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Modeling Conversions in Online Advertising

Committee Chairs: David Patterson, Ph.D. and Brian Steele, Ph.D.

This work investigates online purchasers and how to predict such sales. Advertising as a
field has long been required to pay for itself—money spent reaching potential consumers will
evaporate if that potential is not realized. Academic marketers look at advertising through
a traditional lens, measuring input (advertising) and output (purchases) with methods from
TV and print advertising. Online advertising practitioners have developed their own mod-
els for predicting purchases. Moreover, online advertising generates an enormous amount of
data, long the province of statisticians. My work sits at the intersection of these three areas:
marketing, statistics and computer science. Academic statisticians have approached the mod-
eling of response to advertising through a proportional hazard framework. We extend that
work and modify the underlying software to allow estimation of voluminous online data sets.
We investigate a data visualization technique that allows online advertising histories to be
compared easily. We also provide a framework to use existing clustering algorithms to better
understand the paths to conversion taken by consumers. We modify an existing solution to
the number-of-clusters problem to allow application to mixed-variable data sets. Finally, we
marry the leading edge of online advertising conversion attribution (Engagement Mapping)
to the proportional hazard model, showing how this tool can be used to find optimal settings
for advertiser models of conversion attribution.
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Chapter 1

Introduction

This dissertation sits at the intersection of online advertising and statistics. Fundamentally I

seek to address the question, What makes people respond to online advertising and how can

we measure that response? Online advertising is a new domain within modern advertising,

itself young when compared to mathematics. I begin with a thorough introduction to the

mechanics and practice of online advertising, paying particular attention to the data that are

available for further modeling.

We then immerse ourselves in a topic called “conversion attribution”. A conversion is an online

action like a sale or online sign-up. We wish to attribute this conversion to the marketing that

led to it, appropriately sharing the credit across all consumer advertising events that drive

conversions. Many media channels are not trackable in this sense (TV, magazines, etc) and

thus we confine our studies to online marketing. With a response variable of a conversion and

explanatory variables of all aspects of trackable media, we seek to build models.

Before building models, however, Chapter 3 discusses current marketing research. We begin

by looking at marketing research in general. Since online advertising is so new, the literature

only extends back about 15 years. By embedding online advertising within the larger field of

1



CHAPTER 1. INTRODUCTION 2

marketing we can draw on closer to 60 years of research as well as take advantage of a series

of survey articles published in the last 10 years. We then turn our attention to modeling of

response and conversion attribution in the literature, bringing us up to the the state-of-the-art,

proportional hazard models.

The next two chapters are complementary. Chapter 4, assimilates ideas from the academic

literature, statistics, and the work of earlier chapters. There is a smattering of computer

science topics—any work with data in the volumes created by the web requires intensive com-

puter work to even initiate. From a statistical perspective, the principal contribution to the

state-of-the-art is improvements to the proportional hazard model fitting software that allows

work with much larger data sets than before. Estimating Engagement Mapping (E-Map) pa-

rameters using proportional hazard models with time-varying covariates, shows great promise

and is the launch pad for future research, discussed in the conclusion. Chapter 5 expands

on the proportional hazard model visualization techniques. Rather than using traditional

survival plots, we explore a method of plotting E-Map scores directly. E-Map is an unusual

approach from a statistical standpoint, not being based on distributional theory but instead

on marketing expertise and a collaboration between leading advertisers, agencies and publish-

ers. My employer, Microsoft Advertising, has been instrumental at driving E-Map adoption.

This chapter discusses the role of the survival function in visualizing a user’s history. We then

extend the visualization approach so that it can be applied to any set of data with any E-Map

model, independent of the survival model framework.

The final chapter, 6, attempts to better understand why people convert online through a series

of cluster analyses. In this chapter we modify an existing statistical technique to determine

the number of clusters, for the first time allowing the Gap statistic to be used for categorical

or mixed data sets. We provide an in-depth discussion of the a clustering solution with the

suggested number of clusters (eight), illustrating how these ideas can be applied.



Chapter 2

Introduction to Online Advertising

and Conversion Attribution

The growth of the web and the pervasiveness of internet access has created unprecedented

information sharing and opportunities for people to engage with each other, with corporations,

and with ideas. Concurrent with this growth have been business opportunities both in terms

of selling via the web and sites using advertising to provide their content free to consumers.

Consumers typically pay for access to the internet (often to the phone company or cable

company) but once someone is online most websites freely share their content. The cost

of creating and distributing that content is paid by advertisers. These days every major

corporation has a website and corporations that sell goods to consumers often use those

websites for commerce. To encourage customers to visit their site (think eBay getting people

to come bid on auctions), the sites use advertising. In this chapter I am going to cover two

aspects of this business. The first section covers the basics of the online advertising business

and the kind of data that is collected. The second section covers “conversion attribution”,

the process by which statistics is used to determine why people respond to advertising. In

the third section we define, at a granular level, the conversion attribution algorithm known

3



2.1. ONLINE ADVERTISING 4

as “Engagement Mapping”.

2.1 Online Advertising

In the last 15 years, a number of different approaches to advertising online have been devised.

The current incarnation is that a business purchases either ad space from an online publisher

or purchases search keywords, usually with an advertising agency as intermediary. Search

keywords are bought based on a particular piece of text (e.g., EBay might buy the keyword

“used DVD”) and the search engines display an ad if the keyword bid is high enough and

the ad content deemed relevant enough. If the ad is clicked on the advertiser pays the search

engine a certain amount of money, called the cost-per-click (typically 20 cents to a few dollars,

but ranging up to a hundred dollars for very valuable keywords1).

Non-search advertising is typically called “display advertising” and its business model is more

varied and quite different from search. Typically an advertiser or agency will purchase space

for ads through an online publisher such as Yahoo! or ESPN. The unit of measurement for

this advertising in the online space is an impression—the viewing of one advertisement by

one person2. The advertiser will pay a fee for the impressions to be shown. Typically the

deal will be structured so that the advertiser is paying a rate (typically in the $3 to $50

range) for 1,000 ads, known as cost-per-thousand (CPM3). Advertisers typically employ a

technological intermediary as part of this process. Rather than maintaining the files for the

ads and serving those ads to the publishers at the time of the request, advertisers employ

a third-party ad server (TPAS) to perform this role. The TPAS are responsible for the

technological infrastructure that enables the ad-serving relationship as well as functioning

1The most lucrative keyword I’ve ever heard of is the keyword “mesothelioma” a lung cancer caused by,
among other things, asbestos fibers. At the peak of the asbestos litigation fervor, this keyword was selling for
over $100 on Google[3].

2There is an incredible amount of work that has actually gone into defining an “impression”. Typically it
is defined as the request for and subsequent attempt at delivery of the file associated with the ad space. From
here the definition spins off into mind-numbing technology minutia.

3There is a glossary appended to this document defining advertising terms such as “CPM”.
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as a trusted third-party maintaining the accounting of the advertising system. Microsoft

Advertising owns and operates a TPAS (called Atlas) and that is the source of the data I

discuss throughout this research.

The mechanics of how a TPAS works is not that germane to the conversion attribution problem

we will be discussing. The gist is that as ads are served, certain information is recorded in

log files. Additionally, on advertiser’s websites (e.g., Best Buy selling electronics) Atlas has

tags that allow data to be gathered when someone visits a webpage or purchases. This data

is collected anonymously using cookies4. In order to make this example concrete, Table 2.1

contains example log records.

This table contains the typical fields captured by Atlas in the course of third-party ad serving

on behalf of advertisers. The data represented here are four records for one cookie. The first

record is a click on an ad (denoted by the click=1 field). The second record is an action, in

this case it happens to be a user signing up for an online service. Action records have non-zero

values in the action column and zero values for the Placement and Ad ID columns. The last

two records are impressions–views of ads. These are distinguished by non-zero Placement and

Ad ID columns with zeros in the Action and Click columns. Here is a brief discussion of the

various fields in these log records.

� Cookie: This is the unique identifier for a computer. Multiple people can use one

computer (and hence have one cookie) and cookies can be deleted. These records are

imperfect but they are the best, easily-accessible method of identifying people 5.

� Tentative: This field is 1 if we have one and only one record for the cookie in their entire

history. Typically this happens when someone has set their browser security settings

4“Cookies” are small text files stored on a user’s computer. Typically these are simply long somewhat
random numbers that identify the computer and browser for the purposes of anonymous tracking. Cookies are,
for instance, the way Amazon remembers who you are when you come back to the site and can thereby build
a custom homepage for you.

5Technically a cookie is a text file that resides on the web surfer’s computer. Typically this file contains a
unique number identifying the computer. The server that creates the cookie—and only that server—can read
the cookie on subsequent visits, thereby recognizing that computer.
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to reject cookies and so every time we see the person it is as though for the first time.

In most cases cookies with Tentative=1 are excluded from analyses and we will exclude

them from our future analyses.

� IP Address: This is the internet address from which the request6 for an impression,

click, or action came. Using this field we can determine (in most cases) geographically

where the user is located, their connection speed, and whether they are surfing from

home or work.

� Datetime: This is the date and time (down to milliseconds) when the request generating

the log record was received by the ad server.

� PlacementID and AdID: Broadly speaking, there are two types of records: those record-

ing advertising (both views and interactions) and those recording user actions. For

records that describe advertising, these two fields will be non-zero and will contain

identifying numbers that allow us to determine where the media was shown and which

advertisement was shown. The PlacementID defines the place where the media was pur-

chased. In the traditional world this might be a specific ad in a magazine or newspaper

or the first commercial in a television show. Online this typically refers to a place for

ad content on a webpage. Basically, the placement is the “physical” location where the

ad ran. The AdID field gives us the unique identifier for the specific creative that was

shown on the placement. This is what people think of as the “ad”.

� Click: This field is set to 1 if the request is a click. This happens when someone clicks

on an ad.

� ActionID: This field is non-zero if someone hits an “action tag”. An action tag is

essentially a marker on a page that keeps track of people hitting the page. The most

popular use of action tags is by advertisers who want to measure how advertising has

6The term “request” seems somewhat odd since advertisements seem foisted upon us. Nevertheless, as a
webpage is loading, each element of that page is requested from the various servers that supply parts of the
page. The same is true for clicks (in which case a redirect from the current website to another website is
requested) and actions (which are really just impressions in disguise.)
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influenced people hitting a given page. For instance, Nordstrom could set up an action

tag on the page that thanks people for purchasing or Best Buy could put an action tag

on the last step of their shopping process. The action records allow us to make online

advertising accountable. In table 2.1 we see that on August 6, 2007 the user clicked on

an ad. Then on August 10 they hit the action tag.

I’ve shown four log records (for one cookie and one advertiser in one month). On a typical

day in 2009 Atlas creates about 15 billion log records with a peak throughput of over 250,000

ads per second. This number comprises billions of impressions, hundreds of millions of clicks,

and millions of actions. (Some actions, such as users hitting the homepage of a website, are

relatively common.) These data form the underlying currency of the online economy because

they are used to justify advertising expenditures—a $20 billion annual business. The typical

use of these data is in summary form. For instance, Atlas will sum up the number of ads

shown for an advertiser on a particular publisher’s website over the course of a month so that

the former will pay the latter appropriately. Atlas also adds up the number of actions so

that advertisers can measure their performance. An advertiser might see that a certain site is

bringing in too little business relative to the cost of the ads. In this case the advertiser might

stop advertising on the site or maybe they would ask for some free inventory in order to bring

the site’s performance in line with other sites on the media plan.

But summary data only scratches the surface of what is possible. Within these cookie histories

are rich stories about how people are using the internet, how they are interacting with sites

and advertisers, and the mechanisms that are encouraging them to transact online. Using this

detailed record to learn about online marketing is the goal of my dissertation. In particular,

the next section will lay the foundation for the meat of this work: investigating why people

respond to online advertisements.
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2.2 Conversion Attribution

2.2.1 Conversion Attribution pre-2007

How did online advertising grow from nothing to a $20 billion per year business in 15 years?

The central answer revolves around the concept of “accountability”. For most media (televi-

sion, radio, newspaper, out-of-home) there is no direct way to tie advertising to sales. There

are approximate schemes (such as only advertising on TV in certain regions or using focus

groups to ask about ad recall and intent-to-purchase) that can provide estimates of the effects

of advertising, but these are fraught with error and approximation. We will detail some of

these methods in Section 3.1 and discuss the limitations and results. Online advertising is

different because both the delivery of advertising and the transactions can be tracked through

a cookie.

The analog for this cookie-level tracking of ads and actions would be if, for example, Nike

could assign a number to track each viewer of their running shoe ads on television. Then, at

the time of sale, Nike would have some way to read the number. Then they could go back

through the delivery records and see which ads and programs brought in the most buyers.

Since every ad view and click is tracked, along with any online purchases, this advertising

utopia (or dystopia, depending on your philosophical bent) basically exists online.

So what mechanism should the advertisers use to determine whether or not an ad has influ-

enced a subsequent sale? Reader, you could probably rattle off a number of useful formulas

more sophisticated than the one the industry currently uses: the last-ad model. The last-ad

model is dead simple. The most recent ad seen gets 100% of the credit for an action unless

there is also a click in the user history, in which case the click gets all the credit 7.

7There’s just one wrinkle that I’ve glossed over here. Advertisers are allowed to set up “conversion windows”
which determine how far back to look for ads. Typically the lookback window for clicks will be set at 30 days
and the window for impressions will be set at 7 days. Then the algorithm first looks for a click within the click
window, giving 100% of credit to the most recent one. If there are no clicks, then the algorithm looks for an
impression without a click but within the window, again giving the most recent one all the credit.
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Surprisingly, when this approach was adopted it actually made sense and delivered meaningful

results. Since then, the internet and internet marketing have changed, leading to a number

of shortcomings of the last-ad model. Some of them include the following:

� Advertisers are spending much more online, meaning that users are reached more often

than before. If someone is being reached only once, then the last-ad model is perfectly

fine. If someone is being reached dozens of times, then the approximation that the last-

ad model becomes untenable. Influence accretes and it seems myopic to give all credit

to the most recent ad.

� There are a profusion of ways to advertise online. Ten years ago, the only way to ad-

vertise online was basically through display advertising. Today there are many channels

including display, search, video and rich media (a form of interactive advertising online).

These media fit at different places in the purchase cycle. In particular, search is typically

found very near the bottom of the funnel and this allows search to take sole credit for

a number of actions that involved multiple ads over the purchase funnel.

� Internet usage has increased and, along with it, ad consumption. The penetration of

broadband access and the resulting increase in surfing has led to a hundred-fold growth of

ads consumed. Since users are surfing more and receiving more ads the last-ad model has

become increasingly happenstance. If two ads are shown just seconds apart, the binary

nature of the last-ad model (all credit to one or the other of the ads) is capricious and

overly-sharp rather than a smooth average of credit between the two ads as one would

hope.

� As we shall see Chapter 3, the last-ad model fails to take into account important in-

termediate effects of advertising. The last ad model ties conversions to ad exposures,

ignoring potential sources of influence such as frequency, creative type, interaction with

rich media ads, and ad size.
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For several years, dissatisfaction with the last-ad model has grown in the advertiser community.

Although many do not complain about the attribution model directly, agency teams commonly

make optimization decisions based on more than simply the conversion8 data because they

are aware of the biases inherent in the methodology. The next section will indicate how the

conversion attribution models are evolving. It’s undeniably odd to spend this much time

setting up the last-ad straw man, but it’s worthwhile to understand how far from state-of-

the-art the business currently is.

2.2.2 An Emerging Standard: Engagement Mapping

A sea change is underway in online advertising conversion attribution. Given the shortcom-

ings listed above, the industry has been interested in finding more comprehensive attribution

algorithms. Atlas has, in fact, been a pioneer in the area with the creation of “Engagement

Mapping” (E-Map). E-Map is a flexible framework that allows advertisers to define a custom

conversion attribution model.

The E-Map model is defined by two sets of parameters. The first set of parameters defines

the relative value of different ways of interacting with a cookie. These parameters (called

base-weights) are positive real numbers. They are indexed to the weight of the most basic

online impression—say, a standard JPEG or GIF display ad— which is set to have the value

one. Then all other types of marketing have relative weights. Advertisers typically set the

weight for text-link impressions, which are considered lower quality impressions, to a value

around 0.1. (Setting the weight to any number less than 1 captures the idea that the value of

the text-link is lower than the standard GIF image.) On the other hand, a view of 15 seconds

of online video is considered a very high quality impression and this typically gets a weight

between five and ten times greater than the reference weight. Finally, clicks are typically given

8One additional point of terminology. The word “action” is used to denote someone hitting a page that is
tagged as in the description above. The term “conversion” means an action that has an impression or click
beforehand so that an association can be made between the marketing and the user behavior on the website.
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a high weight, perhaps 25 to 50 times greater than the reference weight. Again, all ways of

interacting with a potential consumer online have their own weights 9.

The second set of parameters is designed to modify the base-weight set of parameters. For

instance, there is a recency score that diminishes the weight as the length of time between

the impression and the action grows. There is also an ad size score that allows advertisers to

give greater weight to larger ads. These parameters are designed so that they range from 0

to 1 although at some point they may be adjusted to go above 1. In Section 2.3 we provide

more detail on the form and implementation of the E-Map model.

Once a model has been defined, what is done with it? If we have an action (a consumer

performing a desired action on an advertiser’s webpage) and a set of impressions and clicks

in the associated conversion window, a score can be determined for every event. This score is

calculated based on the base-weight and then discounted by things like recency and ad size.

Then these scores are normalized so that each impression and click has a number between 0

and 1 associated with it, the sum of the scores is 1 and each score is interpreted as the share

of conversion credit that impression or click “deserves”. Essentially, E-Map models allow the

sharing of credit for a conversion between all of the ways someone is reached by advertising.

It is natural to ask why these models are used instead of something more sophisticated and,

frankly, more statistical. The academic literature, for instance, does not employ last-ad or

E-Map models as we will see in Chapter 4. The answer is that conversions are central to

online businesses—they are the coin of the realm. As such, marketers are extremely reluctant

to modify the way in which conversion credit is calculated. The E-Map model outlined above

was chosen in conjunction with advertisers so that it could be transparent and include all

aspects of the conversion process they deemed important. The marketing community is not,

overall, particularly sophisticated with regard to statistical modeling. Switching the currency

9There’s one important aspect of marketing that is being ignored by this approach: ad wear-out. The idea
is that ads are more effective on initial viewing and that people get tired of seeing the same commercial or
ad repeatedly. The phenomenon of ad wear-out is well-documented, if not well-understood in the context of
online advertising. At this point E-Map models do not take into account ad wear-out.
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of the business from the lousy Last-Ad standard to a highly complicated proportional hazards

model, for instance, would require a level of trust in analytics not currently seen. The E-Map

model is seen as a useful compromise in the appropriate direction.

2.3 E-Map Definition

Let us now spend a moment to firm up the definition of an Engagement Mapping model.

Broadly speaking the E-Map model is a combination of base weights and variables that are

applied to data to share conversion credit. In all there are 22 different base weights pertaining

to different types of media. These media fall into broader categories such as text links, display,

flash ads, rich media, and video10. These media are given weights. By convention the display

weight is set to one and all other media are set relative to that. Higher weights indicate media

that are estimated to be of greater importance in modifying conversion probability and should

therefore receive a greater portion of the shared credit. Typically text links have a weight of

around 0.1, Flash and Java have weights about the same as display, rich media ads tend to

have weights from 2 to 4 and video ads are in the range of 5 to 10. Note that these choices are

based purely on convention. Additionally, the ways that consumers interact with ads (clicks

on most types of ads and interactions with rich media ads) carry their own weights. Click

weights tend to be between 10 and 50. The data we will be working with do not have rich

media interactions, so we will not concern ourselves with those weights.

At this point, let us imagine an individual who buys something online, receiving seven total

exposures beforehand: two display ads, three flash ads, and 2 text links with clicks on the

10Text links are simple clickable text placed on web pages that can be used by consumers to navigate to an
advertiser’s website. Text links are also the typical advertisement consumer’s see when they use search. Display
advertising in this context refers to images served on web pages. These come in a variety of sizes although the
most common pixel dimensions are 468 by 60, 728 by 90, 88 by 31 and 125 by 125. Flash ads are similar to
display ads in size, but the underlying technology and customization are much richer for Flash and Java ads.
Rich media is an omnibus term referring to ads that use advanced, interactive technology other than Flash and
Java. Finally, video ads are either stand-alone or run adjacent to online video, similar to how commercials are
used on television.
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second one. Table 2.2 represents the absolute and relative scores for the various events. The

Event

Type Base Weight Credit (%)

Flash 1.25 4.1
Flash 1.25 4.1
Display 1 3.2
Display 1 3.2
Text Link 0.1 0.3
Flash 1.25 4.1
Text Click 25 81

Total 30.85 100

Table 2.2: A simple example of credit sharing among six marketing exposures. Note the
percentage credit is simply the normalized base weight value in this case.

key idea is that when exposures occur in a consumer’s history, these base weights give us the

ability to apportion credit based on simple rules.

As mentioned before, the E-Map model includes both base weights and what we are calling

variables. These variables affect the scores of all base weights and, in the current incarnation,

are related to the ad size, the time between the conversion and the exposure, and order in

which clicks or other active events take place. All variables are constrained to be between 0

and 1 although the specific meaning of the value is variable-dependent. Assume that we have

an exposure within our view conversion window (called winv) with base weight b taking place

at time te and a conversion at time ti. Further assume that the exposure is an ad size of se.

The reference ad size, against which other ads are measured, is sr and varies by creative type.

Then, if vs and vr are the parameters for ad size and recency respectively, the final score s for

an exposure is as follows:

s = b ·
((

vs ·
se
sr

)
+ (1− vs)

)
︸ ︷︷ ︸

Size

·
(
ti − te
winv

)vr
︸ ︷︷ ︸

Recency

(2.1)

In Equation 2.1, the first component is the raw base weight discussed above. The size com-
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ponent gives us linear changes in the size effect. If vs = 1 then an ad that is twice the size

of the reference ad will receive twice the credit, whereas at vs = 0 they will receive the same

credit. The recency component of the score represents an exponential decay in the effect of

ads that were more distant with the parameter vr tuning the steepness of the decay. There

is an additional variable, called the “order” variable, that determines how credit is shared

among clicks or other active events. This is a relatively rare case; suffice it to say that clicks

after the first one receive lower weights and the value of vr determines the steepness of the

drop-off.

