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ABSTRACT 
 

Dengue fever is an urban disease that has a complex epidemiology consisting of alternating 

periods of intense epidemics and persistence in endemic locations. No studies have compared the patterns 

of geographic variation and determinants of dengue transmission in neighborhoods during epidemic and 

non-epidemic periods. Colombia’s individual-based epidemiological surveillance system provides a 

unique opportunity to study this topic. The goal of this study was to better understand dengue 

epidemiology in two of the highest dengue fever reporting Colombian cities that vary in climate, Armenia 

(elevation 1320-1580 m,  21-23°C) and Barranquilla (elevation 5-134m . 27-30°C). We used a novel 

ecological approach, Levin’s niche breadth, to define epidemic and inter-epidemic periods in each city. 

Regression tree models were built with the following outcome variables for each neighborhood: total 

number of dengue cases reported during the study period and proportion of dengue cases that occur 

during inter-epidemic periods. The explanatory variables used were elevation, house count (in lieu of 

population), housing density, and the Colombian socioeconomic class (SEC) indicator. House count was 

consistently found to be the main determinant of the total number of reported dengue cases in 

neighborhoods in both cities. The proportion models identified different determinants of persistent dengue 

virus transmission in the two cities. Lower elevation was the main driver of persistence in Armenia while 

lower SEC was the main driver in Barranquilla. These findings suggest that although the overall number 

of dengue cases depend on the impact of population (as represented by house count) on viral introduction, 

factors that influence the reproductive rate have a larger influence on transmission during inter-epidemic 

periods. The persistence determinants identified in this study could potentially help vector control 

programs to identify key areas to focus disease control efforts.    
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INTRODUCTION 

Objectives 

This investigative study was motivated by the need to better understand the dynamics of dengue 

transmission during epidemic versus inter-epidemic periods in an urban setting. The objectives were two-

fold and were met through a study of two cities in Colombia that have variable patterns of endemic 

dengue transmission—Armenia and Barranquilla. The first objective was to explore the geographic 

patterns of dengue cases during dengue epidemics and inter-epidemic periods. The second objective was 

to determine whether different socio-ecological determinants drive dengue transmission in neighborhoods 

during epidemic compared to inter-epidemic periods.  

 

Statement of General Problem under Investigation 

Dengue is a febrile illness caused by a flavivirus and is principally transmitted by the Aedes 

aegypti mosquito. This is an urban disease that has a complex epidemiological cycle consisting of 

alternating epidemic and inter-epidemic periods. The pattern of dengue epidemic cycle is highly variable 

in different locations due to its dependence on natural and built environmental conditions, vectorial 

capacity, human biology and behavior, viral serotypes, and susceptibility of the population
1–3

. Dengue 

was first detected in Colombia in 1971 and its incidence and prevalence has since grown exponentially
4
. 

Colombia now experiences about 40-50,000 cases of dengue annually and has one of the highest severe 

dengue to dengue fever ratio in all of Latin America
5
. Currently, all four dengue serotypes are circulating 

in the country and almost all departments (states) experience periodic epidemics
4
. The National Institute 

of Health of Colombia (Instituto Nacional de Salud, INS) operates a national dengue surveillance system 

that collects weekly reports of individual, probable dengue cases for each neighborhood in each city. This 

study utilized Colombia’s unique dengue surveillance system and georeferencable neighborhood 

descriptive data to identify the determinants of dengue transmission during epidemic and inter-epidemic 

periods in two Colombian cities over multiple year time span.  
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Dengue epidemics occur in multi-year cycles and are characterized by marked increases in the 

number of dengue cases above expected levels
2,6

. When epidemics occur in the city, there are high levels 

of viral introductions occurring in the neighborhoods. Inter-epidemic periods, on the other hand, are 

characterized by persistent transmission of dengue at low or undetectable levels and are influenced by 

seasonal cycles
1,2,7–11

. Persistent transmission is initially started by viral introduction, but its continuation 

depends on dengue’s effective reproductive number (R). While the highly visible epidemics often 

overshadow the inter-epidemic periods, recent studies have elucidated the importance of dengue 

persistence through inter-epidemic periods. First, separate studies in Australia, Puerto Rico, Brazil, 

Argentina, Venezuela, and Cuba concurred that the spatial patterns of dengue persistence is stable over 

time, thereby resulting in clustering of dengue in a few key areas during inter-epidemic periods
1,12–15

. 

Secondly, these key areas are also responsible for producing a significant portion of the total dengue cases 

in a city
1,12–15

. Third, persistent pockets can also act as virus reservoirs and cause outbreaks in other 

locations
1,16,17

. Given the evidence, it is logical to conclude that neighborhoods that have continuous 

transmission even during inter-epidemic periods must have the ideal conditions for the proliferation of the 

dengue virus. These neighborhoods are likely to be the first places where new viral introductions take 

hold and subsequently spread to neighboring communities.  

While the dengue vaccine is still under development, dengue prevention and control is heavily 

based on combating the mosquito vector. However, the outcomes of vector control programs have not 

been very effective or long lasting
1,15,17,18

. Studies in Singapore determined that the cause of dengue 

reemergence was due to the adaptation of a case-reactive approach to vector control in combination with 

other factors including increased global travel and urbanization
17

. Case-reactive vector control programs 

cannot identify subclinical infections or viral persistence, thereby allowing dengue to reemerge when herd 

immunity wanes
17

. In addition, conditions that favor proliferation of mosquitos such as uncontrolled 

urban development and sprawl, reintroduction of vectors, and climate change may also hinder vector 
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control programs
17,19,20

. Since most vector control programs have limited resources, strategic allocation of 

these resources to combat A. aegypti may lead to better and more sustainable outcomes
1
.  

