed into macro-classifiers instead of being al-

lowed to exist separately within the rule set; this serves solely as a computational

10

time-saver. Therefore the only difference between a normalclassifier (a micro-

classifier) and a macro-classifier is the presence of the numerosity, which is a count

of how many micro-classifiers that specific macro-classifierrepresents.

1.4.4. XCSR. Wilson extended his concept of XCS with XCSR in [5]. Classifier

systems had typically taken strings from some small alphabet, often binary, as input until

then even though many real-world problems have input from the environment of the form

R
n for some ordern ∈ Z,n > 0. Wilson’s XCSR allows XCS to operate on just such an

input. XCSR is identical to normal XCS with the exception of the input interface, the nature

of the predicates, the mutation operator, and the details ofcovering. The basic structure of

an XCSR rule is graphically illustrated in Figure 1.3.

Originally the predicates in XCSR were intervals of the form

intervali = {centeri,spreadi}, (11)

such that an environmental inputxi was matched byintervali if and only if

centeri−spreadi ≤ xi ≤ centeri +spreadi , (12)

but this was discovered to induce a bias [8], so the representation was eventually changed

to be

intervali = {loweri ,upperi}, (13)

where nowxi is matched byintervali if and only if

loweri ≤ xi ≤ upperi . (14)

We use the{lower,upper} form in this work.

11

Figure 1.3. XCSR’s interval rules

Crossover is simple two-point crossover, but on the sequence

{center0,spread0, . . .} (15)

or

{lower0,upper0, . . .} (16)

depending on the predicate type, in both cases therefore allowing the crossover points to

fall within a single allele.

In the original XCSR, mutation was performed by adding a small random quantity

from the range[−0.1,0.1] to each allele, and all problems were to have their input scaled

to [0,1]. The variation of XCSR used here is capable of scaling outside of [0.0,1.0], so

instead mutation is performed as the addition or subtraction of a small percentage of the

overall range as seen so far.

12

2. TIME SERIES PREDICTION

2.1. ARIMA AND OTHER STATISTICAL METHODS

ARIMA, the autoregressive integrated moving average, is a common and very power-

ful statistical method often used in econometric models that can help forecast and estimate

what is going to happen in the future. The ARIMA time series analysis uses lags and shifts

in the historical data to uncover patterns (e.g., moving averages, seasonality) and predict

the future [9]. The ARIMA model was first developed in the late1960s but was not sys-

temized until the work of Box and Jenkins in 1976 [10]. ARIMA can be more complex to

use than other statistical forecasting techniques, although when implemented properly can

be quite powerful and flexible. ARIMA is a method for determining two things:

1. how much of the past should be used to predict the next observation (length of

weights) and

2. the values of the weights.

Three common models of time series data areautoregressive(AR) models, thein-

tegrated(I) models, and themoving average(MA) models. These three classes depend

linearly on previous data points and are combined in the autoregressive integrated moving

average (ARIMA) model. A model of this form is referred to as an ARIMA(p,d,q) model

wherep,d,q∈N
∗. The order of the autoregressive part isp, the order of the integrated part

is d, and the order of the moving average part isq. Given a time series of dataXt (wheret

is integer valued and theXt are real numbers) then anARIMA(p,d,q) model is given by

(

1−
p

∑
i=1

φiL
i

)

(1−L)dXt =

(

1+
q

∑
i=1

θiL
i

)

εt (17)

whereL is the lag operator,φ are the parameters of the autoregressive part of the model,θ

are the parameters of the moving average part,d ∈ N
∗ (if instead we haved = 0 then this

model is equivalent to an ARMA model), and theεt are error terms. The error termsεt are

generally assumed to be independent and identically distributed variables sampled from a

13

normal distribution with zero mean:εt ∼N(0,σ2) whereσ2 is the variance. ARIMA mod-

els are commonly used for predicting and analyzing simpler time series. They have been

used on the stock market, but are generally viewed only as an indicator, not a predictive

tool, due to the complexity of the market and because of theirneed for accurate knowledge

about the time series itself. It is for similar reasons that most traditional statistical methods

fail to be of any real use in this task.

For example

y(t) =
y(t−3)

3
+

y(t−2)

3
+

y(t−1)

3
(18)

is a potential ARIMA model; another potential ARIMA model is

y(t) =
y(t−3)

6
+

4y(t−2)

6
+

y(t−1)

6
. (19)

The correct ARIMA model requires identification of the rightnumber of lags and the coef-

ficients that should be used. ARIMA model identification usesautoregressions to identify

the underling model. Care must be taken to robustly identifyand estimate parameters as

outliers (pulses, level shifts, local time trends) can wreak havoc.

2.2. ARTIFICIAL NEURAL NETWORKS

An artificial neural network is a graph of connected processing elements called neu-

rons which can exhibit complex global behavior as determined by the connections between

the neurons and their parameters. This technique was originally inspired by the examina-

tion of the central nervous systems of living creatures, most notably that of humans, the

most significant information processing system found in nature. While a neural network is

not adaptive itself, most practical examples use algorithms designed to alter the weights of

the connections in the network to produce a desired signal flow. These networks are also

similar to their biological counterparts in that their functions are performed collectively in

parallel by the entire network, with no clear delineation ofsub-tasks to which various units

are assigned. Modern artificial neural networks often abandon much of this for a more

practical approach based on statistics and signal processing [11]. There have been many

attempts to predict financial time series with artificial neural networks [12, 13], and there

have even been somewhat successful results using genetic algorithms to evolve the weights

for neural networks [14, 15]. However, there is one main drawback that comes with the

14

use of artificial neural networks. There is no easy way to translate the neural network that

has been produced into an understandable set of rules describing its innate knowledge: the

information is effectively trapped in the weights on the neurons. Extracting useful rules

from ANN’s is a challenging field unto itself [16].

2.3. NON-LCS EVOLUTIONARY APPROACHES

There have been attempts at using evolutionary approaches other than LCS’s to pre-

dict and analyze markets and other time series, ranging fromthe simplistic to the very

complex. In [17], traditional genetic algorithms were usedto optimize the exact numbers

to be used in traditional technical analysis. In [18], traditional genetic algorithms were

again used, but this time in optimizing the rule sets for candlestick-style analysis; this out-

performed a random trader. In [19], a simplified variant on the concept of genetic program-

ming, coded in C++, was used to develop trading rules for six stocks, and they managed

to return better results than both the market and a naive trader. However, the innate chal-

lenges of the real market have lead many researchers to resort to simulated markets, whose

simplicity can make fundamental discoveries about economic theory sometimes less chal-

lenging to achieve; a small survey of these sorts of markets can be found in [20].

2.4. LCS-BASED APPROACHES

There have been a few attempts at using LCS’s to analyze and predict financial mar-

kets. We will highlight a few derived from XCS here, since thesystem presented here is

also derived from XCS.

2.4.1. XCS. A predictive system lacking a memory component is almost com-

pletely useless in attempting to model a highly interdependent nonlinear multivariate time

series such as the stock market with any hope of utility; nonethe less, it has been attempted.

One of the more notable attempts at this is described in [21],in which an XCS was used

to predict the correct trading action for a stock on consecutive trading days. Later work

by Schulenburg and Ross in [22] does show some promise: they utilize the opinions of a

large host of simulated traders in order to make a decision. This would yield in the gen-

eral vicinity of 9%p.a. returns: not spectacular or applicable to real-world trading, but

respectable.

15

2.4.2. XCSF. In [23] Wilson outlined an extension to XCS for the approximation

of functions, called XCSF, which attempts to learn a function of the formy = f (x), where

y∈ R, |x| = n, andxi ∈ Z∀xi ∈ x. A classifier consists ofn interval predicates of the form

inti = (l i,ui) and matches an inputx if and only if l i ≤ xi ≤ ui∀i ∈ N. Classical two-point

crossover is employed, but where crossover may occur in-between the alleles or at the ends

of the prediction, although the action is not involved in thecrossover process. A covering

classifier is generated for a situationx by forming thel i through subtracting fromxi some

random integer from[0, r0], and formingui by adding some other random integer from

[0, r0] to xi , both limited to a maximum range of possible input, wherer0 is a parameter. A

rule r1 can subsume a ruler2 if and only if l1
i ≤ l2

i ∧u2
i ≤ u1

i ∀i. While this could possibly

be used to predict some very simplistic time series data, function approximation often does

not perform very well in real-world problems, as is well-known in reinforcement learning

literature [24, 25], and this drawback of XCSF (and similar approaches) is explicitly ac-

knowledged in [26]. This would be most definitely true of a system as complex as the stock

market, which cannot be easily and usefully mapped to any polynomial.

