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 Methods for classifying irrigated land cover are often complex and not quickly 

reproducible.  Further, moderate resolution time-series datasets have been consistently 

utilized to produce irrigated land cover products over the past decade, and the body of 

irrigation classification literature contains no examples of subclassification of irrigated 

land cover by irrigation method.  Creation of geospatial irrigated land cover products 

with higher resolution datasets could improve reliability, and subclassification of 

irrigation by method could provide better information for hydrologists and climatologists 

attempting to model the role of irrigation in the surface-ground water cycle and the water-

energy balance.  This study summarizes a simple, reproducible methodology using 30-

meter resolution Landsat NDVI data for classifying irrigated land cover in semi-arid 

western Montana by leveraging the rising availability of machine learning algorithms in 

geographic information systems (GIS) software programs to compare results from models 

constructed using Decision Trees, Random Forest, and principal components analysis.  

Finally, this study was an attempt to subclassify irrigated land cover into a geospatial 

layer that distinguishes center pivot irrigation systems from other methods.  The Random 

Forest model was the best model for classifying irrigated land cover, validating its recent 

use for classifying irrigated land cover in other studies.  Further, the NDVI dataset that 

interpolates cloud and cloud shadow pixels with a user-specified climatology provided a 

time-series dataset with sufficient spatial and temporal resolution for time-series irrigated 

land cover classification at the basin and growing season scales.  This dataset provides a 

viable alternative to coarse resolution products often used for creation of geospatial 

irrigated area datasets at larger scales and an opportunity to create small-scale irrigated 

area datasets that provide more detailed information.  Finally, subclassification of 

irrigation by method was unsuccessful, but availability of small-scale evapotranspiration 

datasets and a time-series green index dataset without cloud contamination could improve 

models.       
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INTRODUCTION 

 Global hunger has been in decline, but recent evidence suggests a rise, with an estimated 

one of nine people currently undernourished (Food and Agriculture Organization 2018).  

However, as the global population increases from approximately 7 billion to between 8 and 10 

billion by 2050 (Lutz and Samir 2010), experts expect global income levels to rise (Rask and 

Rask 2010) resulting in greater food consumption (Kearney 2010).  Since irrigation increases 

crop yields per unit cultivated area (Schürkmann, Biewald and Rolinski 2014), irrigation will 

play a major role in increasing food production for rising global demand.  Conversion from 

dryland farming to irrigation and expansion of irrigation into previously uncultivated areas 

results in dramatic climatic, hydrologic and habitat disturbances.  Some sources observe that the 

rate of irrigated land cover expansion is decreasing (Wada et al. 2013; Brown and Pervez 2014; 

Deines, Kendall and Hyndman 2017).  However, Bruinsma (2003) expects area equipped for 

irrigation to expand and 60% of all land with irrigation potential to be in use by 2030.  Net 

irrigated land cover may increase or decrease on a global scale, but irrigated land cover change is 

geospatially dynamic on a regional scale (Brown and Pervez 2014; Deines, Kendall and 

Hyndman 2017) due to economic influences, climate, water policy and cropping decisions 

(Deines, Kendall and Hyndman 2017).  Irrigated land cover expansion and contraction is a form 

of land use change, and land use change is expected to have a profound effect on changes in 

biodiversity (Sala et al. 2000).  Further, irrigation contributes to dramatic changes to the 

hydrologic systems on which humans are dependent.  The World Bank (2018) estimates that 

70% of global water withdrawals are for agriculture.  As anthropogenic effects on hydrologic 

processes result in aquifer depletion and reduced stream flows (Postel 2003; Lauffenburger et al. 

2018), hydrologists are beginning to better understand the ground and surface water connection 
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(Winter et al. 1998; Hill and Walter 2003).  Additionally, irrigation forces several changes in the 

regional energy-water balance such as surface moisture and temperature (Weare and Du 2008).  

Finally, evidence suggests climate change is currently driving changes in hydrologic systems as 

well as regional fluctuations in temperature and precipitation, and global temperatures are 

expected to substantially rise as precipitation patterns drastically change (Intergovernmental 

Panel on Climate Change 2014).  Wada et al. (2013) and Lauffenburger et al. (2018) expect 

climate change to increase irrigation water demand, and Lauffenburger et al. (2018) provide 

evidence for increasing annual evapotranspiration with a warming climate, further straining 

hydrologic systems (e.g., reduced groundwater recharge) on which food production depends. 

Geospatial irrigation datasets are important for: water-energy budget modeling (Boucher, 

Myhre and Myhre 2004), modeling irrigation water demand under various climate change 

scenarios (Wada et al. 2013), irrigation water use and river reach water balance models 

(Ozdogan et al. 2006; Peña Arancibia et al. 2016), gaining insight into food security risks 

(Thenkabail and Wu 2012), water managers (Deines, Kendall and Hyndman 2017) and 

understanding behavior of producers (Deines, Kendall and Hyndman 2017).  The US Department 

of Agriculture’s (USDA) National Agriculture Statistics Service (NASS) documents county-

level irrigation area in the Census of Agriculture (USDA 2018), and county-level statistics may 

be available from other sources.  However, these statistics do not contain spatial information, and 

availability of regional agricultural maps or geospatial datasets is inconsistent. 

Study Summary 

For most irrigated land area classifications, data preprocessing is an important step.  

Further, data inputs are often numerous and potentially not readily available to all researchers.  

Also, for most recent studies, researchers use moderate resolution datasets, usually Moderate 
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Resolution Imaging Spectroradiometer (MODIS) products.  Additionally, methodologies are 

often complex with sometimes dozens of steps, requiring highly skilled researchers to 

implement, and the software they use is not always clearly stated and/or widely utilized.  Finally, 

no studies attempt to classify irrigation by method (e.g., surface/sprinkler or center-pivot/other 

method) using only time-series spectral data and automated image analysis.  Different irrigation 

methods are associated with variable irrigation efficiencies (Howell 2003; Irmak et al. 2011) and 

evapotranspiration rates (Montana Department of Natural Resources and Conservation 

(MDNRC) 2013).  Therefore, geospatial irrigation datasets that distinguish irrigation by method 

are potentially useful for regional hydrologic and climate models.   

Due to the complex nature of the methodology required to classify irrigation on a global 

scale and the moderate resolution of global and continental scale geospatial irrigated land 

datasets, water managers, hydrologists, climatologists and geospatial analysts may want to use a 

simplified process and/or create these layers at a regional level.  For this study, a simple process 

is defined as one that requires the following: (1) minimal data inputs, (2) minimal data 

preprocessing, (3) readily available data sources, (4) widely utilized software and (5) relatively 

simple image analysis models that users with basic GIS skills can implement.   

The study described here tested the viability of various classifiers for irrigation 

classification, including machine learning algorithms (i.e., Decision Tree and Random Forest) 

and principal component analysis (PCA), on the Upper Clark Fork River Basin (UCFRB) of 

western Montana (Figure 1) using a newly available, high-resolution (30-meter), climatology-

interpolated Google Earth Engine/Landsat NDVI product (Robinson et al. 2017).  The aims of 

this study are: 
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1. determine which of the tested classification methods are most accurate or suitable at the 

study site, a semi-arid river basin; 

2. develop a simple process for generating binary irrigated/unirrigated land cover maps that 

are applicable at least regionally (western Montana) and, perhaps, across the American 

West (this includes testing the viability of the Robinson et al. (2017) dataset for time-

series irrigated land cover classification); 

3. and attempt classification of irrigation by method (center pivot/other method) using only 

time-series NDVI data. 

To develop a simple process, the viability of the Robinson et al. (2017) dataset for time-

series irrigated area classification was tested.  Use of this product requires minimal data 

preprocessing (i.e., projecting, integer-to-float conversion, downscaling and masking).  Also, the 

product is readily available and easily downloadable (Figure 2 - https://ndvi.ntsg.umt.edu/), and 

its high resolution offers higher potential for accuracy than products generated from MODIS 

sensors.  The only additional data inputs are a digital elevation model (DEM), land-cover product 

and public lands dataset, all of which are also readily available and easily downloadable 

(Montana State Library 2018a).  Additionally, the software programs, ArcGIS and TerrSet were 

used to perform all analyses because they are prevalent and widely utilized at universities and/or 

government agencies.  Finally, by automating the preprocessing workflow with arcpy and using 

the ArcGIS and TerrSet graphical user interfaces, a methodology was designed which is 

implementable by those with a basic to moderate geographic information systems skillset.  This 

study demonstrates that proper masking, quality ground truth data and time-series NDVI data are 
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keys for producing regional geospatial irrigation datasets, and climate data is potentially not 

necessary at the watershed or basin scale in the arid or semi-arid American West. 

 

Figure 1:  Study area. 

Figure 2:  Robinson et al. (2017) NDVI data download page 

(https://ndvi.ntsg.umt.edu/). 

https://ndvi.ntsg.umt.edu/
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LITERATURE REVIEW 

Analysis Techniques for Classifying Irrigated Areas 

Analysis techniques (i.e., models) used for creating geospatial irrigated land cover maps 

range from visual interpretation of imagery to complex supervised machine learning 

classifications.  Prior to the development of digital image analysis techniques, visual 

interpretation of aerial or satellite imagery was the only imagery analysis option (Heimes and 

Luckey 1980; Thelin and Heimes 1987; MDNRC 2018).  In the 1980s, Heimes and Luckey 

(1980) and Thelin and Heimes (1987) determined that leveraging satellite imagery was most 

effective for spatially extensive regions and that other methods were “too costly” and “time 

consuming.” 

Since the 1980s, irrigated land cover classification using digital image analysis 

techniques has become increasingly complex.  Early techniques include:  separation of pixels 

with small digital numbers in the red band and large numbers in the infrared band into the 

irrigated class (Heimes and Luckey 1980; Thelin and Heimes 1987), tasseled cap with 

brightness-greenness decision rules (Eckhardt, Verdin and Lyford1990), supervised maximum 

likelihood classification (Barbosa, Casterdad and Herrero 1996) and threshold normalized 

difference vegetation index (NDVI) decision rule classifiers (Dappen 2003; Ozdogan et al. 

2006), a predecessor to Decision Trees.  Thenkabail et al. (2005) and Thenkabail et al. (2009) 

increased the complexity of irrigation classification by exploring various digital image analysis 

techniques including tasseled cap, single-date spectral angle, multi-date spectral angle, space-

time spiral curves (STSCs) and development of temporal signatures.  With their NDVI threshold 

Decision Tree, Thenkabail et al. (2009) were among the earliest researchers to explore machine 

learning in irrigated land classification.  Irrigated land cover classification continued to evolve 
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following Thenkabail et al. (2005).  However, some simple methods have persisted.  Tian et al. 

(2007) questioned the necessity of complex techniques such as spectral angle mapping by 

comparing accuracies of the threshold NDVI method and spectral angle mapping, and Pervez 

and Brown (2010) also applied the NDVI threshold technique.  Thenkabail et al. (2007) and 

Biggs et al. (2007) explored subpixel classification of irrigated areas.  Finally, within the past 

decade, machine learning algorithms became the primary method for producing geospatial 

irrigation datasets (Ozdogan and Gutman 2008; Thenkabail and Wu 2012; Pervez, Budde and 

Rowland 2014; Salmon et al. 2015; Ambika, Wardlow and Mishra 2016; Peña-Arancibia et al. 

2016; Deines, Kendall and Hyndman 2017).  However, statistical techniques for classifying 

irrigated land cover that do not employ machine learning continue to improve and also increase 

in complexity (Chen et al. 2018).  