Given the studies on inter-epidemic periods described above, factors that drive persistent viral 

transmission need to be better understood. Vector control programs should focus its resources to stop 

dengue transmission at its weakest during the inter-epidemic periods in these key neighborhoods
7
. 

Furthermore, identification of persistent areas can help direct immunization campaigns once dengue 

vaccines are approved for general use
7
. Lastly, disease persistence in a neighborhood lowers the overall 

quality of life of its residents and it is important for public health interventions to focus on these areas to 

decrease health disparity across a city. 

Relevant Studies 

To our knowledge, no studies have compared geographic variation and determinants of dengue 

transmission during epidemic and inter-epidemic periods. In order to fulfill this knowledge gap, we need 

to first address several challenges in studying this topic. The first challenge is in establishing a definition 

to differentiate between epidemic and inter-epidemic periods. The transition between the two periods is a 

gradual process and not readily apparent. In addition, definitions used in past studies are based on total 

cases within a certain time period, which was useful for areas being studied but lacked the capability to be 

used in comparative investigations between cities because case thresholds are relative to each location’s 

dengue burdens
1,3,8

. For example, the estimated overall dengue prevalence (in cases per 10,000 inhabitants) 

is 339 in Brazil, 116.5 in Colombia, but only 36.7 in Peru, therefore a cases-based definition can represent 

different epidemic extents in each of these places
21

.  

A study on dengue persistence by Barrera et al. showed that there is a statistical significant 

correlation between the number of cases and the total area that report cases—meaning that as the number 

of dengue cases increase over time, the geographical areas that experience dengue transmission also 

expands
13

. Since epidemics are initiated by introductions, this observation suggests that epidemics (city 
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level events) are perpetuated by multiple local introductions (neighborhood level events). This 

phenomenon underlines the importance of studying epidemic cycles from the perspectives of both the city 

and local areas such as neighborhoods. Therefore, in order to encompass conditions of both the city and 

neighborhoods, we used a novel ecological approach based on the correlation of geographic dengue 

distribution with number of cases to define epidemic and inter-epidemic periods. 

After defining epidemic and inter-epidemic periods, the second challenge lies in finding outcome 

measurements for regression analysis that can distinguish between transmissions occurring during these 

two periods. If the determinants of these two periods are different, then disease control would benefit 

greatly from this knowledge and could adapt their programs accordingly. The main ecological difference 

between epidemic and inter-epidemic periods is that inter-epidemic periods experience lower rates of 

viral introductions among neighborhoods. Modeling studies have shown that it is important to distinguish 

between introduced cases and local transmissions, in other words, transmission among groups and 

transmission within groups, respectively
22

. Furthermore, strictly local transmission that do not have new 

introductions are maintained based on the R of the system, which can be influenced by social, 

environmental, herd immunity, and vectorial capacity factors
9,22

.  

The term persistence had also been interpreted inconsistently in relation to inter-epidemic periods 

in literature. For example, Barrera et al. stratified neighborhoods in a city into three-levels of persistence, 

where persistence was defined as having a certain number of consecutive months reporting dengue
13

. 

Barrera et al.’s definition of persistence captured dengue transmission only with respect to conditions 

within the neighborhood. Our study is the first to specifically focus on dengue persistence in 

neighborhoods during a time when a majority of neighborhoods in the city does not have dengue (inter-

epidemic periods). This second definition of persistence is more selective and depends on conditions in 

both the neighborhoods and the remainder of the city. Past studies have found evidence that supports 

differential transmission dynamics when examining the drivers of local and global dengue transmission 

patterns
6,10,11,23

. Preliminary studies at our study sites found that these two definitions result in 
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identification of different key neighborhoods, thereby also suggesting that different mechanisms may 

underline transmission at the local level than transmission at the city level. Therefore, we hypothesized 

that the determinants of total dengue cases in each neighborhood would be different from the number of 

cases that occur during inter-epidemic periods (standardized by the total cases in each respective 

neighborhoods) in those neighborhoods. 

Research on dengue epidemiology is often limited by the lack of vector or seroprevalence data. 

Vector data is not available for every neighborhood in a city simply because it is a time and resource-

consuming process. In addition, both modeling and seroprevalence evidence found that fluctuations in 

vector abundance are not associated with fluctuations in epidemic size and often moderated by other 

factors such as socioeconomic status (SEC)
3,24

. Seroprevalence data would be useful to determine the 

source of infection (introductory versus autochthonous), but it is expensive to obtain and impractical for 

city-wide studies. In terms of operability of the model, however, surveillance data is superior to 

seroprevalence data because surveillance data is likely to reflect the temporal dynamics of epidemic and 

persistent cycles, unlike cross-sectional seroprevalence data.  

Alternative mechanisms by which dengue virus persists during inter-epidemic periods include 

vertical transmission of virus to new mosquito generations and virus replication in alternative vectors
25,26

. 

Vertical transmission alone is the least probable cause of virus persistence since mosquito life cycles are 

short and the virus will be diluted quickly
25

. In addition, the strength of association of vertical 

transmission is most likely very small when other factors are present. In Colombia, virus replication in 

alternative vectors is also not likely since A. aegypti has been the sole Aedes mosquito found in vector 

surveillance in the two study cities. Therefore, these mechanisms were not examined in this study. 