Currently most advertisers using E-Map employ one of three default models, determined using

data analysis and experience across many advertisers. The default models are called Brand,

Balanced, and Direct Response (DR). The Brand model discounts recency and considers size

very important. There is a large amount of spread in the base weights for passive ads and

clicks are somewhat less important. The DR model considers clicks and recency to be very

important (the click base weight is 50 and recency is set to 0.20) whereas size receives a

medium value. The Balanced model essentially represents an averaging of the DR and Brand

models.

This figure is a graphical representation of the E-Map scores for seven exposures using raw

base weights, the modified scores based on the Brand model, and the modified scores based

on the DR model. These actual events took place very close to each other in time so I have

evenly spaced them across the x-axis for readability. The time of exposure and ad size (not

shown) in conjunction with the model parameters cause large changes in the credit allocated

to certain exposures. In particular, notice that the final click has more than twice the credit

under the DR model compared to the brand model. This is due to the very high weight that

the DR model gives to clicks.

As it currently stands, these 22 base weights and the three variables are decided upon in an

ad hoc way. Our goals in these next sections are to formalize the ideas of E-Map as a model
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Figure 2.1: A graphical representation of the E-Map scores for seven exposures using raw
base weights, the modified scores based on the Brand model, and the modified scores based
on the DR model. The time of exposure (stylized for readability) and ad size (not shown) in
conjunction with the model parameters cause large changes in the credit allocated to certain
exposures. In particular, notice that the final click has more than twice the credit under the
DR model compared to the brand model. The actual conversion is illustrated as a dash-dot
red line.
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and allow us to think about which model fits a given data set the best. For instance, for

this particular cookie, how can we say whether the brand model parameters or the DR model

parameters provide a better fit? That answer is to come.



Chapter 3

Academic Results

Advertising and marketing have a rich tradition in academic literature. The money spent on

advertising annually (about $300 billion dollars in the United States and across all media in

2008 [14]) attracts researchers interested in understanding the consumer response to adver-

tising. This response is measured across many different dimensions such as affect (the feeling

or emotion created by advertising) or cognition (what advertising makes people think about

a product or brand). A small subset of the overall literature focuses on actual purchases and

the return-on-investment (ROI) from advertising. I have focused my research primarily in the

Journal of Marketing, Marketing Science, the Journal of Marketing Research and the Journal

of Advertising Research.

Television, dominating advertising expenditures for the last 40 years, sensibly occupies the

lion’s share of purchase modeling. Online advertising has existed only since about 1995 and

therefore the research in this area is much more limited. On the other hand, the richness of the

data explored above draws researchers like miners to a gold strike and the past ten years have

seen an explosion of research into the consumption of online advertising and the sales resulting

from such advertising. Our research follows this rich vein. In the next two sections we will

18



3.1. GENERAL ADVERTISING RESEARCH 19

provide an overview of relevant research in both advertising in general and online advertising

in particular. The next section will treat advertising broadly, detailing the models that have

been developed and the methodological approaches taken. It will prove useful to embed online

advertising research in this greater corpus. After discussing the overall advertising research we

will provide an overview for response modeling in online advertising. There is a straightforward

path in the past ten years, culminating in some relatively sophisticated and accurate models

predicting response. Chapter 4 is an extension of the state-of-the-art described in the response

modeling section.

3.1 General Advertising Research

To focus the discussion, I begin with the Vakratsas and Ambler paper providing a synthesis

of more than 250 journal articles in an attempt to determine how advertising works[34]. The

first (and arguably most useful) insight from the paper is a distillation of the framework for

advertising study, reproduced in Figure 3.1. It is worthwhile to spend a moment understand-

ing the ideas in this diagram as these concepts are foundational for the overall understanding

of advertising models discussed. Advertising input is passed through various filters (based on

audience and medium) and reaches the consumer. These advertising messages drive response:

cognition, how the consumer thinks about the brand or product; affect, how the consumer feels

about the brand or product; and experience, an interaction between the advertising and the

user’s previous experience with the brand or product. These in turn drive behavior. Virtually

every piece of advertising research fits within this framework and, conceptually, papers are

notable for the aspects they attempt to address. All research begins in the first box, Adver-

tising Input. Input is typically measured via some “tonnage” of advertising, typically Gross

Ratings Points (GRPS) (a measure of audience coverage) or gross impressions (a measure

of advertising viewership). This is the explanatory variable of greatest interest. There are

really several different levels of response variables. Many retrospective studies jump directly
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Figure 3.1: This figure, reproduced from Vakratsas and Ambler’s paper [34], gives a frame-
work for studying how advertising works. Advertising input is passed through various filters
(based on audience and medium) and reaches the consumer. These advertising messages drive
response: cognition, how the consumer thinks about the brand or product; affect, how the
consumer feels about the brand or product; and experience, an interaction between the ad-
vertising and the user’s previous experience with the brand or product. These in turn drive
behavior.
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to the final box, consumer behavior. If advertising works, then companies should see results in

overall sales or profits. For offline media, if there is no survey component measuring cognition

(C), affect (A) or experience (E), then sales are all that can be measured. Consumer surveys

can be used at this level as well, measuring how advertising has affected cognitive response

such as brand loyalty or product preference.

Vakratsas and Ambler build their article on empirical research that can be shoe-horned into

this framework1. They go on to detail individual models that are created with the elements

of their framework. Market response research, denoted “(-)” in their notation indicating the

empty model, looks at how advertising inputs explain consumer behavior. This empty model

posits no framework within which advertising works. Instead advertising is viewed as a black

box into which a media buy is put and out of which comes new consumer behavior. Offline,

this research tends to be aggregate (e.g., we bought this much TV in this market and this is

how same-store sales changed) with the exception of certain data sets that require consumers

to report purchases in some way. Online advertising data provides an unfettered view of

consumer response and hence much research (and virtually all practical applications of the

data) are market response models in this sense. In subsequent sections, this paper discusses a

number of other types of models implied by existing research. (For instance, quite a bit of time

is spent on a hierarchical model, called “(CA)” in their nomenclature, in which advertising

influences cognition which in turn influences affect.)

One of the most intriguing models discussed is called (C)(E)(A), attempting to imply that

advertising affects all three mental areas but that these areas are not organized into a hierarchy.

While the notion of a hierarchy of effects is persuasive and attractive, the results of the authors’

analysis of the extant research indicate that such a hierarchy is not supported in the literature.

One of the most significant contributions from the paper are five “generalizations”: consistent,

objective conclusions that are supported (or not contradicted) throughout the research. The

1But this is a broad framework and it appears the only major body of work they do not consider are
questions of how the overall social and economic climate affect advertising.
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generalizations are quoted below:

G1 Experience, affect, and cognition are three key intermediate advertising effects, and the

omission of any one can lead to overestimation of the effect of the others.

G2 Short-term advertising elasticities are small and decrease during the product life cycle.

G3 In mature, frequently purchased packaged goods markets, returns to advertising dimin-

ish fast. A small frequency, therefore (one to three reminders per purchase cycle), is

sufficient for advertising an established brand.

G4 The concept of a space of intermediate effects is supported, but a hierarchy (sequence) is

not.

G5 Cognitive bias interferes with affect measurement.

Generalizations one and four (called G1 and G4) are particularly germane to my research. The

principle articulated in G1 supports the idea that a model of advertising effectiveness that fails

to take into account experience, affect, and cognition, is likely to overestimate the effect of

the others. In particular, the last-ad model seems to take into account the effect on cognition

while ignoring touchpoints higher up the marketing funnel. In G4 we see an indictment of a

hierarchical model which, typically, places a causal chain on advertising. Advertising affects

either cognition or affect or experience which in turn affects one of the other two attributes.

Finally, consumer action is affected. If this hierarchy were true, it seems possible that a

sufficiently intelligent last-ad model might have some hope of capturing advertising effect

(by essentially acting as a tollbooth, capturing the journey to the action). The absence of

this hierarchy undermines any case for last-ad effectiveness. When a single user history may

contain both the viewing of a 30 second web video spot and a click on a paid search link,

online advertising can affect all of cognition, experience, and affect. By giving all credit to a

single advertisement, the last-ad model is insufficient to capture this richness.
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The previous chapter discussed the E-Map and last-ad models for conversion attribution. How

do they fit into the research framework? In some sense the last-ad model is an implementation

of the null model, albeit a meticulous and flawed implementation. In the Vakratsas and

Ambler framework, the empty model takes as input advertising delivery and tries to determine

how that input affects consumer behavior without regard for any intermediate mechanisms.

Whereas often the empty model is used with aggregate data, indicating the overall application

of advertising and the community’s response, the last-ad model measures both input and

response at the individual level. The last-ad model is meticulous in this sense: measuring

response at the user level. The most recent ad a consumer is exposed to within a certain

window receives credit for the consumer behavior. No information about the ad, other than

the binary variable indicating delivery, is used. Additionally, multiple ad exposures (the

true measure of advertising input) are disregarded as all credit shifts to the last-ad. It is in

this sense that the last-ad model is a flawed implementation of a null model, since we fail

to account for all advertising input to the user. When empty models are applied to offline

advertising, the totality of the advertising exposures are measured rather than just the most

recent. To the extent that last-ad conversion attribution represents the empty model, it does

a poor job capturing the ability of advertising to affect the three causal mechanisms outlined

by Vakratsas and Ambler.

Engagement Mapping, on the other hand, is an attempt to locate the advertising message

within the general cognition-experience-affect space, without regard to a hierarchy between

them. For instance, ad size and duration has been shown to have an effect on both cog-

nition and affect [30]. By including variables like ad size, Engagement Mapping takes into

account additional variables other than exposure that determine the effect of advertising on

the intermediate mental variables of cognition, affect, and experience.

A final generalization from this paper is notable. Generalization G2 states that “short-term

advertising elasticities are small and decrease during the product life cycle.” In this context,

elasticity refers to the concept that a given percentage change in advertising creates a smaller
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percentage change in customer response. We call attention to this generalization to note that

the effect we are trying to find by modeling advertising response is a small effect and varies by

advertiser and product. There are many untracked advertising media and a myriad of reasons

why a consumer responds or does not respond. Since we are incapable of measuring many of

these covariates, we should expect that our models may explain only a small amount of the

variance in behavior and attempts to predict when conversions actually happen will probably

not be that accurate.

Hu, Lodish and Krieger have written a useful paper detailing their attempts to synthesize

241 TV advertising tests measuring effectiveness and estimating these elasticities [19]. This

paper is a partial update of the Lodish et al. paper from 1995 [24] that analyzes 389 TV

campaigns. These studies are quite different from those we will undertake in this research; my

goal in mentioning the paper is to highlight the small effects they found with their model2.

Overall, they found that advertising elasticities are between 0 and 0.2 although these were

significantly different from 0. Their data are a result of two different pools of results. One set,

from a product called Behavior Scan®, allows advertising input in a market to be compared

with individual purchases scanned by panel members. The other type of data comes from

matching two markets, one receiving advertising and the other not receiving. Essentially this

is the analog of the medical-study idea of matching cases and controls but at a broader level.

The data we will be working with are more similar to the Behavior Scan or IRI data, except

we can also measure the consumption of individual advertising.

We now turn our attention from the general area of advertising effectiveness research into

what I am calling response modeling: the effort to determine how internet users respond to

advertising within that medium.

2Incidentally, the model Lodish et al. employ is the empty model from the Vakratsas and Ambler synthesis.
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3.2 Response Modeling

When the problem is to determine the response of one variable to a host of additional ex-

planatory variables, typically regression analysis is the answer. Advertising response research

is no exception and the short history of modeling response closely mirrors the recent advances

in regression modeling. As mentioned above, offline advertising measurement typically begins

with the weight of advertising input and then some measure of either behavior (purchases,

loyalty, etc.) or a measure of an intermediate effect such as attitudes toward a brand or

message recall. Online advertising, with its richer data, allows for a much more direct mod-

eling of the correlation between advertising and response3. The building of models for online

advertising response begins in 1998 soon after advertising data started rolling in with the

Ph.D. dissertation of Chatterjee [8]. This research in turn led to additional joint work in

clickstream modeling in 2003 [7]. Clickstream modeling attempts to understand the drivers

of clicks in a user’s history. The term “clickstream” refers to the advertiser’s view of their

data (an incoming stream of clickers). In 2006 Manchanda, Dubé, Goh and Chintagunta [25]

wrote a seminal paper, combining the basic ideas of Chatterjee, et al. [7] but using a much

more sophisticated modeling approach: hierarchical Bayesian models. This section provides a

short introduction to the academic research into response modeling. Chapter 4 builds on this

tradition and represents an addition to the state-of-the-art.

The first papers, “Modeling the Clickstream: Implications for Web-Based Advertising Effects”

[7] and the related dissertation by Chatterjee, are notable for being the first academic papers

to provide an “empirical analysis of behavioral outcomes at the microlevel of each ad exposure

occasion” (emphasis theirs). In other media, these data have been unavailable; in online these

authors were the first to do the research. The authors create a model where the response

variable is clicks on ads and they study the following effects: the effect of repeated exposures

3With very few exceptions, advertising studies “in the field” are not experiments. As the old statistical saw
goes, there is no causation without manipulation and the lack of experiments in advertising hamstrings us to
talk about concepts like correlation between spend and response instead of talking about causality. Wherever
actual experiments have been done, I will take care to highlight them in the text.
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to ads; consumer click proneness; consumer heterogeneity with regard to click rates; the effect

of inter-visit time on click proneness; and the effect of navigation path. Their emphasis on

modeling at the level of the advertising impression, what they call the exposure occasion,

is notable because it is only within that context that we can begin to model the actual

advertising mechanism. Ads are not delivered to markets or households, they are delivered to

people who do or do not respond to them. An additional finding from this research, supported

throughout the literature, is the heterogeneity of consumers. The same advertising delivered

within the same context to different people will result in very different response. As such, any

model that does not include consumer-level terms is bound to have large error; a model that

estimates this heterogeneity will see a large amount of variance explained by the consumer-

level parameters. While these qualities are strong, this research has shortcomings. First, as

the title proclaims, clicks are being modeled. At best clicks are considered an intermediate

response in the medium: consumers exposed to ads have the opportunity to click in order

to navigate from the publisher’s page to the advertiser’s page. It is not, however, those

clicks that are the desired result. Purchases, which affect the advertiser’s bottom line, are the

preëminent response variable. Therefore, Chatterjee, et al. are introducing an undesirable level

of misdirection into their analysis. Briggs [5, 6] makes a cogent case that focus on clicks may

actually distract advertisers from their principal goal of sales or registrations. Additionally,

a recent study by Starcom (an advertising agency), Tacoda (an advertising network), and

Comscore (a provider of internet data) casts considerable doubt on the value of clickers and

the reasons why they click [20]. This research focuses on an intermediate outcome of dubious

value and the model employed is a bit more cumbersome and less flexible than the hierarchical

Bayesian framework used in subsequent research. This body of work is laudable for tackling

the data opportunities head-on, but is, I think, quickly surpassed by the work of Manchanda,

et al [25].

The work of Allenby in several different contexts has laid the foundation for the application

of hierarchical Bayesian modeling to consumer response. Although he begins his exploration
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of modeling response in a Bayesian context as early as 1990, the first paper relevant to our

research is “On the Heterogeneity of Demand”[1], in which the authors call into question

the supposition, long-held in marketing practice, that one can usefully think of segments of

consumers as homogeneous. This research is based on an attempt to model segment behav-

ior as a mixture of multivariate normals and finds that the within-component heterogeneity

is substantial and unaccounted for otherwise. The data are based on offline consumer pref-

erence data for outboard motors, ketchup and tuna, the first time those three items have

ever appeared together in literature, we suppose. The first reference we see to the use of

hierarchical Bayesian modeling to consumer purchase (as opposed to descriptive concepts like

consumer heterogeneity) is the 1999 paper modeling purchase timing [2]. Notably, this paper

was published in the Journal of the American Statistical Association, marking the integration

of the marketing concepts with the statistical concepts at a time when computer-intensive

methods such as Markov chain Monte Carlo (MCMC) were first gaining wide currency in ap-

plied statistics. The application to theoretical statistics happened about a decade earlier [12].

Ultimately all of this work led to the 2003 paper [28] and 2006 book [29] (uncreatively having

the same name!). Allenby’s joint work with Rossi, a basic introduction to and marketing ap-

plications of Bayesian statistics and decision theory, is a useful reference for a non-statistical

audience. They develop the theory of both maximum likelihood and Bayesian estimators in

the marketing context.

The highest refinement of these ideas is the 2006 paper by Manchanda et al. [25], synthesizing

many of the ideas discussed in the preceding paragraphs. This research models purchases

instead of clicks, an improvement on the Chatterjee, et al. work. Additionally, rather than

using the more traditional logit-based model, Manchanda, et al. use a proportional hazard

model. Hazard models, typically seen in survivor analysis, are natural choices for data that

are censored in some way. Consumer purchase data conforms to the censored data framework

since, at the time data collection ends, some future purchasers likely remain in the data classi-

fied as non-purchasers. The proportional hazard model is essentially a synthesis of this hazard



3.2. RESPONSE MODELING 28

model with the logit transform and used to model probabilities of conversion. The authors

found positive advertising effects for number of exposures, websites visited, and number of

pages visited (a proxy for surfing activity). There was a negative effect associated with the

number of different ad message types that were seen. Additionally, they were able to establish

a difference in the customer response for new customers versus repeat customers. Chapter 4

extends this work. I introduce time-varying covariates to model the likelihood of conversion.

Manchanda, et al. also restricted their analysis to estimating inter-purchase times using

summary-level data for the advertiser. I believe modeling individual exposures (as is possible

with the time-varying covariates) is a novel and informative addition to our understanding of

response.



Chapter 4

Finding Drivers of Conversions with

Hazard Models

This chapter estimates the impact of advertising on conversion probabilities using proportional

hazard models (PHM). Within this framework we will see it is possible to nearly fit the exact

E-Map function in a highly rigorous way.

A brief note on Microsoft Advertising’s history of this sort of conversion modeling is warranted.

When Engagement Mapping was first being developed, in early 2006, we cast about for a set

of models that would allow us to determine the drivers of conversions. Initially we settled

on logistic regression, only to abandon it when we found the issue of multiple records per

cookie to be insurmountable. As we have discussed, in our data it is commonplace for one

cookie to have hundreds of records for an advertiser and another cookie to have only one or

two. The first solution we explored was collapsing all of the records into a summary row.

Unfortunately, this approach eliminates order and time-dependence, making recency almost

impossible to estimate. Attributes that vary at the ad level (e.g. size) are lost. The second

approach is to create replicates of exposure-level columns going out five or ten exposures.

29
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Unfortunately this truncates the cookie’s data and the records that are included could span

only a few seconds when the cookie’s entire data set might span months. As far as I know,

there is still no good solution for these problems within logistic regression. Fundamentally, the

summary data that would be required for logistic regression, where a cookie is an observation

and a record summarizes that entire cookie’s history, reduces the available information too

much for accurate modeling.

4.1 Proportional Hazard Models

We first describe the basic PHM framework, then discuss the time-varying covariate addition.

PHMs are well-described in the literature, with the foundational work being in Cox’s Analysis

of Survival Data [10] with algorithms for R/S-Plus found in Therneau and Grambsch’s Mod-

eling Survival Data [32]. It seems as though the modern applied work in the area, particularly

the work that uses the excellent survival package from R/S-Plus, is based on Therneau and

Grambsch. A useful shorter overview is found in the comprehensive regression book by Har-

rell [15]. Smith [31] has a good overview of basic survival analysis. I used Hosmer [18] as a

reference, but the treatment there lacks the clarity of these others.

Let T denote survival time where “death” in this context is defined to be a conversion with a

cumulative distribution function of F (t) = Pr(T < t). Now define S(t) = 1−F (t) = Pr(T ≥ t).

This is the survival function: the probability of a cookie remaining a non-converter at least

as long as t. Note that S(0) = 1 as there are no instantaneous conversions. (This matches

the business logic—the definition of a “conversion” is an action preceded by advertising.) We

next define the hazard function. In plain terms the hazard function, λ(t), is the instantaneous

rate of conversion. More formally,

λ(t) = lim
δ→0

Pr(t < T ≤ t+ δ|T > t)

δ
.
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We can derive an identity that is necessary in Chapter 5 by using the rules of conditional

probability.

λ(t) = lim
δ→0

Pr(t < T ≤ t+ δ|T > t)

δ
(4.1)

= lim
δ→0

Pr(t < T ≤ t+ δ)/Pr(T > t)

δ
(4.2)

= lim
δ→0

(F (t+ δ)− F (t))/S(t)

δ
(4.3)

=
dF/dt

S(t)
(4.4)

=
f(t)

S(t)
(4.5)

where f(t) is the density function of T and,

dS(t)

dt
=
d(1− F (t))

dt
= −f(t).

Therefore, since d(log g(t))
dt = g′(t)

g(t) , where g is differentiable, we have the following identity:

λ(t) =
−∂ logS(t)

∂t

or

S(t) = exp[−Λ(t)] (4.6)

= exp

(
−
∫ t

0
λ(u)du

)
. (4.7)

I take a brief digression detailing how the baseline survival function is estimated. Although

this is not strictly needed for the proportional hazard models that form the bulk of this

chapter, one of my goals is to estimate the probability that a given cookie will convert. To do
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Figure 4.1: An illustration of the Kaplan-Meier survival function estimate for the retail data
set. The sampling in the data set resulted in about 0.5% of cookies being converters. Conse-
quently, after 30 days the probability of conversion is approximately 0.5%. For this advertiser,
a number of cookies convert more than 15 days from their initial exposure, leading to a sur-
prising drop in the curve from day 15 onwards.

this, S(t) must be estimated. We use the Kaplan-Meier survival function estimate

Ŝ(t) =
∏
ti≤t

ni − di
ni

(4.8)

where ni is the number at risk of conversion at time ti and di are the number of conversions

at ti. Throughout this chapter I illustrate concepts with the data from a retail advertiser.

The retail data set contains 1.3 million records across 108,392 cookies. The data belong to

an advertiser selling products online using search and display advertising. I will describe the

data in more detail as it becomes necessary for the exposition. In Figure 4.1 we see the

Kaplan-Meier survival estimate for the retailer data.