Model Data 

 Researchers use a variety of spectral data products as model inputs for creation of 

geospatial irrigation datasets.  Each product has its own temporal and spatial resolutions and 

requires some degree of preprocessing, ranging from virtually no preprocessing, for some of the 

latest products, to a high degree of preprocessing.  Spectral products are either single images or 

time-series composites and multispectral or downloaded as NDVI images or converted to other 

indices.  Additional inputs often include climate and topographical data. 

Earlier studies used low temporal (one to several time steps from a growing season)/high 

spatial resolution (30 meters) Landsat (Heimes and Luckey 1980; Thelin and Heimes 1987; 

Barbosa, Casterdad and Herrero 1996; Dappen 2003; Ozdogan et al. 2006; Tian, Xie and Keller 

2007), Systeme Probatoire d’Observation de la Terre (SPOT) (Eckhardt, Verdin and Lyford 

1990) and/or IKONOS (Tian, Xie and Keller 2007) data for analyses varying in complexity and 
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achieved high accuracies.  Landsat satellites have at least a 16-day return interval for every 

location on Earth, but atmospheric (for earlier Landsat sensors) and cloud (for all Landsat 

sensors) contamination reduce the usability of many Landsat images and thus the effective 

temporal resolution of Landsat datasets.  Heimes and Luckey (1980) and Thelin and Heimes 

(1987) digitally analyzed only a single growing-season Landsat image.  Eckhardt, Verdin and 

Lyford (1990) used two time-step images from each of their study’s two growing seasons.  

Barbosa, Casterdad and Herrero (1996) used two time-step images from one growing season.  

Dappen (2003) used three growing-season images.  Ozdogan et al. (2006) used a single image 

from the height of multiple growing seasons.  Finally, Tian et al. (2007) used five images from a 

three growing seasons. 

Products from earlier studies required extensive preprocessing including radiometric 

corrections (Eckhardt, Verdin and Lyford 1990; Barbosa, Casterdad and Herrero 1996; Ozdogan 

et al. 2006), atmospheric corrections (Barbosa, Casterdad and Herrero 1996; Tian, Xie and 

Keller 2007) and geometric corrections (Dappen 2003).  Radiometric normalization was a 

common preprocessing step (Eckhardt, Verdin and Lyford 1990; Ozdogan et al. 2006).  Barbosa, 

Casterdad and Herrero (1996) calculated surface reflectance since Landsat Surface Reflectance 

(SR) products were not available.  Finally, Barbosa, Casterdad and Herrero (1996) and Tian et al. 

(2007) performed dark-object subtraction, an atmospheric correction.   

In the previous two decades, MODIS products became the standard for irrigation 

classification studies.  The use of MODIS sacrifices spatial resolution, and the reasons for the 

shift to MODIS are not definitive, but the increase in study-area size and the availability of 

cloud-corrected MODIS that increased temporal resolutions might explain the transition.  Earlier 

studies utilizing high-resolution imagery as model data inputs focused on either an irrigation 
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district (Barbosa, Casterdad and Herrero 1996), agricultural areas in a US county (Tian, Xie and 

Keller 2007), US state-level regions (Eckhardt, Verdin and Lyford 1990; Dappen 2003), or a 

national region (Ozdogan et al. 2006).  Study areas for studies that utilize MODIS as model data 

inputs are river basins (Thenkabail, Schull and Turral 2005; Biggs et al. 2007; Peña-Arancibia et 

al. 2016), the conterminous US (Ozdogan and Gutman 2008; Pervez and Brown 2010), entire 

nations (Thenkabail and Wu 2012; Pervez, Budde and Rowland 2014; Ambika, Wardlow and 

Mishra 2016), and Earth (Thenkabail et al. 2007; Thenkabail et al. 2009 and Salmon et al. 2015).  

Preprocessing is a characteristic of some studies utilizing MODIS (Thenkabail, Schull and Turral 

2005; Pervez and Brown 2010; Pervez, Budde and Rowland 2014), but discussion of 

preprocessing in recent studies using MODIS data has receded (Ambika, Wardlow and Mishra 

2016; Peña-Arancibia et al. 2016).  Thenkabail et al. (2005) downloaded a MODIS product as an 

atmospherically corrected estimate of surface reflectance and then applied cloud corrections and 

additional aerosol corrections.  Pervez and Brown (2010) and Pervez, Budde and Rowland 

(2014) applied temporal smoothing to minimize disturbances from cloud contamination, 

atmospheric perturbations, variable viewing geometry of the sensor and imperfect sensor 

calibration.  However, most researchers have not applied radiometric, atmospheric or cloud 

corrections on downloaded MODIS datasets (Biggs et al. 2007; Ozdogan and Gutman 2008; 

Thenkabail and Wu 2012; Ambika, Wardlow and Mishra 2016; Peña-Arancibia et al. 2016).  

Biggs et al. (2007) utilized a pre-calibrated dataset that was cloud corrected using the maximum 

NDVI method.  Ozdogan and Gutman (2008) utilized the Nadir Bidirectional Reflectance 

Distribution Function (BRDF) MODIS dataset, which is cloud screened, atmospherically 

corrected and corrected for view- and illumination-angle effects.  Thenkabail and Wu (2012) 

utilized a dataset normalized to surface reflectance but did not discuss cloud corrections.  Finally, 
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Ambika, Wardlow and Mishra (2016) and Peña-Arancibia et al. (2016) did not discuss any 

corrections.  

The products derived from MODIS sensors on the Terra and Aqua satellites that are used 

for irrigation classification studies are either 8- or 16-day temporal resolution products and 250- 

or 500-meter spatial resolution products.  Thenkabail et al. (2005), Biggs et al. (2007) Ozdogan 

and Gutman (2008) and Salmon et al. (2015) used 8-day, 500-meter products.  Later MODIS 

studies used 16-day 250-meter products (Pervez, Budde and Rowland 2014; Ambika, Wardlow 

and Mishra 2016), a monthly 250-meter product (Peña-Arancibia et al. 2016) or 250-meter 

maximum NDVI value composites (Pervez and Brown 2010; Thenkabail and Wu 2012).  

Thenkabail and Wu (2012) utilized Landsat and MODIS datasets, combining Landsat-derived 

biophysical and climate data with time-series MODIS data into a single mega file data cube 

(MFDC) which they subsequently resampled and inputted into a model.  Finally, one global 

irrigation classification study did not use MODIS.  Instead, it utilized 10-kilometer Advanced 

Very High Resolution Radiometer and 1-kilometer SPOT products as model data inputs to create 

the Global Irrigated Area Map (GIAM) (Thenkabail et al. 2009). 

In addition to spectral data, researchers use climate data, biophysical vegetation data, 

topographic data, land cover data and other data as inputs for irrigation classification models.  

Non-spectral data inputs are used for masking, which requires incorporating them into 

classification workflows, but non-spectral data are also inputted into models.  Thenkabail et al. 

(2009) combined the Global 30 Arc-Second Elevation Dataset, rainfall data, forest cover data 

and Japanese Earth Resources Satellite Synthetic Aperture Radar data with spectral data inputs 

into a 159-layer MFDC.  The MFDC was the data used for a complex multi-stage classification 

procedure supplemented by multiple secondary data sources for masking, training and validation.  
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The process began with masking and progressed through image segmentation, unsupervised 

ISOCLASS clustering, generation of class spectra, spectral matching, grouping of similar 

classes, class identification and labeling, identification with bi-spectral plots and STSCs, 

Decision Tree classification and, finally, validation.  Thenkabail and Wu (2012) combined 

biomass, leaf area index, chlorophyll absorption, moisture sensitivity, thermal emissivity, 

elevation and slope data with time-series MODIS data for their model.  Finally, Salmon et al. 

(2015) inputted MODIS-derived land-surface temperature data, WORLDCLIM climate data, 

climate moisture index data, average annual moisture index data, agroecozone maps and 

hemispheric code index data with spectral data into their Decision Tree model.            

A recent study in the Great Plains region signals a shift back to high-resolution Landsat 

imagery for creation of geospatial irrigated land datasets.  Deines, Kendall and Hyndman (2017) 

transformed Landsat SR imagery products from November 1998 to October 2016 to multiple 

indices and inputted those images with DEMs, total plant available water storage data, 

precipitation data, potential evapotranspiration data and Palmer Drought Severity Index data into 

a Random Forest model.  Landsat SR products are the highest quality Landsat products, 

accounting for artifacts from the atmosphere, illumination and viewing geometry (US 

Department of the Interior (USDI) 2018a; USDI 2018b).  They are ready for time-series analysis 

upon downloading.  However, they are not cloud corrected, and cloud correction is a common 

characteristic of MODIS data.    

Masking 

 Masks eliminate areas that are not irrigable from irrigation classifications, thus reducing 

potential for model errors.  Land cover masks eliminate classes that are spectrally similar with 

irrigation but not irrigable (e.g., coniferous forest).  They also eliminate classes that are 
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nominally, and perhaps spectrally, not confused with irrigation (e.g., water).  Researchers often 

mask irrigable areas such as meadows, riparian areas, wetlands and rangeland from their 

analyses (Dappen 2003; Tian, Xie and Keller 2007; Pervez and Brown 2010; Pervez, Budde and 

Rowland 2014; Salmon et al. 2015; Ambika, Wardlow and Mishra 2016; Deines, Kendall and 

Hyndman 2017).  However, due to the irrigable nature of meadows, riparian areas, rangeland and 

other classes, including these classes in areas-of-interest makes analyses suitable for monitoring 

spatial change in irrigated land cover, and excluding them makes irrigation classification 

analyses more dependent on the quality of land cover products.  The quality and age of land 

cover data used for masking may determine if irrigable (potentially irrigated) areas are omitted 

from the area-of-interest in error.  However, researchers can eliminate some areas from irrigation 

classifications with reasonable confidence that they are not eliminating irrigable pixels from 

analyses.  Areas with slope > 20% are not irrigable and are often masked (Pervez, Budde and 

Rowland 2014; Ambika, Wardlow and Mishra 2016).  Finally, public land that usually protects 

high-elevation, less-productive areas (e.g., US Forest Service (USFS) coniferous forest land) is 

not irrigable and thus eligible for masking, but researchers should only remove public land from 

analyses after careful consideration.  For example, in western Montana, USFS land generally 

protects not irrigable high-elevation coniferous forest and alpine areas.  

  Although several studies include non-agricultural land cover in their areas-of-interest 

(Thenkabail and Wu 2012, Salmon et al. 2015; Deines, Kendall and Hyndman 2017), thus 

allowing models to distinguish between agricultural and non-agricultural land cover, many 

researchers attempt to completely mask non-agricultural land cover from their study areas 

(Dappen 2003; Pervez and Brown 2010; Salmon et al. 2015; Ambika, Wardlow and Mishra 

2016).  However, other studies target specific areas such as forest cover (Thenkabail et al. 2009; 
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Pervez, Budde and Rowland 2014; Deines, Kendall and Hyndman 2017), rangeland (Pervez, 

Budde and Rowland 2014), wetlands (Deines, Kendall and Hyndman 2017), desert (Tian, Xie 

and Keller 2007), urban/residential areas (Tian, Xie and Keller 2007; Deines, Kendall and 

Hyndman 2017), roads (Tian, Xie and Keller 2007), and fallow land (Tian, Xie and Keller 2007).  

Researchers also commonly use topographical data for masking.  Biggs et al. (2007) masked 

elevations > 630 meters, and Pervez, Budde and Rowland (2014) and Ambika, Wardlow and 

Mishra (2016) masked slope > 20%.  Ozdogan and Gutman (2008) and Thenkabail et al. (2009) 

used climate data for masking.  Finally, other criteria also determine eligibility for masking such 

as spectrally-mixed areas (Biggs et al. 2007).    

Training and Validation Data 

 Training and validation data are key components for irrigated land cover classification.  