This study focused on drivers of dengue transmission at the neighborhood level for practical, 

scientific, and political reasons. Neighborhood level analysis is practical because dengue surveillance and 

prevention programs are often conducted at the neighborhood level
7,27

. Neighborhoods are good units of 

measurements scientifically because characteristics such as SEC are generally homogenous within 
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neighborhoods and movement patterns generally revolve around neighborhoods
28,29

. Finally, study results 

based on neighborhood-level analysis can be directly applied to policies targeting community 

improvement and health projects. Studies have found that policies and programs targeting health 

disparities can be especially effective if it engages the community at the neighborhood level
30

. 

 

METHODS 
 

Locations under Study 

Armenia, Quindio Department, Colombia 

 

 Armenia is located on the Cordillera Central within the mountainous regions of Western 

Colombia. The city has a large altitude range that varies from 1320 – 1580 m and has an annual average 

ambient temperature ranges between 20 - 20.3˚C
31,32

. According to the 2005 census, the city has an 

estimated population of 272,574 people
33

. 

Barranquilla, Atlántico Department, Colombia 

 

Barranquilla is located on the Caribbean coast of Colombia. The city is located at approximately 

sea level has an altitude range between 5 - 134 m and has average ambient temperature range between 

26.8 - 28.3˚C
31,32

. The population of the city is approximately 1,112,889 people
33

. 

 

Sources of Data 

Epidemiological data 

Dengue surveillance data consisting of weekly, individual-based probable cases were obtained 

from each city. The data was originally collected as part of the national dengue surveillance system of the 

Colombian National Institute of Health. Probable dengue cases from 2001 - 2011 were obtained for 

Armenia. Laboratory confirmed dengue cases from 2004 - 2006 and probably dengue cases from 2007 -
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2011 were obtained for Barranquilla. The surveillance data reported diagnosis date, doctor notification 

date, patient’s age, and patient’s neighborhood of residence. Prior to analysis, the weekly surveillance 

data were organized into three-week periods based on doctor-visit-dates to account for the time lag 

between initial infection and doctor visit date.  In instances where the doctor-visit-date was not available, 

dengue-case-notification-date was used in lieu of doctor-visit-date. Based on the 2010-2011 Armenia 

dengue surveillance reports, the average time lag between doctor-visit date and notification date was 0.53 

days for 99.9% of the data. Neighborhoods were included in the analysis if they reported greater than 5 

cases during the study period in order to account for neighborhood identification errors that may have 

occurred during surveillance reporting. 

Spatial data 

Geographically projected shapefiles of the cities were obtained from municipal governments 

(projection-Transverse Mercator, datum-Bogota). The shapefiles contained digitalized polygons of 

neighborhoods and houses in each city.  

Other sources of data 

Orthorectified digital elevation data (90 m resolution, datum-WGS_1984) for the study areas 

were downloaded from The CGIAR Consortium for Spatial Information in raster format 

(http://srtm.csi.cgiar.org/). The elevation data was projected to the same coordinates of the city shapefiles 

using the Project Raster Tool of the Data Management Tools in ArcMap Software v.10.0 (ESRI, 

Redlands, CA). Mean elevation of each neighborhood was calculated using the Zonal Statistics function 

in ArcMap10. SEC ratings of the neighborhoods and house count of the neighborhoods were obtained 

from municipal governments. The SEC ratings were based on a scale of 1-6 (from less to more affluent) 

and measures socioeconomic status relative to each municipality (not comparable between cities). House 

counts were used as a proxy for population because population data was not available. Interpretation of 

this proxy is limited because house count does not take into account possible differences in household 
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size. The estimated area in hectare of each neighborhood was calculated from the neighborhood 

shapefiles using Zonal Statistics function in ArcMap10. Housing density of each neighborhood in houses 

per hectare was calculated using its corresponding house count and area.   

 

Analysis 

Defining Epidemic and Inter-epidemic Periods  

 

We observed a statistically significant correlation between the total number of dengue cases 

reported in each 3-week period and the number of neighborhoods reporting five or more cases of dengue 

in the same 3-week period in both cities (Armenia, Pearson Correlation Coefficient 0.91605, p<0.0001; 

Barranquilla, Pearson Correlation Coefficient 0.94476, p<0.0001). When the total dengue cases increased, 

the area that experience dengue cases expanded and vice versa. This geographic variation between 

epidemic and inter-epidemic periods was the rational for using an ecological approach, specifically 

Levin’s standardized niche breadth index (Bn), to define and standardize dengue epidemic and inter-

epidemic periods.  

Niche breadth measures the extent of utilization of a single type of resource by a species within 

an environment at a given time
34

. The concept of niche breadth was applied to the dengue system as 

follows: dengue was considered the species, the city was the species environment, each neighborhood in 

the city was a unique resource, and each dengue case reported in a neighborhood was interpreted as a 

single utilization of the resource
34

. In summary, the extent of resource utilization as measured by the 

niche breadth corresponded to the geographical distribution of dengue cases within a city. The niche 

breadth was then standardized by the total number of neighborhoods in each city. The standardization step 

in the formula ensured that Bn from different surveillance data sources could be integrated. It also allowed 

comparative analysis between cities that have different underlying transmission dynamics. 
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 Bn was calculated for each 3-week period using Equation 1, thereby obtaining a measure of 

geographic spread of dengue for each 3-week time period. Bn ranges from 0 to 1. The time period was 

considered an epidemic period if Bn was close to 1.0, representing dengue was equally distributed 

amongst all neighborhoods. The time period was considered as an inter-epidemic period if Bn was close to 

0.0, representing dengue concentrated in a small number of neighborhoods. The specific cut-offs were 

determined based on the histogram of each niche breadth over time, which showed a clear binary 

transition between low niche periods (the majority, skewed right) and a high niche periods (long tail). 