This figure illustrates the Kaplan-Meier survival function estimate for the retail data set. The
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full potential data set is too large to be practical (terabytes of data over several months). This

data is sampled taking all converters and a subset of non-converters, resulting in about 0.5%

of cookies being converters. Thus, after 30 days the probability of non-conversion from the

KM estimate is approximately 99.5%. For this advertiser, a number of cookies convert more

than 15 days from their initial exposure, leading to a surprising drop in the curve from day

15 onwards. Given a cookie with no other covariate information, this curve would give us an

estimate of the probability of conversion at any time t ≤ 30.

The Cox Proportional Hazard Model (PHM) formulates the hazard function as

λ(t,X|β) = λ0(t) exp(Xβ) (4.9)

where X is our data matrix and β is the vector of coefficients. The model is semi-parametric

because, while the covariates enter the model through a series of parameters, the baseline

hazard, λ0(t), is left undefined. The hazard function is defined for all t ≥ 0. Let Xji denote

covariate i for observation j. This model is called the proportional hazard model because, if

two subjects differ with respect to a single covariate, (X·i), then the ratio of their hazards has

a simple form:

λ(t|X1)

λ(t|X2)
=
λ0(t) exp(X1β)

λ0(t) exp(X2β)
(4.10)

=
exp(X1iβi)

exp(X2iβi)
(4.11)

= exp{βi(X1i −X2i)}. (4.12)

In words, the hazard for subject 1 is exp{βi((X1i−X2i)} greater than subject 2. This parallels

the role of coefficients in a logistic regression model. In logistic regression, if two subjects differ

in one covariate then the odds for subject 1 is the odds for subject 2 multiplied by the anti-log

of the cofficient times the covariate difference. Here the hazard ratio is simply the anti-log

of the coefficient of interest times the difference in the measurements on the subject. Note
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that this hazard ratio is independent of time—this is where the term “proportional hazard”

comes from—and this is nearly exactly what we require for the base weights derived from

the creative type covariate in E-Map. Engagement Mapping is founded on the premise that

exposure to and interactions with marketing multiply the probability of conversion by some

factor, independently of time except for recency and order. We will see below that these

two covariates, which do vary with time, require special treatment in the proportional hazard

model framework.

Equation 4.6 gives us the relationship between the survival function and the cumulative hazard

function. If we integrate Equation 4.9 then we have

∫ t

0
λ(u)du =

∫ t

0
λ0(u) exp(Xβ)du (4.13)

= Λ0(t) · exp(Xβ) (4.14)

We can now substitute the result 4.14 (Cox formulation) into Equation 4.6, yielding

S(t) = exp[−Λ(t)] (4.15)

= exp[−Λ0(t) · exp(Xβ)] (4.16)

= [S0(t)]exp(Xβ) (4.17)

where S0(t) = e−Λ0(t) is the baseline survival function.

We now discuss how to estimate Equation 4.17. Let (ti,Xi, ci) be a triplet of time, covariate

vector and censoring variable where ci = 1 if an observation converts at time ti and ci = 0

if an observation does not convert at ti. In this case we assume that i ∈ (1, 2, . . . , n) where

there are n cookies that form our observations1. For any observation that fails at ti, the

contribution to the likelihood function is defined by f(ti,Xi|β), the density of the failure

distribution. An observation that survives at least as long as ti contributes S(ti,Xi|β) to the

1Below we make the extension to time-varying covariates where we will have N =
∑
ni total records with

each cookie having ni records in the data set
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likelihood function. We can concisely write the total contribution as

[f(ti,Xi|β)]ci · [S(ti,Xi|β)]1−ci (4.18)

We assume independence between the observations and can therefore combine our observations

to form the traditional likelihood and log-likelihood:

L(β) =

n∏
i=1

{
[f(ti,Xi|β)]ci · [S(ti,Xi|β)]1−ci

}
(4.19)

l(β) =

n∑
i=1

{ci ln [f(ti,Xi|β)] + (1− ci) ln [S(ti,Xi|β)]} (4.20)

where the product and sum are taken over all cookies in the data. From Equation 4.5 we know

that f(t,X|β) = λ(t,X|β) · S(t,X|β) and we can substitute this expression for the failure

PDF into Equation 4.20 and use the parametrization for the proportional hazard model from

Equation 4.16 to get

l(β) =
n∑
i=1

{
ci ln [λ0(ti)] + ciXiβ + eXiβ ln [S0(ti)]

}
(4.21)

It is not possible to maximize Equation 4.21 as written. To do so would require maximization

with respect to the baseline hazard function (and baseline survival function derived from this

hazard function) as well as the censoring times.

Instead we proceed in a different direction. Let Ri denote the number of cookies at risk of

conversion at time ti
2. We wish to determine the conditional probability that cookie i converts

2Technically the cookies in Ri are at risk at time ti − ε.
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at ti given that cookie i is in Ri and given that there is exactly one conversion3 at time ti.

Pr(cookie i converts at ti|Ri and one failure at ti)

=
Pr(subject i converts at ti|Ri)

Pr(one conversion at ti|Ri)
. (4.22)

The quantity in the numerator of Equation 4.22 is proportional to λ(ti,Xi|β). Similarly, the

denominator is proportional to the sum of the individual hazards of every cookie in the risk

set:
∑

j∈Ri
λ(ti,Xj|β). There are a few subtle points about this summation. We index the

terms of the sum by j ∈ Ri, where the index on R indicates that we considering the risk set

at time ti. Similarly, this is why we evaluate λ(·) at ti but for covariate vector Xj. Building

on these observations and Equation 4.22,

Pr(subject i converts at ti|Ri)
Pr(one conversion at ti|Ri)

≈ λ(ti,Xi|β)∑
j∈Ri

λ(ti,Xj|β)
(4.23)

=
λ0(ti) exp(Xiβ)∑
j∈Ri

λ0(ti) exp(Xjβ)
(4.24)

=
exp(Xiβ)∑
j∈Ri

exp(Xjβ)
(4.25)

(4.26)

From here we can extend to a likelihood taking into account all observations,

lp(β) =
n∏
i=1

[
exp(Xiβ)∑
j∈Ri

exp(Xjβ)

]ci
(4.27)

=
m∏
i=1

exp(Xiβ)∑
j∈Ri

exp(Xjβ)
(4.28)

Equation 4.27 takes the product over all observations, assuming independence of the obser-

vations. The second step (4.28) simply excludes all terms where ci = 0. This final expression

3Exactly one conversion at time ti assumes that there are no ties in the data set. The times in our data are
resolved to within a second, so ties are infrequent. In the literature, a great deal of energy is expended dealing
with ties. Throughout this chapter when ties arise we use the Efron estimator for the risk values. This is the
default ties-method in the software R/S-Plus.
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forms the Cox partial likelihood. Cox speculated in 1972 that the value of β that maximizes

this expression would have the same distributional properties of a full likelihood solution,

rigorous proof of this came later (see Andersen et al., [26]).

The partial likelihood is analogous to the KM survival function estimator seen above (Equa-

tion 4.8). There we looked at the proportion of the data set that converted at time ti compared

to the total number at risk of conversion. The calculation is similar here. The conventional

likelihood function gives the likelihood of a given data set as a function of the parameter vec-

tor. Maximizing lp(β) gives us a plausible estimator for our coefficients and Cox [9] showed

that the usual large sample properties of likelihood estimators apply to the partial likeli-

hood estimators. The estimators are asymptotically normal, and their variance found in the

estimate of the information matrix (used during maximization). Rigorous proof of the prop-

erties of the partial likelihood came in Andersen, et al. [26]. As is standard practice, the

log-partial-likelihood is maximized in the software implementation.

So far we have not touched on the unique feature of PHMs that modeling of cookies with vastly

different numbers of records. Recall, first, the point of this exercise. Our cookies’ have such

extreme variation in histories (number of records, length of exposure, patterns of behavior,

etc.) that summarizing the data distorts our understanding of the drivers of conversions. Thus

far in the discussion, I have treated each cookie as an observation with n total cookies. I now

split each cookie into ni separate records—one for each ad impression, ad click, or conversion.

Let N =
∑
ni be the total number of records in the full data set. If we assume that we have

p covariates (which will be specified below), then for every cookie, we form a ni × (p + 3)

matrix. In addition to the p covariates we have the start and stop times and a conversion

indicator column. For every cookie we renormalize the times so that the first start time is 0

and this is the time of the first media exposure4. Let 0 = e1, e2, . . . , eni be the event times

for cookie i. The first time is set to 0, the subsequent times are the elapsed time after that

4In practice we require the first exposure for the consumer to fall within our consideration period to avoid
the confounding effect of exposures before the beginning of data collection
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event. The first start-stop time interval is (0, e2], the second is (e2, e3] and the final interval

is (eni , ti]. The half-open intervals are intentional and important. Say event one is a display

impression without a click. From that moment until the next event the cookie is “under the

influence” of that impression and in the risk-of-conversion set for all cookies that have one

display impression without a click. The final time interval either ends at a conversion or the

end of the data collection period.

There is a side-effect of the time-varying covariates that requires consideration. When cookie

i generates ni records with start and stop times that partition the lifetime of cookie i, each

one of those records enters the model, and the partial-likelihood, independently. To give an

example, if record 1 is a display impression and record 2 is a search click at day 4, then two

records are created. The first record has a start of 0 and a stop at 4. The second record has a

start at 4 and some stop time greater than 4. These two records, in the course of formation of

the partial likelihood, are treated independently and we do not make use of the fact that they

were from the same cookie. In the discussion of the time-varying covariate data structure,

a quotation from the seminal work on this topic, Therneau and Grambsch [32], is germane.

On page 70, they discuss the splitting of a single summary record into a set of three records.

The analog in our case would be creating three records for a cookie who had received three

impressions.

One concern that often arises is that observations 2 and 3 are “correlated,”

and would thus not be handled by standard methods. This is not actually an

issue. The internal computations for a Cox model have a term for each unique

death or event time; a given term involves sums over those observations that are

available or “at risk” at the select event date. Since the intervals for a particular

subject, “Jones” say, do not overlap (assuming of course that Jones does not have

a time machine, and could meet himself on the street), any given internal sum will

involve at most one of the observations that represent Mr. Jones; that is, the sum
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will still be over a set of independent observations. For time-dependent covariates,

the use of (start,stop] intervals is just a mechanism, a trick almost, that allows the

program to select the correct x values for Jones at a given time.

In other words, as long as the data simply record what has happened most recently to a

cookie, correlation between records is not a concern. This benefit has a drawback, however.

Take, for example, the cookie above with an impression at day 4. In the calculation of the

partial likelihood, this record represents the cookie completely for all calculations done after

day 4. If the cookie had one impression beforehand or 100, this record on day 4 appears the

same in the calculations. This is a problem, because I wish to model cumulative effects of

advertising. This requires the introduction of new covariates that span multiple records. In

particular, I introduce two covariates (the one dealing with recency and the one dealing with

previous clicks) that model the history the cookie has experienced up to a certain point. For

instance, the previous click covariate is the number of previous records in a cookie’s history

that are clicks. Clearly the existence of a previous click value of, say, 4 requires previous click

values of 0, 1, 2, and 3.

In the calculation of the partial likelihood, we ignore the covariance structure between the

ni records originating from the same cookie. Ignoring this structure produces an observed

partial-likelihood that is actually a first-order approximation to the correct partial likelihood.

The effect of this covariance structure on our estimators (β̂) should be negligible and the

estimators themselves should be reliable. What is less unreliable, at least without further re-

search, are the estimators of the standard errors based on the observed information matrix. In

the case of multivariate linear regression, correlation between covariates inflates the standard

error estimates. (See for example Fox [11], page 120-121.) Symmetrically, failing to model

correlation between covariates creates overly optimistic (small) standard errors. My assump-

tion is that the same result holds for proportional hazard models and that the standard errors

discussed in Subsection 4.4.1 are too small. On the other hand, the volume of data available
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for these analyses should diminish concern about parameter estimation uncertainty.

By partitioning the time domain in this fashion, the time-varying covariate PHM has side-

stepped the issue that holds back logistic regression. Each cookie exists in a given state over

a period of time and is in the risk set over the same period of time.

4.2 A Click Only Model

Instead of diving deeper into the counting process that underpins the theory, we turn to a

simple applied example. I work with the retail data set and one covariate predicting conver-

sions. Note that in this section I am using summary data at the cookie level. For simplicity,

I am not using the time-varying covariates in this section. Of the 108 thousand cookies, 0.5%

convert and 0.7% of cookies have any clicks. For cookies that have clicks, 13% are converters.

Table 4.2 holds the information regarding the distribution of clicks in this data set.

Clicks 0 1 2 3 4 5 6 7 8 11

Frequency 107630 601 99 31 12 5 5 3 4 2
% 99 1 0 0 0 0 0 0 0 0

Table 4.1: Distribution of clicks in the retail data set.

The click-only model is

λ(t) = λ0(t) · exp (βcl ·Xcl) . (4.29)

where Xcl is the count of clicks in the user’s history. Referring to Table 4.2, there will be

107630 cookies with a value of 0 for Xcl, 601 cookies with a value of 1, 99 with a value of

3, et cetera. Fitting the model, I obtain a parameter estimate for βcl of 0.64 (standard error

= 0.02). Therefore each additional click increases the relative odds ratio of a conversion by

exp(βcl) = exp(0.64) = 1.909. The 95% confidence interval for the exponentiated parameter,

formed using asymptotic results via the information matrix, is (1.823, 1.998). We are highly
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confident that the presence of additional clicks increases the probability of conversion for this

data set. (As we will see, the click effect is likely much stronger than this—something we

will only learn with the addition of more covariates.) This model does not require the use of

time-varying covariates, as we are simply using the total number of clicks the cookie has. As

such, this model does not run afoul of the considerations of modeling the covariance structure

discussed in the previous section.

In Figure 4.2 we see the estimated survival function for three hypothetical cookies based on

the click-only model. The highest curve, with an estimated non-conversion rate of 99.9%, is

for a cookie with zero clicks. The next curve is for a cookie with 1 click. The lowest curve, with

an estimated non-conversion rate of 97.46%, estimates the conversion probabilities by time

for a cookie with two clicks. The general shape of the curve closely follows the Kaplan-Meier

estimate for the baseline hazard function seen in Figure 4.1.

There is an apparent contradiction to resolve between this model and the results from the

literature review suggesting that clicks are an overrated measure of media performance. The

answer to resolving the contradiction lies in the term “overrated”. Although clicks have

an important role in the conversion path (as seen in the results of this section), clicks do not

account for all of the variability in conversions, as we will see in the coming section. Therefore,

we recommend that practitioners use both clicks and other covariates in assessing drivers of

conversions and in optimizing their media.

4.3 Data for PHM with Time-varying Covariates

If cookie i has ni events or records at times 0 = e1, e2, . . . , eni , we produce a data set with

ni rows containing the start time, stop time, conversion status, and the covariates we need

to estimate an E-Map model. For each ad impression, the data are the creative type (Flash,

Display, Text, etc.) and the creative size relative to the default size for that creative type. The
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Figure 4.2: Estimated survival function for three hypothetical cookies based on the click-only
model. The highest curve, with an estimated non-conversion rate of 99.9%, is for a cookie with
zero clicks. The next curve is for a cookie with 1 click. The lowest curve, with an estimated
non-conversion rate of 97.46%, estimates the conversion probabilities by time for a cookie with
two clicks. The general shape of the curve closely follows the Kaplan-Meier estimate for the
baseline hazard function seen in Figure 4.1. The curves are labeled with the number of clicks
the hypothetical cookie has.
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data must include an indicator of whether the ad was clicked on and, if rich media interactions

are being tracked, the type of interaction.

Recall the definition of baseweights from Section 2.3: when credit is shared between exposures,

the baseweight is the foundation from which we allocate credit. (The baseweight is then

modified based on recency, size, and order.) Baseweights are evaluated against each other

based on the question, How much more valuable is an exposure of type A versus one of type

B? The relative power at influencing conversions will be expressed as the ratio of these two

values—the same interpretation we give to our creative-type base weights. In a PHM, the

coefficients for the creative types will become the base weights by exponentiation. If a given

creative type has a model coefficient of βt, then exp(βt) is the modification to the hazard

function by the exposure. That is, it is the odds ratio when comparing the probabilities of

conversion. The quantity exp(βt) also tells us how much an exposure changes the probability

of conversion. If we have two cookies with identical histories except for one flash impression

and we let βf be the coefficient of the flash indicator variable in the model, then the probability

of conversion for the cookie that receives the flash ad will be increased by a multiplicative

power of exp(βf ). The click base weight will have some similar coefficient of the form exp(βc).

The click value will work in exactly the same fashion. Clicks on different types of creatives

tend to have very different effects. Text link clicks are often on search ads and many of these

are navigational in nature. As such we would expect their value in increasing conversion

probability to be smaller than a click on display or flash. Therefore wherever possible we

should estimate the interaction effect between clicks and creative types. (In some cases this

is not possible because such a disproportionate share of clicks will be on one creative type,

typically text links.)

The interpretation of the creative size ratio seems to be very different, although the conclusion

ends up being similar. Since creative size is expected to follow diminishing returns and varies

over an exceptionally large range (from a ratio of 0.01 all the way up to 10 or higher) we

model the log of the size ratio. Let βs be the coefficient we estimate in our PHM for the log



4.3. DATA FOR PHM WITH TIME-VARYING COVARIATES 44

of the size ratio, a variable we call Xs. Note that this means that the actual size ratio is

eXs . Also assume we are going to compare two cookies whose histories are identical in every

respect except that they have one pair of ads where the difference in the log size ratios is

Xs. Equation 4.10 tells us that the probability that cookie i converts relative to cookie j is

exp(βsXs). As we saw back in Equation 2.1, the Microsoft Advertising use of the size variable

is complicated. If we translate the size portion of Equation 2.1 using this notation, the new

formula for the size multiplying factor is

vs · exp(Xs) + (1− vs) = 1 + vs · (exp(Xs)− 1) (4.30)

where Xs is the size ratio. (Note that the E-Map model uses size ratio directly, not the log

we use in our modeling, hence the factor of exp(Xs) in the above equation.)

Let us take stock. With the PHM formulation, we introduce a term for creative size into the

model. We propose to introduce Xs into Equation 2.1 directly for the se
sr

term. The remaining

question, however, is that if we proceed as in Equation 4.30, what should we set the size

variable vs to? Our next paragraph attempts to settle that question.

Our goal is to try to match the influence that exp(βsXs) has on the proportional hazard model

to the influence that vs has to the E-Map model. In other words, we want these values to

produce the same change in conversion probability. Thus we begin our search for a vs value

by setting Equations 4.30 and exp(βsXs) equal and solving for vs, the size variable.

1 + vs · (exp(Xs)− 1) = exp(βsXs) (4.31)

vs · (exp(Xs)− 1) = exp(βsXs)− 1 (4.32)

vs =
eβsXs − 1

eXs − 1
(4.33)

We wish for our single number summary (vs) to be equal to a function of the log size ratio, Xs.

Clearly this is impossible since the function is not constant. Notice, however, that creative
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size ratios tend to be close to 1 (after all, the reference size is one of the most common sizes).

Typically, then, the log of the size ratio is often 0. Therefore, what value of vs agrees with the

influence of β at Xs = 0? We cannot plug in that value since we get an undefined fraction of

0/0. We can however, use L’Hospital’s rule (!) and determine

vs = lim
Xs→0

eβsXs − 1

eXs − 1

L.H.
= lim

Xs→0

βse
βsXs

eXs
= βs. (4.34)

Hence, if we simply set vs = βs then we have exact agreement of behavior at a creative size

ratio for ads that are exactly equal to the reference size.

The order variable in Engagement Mapping is important because of the marketing belief that

all clicks are not created equal. If we take a cookie who has seen three impressions and

compare them to another cookie who has seen three impressions and clicked on the final one,

we might see an increase in conversion probability of 10. (Incidentally, this would imply that

exp(βC) = 10.). If we now compare to a cookie that has a click on the final two impressions,

we need some way to allow the conversion probability change to be something other than

102 = 100. It is possible that this change is actually 50, indicating that subsequent clicks,

after the first, have lower weight (in this case half the influence on conversions). Alternatively,

we might find that this cookie with two clicks has an estimated conversion probability 200

times higher, indicating a positive interaction between multiple clicks. How can we model this?

We introduce a variable, Xpc, that counts the number of previous clicks before a given record.

We have Xpc = 0 for any record not preceded by a click. Thus, if we have a record at ej , then

Xpc will be greater than 0 if and only if there is a record with ei < ej such that the record

is a click. With this definition Xpc is simply an count of preceding clicks and the interaction

between click and Xpc details how effective a click is if it is not the first. There are other

potential covariates that could be used to model order. One easy example would be to change

Xpc to a binary variable instead of the sum of previous clicks. Another possible approach

would be to create different categorical variables for various click combinations believed to

be important. An example could be to have a factor with levels for first click, last click, and
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intermediate click. In my initial testing, the Xpc indicator seemed to perform well.

Recency is, perhaps, trickier than order and is certainly more important since cookies with

multiple clicks are much less common than cookies with multiple impressions. The goal of

recency is to measure how the impact of ads diminishes over time. Typically recency is

modeled with an exponential decay curve (called in the literature the “forgetting curve”). In

Equation 2.1, the recency term is (
ti − te
winv

)vr
(4.35)

where ti is the time of conversion (or the end of the study), te is the time of an event, winv

represents the view conversion window5, and vr is the recency parameter in the E-Map model.

Notice that 0 ≤ ( ti−tewinv
) ≤ 1, so the overall recency effect is always less than 1 and vr defines

the rate of decay. Our initial approach is to follow the ideas of the order variable. I created a

set of variables of the form ad X to Y that were defined by the number of ads served to this

cookie between X and Y days ago where X < Y . An example is the following variable:

ad 1 to 2i =
∑
j

I{ei − 2 ≤ ej < ei − 1}.

Thus, unlike the order variable these ad X to Y variables are not just indicators but also keep

a count of the number of historical ads. Originally X and Y were chosen to partition the

range of exposure times. This strategy was eliminated because it constrained the variables to

sum to ni thus creating a singular design matrix.

A second version of the recency parameter was suggested by my colleague Andrew Martin. Our

term for it is “Random Follow Recency” (RFR) (whereas the above is called “Grid Recency”).