16

3. APPROACH AND DESIGN OF THE TIME SERIES CLASSIFIER

3.1. FUNDAMENTAL OPERATIONS

Our representation of a time series and our approach to theirevolutionary methods

requires us to be capable of generating multi-dimensional raster paths, where a raster path

is a one-dimensional path through a raster space. This is so that we can run raster paths

through a raster space of data, a discrete sampling of data. Araster space is one that is

representable byZa×Zb×·· ·×Zz. In other words, all of the dimensions are along sets

of finite integers instead of the real numbers. A common example is raster imagery: a

two-dimensional bitmap of sizem×n can be viewed as a complete representation of the

two-dimensional raster space ofZm×Zn. A multidimensional matrix can therefore fully

represent these spaces, instead of merely being samplings of the real space, although we are

using these raster spaces for sampling of real data in our approach. We form a useful sample

of the data for further analysis and classification by TSC by generating paths through the

data and it is these raster paths that the TSC actually classifies the situations with, not with

the entire data set which is generally very large. We will nowoutline the basic operations

we use to generate raster lines.

3.1.1. TheSort On Algorithm. This algorithm sorts a sequencesaccording to the

ordering of another sequencet, and is outlined in Algorithm 3.1.

17

Input: A sequences to be sorted.
Input: A sequencet upon which to sorts with.
Input: A comparatorc to sort with, typically> or <.
Require: |s|= n≤ |t|.

1. Construct a sequenceu containing pairs of the formui = (si , ti) as elements,|u|= n,

u = (u0, . . . ,un−1) = ((s0, t0), . . . ,(sn−1, tn−1)) . (20)

2. Sortu using the second elements as the key, using any normal sorting algorithm, giving

u′ =
(

(s′0, t
′
0), . . . ,(s

′
n−1, t

′
n−1)

)

(21)

wheret ′0≤ . . .≤ t ′n−1 if we are sorting in ascending order (with the< comparator).
3. return s′ =

(

s′0, . . . ,s
′
n−1

)

.

Algorithm 3.1. Sort on.

3.1.2. TheSort Order Algorithm. This algorithm returns the re-ordered indices

of a sorted sequence, and is outlined in Algorithm 3.2. For example, ift = {4,5,3,9} then

the sorted ordering oft would be{3,1,0,2} sincet3≥ t1≥ t0≥ t2.

Input: A sequencet.
Input: A comparatorc, usually< or >.

1. let n← |t|.
2. GenerateZn = (0, . . . ,n−1).
3. return The result of thesort onalgorithm from §3.1 ons= Zn with t and the com-

paratorc.

Algorithm 3.2. Sort order.

3.1.3. Rasterized Linear Paths Through Arrays. Given an arrayA of rankr and

dimensionsd0× ·· ·× dr−1, we wish to pull a one-dimensional list or vectorv of values

from the array, starting at positionAs0 ...sr−1 and finishing at positionAf0 ... fr−1, following a

linear path through the array.

18

As an example consider the 4×6 array:

A =

a b c d e f

g h i j k l

m n o p q r

s t u v w x

.

3.1.3.1. A purely horizontal path. The linear path fromA00 to A05 would be

composed of the values

〈A00,A01,A02,A03,A04,A05〉

and would be

〈a,b,c,d,e, f 〉

as illustrated by

A =

a⋆ b⋆ c⋆ d⋆ e⋆ f ⋆

g h i j k l

m n o p q r

s t u v w x

.

3.1.3.2. A purely vertical path. The linear path fromA00 to A30 would be com-

posed of the values

〈A00,A10,A20,A30〉

and would be

〈a,g,m,s〉

as illustrated by

A =

a⋆ b c d e f

g⋆ h i j k l

m⋆ n o p q r

s⋆ t u v w x

.

3.1.3.3. A traditional diagonal path. The linear path fromA00 to A33 would be

composed of the values

〈A00,A11,A22,A33〉

19

and would be

〈a,h,o,v〉

as illustrated by

A =

a⋆ b c d e f

g h⋆ i j k l

m n o⋆ p q r

s t u v⋆ w x

.

3.1.3.4. Non-equal diagonal paths. The confusing part arises when we are deal-

ing with diagonal paths with unequal steps. Consider the linear path fromA00 to A35. We

end up with a stair-stepping path through the array:

(A00,A11,A21,A32,A42,A53)

and would be

(a,h, i, p,q,x)

as illustrated by

A =

a⋆ b c d e f

g h⋆ i⋆ j k l

m n o p⋆ q⋆ r

s t u v w x⋆

.

3.1.3.5. The Raster Line Algorithm. This is the algorithm used to determine a

linear raster path, and is outlined in Algorithm 3.3. It returns a list of points that follow

the linear path from the starting pointp to the ending pointq. This is derived from the

algorithm for raster conversion of a 3D line as described in [27]. This should work for any

dimensionality.

20

Input: a starting pointp and a final pointq, both represented as lists.
Require: |p|= |q| ∧ pi ∈N∀pi ∈ p∧qi ∈N∀qi ∈ q.

1. if p = q then // This is a simple degenerate case.
2. return {p}, a list containing only one element,p.
3. let n← |p|= |q| be the dimensionality.
4. let δ ← {|p0−q0|, . . . , |pn−1−qn−1|}, |δ |= n.
5. let o be the sorted ordering ofδ by > from thesort orderalgorithm in §3.2.
6. let p′ andq′ be p andq respectively, sorted according too.
7. if p′0≤ q′0 then // We want the starting point to have the lower initial dimension.
8. Swapp′ with q′.
9. let δ ′←

{

|p′0−q′0|, . . . , |p
′
n−1−q′n−1|

}

.
10. let s←

(

sgn
(

p′0−q′0
)

, . . . ,sgn
(

p′n−1−q′n−1

))

, where sgn is the signum function.
11. let d← {d1, . . . ,dn−1} , |d|= n−1, the deciders, wheredi ← 2δ ′i −δ ′0∀di ∈ d.
12. let a← {a1, . . . ,an−1} , |a|= n−1, the if-increments,ai ← 2δ ′i ∀ai ∈ a.
13. let b← {b1, . . . ,bn−1} , |b|= n−1, the else-increments,bi ← 2

(

δ ′i −δ ′0
)

∀bi ∈ b.
14. let r ← {p′}, initializing the result of the algorithm, an ordered list of points.
15. let z← p′, initializing the current point.
16. while z0 < q′0 do // After this, we have r= {p′, . . . ,q′}.
17. Incrementz0 by 1.
18. for all di ∈ d do
19. if di < 0 then
20. incrementdi by ai .
21. else // In this case we have di ≥ 0.
22. incrementdi by bi andzi by si.
23. Push a duplicate ofz to the back ofr, so that nowr = {p′, . . . ,z}.
24. Reorder the coordinate of the points inr according to the original coordinate ordering

forming r ′ by applying the inverse ofo, which iso.
25. if we originally swapped the start and end pointsthen
26. return the reverse ofr ′.
27. else
28. return r ′.

Algorithm 3.3. Raster line.

3.1.4. List Slices. This function returns a slice from a one-dimensional list; that

is, a modular subset of the list, and is outlined in Algorithm3.4. For example, a 2-slice of

the list{1,2,3,4,5,6,7,8,9}would be the list{1,3,5,7,9}.

21

Input: A list of elementsl = {l0, l1, . . . , l|l |}.
Input: A positive rational slice sizes.

1. Initialize the resulting listr ← nil = {}, initially empty.
2. Initialize the moving indexi← 0.
3. while i < |l | do
4. if i ∈ Z then
5. Appendl i to the end ofr.
6. i← i +s.
7. return r.

Algorithm 3.4. List slice.