Histogram bin widths were selected using an optimization method of Shimazaki and Shinomoto which 

minimized the mean integrated squared error of variance within each bin
35

. The relationship among total 

number of dengue cases, total number of neighborhood that report 5 or more dengue cases, and Bn was 

graphically represented in Figure 1 and Figure 2. 

 

Equation 1. Levin’s Standardized Niche Calculation 

    
 

  ∑   
 

  
  

Bn = Standardized Niche Breadth Index 

R = total number of neighborhoods (resource states) in a city in the study period 

pi = proportion of dengue cases in ith neighborhood in each three-week period out of total number of dengue cases observed in 

each three-week period 
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Figure 1 Epidemic curve of Armenia (2001-2011) overlaid on the number of neighborhoods that report 5 or more cases of 

dengue. Right axis describes the Levin's Standardized Niche Breadth Index. (Surveillance data was not available for the 

three week periods 78-87)

 

Figure 2 Epidemic curve of Barranquilla (2004-2011) overlaid on the number of neighborhoods that report 5 or more 

cases of dengue. Right axis describes the Levin's Standardized Niche Breadth Index. 
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Determinants of Dengue Transmission during Epidemic and Inter-epidemic Periods 

Regression tree analyses were used to model epidemic and inter-epidemic periods in order to 

determine the drivers of dengue transmission during these periods. Regression trees are robust models 

that utilize a hierarchical approach to handle complex interactions, non-linear relationships, over-fitting, 

and missing variables—problems commonly encountered when fitting statistical linear models to dengue 

systems
36

. The tree is built by splitting a single response variable (either categorical or continuous) into 

branches of homogenous groups based on a single explanatory variable using the method of least 

squares
36

. This is a fully automated process that explores all splits and branch orders possible within a 

given set of explanatory variables. The final tree is identified through a pruning process to obtain the tree 

with the largest number of branches while having the smallest cross-validation error. Colinearity of 

explanatory variables is presented through surrogate branches with the level of congruence indicated for 

each surrogate. The surrogate splits answers the question “which other splits would classify the same 

outcomes in the same way
37

.” The regression tree results are presented visually and are easy to interpret—

each branch is labeled with the explanatory variable value dictating the split, outcome variables that 

satisfy the split criteria are grouped to the left, and each leaf is labeled with the mean value of the 

outcome variable and the number of observations in the group
9,36

. The length of the vertical branches is 

directly proportion of the total sum of squares the division accounted for
36

. 

Regression tree models were built using the Recursive Partitioning and Regression Tree (rpart) 

package of the statistical software R (http://www.r-project.org/). Two models representing transmission 

during epidemic or inter-epidemic periods were explored for each city. Their respective outcome 

variables were 1) the total number of dengue cases reported by the neighborhood reflecting transmission 

during epidemic periods and 2) the proportion of cases of that occurred during the inter-epidemic periods 

in each neighborhood reflecting persistent transmission. The explanatory variables used to predict the 

responses were elevation, SEC, house count, and housing density.  

http://www.r-project.org/
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The first outcome, the total number of dengue cases reported by the neighborhood, was chosen to 

represent transmission during epidemic periods because it was the most obvious indicator of the total 

disease burden in a neighborhood. Since transmission cannot indefinitely persist in a neighborhood, the 

continuation of cases necessarily requires an introduction event. Increase in cases observed in a 

neighborhood is associated with increase in the rate of introduction into the neighborhood. Therefore, the 

disease burden in a neighborhood is dependent on the rate of introduction, which in turn is proportional to 

the level of the epidemic in the city. Inter-epidemic periods are characterized by transmission that occurs 

locally with limited outside introductions. However, the cases identified through surveillance do not 

differentiate between locally acquired cases and introductory cases. Therefore, the second outcome was 

chosen to reflect inter-epidemic periods because it captures the timing of cases. Specifically, this outcome 

captures the autochthonous cases that occur only through persistent mechanisms and not through 

introduction.  

RESULTS 

Epidemiology Trends 

A total of 11777 cases in 269 neighborhoods in Armenia were reported to the national dengue 

surveillance system from 2001-2011. Dengue cases were included in data analysis if they reported the 

patient’s neighborhood of residence (5.04% of total cases did not report neighborhoods). In order to 

minimize reporting error, a neighborhood was included in data analysis if it could be located in the city’s 

GIS shapefile and had at least 50 houses. Niche breadth analysis was conducted with a total of 9622 cases 

reported in 181 neighborhoods over 186 three-week periods in 2001 - 2011 in Armenia.  

Two sets of surveillance data were obtained in Barranquilla. From 2004 to 2006, 2227 laboratory 

confirmed cases occurred in 150 neighborhoods in Barranquilla and from 2007 to 2011, 6461 probably 

cases occurred in 294 neighborhoods in Barranquilla. 0.4% of total cases during 2004-2006 and 11.5% of 

total cases during 2007-2011 did not report neighborhoods and were excluded from analysis. The 
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difference between epidemic and inter-epidemic periods is much more pronounced in Armenia than in 

Barranquilla. 

 Tables 1 and 2 describes the distribution of cases and neighborhoods in epidemic and inter-

epidemic periods in Armenia and Barranquilla, respectively. Although the epidemic curves (Figures 1 

and 2) were drastically different between the cities, the epidemic trends and geographic patterns were 

consistent. In both cities, the epidemic period contained the majority of the cases. In addition, the 

epidemic periods had larger number of neighborhoods report dengue than during the inter-epidemic 

periods.  