Field-verified training and validation data collected for specific studies were important before 

existing datasets became widely available.  Visual field verification was a common early method 

for generating training and validation data (Dappen 2003; Thenkabail, Schull and Turral 2005; 

Ozdogan and Gutman 2006; Biggs et al. 2007; Tian, Xie and Keller 2007).  Ozdogan and 

Gutman (2006) supplemented visual field verification via interviews with farmers.  Random and 

systematic sampling in large regions is costly, and some areas are practically inaccessible due to 

rough terrain, lack of roads, etc. (Thenkabail, Schull and Turral 2005).  Thenkabail, Schull and 

Turral (2005) stratified sampling by access through roads and foot paths and randomized by 

locating sites every few minutes.  At each point, they recorded photos, land cover class based on 

the Anderson et al. (1976) system, percentage of land cover type, crop type, crop pattern, crop 

calendar and water source.  As the availability of field-verified data increased, the need to 

perform study-specific field verifications decreases.  Thenkabail et al. (2009) used existing 
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global field-verified datasets, thus eliminating the need to collect field data for their study.  

Pervez and Brown (2010) used existing field-verified data from California Department of Water 

Resources and University of North Dakota.   

 As high-resolution imagery became widely available and existing remotely-sensed 

products improved, researchers shifted to visually interpreting imagery and using existing land 

cover products, agricultural statistics, climate data and irrigated area maps.  Thenkabail and Wu 

(2012) used only high-resolution imagery for training and validation.  Ozdogan and Gutman 

(2008) used high-resolution imagery, existing irrigated area maps, climate data, state reports and 

the internet for training and validation.  Pervez, Budde and Rowland (2014) used high-resolution 

imagery and surface-temperature data for both training and validation.  Salmon et al. (2015) used 

Google Earth imagery with land cover data, ecological zone data, the GIAM and time-series 

climate data to train and validate.  Ambika, Wardlow and Mishra (2016) used land cover and 

ecological zone data, existing spectral profile data, agricultural statistics and high-resolution 

imagery.  Peña-Arancibia et al. (2016) used Landsat to select training pixels and agricultural 

statistics for validation.  Deines, Kendall and Hyndman (2017) used crop maps and National 

Aerial Imagery Program and Landsat imagery to train their model and agricultural statistics, 

water use data and randomly generated points to validate their classifications. 

Output Classes and Accuracies 

  The number of classes in geospatial irrigation datasets varies widely.  Binary products 

are those with irrigated/unirrigated classes, and non-binary products have either multiple 

irrigated and/or unirrigated classes.  A binary product could include multiple irrigated subclasses 

(Thenkabail et al. 2009).  However, most products are simple irrigated/unirrigated outputs 

(Dappen 2003; Ozdogan et al. 2006; Tian, Xie and Keller 2007; Ozdogan and Gutman 2008; 
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Pervez and Brown 2010; Pervez, Budde and Rowland 2014; Peña-Arancibia et al. 2016; Deines, 

Kendall and Hyndman 2017).   

 Non-binary products are common.  Unirrigated classes in non-binary products include 

water, herbaceous rangeland and dry cropland (Heimes and Luckey 1980; Thelin and Heimes 

1987), an unknown class (Eckhardt, Verdin and Lyford 1990), rainfed crops (Thenkabail and Wu 

2012; Salmon et al. 2015), other (Thenkabail and Wu 2012) and, finally, non-irrigated and non-

cropland (Ambika, Wardlow and Mishra 2016).  Irrigated classes in non-binary products include 

the simple irrigated class (Heimes and Luckey 1980; Thelin and Heimes 1987; Eckhardt, Verdin 

and Lyford 1990; Barbosa, Casterdad and Herrero 1996; Biggs et al. 2007; Thenkabail and Wu 

2012; Ambika, Wardlow and Mishra 2016), irrigated and supplemental irrigation (Thenkabail, 

Schull and Turral 2005) and irrigated and paddy croplands (Salmon et al. 2015).   

 Methods for assessing product accuracy are variable, and accuracies are wide ranging.  

Error/confusion matrices are the most common accuracy assessment tool (Eckhardt, Verdin and 

Lyford 1990; Barbosa, Casterdad and Herrero 1996; Dappen 2003; Ozdogan et al. 2006; 

Thenkabail, Schull and Turral 2005; Tian, Xie and Keller 2007; Thenkabail et al. 2007; Ozdogan 

and Gutman 2008; Thenkabail et al. 2009; Pervez and Brown 2010; Thenkabail and Wu 2012; 

Salmon et al. 2015; Deines, Kendall and Hyndman 2017).  Heimes and Luckey (1980) and 

Thelin and Heimes (1987) did not quantify their accuracies, instead relying on visual 

interpretation.  Overall accuracies > 90% from error matrices are common (Eckhardt, Verdin and 

Lyford 1990; Ozdogan et al. 2006; Thenkabail, Schull and Turral 2005; Tian, Xie and Keller 

2007; Thenkabail et al. 2009; Pervez and Brown 2010; Thenkabail and Wu 2012; Deines, 

Kendall and Hyndman 2017).  Accuracies within single studies can vary by region.  Ozdogan 

and Gutman (2008) achieved 87% overall accuracy in the western US and 79% in the eastern 
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US, and Pervez and Brown (2010) achieved overall accuracies of 92% in California and 75% in 

the Great Plains region, suggesting that irrigated area classifications are more accurate in the arid 

or semi-arid western US.  Finally, accuracies can vary widely across classes.  Thenkabail et al. 

(2005) mapped many classes, achieving a range of 56-100% accuracy across all classes, but most 

of their classes were 80-100% accurate.    

 Validation methods other than error matrices included comparisons with agricultural 

statistics, comparisons with existing geospatial irrigation datasets, pixel-window methods for 

subpixel classifications, Bayesian prior-probability validations and STSCs.  Biggs et al. (2007) 

measured different degrees of correctness over each pixel.  Thenkabail et al. (2007) compared 

their acreage estimates with agricultural statistics using linear regression.  Pervez et al. (2014) 

made simple acreage estimate comparisons with national and global irrigated land cover datasets 

and further made comparisons with a secondary Landsat-based classification.  Salmon et al. 

(2015) applied a Bayesian method by estimating prior probabilities for the presence of irrigated, 

rainfed and paddy croplands and performed cross validation with existing datasets.  Ambika, 

Wardlow and Mishra (2016) compared their estimates with agricultural statistics and utilized 

STSCs for validation.  Finally, Peña-Arancibia et al. (2016) and Deines, Kendall and Hyndman 

(2017) compared their estimates with agricultural statistics.   

METHODS & STUDY AREA 

Study Area 

The UCFRB is part of the Clark Fork watershed, which contributes to the northern 

headwaters of the Columbia River system in Montana (Figure 3).  The UCFRB is 9559 km2 and 

dominated by USFS land in its mountainous areas.  Public and private land covers its foothills  
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 Figure 3:  Position of the study area in the Columbia River Basin.    
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and valleys where irrigated forage/hay is the dominant crop.  The Clark Fork River is the largest 

by volume in Montana, sustaining ecosystems, agriculture, recreation, and water for other 

human-related beneficial uses.  The Clark Fork begins near Butte, Montana where Silver Bow 

and Warm Springs Creeks merge. 

The UCFRB was selected as a study region for several reasons.  Producers in the UCFRB 

utilize a wide array of irrigation practices including flood irrigation and multiple forms of 

sprinkler irrigation (hand line, center pivot, etc.).  Most crop production from the basin is forage 

(i.e., grass, hay, alfalfa) (USDA 2014), thus narrowing the range of spectral variability 

attributable to crop species.  Further, the UCFRB is characteristic of western Montana river 

basins as it contains a patchwork of “surficial” (alluvial) aquifers (Montana State Library 2018b), 

potentially exacerbating the role played by irrigation in the hydrologic cycle (Winter et al. 1998).  

Finally, the UCFRB is within 100 miles of Missoula, Montana, where most of this research 

initiated, making it a convenient location for field verification.       

Defining Irrigation 

 For this study, irrigation is defined as the artificial application of water to crops at least 

once during the growing season.  Harvests do not affect the definition of irrigation.  Although, 

including harvest as a definitional criterion may increase the accuracy of classifications because 

harvests are associated with abrupt declines in NDVI, and model algorithms may better 

distinguish between irrigated and unirrigated land cover if they are only trained with irrigated 

points associated with harvest.  However, including harvests as a requirement or criterion would 

exclude pasture irrigated only for grazing.    
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Models 

In the past decade, machine learning algorithms have become the primary classifier for 

irrigated land cover classifications.  Decision Trees were the first machine learning algorithms 

used for irrigation classification (Ozdogan and Gutman 2008; Thenkabail et al. 2009; Thenkabail 

and Wu 2012; Pervez et al. 2014; Salmon et al. 2015; Ambika, Wardlow and Mishra 2016).  

Decision Trees are non-parametric supervised learning models that utilize either expert-

knowledge- or algorithm-derived Boolean decision rules for classification.  They form a tree-like 

structure, beginning at the root and proceeding through branches which split from nodes 

(decision rules) and terminate at leaves (decisions/classes).  Each case (i.e., pixel) is processed 

through this tree).  More recently, researchers are utilizing Random Forests (Peña-Arancibia et 

al. 2016; Deines, Kendall and Hyndman 2017), an ensemble learning method which constructs 

multiple decision trees of variable structure through which each pixel is run.  The mode of 

classes output from all trees is the class assigned to a pixel, or the output is probabilistic 

(proportions of trees allocating pixels to each class).  Principal Component Analysis is a 

statistical technique used to explain variance among predictor variables in n-dimensional space.  

Though the literature review did not uncover the use of PCA for irrigation classification, the 

method was thought to have promise for distinguishing irrigated lands relative to all other land 

cover classes based on a predicted high rate of variance of spectral signatures, and so was also 

employed.   

 For this study, the Random Forest model (Breiman 2001) was utilized to test the viability 

of the Robinson et al. (2017) dataset for irrigation classification.  The Rocky Mountain Research 

Station (RMRS) Raster Utility (https://www.fs.fed.us/rm/raster-utility/) ArcGIS add-in toolbar 

Random Forest model (Hogland and Anderson 2017) was used to conduct the three analyses for 

https://www.fs.fed.us/rm/raster-utility/
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both irrigated/unirrigated and center pivot/other method classifications (a total of 6 analyses).  

After the initial series of classifications, Random Forests were also employed to mitigate the 

issue of misclassified pixels on the edges of analysis areas.  Peña-Arancibia et al. (2016) and 

Deines, Kendall and Hyndman (2017) used Random Forests for their irrigated land cover 

classifications.  The second model was the C4.5 Decision Tree (Quinlan 1993) and was applied 

in TerrSet to perform a single analysis, the analysis with the most accurate results of the six 

random-forest tested analyses, for a binary irrigated/unirrigated classification.  Ozdogan and 

Gutman (2008) and Salmon et al. (2015) used the C4.5 Decision Tree algorithm for their 

irrigated land cover classifications.  Finally, a PCA with RMRS tools using data from the 

Random Forest analysis that yielded the most accurate results was performed to determine if 

PCA is a viable analysis for irrigation classification. 

Data 

The availability of highly preprocessed, free and downloadable Landsat SR data and 

MODIS products have made image corrections a less time-consuming or non-existent step in 

irrigation classification.  However, clouds and cloud shadows still present a problem for Landsat-

based time-series analyses which require clear pixels at every location for each time step of the 

pixels’ spectro-temporal profiles.  Most irrigation classifications use complete time-series 

datasets, and if researchers select individual time-step images for their analysis, they select clear 

images.  Pre-applied cloud corrections make MODIS datasets appealing for irrigation 

classification.  Most researchers creating geospatial irrigated land datasets in the past two 

decades used 250- or 500-meter MODIS data as the primary spectral inputs to their models.  