3.2. DATA REPRESENTATION

This LCS is intended to operate on a multivariate time series. The data consists

of a single temporal dimension, several positional dimensions, and a single dimension of

type. This is represented as a linked list consisting of multidimensional arrays, where each

element in the matrices is a structure. Each array of structures represents a single time step;

the position in the list is the position in time. The fields of the structures are independent

data. Thus, any specific value in the multivariate time series could be uniquely referenced

in the form:

{t,x0, . . . ,xn−1,φ} (22)

wheret is the temporal position,x0, . . . ,xn−1 are the dimensional positions (forn dimen-

sions), andφ is the field selector. It must hold that∀xi ∈ N
∗. The temporal positiont

specifies a timetcurrent− t, and it must also hold thatt ∈N0.

This representation can be simplified: the entries can be single elements instead of

full structures, and the arrays themselves can even be reduced to single elements, reducing

to a traditional one-dimensional time series, all using thesame code. This is what is done in

the examples here, and all tests were performed on one-dimensional time series, although

each entry was a structure containing multiple related data. For our example of market

analysis,t is the number of days from present time, and the fields are the opening price,

closing price, high price, low price, adjusted closing price, and the volume of the trades for

that particular stock at that particular time.

22

3.3. RULE REPRESENTATION

The representation of a single rule is a collection of predicates; each predicate must

match the current situation for the rule to match the situation. A single predicate consists

of an initial and a final position, each of the form

{t,x0, . . . ,xn−1} , (23)

a field selectorφ , an operatorω, and a range pair consisting of a lower and upper bound

[l ,u]. The field selectorφ is to be a lexical closure taking only one argument, which is

the structure at the position{t,x0, . . . ,xn−1}. If the structure is not a structure, but rather

a single element, the only value that would usually make sense for φ would be an identity

function: simple transformative functions would be acceptable otherwise. Any function

that operates in a uniform manner, applied to a single entry,would be an acceptableφ . The

operatorω is also a lexical closure, and is intended for classificationpurposes; allω ’s must

operate over a one-dimensional vector of data.

If we take the data along the straight line segment from the initial point A to the final

pointB, forming a vectord, we can then formd′ by applyingφ to each element ind:

d′i = φ (di)∀di ∈ d. (24)

The predicate is said to match the data if and only if

l ≤ ω
(

d′
)

≤ u. (25)

When all of the predicates of the rule match, then the rule matches; the rule then recom-

mends a particular classification or action.

3.4. MUTATION

The approach to mutation of the paths is to restrict the mutation of the line segment

to the same line, only allowing the end points to move up or down along that line. In

this method, the alteration of the line segment is minor, andtherefore there is very little

23

change in the actual information held by the path. This is exactly the sort of effect we

wish in mutation: small changes. By only allowing for smaller mutations we do not have

the information stored in the rule itself destroyed completely, but instead it is just slightly

modified.

◦ • • • •

The lower and upper values of the range are altered, but limited by a maximum mutation

parameter, and also limited to ensure that the current situation maintains its current classi-

fication under the classifier rule.

3.5. CROSSOVER

We use a marginally-modified form of one-point crossover. Consider viewing the

environment condition of a rule as consisting of several predicates, each possessing an

initial point A, a final pointB, a lower boundl , an upper boundu, a fieldφ and an operation

ω. We could choose to view this as a list of the form

{

A0,B0, l0,u0,φ0,ω0, . . . ,Ap−1,Bp−1, lp−1,up−1,φp−1,ωp−1
}

(26)

wherep is the number of predicates contained in the rule. Apply one-point crossover on

two lists of this form, but insure that both lists break the predicates in the same way.

3.6. LEARNING PARAMETERS

There are numerous parameters used in XCS, a few added by XCSR, and a few

more still added here. Choosing their values wisely can be very important in some problem

domains unfortunately. This subsection gives brief descriptions of the important parameters

and specifies sensible default values for typical problems.It is important that any results

described should also list the parameter settings used.

3.6.1. From XCS. These are the parameters that are present in XCS. As such,

they are also present in XCSR and TSC.

3.6.1.1. General Parameters These are parameters related to the general opera-

tion of XCS.

Maximum total numerosity. This isN in [28]. It specifies the maximum size of the pop-

ulation in micro-classifiers, that is, the maximum sum of thenumerosities of the

24

classifiers. This should be a positive integer, normally in the hundreds or at most the

thousands.

Learning rate. This is β in [28]. It is used as the learning rate for the predicted payoff,

prediction error estimate, GA fitness, and action set size estimate for the classifiers.

This should be in the range[0.1,0.2] for most problems, and always in the range

[0,1).

Possible actions.This isA, the set of all of the possible actions that the classifier rules

may take for values ofa.

3.6.1.2. Recalculating Fitness These parameters are used in XCS while recalcu-

lating the fitness of the rules in the population.

Multiplier parameter. This is α in [28]. This is the multiplier used in recalculating the

fitness of the classifiers in theupdate fitnessalgorithm from §3.7. It is usually around

0.1.

Equal error threshold. This isε0 in [28]. This is the threshold used in recalculating the

fitness of the classifiers in theupdate fitnessalgorithm from §3.7 to decide if the

errors are essentially the same. It is usually around 1% of the ρ , the reward.

Power parameter. This isν in [28]. This is the exponent used in recalculating the fitness

of the classifiers in theupdate fitnessalgorithm from §3.7. It is typically set to 5.

3.6.1.3. Multi-Step Specific These are parameters that are only used in multi-step

problems.

Discount factor. This is γ in [28]. It is the discount factor used in multi-step problems

when updating the classifier predictions. It is typically around 0.71.

3.6.1.4. GA Specific These parameters are only used by the GA within XCS.

GA Threshold. This is θGA in [28]. The GA is run whenever the average number of

generations since the last time the GA was run is greater thanthis threshold. It is

typically in the range[25,50], and should always be inN∗.

25

Crossover probability. This is χ in [28]. It is the probability of applying the crossover

operator while executing the GA. It is typically in the range[0.5,1.0].

Mutation probability. This is µ in [28]. It is the probability of applying the mutation

operator while executing the GA. It is typically in the range[0.01,0.05].

Deletion threshold. This is θdel in [28]. It is the threshold for classifier deletion. If a

classifier’s experience is greater than this parameter thenit may be considered for

deletion. It is typically 20.

Fitness fraction threshold. This isδ in [28]. It is the fraction of the mean fitness of the

population below which the fitness of a classifier may be considered in its probability

of deletion. It is typically around 0.1.

Initial fitness. This isFI in [28]. It is used as the initial value of the fitness used by the GA

for the newly-created classifiers. It is typically only slightly more than zero.

3.6.1.5. Rule Set Specific These parameters deal with the rule set as a whole.

Minimum subsumption experience. This is θsub in [28]. The experience of a classifier

must be greater than this threshold for it to subsume anotherclassifier. It must hold

thatθsub∈ N
∗, and typically we haveθsub≥ 20.

Covering probability. This isP# in [28]. It is the probability of using the covering element

in a single attribute. It is typically around 0.33.

Initial prediction. This is pI in [28]. It is used as the initial value of the predicted payoff

for the newly-created classifiers. This is typically slightly more than zero.

Initial prediction error. This isεI in [28]. It is used as the initial value of the estimated

prediction error for the newly-created classifiers. It is typically only slightly more

than zero.

Exploration probability. This isPexplr in [28]. It specifies the probability of exploration

during the action selection phase. It is typically around 0.5.

Minimal number of actions. This is θmna in [28]. This should be inN, and is typically

equal to the number of possible actions, so that complete covering will take place.

26

Maximum number of steps. This is the maximum number of steps that a multistep prob-

lem can spend in one trial. This variable is not mentioned in [28], but it is present in

Butz’s XCS code written in the C programming language.

GA subsumption? This isdoGASubsumptionin [28]. It is a boolean parameter specifying

if the offspring are to be tested for possible logical subsumption by the parents. It is

usually best to set this totrue.

Action set subsumption? This isdoActionSetSubsumptionin [28]. It is a boolean param-

eter specifying if action sets are to be tested for subsumingclassifiers. It is usually

best to set this totrue.

3.6.2. From XCSR. These are the learning parameters that are added to an XCS

system by XCSR. Since our system derives from XCSR, we use these as well. The variables

used here are slightly different from those in a traditionalXCSR.