 

Number of 3-week 

Periods (% total time) 

Dengue Cases 

(% total) 

Average Number of 

Cases Per 3-week Period 

Average Number of 

Neighborhoods Per 3-week 

Period 

Total 186 (100) 9622 (100)  33 

Epidemic 59 (30) 7191 (75) 123 51 

Inter-epidemic 118 (63) 2431 (25) 21 14 

Unknown 

(no data) 
9 (7) 0 

 
- 

Table 1. Distribution of cases and neighborhoods in Armenia during epidemic and inter-epidemic periods. 

  

 

Number of 3-week 

periods (% total time) 

Dengue cases 

(% total) 

Average Number of 

Cases per 3-week 

Period 

Average number of 

Neighborhoods per 3-

week Period 

Total 134 (100) 7658 (100)   

Epidemic 22 (16) 3417 (45) 155 71 

Inter-epidemic 108 (81) 4241 (55) 39 25 

Unknown 

(no data) 
4 (3) 0 - - 

Table 2. Distribution of cases and neighborhoods in Barranquilla during epidemic and inter-epidemic periods. 

 

Regression Tree Results 

 

Outcome 1 – Total number of cases in each neighborhood 

 The regression tree models built using the total number of cases in each neighborhood showed 

that house count was the main determinant of the number of cases in both cities and was responsible for 
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multiple branches (Figures 3 and 4). In both cities, house was responsible for 5 splits and there is a 

positive correlation between the number of houses and the total number of dengue cases in each 

neighborhood. Interestingly, in Armenia, SEC becomes an important predictor in neighborhoods that have 

medium number of houses. SEC was also a major surrogate split explanatory variable at the second node 

in Armenia that would have resulted in 65% agreement. SEC and house count is shown in Armenia to be 

colinearly related. The highest colinearity values in Barranquilla were between house and elevation at the 

first node (73% agreement) and between housing density and house at the third node (69% agreement). 

Since house was used as a proxy for population, we conclude that population was the main driver of 

epidemic periods.  

 

 

Figure 3. Regression tree predicting the total number of dengue cases in each neighborhood in Armenia based on the 

neighborhood’s elevation, SEC, house, and housing density. Threshold criteria are labeled at the top of each branch and 

the values at the leaves indicate the mean expected number of dengue cases and the number of neighborhoods (n) grouped 

into that branch.  
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Figure 4. Regression tree predicting the total number of dengue cases in each neighborhood in Barranquilla based on the 

neighborhood's elevation, SEC, house, and housing density. Threshold criteria are labeled at the top of each branch and 

the values at the leaves indicate the mean expected number of dengue cases and the number of neighborhoods (n) grouped 

into that branch. 

 

 

Outcome 2 – Proportion of cases that occur during inter-epidemic periods in each neighborhood 

 

The regression trees that examined the proportion of cases in inter-epidemic periods identified 

very different drivers of persistence in the two cities (Figure 5 and 6). In Armenia, elevation was the 

main driver of persistent dengue transmission during inter-epidemic periods while SEC appeared to be the 

main driver in Barranquilla. In Armenia, there was an inverse relationship between elevation and 

proportion of cases that occur during inter-epidemic periods. In Barranquilla, there was also an inverse 

relationship between SEC and proportion of cases that occur during inter-epidemic periods. The number 

of splits was also significantly fewer than the trees from outcome 1. In Armenia, SEC was a surrogate 

split for elevation at both nodes (77% agreement at node one and 97% agreement at node two). In 

Barranquilla, elevation was a surrogate split for SEC (73% agreement). This indicates that there is strong 

colinearity between SEC and elevation for both cities.  
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Figure 5 Regression tree predicting the proportion of cases (%) that occurred during the inter-epidemic period in 

Armenia. 

 

 

Figure 6 Regression tree predicting the proportion of cases (%) that occurred during the inter-epidemic period in 

Barranquilla. 

DISCUSSION  

The regression tree analysis results showed that determinants of epidemic transmission differ 

from that of inter-epidemic transmission but the mechanisms behind the different drivers of transmission 

during the two periods warrant further discussion.  

Population was an important determinant in both cities for the epidemic models. The number of 

cases was directly reflective of the extent of epidemics and is correlated with the geographic expansion of 
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dengue in a city. This showed that epidemics occur due to multiple introductions occurring between 

neighborhoods. High population levels would increase the probability that introductions would occur 

through increased human movement and increased number of susceptibles. A recent R0 modeling study 

showed that even if R0 was sufficiently high to favor local transmission, epidemics (propagation of 

disease across a city) would not occur without a large enough population and high levels of movement
9
. 

The sheer number of branches driven by housing suggested that the number of cases was sensitive to 

population levels. 

The use of proportion as an outcome in the inter-epidemic models allowed us to tease apart 

introduction cases and persistent autochthonous cases. House was not present in the final proportion 

models, thereby indicating that the effect of population was diminished during autochthonous 

transmissions and factors that influence R become more important. For example, elevation was the main 

driver of dengue persistence in Armenia, where there was a high elevation gradient within the city. 

Elevation affects an area’s ambient temperature, humidity, and other climate characteristic, which in turn 

affects R0 factors associated with vectorial capacity. This showed that the transmission system at high 

altitudes may be sensitive to temperature changes.  