Product accuracies will increase if use of Landsat SR data for irrigation classification becomes 



 21 

the standard, but cloud-corrected Landsat SR time-series composite datasets are not available for 

download by the public.   

A new Landsat-derived dataset (Robinson et al. 2017) produced by transforming Landsat 

SR products into an interpolated 16-day NDVI composite dataset is free and downloadable 

(https://ndvi.ntsg.umt.edu/).  The interpolation process depends on the quality band included 

with each SR scene.  This quality band includes pixel data quality flag information, and 

Robinson et al. (2017) utilized that pixel quality information to create their product covering the 

conterminous US with Google Earth Engine.  Their program calculates a mean NDVI at a 

location using all clear pixels from overlapping images at that location.  If no pixels within a 16-

day timeframe at a location are clear, then the program populates the pixel digital number at that 

location using a climatology-interpolated value.  The program calculates climatology as the 

median NDVI of clear and water-and-snow pixels over the same 16-day period from previous 

years.  The user specifies climatology length (e.g., 2 years, 5 years, etc.) before downloading 

data.  If climatology data is not available for the specified climatology length, then the pixel is 

filled with a no-data value.  Each 16-day composite image contains no cloud or cloud shadow.   

 Land cover and topographical data is common in masking.  An updated Northwest 

ReGAP project land cover product downloaded from Montana State Library (2018a) was used to 

mask target land cover classes, and a slope mask was also employed.  The baseline Northwest 

ReGAP product is derived from Landsat imagery obtained between 1999 and 2001.  The product 

uses the Anderson et al. (1976) land cover class system and was last updated in December 2015.  

The slope mask was created using the 1/3 arc-second resolution National Elevation Dataset 

DEMs downloaded from the National Map Viewer (US Geological Survey (USGS) 2018).  

Finally, to mask USFS land, a public lands dataset downloaded from the Montana State Library 

https://ndvi.ntsg.umt.edu/
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(MSL) GIS Clearinghouse (MSL 2018a) was used.  The public lands dataset is derived from the 

Montana Cadastral Parcel layer created for the Montana Department of Revenue.            

NDVI     

 The most common index used for irrigation classification is the NDVI (Dappen 2003; 

Ozdogan et al. 2006; Thenkabail, Schull and Turral 2005; Biggs et al. 2007; Thenkabail et al. 

2007; Tian, Xie and Keller 2007; Thenkabail et al. 2009; Thenkabail and Wu 2012; Pervez and 

Brown 2010; Pervez, Budde and Rowland 2014; Ambika, Wardlow and Mishra 2016; Peña-

Arancibia et al. 2016; Deines, Kendall and Hyndman 2017).  Other recent studies incorporate a 

variety of indices such as the Green Index (Ozdogan and Gutman 2008; Deines, Kendall and 

Hyndman 2017), Enhanced Vegetation Index (Salmon et al. 2015; Deines, Kendall and 

Hyndman 2017), Normalized Difference Wetness Index (Salmon et al. 2015; Deines, Kendall 

and Hyndman 2017) and Normalized Difference Infrared Index (Salmon et al. 2015). 

 Tucker (1979) demonstrated the utility of using red and NIR linear combinations to 

monitor green leaf area and biomass.  Since that demonstration, NDVI, calculated as 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
, 

is the most popular index for monitoring vegetation (Robinson et al. 2017).  Schwartz (1994) 

demonstrated that NDVI is useful for monitoring vegetation phenology, and Wiegand, Everitt 

and Richardson (1992) showed correlation of NDVI with crop yield.  Average growing season 

NDVI values are also highly correlated with growing-season precipitation across multiple land-

cover types (Wang, Rich and Price 2003).  Finally, researchers have used NDVI to successfully 

classify irrigated land cover for over a decade (Dappen 2003; Ozdogan et al. 2006; Thenkabail, 

Schull and Turral 2005; Biggs et al. 2007; Thenkabail et al. 2007; Tian, Xie and Keller 2007; 

Thenkabail et al. 2009; Thenkabail and Wu 2012; Pervez and Brown 2010; Pervez, Budde and 
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Rowland 2014; Ambika, Wardlow and Mishra 2016; Peña-Arancibia et al. 2016; Deines, 

Kendall and Hyndman 2017).           

Masks and Preprocessing 

 The preprocessing and masking workflow (outlined in Figure 4) was mostly scripted in 

arcpy to promote efficiency, consistency, and to produce a repeatable workflow for other 

applications. 

 

The DEM, converted to slope percentage, was used to mask areas with slope > 20%, and the 

Montana public lands layer was used for masking USFS land.  Finally, the land cover layer was 

Figure 4:  Preprocessing and masking workflow.    
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used to mask five classes (Table 1) and further remove any classes with < 1000 pixels in the 

study area because they were not adequately represented in the study area and were difficult to 

sample.  Land cover class masking was performed to eliminate areas that may be spectrally 

similar to irrigated land cover but are not irrigable (e.g., coniferous forest, water, etc.).  Not 

irrigable classes that are spectrally similar with irrigated land are the most important to mask.  

Due to the potential irrigability of meadows, riparian areas, rangeland and other classes, 

including these classes in analysis areas makes analyses suitable for monitoring spatial change in 

irrigated land cover over time.  Since these areas are irrigable, exclusion of them via a land cover 

 

Class (level 2 – USDI (1976)) Masking status (masked/not masked) 

Open Water 

Masked 

Cliff, Canyon and Talus 

Alpine Sparse and Barren 

Conifer dominated forest and woodland 

Alpine Grassland and Shrubland 

Developed 

Not masked 

Mining and Resource Extraction 

Agriculture 

Bluff, Badland and Dune 

Deciduous dominated forest and woodland 

Mixed deciduous/coniferous forest and woodland 

Scrub and Dwarf Shrubland 

Deciduous Shrubland 

Sagebrush Steppe 

Montane Grassland 

Lowland/Prairie Grassland 

Introduced Vegetation 

Recently burned 

Harvested Forest 

Floodplain and Riparian 

Forested Marsh 

Depressional Wetland 

Mining and Resource Extraction 

Insect-Killed Forest 

Table 1:  Land cover product classes used to delineate analysis areas. 
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product introduces opportunity to exclude irrigated land cover from final products, because land 

cover products are not always updated.  Once the slope, USFS and land cover masks were 

created, they were merged into a base mask (Figure 5), which was the mask combined with 

quality band masks for all subsequent analyses.  Finally, following initial classifications, I 

masked additional classes that models frequently and mistakenly classified as irrigated on the 

edges of analysis areas.  These classes shared spectral characteristics with the irrigated class 

and/or were under-sampled during training and validation point sampling.  Eight level 1 classes 

within the level 2 Deciduous Shrubland (Northern Rocky Mountain Montane-Foothill Deciduous 

Shrubland), Sagebrush Steppe (Intermountain Basins Montane Sagebrush Steppe), Montane 

Grassland (Rocky Mountain Subalpine-Montane Mesic Meadow), Recently Burned (Post-Fire 

Recovery), Harvested Forest (Tree, Shrub and Grass Regeneration) and Floodplain and Riparian 

(Northern Rocky Mountain Lower Montane Riparian Woodland and Shrubland) classes were 

masked from the most accurate Random Forest product to improve results. 

The use of the Robinson et al. (2017) dataset eliminates the need for image corrections, 

and the quality band downloaded with each corresponding image allows for a simple and 

efficient masking process.  The dataset makes Landsat-derived NDVI data available at 16 Julian 

day intervals.  This study utilized 11 time-step data points for the UCFRB from a 2018 study 

period ranging from Julian dates 97-257 (April 7-September 14).  Julian days 145, 161, 177, 193, 

241 and 257 were selected as the dates for independent time-step model variables/raster images.  

A two-year climatology period was established, so the data at climatology pixels may include 

median NDVI values from 2017 or 2016.  Also, the no-smoothing option was selected (for more 

information about smoothing, see Robinson et al. 2017).  Each image was downloaded in the 

World Geodetic System 1984 geographic coordinate system. 
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Each image’s quality band was inspected to assess the proportion of area covered by no-data, 

water-and-snow, and climatology pixels.  Certain images during the 2018 growing season were 

dominated by either no-data, water-and-snow, climatology pixels, or some combination of those 

categories in agricultural areas.   No-data, water-and-snow and climatology masks from each 

time step were overlaid, visually inspected, and images with quality-band masks that covered 

significant portions of agricultural areas from the analysis were removed (Julian days 97, 113, 

Figure 5. Base mask:  mask of selected land cover classes, slope and USFS land; analysis 

area prior to masking climatology, no data and/or water and snow pixels.    
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129 and 225).  Finally, day 209 was removed, because a portion of the study area was absent 

from the data.  Therefore, the study period was Julian days 145-193, 241-257.  Climatology 

pixels still covered a large proportion of the study area after removing five of the time steps from 

the study, suggesting the utility of Robinson et al. (2017) dataset is dependent on the usability of 

climatology data (Figure 6).  For each model, the same study period (i.e., same set of variables) 

was used for comparison purposes.   

 Once selected, each time-step NDVI raster of the study period required some simple 

preprocessing.  First, the quality and NDVI bands were separated.  Then, each image was 

projected to the North American Datum 1983 State Plane Montana FIPS 2500 (Meters) 

projection.  Next, each 16-bit, signed-integer NDVI raster was converted to a 32-bit, floating-

point raster, and, since Robinson et al. (2017) NDVI values are multiplied by 100, each raster 

was downscaled by 100.  Finally, all no-data pixels, water-and-snow pixels and climatology 

pixels were extracted to separate no-data, water-and-snow and climatology rasters (Figure 6) to 

be used for masking with the base mask (Figure 5).  As with the climatology locations, any 

location was considered a no-data and/or a water-and-snow location if any time-step pixel at that 

location included either a no-data value, water-and-snow value or both in its spectro-temporal 

profile.     

One aim of this study was to test the viability of the Robinson et al. (2017) dataset for 

time-series irrigated land cover classification, and one important aspect of testing this dataset is 

to compare accuracies of products generated using climatology data with products generated 

without use of climatology data.  Since, a climatology location is specified if any time-step of its 

spectro-temporal profile was a climatology pixel, to make this comparison, any pixel with at 

least one climatology time step was masked prior to one classification but not masked for the  
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Figure 6. Landsat NDVI quality band masks:  no data and water and snow mask later 

combined with base mask for all analyses (climatology-inclusive mask); climatology mask 

later combined with base mask and then used to create analysis areas for analyses that 

exclude climatology pixels (climatology mask).    
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other two classifications.  For the Random Forest models, three classification analyses were 

conducted for a binary (irrigated/unirrigated (Irrig/Unirrig)) classification, and three 

classifications for a binary (center pivot/other method (CP/OM)) classification:  (1) model 

training with no-climatology (NoClim) data (base mask, climatology, no-data and water-and-

snow pixels masked) followed by classification of NoClim data (train NoClim & classify 

NoClim), (2) model training with NoClim data followed by classification on climatology (Clim) 

data (base mask, no-data and water-and-snow pixels masked) (train NoClim & classify Clim) 

and (3) model training with Clim data followed by classification on Clim data (train Clim & 

classify Clim) (Table 2).  Thus, each Random Forest analysis and the subsequent Decision Tree 

and PCA analyses are organized and defined by the TVPs and analysis area used for training, the 

analysis area which was classified and the binary classes of the product (Table 2).    