Problem range. This is a two-element list of the lower and upper values that the input is

expected to lie within. As the input violates this, this range is expanded automatically.

As an example, if it is known for a specific problem that the input should always lie

within the real-valued range[0,1], then this should be set to the list{0.0,1.0}.

Covering maximum. This is how large of a fraction of the range can be added to both

the lower and upper bounds combined in the covering. The current default value

we are using is 0.1. Thus, if we wish to cover[0.3,0.5], which has a spread of 0.5−

0.3= 0.2, the largest allowable spread would be(1+coveringmaximum)spread= (1+

0.1)0.2= 0.22.

Mutation maximum. This is how large of a fraction of the range may be added or sub-

tracted from the lower and upper bounds in the mutation method. The current default

value we are using is 0.1. For example, if we are mutating a rule which matches the

bounds[0.3,0.72], which has a spread of 0.72−0.3 = 0.42, we would have a max-

imum change of 0.042, so our mutated rule would now match bounds determined

randomly from[0.3± 0.042,0.72± 0.042], but enforced to be within the problem

bounds.

27

Initial spread limit. This iss0 in [5]. It is the maximum initial spread when a new predi-

cate is created through the covering operator.

3.6.3. New in TSC. These parameters are introduced here in TSC.

Maximum environment condition length. This is how many predicates we may have at

the maximum in any individual classifier. It should always bea positive integer.

Maximum temporal mutation. This is the most that the temporal element of the posi-

tion may be randomly perturbed during the mutation process.It should always be a

positive integer.

Maximum position mutation. This is the most any dimensional element of a position

may be randomly perturbed during the mutation process. It should always be a posi-

tive integer.

Valid operations. This is a list of all the valid operations for the classifier, the ω ’s, a

list of first-order lexical closures. A first-order lexical closure is, roughly speaking,

a function and its associated scope. Theseω ’s each must be capable of operating

on any arbitrary list of data extracted from the data set, andthese lists of data are

extracted by following the raster paths through the data.

Valid fields. This is the list of valid fields for the classifier, theφ ’s, a list of first-order

lexical closures. Theseφ ’s must be capable of operating on a single time instance of

the data.

Visible time range. This is the range in time that is visible to the classifiers. None of the

classifiers are allowed to look beyond this window. This alsois generally how much

of a history should be generated before the classifier systemis allowed to start. This

is a set interval.

3.7. TRIVIALLY MODIFIED ALGORITHMS

There are several algorithms from XCS and XCSR that are only slightly modified for

our purposes from their original forms.

28

The Generate Match Set Algorithm. This is theGENERATE MATCH SETfunction in

[28]. The match setM contains all of the classifiers in the populationP which match

the current situation. After filling the match set with all pre-existing matching clas-

sifiers, it repeatedly generates new covering classifiers until the minimum number of

actions is satisfied.

The Select Action Algorithm. This is the same as in traditional XCS. There are two meth-

ods for selecting an action used here: either randomly, or the best action.

The Generate Action Set Algorithm. This is theGENERATE ACTION SETfunction in

[28]. It forms the action setA out of the match setM, all of the classifiers that match

the selected action.

The Update Set Algorithm. This is theUPDATE SETfunction in [28]. It updates the

parameters for classifiers in the action set.

The Update Fitness Algorithm. This is theUPDATE FITNESSfunction in [28]. The fit-

ness of all of the classifiers in the action set are updated in anormalized manner.

The Run GA Algorithm. This is theRUN GAfunction in [28]. It runs a simple genetic

algorithm, not on the full populationP, but instead only on the action setA, in order

to induce niching.

The Select Offspring Algorithm. This is theSELECT OFFSPRINGfunction in [28]. It

uses a roulette-wheel method of selection.

The Insert into the Population Algorithm. This is theINSERT IN POPULATIONalgo-

rithm in [28]. It is slightly more complex than just pushing the new classifier into the

population list: we need to check to see if it is already present in the population. If it

is, we must increment that classifier’s numerosity instead.For a new classifierr, find

anr ′ ∈ P, with P being the entire population, such thatr andr ′ are identical. If such

anr ′ exists, incrementr ′n; otherwise insertr into P.

The Delete from Population Algorithm. This is the same as theDELETE FROM POPU-

LATION function in [28]. It decides which members of the populationare suitable

for deletion, allowing for niching, and then removes low-fitness individuals.

29

The Deletion Vote Algorithm. This is the same as theDELETION VOTEalgorithm in

[28]. The deletion vote for a classifierr is dependent upon its action set size estimate.

Let Faveragebe the average fitness in the entire population. We want classifiers with

sufficient experience and a significantly lower than averagefitness than the rest of the

population to be deleted before others. Expressed in terms of the TSC parameters as

outlined in §3.6:

rexp> θdel

∧ rF

rn
< δFaverage. (27)

This then returns
rasrnFaverage
(

rF
rn

) =
rasr2

nFaverage

rF
(28)

as the deletion vote for this classifierr; otherwise it returnsrasrn as the deletion vote

for this classifierr.

The Do Action Set Subsumption Algorithm. This is theDO ACTION SET SUBSUMP-

TION function in [28]. The function chooses the subsumer from themost general

classifiers capable of subsumption and then subsumes all possible classifiers in to the

subsumer.

The Could Subsume? Predicate. We say that a specific classifierr is capable of subsum-

ing others if it has both sufficient accuracy and sufficient experience. That is, if

the experience of the classifier is greater than the minimal subsumption experience

threshold, and the prediction error of the classifier is lessthan the equal error thresh-

old. In symbols:

rexp> θsub

∧

rε < ε0. (29)

The Subsume? Predicate. This is calledDOES SUBSUMEin [28]. A classifierr1 sub-

sumes another classifierr2 if the following conditions are all met:

1. Their actions are identical:r1
a = r2

a.

2. The classifierr1 is capable of subsumption, as decided by thecould subsume?

predicate described in §3.7.

3. The classifierr1 is more general than the classifierr2, as decided by themore

general?predicate described in §3.10.

30

3.8. THE MATCH? PREDICATE

This is based upon the algorithm calledDOES MATCHin [28], but it has been gener-

alized in order to suit our needs here. Assume a classifierr and a situationσ . In traditional

learning classifiers,σ ∈ { f alse, true} which is usually represented{0,1}, and therefore it

is only necessary to see if every element in the condition part of the classifierr, that isrc,

is either equal to each other or a covering symbol inr:

(

rci = σi

∨

rci = #
)

∀i ∈ Z|rc|=|σ |. (30)

For us, it is slightly more involved due to the more complex nature of the conditions used

in the construction of the classifiers.

The match? predicate for ternary values. For ternary values as used in traditional learn-

ing classifiers, a ternary predicatet matches a situation elementx when eithert = x

or t = #, the covering symbol. Similarly, a ternary predicatet matches a second

ternary predicateu whent matches all of the situations matched byu; that is, when

t = u
∨

t = #.

The match? predicate for ranges. For ranges as used in Wilson’s XCSR [5], a range

predicater matches a situationx when that situationx lies within the lower and upper

bounds specified by the range predicate,l ≤ x≤ u.

The match? predicate for a time-series. If we take the data along the straight line seg-

ment from the initial pointA to the final pointB, forming a vectord, we can then

form d′ by applyingφ to each element ind:

d′i = φ (di)∀di ∈ d. (31)

The predicate is said to match the data if and only if

l ≤ ω
(

d′
)

≤ u. (32)

31

When all of the predicates of the rule match, then the rule matches; the rule then

recommends a particular classification or action.

Two situationsσ1 andσ2 match if every one of their elements match element-wise:

match?(σ1i ,σ2i) = true∀i ∈ Z|σ1|=|σ2|. (33)

The match? predicate for classifiers and situations.A classifierr matches a situationσ

if r1 andr2 match, as decided by thematch?predicate described in §3.8, and at least

one of the elements of the classifier is more general inr1 than inr2.

The match? predicate for classifiers. A classifierr1 matches another classifierr2 if the

environment condition ofr1 matches the environment condition of the classifierr2.

3.9. THE GENERATE COVERING CLASSIFIER ALGORITHM

This is derived from theGENERATE COVERING CLASSIFIERfunction in [28]. It

creates a classifier which matches the current situation. This is handled somewhat differ-

ently in TSC than in XCS or in XCSR, and the method operates as described in Algo-

rithm 3.5.