In RFR we randomly choose one event for cookie i from the ni events in its history. Begin by

indexing the cookie events by j ∈ (1, 2, . . . , ni) and denote the randomly chosen event by the

5The view conversion window is the amount of time that an ad server looks back for impressions in a cookie’s
history, assuming there are no clicks. For instance, if the view conversion window was set to 30 days and a
cookie triggered an action tag on December 31, the ad server would look back until December 1 to see if any
advertising preceded the action.
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subscript r. Then we set our RFR covariate, XRFR based on the following rule:

XRFR =

 Undefined if j < r

tj − tr if j ≥ r

To put this variable in plain words, we choose an ad to follow and measure the time from that

ad to all subsequent ads.

If we have estimated a coefficient, βr, associated with random-follow recency, how can we

translate that into a parameter in the E-Map model (vr)? Given the formulation of the

PHM, exp(βr) is the change in the odds of conversion associated with increasing the temporal

distance to a preceding ad by one day. If we use Equation 4.35, keeping ti constant but

replacing te with te − 1, we move the time of the event one day further from the time of

conversion. Therefore, the ratio of more distant to less distant should be equal to our change

in conversion odds. We arrive at the following relationship:

exp(βr) =

(
ti − te
winv

)vr
/

(
ti − (te − 1)

winv

)vr
exp(βr) =

(
ti − te

ti − (te − 1)

)vr
βr = vr · log

(
ti − te

ti − te + 1

)
vr =

βr

log
(

ti−te
ti−te+1

) (4.36)

As with our size relationship, Equation 4.36 is not constant as a function of te. In this case,

we simply plug in the average value for the quantity ti− te in the data set. For the retail data

set, this quantity is, interestingly, almost exactly seven days.

Why do the time-varying covariates not cover the idea of recency? The answer is because

the records comprising the cookie are treated as is independent since the start and stop times

partition the cookie’s life within the data set. As such, variables such as order and recency,
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that measure how ads influence each other, are required in order to account for the “memory”

of other behavior in the data set.

4.4 Example: Retail Advertiser

In this section we apply our modeling to a retail advertiser. We first detail the fields that are

in the data set. These are calculated for every exposure to every cookie. Therefore, every one

of these variables are time-varying.

� start: The time of the exposure measure relative to the first exposure time.

� stop If this is not the last record for the cookie then this variable is set to the time of

the next record. If this is the last record then this is the time of the conversion or the

time the cookie is lost to follow-up (relative to the first time).

� conversion 0 or 1 indicating if the record terminates in conversion. Each converter

only creates one record where conversion = 1.

� creative type A categorical variable defining creative type such as display, flash, rich

media, text or video.

� creative size ratio The ratio of the ad to the reference size for its type.

� click 0 or 1 indicating if the record is a click.

� previous click The sum of previous clicks or zero if this is the first click for the cookie.

� time to followed ad The parameter associated with the “Random Follow Recency”

above. It is the time since the randomly followed ad or is set to NA for ads preceding

the followed ad.
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4.4.1 Model Fitting

I fit the models of this section using the survival library in the statistical software R, specif-

ically the coxph function. Our original model includes a three-way interaction between cre-

ative type, click and previous click. The response variable is a “Survival object”, created by

combining the information held within start and stop times and then the event variable indi-

cating if a time interval ended with a conversion or not. The covariates are discussed above

in the list that begins this section. The model form we discuss is

λ(t) = λ0(t) · exp (βct ·Xct + βc ·Xc + βpc ·Xpc + βs · log(Xs) + βr ·Xr) . (4.37)

We have the following parameter definitions:

βct Model coefficient associated with creative type parameter.

βc Model coefficient associated with click presences or absence.

βpc Model coefficient associated with the count of previous clicks.

βs Model coefficient associated with the creative size ratio.

βr Model coefficient associated with our recency variables. Using random-follow recency

this is a single covariate and associated parameter.

Using the retail data set with 108K cookies (only 550 of which are converters) and 1.3M

events in the cookie histories, we fit the above model. Table 4.4.1 contains the estimates and

standard errors for the above model. Figure 4.3 provides a graphical representation of the

estimates and confidence intervals. It is important to echo the concerns expressed at the end

of Section 4.1. Two covariates used in the model, βpc and βr, are correlated within a given

cookie. Since we are not modeling this covariance, our stardard errors are probably smaller

than they should be and should be used with caution. The estimates should be accurate.
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Figure 4.3: A graphical representation of the estimates and 95% confidence intervals for the
retail data model coefficients. These are on the untransformed scale, so we must exponentiate
to see the effect these coefficients have on conversion probabilities. The recency confidence
intervals are too small to plot, though the value of recency is significantly different from zero
(p < 4 · 10−16).
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Covariate Coef. Estimate St. Err. exp(Coef) Lower 0.95 Upper 0.95

Creative Type βct (Text) 0.530 0.169 1.70 1.21 2.36
Click βc 4.253 0.179 70.3 49.5 99.8
Size βs 0.327 0.120 1.39 1.09 1.75
Previous Click βpc 0.351 0.055 1.42 1.28 1.58
Recency βr -0.013 0.0016 0.986 0.983 0.990

Table 4.2: This table holds the model estimates for the retail model detailed in Equation 4.37.
The estimate column holds the estimate formed by maximizing the log-partial-likelihood. The
standard errors are derived from the asymptotic theory estimates. The confidence intervals are
based on adding or subtracting two standard errors from the estimate and the exponentiating.
The random-follow recency was used for Xr.

All covariates have a positive effect on the probability of conversion with the exception of

the recency variable. By far the most influential covariate is clicks—the presence of a click

increases the probability of conversion by a factor of e4.253 ≈ 70. The click coefficient is also

by far the most statistically significant coefficient. The next most important factor, in terms

of changes to the odds of conversion and which is vastly less important than clicks, is creative

type. Going from flash to text increases conversion probability by a factor of 1.7. This result

is surprising as flash typically shows much higher conversion rates than text impressions. This

advertiser, however, uses text impressions across a wide variety of their buys, leading to the

hypothesis (untestable with privacy restrictions for this document) that the placements where

text links run are substantially different from the Flash placements. Next in importance is the

role of a previous click. Increasing the number of previous clicks by one increases the odds of

conversion by 42%. Finally, increasing the log of creative size ratio by 1 increases conversion

odds by 39%. Of course, this translates into an ad that is ten times bigger, something that

is impossible in the data set. The most common size ratio in the data set is 2.3. Increasing

from that size to 3.41, another common size, increases the conversion probability by 13%.

This is a more realistic effect size. In this discussion I have ordered the covariates not in

terms of their statistical significance (in which case Recency would be deemed the second

most important) but rather by the practical significance. Increasing the number of clicks in

an user’s history will have a greater impact on conversion rates than simply collapsing the
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user’s history (which is the equivalent of moving the recency covariate in a direction that

positively influences conversion odds.)

The final parameter to discuss is recency. In this model, the recency covariate used was the

random-follow recency described above. The estimate for exp(βr), 0.986, does not seem large.

The associated covariate, Xr, varies over a wider range than the other variables in the model.

The difference between seeing an ad 1 day ago versus 15 days ago is exp(−0.013 · 14) = 0.83.

In other words, the probability of conversion goes down by 17% if the previous is ad is moved

two weeks further away from a given time t. In this sense, the recency effect is similar to that

of the size effect.

4.4.2 Assessing Model Fit

To assess the fit of our PHM, I borrow the Hosmer-Lemeshow test from logistic regression.

A full discussion of this test can be found in Section 5.2.2. of Hosmer and Lemeshow [17]. I

began by subsampling the data, keeping all 500 or so converters and randomly sampling the

non-converters to reduce our total data set to approximately 5500 cookies. I did this to ease

the computational burden and allow experimentation on a compressed timeline.

Conceptually, to perform the Hosmer-Lemeshow test, the data are sorted by estimated con-

version probabilities in g groups. Traditionally, g = 10 although since the data are so large

I also tested g = 25. There are two methods for grouping the data. The first, based on

percentiles of the estimated conversion probabilities, splits the data into g groups of equal

size. The first group has the n/g cookies with the smallest estimated conversion probabilities.

The second group, also with approximately n/g members, has the next smallest set of esti-

mated conversion probabilities, and so on. The second method, which Hosmer and Lemeshow

showed is less effective in cases like mine where estimated probabilities are small, is to divide

the probability range (0 to 1) into g equal-length groups. For instance, cut-points could be
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defined at 0.1, 0.2, etc. I use the first approach, per their recommendation.

After splitting the data into g equal-sized groups, we form the test statistic. Index the groups

by k for k ∈ (1, 2, . . . , g) and let ck be the measured number of conversions among the nk

cookies in group k. Note that
∑g

k=1 nk = n, the total number of cookies. Define

π̄k =

∑nk
j=1 π̂j

nk

as the average conversion probability in the group, where π̂j is the estimated conversion

probability for the jth cookie in group k. Our test statistic is a close analog of the Pearson

chi-square test statistic and compares the observed conversions to the expected using the

following formula:

Ĉ =

g∑
k=1

(ck − π̄knk)2

nkπ̄k(1− π̄k)
. (4.38)

Through a series of simulation results, Hosmer and Lemeshow showed that Ĉ ∼ χ2(g − 2).

I begin by showing the data, found in Figure 4.4. This figure shows the predicted conversion

proportion and actual conversion proportion across 10 groups. The range of estimated conver-

sion probabilities that define the group is used for the x-axis labels. For instance, the group

with the largest conversion probabilities (the right-most plotted values) includes all cookies

with estimated conversion probabilities in the range of (0.142,1]. It is worth reiterating that

0.142 is the 90th percentile of the estimated conversion probabilities. The data are split into

10 groups. The measured proportion of converters within the group is illustrated by the black

dots. The predicted proportion is illustrated by the hollow circle.

I will begin with the test statistic, described in Equation 4.38. The value of the test statistic

is Ĉ = 13.66. As a critical value in χ2(8), 13.66 gives a value of p < 0.091. While this is not

significant, our data illustrates one of the shortcomings of this method (discussed in greater

detail in Harrell’s Regression Modeling Strategies [15]). These data do illustrate some lack-of-

fit. For the cookies in the groups with lower estimated conversion probabilities, the model of
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Figure 4.4: Data for the Hosmer-Lemeshow test of the goodness of fit of our PHM for the
retail data. The data are split into 10 groups. The measured proportion of converters within
the group is illustrated by the black dots. The predicted proportion is illustrated by the
hollow circle. Although the test statistic is not significant (see text), there is evidence of lack
of fit—the model underpredicts conversion rates for cookies with low estimated conversion
probabilities and overpredicts for the cookies with the highest estimated conversion rates.
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the retail data estimates fewer conversions than were actually measured. This effect is most

pronounced (as a percentage of conversions) for the groups with low estimated probabilities.

The effect diminishes as the probabilities increase. For the second- and third-highest groups,

there is near perfect agreement between the predicted and actual conversion proportions. The

largest group shows a significant overestimation of the number of conversions. In summary,

while the test statistic does not highlight lack-of-fit, the graphical summary indicates that

further refinements to the model may be necessary in the future6.

4.4.3 Translation to E-Map

In Subsection 4.4.1 we fit a PHM model to the retail data. How can we translate those pa-

rameters into a suggested E-Map model? We handle each parameter in turn in the subsequent

paragraphs.

For creative baseweights, as we discussed earlier in this section, the correct approach is to

simply translate the exponentiated coefficients over to E-Map. As such, the flash ad creative

type (which was the baseline variable in the contrasts for the creative type categorical variable)

will be set to 1. The text impression base weight will be set to exp(0.52) = 1.70. The click

baseweight will be set to 70, reflecting the enormous improvement in conversion rates resulting

from clicks in user histories.

The size variable for this advertiser should be vs = 0.32 as described in Equation 4.34. From

an advertising perspective, this number defines the diminishing returns of size. Doubling the

size of an ad will result in an additional 25% of credit for that ad (since the formula reduces

6I experimented briefly with changing g from 10 to 25. Surprisingly, this change now gave a significant p
value (p < 0.005). I looked at the graphical summary and it appears that two groups had wildly divergent actual
conversion values. (For one, the predicted proportion of converters was about 12% and the actual proportion
was 3%. Then the next group, also with a predicted proportion of around 12%, had an actual proportion of
nearly 20%. These two groups together show an average actual proportion of converters that is nearly correct
(11.5% versus the correct 12%). It appears there is some lack of smoothness in the data that was exposed in
this grouping. This aside illustrates the sensitivity of the Hosmer-Lemeshow test to the groupings chosen for
the data.
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to 2vs = 20.32 = 1.25).

The random-follow recency model was discussed above and, as we saw in the model fit-

ting subsection, moving a previous ad back one day results in a conversion odds 98.67% as

large. We use Equation 4.36 and set ti − te ≡ 7, the mean number of days between censor-

ing/conversion and the preceding events in the retail data set. Using this equation we see that

vr = βr/ log(7/8) = 0.10.

The previous click parameter from the PHM is related to the order variable from Engagement

Mapping. Recall the definition of the order parameter in E-Map: order is set between 0 and 1

and defines the degree to which subsequent clicks diminish in importance from the first click.

A value of 1 indicates that subsequent clicks share no credit for a conversion. A value of 0

indicates that each click is equally important. The interpretation of the order parameter can

be complicated, though Figure 4.5 illustrates the correct answer. In this figure we see four

different scenarios for a cookie with two records. This cookie has two flash ads with creative

size ratio set to 0. In order of conversion probability, the four possible scenarios are zero clicks,

a click on the second event only, a click on the first event only, and a click on both events. From

analyzing the endpoints of the four curves, we see there is very little difference in conversion

probability if a second click is added on to a first click, versus the second record becoming

a click. The conversion probabilities change, though the relative conversion probabilities are

nearly identical.

4.5 The Case Against Last-Ad

Throughout these first four chapters I have set up the last-ad model as a straw-man. Academic

research indicates that the last-ad model is insufficient as it fails to address the three key

intermediate variables of cognition, affect, and experience. The results of this chapter also

illustrate the shortcomings of the last-ad model. In the last-ad model, the only variable that
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Figure 4.5: This figure illustrates a hypothetical cookie with two events. Event times are
denoted by solid gray lines. The possible scenarios are no clicks, a click on the first record, a
click on the second record, and a click on both records.
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is influential is recency—yet we have seen that creative type, creative size, clicks and previous

clicks all have an important role in conversion attribution.

There are several potential analytical approaches to illustrating the shortcomings of the last-

ad model. At a fundamental marketing level, a more sophisticated conversion attribution

approach is useful only to the extent that it helps someone make better decisions. At Microsoft,

one of the ways we illustrate the utility of E-Map when compared to the last-ad model is to

estimate the change in conversion credit under the different models. Typically we see search

advertising (which is over-represented by the last-ad model) lose between 10% and 35% of its

conversion credit. Display advertising gains a similar amount, as this is a zero sum game.

Since this dissertation is prepared in the presence of both a great deal of cookie-level data

and a fitted proportional hazard model, we can take advantage of another interesting way to

assess last-ad efficacy. My approach is to create cookie-level scores according to our model.

(To ease the computation burden we perform this calculation on 100% of converters and a

group of 2500 randomly chosen non-converters.) We can then rank the cookies by conversion

probability and partition the population. If the model is doing its job, we will expect to see

an increasing proportion of converters in each group as we move from lower scores to higher

scores. Figure 4.6 holds the results of the analysis. This figure is an illustration of conversion

percentages in groups of cookies, separated by estimated conversion probability. Each dot

represents a collection of 50 cookies. As we move from left to right the estimated conversion

probability in the groups increases. The horizontal line represents the normalized conversion

probability in the sample The imposed curve is a lowess smooth and it shows that for the top

third of cookies we are making predictions with some accuracy. The bottom two-thirds show

no real prediction pattern. In the top 33% of predicted probabilities we have 72% chance

of conversions. I did a quick permutation test (permuting actual conversions relative to the

predicted probability). The sampling distribution was basically normally distributed with a

mean of 47% and a largest sampled value of 51%. So there is no real question in the statistical

significance of our ability to order the cookies and have a disproportionate share of converters



4.5. THE CASE AGAINST LAST-AD 59

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●●
●

●

0 500 1000 1500 2000 2500 3000

0.
2

0.
4

0.
6

0.
8

Conversion Percentages in Groups of 50

Cookie Index (ordered by P(conv))

P
er

ce
nt

 C
on

ve
rt

er
s 

in
 G

ro
up

Figure 4.6: An illustration of conversion percentages in groups. Each dot represents a collec-
tion of 50 cookies. As we move from left to right the estimated conversion probability in the
groups increases. The horizontal line represents the normalized conversion probability in the
sample. The imposed curve is a lowess smooth. It appears for the top third of cookies we
are making predictions with some accuracy. The bottom two-thirds show no real prediction
pattern.

rise to the top.

The last-ad model cannot distinguish between any of these cookies—its only criterion for

separation is the presence of advertising in a user’s history. Our ability to distinguish between

converters and non-converters here is evidence of the usefulness of our new approach (both

E-Map and PHM-based coefficient estimation). This final result is arguably the most useful

and has the most implications for those who manage advertising campaigns, particularly as

it applies to targeting. Targeting is the ability for an advertiser (in this case, our retailer)

to pay a network or publisher to deliver impressions to a particular target audience. A good

example of targeting is an advertiser paying to have ads served to people who have visited the
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client’s website. Targeting is effective in so far as those cookies reached are a large enough

group to matter and convert at a high enough rate to justify the premium paid for targeting.

Using a technique such as that we have outlined in this chapter, a large cookie pool could

be quickly scored against the survival fit. These cookies could then be ordered and a cut-off

point could be chosen. (Alternatively, and more profitably, cookies could be stratified with

prices modified depending on the expected conversion rate.) The advertiser could then enjoy

the higher conversion rates indicated in Figure 4.6.

4.6 Computational Statistical Results

It is impossible to work with online advertising data without encountering computational con-

straints. The cookie records are stored in snapshots that are several petabytes in uncompressed

form. Record extraction is only accessible through a distributed computing environment com-

prising thousands of of machines and a proprietary data processing language based on C

Sharp. Additional data extraction takes place via SQL queries against databases containing

additional metadata. Data cleaning and processing is done with Python—this is the language

used to create both the summary data and the record-level data sets used throughout this

dissertation.

The actual analysis we discuss (fitting of proportional hazard models seen here, visualizing of

user histories in Chapter 5, and the clustering analysis in Chapter 6) is performed using the R

language [27]. R is essentially a procedural programing language, based on the S language that

also forms the core of the commercial software package S-Plus, with the greatest statistical

library ever assembled. Despite its many benefits, R is memory-constrained for many of the

tasks required with online advertising data. Running 32-bit Windows requires that the total

memory size for R be kept under 4 gigabytes.

The analyses of this chapter were carried out using the survival package in R. Model fitting,
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through the coxph function in R, actually proceeds with few issues given these data. In truth,

however, the size of the data sets were somewhat chosen in order to fit within the memory

constraints of coxph.

Fitting models is only half the battle. In order to use these models marketers must be able

estimate a survival probability at a given time. Estimating survival probability also forms the

foundation for the visualization techniques of Chapter 5 since the most important plot in that

chapter is the estimated conversion probability over time. R includes a function that creates

survival curves, survfit. The function takes as input a fitted proportional hazard model

and an individual cookie’s data with the necessary covariates (as well as some convenience

variables indicating whether or not estimates such as confidence intervals and standard errors

should be returned). The return value is extensive and includes survival estimates for the new

cookie at all censoring and conversion times. The baseline survival estimate is based on the

Kalbfleisch-Prentice estimator.

The function survfit provides necessary functionality, but unfortunately the implementation

is incredibly inefficient. In order to estimate survival probabilities a number of modifications

were required to the survfit function. These modifications were written in R and are in my

function get survival estimates, included in the code appendix. For ease of replication, I

walk through this code in detail here, providing commentary on key points. The input for

get survival estimates are

� cookie event data: the set of record-level (or event-level, as it is called in the code)

for the cookie.

� hazard times: a vector of all censoring or conversion times in the data set.

� hazard surv: a vector of baseline survival probabilities coinciding with the times in

hazard times. Resulting from the Kaplan-Meier estimate discussed above.

� model: A proportional hazard model fit from R.
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� times: A vector of times at which to estimate the survival probability. If this is a single

time the function will return a single probability. If this is a vector of length greater

than one then survival estimates will be made for all these times.

� return survival A Boolean indicating whether conversion probabilities (the default)

or survival (i.e., non-conversion probabilities) are desired as output.

The principal innovation that makes get survival estimates work where survfit fails is

the inclusion of hazard times and hazard surv, the baseline survival estimate. The native

R function, survfit, estimates the baseline hazard every time the function is called. The

addition of this baseline survival estimate to the quantities calculated during the function call

immediately outstrips the memory allocated to R. Pre-calculating this baseline hazard is one

of the keys that allows the code below to function.

We now walk through the function. We take a “literate programming” approach advocated

by Knuth [23]. As such, the following paragraphs intersperse the actual working code with

my explanation. Marginal comments from the original code remain.

We begin with a series of relatively common R statements to extract the necessary information

from our PHM, model.

# gather model information we need

mod_coef <- ifelse(is.na(model$coefficients), 0, model$coefficients)

mod_asgn <- model$assign # gives us the look-up between model and data

mod_terms_obj <- terms(model) #gigantic terms object, used for other stuff

mod_terms <- names(mod_asgn)

mod_frame <- model.frame(mod_terms_obj, data=cookie_event_data)
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# pulls out the relevant data for cookie

mod_mat <- model.matrix(delete.response(mod_terms_obj), mod_frame,

contr=model$contrasts)[,-1,drop=FALSE]

# a design matrix based on cookie. Handles coding of categorical

# drop the intercept in a PHM model

nterms <- length(mod_terms)

pred <- matrix(0,ncol=nterms,nrow=nrow(cookie_event_data))

mean_pred <- mod_coef * model$means

A number of important and complicated objects are created in this sequence of statements.

The variable mod coef holds the estimated coefficients of the fitted model. The variable

mod frame takes the cookie event data and produces a design matrix based on the data and

the mod terms obj, the object that defines the model. Then mod mat holds a reduced design

matrix based on the contrasts in the model (for categorical data) and dropping the intercept

term. The intercept term is dropped in the sixth line because the proportional hazard model

assumes the existence of a baseline hazard. We create a matrix, pred, where the columns

are the p predictors in our model and the rows correspond to the individual cookie records.