In contrast, elevation was not a significant branch in the proportion model in Barranquilla. This 

was probably due to the overall low elevation, low elevation gradient, and high temperature conditions 

throughout Barranquilla. This observation agreed with a past study that showed where temperature and 

precipitation are already high, increase in either have little effect on transmission rates
11

. One study on 

two neighboring cities with identical climate conditions along the US-Mexico border found different 

seroprevalence levels due to differences in SEC
38

. The US city have higher mosquito infestation levels 

but its residents have very limited exposure to mosquitos due to continuous air-condition use and 

therefore the city has essentially no dengue transmission
38

. Given similar climate conditions amongst the 

neighborhoods, SEC emerged as a main driver of persistence in Barranquilla.  
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LIMITATIONS 
 

 The scope of this study was limited by the explanatory variables available for the study areas. 

First, we were not able to obtain temperature and climate data at the neighborhood level. Elevation was 

used as a proxy. Second, population data at the neighborhood level was not available in the two cities. We 

used house count as a proxy for population, but house count did not account for variations in household 

size. In addition, housing density did not account for non-urbanized areas in a neighborhood nor 

variations in household size. Furthermore, there were relatively high levels of colinearity amongst the 

variables used in the regression trees (60-90%). However, colinearity was expected for a vector-borne 

disease study and the regression tree approach was selected as the most appropriate method to account for 

colinearity.  

Finally, spatial autocorrelation was not explored in the study and should be analyzed in the future. 

Spatial autocorrelation could capture the effects of human movement amongst neighborhoods. 

Preliminary analysis of spatial autocorrelation of residuals from the epidemic regression tree models 

using Global Moran’s I in Arc GIS showed that both cities have statistically significant autocorrelation. 

Local Moran’s I hot spot analysis identified various hot spots in the city at 2000 m, 3000 m, and 4000 m 

radius. Spatial autocorrelation of inter-epidemic periods was not significant. Further analysis of spatial 

distribution of the various response variables used in regression tree could supplement the regression tree 

findings. 

CONCLUSIONS 
 

Our analysis in Colombia found that there was a geographic expansion of cases during epidemic 

periods and a geographic recession of cases during inter-epidemic periods. In addition, we found that the 

determinants of dengue transmission during epidemic periods differed from that of inter-epidemic periods. 
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Epidemic transmission was driven by population while persistent transmission during inter-epidemic 

periods was driven by factors unique to each city. Lower elevation was the main driver of persistence in 

Armenia while lower SEC was the main driver in Barranquilla. 

This study used a novel application of Levin’s Standardized Niche Breadth Index to define 

dengue outbreak and persistent periods. This study also found that regression tree modeling gave insight 

into factors that cause certain neighborhoods to experience persistent dengue transmission even when 

there is low dengue introduction between neighborhoods and low overall dengue transmission at the city-

level is low. Elevation was the main drivers of persistence in Armenia while SEC was the main driver in 

Barranquilla. Results from the models could help the identification of key neighborhoods that experience 

persistent dengue transmission and the mechanism that drive the persistence. Dengue prevention 

programs can benefit greatly by focusing their resources on addressing these mechanisms within key 

neighborhoods during the low-transmission periods. Shifting dengue prevention and vector control 

strategies towards a persistence focused direction could be effective for both short-term control of dengue 

outbreaks and long term sustained halt of transmission.  
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APPENDIX  
rPart protocol 

Recommended introduction reading – An Introduction to Recursive Partitioning Using the RPART 

Routines. Elizabeth J. Atkinson & Terry M. Therneau. Mayo Foundation 

 

Blue=code 

Green=output 

***Words preceded by stars are author’s notes 

Data saved in .csv format 

Annotated output 

R version 2.13.1 (2011-07-08) 

Copyright (C) 2011 The R Foundation for Statistical Computing 

ISBN 3-900051-07-0 

Platform: i386-pc-mingw32/i386 (32-bit) 

 

R is free software and comes with ABSOLUTELY NO WARRANTY. 

You are welcome to redistribute it under certain conditions. 

Type 'license()' or 'licence()' for distribution details. 

 

  Natural language support but running in an English locale 

 

R is a collaborative project with many contributors. 

Type 'contributors()' for more information and 

'citation()' on how to cite R or R packages in publications. 

 

Type 'demo()' for some demos, 'help()' for on-line help, or 

'help.start()' for an HTML browser interface to help. 

Type 'q()' to quit R. 

 

***code for loading the data and printing the data 

 

> library (rpart) 

> Arm <-read.csv ("C:/…/Arm_reg_Mar31_thesis.csv", header=T) 

> print (Arm) 

    barrioID                                GISname 

1         79                          BARRIO ALAMOS 

2         29                         BARRIO ALCAZAR 

3        128                    CONDOMINIO LA ALDEA 

4         30                          ALFONSO LOPEZ 

5        170                       BARRIO ARCO IRIS 

***remaining data omitted 

 

***code for building the tree 
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> prop11_100 <-rpart (prop11_above100~house + SES + elevation + hdens, data=Arm, method="anova", 

minsplit=15)  

 

***code for plotting the tree  

> plot (prop11_100) 

 

***code for labeling the tree 

> text (prop11_100, use.n=T) 

 

*** “anova” method is used for continuous outcome variables, “class” method can be used for categorical 

variables.  

“minsplit” command specifies the minimum number of observations needed to further split the otucomes. 

“use.n=T” command labels the number of observations in each leaf 

 

 
***This is the full tree. The criteria for the split is at the top of each branch, the mean expected outcome 

value is at the bottom of each leaf, and the number of observations in each leaf is shown under the 

a 
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outcome values. Branches to the left are those that obey the criteria of the split, branches to the right are 

those that do not.  