Since Clim data was masked from some analyses and included in others, and center pivot 

analyses were performed on only irrigated land cover areas produced from Irrig/Unirrig 

classifications, analysis areas for the defined study period vary (Figure 7).  Further, since each 

analysis was performed for an Irrig/Unirrig and CP/OM classification, initially, a total of six 

Random Forest analyses were performed for comparison purposes (Table 2).  An additional 

Random Forest analysis was performed following initial classifications to mitigate 

misclassification issues.  This additional Random Forest model was trained with six classes 

(Developed, Disturbance, Forest, Irrigated, Meadow, Shrub-Grasslands).  For the Decision Tree 

model, only the train Clim & classify Clim data analysis was performed for an Irrig/Unirrig 

classification (Table 2), since that analysis yielded the best results of the three Random Forest 

classification analyses, and results from all CP/OM analyses were questionable.  Finally, since 

PCA requires no training data, a simple Clim data analysis was performed (Table 2).  
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Analyses 

Model Training Data Classification Data Product Classes 

Random Forest 

NoClim NoClim 
Irrig/Unirrig 

CP/OM 

NoClim Clim 
Irrig/Unirrig 

CP/OM 

Clim Clim 
Irrig/Unirrig 

CP/OM 

Random Forest Clim Clim 

Developed, Disturbance, Forest, 

Irrigated, Meadow, Shrub-

Grasslands 

Decision Tree Clim Clim Irrig/Unirrig 

PCA NA Clim Irrig/Unirrig 

 

 

Table 2:  Model, training data, classification data and product classes of eight analyses (six 

Random Forest analysis, one decision tree analysis and one Principal Component Analysis). 
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Figure 7. Analysis areas: (a) NoClim training and analysis areas; (b) NoClim training areas and 

Clim classification areas; (c) Clim training and analysis areas.   
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Training and Validation 

 Training is a vital step in irrigation classification.  Recent studies either use high-

resolution imagery and existing datasets exclusively or a combination of field-verified data and 

other sources.  Here, field-verified data and high-resolution imagery from Planet Labs (2018) 

were used, and separate sampling strategies were employed for irrigated and unirrigated points.   

 For irrigated points, three strategies for verifying data in the field were employed: 

opportunistic sampling, expert-knowledge sampling and systematic sampling.  Opportunistic 

sampling was conducted on the Montana State Prison (MSP) Ranch and Clark Fork Coalition 

Ranch property.  When on these properties, if irrigation was observed, points were marked with a 

handheld GPS unit or using the Google Earth and Adobe Sketch applications.  For expert-

knowledge sampling, a MSP Ranch Manager marked priority irrigation points in the Google 

Earth and Adobe Sketch applications.  Priority irrigation points were those for which verify 

through systematic sampling was not practical or not attempted.  These included flood-irrigation 

points and early-season irrigated points.  Finally, most training and validation irrigated points 

were established and sampled through systematic sampling.  For this study, systematic sampling 

was a structured approach to sampling for irrigated points along roads, like the approach 

employed by Thenkabail et al. (2005).  A roads sampling layer was created from a spatial roads 

dataset (Montana State Library 2018a) that was overlaid on NAIP imagery to identify all public 

roads intersecting agricultural areas (Figure 8).  Each of these roads were transited once (to 

create equal sampling effort) from June 25, 2018 to August 31, 2018, and active irrigation 

locations (i.e., sites with visible crop production and irrigation equipment/ditches) were recorded 

using the Google Earth and Adobe Sketch applications (Figure 9).  Flood irrigation was difficult 

to confirm, because it is easily confused with natural flooding or not observable in tall 
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vegetation.  Following field verification, Planet Labs high-resolution imagery was used to assign 

harvest dates to each point for the years 2016-2018.  Using Clim data requires interpolating 

values from 2017 and 2016 into 2018 time-step data layers.  Therefore, the irrigated training and 

validation points (TVPs) were organized into two subsets, those verified as irrigated in 2018 

only, and those verified as irrigated from 2016-2018.  Most points are shared between both 

subsets, with the 2018 subset being inclusive, and the 2016-2018 subset being exclusive (Figure 

10).  Employing all sampling methods, 120 irrigated points for 2018 were retained, and 91 

irrigated points for 2016-2018 were retained.  

Each point was verified between May and August 

2018 (Figure 11) using all three irrigated sampling 

strategies (Figure 12).  For 2018 (NoClim analysis 

points), prior to base masking and climatology, 

no-data and water-and-snow pixel masking, 15 

flood-irrigated points, 34 hand-line irrigated 

points, 16 wheel-line irrigated points and 53 

center-pivot irrigated points were retained (Table 

3).  For 2016-2018 (Clim analysis points), prior to 

base masking and no-data and water-and-snow pixel masking, nine flood-irrigated points, 25 

hand-line irrigated points, 14 wheel-line irrigated points and 41 center-pivot irrigated points were 

retained (Table 3).  A similar systematic sampling strategy for unirrigated points was employed; 

the same roads layer was used to create a 240-meter roads buffer layer to which land cover raster 

data were extracted and systematically sampled for each land cover class of the base mask, 

generating 205 points for unirrigated sampling.     

Figure 8: Roads sampled for irrigated and 

unirrigated points.   
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 Since the buffer extended 120 meters on 

each side of the road, all unirrigated sampling 

points were visible from roads as were all 

irrigated sampling points (Figure 13).  Roads 

were travelled a second time (post irrigated 

points sampling) to verify the pre-selected 

unirrigated points, using the Google Earth and 

Google Maps applications to navigate to each 

sampling point and to record a photo and verify 

land cover (Figure 14).  If a point was not clearly 

and unarguably unirrigated, then it was not 

included it in the final unirrigated training and 

validation point subset.  Points were excluded 

from the unirrigated point subset if they were 

under active irrigation, in a field that appeared 

irrigated, in a field that was potentially irrigated or within approximately 90 meters of an actively 

or potentially irrigated field.  After sampling, Planet Labs high-resolution imagery was 

referenced to verify that the point was unirrigated in 2016, 2017 and 2018.  If intense green-up in 

the high-resolution imagery was observed at a point labeled as unirrigated in the field, then it 

was removed from the unirrigated subset.  Following verification, 120 unirrigated points 

representing 24 land cover classes out of 205 systematically and randomly generated across 27 

land cover classes were retained (Figure 15).  Unirrigated points were not allocated to subsets.  

Once  

Figure 9:  Screenshot of Google Earth 

application edited in Adobe Sketch 

application; showing position of center 

pivot lateral.   
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unirrigated point verification was completed, the unirrigated points were merged with the 2018 

irrigated points subset and then with the 2016-2018 irrigated points subset.  Thus, two training 

and validation point datasets were created: (1) 2018 irrigated and unirrigated points for NoClim  

Figure 10:  Irrigated training and validation point subsets; two field and Planet Labs 

verified subsets, one for the 2016-2018 growing seasons and one for the 2018 growing 

season; the 2018 subset excludes those not verified for all three growing seasons.   
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model training and classification analyses and (2) 2016-2018 irrigated and unirrigated points for 

Clim model training and classification analyses (Table 3).    Finally, since analysis areas varied 

depending upon the analysis being implemented, the total number of TVPs and total number in 

each class differed across analyses (Table 3 and Figure 16).  

Figure 11:  Irrigated points symbolized by field-verification month.   
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Figure 12:  Irrigated points symbolized by sampling strategy employed for validation.   
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Training and Validation Points 

Analysis areas for each 

classification 

Number of 

irrigated 

points 

Number of 

unirrigated 

points 

Number of 

center 

pivot 

points 

Number of 

other 

method 

points 

Total 

Number 

of Points 

2018 – prior to 

masking 
120 120 41 79 240 

2016-2018 – 

prior to 

masking 

91 120 53 38 211 

NoClim training 

and validation/NoClim 

analysis 

 

Irrig/Unirrig 

67 59 31 36 126 

NoClim training 

and validation/NoClim 

analysis 

 

CP/OM 

63 0 29 34 63 

NoClim training 

and validation – train 

NoClim & classify Clim 

analysis 

 

Irrig/Unirrig 

67 59 31 36 126 

NoClim training 

and validation – train 

NoClim & classify Clim 

analysis 

 

CP/OM 

61 0 30 31 61 

Clim training 

and validation/Clim 

analysis 

 

Irrig/Unirrig 

89 107 39 50 196 

Clim training 

and validation/Clim 

analysis 

 

CP/OM 

84 0 38 46 84 

 

Table 3:  Training and Validation Points; number of irrigated and unirrigated points, center 

pivot and other method points and total points in the 2018 subset, used for NoClim training 

and validation, and 2016-2018 subset, used for Clim training and validation. 



 39 

 

 

 

 

 

 

 

Figure 13:  Unirrigated sampling points with roads buffer.   
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Figure 14:  Land cover validation of 

foothill and valley grassland area 

(unirrigated).   

Figure 15:  Unirrigated points retained after validation.   
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Figure 16. Training and Validation Points:  (a) TVPs for Irrig/Unirrig NoClim analysis; (b) 

TVPs for CP/OM NoClim analysis; (c) TVPS for Irrig/Unirrig train NoClim & classify Clim 

analysis; (d) TVPs for CP/OM train NoClim & classify Clim analysis; (e) TVPs for Irrig/Unirrig 

Clim analysis; (f) TVPs for CP/OM Clim analysis.   
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Modeling 

Following establishment of analysis areas and TVPs, three Random Forest analyses 

(Table 2) were performed for an Irrig/Unirrig (stage one), followed by a CP/OM classification 

(stage two).  The Random Forest modeling workflow is outlined in Figures 17, 18, 19 and 20.  

For each analysis, the NDVI time-series dataset and TVPs were extracted by mask and clipped, 

respectively, to the analysis area, which varied based on the analysis being performed.  Then, the 

NDVI values from the analysis-area, time-series data were sampled at the training and validation 

point locations within the analysis area.  Subsequently, the points were divided into two subsets, 

one for training and one for validation.  The percentage and number of points in the training and 

validation subsets also varied across analyses (Table 3 and Figure 16).   

Following division of TVPs, the Random Forest model was trained.  Model parameters 

were constant across all analyses, with the number of trees equal to 500, training ratio equal to 

0.66 and number of splitting variables equal to two, approximately the square root of the number 

of independent time-step variables.  The Random Forest model used an “internal” out-of-bag 

(OOB) classification and validation technique, training each tree of the model with 66% of 

training points and validating each tree of the model with the remaining 34%.  The OOB 

selection of training points for each tree was random with replacement, and the OOB 

classification error is the proportion of times that validation cases are not equal to their true 

classes, averaged over all cases.  The OOB training and classification process occurs as the 

Random Forest is constructed and is separate from the post-classification accuracy assessments.  

Post-classification accuracy assessments are necessary, because training and validation data are 

not randomly distributed.  Variable importance is also determined during the model-training  
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Figure 17. Irrigated/Unirrigated, no climatology and climatology modeling workflows:  (a) 

Irrig/Unirrig, NoClim analysis (stage one); (b) Irrig/Unirrig, Clim analysis (stage one). 
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Figure 18: Irrigated/Unirrigated, train no climatology and classify climatology modeling 

workflow (stage one). 
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process by formation of a separate model for each independent variable.  For each of these 

models, an independent variable is removed from the Random Forest model and the OOB error 

values recorded.  Variable importance can be assessed by viewing the error value change 

resulting from the removal of each variable from the model.   