Input: a TSC instance.
1. let l be randomly chosen, 1≤ l ≤ the maximum environment condition length.
2. let c, the condition← nil = {}, an empty list.
3. let a, the action← a random element from the set of all possible actions that arenot in

the match set.
4. for l timesdo
5. push a covering predicateonto c
6. return a new classifier instance with environment conditionc, actiona, time stamp

set to the current number of situations, and the rest of the slots set to their defaults.

Algorithm 3.5. Generating covering classifiers.

3.10. THE MORE GENERAL? PREDICATE

This is derived from theIS MORE GENERALfunction in [28].

32

The more general? predicate for a TSC predicate. This returns true only if the predicate

p matches predicateq and if it is more general than it as well. Predicatep is more

general than predicateq if and only if:

p matchesq∧

(

lp < lq∨uq < up∨
(

pathq lies completely alongpathp∧ pathp 6= pathq
))

.

The more general? predicate for classifiers. This is based upon the algorithm calledIS

MORE GENERALin [28], but it has been generalized in order to suit our needshere.

In traditional learning classifiers, it is only necessary tocount the occurrences of the

covering symbol, #, in order to determine which of two classifiers is more general:

the one with the greater number of occurrences of it. For us itis slightly more in-

volved due to the more complex nature of the conditions used in the construction of

the classifiers. A classifierr1 is more general than another classifierr2 if r1 andr2

match, as decided by thematch?predicate described in §3.8, and at least one of the

elements of the classifier is more general inr1 than inr2.

33

4. EXPERIMENTAL RESULTS

4.1. THE NATURE OF A REALISTIC TIME SERIES

The primary difficulty experienced in testing was an unknownaspect of time series

themselves. Originally the test problem was a very simple one-dimensional sine wave, with

only a simple slope function for an operator, and with the classification task of deciding if

the next point will be up or down from the current point. This appears as if it were a trivial

problem, and indeed a high degree of accuracy can be achievedwith only two very simple

rules: if the previous point is below the current one then thenext point will be above;

otherwise the next point will be below the current point.

This approach will not work in general. There are several distinct types of time

series, such as: up-trending, down-trending, steady, periodic, up-step, down-step, hills, and

valleys. Real-world time series are comprised of several ofthe characteristics from each

type, and any system that would be capable of operating on a real-world time series would

need to be able to handle all of the different types simultaneously. The problem is that a

simple slope operator is only capable of learning time series that are primarily linear, and a

periodic time series such as the sine wave requires entirelydifferent operators.

4.2. THE SIMPLISTIC INCREASING/DECREASING TESTS

The original test time series was a sine wave, which is a perfect example of a peri-

odic function, but the simple slope operator is only capableof learning linear time series

data. The new tests were designed with this in mind, and is actually a closer match to the

appearance of real market data.

The first new test was simply a randomly chosen slope for a line, either upward or

downward; the classification question is still whether or not the next point will be above or

below the current one; this was very quickly optimally learned by the system.

In the second simple test, the series is randomly selected tobe either upward or

downward for a random number of time steps, with a randomly chosen slope, over and over

again with completely different random elements each time.This was also very quickly

optimally learned by the system.

34

-250

-200

-150

-100

-50

0

50

100

0 500 1000 1500 2000 2500 3000

va
lu

e

time step

increasing/decreasing method 4 sample plot

”inde-values.data”

Figure 4.1. Increasing/decreasing method 4 sample plot.

The third simple test added random noise to the second test; TSC would typically

optimally learn this problem within 1,000 to 2,000 time steps.

The fourth simple test randomly switched the direction of the time step with a certain

probability. This, as well, was optimally learned within 1,000 to 2,000 time steps. This test

would superficially resemble a traded entity, so it is of particular interest. What is shown

in Figures 4.1 and 4.2 is a typical run under this test, with a probability of exploration of

0.35 and a probability of random misdirection of 0.1; this would imply a best-case eventual

accuracy of:

1−
0.35

2
−0.1 = 0.725

or 72.5%, which eventually appears.

4.3. THE STOCK MARKET

We experimentally determined many of the parameters that are best for use on the

stock market. We used actual historical data of the Dow JonesIndustrial Average (ˆDJI),

with daily trading data starting on August 20, 1990, with data ending on August 18, 2006.

The data was gathered from Yahoo! Finance. The first 100 data points of the time se-

ries were skipped, allowing for historical data that far back even in the very first day of

35

0
0.1

0.2

0.3

0.4

0.5

0.6
0.7

0.8

0.9

0 500 1000 1500 2000 2500 3000

ac
cu

ra
cy

time step

increasing/decreasing method 4 sample performance

”inde-hist.data”

Figure 4.2. Increasing/decreasing method 4 sample performance.

simulated data, causing an actual start of analysis of January 11, 1991. In each of these

experiments, a statistical sample of at least 30 runs was gathered, each run going on for

1,500 simulated trading days (2,167 actual days, 5.93 years), for an end of December 16,

1996. At each trading day the stock was given the option to either put all of its resources

into the ˆDJI or into a bank account yielding roughly 4% per annum. The system initially

had $1,000,000.00.

In these trials we report:

1. the trial number,

2. the number of correct actions,

3. the percentage of correct actions,

4. the final financial return,

5. the ratio of the final financial return to that of the buy-and-hold strategy,

6. and the percentage returned per annum.

36

Table 4.1. Initial parameters for the TSC.
parameter value

max environment condition length10
valid operations simple slope

valid fields closing price, opening price, and trading volume
max total numerosity,N 400

learning rate,β 0.2
discount factor,γ 0.71

GA threshold,θGA 25
equal error threshold,ε0 20.0
multiplier parameter,α 0.1
crossover probability,χ 0.8
mutation probability,µ 0.04

exploration probability,Pexplr 0.2
fitness fraction threshold,δ 0.1

covering probability,P# 0.33
initial prediction,pI 10.0

initial prediction error,εI 0.0
initial fitness,FI 0.01

We will use the buy-and-hold (B&H) strategy as our primary performance benchmark. In

this strategy, the stock is purchased outright, and then themoney is just left in the stock for

the entire duration of the experiment.

Our initial parameters are listed in Table 4.1, and were chosen by general trial and

error throughout the software development process.

4.3.1. Reward Methods. Several different possible reward methods for use in

the stock market were considered, and we analyzed their relative performance. We refer to

these different reward methods asa1, a2, b, c, dopt, anddpess.

Reward methoda1 is very simple:

1. if the correct action is takenthen

2. return a reward of 1,000.

3. else

4. return a reward of 0,

It had the results as described in Table 4.2 over 36 trials.

37

Table 4.2. TSC results for reward methoda1.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 754 50.256% $1,853,080.30 0.67500 10.96%pa

std dev 22.3 1.489% $333,964.25 0.12165 1.98%pa

max 797 53.133% $2,527,462.80 0.92065 16.91%pa

min 697 46.467% $1,117,451.00 0.40704 1.89%pa

Reward methoda2 is almost identical toa1:

1. if the correct action is takenthen

2. return a reward of 1,000.

3. else

4. return a reward of -200.

It had the results as described in Table 4.3 over 44 trials.

Table 4.3. TSC results for reward methoda2.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 748 49.867% $1,863,365.60 0.67875 11.06%pa

std dev 23.4 1.557% $294,466.10 0.10726 1.75%pa

max 790 52.667% $2,571,187.50 0.93657 17.25%pa

min 693 46.2% $1,358,889.10 0.49499 5.31%pa

Reward methodboffers slightly more incentive for good-performing rules:

1. let $ratio, the money ratio← $t+1
$t

, the ratio of the money the classifier has immediately

one time-step in the future to the money it currently has.

2. if $ratio > 1.005then

3. return a reward of 1,000.

38

4. else

5. return a reward of 0.

It had the results as described in Table 4.4 over 57 trials.

Table 4.4. TSC results for reward methodb.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 750 49.992% $1,792,041.90 0.65276 10.33%pa

std dev 27.9% 1.8631344 $378,179.50 0.13775 2.18%pa

max 815 54.333% $2,820,059.80 1.02723 19.09%pa

min 692 46.133% $1,219,942.60 0.44437 3.41%pa

Reward methodc tries to scale the reward:

1. let $ratio be the money ratio as previously defined.