(Recall that our input data, cookie event data, is made up of multiple records for a given

cookie.) The vector mean pred holds the mean hazard multiplier (defined as the estimated

model coefficient times the covariate values.

We now fill our pred matrix.

for (i in 1:nterms) {

ii <- mod_asgn[[ mod_terms[i] ]]

pred[,i] <- mod_mat[,ii,drop=FALSE] %*% (mod_coef[ii])
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}

# pred is now an n x p matrix where n = records and p = variables in model

This for loop walks through the p terms in the model (here called nterms for number of terms).

We determine where in the design matrix these terms are used and then multiply the design

matrix by the model coefficients to estimate the hazard multiplier, Xi
′β, for the individual

record.

At this point we take the anti-log of the predicted hazard multiplier and subtract off the

overall mean predicted risk. This is only necessary so our output coincides with the R output.

risks <- exp(apply(pred,1,sum) - sum(mean_pred))

We have now extracted most of the information from the cookie’s history and the model. It is

time to integrate these data with the baseline survival model to estimate survival probabilities

for all times in the times variable.

num_events <- dim(cookie_event_data)[1]

# first just build the full survival curve

#Select down the baseline survival data because

# our raw data can have hundreds of thousands of

# points that we don’t need to carry through for the calculation

this_haz_idx <- hazard_times < max(cookie_event_data$stop)

if(sum(this_haz_idx) == 0) {

warning("Last stop time for cookie is less than minimum

survival time.\nReturning full survival curve.")
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this_haz_idx <- rep(TRUE,length(hazard_times))

}

this_times <- hazard_times[this_haz_idx]

this_surv <- hazard_surv[this_haz_idx]

This previous section of code cuts down our baseline survival estimates to only times that

correspond to our cookie. We throw out any survival estimates corresponding to times greater

than the max time for the cookie.

We next work from the baseline survival estimates to get the instantaneous hazard estimates.

# create a product based version of this_surv

temp <- c(1,this_surv)

this_surv_prod <- temp[2:(length(this_surv)+1)]/temp[1:length(this_surv)]

# to generate any entry in this_surv[i] just take

# cumprod(this_surv_prod[1:i])[i]

# to the right point.

adj_surv <- this_surv_prod

At this point, we are ready to modify our baseline survival estimates by the variable risks

that holds the anti-log of the estimated coefficient from the model times the covariates.

# we use idx to determine what parts of this_surv_prod we need to raise

# to which power. Then we make adj_surv the cumprod

for (i in 1:num_events) {

idx <- cookie_event_data$start[i] <= this_times &

this_times <= cookie_event_data$stop[i]
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adj_surv[idx] <- adj_surv[idx]^risks[i]

}

This for loop has two steps. The first determines the index within the times vector that

corresponds to a given cookie record. The second step raises the baseline survival estimate for

that length of time to the appropriate power to estimate the survival probability. All of the

work to create this line is the programmatic necessity to realize the ideas in Equation 4.17.

At this point, however, we’ve worked not with the actual survival probabilities but with the

hazards, so we must take the cumulative product to generate the actual estimated survival

curve.

adj_surv <- cumprod(adj_surv)

# that last bit took about a week of work. Although to be fair,

# the better part of the

# week was spent trying to figure out exactly what the

# differences were between

# S(t_i), \Lambda(t_i), and \lambda(t_i). This is what happens when

# you don’t have a class in suvival analysis!

#

# Anyway, the key insight, that took me forever to reach,

# was that

# the critcal component was the multiplicative aspect

# of the survival curve. At

# any time, t_i, you could derive, from the fit, a

# number $a$ that obeyed

# the relationship a \cdot t_i = t_{i+1}. That’s what’s

# in this_surv_prod.

if(!return_survival) adj_surv <- 1-adj_surv
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The remaining code from the function is, essentially, bookkeeping. If no times are sent in

at the beginning of the function then we return the full survival curve in the following code.

Otherwise we create a survival object so that we can extract the pieces we need for things like

cookie targeting or plotting.

if(missing(times)) {

# we want the full curve

return(data.frame(time=this_times,surv=adj_surv))

} else {

surv_holder <- numeric(length(times))

for (i in 1:length(times)) {

if (times[i]==0) { #handling an edge case

surv_holder[i] <- as.numeric(return_survival)

} else { # handling the normal case, some time in the middle

t_idx <- max(which(this_times < times[i]))

if(t_idx < 0) {

surv_holder[i] <- 1-as.numeric(return_survival)

} else {

surv_holder[i] <- adj_surv[t_idx]

}

}

}

return(data.frame(time=times,surv=surv_holder))

}

In summary, there are a handful of tricks in this code to enable estimation of survival prob-

abilities. The key idea is to separate baseline survival curve estimation from the further
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estimation based on the proportional hazard model. The second key idea is to only use in

the calculation the portions of the survival curve that are relevant to the estimation in hand.

Finally, there are a number of tricks employed throughout to match the R functionality that

exists in survfit.



Chapter 5

Visualizing Cookie Histories

Web surfing data can be baffling. A large advertiser can easily produce a billion impression

records in a month with millions of clicks and associated actions. Visualizing the data provides

statisticians and marketers alike with the opportunity to quickly assess patterns and trends.

Industry tools have been developed to visualize data in aggregate form. Nothing, however,

exists to visualize individual user histories.

This lacuna in the visualization literature makes sense. Users have enormously variable his-

tories. Some people are exposed to one display advertisement and then purchase. Many of

these conversions may be happenstance, where the marketing did not directly influence the

conversion. Some people may get online knowing exactly the transaction they wish to make,

performing a search, clicking on a paid keyword, and purchasing. These users create just one

search record. Yet other users may be influenced by a variety of marketing messages, spool-

ing out a history in the log records that spans several months and hundreds or thousands of

marketing messages. Moreover, there is a rich diversity in the types of interactions (clicks,

impressions, rich media, video, etc.), the volume of interactions (in our case studies we see

some users with one record, others with more than ten thousand), and chronology (for some

69
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behavior is tightly packed into a few hours, for others marketing events range over weeks or

months).

How then can we create a visual summary of a user or a group of users? This chapter attempts

to answer that question by focusing on the following critical concept: we can use probability

of conversion as a yardstick against which we can measure the cookie’s history over time. This

enables us to plot the duration of the cookie’s exposure against the changing probability of

its conversion. This is particularly useful as a way to see the histories of cookies identified as

cluster centers in Chapter 6. This solution will not prove perfect, but will give us a powerful

tool to understand users and their histories.

5.1 Predicting and Plotting Conversion Probabilities

For the purposes of this section we will assume that we have a set of user records to which

we have fit a proportional hazard model (PHM) of the type in Chapter 4. More formally, the

population of interest is online users and here the observations are the individual log records

belonging to the user, as discussed in the time-varying covariate discussion of the previous

chapter. Each observation is a sequence of log records, ordered by time. From that data set

we estimate coefficients for a proportional hazard model with the following estimators:

� Creative Type: An estimator of the amount by which the odds of conversion change

with an additional exposure to an advertisement of a given creative type. The creative

types we analyze in this research are typically Text, Display, and Flash.

� Click: An estimator of the amount by which the odds of conversion change when an

exposure is changed from an impression to a click.

� Previous Click: This parameter gives the effect of a previous click on conversion odds.

There is typically an important interaction effect between clicks and previous clicks; the
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more clicks a user has in their history, the less influence any one click tends to exert.

� Creative Size: Modifies the conversion probability based on the size of the ads the user

is exposed to.

� Recency: In Chapter 4 we explore how to model recency. This estimator serves two

masters; providing better PHM fit via the time-to-followed-ad covariate and giving a

way to estimate the E-Map recency parameter.

The goal of fitting proportional hazard models is twofold in our case. Principally we would like

to estimate the effect of various kinds of cookie behavior on the cookie’s probability to convert.

Additionally we are interested in simply estimating the conversion probability by cookie. This

latter desire makes sense when viewed from the perspective of a marketing manager. If one

has a single ad to serve but has two available cookies to receive the ad, the ad should be

“spent” on the cookie who will have the highest conversion probability after seeing the ad.

The mathematical details of PHM were covered in Chapter 4, so we begin with an example to

illustrate the objectives. Figures 5.1 and 5.2 illustrate the estimated probability of conversion

for the cookie with the highest volume in the hotel data set and one of the lowest, respectively.

(Throughout this section we use the hotel data to illustrate our concepts. This data set is

discussed in exhaustive detail in Chapter 6.)

The high-volume cookie figure (5.1) shows the estimated conversion probability over a 30 day

time period for a cookie with a large amount of activity. The estimated conversion probabilities

come from a PHM similar to that of Chapter 4. This cookie was exposed to 3734 ads over the

30 days, with 42 clicks, 16 of which took place on search advertisements. The large jumps at

days 14 and 23 correspond to periods where the cookie clicked on multiple ads. At the end of

the period we estimate a conversion probability (within this data set) of almost 42%. (The

cookie did ultimately convert.) The estimated conversion probability is simply one minus the

estimated survival probability discussed in Chapter 4. In contrast to this estimated conversion
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Figure 5.1: This figure shows the estimated conversion probability over a 30 day time period
for a cookie with a large amount of activity. This cookie was exposed to 3734 ads over the
30 days, with 42 clicks, 16 of which took place on search advertisements. The large jumps at
days 14 and 23 correspond to periods where the cookie clicked on multiple ads. At the end
of the period we estimate a conversion probability (within this data set) of almost 42%. The
cookie ultimately converted.
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Figure 5.2: This figure shows the estimated conversion probability over a 16 day time period
for a cookie with only one record, a display impression. With no changes to the covariates
over the 16 days, what we see here is simply the basic Kaplan-Meier conversion probability
estimate. Note the steep initial increase (a relatively large percentage of converters act almost
immediately after their first exposure) and a daily periodicity to the curve. At the end of the
period we estimate a conversion probability (within this data set) of only 2%.
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probability, Figure 5.2 shows the estimated conversion probability over a 16 day time period

for a cookie with only one record, a display impression. With no changes to the covariates

over the 16 days, what we see here is simply the basic Kaplan-Meier conversion probability

estimate. Note the steep initial increase (a relatively large percentage of converters act almost

immediately after their first exposure) and a daily periodicity to the curve. This periodicity is

an outgrowth of how people surf the internet—many light-volume surfers get online at around

the same time each day. At the end of the period we estimate a conversion probability (within

this data set) of only 2%.

In theory this plot is simple to extract from the R function survfit in the package survival.

Unfortunately, that code is written in such a fashion that it is unable to plot survival curves

(or compute survival estimates) for data sets as large as ours. (In fact, on a data set of this

size the survival curve estimation fails for any cookie with more than one record.) I have

rewritten the relevant code of the survival package to be more efficient, enabling both the

creation of these charts and also quick estimation of conversion probability from a cookie

history. Section 4.6 details the code changes necessary to create these estimates and the

resulting figures. All code can be found in the code appendix.

How is this conversion probability calculated? The hazard function, λ(t), gives the instan-

taneous rate of conversion, conditional on non-conversion to a given time t. The survival

function, S(t), gives the cumulative probability of non-conversion at time t. The two func-

tions are linked through the identity

S(t) = exp[−Λ(t)] (5.1)

= exp

(
−
∫ t

0
λ(u)du

)
. (5.2)

Within the PHM framework, covered in detail in Chapter 4, our parametrization of the hazard

function is

λ(t,X|β) = λ0(t) · eXβ
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where λ is the hazard function, λ0 is the baseline hazard function, and eXβ is our proportional

hazard model for how additional covariates affect our hazard. From this we can derive the

survival function as

S(t,X|β) = [S0(t)]Xβ .

Therefore, to estimate conversion probabilities (which are 1 − S(t,X|β)), we must estimate

the baseline survival function S(t0) and then our additional risks enter into our estimate as

the exponent. We estimate the baseline survival using the Kalbfleisch-Prentice estimate [21].

This estimate reduces to the more familiar Kaplan-Meier estimate when we weight all cookies

equally1. The Kaplan-Meier estimator (which we detail here because it is much simpler) is

λ̂(t) =
∏
ti≤t

ni − di
ni

where ni is the number at risk of conversion at time ti and di are the number of conversions.

These quantities are determined at every unique conversion or censoring time in the data.

For instance, in the hotel data set, the product ranges over 1.1 · 106 values. Once we have

computed λ̂, we can then estimate S(t) using the identity 5.2.

Assume now that a given cookie has events at ti for i ∈ (1, 2, . . . , n). Since we are using a

proportional hazard model with time-varying covariates, at each time ti we have a covariate

vector Xi. Similarly, we have a risk multiplier based on that covariate vector of Xiβ̂, obtained

from on our partial-MLE fit of β. We can therefore estimate the survival probability at any

time tk as

S(tk) =
[
Ŝ(tk)

]Xiβ̂
where ti ≤ tk < ti+1.

1The concept of cookie weighting is interesting within its own right, although I do not delve into the issue
in this work.

Recall that we have sampled our data so that converters are over-represented relative to reality. For instance,
the hotel data contains about seven thousand converters and fifty thousand non-converters. The converter
sample represents 20% of the total converter population during this time period. In contrast, the non-converters
represent 0.08% of the total non-converter history. As such, if were going to produce accurate conversion
probabilities we should weight non-converters 250 (equal to 20/0.08) times greater than the converters. Instead
of carrying these weights along through all the calculations in the text, we ignore the issue to all clearer
exposition of our central topics and simpler notation.
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It is one minus this quantity that is plotted in Figure 5.1.

One other interesting view of these data, illustrating one potential use of the visualization

techniques I am discussing, is seen in Figure 5.3. This figure shows the conversion probability

over a 30 day time period for ten different cookies, all with ten records. The y-axis has been

truncated to show the nine cookies with relatively small estimated conversion probabilities.

The topmost line, representing a cookie with two search clicks and one display click, has

a maximum probability of conversion of 44%. (If we change the y-axis to cover this full

range the remaining nine cookies are much harder to distinguish.) There are two short lines,

representing cookies with 2 and 14 days of history. The rest of the cookies have 30 days of

history. Again we return to the overarching goal of this chapter. A marketing manager, faced

with a choice of whom to show an advertisement to, would like to choose the cookie where

an additional ad results in the highest change in conversion probability. This quantity can

be estimated from the data underlying these curves. Moreover, this plot gives an easy way

to illustrate the different experiences of ten cookies, all of which may appear similar when

summary statistics are looked at.

5.2 The Tie to Engagement Mapping

In the previous section, we described the mechanism by which we can plot conversion prob-

abilities over time to investigate the probability that a cookie will convert. In this section

we extend the concept of plotting survival probabilities to plotting Engagement Mapping

(E-Map) models.

There are important reasons why we are making this extension. E-Map is ubiquitous for major

advertisers using Atlas. Nearly all advertisers have implemented an E-Map model, typically

one of the default models. On the other hand, for many day-to-day marketers concepts such

as of proportional hazard models and baseline survival estimates are esoteric. Additionally,
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Figure 5.3: This figure shows the estimated conversion probability over a 30 day time period
for ten different cookies, all with ten records. The y-axis has been truncated to show the nine
cookies with relatively small conversion probabilities. The topmost line, representing a cookie
with two search clicks and one display click, has a maximum probability of conversion of 44%.
Shorter lines indicate short cookie histories.
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few of these companies have the ability to gather their log records and perform the necessary

analyses to produce the estimates of the last section. If the only route to visualizing cookie

paths runs through expensive and complicated analyses, the majority of advertisers will not

be interested. Therefore, I seek to develop a methodology that allows visualization of cookie

histories based on E-Map parameters that agrees in some sense with the PHM model estimates,

allowing one tool (Engagement Mapping) to serve as a conversion attribution methodology

and a visualization technique. In short, if all marketers had access to the analysis of Chapter 4

then the results of the previous section would suffice. These analyses are unlikely to become

widely available in the near term and so I will show that we can use E-Map directly to plot

cookie histories.

That said, how can one use a conversion attribution methodology to produce plots? Whereas

with PHM the solution is obvious (plotting conversion probabilities over time) with E-Map

we will require some additional motivation. We will build on the ideas of Section 2.3 and we

suggest the reader be familiar with the concepts found there, particularly the concept of how

E-Map distributes conversion credit across marketing events.

Fundamentally E-Map is designed to take a given conversion and share credit across all media

exposures leading up to that conversion. In order to conceptualize E-Map as a visualization

tool, I must first expand the definition. First, some notation: E-Map can be thought of as a

function, f , taking as input the following: a set of marketing data, X; a vector of parameters, θ,

that define the E-Map function; and time, t, measured as time elapsed since the first marketing

exposure. Assume further that X is an n × p matrix where n is the number of marketing

exposures to a person before their conversion and that there are p attributes determining

the conversion score via E-Map. Further assume that X is sorted in ascending time order so

that row i precedes row j in time if i < j. (This will just be a notational convenience for

what follows.) The mechanics of this conversion attribution function, f(X, θ, t), now become

important. The final function value is calculated in two steps, returning first raw scores

for each exposure in X and then normalizing these so they sum to 1. The two columns of
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Table 2.2 illustrate this concept. The base weights are the starting point for the raw scores,

the column giving the percent of credit shows the normalization at work. Although this

normalized score is what is required for E-Map to be useful to advertisers as a conversion

attribution methodology, in the discussion below I will work with raw scores. Furthermore,

we will add the parameter of time to the function.

Let f(X, θ, t) = s be an E-Map function and let us define this function at any time t for a set

of exposures to a cookie X and given a set of accompanying parameters θ. When used as a

conversion attribution methodology, f just maps marketing data (X) onto scores (sc) at the

time of the conversion (tc). Write f as f(X, θ, tc) = sc where tc is the time of a conversion

(referred to as ti in Chapter 4) and sc is the resulting score vector. The vector sc/
∑

sc is

the resulting normalized score vector for the conversion. Contrary to this intended use, we

will now consider E-Map functions evaluated at any time t > 0. If t predates the time of any

marketing event in X then f(X, θ, t) ≡ 0, since no credit is given for events yet to take place.

Ff t is so far past the events of X that there are no more events in the advertiser’s conversion

window (again, typically 30 days if there is a click in X and 7 days if there are only ad views)

then we will have f(X, θ, t) ≡ 0 2. The case between these two extremes is more interesting.

Index the events in X by k ∈ (1, 2, . . . , n). Note that if k1 < k2 in our index then tk1 < tk2

since X is ordered by time. Then, if tk ≤ t < tk+1 we have f(X, θ, t) > 0. One way to think

about this generalization of the E-Map function is that f(X, θ, t) assumes (counter-factually)

that a conversion exists at time t and then applies the E-Map model using only the preceding

events in X.

Since we are not normalizing the scores in f(X, θ, t) = s(t), the sum,
∑

s, will fluctuate with

time. Figure 5.4 gives an example of a score vector. The stair-step nature of the function is

the result of additional messages being delivered, the drop in credit after the peaks represent

the role of the recency decay parameter. Three times are highlighted, indicated by a dark

2The same results hold for the PHM formulation. S(0) = 1, since no cookies have converted at time 0 and
the hazard rate drops to 0 once we have gone more than 30 days from an ad exposure.
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line, at t = 10, 17, and 24.6 days.

There are important differences between the E-Map plotted values and the PHM conversion

probability plot. First, the PHM plot is strictly non-decreasing whereas the E-Map plot

decreases because of the recency function. Second, the E-Map plot is simply plotting
∑

s(t)

over time—it is not plotting probabilities. In some sense this E-Map function is the analog

of λ(t) rather than S(t), measuring the moment-by-moment propensity to convert. We can

create an analog of the cumulative hazard function, Λ(t), by taking the cumulative sum of the

function in Figure 5.4. Figure 5.5 shows the same data with the score summed cumulatively

rather than displayed instantaneously.

We have done simulation analyses on the correlation between these two sets of scores, as

well as tried to prove a lower bound on the correlation. Typically the correlation between

the cumulative E-Map score and S(t) is quite good (the mean correlation across 1000 hotel

cookies was 0.46) although there is a great deal of variability (the quartiles Q1 and Q3 are

0.11 and 0.97 respectively). In fact, the distribution of correlations was bimodal: cookies with

one record all had correlations under 0.22 with a mean of 0.13; cookies with more than one

record had correlations greater than 0.56 with a mean of 0.93. In order to understand this

disparity, we take a closer look at the respective scores.

For cookies with one record, the E-map score at any time after the advertisement is shown

is simply b · s · r where b is the baseweight, s is the size multiplier, and r is the recency or

order effect. See Equation 2.1 for the details. The PHM estimate of conversion probability is[
Ŝ(t)

]Xβ̂
. The expression Xβ̂ is the dot product of the coefficients with the individual event

covariates. The covariates in the models of Chapter 4 are chosen to mirror the variables in

the E-map model. Thus, increasing values of b · s · r translate into larger values of Xβ and

decreased survival estimates. Conversion probabilities increase as E-Map scores increase.

What accounts for the wide variety of correlation coefficients seen for cookies with only one
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Figure 5.4: The thin continuous line represents the value of
∑

s(t) over time. The function
f(t|X, θ) = s(t) gives a vector of scores for the individual marketing messages that have been
delivered. The stair-step nature of the function is the result of additional messages being
delivered, the drop in credit after the peaks represent the role of the recency decay parameter.
Three time values are highlighted, indicated by a dark line, at t = 10, 17, and 24.6 days.
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Figure 5.5: A cumulative plot version of Figure 5.4.
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record? The answer is, surprisingly, time of event. Through an artifact of the data collection

process, λ(t) = 0 for t > 30. (We only collected 30 days of converter history for computational

convenience.) Cookies that do not convert, however, can have longer histories and, when the

E-Map curve is built over longer periods of time, the flat stretch of conversion probability

from day 30 onwards causes lower correlations. When we restrict our analysis of the correla-

tion between E-Map scores and conversion probabilities from PHM, the mean correlation for

cookies with one record goes from 0.13 to 0.17 (still not great). The overall mean correlation

goes from 0.46 to 0.61. One of the ongoing projects from this work is to derive a mathematical

relationship between conversion probabilities and E-Map scores.

5.3 A Statistical View

This section briefly reprises the key statistical points from this chapter, particularly for a

non-marketing audience. In this chapter we describe a technique that can be used to visualize

cookie histories as they vary over time. I begin with the estimated survival function using the

proportional hazard model:

λ(t,X|β) = λ0(t) · eXβ

where λ is our hazard function, λ0 is the baseline hazard function, and eXβ is the term

expressing the effects of additional covariates on the hazard. From this we can derive the

survival function as

S(t,X|β) = [S0(t)]Xβ .