Figure 19. Center pivot/other method, no climatology and climatology modeling workflows: (a) 

CP/OM NoClim analysis (stage two); (b) CP/OM Clim analysis (stage two). 
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Following training, classification was performed on the NDVI time-series data extracted 

to the appropriate analysis area, either Clim or NoClim.  The output of the Random Forest model 

was binary and probabilistic (two bands, one for each class, with a value range from 0-1), 

representing the proportion of trees that placed a given pixel into either the irrigated or 

unirrigated class.  Due to the probabilistic nature of the output, proportion thresholds were 

Figure 20: Center pivot/other method, train no climatology and classify climatology modeling 

workflow (stage two).  
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selected, and the model outputs reclassified to make each output binary.  Five thresholds of 0.5-

0.9 proportions of trees classifying pixels as irrigated (0.1 intervals) were selected, and a binary 

reclassification (Irrig/Unirrig) was performed to prepare each reclassified output for an accuracy 

assessment (Table 4).  This was followed by an accuracy assessment performed on each binary 

output created from a different threshold, a total of five binary outputs representing five 

probabilities of being irrigated.  The most accurate threshold was selected, and an Irrig/Unirrig 

product was produced from a reclassified binary output based on that threshold.  Finally, 

irrigated area from the product was extracted, and this became the analysis area for the 

subsequent CP/OM analysis for the appropriate analysis area.  Following Irrig/Unirrig 

classifications, a Clim Random Forest model was trained with six classes (Table 2).  The 

threshold approach from initial classifications (Table 4) was applied to the irrigated band of the 

six-class output and accuracy assessments performed accordingly.  Also, since the model was not 

binary, a highest-position approach was tested to distinguish irrigated from unirrigated land 

cover.  The output from the model was six bands, one irrigated and five unirrigated.  Pixels from 

each band at each location (position) were ranked on probability value from each class’s band.  

The highest proportion of trees classifying a pixel into a class determined the class (Table 4) at 

that pixel.  Following ranking of bands, the six-class output was reclassified to a binary output 

and accuracy assessments performed accordingly.   

A process nearly identical to the Irrig/Unirrig workflow was performed for the 

subsequent CP/OM stage of each analysis (Figure 19 and Figure 20).  Time-series data and 

points were reduced to analysis areas.  Then time-series data were sampled at point locations.  

Next, the points were divided into training and validation subsets.  However, for the CP/OM 

analyses, all points were irrigated, and classes were center pivot and other method.         
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Random Forest Probabilistic Output Thresholds 

Analysis Output Classes 

Tested Threshold 

Proportions of Trees 

Classifying Pixels as 

Irrigated or Center Pivot 

Train NoClim & Classify NoClim 

Irrig/Unirrig 0.5, 0.6, 0.7, 0.8, 0.9 Train NoClim & Classify Clim 

Train Clim & Classify Clim 

Train Clim & Classify Clim 

Developed, Disturbance, 

Forest, Irrigated, Meadow, 

Shrub-Grasslands 

0.5, 0.6, 0.7, 0.8, 0.9 

Highest Position 

Train NoClim & Classify NoClim 

CP/OM 0.5, 0.6, 0.7 Train NoClim & Classify Clim 

Train Clim & Classify Clim 

 

The models were trained, and time-series data classified for the analysis areas.  Again, this 

produced a two-band, probabilistic output.  However, for the CP/OM analyses, the thresholds for 

proportion of trees classifying pixels as center pivot pixels were 0.5, 0.6 and 0.7 (three total 

thresholds) (Table 4).  As with the Irrig/Unirrig analyses, a binary, reclassified output was 

produced representing each threshold probability of pixels being center pivot irrigated.  Then 

accuracy assessments were performed on each binary, reclassified output, and the most accurate 

output was selected to be the CP/OM product for each analysis.   

Following Random Forest analyses, it was determined that the Irrig/Unirrig, train Clim & 

classify Clim analysis was most accurate.  Further, it was determined that CP/OM classification 

accuracies were poor.  Therefore, to compare the Random Forest and Decision Tree models, only 

a train Clim & classify Clim, Irrig/Unirrig Decision Tree analysis with the same workflow as the 

train Clim & classify Clim, Irrig/Unirrig Random Forest analysis (Figure 17b) was performed 

(Table 2).  For the Decision Tree analysis, the split type was entropy and auto-pruning was 

Table 4:  Tested threshold proportions of trees for all Random Forest analyses. 
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performed for leaves with < 1% of training points.  Finally, only an irrigated, Clim analysis was 

performed with a PCA model (Table 2) using the ArcGIS RMRS Raster Utility toolbar.   

RESULTS 

Out-of-Bag Classification Error and Variable Importance 

 Out-of-bag classification error and variable importance are only quantified for the 

Random Forest models.  Classification errors for Irrig/Unirrig Random Forest models ranged 

from 0.04 to 0.11, while classification errors for CP/OM Random Forest models ranged from 

0.25 to 0.48 (Table 5).  The train Clim & classify Clim, Irrig/Unirrig Random Forest model 

yielded the lowest classification error (classification error = 0.04), and the train Clim & classify 

Clim, CP/OM model yielded the highest classification error (classification error = 0.48).  For the 

six-class Random Forest model, error was 0.33.  The low classification errors of the Irrig/Unirrig 

models are attributable to the variation between the spectro-temporal profiles of the irrigated and 

unirrigated classes (Figure 21), and the high classification errors of the CP/OM models are 

potentially attributable to low variation between the spectro-temporal profiles of the center pivot 

and other method classes (Figure 21).  The greatest variation in spectro-temporal profiles of the 

center pivot and other method classes is observed for days 177 and 193 (Figure 21), and those 

are important time-step variables for two of the CP/OM models (Figure 22).    

 Figure 22 shows classification errors for each model at saturation (all variables included 

in training) and without each of its six variables.  Error values greater than saturation error 

associated with a time-step variable indicate that removal of that variable increases model error.  

Those variables associated with error greater than saturation error are the most important model 

variables.   For the train NoClim & classify NoClim, Irrig/Unirrig model, the day 257 time-step 

variable is most important (Figure 22a).  For the train NoClim & classify NoClim, CP/OM  
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Out-of-Bag Classification Error for Random Forest Models 

Model Output Classes Error 

Train NoClim & Classify NoClim Irrig/Unirrig 0.10 

Train NoClim & Classify NoClim CP/OM 0.25 

Train NoClim & Classify Clim Irrig/Unirrig 0.11 

Train NoClim & Classify Clim CP/OM 0.29 

Train Clim & Classify Clim Irrig/Unirrig 0.04 

Train Clim & Classify Clim 

Developed, Disturbance, 

Forest, Irrigated, Meadow, 

Shrub-Grasslands 

0.33 

Train Clim & Classify Clim CP/OM 0.48 

    

model, the day 177 and 193 variables are most important (Figure 22b).  These variables are the 

time-step variables associated with the most variation in the center pivot and other method 

spectro-temporal profiles (Figure 21).  The day 145 and 161 variables are most important for the 

train NoClim & classify Clim, Irrig/Unirrig model (Figure 22c), and this is notable, because the 

same proportion of training points were selected from the same 2018 TVPs subset, and the same 

analysis area was sampled as for the train NoClim & classify NoClim, Irrig/Unirrig model.  For 

the train NoClim & classify Clim, CP/OM model, removal of the day 161 variable increased 

error, and so did the removal of the 177 and 193 variables (those associated with the key period 

of spectro-temporal profile variation), as they did with the CP/OM model for the train NoClim & 

classify NoClim model (Figure 22d).  The day 161, 177 and 257 variables were most important 

for the train Clim & classify Clim, Irrig/Unirrig model (Figure 22e), and removal of the day 241 

and 257 variables from the train Clim & classify Clim, CP/OM model increased error beyond 

saturation (Figure 22f), and removal of day 177 and 193 variables from the train Clim & classify 

Clim model produced classification error equaling error at saturation (Figure 22f).  Finally, for 

the six-class Random Forest model, removal of days 145, 193 and 257 increased error beyond its 

value at saturation.  Variable importance was further investigated by examination of probability 

Table 5:  Out-of-bag classification error. 
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distribution graphs for the most important variables of each model.  Probability distribution 

graphs were not explored for the six-class Random Forest model.  For each model variable, the 

other five 

 

variables were concurrently adjusted from the low to high ends of their ranges, allowing the 

investigation of the probability of allocation to each class (i.e., Irrig/Unirrig or CP/OM) for a 

single variable’s range with all other model variables held constant.  Consistently, for each 

analysis, Irrig/Unirrig models produced higher probabilities of allocation to the irrigated or 

unirrigated classes for their most important variables at the lowest 10% and highest 10% ends of  

the ranges of all other model variables (Figure 23, Figure 24 and Figure 25).  For example, the 

Figure 21:  Spectro-temporal profiles for all product classes (derived from 2018 TVPs subset (n 

= 211 points)).  
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Figure 22. Variable effects on classification error: (a) classification error for train NoClim & 

classify NoClim, Irrig/Unirrig model at saturation and without each time-step variable; (b) 

classification error for train NoClim & classify NoClim, CP/OM model; (c) classification error 

for train NoClim & classify Clim, Irrig/Unirrig model; (d) classification error for train NoClim 

& classify Clim, CP/OM model; (e) classification error for train NoClim & classify Clim, 

Irrig/Unirrig model; (f) classification error for train Clim & classify Clim, CP/OM model. 
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time-step variable 257 probability distribution for the train Clim & classify Clim, Irrig/Unirrig 

model (the model with the least error), probability of allocation to the irrigated class (proportion 

of trees classifying pixels as irrigated) ranges from 0.8 – 1 for the range of NDVI values on day 

257 (Figure 25f).  However, for day 257 of the train Clim & classify Clim, CP/OM model (the 

model with the most error), the proportion of trees classifying pixels as center pivot ranges from 

0.5 - < 0.75 for the range of NDVI values on day 257 (Figure 25j).  Finally, investigation of 

variable importance for the CP/OM model with the lowest classification error reveals that the 

most important variables (days 177 and 193) demonstrate high proportions of trees classifying 

pixels as center pivot or other method at the extreme ends of other variable ranges (Figure 26a-e) 

and at the medians of other variable ranges for time-step variable 193 (Figure 26f).  This 

relationship is potentially explained by the variation between center pivot and other method 

spectro-temporal profiles at days 177 and 193 (Figure 21).  Finally, the distribution of NDVI 

values for each time step of each analysis may reveal explanations for error and accuracy.  

Irrig/Unirrig training and analysis areas exhibit broad NDVI distributions and potentially 

bimodal or trimodal patterns that are more pronounced from days 145-193 (Figure 27 and Figure 

28).  However, training the model with more classes for an Irrig/Unirrig classification did not 

appreciably mitigate the issue of misclassified pixels on the edges of analysis areas, and masking 

target land cover classes improved accuracy and agreement.  Conversely, CP/OM training and 

analysis areas exhibit narrower NDVI distributions (Figure 29 and Figure 30).  A key difference 

between the CP/OM train NoClim & classify NoClim (classification error = 0.25) and train Clim 

& classify Clim (classification error = 0.48) analyses are the potentially bimodal distributions for 

the train NoClim & classify NoClim time steps 145-177 (Figure 29).   The train Clim & classify  
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Clim analysis areas have only one potentially bimodal distribution for the earliest time step of 

the analysis (Figure 30), suggesting that the potentially bimodal distributions associated with the 

NoClim analysis may reduce error.      