2. let m← 1000, a multiplier.

3. let e← 2, an exponent.

4. let s← 1.015, a threshold term.

5. return m· ($ratio−s)e

It had the results as described in Table 4.5 over 30 trials.

Table 4.5. TSC results for reward methodc.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 747 49.791% $1,795,971.30 0.65420 10.37%pa

std dev 20.2 1.345% $300,842.88 0.10958 1.74%pa

max 790 52.667% $2,407,121.50 0.87681 15.95%pa

min 702 46.8% $1,340,345.30 0.48823 5.07%pa

39

Reward methodd is slightly more complex than the rest:

Input: cu, the amount of reward if the classifier is correct on an up day.

Input: cd, the amount of reward if the classifier is correct on an down day.

Input: iu, the amount of reward if the classifier is incorrect on an up day.

Input: id, the amount of reward if the classifier is incorrect on an downday. // Days that

are not up are viewed as down days here.

1. if the classifier has chosen the correct action∧ it is an up daythen

2. return cu.

3. else ifthe classifier has chosen the correct action∧ it is a down daythen

4. return cd.

5. else ifthe classifier has chosen the incorrect action∧ it is an up daythen

6. return iu.

7. else ifthe classifier has chosen the incorrect action∧ it is a down daythen

8. return id.

From this we have the two reward methodsdopt, which is optimistic, anddpess, which is

pessimistic.

Reward methoddopt callsd with the values ofcu= 1000,cd= 750, iu = 0, id = 200.

It had the results as described in Table 4.6 over 45 trials.

Table 4.6. TSC results for reward methoddopt.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 728 48.526% $1,624,189.40 0.59162 8.52%pa

std dev 22.2 1.477% $223,009.56 0.08123 1.17%pa

max 786 52.4% $2,122,616.30 0.77318 13.52%pa

min 689 45.933% $1,163,151.90 0.42369 2.58%pa

Reward methoddpesscallsd with the values ofcu= 750,cd= 1000, iu = 200, id = 0.

It had the results as described in Table 4.7 over 45 trials.

40

Table 4.7. TSC results for reward methoddpess.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 728 48.526% $1,624,189.40 0.59162 8.52%pa

std dev 22.2% 1.477 $223,009.56 0.08123 1.17%pa

max 786 52.4% $2,122,616.30 0.77318 13.52%pa

min 689 45.933% $1,163,151.90 0.42369 2.58%pa

From these experiments we see that thea methods are the best performing, although

there is no effective difference between the performance ofa1 and a2: this is because

the scaling of the reward should not effect the outcome of thereward method at all. We

arbitrarily choose of the two to employa2 for the remaining experiments.

4.3.2. GA Thresholds. After deciding ona2 as the best reward method and keep-

ing it for the rest of these tests, we turn our attention to optimizing the GA thresholdθGA,

which is described earlier in §3.6.1.4. We chose to look at the possible values for this

parameter of 25, 35, 45, and 50.

A GA threshold of 25 was used in the previous situation, so we can borrow the results

from thata2 run; refer to Table 4.3.

For a GA threshold value of 35, we observed the results as described in Table 4.8

over 30 trials.

Table 4.8. TSC results for a GA threshold of 35.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 759 50.571% $1,874,746.50 0.68289 11.17%pa

std dev 22.7 1.513% $315,092.60 0.11477 1.88%pa

max 806 53.733% $2,627,517.80 0.95709 17.68%pa

min 719 47.933% $1,346,346.10 0.49042 5.14%pa

41

For a GA threshold value of 45, we observed the results as described in Table 4.9

over 31 trials.

Table 4.9. TSC results for a GA threshold of 45.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 760 50.688% $1,881,119.10 0.68521 11.24%pa

std dev 25.6 1.706% $217,843.06 0.07935 1.30%pa

max 816 54.4% $2,297,796.00 0.83699 15.05%pa

min 699 46.6% $1,250,916.30 0.45566 3.85%pa

For a GA threshold value of 50, we observed the results as described in Table 4.10

over 30 trials.

Table 4.10. TSC results for a GA threshold of 50.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 763 50.891% $1,885,079.90 0.68665 11.28%pa

std dev 21.1 1.405% $293,885.56 0.10705 1.76%pa

max 808 53.867% $2,425,741.30 0.88359 16.10%pa

min 713 47.533% $1,329,746.00 0.48437 4.91%pa

There was no significant effect on the results of the algorithm based on the GA thresh-

old: all of the other means fall well within14 of a standard deviation relative to the initial

value ofθGA = 25, so we will employ that value for all remaining experiments.

4.3.3. Crossover Probabilities. After deciding on the correct reward method and

the correct GA threshold, using those results, we investigated the crossover probability,

which is described earlier in §3.6.1.4. We chose to look at 0.5, 0.6, 0.7, 0.8, and 0.9.

42

For a crossover probability ofχ = 0.3, we obtained the results as described in Ta-

ble 4.11 over 33 trials.

Table 4.11. TSC results forχ = 0.3.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 755 50.358% $1,862,015.40 0.67825 11.05%pa

std dev 24.3 1.621% $213,367.14 0.07772 1.27%pa

max 829 55.267% $2,354,066.50 0.85749 15.52%pa

min 712 47.467% $1,313,611.90 0.47849 4.71%pa

For a crossover probability ofχ = 0.5, we obtained the results as described in Ta-

ble 4.12 over 31 trials.

Table 4.12. TSC results forχ = 0.5.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 754 50.275% $1,882,082.30 0.68556 11.25%pa

std dev 24.9 1.662% $265,281.13 0.09663 1.59%pa

max 799 53.267% $2,426,894.30 0.88401 16.11%pa

min 717 47.8 $1,354,985.40 0.49356 5.25%pa

For a crossover probability ofχ = 0.7, we obtained the results as described in Ta-

ble 4.13 over 34 trials.

43

Table 4.13. TSC results forχ = 0.7.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 754 50.275% $1,884,173.30 0.68632 11.27%pa

std dev 28.9 1.930% $258,017.90 0.09399 1.54%pa

max 809 53.933% $2,526,742.80 0.92039 16.90%pa

min 688 45.867% $1,264,236.40 0.46051 4.03%pa

A crossover probability of 0.8 was used in the previous situation, so we can borrow

the results from theθGA = 25 run; refer to Table 4.3.

For a crossover probability ofχ = 0.9, we obtained the results as described in Ta-

ble 4.14 over 39 trials.

Table 4.14. TSC results forχ = 0.9.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 759 50.626% $1,943,606.10 0.70797 11.85%

std dev 21.9 1.462% $277,516.22 0.10109 1.69%

max 801 53.400% $2,399,683.00 0.87410 15.89%

min 707 47.133% $1,419,889.40 0.51721 6.09%

We can now easily observe that a crossover probability ofχ = 0.9 offers the best

results with an arithmetic mean of 11.85%pa, and we employ itfor all of the remaining

experiments.

4.3.4. Mutation Probabilities. Using all of our previous results, we then looked

into the mutation probability, described earlier in §3.6.1.4. We looked at values of 0.04,

0.06, 0.08, 0.10, 0.15, and 0.20.

A mutation probabilityµ = 0.04 was used in the previous situation, so we can borrow

the results from theχ = 0.9 run; refer to Table 4.14.

44

For a mutation probabilityµ = 0.06, we observed the results as described in Ta-

ble 4.15 over 34 trials.

Table 4.15. TSC results forµ = 0.06.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 762 50.831% $1,972,095.00 0.71835 12.13%pa

std dev 21.5 1.433% $255,299.13 0.09299 1.57%pa

max 792 52.800% $2,734,496.80 0.99606 18.47%pa

min 704 46.933% $1,579,600.50 0.57538 8.01%pa

For a mutation probabilityµ = 0.08, we observed the results as described in Ta-

ble 4.16 over 39 trials.

Table 4.16. TSC results forµ = 0.08.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 754 50.285% $1,905,925.10 0.69425 11.48%pa

std dev 29.79326 1.986% $285,127.30 0.10386 1.72%pa

max 806 53.733% $2,421,790.30 0.88216 16.07%pa

min 668 44.533% $1,230,840.30 0.44834 3.56%pa

For a mutation probabilityµ = 0.10, we observed the results as described in Ta-

ble 4.17 over 36 trials.