 

***code for printing the summary statistical results of the tree 

> summary (prop11_100) 

 

Call: 

rpart(formula = prop11_above100 ~ house + SES + elevation + hdens,  

    data = Arm, method = "anova", minsplit = 15) 

  n=140 (37 observations deleted due to missingness) 

 

           CP         nsplit rel error      xerror        xstd 

1  0.22795022      0   1.0000000 1.0296171 0.1234651 

2  0.07485321      1   0.7720498 0.9972420 0.1395282 

3  0.03185386      2   0.6971966 0.8981304 0.1332446 

4  0.03144762      3   0.6653427 0.9744629 0.1434450 

5  0.02983496      4   0.6338951 0.9875267 0.1460658 

6  0.02571645      5   0.6040601 1.0021328 0.1464100 

7  0.01857509      6   0.5783437 1.0159742 0.1516235 

8  0.01571209      7   0.5597686 1.0399030 0.1553735 

9  0.01381519      8   0.5440565 1.0387945 0.1554124 

10 0.01291739      9  0.5302413 1.0387263 0.1559440 

11 0.01000000     10 0.5173239 1.0453323 0.1567865 

 

Node number 1: 140 observations,    complexity param=0.2279502 

  mean=0.3694357, MSE=0.02278631  

  left son=2 (46 obs) right son=3 (94 obs) 

  Primary splits: 

      elevation < 1464.04  to the right, improve=0.22188280, (1 missing) 

      house     < 113      to the left,  improve=0.05388324, (0 missing) 

      SES       < 2.991489 to the right, improve=0.05049566, (0 missing) 

      hdens     < 3710     to the left,  improve=0.04728225, (0 missing) 

  Surrogate splits: 

      SES   < 3.017793 to the right, agree=0.770, adj=0.304, (1 split) 

      hdens < 3655.97  to the left,  agree=0.698, adj=0.087, (0 split) 

 

***Node number 1 is shown on the tree (a). “left son=2” indicates the total number of observations in 

subsequent branches to the left and the number indicates the node number of the first subsequent branch.  

“Primary splits” shows the possible variables to be used in the first node of the tree. “improve” shows 

how much the tree would improve if the specific variable is used. Improvement is obtained by n times the 

change in impurity index. The relative size of improvement is important. The variable that gives the best 

improvement is chosen as the split.  

“Surrogate splits” lists possible variables to be used instead of the one chosen. “agree” shows the level of 

agreement in the results if that variable was used. Ex: 77% of the results in a tree with SES as primary 

split would agree with using Elevation as primary split. 

 

 

Node number 2: 46 observations,    complexity param=0.03185386 

  mean=0.2664109, MSE=0.01162481  
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  left son=4 (41 obs) right son=5 (5 obs) 

  Primary splits: 

      elevation < 1516.875 to the left,  improve=0.19002920, (0 missing) 

      house     < 250.5    to the left,  improve=0.16268700, (0 missing) 

      SES       < 4.861742 to the left,  improve=0.13185070, (0 missing) 

      hdens     < 9020.833 to the right, improve=0.09123028, (0 missing) 

  Surrogate splits: 

      SES < 4.992772 to the left,  agree=0.935, adj=0.4, (0 split) 

 

Node number 3: 94 observations,    complexity param=0.07485321 

  mean=0.4198521, MSE=0.02051236  

  left son=6 (75 obs) right son=7 (19 obs) 

  Primary splits: 

      elevation < 1364.175 to the right, improve=0.12865650, (1 missing) 

      house     < 127      to the left,  improve=0.08165134, (0 missing) 

      SES       < 2.982206 to the right, improve=0.03583874, (0 missing) 

      hdens     < 3710     to the left,  improve=0.02924879, (0 missing) 

  Surrogate splits: 

      house < 650      to the left,  agree=0.828, adj=0.158, (1 split) 

 

Node number 4: 41 observations,    complexity param=0.02983496 

  mean=0.2499976, MSE=0.008965589  

  left son=8 (19 obs) right son=9 (22 obs) 

  Primary splits: 

      house     < 298.5    to the left,  improve=0.25891950, (0 missing) 

      SES       < 1.268889 to the right, improve=0.12161650, (0 missing) 

      elevation < 1480.28  to the left,  improve=0.10215740, (0 missing) 

      hdens     < 9020.833 to the right, improve=0.08392677, (0 missing) 

  Surrogate splits: 

      SES       < 2.585672 to the left,  agree=0.732, adj=0.421, (0 split) 

      elevation < 1475.49  to the left,  agree=0.683, adj=0.316, (0 split) 

      hdens     < 2938.034 to the left,  agree=0.659, adj=0.263, (0 split) 

 

Node number 5: 5 observations 

  mean=0.401, MSE=0.0131071  

 

Node number 6: 75 observations,    complexity param=0.03144762 

  mean=0.394484, MSE=0.01545287  

  left son=12 (10 obs) right son=13 (65 obs) 

  Primary splits: 

      house     < 127      to the left,  improve=0.08656038, (0 missing) 

      SES       < 2.976296 to the right, improve=0.04736354, (0 missing) 

      hdens     < 3710     to the left,  improve=0.03553696, (0 missing) 

      elevation < 1401.9   to the right, improve=0.03415841, (1 missing) 

 

Node number 7: 19 observations,    complexity param=0.01291739 

  mean=0.5199895, MSE=0.02791621  

  left son=14 (7 obs) right son=15 (12 obs) 

  Primary splits: 



Yao Fu | MPH Thesis | Yale School of Public Health 

 

— 31 — 

 

      house     < 334      to the left,  improve=0.07769026, (0 missing) 

      SES       < 2.040568 to the left,  improve=0.05998758, (0 missing) 

      elevation < 1348.24  to the right, improve=0.04116785, (0 missing) 

      hdens     < 6884.091 to the right, improve=0.03967865, (0 missing) 