  

Figure 23. Probability distribution graphs for most important variables for the train NoClim & 

classify NoClim analyses: (a) Proportion of trees classifying any given pixel as irrigated or 

unirrigated based on NDVI value on variable-day 257 (i.e., probability distribution) with all 

other model variables at the low 10% of their range; (b) Irrig/Unirrig probability distribution 

for variable-day 257 with all other model variables at the high 10% of their range; (c) CP/OM 

probability distribution for day 177 and low model variable values; (d) CP/OM probability 

distribution for day 177 and high model variable values; (e) CP/OM probability distribution for 

day 193 and low model variable values; (f) CP/OM probability distribution for day 193 and high 

model variable values. 
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Figure 24. Probability distribution graphs for most important variables for the train NoClim & 

classify Clim analyses:  (a) Irrig/Unirrig probability distribution for day 145 and low model 

variable values; (b) Irrig/Unirrig probability distribution for day 145 and high model variable 

values; (c) Irrig/Unirrig probability distribution for day 161 and low model variable values; (d) 

Irrig/Unirrig probability distribution for day 161 and high model variable values; (e) CP/OM 

probability distribution for day 161 and low model variable values; (f) CP/OM probability 

distribution for day 161 and high model variable values; (g) CP/OM probability distribution for 

day 177 and low model variable values; (h) CP/OM probability distribution for day 177 and 

high model variable values; (i) CP/OM probability distribution for day 193 and low model 

variable values; (j) CP/OM probability distribution for day 193 and high model variable values. 
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Figure 25. Probability distribution graphs for most important variables for the train Clim & 

classify Clim analyses:  (a) Irrig/Unirrig probability distribution for day 161 and low model 

variable values; (b) Irrig/Unirrig probability distribution for day 161 and high model variable 

values; (c) Irrig/Unirrig probability distribution for day 177 and low model variable values; (d) 

Irrig/Unirrig probability distribution for day 177 and high model variable values; (e) 

Irrig/Unirrig probability distribution for day 257 and low model variable values; (f) 

Irrig/Unirrig probability distribution for day 257 and high model variable values; (g) CP/OM 

probability distribution for day 241 and low model variable values; (h) CP/OM probability 

distribution for day 241 and high model variable values; (i) CP/OM probability distribution for 

day 257 and low model variable values; (j) CP/OM probability distribution for day 257 and high 

model variable values. 
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Figure 26. Probability distribution graphs for most important variables for the train 

NoClim & classify NoClim, CP/OM analysis (including median ranges):  (a) CP/OM 

probability distribution for day 177 and low model variable values; (b) CP/OM probability 

distribution for day 177 and median model variable values; (c) CP/OM probability 

distribution for day 177 and high model variable values; (d) CP/OM probability distribution 

for day 193 and low values; (e) CP/OM probability distribution for day 193 and median 

values; (f) CP/OM probability distribution for day 193 and high values. 
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Figure 27:  Train NoClim & classify NoClim, Irrig/Unirrig analysis histograms. 
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Figure 28:  Train Clim & classify Clim, Irrig/Unirrig analysis histograms. 
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Figure 29:  Train NoClim & classify NoClim, CP/OM analysis histograms. 
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Figure 30:  Train Clim & classify Clim, CP/OM analysis histograms. 
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Accuracy Assessments 

 Error matrices for all analyses and models were utilized to determine overall model 

accuracy when used to classify analysis areas and agreement between each product and its 

corresponding validation points.  Agreement was measured by kappa (𝑘̂), which is a standardized 

measurement of the difference in validated outcome between the model (non-random) and the 

outcome expected from a random assignment of classes to validation points.   

Random Forest 

 Since each model outputted a two-band probabilistic classified raster (i.e., irrigated – 

band 2 vs. unirrigated – band 1, or center pivot – band 2 vs. other methods – band 1).  Threshold 

proportions of trees classifying pixels as either irrigated or center pivot were selected to form a 

binary, reclassified output, for which pixels greater than the threshold were either irrigated (for 

Irrig/Unirrig) or center pivot (for CP/OM).  The thresholds 0.5, 0.6, 0.7, 0.8 and 0.9 were tested 

for the three Irrig/Unirrig analyses and six-class analysis, and the thresholds 0.5, 0.6 and 0.7 

were tested for the three CP/OM analyses.  For the six-class analysis, the threshold and highest 

position methods for assigning irrigated/unirrigated status were tested visually and with accuracy 

assessments.  Each threshold was tested with an accuracy assessment, and overall accuracy was 

used to determine the threshold used for the final product of each analysis.  For Irrig/Unirrig and 

six-class outputs, the 0.5 probability threshold produced the most accurate result all analyses, and 

for the CP/OM outputs, the 0.5 threshold produced the most accurate results for the train NoClim 

& classify NoClim and train NoClim & classify Clim analyses.  For the train Clim & classify 

Clim, CP/OM analysis, the 0.6 threshold produced the most accurate result.      

 Overall accuracies, kappa statistics and class accuracies for the Random Forest models 

are summarized in Table 6.  The most accurate analysis was the train Clim & classify Clim, 
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Irrig/Unirrig analysis, yielding 92% overall accuracy and almost perfect agreement (𝑘̂ = 0.83).  

The train NoClim & classify NoClim and train NoClim & classify Clim, Irrig/Unirrig analyses 

 

Accuracy Assessments 

Train NoClim & Classify NoClim Analysis 

Accuracy Assessments – proportion/probability irrigated = 0.50, proportion/probability 

center pivot = 0.50 

p < 0.01 

Overall Accuracy = 0.85 

Kappa (𝑘̂) = 0.70 

Reference p = 0.43 

Overall Accuracy = 0.58 

𝑘̂ = 0.16 

Reference 

Unirrigated Irrigated 
Other 

Method 

Center 

Pivot 

Mapped 
Unirrigated 19 3 Other Method 6 5 

Irrigated 4 21 Center Pivot 5 8 

Train NoClim & Classify Clim Analysis 

Accuracy Assessments – proportion/probability irrigated = 0.50, proportion/probability 

center pivot = 0.60 

p < 0.01 

Overall Accuracy = 0.87 

𝑘̂ = 0.75 

Reference p = 0.22 

Overall = 0.61 

𝑘̂ = 0.23 

Reference 

Unirrigated Irrigated 
Other 

Method 

Center 

Pivot 

Mapped 
Unirrigated 21 6 Other Method 9 7 

Irrigated 0 20 Center Pivot 2 5 

Train Clim & Classify Clim Analysis 

Accuracy Assessments – proportion/probability irrigated = 0.50, proportion/probability 

center pivot = 0.60 

p < 0.01 

Overall Accuracy = 0.92 

𝑘̂ = 0.83 

Reference p = 0.26 

Overall Accuracy = 0.41 

𝑘̂ = -0.20 

Reference 

Unirrigated Irrigated 
Other 

Method 

Center 

Pivot 

Mapped 
Unirrigated 37 3 Other Method 5 10 

Irrigated 3 30 Center Pivot 9 8 

 

 yielded overall accuracies of 85% and 87%, respectively, and substantial agreement (𝑘̂ = 0.70 

and 𝑘̂ = 0.75, respectively).  Further, the six-class train Clim & classify Clim analysis yielded 

accuracy and agreement equal to the Irrig/Unirrig train Clim & classify Clim analysis regardless 

of the method used for assigning irrigated or unirrigated status, either threshold or highest 

position (overall accuracy = 92% and 𝑘̂ = 0.83).  Finally, when post-classification masking with 

a moving 3 x 3 modal window was applied to the Irrig/Unirrig Clim analysis, overall accuracy 

improved to 94%, and agreement improved to 0.88.  

Table 6:  Accuracy assessments for all Random Forest analyses. 
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 Center pivot/other method accuracies and agreement were considerably lower, with the 

train NoClim & classify Clim analysis yielding the highest accuracy, 61%, and fair agreement (𝑘̂ 

= 0.23).  The train NoClim & classify NoClim, CP/OM analysis yielded an accuracy of 58% and 

slight agreement (𝑘 ̂= 0.16), and the train Clim & classify Clim analysis yielded an accuracy of 

41% and less than chance agreement (𝑘̂ = -0.20), the lowest accuracy and agreement of all 

analyses.     

Decision Tree 

 Only a train Clim & classify Clim, Irrig/Unirrig Decision Tree analysis was conducted 

due to the high accuracy and almost perfect agreement of the Random Forest Clim analysis and 

the lack of accuracy and agreement of the CP/OM analyses.  Therefore, only a single accuracy 

assessment was required (Table 7).  The output from the Decision Tree analysis was binary, not 

probabilistic, and therefore no threshold selection and testing were necessary.  The Decision Tree 

analysis yielded an overall accuracy of 89% and substantial agreement (𝑘̂ = 0.78).   

Clim Decision Tree Analysis Accuracy Assessment 
p < 0.01 

Overall Accuracy = 0.89 

𝑘̂ = 0.78 

Reference 

Unirrigated Irrigated 

Mapped 
Unirrigated 37 5 

Irrigated 3 28 

  

PCA 

 Principal Component Analysis was also performed on Clim data, and PCA does not 

require training data.  However, the output is unitless.  Therefore, threshold selection was 

necessary but due to the unitless nature of the output, somewhat arbitrary.  The range of values 

of all components was 0.04 to 11.82, which was also the range of the first component.  Since the 

first component explained 97% of the variance (Table 8), the first component was selected to 

Table 7:  Accuracy assessment for Decision Tree analysis. 
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produce the Irrig/Unirrig PCA product.  Various thresholds were selected (i.e., 0, 5 and 7), and 

the binary, reclassified outputs (irrigated if pixel value > threshold) of each threshold were 

visually assessed and compared with high-resolution imagery to determine which most closely 

resembled irrigated areas.  A threshold of 7 was selected, and the accuracy of a binary output 

produced from a threshold of 7 was tested (Table 9).  The overall accuracy was 88%, and 

agreement was substantial (𝑘̂ = 0.75).   

 PCA Statistics 

 
Component 

1 

Component 

2 

Component 

3 

Component 

4 

Component 

5 

Component 

6 

Proportions 0.97 0.02 0.01 0 0 0 

Eigen 

Values 
5.81 0.11 0.04 0.03 0.01 0.01 

 

 

Clim PCA Accuracy Assessment 
p < 0.01 

Overall Accuracy = 0.88 

𝑘̂ = 0.75 

Reference 

Unirrigated Irrigated 

Mapped 
Unirrigated 37 6 

Irrigated 3 27 

 

Products 

 Irrigated area, center pivot and other method areal estimates vary by analysis.  Further, 

forested areas are misclassified as irrigated in all Irrig/Unirrig products (Figure 31).  Finally, 

when interpreted visually, CP/OM analyses are unreliable on an analysis-area scale but 

inconsistently reliable at the scale of individual fields.        

 

 

Table 8:  Principal component analysis proportions of variance by each component and 

corresponding Eigen values. 

Table 9:  Accuracy assessment for PCA. 
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Figure 31. Misclassified forested areas:  (a) Irrig/Unirrig Random Forest product irrigated area 

(misclassified); (b) forested area misclassified as irrigated by Random Forest model. 
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Random Forest 

 Products were generated from six Random Forest analyses.  Irrigated area estimates 

increased with size of the analysis area.  The train NoClim & classify NoClim analysis yielded a 

total irrigated area estimate of 340 km2 (Figure 32a), an estimated 90 km2 under center pivot 

systems and 250 km2 under other methods of irrigation (Figure 32b).  The train NoClim & 

classify Clim analysis yielded a total irrigated area estimate of 422 km2 (Figure 33a), an 

estimated 91 km2 under center pivot systems and 332 km2 under other methods of irrigation 

(Figure 33b).  The train Clim & classify Clim analysis yielded a total of irrigated area estimate of 

467 km2 (Figure 34a), an estimated 122 km2 under center pivot systems and 345 km2 under other 

methods of irrigation (Figure 34b).  The six-class train Clim & classify Clim analysis yielded a 

total irrigated area estimate of 448 km2 when the threshold method was applied to assign 

irrigated/unirrigated status (Figure 35a) and 600 km2 when the highest-position method was 

applied.  Finally, when post-classification masking with a 3 x 3 moving modal window was 

applied to the train Clim & classify Clim product, irrigated area was estimated at 327 km2 

(Figure 35b).        