45

Table 4.17. TSC results forµ = 0.10.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 761 50.744% $1,950,889.10 0.71063 11.92%pa

std dev 22.6 1.506% $299,845.56 0.10922 1.83%pa

max 796 53.067% $2,891,320.00 1.05319 19.59%pa

min 709 47.267% $1,250,508.00 0.45551 3.84%pa

For a mutation probabilityµ = 0.15, we observed the results as described in Ta-

ble 4.18 over 32 trials.

Table 4.18. TSC results forµ = 0.15.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 763 50.908% $2,037,007.90 0.74200 12.74%pa

std dev 22.299% 1.487% $320,506.80 0.11675 2.00%pa

max 804 53.600% $2,975,396.80 1.08381 20.17%pa

min 719 47.933% $1,406,036.50 0.51216 5.91%pa

For a mutation probabilityµ = 0.20, we observed the results as described in Ta-

ble 4.19 over 36 trials.

Table 4.19. TSC results forµ = 0.20.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 762 50.800% $1,889,297.80 0.68819 11.42%pa

std dev 24.369835 1.625% $232,916.92 0.08484 1.40%pa

max 803 53.533% $2,708,086.00 0.98644 18.28%pa

min 697 46.467% $1,502,196.10 0.54719 7.10%pa

46

We can now easily observe that a mutation probability ofµ = 0.15 offers the best re-

sults with a arithmetic mean of 12.74%pa, and we therefore use that value for all remaining

experiments.

4.3.5. Exploration Probabilities. After this we looked at the exploration proba-

bility, which we describe in §3.6.1.5. We investigated the possible values of 0.1, 0.2, 0.3,

and 0.4, using our previous results for the rest of the parameters.

For an exploration probability ofPexplr = 0.1, we observed the results as described in

Table 4.20 over 42 trials.

Table 4.20. TSC results forPexplr = 0.1.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 762 50.795% $1,849,187.80 0.67358 10.92%pa

std dev 28.9 1.925% $233,230.42 0.08496 1.38%pa

max 810 54.000% $2,446,262.50 0.89107 16.27%pa

min 691 46.067% $1,210,933.40 0.44109 3.28%pa

An exploration probability ofPexplr = 0.2 was used in the previous situation, so we

can borrow the results from theµ = 0.15 run; refer to Table 4.18.

Table 4.21. TSC results forPexplr = 0.15.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 763 50.908% $2,037,007.90 0.74200 12.74%pa

std dev 22.3 1.487% $320,506.80 0.11675 2.00%pa

max 804 53.600% $2,975,396.80 1.08381 20.17%pa

min 719 47.933% $1,406,036.50 0.51216 5.91%pa

47

For an exploration probability ofPexplr = 0.3, we observed the results as described in

Table 4.22 over 40 trials.

Table 4.22. TSC results forPexplr = 0.3.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 765 50.985% $2,090,409.40 0.76145 13.23%pa

std dev 22.8 1.521% $295,592.78 0.10768 1.87%pa

max 817 54.467% $2,848,646.30 1.03764 19.29%pa

min 725 48.333% $1,536,175.30 0.55956 7.50%pa

For an exploration probability ofPexplr = 0.4, we observed the results as described in

Table 4.23 over 47 trials.

Table 4.23. TSC results forPexplr = 0.4.

— correct % correct returns B&H ratio %pa

B&H 806 53.733% $2,745,309.50 1.0 18.54%pa

arith mean 767 51.119% $1,950,627.60 0.71053 11.92%pa

std dev 19.5 1.299% $196,644.44 0.07163 1.20%pa

max 806 53.733% $2,395,224.50 0.87248 15.86%pa

min 730 48.667% $1,637,668.40 0.59653 8.67%pa

We can now easily observe that an exploration probability ofPexplr = 0.3 offers the

best results with an arithmetic mean of 13.23%pa, and we therefore use that value.

48

5. CONCLUSIONS AND FINAL RESULTS

After all of our tests we arrived at the set of parameters in Table 5.1 for the time

series classifier. In this table the return is the equivalentpercentage per-year (%pa) return

provided by the parameters at that setting, and the B&H ratiois the performance relative

to a simplistic buy-and-hold stategy, with 1.0 being equal,less than 1.0 implying an under-

performing result over the same period, and greater than 1.0implying a superior result over

the same time period. The DJIA returned 18.54%pa over the period investigated here, and

we failed to meet that in any of our tests. For example, 11.06%pa implies that with all of

the other parameters set to their initial default and the reward method set toa2 is equivalent

to a savings account yielding 11.06%pa returns, but underperforming the DJIA itself if we

were to merely buy and hold it for the same period of time. While these results demon-

strate the system’s ability to learn a complex situation, they are not at a level acceptable

for real-world use on the stock market, underperforming thesimplistic buy-and-hold strat-

egy. Instead this system in its current form will only truly be applicable to less interesting

problem spaces.

TSC would not be a usable real-world system for the stock market unless it were to

result in returns in excess of the buy-and-hold strategy, which it did not. If it were capable of

outperforming buy-and-hold then we could use it for automated and unsupervised trading.

As it is, a more effective real-world approach would be to simply purchase an indexing

fund. TSC is no longer useful to us since our interest is specifically automated stock trading,

Table 5.1. TSC Final Parameters
parameter value return B&H ratio

reward method a2 11.06%pa 0.67875
GA threshold,θGA 25 · · · · · ·

crossover probability,χ 0.9 11.85%pa 0.70797
mutation probability,µ 0.15 12.74%pa 0.74200

exploration probability,Pexplr 0.3 13.23%pa 0.76145

49

and our research will continue towards other avenues of automated time series analysis and

prediction, probably still in the area of evolutionary computation and possibly employing

a novel type of LCS.

There are many real-world applications comprising simplertime series than the stock

market, and TSC does have a lot of room left to grow still, so continued research by others

would be welcomed and potentially fruitful. TSC demonstrates that an LCS can natively

represent a time series under analysis and learn in such an environment: that demonstration

is the most valuable result of this research, perhaps encouraging more attempts at LCS-

based time series analysis methods.

50

6. FUTURE WORK

There are several opportunities for improvement on TSC. Some of these are obvious

and result from known simplifications and limitations of thecurrent TSC system. The most

obvious paths for future research with this TSC fall into thefollowing major tasks:

1. using more advancedφ ’s,

2. using more advancedω ’s,

3. finishing the implementation of multidimensionality,

4. using more advanced concepts in the GA,

5. represent the rule strengths with polynomials instead ofreals,

6. changing from a Michigan to a Pittsburg approach,

7. using a GP instead of a GA,

8. and applying the system to other real-world problems.

Using more advancedφ ’s, is the most straightforward to start on. In the version of

TSC as outlined here, and in the associated code, it is entirely possible to use any lexical

closure as aφ , as long as it is capable of operating on one position of the time series data.

In our use we only usedφ to select the data field, but there is no reason why this shouldnot

or could not have vastly more complex operations. Any operations that would be useful in

discernment might be useful.

Using more advancedω ’s would address what is probably the greatest weakness of

the current system. At present we have only used a simple slope function for theω and have

not attempted anything else. There are bound to be many more useful functions available.

We specifically expect that the ability to match against polynomials and against periodic

functions would be of the most intrinsic value.

51

Extending TSC so that it is a system fully capable of handlingmultivariate time series

depends on the previous two tasks’ completion first. The TSC system as described and the

code used were both originally designed to handle multivariate time series, and therefore

much of the work is already completed, but exactly what else remains to be finished is not

entirely clear. We assert that at least newω ’s that are designed with multivariate time series

in mind would be required, but there may be other elements of the TSC system that need

revision as well.

Using more advanced concepts within TSC’s GA would be one of the easiest methods

of improvement. The form of crossover we used was simple one-point crossover, and

there are several well-known forms of crossover with betterperformance in general use.