  Surrogate splits: 

      elevation < 1343.335 to the right, agree=0.684, adj=0.143, (0 split) 

 

Node number 8: 19 observations,    complexity param=0.01857509 

  mean=0.1981526, MSE=0.008765521  

  left son=16 (11 obs) right son=17 (8 obs) 

  Primary splits: 

      SES       < 1.990132 to the right, improve=0.35579630, (0 missing) 

      hdens     < 2948.611 to the right, improve=0.10123190, (0 missing) 

      elevation < 1480.315 to the left,  improve=0.06701270, (0 missing) 

      house     < 207.5    to the right, improve=0.06661416, (0 missing) 

  Surrogate splits: 

      hdens     < 2600     to the right, agree=0.737, adj=0.375, (0 split) 

      house     < 135.5    to the right, agree=0.632, adj=0.125, (0 split) 

      elevation < 1472.365 to the left,  agree=0.632, adj=0.125, (0 split) 

 

Node number 9: 22 observations 

  mean=0.2947727, MSE=0.004812193  

 

Node number 12: 10 observations 

  mean=0.30124, MSE=0.03366514  

 

Node number 13: 65 observations,    complexity param=0.02571645 

  mean=0.4088292, MSE=0.01110759  

  left son=26 (9 obs) right son=27 (56 obs) 

  Primary splits: 

      hdens     < 9540     to the right, improve=0.11362650, (0 missing) 

      elevation < 1404.75  to the right, improve=0.09773067, (1 missing) 

      house     < 145.5    to the right, improve=0.08072609, (0 missing) 

      SES       < 2.002366 to the right, improve=0.03731130, (0 missing) 

 

Node number 14: 7 observations 

  mean=0.4590143, MSE=0.04640722  

 

Node number 15: 12 observations 

  mean=0.5555583, MSE=0.01369583  

 

Node number 16: 11 observations 

  mean=0.1505273, MSE=0.007524257  

 

Node number 17: 8 observations 

  mean=0.2636375, MSE=0.003065252  

 

Node number 26: 9 observations 

  mean=0.3202111, MSE=0.008249723  
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Node number 27: 56 observations,    complexity param=0.01571209 

  mean=0.4230714, MSE=0.01010194  

  left son=54 (40 obs) right son=55 (16 obs) 

  Primary splits: 

      elevation < 1405.5   to the right, improve=0.10079410, (1 missing) 

      house     < 145.5    to the right, improve=0.07771955, (0 missing) 

      SES       < 1.001055 to the right, improve=0.05851398, (0 missing) 

      hdens     < 7263.333 to the right, improve=0.03776983, (0 missing) 

  Surrogate splits: 

      house < 140      to the right, agree=0.727, adj=0.062, (1 split) 

      SES   < 1.001055 to the right, agree=0.727, adj=0.062, (0 split) 

 

Node number 54: 40 observations 

  mean=0.40415, MSE=0.01026688  

 

Node number 55: 16 observations,    complexity param=0.01381519 

  mean=0.470375, MSE=0.006556902  

  left son=110 (11 obs) right son=111 (5 obs) 

  Primary splits: 

      elevation < 1394.3   to the left,  improve=0.42008780, (0 missing) 

      SES       < 2.450207 to the left,  improve=0.15027910, (0 missing) 

      house     < 245      to the left,  improve=0.08025302, (0 missing) 

      hdens     < 4552.5   to the left,  improve=0.01319235, (0 missing) 

  Surrogate splits: 

      SES < 2.911518 to the left,  agree=0.75, adj=0.2, (0 split) 

 

Node number 110: 11 observations 

  mean=0.4349909, MSE=0.003495164  

 

Node number 111: 5 observations 

  mean=0.54822, MSE=0.004478406  

 

***code for printing the cp values of the tree. Cp values are also included in summary output 

> printcp (prop11_100) 

 

Regression tree: 

rpart(formula = prop11_above100 ~ house + SES + elevation + hdens,  

    data = Arm, method = "anova", minsplit = 15) 

 

Variables actually used in tree construction: 

[1] elevation hdens     house     SES       

 

Root node error: 3.1901/140 = 0.022786 

 

n=140 (37 observations deleted due to missingness) 

 

         CP       nsplit  rel error  xerror     xstd 

1  0.227950      0    1.00000  1.02962  0.12347 

b 
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2  0.074853      1    0.77205  0.99724  0.13953 

3  0.031854      2    0.69720  0.89813  0.13324 

4  0.031448      3    0.66534  0.97446  0.14345 

5  0.029835      4    0.63390  0.98753  0.14607 

6  0.025716      5    0.60406  1.00213  0.14641 

7  0.018575      6    0.57834  1.01597  0.15162 

8  0.015712      7    0.55977  1.03990  0.15537 

9  0.013815      8    0.54406  1.03879  0.15541 

10 0.012917      9   0.53024  1.03873  0.15594 

11 0.010000     10  0.51732  1.04533  0.15679 

 

*** “xerror” (b) lists the cross validation error resulting from the splits. We used 0-SE method to prune 

the tree.  

0-SE method: the cp value of the nsplit that results in the smallest xerror is used as threshold for pruning 

(see next code). In this example, smallest xerror is 0.89813, corresponding cp value is 0.031854 

 

***code for pruning the tree 

 

> p11_100 <-prune (prop11_100, cp=0.031854) 

 

***code for plotting the pruned tree 

> plot (p11_100) 

 

***code for labeling the pruned tree 

 

> text (p11_100, use.n=T) 

 

***final pruned tree 
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