This survival function is illustrated in Section 5.1. Plotting these survival functions on data

as large as ours required a full rewrite of the code in R’s survival package3.

I then formulated an approach to plotting cookie histories using Engagement Mapping models

3The code appendix contains the code and Section 4.6 details the changes required to create the estimates
necessary for the figures in this chapter
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instead of proportional hazard models. I do this because many advertisers have access to E-

Map but not to PHM (or, more accurately, not to statisticians to perform PHM analyses on

their behalf). Moreover, the correspondence between E-Map and the PHM requires additional

investigation and explication before PHM will be accepted beyond the field of statistics. I

then illustrated how E-Map scores can be used to plot a cookie history and carried out a brief

analysis looking into the correlation between E-Map scores and PHM estimated conversion

probabilities. The correlation is always positive (and we provide a heuristic argument as to

why this makes sense) and, when the time domain is restricted so that the functions are

evaluated over the same period, has a mean correlation of 0.61 on a sample of 1000 cookies

from the hotel data set.



Chapter 6

Finding Common Cookie Histories

with Clustering

A principal challenge with applying conversion attribution models is the inability to apply the

models to representative case histories, measure the resulting attribution, and visualize the

results. A further challenge with models such as those in Chapter 4 is that marketing managers

require good agreement between the fitted models and measured data. Practitioner adoption

will be minimal if a model predicts that users receiving three ads and clicking on one will

convert with probability 0.01 and these types of users actually have a measured conversion

rate much higher or lower than this. Therefore, it is desirable to calculate model fits and

summary statistics (from the actual data) for a variety of cookie scenarios. In traditional

modeling, this can often be done rather simply: fit the model to representative values for the

explanatory variables. In conversion attribution modeling, this approach will be insufficient

as the model is fit to a cookie history with multiple events over a range of times.

One solution is to create mock data sets. The downside of this approach is the modeler

runs the risk of creating a user history that does not exist. As Therneau and Grambsch say,

85
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“creating such a covariate path is difficult; it is all too easy to create baseline hazards that

correspond to a subject who is either uninteresting or impossible.” [32] Although in our data

impossibility is not a great concern 1, we do worry that our fitted models will be applied

to implausible user histories. A fictitious path showing one display impression every day for

seven days may be interesting from a modeling perspective but may not occur “in the wild.”

Moreover, the data sets we work with are quite large: tens of thousands of users with millions

of records. How can one discover patterns when faced with such a volume of data? Traditional

summary statistics are almost useless at this scale. While one may simply calculate the average

number of impressions or clicks across the users, these numbers may bear little relation to an

actual history experienced by a user. We wish to understand converters and therefore finding

common experiences is a useful undertaking.

In this chapter, we explore an approach that is different from the reasoning-by- summary-

statistic tack taken by most practitioners: clustering cookies into groups. There are two

immediate benefits of such an approach. The first is that we can discover patterns in converter

histories. Each cluster should represent a set of common user experiences and from those we

can derive a better understanding of the types of users that convert, their patterns of behavior,

and the probability that these types of users will ultimately convert. The second benefit lies

in the “center” of these clusters. We can visualize (using the techniques of Chapter 5) the

users that form the medoids of the clusters. The difficulty in working with the details for

thousands of cookies can be avoided by using these representatives. Finally, we can score the

clusters overall with both the model and the data and determine how good a job in aggregate

we are doing estimating the probability of conversions.

The first section of this chapter describes the theoretical underpinnings for our clustering

approach. The second section is a detailed example using data from a hotel advertiser.

1The canonical example of the impossible subject is using a value of 0.5 for a variable such as male where
0 corresponds to female and 1 to male.
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6.1 Clustering Based on User Histories

We begin by discussing the data set we will use to cluster cookie histories. We then turn

to the primary clustering algorithm we will use, pam, found in the software package cluster

within R. Next, we focus on the distance matrix that lies at the foundation of any clustering

technique and ours in particular. We then compare the results of the partitioning-based

clustering algorithms with a hierarchical clustering algorithm. Finally, we leverage the gap

statistic, a “number of clusters” statistic, to compare our results with some more objectively

derived cluster results.

6.1.1 Data for Clustering Cookies

Recall the data structure in Table 2.1 from our chapter on online advertising. This table

represents a set of log records (captured by the server) for a single cookie. To cluster these

data we must create a dissimilarity matrix that tells us the distance between observations.

Since we wish to cluster cookies rather than records, we must summarize the data at the

record level and create a new data set at the cookie level.

Certain metrics for cookie experience immediately suggest themselves. The first is simply

the number of records for the cookie. Users with very little Internet activity are less likely to

transact online and probably require different marketing approaches. We can further subdivide

the total number of advertising events into counts of impressions and clicks. Again, users who

have very few impressions are typically less active Internet users. Similarly, recent research

from comScore [20] indicates that the presence or absence of clicks as well as click volume tells

us more about Internet behavior than might have been previous suspected. In addition to

these basic metrics, there are natural subdivisions within them. For the impression count, it

seems worthwhile to keep count of the type of impressions delivered across our three principal

types of events: text links, standard JPEG or GIF display ads, and Flash or java rich media
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ads. These three types will be denoted “Text”, “Display”, and “Flash”. For clicks, we add

an additional variable that denotes whether or not the click happened on a search placement.

The behavior of people who click on search ads is different from the behavior of those clicking

on display ads. Typically search events appear closer to a conversion after the consumer has

decided to take action to make a transaction. Display clicks, by contrast, tend to be more

spur-of-the-moment and often indicate greater engagement with the advertiser’s ads. Finally,

we suspect that users fall into certain basic types based on the type of media they have been

exposed to. There are those who are exposed only to display advertising, those who are

exposed to only search, and those who have both search and display in their histories. We

create binary variables for this partition of the data set.

In this chapter, we make extensive use of data from a hotel advertiser. These data are

summarized in Table 6.1.1. Since the data are displayed so comprehensively, we will not

belabor the data description except for these few points:

� RecordCount is the total number of records (both clicks and impressions) in a user’s

history and shows a great deal of variability with a median of three records, a mean of

32, a 95% percentile of 156 and a maximum over 3000.

� Text, Display, Flash, and Search Events show little variability except for Flash

which composes over 95% of the display ad views. There are a variety of search events

considering the typically low volumes we see for that medium.

� Clicks and Display Clicks show a similar distribution as search events, unsurprising

since clicks and search events are nearly synonymous. Display clicks, the subset of clicks

that occur on display ads as opposed to text ads, show an expected lower volume.

� DisplayOnly, SearchOnly, and SearchAndDisplay partition the data set with 72%

of converters being exposed only to display, 17% having only search events, and 11%

showing exposure to both media.



6.1. CLUSTERING BASED ON USER HISTORIES 89

Hotel Advertiser Conversion Data
10 Variables 7318 Observations

RecordCount n unique x̄ .05 .10 .25 .50 .75 .90 .95
7318 393 31.94 1 1 1 3 16 74.0 156.1Text n unique Mean .05 .10 .25 .50 .75 .90 .95
7318 20 0.5827 0 0 0 0 1 2 3Display (JPEG and GIF)

n unique Mean
7318 13 0.0466

0 1 2 3 4 5 7 9 10 13 17 32 34
Frequency 7166 100 30 7 4 3 2 1 1 1 1 1 1
% 98 1 0 0 0 0 0 0 0 0 0 0 0

Flash n unique Mean .05 .10 .25 .50 .75 .90 .95
7318 391 31.31 0 0 1 2 15 74 156SearchEvents n unique Mean .05 .10 .25 .50 .75 .90 .95
7318 18 0.5295 0 0 0 0 1 2 3

0 1 2 3 4 5 6 7 8 9 10+
Frequency 5253 1232 437 189 86 49 26 10 13 5 18
% 72 17 6 3 1 1 0 0 0 0 0

Clicks n unique Mean .05 .10 .25 .50 .75 .90 .95
7318 22 0.6259 0 0 0 0 1 2 3DisplayClicks n unique Mean .05 .10 .25 .50 .75 .90 .95

7318 14 0.09634 0 0 0 0 0 0 1

0 1 2 3 4+
Frequency 6951 238 66 26 37
% 95 3 1 0 0

DisplayOnly n unique Mean
7318 2 0.7178

SearchOnly n unique Mean
7318 2 0.1727

SearchAndDisplay n unique Mean
7318 2 0.1095

Table 6.1: This table has an extensive description of the hotel advertiser data used for clus-
tering in this chapter. There are 10 variables total and this table gives summary statistics
and the distribution for all.
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6.1.2 Calculating a Distance Matrix

The goal in cluster analysis is to segment the data in such a way that the cookies within a

cluster are more similar to each other than they are to cookies in other clusters. In order to

achieve this goal we must define some notion of dissimilarity between observations. Let D be

an N ×N distance matrix where, for the hotel data, N = 7318. Nearly all algorithms require

a symmetric distance matrix (D = DT ) and that will be the case for these data. Additionally,

we define dii = 0 for all i. In nearly all clustering applications the choice for distance is simple

Euclidean distance where, if xi and xj are two vectors of observations of length n then

dij = L2(xi, xj) =
1

n

n∑
k=1

(xki − xkj)2

where dki denotes the k element of observation i.

With our data set the Euclidean norm is inappropriate. The first objection is that the variables

are of different scales with RecordCount ∈ (1, . . . , 3129) whereas the partitioning variables

are binary. This problem can be remedied by scaling the variables but nevertheless prob-

lems persist. Following the discussion in Kaufman and Rousseeuw [22], who in turn derive

their work from Gower [13], certain of our binary variables can be considered “asymmetric”.

Whereas symmetric binary variables carry equal weight with agreement and disagreement

(e.g., a variable called male coded as 0 or 1), asymmetric variables convey greater information

in agreement than in disagreement. A useful example of such variables could be diseases. If

we had a health data set that included the presence or absence of various diseases, we would

put much greater weight on the mutual presence of a disease than on the mutual absence.

Similarly, if two cookies share a 1 for SearchOnly, we wish that agreement to carry dispro-

portionate weight. This could be accomplished with scaling although the R function daisy

gives a convenient alternative option. The daisy variant of the Gower similarity computes
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distances as

d(xi, xj) =

∑n
k=1 δ

(k)
ij d

(k)
ij∑n

k=1 δ
(k)
ij

where δ
(k)
ij is an indicator variable for the kth element in our data vector between observations i

and j and d
(k)
ij is an, as yet unspecified, element-level distance calculation. Typically δ

(k)
ij = 1 in

the case where both observations have non-missing values in the k variable. The only exception

to this rule is that δ
(k)
ij = 0 when k is an asymmetric binary variable and x

(k)
i = x

(k)
j = 0.

In other words, the mutual absence of trait measured by the kth variable is not evidence of

similarity between observations i and j. This distance metric requires the classification of

variables into different types. For each of these types, a different distance function is defined.

The first variable type is the common interval-scaled variable where the distance function is

simply the L1 norm divided by the variable range or

d
(k)
ij =

|x(k)
i − x

(k)
j |

Rk
(6.1)

d(xi, xj) =

p∑
k=1

d
(k)
ij (6.2)

where Rk is the range taken over all observations on the kth variable. If all variables are

interval-scaled, then this distance metric yields the Manhattan distance metric. For categorical

or binary variables our distance metric is

d
(k)
ij =

 1 if x
(k)
i 6= x

(k)
j

0 if x
(k)
i = x

(k)
j

This more elaborate distance metric has nice features for our hotel advertiser data set. Dif-

ferences in the number of events and records are scaled to 0-1 and carry equal weight. Our

binary variables, all considered asymmetric here, do not pull observations together when nei-

ther observation falls within a particular group.
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The distance matrix defined above justifies the difficulty in its assembly by mirroring our

intuition about what distinguishes users. For thoroughness, I tested clusters based on the

standard distance matrix using the Gower dissimilarity measure and also using standardized

variables with Euclidean distance. (The variables were standardized by subtracting the mean

and dividing by the mean absolute deviation.) The Gower clustering without custom variable

definition, treating all variables as interval scaled, showed relatively good agreement with the

more elaborate model. Without proper treatment of the binary variables, there were higher

rates of these variables being split across clusters. For instance, with three clusters it was

common to see one cluster containing search, display, and search and display cookies. In

contrast, using the more complicated approach, we see strict separation between SearchOnly,

DisplayOnly, and SearchAndDisplay in the three cluster solution. With the interval-scaled

Gower we see mixing between the two categories involving search. The scaled Euclidean

distance matrix yields similar results with the blending even more pronounced. As such we

proceed with the custom Gower distance matrix for the clustering algorithms discussed in the

next two sections.

6.1.3 Partitioning-based Clustering

We focus on partitioning-based clustering algorithms that assign each observation directly to

a cluster without regard for probability models. By far the most popular version of these

types of algorithms is the K-means algorithm. The algorithm is simple if we assume a random

starting configuration: every observation is assigned to the cluster pertaining to the cluster

center to which it is closest, followed by a recalculation of the cluster centers. The analyst

must define K, the number of clusters into which the data will be grouped. The process

repeats until assignments cease to change. With well-chosen cluster center initialization or

a lucky random start, this algorithm converges quite quickly. The best practice is to start

from several random starting locations and compare the output. Comparing the resulting

clustering allocations can be pretty tedious, so it is unclear how many people carry out this
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step in practice.

We use a slightly more robust version of K-means known as Partitioning Around Medoids

(PAM)[22] and implemented in the R function pam. PAM has a number of advantages in our

case over K-means: we can work from our custom dissimilarity matrix; we are not constrained

by Euclidean distance; and the cluster centers are actual observations in the data set rather

than average observations. (In most cases this last advantage is slight since, if there is an

observation close to the center, that can always be used instead to summarize the data.) The

algorithm for PAM is very similar to K-means:

1. Choose a k, the number of clusters we will create.

2. Randomly choose k observations from the N total observations in the data set. Call

these medoids mk for k ∈ (1, . . . ,K).

3. Assign each observation to one of the clusters, C(1), C(2), . . . , C(K). This is based on

the formula

C(i) = argmin
1≤k≤K

d(xi,mk)

where d(xi,mk) is the distance between observation xi and cluster medoid mk.

4. For each mk and each xi with C(i) = k, try switching mk and xi and compute the total

distance in the resulting configuration. This total distance is defined in terms of having

observation i as a medoid:

D(mi) =
K∑
k=1

∑
C(j)=k

d(mi, xj).

In other words, we sum the distance between mi and xj for every xj with C(j) = k as

in step 3, and then sum over all K clusters.

5. Select the mk giving the lowest total distance.
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6. Halt when there are no more medoid changes.

As in the K-means algorithm, it behooves the analyst to start several times and compare

results. Fortunately, in our data set, there is almost never any variation on the clusters

ultimately chosen. (This is not the case when we depart from the Gower distance with specific

variable types. In the other cases the blending that happens between groups introduces a

stochastic element to the final cluster memberships.)

Figure 6.1 illustrates an example of the PAM applied to the hotel data with k = 3. The

choice of k = 3 is made here to give us a concrete example—later we will explore approaches

to estimating the “true” number of clusters in the data set. We also take this opportunity

to introduce a custom chart summarizing clusters for these data. While we will defer a full

exposition of the clustering of the hotel data until Section 6.2, it is worthwhile to spend some

time orienting ourselves in the visualization of these clusters so that we can evaluate our future

cluster decisions. Ultimately, three clusters may not be optimal to understand these data, but

that number gives more interesting results than two clusters and allows easier decoding than

a large number of clusters.

Figure 6.1 summarizes cluster membership across all the dimensions in our data. The figure

is a complicated “dashboard” of the clustering results, divided into four sections. Note that

this chart is best viewed in color, although it is possible to distinguish many of the features

based on the different plotting points and slight grayscale differences in black and white.2

The topmost section indicates the number of total records per cluster with a stylized box plot.

The thicker line denotes the inter-quartile range (IQR = Q3−Q1). The thin line denotes the

whiskers of the box plot (Qi±1.5∗IQR where i = 1 or 3). The marked point is the median. We

see, for instance, that Cluster 1, denoted by a hollow circle and a green color, has a relatively

large number of records per cluster member although the spread is quite wide. Note also that

2The excellent Color Brewer [4] with attendant R package RColorBrewer makes it easy to choose good colors
for both color and BW printing.



6.1. CLUSTERING BASED ON USER HISTORIES 95

3 Cluster Comparison

Search & Display

Search Only

Display Only

Clust. Size

Disp. Clicks

Clicks

Search Events

Flash

Display

Text

Records

●

1 32.5 64

●

●

●

●

●

0 19.7 39.4

●

●

0 1.22 2.45

●

●

●

0 0.5 1

● Cluster 1 Cluster 2 Cluster 3

Figure 6.1: Summary data derived from the three cluster solution using the PAM algorithm.
The figure is divided into four sections. The topmost indicates the number of total records
per cluster with a stylized box plot. See the text for a description. The next section gives
point estimates for the mean number of events by cluster for four different types of events.
The third section summarizes clicks, again with means. Note the differing x-axes in these
middle two sections. Finally, the last section depicts four values on a 0-1 scale: the percent
of observations in the cluster, the portion that are display and search only, and the portion
that have both search and display.
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the x-axis for the records is indicated below the last cluster box plot and ranges from 1 to 58

records.

The next section gives point estimates for the mean number of events by cluster for four

different types of events: Text, Display, Flash and Search. The vertical position of the points

has been jittered to enhance separation between points. Again there is a custom x-axis for

this section (ranging from 0 to 38.6 events). Cluster 1 shows some Text/Search events and a

large number of Flash events. Search events are a subset of Text events, so the agreement in

volume between the two is expected. No clusters show any Display events, unsurprising given

their scarcity in the data set.

The third section summarizes clicks, again using the mean value for the cluster as the summary

statistic. Here the x-axis ranges from 0 to 2.35. Clicks are highly correlated with Search and

thus we see high values for Cluster 2. Interestingly, Cluster 3 (comprising search and display

converters) shows the highest average number of display clicks of and overall clicks.

Finally, the last section depicts four values on a 0-1 scale: the proportion of observations in the

cluster, the proportion that are display and search only, and the pro portion that have both

search and display. Cluster 1 is the smallest cluster, representing about 11% of converters.

Cluster 3 is the largest at 72% of all converters. The final three variables partition the data

set and it is notable that each cluster comprises just one group. Our example cluster, Cluster

1, is made up of those converters who both clicked on a search term and were exposed to

display advertising. It is at this point that our custom distance matrix bears fruit. Without

treating these final three variables as asymmetric binary variables, we find that these groups

blend within our clusters. Marketing research, however, indicates that converters coming

from different online media (search versus display, principally) are both quantitatively and

qualitatively different. It is satisfying to see the clusters respect this natural relationship and

it seems our partitioning algorithm gives a practically useful result to be discussed in greater

detail below.
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6.1.4 Hierarchical Clustering Approach

A class of clustering algorithms provides an alternative to partitioning methods. These are

hierarchical clustering algorithms and, as the name implies, they enforce a hierarchy on the

data, attempting to form the equivalent of a taxonomic tree for the data in hand. Hierarchical

clustering algorithms produce clusters of every size from 1 to N , the number of observations in

the data set. The analyst must decide where to “cut” the tree and form clusters. This process

is the equivalent of choosing the number of clusters in a partitioning algorithm. Hierarchical

clustering algorithms come in two flavors depending on whether one splits clusters (divisive

clustering) or starts with every observation in a cluster of one and begin joining the clusters

(agglomerative). Agglomerative clustering has been studied much more extensively and thus

we focus on that approach in this section.3

In agglomerative clustering, we begin with N clusters. Over the next N − 1 steps, clusters

are successively merged. The algorithm, therefore, depends critically on the ability to define

distances between clusters. Let K1 and K2 denote two clusters (with K total clusters).

We wish to define a distance metric d(K1,K2) to represent the distance between the two

groups. There are a profusion of techniques; we will mention only a few. The single linkage

method defines the distance between the clusters to be the minimum distance between any

two members:

ds(K1,K2) = min
xi∈K1 xj∈K2

d(xi, xj).

The opposite of the single linkage is the complete linkage which takes the maximum of the

distances.

dc(K1,K2) = max
xi∈K1 xj∈K2

d(xi, xj).

In the parlance of the clustering literature, single linkage tends to form long clusters and is

3We tested divisive clustering, using R’s function diana. The results were not useful. The algorithm begins
with every observation in the same cluster and then splits to create new clusters. With the hotel data splitting
produced new clusters of only one observation, so that when k = 8 we had one cluster with over 99% of the
observations.
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prone to “chaining”. Complete linkage tends to form compact circular clusters. The final

distance method we try, average cluster linkage, is defined as

da(K1,K2) =
1

NK1NK2

∑
xi∈K1

∑
xj∈K2

d(xi, xj)

and attempts to compromise between the single and complete linkage. Average linkage is the

most popular choice for hierarchical clustering (although there has been a rise of “flexible”

techniques that attempt to choose a linkage method based on ones data). The typical concern

in the literature, echoed, for instance, in Hastie and Tibshirani [16], is that bad clusters can

be formed if the data are not put on a common scale.

All three of these methods give results that exactly match the PAM algorithm for k = 3.

Figure 6.2 displays the summary data for the three cluster solution using single linkage. It is

satisfying that aggolmerative clustering with three clusters exactly matches the PAM results

(this was not the case with divisive clustering).

At k = 3, complete and average linkage give clusters that match our previous two approaches.