Employing a self-adaptive GA to evolve its own parameters encoded in its gene could also

provide for some major gains, as this has been the most computationally intensive part

of our investigation. Other methods of mutation may be beneficial, although this would

require novel work: the non-standard form of the individuals in TSC appears to necessitate

non-standard mutation approaches. The easiest modification of the mutation that would

possibly be beneficial would be to try a Gaussian form of mutation which would allow for

more drastic alteration to the population members on rare occasions. This would allow the

system to adapt more fully to notably different environments.

The measures of the strengths here are real numbers currently, but we suspect that

they may be better represented by polynomials, especially in the stock market problem

since there is a great deal of difference in the value of a rulein differing times for any

specific stock.

XCS and company use the so-called Michagan approach, where the entire population

is the rule set. We suspect that the Pittsburgh approach, where each individual in the pop-

ulation is a complete rule set, could possibly be a better fit for our stock market problem

in specific and possibly time series problems in general. This would be quite involved, and

almost a complete redesign of the system.

Replacing the GA with a genetic program (GP), would be quite an undertaking. This

would allow for vastly more complex classification rules andcould possibly discover new

basic metrics for the time series problems presented to the system. This would be of partic-

ular value with the stock market even though there are several well-known metrics because

they are rarely of any quality. This would even more valuablefor less-investigated time

series problems since there might not even be any known metrics as of yet for the problem.

52

The final task is actually many tasks: TSC should be applied tomany more real-world

problems, both to better solve those problems and to improveTSC itself. We hope that this

work will prove useful in many problems and look forward to its use by others.

53

BIBLIOGRAPHY

[1] John H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms.
In D. A. Waterman and F. Hayes-Roth, editors,Pattern directed inference systems,
pages 313–329. Academic Press, New York, NY, 1978.

[2] John H. Holland.Adaptation in Natural and Artificial Systems.University of Michi-
gan Press, 1975.

[3] Stewart W. Wilson. ZCS: A zeroth level classifier system.Evolutionary Computation,
2(1):1 – 18, 1994.

[4] Stewart W. Wilson. Classifier fitness based on accuracy.Evolutionary Computation,
3(2):149 – 175, 1995.

[5] Stewart W. Wilson. Get real! XCS with continuous-valuedinputs. In Pier Luca Lanzi,
Wolfgang Stolzmann, and Stewart W. Wilson, editors,Learning Classifier Systems:
From Foundations to Applications, volume 1813 ofLecture Notes in Artificial Intelli-
gence (LNAI), pages 209 – 219. Springer-Verlag, 2000.

[6] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning. The MIT Press,
Cambridge, Massachusetts, 1998.

[7] A. E. Eiben and J. E. Smith.Introduction to Evolutionary Computing. Springer-
Verlag, 2003.

[8] C. Stone and L. Bull. For real! xcs with continuous-valued inputs. Evolutionary
Computation, 2003.

[9] George Edward Pelham Box and Gwilym M. Jenkins.Time Series Analysis: Fore-
casting and Control. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1994.

[10] George Edward Pelham Box and Gwilym M. Jenkins.Time Series Analysis: Fore-
casting and Control. Holden-Day, 1976.

[11] Fredic M. Ham and Ivica Kostanic.Principles of Neurocomputing for Science and
Engineering. McGraw-Hill Higher Education, 2000.

[12] Shaun-Inn Wu and Ruey-Pyng Lu. Combining artificial neural networks and statistics
for stock-market forecasting. InCSC ’93: Proceedings of the 1993 ACM conference
on Computer science, pages 257–264, New York, NY, USA, 1993. ACM Press.

[13] Thomas Kolarik and Gottfried Rudorfer. Time series forecasting using neural net-
works. InAPL ’94: Proceedings of the international conference on APL: the lan-
guage and its applications, pages 86–94, New York, NY, USA, 1994. ACM Press.

54

[14] Andrew Skabar and Ian Cloete. Neural networks, financial trading, and the efficient
markets hypothesis. InACSC ’02: Proceedings of the twenty-fifth Australasian confer-
ence on Computer science, pages 241–249, Darlinghurst, Australia, Australia, 2002.
Australian Computer Society, Inc.

[15] Yung-Keun Kwon, Sung-Soon Choi, and Byung-Ro Moon. Stock prediction based on
financial correlation. InGECCO ’05: Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 2061–2066, New York, NY, USA, 2005. ACM
Press.

[16] Robert Andrews and Shlomo Geva. Rule extraction from local cluster neural nets.
Neurocomputing, 2000.

[17] David de la Fuente, Alejandro Garrido, Jaime Laviada, and Alberto Gómez. Genetic
algorithms to optimise the time to make stock market investment. InGECCO ’06:
Proceedings of the 8th annual conference on Genetic and evolutionary computation,
pages 1857–1858, New York, NY, USA, 2006. ACM Press.

[18] Peter Belford. Candlestick stock analysis with genetic algorithms. InGECCO ’06:
Proceedings of the 8th annual conference on Genetic and evolutionary computation,
pages 1851–1852, New York, NY, USA, 2006. ACM Press.

[19] M. A. Kaboudan. Genetic programming prediction of stock prices. Comput. Econ.,
16(3):207–236, 2000.

[20] Hakman A. Wan, Andrew Hunter, and Peter Dunne. Autonomous agent models of
stock markets.Artif. Intell. Rev., 17(2):87–128, 2002.

[21] Sonia Schulenburg and Peter Ross. Strength and money: An lcs approach to increas-
ing returns. In Lanzi et al. [29], pages 114 – 137.

[22] Sonia Schulenburg and Peter Ross. A learning evolutionary trading system, May 29
2002.

[23] Stewart W. Wilson. Function approximation with a classifier system. In Lee Spec-
tor, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo
Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund
Burke, editors,Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 974–981, San Francisco, California, USA, 7-11 July 2001.
Morgan Kaufmann.

[24] Justin A. Boyan and Andrew W. Moore. Generalization in reinforcement learning:
Safely approximating the value function, April 25 2004.

[25] Theodore J. Perkins and Doina Precup. A convergent formof approximate policy
iteration. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors,NIPS,
pages 1595–1602. MIT Press, 2002.

55

[26] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. XCS
with computed prediction in multistep environments. In Hans-Georg Beyer, Una-May
O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum, Eric W. Bonabeau,
Erick Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D.
de Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis, Martin Pelikan, Guenther R.
Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Watson, and Eckart Zitzler, editors,
GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary com-
putation, volume 2, pages 1859–1866, Washington DC, USA, 25-29 June 2005. ACM
Press.

[27] Arie Kaufman and Eyal Shimony. 3d scan-conversion algorithms for voxel-based
graphics. InSI3D ’86: Proceedings of the 1986 workshop on Interactive 3Dgraphics,
pages 45–75, New York, NY, USA, 1987. ACM Press.

[28] Martin V. Butz and Stewart W. Wilson. An algorithmic description of XCS. In Lanzi
et al. [29], pages 253 – 272.

[29] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.Advances in
Learning Classifier Systems, volume 1996 ofLecture Notes in Artificial Intelligence
(LNAI). Springer-Verlag, 2001.

56

VITA

Christopher Mark Gore was born in Cleveland, Ohio, on December 8, 1978. He re-

ceived his High School Diploma from Triad High School in Saint Jacob, Illinois in 1997.

Then he received his Associate of Science from SouthwesternIllinois College, located in

Belleville, Illinois, in 2001. After this he received his Bachelor of Science in Mathematics

and Computer Science from Eastern Illinois University, located in Charleston, Illinois, in

2003. This thesis is part of the requirements for the completion of his Master of Science

in Computer Science from the Missouri University of Scienceand Technology, located

in Rolla, Missouri, in 2008. His computational interests include evolutionary algorithms

and other methods of unaided computational learning, financial simulation and analysis,

and Lisp. His interest in investing is being actively and successfully engaged, but without

the aid of the computational analysis presented here. He is currently employed at As-

tronautics Corporation of America developing software forthe Integrated Network Server

Unit (INSU) that will fly with the Airbus A400M, a large turboprop-driven military cargo

aircraft designed to replace the aging C-130 Hercules throughout the world. He married

Monica Louise Gore (née Smith) on May 27, 2006, and they currently reside in Oak Creek,

Wisconsin, a suburb of Milwaukee, with their cat Casper.

	A time series classifier
	Recommended Citation

	A time series classifier