Visually, the train Clim & classify Clim irrigated area product closely matches the extent 

of irrigated area observed in the high-resolution imagery (Figure 36) except for forested areas on 

the edge of the analysis area (Figure 31).  However, CP/OM models correctly classify some 

individual fields, but they do not correctly classify entire analysis areas (Figure 37).       

Decision Tree 

 The Decision Tree used in a train NoClim & classify NoClim analysis was generated 

using the C4.5 algorithm (Figure 38).  The algorithm constructed the decision-rule nodes using 
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the day 145, 177, 241 and 257 time-step variables.  The Decision Tree model produced an 

irrigated area estimate of 440 km2 (Figure 39).     

PCA 

The PCA model generated a product from Clim data.  The estimated irrigated area of the 

PCA product is 493 km2 (Figure 39).   
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Figure 32. Train NoClim & classify NoClim Random Forest products:  (a) Train NoClim & 

classify NoClim irrigated product; (b) train NoClim & classify NoClim CP/OM product. 
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Figure 33. Train NoClim & classify Clim Random Forest products:  (a) Train NoClim & classify 

climatology irrigated product; (b) train NoClim & classify climatology CP/OM product. 
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Figure 34. Train Clim & classify Clim Random Forest products:  (a) Train Clim/classify Clim 

irrigated product; (b) train Clim/classify Clim CP/OM product. 
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Figure 35. Products created to address classification errors:  (a) Train Clim/classify Clim six-

class product; (b) train Clim/classify Clim following post-classification land cover masking. 
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Figure 36. Irrigated/Unirrigated comparison:  (a) Random Forest Irrig/Unirrig product; (b) 

high resolution imagery. 
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Figure 37. Center pivot/other method NoClim analysis center pivot comparisons:  (a) Center 

pivot field with a training point on it; (b) a mixture of center pivot fields and fields under other 

irrigation methods, with at least two center pivot fields with training points on them; (c) cluster 

of center pivot fields with no training points on them; (d) two center pivot fields with training 

points, one mostly classified as center pivot and one most classified as other method. 
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Figure 38:  Decision tree, constructed by the C4.5 algorithm, used for classification. 
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Figure 39:  Decision tree product. 
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Figure 40: Principal Component Analysis results compared with Random Forest and Decision 

Tree results. 
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DISCUSSION 

 Examinations of NDVI distributions reveals that two or three land cover classes may 

exist within the Irrig/Unirrig analysis areas.  Certainly, one of these classes is irrigated land 

cover.  However, NDVI distributions of certain shrubland, sagebrush steppe, grassland, disturbed 

forest and riparian areas seem to overlap with irrigated land NDVI distributions, since small 

patches of these areas on the edges of analysis areas are mistakenly classified as irrigated by the 

models. 

 Within areas classified as irrigated during the first stage of each analysis, NDVI 

distributions are expectedly narrower, and a bimodal pattern is not apparent (Figure 29 and 

Figure 30).  Additionally, probability distribution graphs for CP/OM models demonstrate that 

smaller proportions of trees classify pixels as center pivot or other method when compared with 

the probability distribution graphs of Irrig/Unirrig models.  This difference in confidence 

between the Irrig/Unirrig models and CP/OM models suggests that NDVI temporal profiles 

alone may not adequately train models to distinguish between center pivot irrigated land cover 

and other methods.  However, average spectro-temporal profiles of center pivot and other 

method classes (Figure 21) suggest the formation of two classes within irrigated land cover. 

 Variable importance examination also revealed that the number of training points and/or 

sampling scheme plays a considerable role in development of models.  For the Irrig/Unirrig 

analyses, two models were trained on the same NoClim analysis areas by randomly selecting 79 

of 126 points (63%) from the same 2018 training and validation point set for each model (Figure 

16).  However, for the train NoClim & classify NoClim analysis, only removal of time-step 

variable 257 created error greater than saturation error, but for the train NoClim & classify Clim 

analysis, days 145 and 161 were the most important model variables, and both of these models 
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were trained with 63% of the 2018 TVPs.  Increasing the number of points and the size and 

extent of the sampling and classification area for the train Clim & classify Clim analysis created 

a more robust Irrig/Unirrig model (Table 5 and Table 6), suggesting this inconsistency in 

variable importance among models trained with the same NoClim analysis areas and proportion 

of points could be attributed to the extent and size of analysis areas.  The NoClim analysis area 

covers 1,477 km2, 15% of the study area (Figure 7a-b), and NoClim training utilized 79 points 

(Figure 16a, c), while the Clim analysis area covers 2,636 km2, 28% of the study area (Figure 

7c), and Clim training utilized 123 points (Figure 16e), suggesting that an increase in sample size 

and sampling area created a more robust model.  Finally, changing the sampling scheme to a 

pure stratified random sampling approach for irrigated points, like the approach used for 

unirrigated points, would likely require a reduced standard for ground truthing irrigated land 

cover.  The standard for irrigated points in this study required that active irrigation was observed 

and marked in a TVPs layer exactly where it was observed.  Due to the daily and seasonal timing 

of active irrigation, observing active irrigation at stratified random pre-selected points would be 

rare, if adhering to the strict, observed active irrigation sampling standard, thus substantially 

reducing the number of irrigated points and affecting the representation of different irrigation 

methods within the sample.  To retain enough irrigated points, standards would need to be 

loosened, and irrigation validation at points would usually require inference, rather than direct 

observation.  Fields with higher greenness relative to their surroundings with evidence of 

irrigation infrastructure would meet the criteria of “irrigated,” regardless of the presence of 

active irrigation at the time of observation.  For a study area where most agricultural areas are 

irrigated, this is perhaps acceptable, but for study areas where rainfed crops represent a 

substantial proportion of agricultural production, standards for irrigated point validation should 
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remain strict, thus requiring a modified approach to the stratified random sampling method for 

irrigated points validation. 

 For Irrig/Unirrig analyses, results are promising.  Although, additional land cover 

masking or model training with more classes could mitigate misclassification of certain areas and 

increase accuracy.  This was explored, and masking problem land cover classes produced better 

results, but training with more classes did not mitigate the issue of misclassified pixels on 

analysis area edges.  However, the lack of sampling for training points on analysis area edges 

where no public, drivable roads exist could explain why the issue was not mitigated by 

increasing the number of classes.  Random sampling for training points without a roads bias 

would provide better representation of classes that spectrally resemble the irrigated class, and 

this may lead to a better product that does not overestimate irrigated land cover.  Due to bias 

created by only sampling along roads, accuracy assessments are not fully accounting for the 

misclassification of pixels on the edges of analysis areas.  Due to the difficulty of accessing areas 

at considerable distances from roads, using a high-resolution imagery validation approach for 

unirrigated points comfortably outside agricultural areas could reduce bias.  However, this would 

require using separate strategies for irrigated and unirrigated points, thus introducing a bias 

created by using two considerably different sampling methods.  Finally, using high-resolution 

imagery without field verification to validate irrigated points creates a bias of uncertainty.   

 Results from CP/OM analyses are less promising.  At the scale of individual fields, 

accuracy is inconsistent (Figure 37), but at the analysis-area scale, accuracy is non-existent.  

Field-level accuracy is perhaps attributable to variation in average spectro-temporal profiles of 

center pivot and other method irrigated land cover, but this is not certain.  Training points on 

individual fields could train models to classify similar fields based on the spectral variation 



 81 

produced by different crop species or seed mixtures.  Most of the UCFRB crop species are hay or 

forage, but percent grass/alfalfa mixtures are highly variable, and barley composes a small 

percentage of crop production.  Alternatively, since these analyses are temporal, timing of water 

application (not necessarily based on irrigation system) could also explain accurate classification 

of some center pivot fields.  Regardless, small variations in center pivot systems and other 

methods may not exist at larger scales.  As scale of the analysis area increased, CP/OM model 

error increased, and product accuracy declined considerably (Table 5 and Table 6).   

CONCLUSION 

The aims of this study were: (1) determine which classification model worked best for 

irrigation classification in the UCFRB of western Montana, (2) develop a simple method for 

classifying irrigated land cover in semi-arid western Montana, and (3) attempt classification of 

irrigation by method using only time-series NDVI data.  All three aims were achieved, but 

results were not completely satisfactory.  When trained and run on Clim data, the Random Forest 

model was the most robust method (classification error = 0.04, overall accuracy = 92% and 𝑘̂ = 

0.83), and accuracy and agreement of that analysis increased with post-classification masking 

(overall accuracy = 94% and 𝑘̂ = 0.88).  However, the Decision Tree model produced accurate 

results as well (overall accuracy = 0.89 and 𝑘̂ = 0.78.  Random Forests and Decision Trees are 

suitable for this semi-arid river basin, and they have been proven suitable in the American West 

for other studies.  The PCA analysis also yielded strong results, but due to the arbitrary nature of 

threshold selection from a unitless range of values and the inability to train a PCA model, it is 

not recommended for irrigation classification.  Irrigation classification was successful, but there 

is room for improvement, and lack of variable importance consistency among models trained 

without Clim data is likely mitigated by increasing the analysis area to include Clim data and 
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more training points.  Training a Random Forest model with more classes or further masking 

could provide the best solution.  However, this makes products more dependent on the accuracy 

of land cover products.  Adjustments in masking will produce a sufficient binary, Irrig/Unirrig 

product in semi-arid river basins of western Montana and adjusting the number of training 

classes may as well.  Further, introduction of climate data into the classification process reduces 

ambiguity in identifying irrigation using only remotely-sensed inputs on the continental scale 

(Ozdogan and Gutman 2008) and potentially reduces ambiguity on smaller scales but is likely 

unnecessary on smaller scales for most purposes.  Further, the potential for model error leading 

to misclassification of isolated pixels or clusters of isolated pixels within otherwise homogenous 

areas might increase at higher resolutions.  Finally, the green index has shown promise as a 

better alternative to NDVI (Ozdogan and Gutman 2008) and should be included in future 

analyses.   

 The methodology and workflow developed for irrigated area classification is simple, 

reproducible and implementable in ArcGIS, a widely utilized GIS program.  Further, the 

climatology-interpolated NDVI dataset produced by Robinson et al. (2017) is suitable for 

irrigation classification as demonstrated by the low model error and high model accuracies 

generated from running analyses on areas including Clim data.  The increase in irrigated area 

estimates, decline in model error, increase in accuracy, and increase in agreement associated with 

the inclusion of Clim data suggests that temporal classifications utilizing only clear 

pixels/NoClim data are impractical.  The viability of this dataset makes 30-meter Landsat SR 

products better suited for similar spectro-temporal analyses for which NDVI is a suitable index.  

The methodology developed in this study is simple and at least applicable across western 

Montana and probably across the American West with one or a few adjustments.  Increasing the 
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number of classes or further masking or some combination of those potential solutions should 

reduce the problem of misclassified areas on the edges of analysis areas.  However, to apply this 

approach to other river basins in western Montana or the American West, field-verified points 

for each basin are important, since spectro-temporal profiles change as climate, irrigation timing 

and crop type varies.     

 Finally, subclassification of irrigated areas by method was attempted but unsuccessful.  

The best models for CP/OM classification were those trained with NoClim data (Table 5 and 

Table 6), but error and accuracies were insufficient for the those models, and probability 

distributions for important variables demonstrate that a consistently smaller proportion of trees 

classified pixels as center pivot or other method when compared with Irrig/Unirrig analyses, 

suggesting a problem with model confidence for the CP/OM analyses.  Evapotranspiration data 

coupled with spectral data transformed to the green index and machine learning algorithms 

trained to classify rearranged classes (e.g., sprinkler and flood) may produce better results.     
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