For k > 3, however, we see a weakness in these methods. In table 6.1.4 we summarize the

number of observations by cluster for the eight cluster solution for single linkage, complete

linkage and average linkage, a method we discuss below. Percentages for PAM are also included

as a basis for comparison. The table is organized so that the largest cluster has the smallest

number, so the cluster size decreases as we move down the table. PAM yields reasonably-sized

clusters; the smallest two (10.5% and 6.25% of converters respectively) are not particularly

small. The hierarchical methods have only 5 or fewer observations in the smallest two clusters

for all three methods. In short, we see nice results for a small number of clusters such as

k = 3. Once the number of clusters grows, however, we see that all methods make very small

clusters beyond the initial three. This is unsatisfactory since the goal of clustering analysis

in this case is to build useful groups of users from which we can infer interesting behavioral

information. Going forward we will focus on partitioning-based methods.
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3 Cluster Comparison

Search & Display

Search Only

Display Only

Clust. Size

Disp. Clicks

Clicks

Search Events

Flash

Display

Text

Records

●

1 29.5 58

●

●

●

●

●

0 19.3 38.6

●

●

0 1.18 2.35

●

●

●

0 0.5 1

● Cluster 1 Cluster 2 Cluster 3

Figure 6.2: Summary data derived from the three cluster solution using aggolmerative clus-
tering. See Section 6.1.3 for a description of this chart type. Results are an exact match with
those of Figure 6.1 with the display only, search only, and search and display variables acting
as markers for the three clusters.
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Percent of Observations
Hierarchical Aggolmerative Partitioning-based

Cluster Number Single Complete Average PAM

1 71.950 71.733 71.733 18.900
2 17.250 17.250 17.250 15.350
3 10.700 10.517 10.517 13.950
4 0.033 0.217 0.217 13.333
5 0.017 0.133 0.133 11.033
6 0.017 0.083 0.083 10.733
7 0.017 0.033 0.033 10.450
8 0.017 0.033 0.033 6.250

Table 6.2: This table gives the number of observations per cluster with k = 8 for four different
clustering algorithms. The clusters are sorted so that larger clusters have smaller cluster
numbers. For the hierarchical clustering allocation, only the first three clusters have any
meaningful size. In contrast, the partitioning method gives a reasonable allocation of users
to all eight clusters. In fact, for PAM, the ratio of the largest cluster size to the smallest is 3.
For complete-linkage, that ratio is 2152.

6.1.5 The Gap Statistic

The Gap statistic [33] was developed to allow an estimation of the number of clusters in a

data set by comparing the clustering of reference data sets to the clustering of the actual data

set. Here we will give the heuristic argument so that the reader may understand the method.

The critical idea is to modify an ad hoc approach to estimating the number of clusters: the

scree plot. The scree plot is based on the within-cluster dispersion, called Wk for k clusters.

The statistic Wk is easy to calculate: within each cluster, add the squared distances between

each observation and the centroid and then sum the results for every cluster. Although

we cannot directly apply this method to the PAM clustering, the obvious extension is to

sum the within-cluster dissimilarities. Both the within-cluster sum of squares and the within-

cluster sum of dissimilarities decrease monotonically as k increases—similar to the reduction in

residual sum of squares in regression with an increase in the number of explanatory variables—

although the curve tends to flatten out for some k and in some contexts. As stated in [33],

“statistical folklore has it that the location of such an ‘elbow’ indicates the appropriate number
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of clusters.” The Gap statistic attempts to formalize that heuristic.

The Gap statistic attempts to normalize Wk by comparing it to a reference distribution based

on the (strongly) null hypothesis of a uniform distribution of the variables across their range4.

The following is the algorithm for the computation of the Gap statistic for interval-scaled

data:

1. Cluster the observed data, varying the total number of clusters from k = 1, 2, . . . ,K,

giving within-cluster dispersion measures Wk, k = 1, 2, . . . ,K.

2. Generate B reference data sets using one of two methods described below. For each

of these, cluster the generated data into k = 1, 2, . . . ,K clusters and derive dispersion

measures W ∗kb, k = 1, 2, . . . ,K b = 1, 2, . . . , B and compute the estimated Gap statistic

Gap (k) = (1/B)
∑
b

log(W ∗kb)− log(Wk).

3. Calculate the standard deviation of the Gap statistics and call this number sdk. Define

sk =
√

1 + 1/Bsdk. Finally, choose the number of clusters via

k̂ = smallest k such that Gap (k) ≥ Gap (k + 1)− sk+1.

In other words, choose the number of clusters such that the Gap for k is larger than the

Gap for k + 1 minus one standard deviation.

Tibshirani, et al. [33] propose two ways of generating the reference data sets. The first, simpler

way is to draw new values uniformly from a p-dimensional box bounding the observations.

The second method is similar but aligns the box with the principal components of the data.

The performance of the methods is similar although the second method performs somewhat

4This null hypothesis is particularly strong because it ignores any distributional information about the data
except for the range and additionally ignores any covariance information between the variables.
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better when the clusters are ellipsoidal in shape.

One benefit of the Gap statistic approach to the number of clusters problem is that it can be

applied with a variety of clustering algorithms. The original paper makes use of both k-means

and hierarchical clustering methods, though an extension to PAM is immediate if we modify

our definition for Wk and W ∗kb from the within-cluster sum of squares to the within cluster

sum of dissimilarities.

Calculating the Gap statistic is very computationally costly on data sets of the size we deal

with. With the hotel data, our matrix of converters is 7318 × 11. Each reference data set is

the same size and requires the creation of a distance matrix so that clusters can be made of

all k that we test. Nevertheless, as we see in the next section, we apply the Gap approach to

the hotel data with interesting, albeit mixed, results.

6.2 Clustering the Hotel Data with PAM

In this section we apply the approaches outlined in the previous section to the hotel advertiser

data summarized in section 6.1.1. We first explore a partitioning clustering algorithm using

the traditional heuristic approaches to determining the number of clusters.

We investigate a number of clustering solutions depicted in Figures 6.3,6.4, 6.5, 6.6, and 6.7.

Each figure illustrates the results from a different number of clusters with K ∈ (1, 2, 3, 4, 8)

respectively. (The use of k = 1 is non-traditional but carried out to afford us a view into the

baseline measurement for the entire data set.) The next set of clusters build upon each other

and we will talk about each in turn.

Figure 6.3 calibrates our understanding of the data. A detailed explanation of the structure of

this chart appears with Figure 6.1 and in Section 6.1.3. As we see from the top box plot, there
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is a wide variety in the number of records. At least 25% of converters have only 1 record, the

median is 3, and the upper hinge ranges to 38. As seen in Table 6.1.1, the mean is 32 and the

maximum value is in the thousands. The vast majority of events are Flash with the average

number of search events being 0.5 though the median is 0. Display clicks are rare—only 5%

of converters show non-zero values. Finally, we see that 72% of converters are display only,

17% are search only and the remaining 11% have both search and display in their histories.

The vast majority of display converters do not click on an advertisement. These last three

groups will form the foundation for our discussion of the clusters to come.

The two cluster solution, Figure 6.4, seems imperfect. We see a split between low-volume

search converters, Cluster 1, and high-volume display converters. Those converters with both

search-and-display are split between clusters with two-thirds falling into Cluster 2. Investigat-

ing further, we find that those search-and-display converters who fall into cluster 1 have either

2, 3, or 4 records with fewer clicks and almost no display clicks. Converters in cluster 2 have

a minimum of 5 records, a median of 17 records and a mean of 65 records. Since search-only

converters tend to have many fewer records than display-only converters, we see a bifurcation

of those sharing both traits into high and low volume.

The three-cluster solution is the first partition that seems to satisfy the natural grouping in

the data, placing the three types of converters in separate clusters. The split between groups

is as follows: cluster 1 holds display-only converters; search-only converters are in cluster 2;

and the converters with both search and display activity are in cluster 3. Since these groups

define the clusters exclusively, the rest of Figure 6.5 simply provides descriptive statistics on

these groups. Notice, however, the relatively large spread in the number of records for clusters

1 and 3. We will see cluster 1 divide in subsequent clusterings. Unsurprisingly, clusters 2 and 3

show the most clicks. Interestingly, cluster 3 has the largest number of display clicks—cookies

who click on search ads appear to be more likely to click on display ads as well.

The four-cluster solution (Figure 6.6) splits the display-only cluster from Figure 6.5 into low-
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Figure 6.3: We reprise the data display in Figure 6.1. This graph depicts the data in one
“cluster”, affording us a view into the baseline measurement for the entire converter data set.
We see a wide range of records in the boxplot at the top of the chart; most of the records are
Flash as we see in the next section’s dot plot. There are 0.6 search clicks on average and 0.1
display clicks across the converters. Most converters (72%) are “display only” converters with
search only composing the next 17.5%.
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2 Cluster Comparison
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Figure 6.4: This figure depicts the two-cluster solution. We see a split between low-volume
search converters in Cluster 1 and high-volume display converters. Those converters with
both search and display are split between clusters, with converters having higher volume or
display clicks being assigned to Cluster 2.
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3 Cluster Comparison
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Figure 6.5: The three-cluster data summary shows a substantial refinement on Figure 6.4. Now
the three principal groups of converters—search only, display only, and search and display—
are in separate clusters. The box plots indicate a wide range of records within the clusters,
notably for the display only and search and display groups.
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and high-volume converters. The low-volume, display-only cluster, Cluster 1, is defined by an

average record count of 2.5, a maximum number of records of 8, and only 2.5% of converters

having clicks. Cluster 2, in contrast, has a mean number of records at 96 (the median is 37).

In this group, 9% of converters have clicks in their history and, because of the right skew of

that distribution, the average number of clicks is 0.18 (compared to 0.04 for Cluster 1).

Although we do not display the figures for k = 5, k = 6, and k = 7, the results follow the

pattern established with the four-cluster solution. Namely, we see a continual splitting of

the clusters established in the three-cluster solution. With k = 5, the display-only group

splits into three clusters, again based on volume. At k = 6, the search-only cluster splits

into converters with only one search click and converters with multiple search clicks. This

distinction is useful from a marketing perspective. Converters with only one search click in

their history are very likely to use search in a purely navigational fashion, going to the search

engine, typing in their term, clicking the paid link and converting in short order. Those with

multiple search clicks are more likely to use search engines for research, and as such, the

quality of the ad copy and the keyword penetration becomes more important. At k = 7, we

see the display-only group splits into four groups. There is substantial agreement between

this result and the eight-cluster solution. As we will see below, the GAP statistic supports

the seven-cluster solution, so we will discuss this solution below.

Clustering the converters into eight clusters seems to strike a nice balance between a tractable

solution with well-defined clusters and enough clusters to capture some of the richness of the

data. We will describe each cluster in turn. The graphical representation of the clustering

can be found in Figure 6.7.

Cluster 1: This is the highest volume display-only cluster. 12.6% of converters fall into this cluster,

which is notable for the large number of records (mean of 176, median of 101) amongst

the members. A large percentage (12%) of the group has a display click and the mean

number of clicks is 0.22. The converter with the fewest records in the group has 40 and
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4 Cluster Comparison

Search & Display

Search Only

Display Only

Clust. Size

Disp. Clicks

Clicks

Search Events

Flash

Display

Text

Records

●

1 105.5 210

●

●

●

●

●

0 45.7 91.4

●

●

0 1.22 2.45

●

●

●

0 0.5 1

● Cluster 1
Cluster 2

Cluster 3
Cluster 4

Figure 6.6: The four-cluster solution bifurcates the display-only cluster into low- and high-
volume converters. The low-volume group, depicted in green with a circle, shows between 1
and 3 display views and very few clicks. The high volume group has an average frequency of
almost 40 ads.
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the middle 90% of the data ranges from 43 to 579.

Cluster 2: This is a lower volume display-only cluster with some click activity and with multiple

records. Converters in cluster 2 have between 2 and 6 records in percentages of 40%,

21%, 17%, 12% and 11% respectively. The mean number of records is 3.3. Only 6% of

the cluster have click (all display, naturally). 22.8% of our converters are in this cluster,

making it the largest overall cluster.

Cluster 3: This is the low-volume search-only cluster. All the converters in this cluster, representing

11% of total converters, have exactly one search record. This is the larger of the two

search clusters.

Cluster 4: This is the high-volume search-only cluster. Every search only converter with more than

one record is in this cluster and the mean number of records is 3. The range is 2 to 20,

though 90% of the cluster has fewer than 6 records. This group composes 6% of our

total converters, making it half the size of the low-volume search only cluster.

Cluster 5: This cluster is one of the two search-and-display clusters. Whereas the search only and

Display only clusters are primarily split by number of records, the search and display

clusters are divided principally by the number of clicks by converters in the cluster.

Cluster 5, with 8% of converters, averages 1.4 clicks. Most of these clicks are on Search

(85%).

Cluster 6: Cluster 6 holds the converters who are display-only with a “medium high” number of

records, 18 on average. The low is 6 records and the highest number of records in the

cluster is 39. This cluster composes 17% of our total converters; 94% of these converters

have no clicks.

Cluster 7: This cluster, composing 19% of our converters (making it the second largest cluster), is

made up entirely of display-only converters with exactly one record. Similar to cluster 3,

the data are very homogeneous with only 16 total clicks in the cluster. Unsurprisingly,
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there seems to be a relationship between the number of ads that someone sees and the

probability they will have a click in their history.

Cluster 8: This cluster is the second search-and-display cluster, for converters with an increased

number of clicks. Interestingly, the average number of records (41) is almost the same as

the average number of records for Cluster 5 (42) but the number of clicks is much higher.

Cluster 8 has an average of 5 clicks whereas Cluster 5 had 1.4. The primary difference is

in the number of search events: Cluster 8 seems to comprise converters who do multiple

searches before arriving at a booking decision. Although this is the smallest cluster,

with only 2.7% of converters, it seems to be one of the most amenable to marketing

efforts—intelligent display advertising coupled with search marketing could move these

users through the purchase funnel more quickly.

What happens beyond 8 clusters? To answer this question I investigated the results of cluster-

ing subsets of the data numerous times 5. As we can see from the above discussion, the critical

feature of clusters is the number of clusters in the three major groups of search only, display

only, and search and display. Twenty data sets with 2000 observations were made from the

full converter data. These sub-samples were put into clusters of with k ∈ (2, 3, . . . , 15). For

each value of k, I calculated the percentage of observations in the three binary categories. I

then took the average of the sum of percentages across the 20 replications. Table 6.2 holds

the results.

For example, in all 20 trials when three clusters are formed, the data partition into search only,

display only, and search and display. On the other hand, when seven clusters are formed, there

are always two search-only clusters. 60% of cases have two search-and-display clusters. The

other 40% of the sub-samples have four display-only clusters. (These percentages are taken

from the decimal part of the seven cluster row in the table.) The “stability” of a clustering

5The entire data set that we have, which is itself a sample of 20% of converters, is too large to allow a full
distance matrix to be held in memory. Therefore, we perform our clustering on the largest possible sub-samples
and then assign additional observations to the clusters.
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Figure 6.7: The result for 8 clusters appears substantially more complicated than the 3 cluster
solution although the two are closely related. From our original 3 clusters we that the search-
and-display group has split into two groups based on number of clicks. The search-only
cluster has split into high- and low-volume groups, with the low-volume group having just one
click. The display-only cluster has split into 4 smaller clusters based on volume of advertising
consumed.
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Num. Clusters Search Only Display Only Search and Display

2 0.67 0.97 0.36
3 1.00 1.00 1.00
4 1.00 2.00 1.00
5 1.00 3.00 1.00
6 2.00 3.00 1.00
7 2.00 3.40 1.60
8 2.00 4.10 1.90
9 2.15 4.80 2.05
10 2.80 5.05 2.15
11 2.95 5.20 2.85
12 3.05 5.55 3.40
13 3.05 6.00 3.95
14 3.60 6.25 4.15
15 3.70 6.95 4.35

Table 6.3: Twenty data sets with 2000 observations were made from the full converter data.
These sub-samples were put into clusters of with k ∈ (2, 3, . . . , 15). For each value of k,
I calculated the percentage of observations in our three binary categories. I then take the
average of the sum of percentages across the 20 replications. For example, with three clusters
always yields the same separation. With 13 clusters there are six display-only clusters and
95% of the time we get four search-and-display clusters and three search-only clusters. In 5%
of cases, though, there is an additional search-only cluster instead.

solution can be seen by looking at the decimal values. For instance, the eight-cluster solution

seems more stable than the nine-cluster solution. Eight clusters always has two search-only

clusters and then 90% of the time we have two search-and display clusters. Nine clusters

always has four display-only clusters and two of the other categories. The final cluster in the

nine cluster solution comes from an additional display cluster in 80% of cases. The remaining

cases are largely search only (15% to 5%).

Table 6.2 shows what happens beyond eight clusters. Nine clusters introduces a fifth display-

only cluster and the number of display clusters remains the same until 13 total clusters are

formed. A third search-only cluster is formed at around 10 or 11 total clusters. Search and

display seems more fluid, as we have a smoother transition from two (at eight total clusters)

to three (between 11 and 12) and four (around 13 total clusters).
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Figure 6.8: The scree plot for the hotel data. Subsection 6.1.5 contains a description of how
this plot is formed. A potential elbow appears at k = 3 or k = 4.

6.2.1 Estimating the Hotel-Data Clusters with GAP

In Subsection 6.1.5 we discussed both the concept of the scree plot (which we hope will have

an “elbow,” indicating the appropriate number of clusters) and also the GAP statistic, a

resampling approach to estimating the number of clusters by comparing the scree plot to a

reference scree plot formed on resampled versions of the data set. We have created both types

of plots for the hotel data. They are found in Figures 6.8 and 6.9.
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The scree plot shows a potential elbow at k = 3 or k = 4 although it is not clear. This

figure illustrates the shortcomings of the scree plot heuristic that the gap statistic strives to

overcome. We present this figure largely for illustrative purposes and will not devote any time

to divining the mysteries in its tea leaves.

The GAP statistic values are illustrated in Figure 6.9. The criterion from the original paper

[33] for the “optimal” number of clusters is the first value along the curve that is higher than

the subsequent point’s single standard error lower bound. The first value where this occurs

is k = 7, indicating support for the seven-cluster solution using the GAP statistic. When we

consider the data in Table 6.2, however, we see that forming seven clusters results in instability

in the formation of the seventh cluster. In approximately 40% of cases the seventh cluster

is an additional display cluster. The remaining 60% of cases create the seventh cluster by

forming a second search and display cluster. As mentioned above, moving to eight clusters

allows us to side-step this dilemma.

6.3 A Statistical View

This chapter is a relatively straightforward application of a number of clustering concepts to

online advertising data, with some extensions made to the GAP statistic to allow estimation

of the optimal number of clusters in a data set with mixed variable types. Our goal is to

understand converter behavior through clustering. As discussed in Chapter 5, the data created

by online advertising can be difficult to summarize. There is a great deal of variability in both

the number of records and the types of records that users generate. Whereas a traditional

approach to understanding a subset of observations might involve plotting some basic data and

calculating summary statistics, in marketing that is insufficient. Knowing that the average

converter is exposed to 32.09 marketing messages does not increase understanding of the path

that the converter takes to a conversion. Nor does it give those who manage campaigns an
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Figure 6.9: The GAP plot for the hotel data. The criterion for the “optimal” number of
clusters is the first value along the curve that is higher than the subsequent point’s single
standard error lower bound. The first value where this occurs is k = 7, indicating support for
the seven-cluster solution using the GAP statistic.
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indication of how to turn more non-converters into converters. Throughout this chapter we

work with data called the “hotel data set”, based on marketing data from late 2008 for a hotel

advertiser.

Our first step is data reduction. Since cookies vary in the number of records they generate,

we summarize the data using a variety of simple measures. A group of three measurements,

search only, display only, and search and display are important. Converters in the search

only group are exposed only to search advertising. Similarly, the display only group sees

only display advertising, occasionally clicking. The search and display group has both types

of advertising in their history. Since, by definition, the term “converter” means those who

are exposed to advertising before taking a desired action, these three groups partition the

converter record set. The creation of the data set in Subsection 6.1.1 requires a concomitant

creation of a distance matrix. This is described in Subsection 6.1.2. This section is notable

because we depart from a traditional L1 or L2 norm, instead making use of the Gower distance

matrix that attempts to give all variables equal weight and that makes use of the important

distinction between symmetric and asymmetric binary variables.

The next two subsections discuss partitioning- and hierarchical-based clustering algorithms

and apply them to the representative data set from this chapter. The partitioning-based

clustering subsection gives an in-depth summary statistical visualization for the clusters in

the chapter. This type of figure is used extensively throughout the chapter. Section 6.1 closes

by discussing the GAP statistic, a resampling technique that allows us to estimate the number

of clusters in a data set. The original 2001 paper [33] uses a variation of parametric bootstrap

resampling (of a multivariate uniform distribution). Here we modify that technique to use a

bootstrap resampling approach that is appropriate for both the continuous data in the original

paper and for categorical or mixed data. This is the first time this extension of the GAP

statistic has been developed in any context. For social scientists this modification represents a

substantial improvement on the state-of-the-art for the number of clusters question. Typically

social science data includes both continuous data (e.g., the length of time between exposure
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and conversion) and categorical data (e.g., our search and display binary categories). The

GAP statistic cannot be used with these data sets without the modifications proposed here.

Section 6.2 provides a lengthy application of the concepts of the previous chapter to the hotel

data. We find structure in the converter data, determining eight clusters that show both

good stability when subsamples of the data are re-clustered and tractable interpretations

that can aid future marketing. In particular, we find that converters clustering into four

groups receiving display impressions only (spread out based on volume of impressions and the

presence of clicking behavior), two groups receiving search only advertising (split based on

whether the converter had only one search or multiple searches), and two groups of converters

with both search and display advertising. These last two clusters have a similar number of

overall records, but are divided based on the number of clicks in their history, indicating

that one of the groups is doing a great deal more research before purchasing. By identifying

these types of users before they convert, marketers could message to them differently and

theoretically move them through the purchase funnel more quickly.



Chapter 7

Conclusion

The online advertising and literature reviews we began with are necessary but not hard going

from a research perspective. The journey to arrive at our central three chapters on visual-

ization, PHMs, and clustering has been arduous. In an original draft I devised an ad hoc

way of measuring the prediction error of a fitted E-Map model. The PHM results replace

those. Before this research there were no methods for fitting conversion attribution models

and as I began the dissertation I was driving towards the goal of putting the methodology of

Chapter 5 on firm footing. The technique of applying PHMs with our time-varying covariates

for every media exposure finally captures the ideas of E-Map in a fully rigorous setting. Sur-

vival analysis is typically employed to estimate the time of an event. The beauty of the PHM

methodology is that it does not become fixated on predicting the actual time but instead gives

us a way to measure the impact of covariates.

The primary enhancements we derive with these PHMs as applied are as follows:

� We improve on the methods of Manchanda and Dubé through the use of the time-varying

covariate framework. Unconstrained from the shackles of summary-only data, we allow
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each media exposure to influence conversion, building these into a coherent model of

response.

� PHMs are relatively fast. Although some of the model fitting still requires the use of

64-bit machines, typical execution time for estimating a cookie’s conversion probability

is in the realm of a few seconds. With the E-Map prediction methodology of earlier

chapters this estimation took tens of minutes. This increase in speed has important

implications for the ultimate application of conversion attribution to targeting of ads.

In Section 4.6 we extensively detail the modifications necessary to the statistical software

package R§-Plus in order to estimate survival probabilities on extensive data sets.

� PHMs allow rigorous fitting of ad hoc models determined by analysts. With a well-fit

PHM we can estimate the impact of adding additional ads in a user’s history or changing

all ads from a cheaper format like display to a more expensive format like rich media.

At last an accurate cost-benefit analysis of media types can be performed.

My future work in this area will continue down this line. First, there are gaps in the statistical

PHM implementation in both S-Plus and SAS. For instance, the use of case-weights is not

supported. This is relatively unimportant in medical studies, since sample sizes are often small

and study analysis time is freely available. Online, however, we need the ability to generate

model estimates across many advertisers based on a relatively small sample of total converters

and non-converters. In this context, using case weights would be advantageous to synchronize

the model estimates with true conversion rates. Additionally, the fitting techniques in the

survival package are ill-suited for extremely large sample sizes. I plan to pursue an im-

plementation of the functions in this package that divorces them from the standard memory

constraints.

From a marketing standpoint, an obvious area for further work involves a more rigorous

exploration of the recency results, particularly across multiple advertisers. The concept of

recency is well-documented in observational studies in labs: people remember almost anything
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better if they have seen it more recently.

One of my advisors, Brian Steele, has inculcated in me the idea that for the dissertation,

the journey is the destination. Having been through the process, he is undoubtedly correct,

although I am gratified that the actual destination seems to be worthwhile as well.



Glossary of Advertising Terms

Action (also Action Tag) An action is behavior on an advertiser’s website that the ad-

vertiser wishes to track. This tracking is done using cookies and is carried out using

an Action Tag. Tags are placed on pages that the advertiser wishes to track. Actions

are used to define Conversions. An Action is any triggering of an Action Tag, whereas

a Conversion is the triggering of an Action Tag by a Cookie that has previously been

exposed to Advertising.

Advertiser In the context of this dissertation, the term Advertiser stands for companies

who conduct business online and advertise online. Advertisers are responsible for pay-

ing publishers to run media. Advertiser’s maintain websites where consumers transact

and the advertiser will typically use a third-party ad server to track online behaviors.

Examples of advertisers would be Best Buy, Nike, and Bank of America.

Ad (Advertisement) The combination of the creative (the actual pixels that constitute a

display ad or the copy that makes up a search ad) and the click-through URL for the

ad (the web address the consumer is taken to after clicking on the ad.)

Atlas Atlas is a division of Microsoft Advertising and my employer. Atlas functions within

the online advertising industry as a third-party ad server.

Attribution Model A model that marketers to assign credit for a conversion to the adver-

tising a user is exposed to.

121



CHAPTER 7. CONCLUSION 122

Baseweight Baseweights are parameters within Engagement Mapping models. Baseweights

determine the amount of credit that goes to different types of media or to different

actions. Examples of advertising events that might have different baseweights include:

Display, Text, and Video impressions; clicks; and interactions with Rich Media ads.

Click For our purposes, a click is considered the act of a user interacting with an advertiser’s

ad in a way that directs the user from the publisher’s website to the advertiser’s website.

(The technical definition of a click is surprisingly complicated.)

Conversion An action that can be tied to advertising. Actions are typically behavior on

a website that an advertiser wishes to measure such as sales or registrations. If these

actions are preceded by advertising within the conversion window then the action is

considered a conversion.

Conversion Rate The rate of conversions per unit of advertising. Typically this is expressed

as a decimal and defined as conversions per impressions.

Conversion Window The conversion window is the length of time, from an action, a third-

party ad server will look backwards for media that will turn the action into a conversion.

Typically conversion windows for ad views are shorter than those for ad clicks. Common

conversion windows are seven days for views and 30 days for clicks. Media that fall

outside the conversion window will not receive credit for causing the conversion.

Cost-Per-Mille (CPM) The pricing structure for most display advertising. Advertisers

pay for impressions by paying a given dollar amount per 1000 impressions served on

their behalf by the publisher.

Cost-Per-Click (CPC) The pricing structure for all search advertising and for some display

advertising. The advertiser pays the publisher a flat rate for every click of an ad.

Cookie Small text files stored on a user’s computer. Typically these are simply long some-

what random numbers that identify the computer and browser for the purposes of anony-

mous tracking. Cookies are, for instance, the way Amazon remembers who you are when
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you come back to the site and can thereby build a custom homepage for you. Cookies

are the unique identifier for a computer. Multiple people can use one computer (and

hence have one cookie) and cookies can be deleted. These records are imperfect but

they are the best, easily-accessible method of identifying people

Creative Type The type of ad shown to a user. Plain JPEG or GIF ads are called display.

Other creative types include Video, Rich Media, Flash, Java, and Text ads.

Display Advertising A type of advertising that involves showing images on publisher’s

websites. Defined in contrast to Search Advertising.

Engagement Mapping (E-Map) E-Map is a flexible conversion attribution framework,

developed by Atlas, that allows advertisers to define a custom model that shares credit

across all marketing messages delivered within the conversion window.

Flash (also FlashJava or Java) A creative type based on the languages Flash or Java.

Typically these ads are more interesting to consumers than basic GIF or JPEG ads.

Impression The display of a single advertisement on a publisher’s website. Often an impres-

sion is defined as an “opportunity to see” a given ad. Impressions are the basic unit of

display advertising.

Gross Ratings Points (GRPs) A measure of ad viewership. GRPs are defined as reach

(the number of people who see an ad) times frequency (the number of times people

see an ad) divided by audience size and multiplied by 100. For example, 100 GRPs

mean that there were exactly as many ad impressions as there were people in the target

audience (although we are not ensured that each person received exactly one ad).

IP Address This is the internet address of where the record request came from. Using this

information we can determine (in most cases) geographically where the user is located,

their connection speed, and whether they are surfing from home or work.
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Last-ad Model A conversion attribution methodology where the most recent ad seen gets

100% of the credit for an action unless there is a click, in which case the click gets all

the credit. All clicks or impressions must fall within the conversion window.

Log Records These are the data we record for a cookie. Log records include both web

surfing data (such as impressions and clicks) and data from the advertiser’s website:

actions.

Order The order parameter in an Engagement Mapping model attempts to measure the

influence between clicks. Specifically, it modifies the value of a click based on the

presence of a previous clicks.

Placement The location where an ad runs. For display advertising placements are typically

locations on a page, although some placements span multiple locations (e.g. , a placement

that allows a banner to be shown anywhere within the Finance section of Yahoo!). For

search advertising we can think of placements as being keywords that are purchased by

the advertiser. For instance, eBay might purchase “used DVDs” as a keyword.

Publisher The counter-party to advertisers, publishers create websites. These websites at-

tract people and publishers charge advertisers for the opportunity to show ads to the

people on the publisher’s site.

Recency Measures how the impact of ads diminishes over time. Typically recency is modeled

with an exponential decay curve (called in the literature the “forgetting curve”). Ads

that are more recent have a larger influence over consumer behavior.

Rich Media A creative type. Rich Media refers to advertisements made with a variety of

technologies. Rich Media ads are substantially more interactive than Flash, Java, JPEG

or GIF ads and may include games, homepage takeovers, and ads that interact with the

elements of a publisher’s webpage.

Search Advertising A type of advertising that involves buying keywords from a search
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provider. Advertisers pay a fee to have their text ads shown on the page when the

keyword is searched on.

Size (also, Ad Size) The size of an advertisement, measured in square pixels. The most

common ad size on the internet is the 468x60 banner which is 468 pixels wide and 60

pixels tall for a total ad size of 28080 pixels squared.

Third Party Ad Serving (TPAS) Advertisers employ a third-party ad servers to deliver

and track ads across the internet. The TPAS are responsible for the technological

infrastructure that enables the ad-serving relationship as well as functioning as a trusted

third-party maintaining the accounting of the advertising system.

Tentative A field in the cookie record. This field is 1 if we have one and only one record

for the cookie in their entire history. Typically this happens when someone rejects our

cookies and so every time we see the person it is for the first time. In most cases cookies

with Tentative=1 are excluded from analyses and that is the case for every analysis we

discuss henceforth.

Text Link A type of advertisement that involves turning text on a webpage into a hyperlink

that can take the consumer to an advertiser’s website. Typically text link impressions

have the lowest impact on conversion rates, although they can generate a large number

of conversions through clicks. Search ads are a particular type of text links.

Video A type of ad that involves showing a video ad (similar to a television chimerical)

online. Ads can run by themselves or adjacent to other video content.



Code

//////////////////////////////////////////////////////////

// CLUSTERING FUNCTIONS //

//////////////////////////////////////////////////////////

require(cluster)

require(gtools)

require(Hmisc)

require(RColorBrewer)

plot_clusters = function(the_data,the_clusters) {

# This plots the relevant summary stats

# for data with clusters split out.

# Fields:

# "cookie" "RecordCount" "Text" "Clicks"

# "IsConverter" "DisplayClicks" "DisplayOnly" "NonSearch"

# "FlashJava" "SearchOnly" "SearchEvents" "Display"

# Idea. Plot means for everything first.
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# We’re going to do a carefully constructed semi-dot plot

uni_clusters = sort(unique(the_clusters))

num_clusters = length(uni_clusters)

pch_vals = c(1,2,3,4,5,0,6,10,19,15)

if (num_clusters == 2) {

col_vals = c("black","red")

} else if (num_clusters <= 8) {

col_vals = brewer.pal(num_clusters,"Dark2")

} else {

col_vals = brewer.pal(num_clusters,"Set3")

}

# Calculate the values to plot

# cluster sizes

cl_sizes = numeric(num_clusters)

for (i in 1:num_clusters) {

cl_sizes[i] = mean(the_clusters==uni_clusters[i])

}

# boxplot of recs

recs_box_data = boxplot(the_data$RecordCount ~ the_clusters,plot=F)$stats

recs_means = numeric(num_clusters)
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for (i in 1:num_clusters){

recs_means[i] = mean(the_data$RecordCount[

the_clusters==uni_clusters[i]])

}

# means for different types of events

event_means = data.frame(type=c("Text","Display","Flash","Search",

"NonSearch"))

for (i in 1:num_clusters){

event_means = cbind(event_means,0)

}

names(event_means) = c("type",uni_clusters)

event_means[event_means$type=="Text",2:(num_clusters+1)] =

aggregate(the_data$Text,by=list(the_clusters),mean)$x

event_means[event_means$type=="Display",2:(num_clusters+1)] =

aggregate(the_data$Display,by=list(the_clusters),mean)$x

event_means[event_means$type=="Flash",2:(num_clusters+1)] =

aggregate(the_data$FlashJava,by=list(the_clusters),mean)$x

event_means[event_means$type=="Search",2:(num_clusters+1)] =

aggregate(the_data$SearchEvents,by=list(the_clusters),mean)$x

event_means[event_means$type=="NonSearch",2:(num_clusters+1)] =

aggregate(the_data$NonSearchEvents,by=list(the_clusters),mean)$x

# click data
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click_means = data.frame(type=c("Clicks","DisplayClicks"))

for (i in 1:num_clusters){

click_means = cbind(click_means,0)

}

names(click_means) = c("type",uni_clusters)

click_means[click_means$type=="Clicks",2:(num_clusters+1)] =

aggregate(the_data$Clicks,by=list(the_clusters),mean)$x

click_means[click_means$type=="DisplayClicks",2:(num_clusters+1)] =

aggregate(the_data$DisplayClicks,by=list(the_clusters),mean)$x

disp_only_means = aggregate(the_data$DisplayOnly,by=list(the_clusters),

mean)$x

search_only_means = aggregate(the_data$SearchOnly,by=list(the_clusters),

mean)$x

s_and_d_means =

aggregate(the_data$SearchAndDisplay, by=list(the_clusters),

mean)$x

### Define the plotting area and plot

op = par(mar=c(5,10,4,2) + 0.1,cex.axis=0.8,las=2)

#axis labels

labs = c("Clust. Size","Records","Text","Display","Flash",

"Search Events",

"Clicks","Disp. Clicks",

"Display Only","Search Only","Search & Display")
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# Setting the heights manually

rc_h = 0.97

in_group_offset = 0.045

text_height = 0.83

disp_height = text_height - in_group_offset

flash_height = text_height - 2*in_group_offset

search_height = text_height - 3*in_group_offset

click_height = 0.52

dclick_height = click_height - in_group_offset

sz_h = 0.34

d_only_height = sz_h - in_group_offset

s_only_height = sz_h - 2*in_group_offset

s_and_d_height = sz_h - 3*in_group_offset

all_heights = c(sz_h,rc_h,text_height,disp_height,flash_height,

search_height,

click_height, dclick_height,

d_only_height, s_only_height,s_and_d_height)
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# Some other vals that we use throughout

reference_line_offset = -0.045

reference_line_tick_length = -0.015

if (num_clusters <= 4) {

jitter_factor = 0.8

} else {

jitter_factor = 1.5

}

# Plotting

plot(c(0,1),c(0,1),type="n",main=paste(num_clusters,

"Cluster Comparison"),

xlab="",ylab="",axes=F)

# axes

axis(side=2,at=all_heights,

labels = labs,

tick=F)

abline(h=all_heights,lty=2,col="gray90")

# size

points(cl_sizes,jitter(rep(sz_h,num_clusters),factor=jitter_factor),

col=col_vals,pch=pch_vals)

# recs

# Going to do a variation of the boxplot
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recs_box_range = range(recs_box_data)

recs_box_scale = diff(recs_box_range)

# horizontal reference line

lines(x=c(0,1),y=c(rc_h,rc_h)+reference_line_offset,lty=3,col="gray45")

lines(x=c(0,0),y=c(rc_h,rc_h+reference_line_tick_length)+

reference_line_offset,

lty=3,col="gray45")

lines(x=c(1,1),y=c(rc_h,rc_h+reference_line_tick_length)+

reference_line_offset,

lty=3,col="gray45")

lines(x=c(0.5,0.5),y=c(rc_h,rc_h+reference_line_tick_length)+

reference_line_offset,

lty=3,col="gray45")

text(x=0, y=rc_h+reference_line_offset+reference_line_tick_length*2,

labels=paste(recs_box_range[1],sep=""),cex=0.65)

text(x=0.5,y=rc_h+reference_line_offset+reference_line_tick_length*2,

labels=paste(round(mean(recs_box_range),1),sep=""),cex=0.65)

text(x=1, y=rc_h+reference_line_offset+reference_line_tick_length*2,

labels=paste(recs_box_range[2],sep=""), cex=0.65)

recs_line_heights = seq(from=rc_h-reference_line_offset*

(1-1/num_clusters),

to=rc_h+reference_line_offset*(1-1/num_clusters),

length.out=num_clusters)

for (i in 1:num_clusters) {
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# Doing stylized tufte boxplots.

low_whisker = recs_box_data[1,i]

twenfive_pct = recs_box_data[2,i]

med_val = recs_box_data[3,i]

sevenfive_pct = recs_box_data[4,i]

high_whisker = recs_box_data[5,i]

lines((c(low_whisker,high_whisker)-recs_box_range[1])/

recs_box_scale,y=rep(recs_line_heights[i],2),

lty=1,col=col_vals[i],lwd=1)

lines((c(twenfive_pct,sevenfive_pct)-recs_box_range[1])/

recs_box_scale,y=rep(recs_line_heights[i],2),

lty=1,col=col_vals[i],lwd=2.5)

points((med_val-recs_box_range[1])/recs_box_scale,

recs_line_heights[i],

col=col_vals[i],pch=pch_vals[i]) # was pch = 20

}

#Events

event_range = range(event_means[,-1])

event_scale = diff(event_range)

# Text

points((event_means[event_means$type=="Text",-1]-event_range[1])/

event_scale,

jitter(rep(text_height,num_clusters),factor=jitter_factor),

col=col_vals,pch=pch_vals)
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# Display

points((event_means[event_means$type=="Display",-1]-event_range[1])/

event_scale,

jitter(rep(disp_height,num_clusters),factor=jitter_factor),

col=col_vals,pch=pch_vals)

# Flash

points((event_means[event_means$type=="Flash",-1]-event_range[1])/

event_scale,

jitter(rep(flash_height,num_clusters),factor=jitter_factor),

col=col_vals,pch=pch_vals)

# Search Events

points((event_means[event_means$type=="Search",-1]-event_range[1])/

event_scale,

jitter(rep(search_height,num_clusters),factor=jitter_factor),

col=col_vals,pch=pch_vals)

# Event reference line

event_ref_line_height = search_height + reference_line_offset

lines(x=c(0,1), y=rep(event_ref_line_height,2),lty=3,col="gray45")

lines(x=c(0,0), y=c(event_ref_line_height,event_ref_line_height+

reference_line_tick_length),

lty=3,col="gray45")

lines(x=c(1,1), y=c(event_ref_line_height,event_ref_line_height+

reference_line_tick_length),
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lty=3,col="gray45")

lines(x=c(0.5,0.5), y=c(event_ref_line_height,event_ref_line_height+

reference_line_tick_length),

lty=3,col="gray45")

text(x=0, y=event_ref_line_height+reference_line_tick_length*2,

labels=paste(round(event_range[1] ,1),sep=""), cex=0.65)

text(x=0.5,y=event_ref_line_height+reference_line_tick_length*2,

labels=paste(round(mean(event_range) ,1),sep=""), cex=0.65)

text(x=1, y=event_ref_line_height+reference_line_tick_length*2,

labels=paste(round(event_range[2] ,1),sep=""), cex=0.65)

#CLICKS

click_range = range(click_means[,-1])

click_scale = diff(click_range)

# Clicks

points((click_means[click_means$type=="Clicks",-1]-click_range[1])/

click_scale,jitter(rep(click_height,num_clusters),

factor=jitter_factor),

col=col_vals,pch=pch_vals)

# Display Clicks

points((click_means[click_means$type=="DisplayClicks",-1]-

click_range[1])/

click_scale,jitter(rep(dclick_height,num_clusters),

factor=jitter_factor),
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col=col_vals,pch=pch_vals)

# Click reference line

click_ref_line_height = dclick_height + reference_line_offset

lines(x=c(0,1), y=rep(click_ref_line_height,2),lty=3,col="gray45")

lines(x=c(0,0), y=c(click_ref_line_height,click_ref_line_height+

reference_line_tick_length),

lty=3,col="gray45")

lines(x=c(1,1), y=c(click_ref_line_height,click_ref_line_height+

reference_line_tick_length),

lty=3,col="gray45")

lines(x=c(0.5,0.5),y=c(click_ref_line_height,click_ref_line_height+

reference_line_tick_length),

lty=3,col="gray45")

clk_range = range(click_means[,-1])

text(x=0, y=click_ref_line_height+reference_line_tick_length*2,

labels=paste(round(clk_range[1] ,2),sep=""), cex=0.65)

text(x=0.5,y=click_ref_line_height+reference_line_tick_length*2,

labels=paste(round(mean(clk_range) ,2),sep=""), cex=0.65)

text(x=1, y=click_ref_line_height+reference_line_tick_length*2,

labels=paste(round(clk_range[2] ,2),sep=""), cex=0.65)

# display and search breakdown

ds_range = range(c(disp_only_means,search_only_means,s_and_d_means))
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ds_scale = diff(ds_range)

# Display only

points((disp_only_means-ds_range[1])/ds_scale,

jitter(rep(d_only_height,num_clusters),factor=jitter_factor),

col=col_vals,pch=pch_vals)

# Search only

points((search_only_means-ds_range[1])/ds_scale,

jitter(rep(s_only_height,num_clusters),factor=jitter_factor),

col=col_vals,pch=pch_vals)

# S & D

points((s_and_d_means-ds_range[1])/ds_scale,

jitter(rep(s_and_d_height,num_clusters),factor=jitter_factor),

col=col_vals,pch=pch_vals)

# ds reference line

ds_ref_line_height = s_and_d_height + reference_line_offset

lines(x=c(0,1), y=rep(ds_ref_line_height,2),lty=3,col="gray45")

lines(x=c(0,0), y=c(ds_ref_line_height,ds_ref_line_height+

reference_line_tick_length),

lty=3,col="gray45")

lines(x=c(1,1), y=c(ds_ref_line_height,ds_ref_line_height+

reference_line_tick_length),

lty=3,col="gray45")
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lines(x=c(0.5,0.5), y=c(ds_ref_line_height,ds_ref_line_height+

reference_line_tick_length),

lty=3,col="gray45")

text(x=0, y=ds_ref_line_height+reference_line_tick_length*2,

labels=paste(round(ds_range[1] ,2),sep=""), cex=0.65)

text(x=0.5,y=ds_ref_line_height+reference_line_tick_length*2,

labels=paste(round(mean(ds_range) ,2),sep=""), cex=0.65)

text(x=1, y=ds_ref_line_height+reference_line_tick_length*2,

labels=paste(round(ds_range[2] ,2),sep=""), cex=0.65)

# Legend

leg_x = 0.2

leg_y = 0.07

if (num_clusters < 3) {

leg_ncol = 2

} else {

leg_ncol = 3

}

legend(x=leg_x,y=leg_y,legend=paste("Cluster",1:num_clusters),

col=col_vals,pch=pch_vals,cex=0.6,ncol=leg_ncol)

par(op)
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}

AssignNonConverters <- function(non_conv_data, cluster_centers, daisy_list) {

# This function takes non_converters, cluster centers, and the

# daisy_list for distance (maybe this should be optional). The output

# is a vector of length dim(non_conv_data)[1] that indicates

# which cluster a given row is assigned to, where the number is

# based on the index of the cluster center. Ties are broken

# randomly.

}

ShowMedoids <- function(clus_obj, the_data){

# prints the data for each medoid in the clustering object.

cluster_medoids <- clus_obj$medoids

for (i in 1:length(cluster_medoids)) {

print(paste("Printing Cluster",i,sep=" "))

print(subset(the_data, rownames(the_data)== cluster_medoids[i]))

}

}

SummarizeClusters <- function(the_data,the_clusters) {

# goal is to give us an easy way to summarize

# a set of clusters. The key statistics are Search Only,

# Display Only, S&D percentages, average record size and

# average number of clicks. These are returned in a



CHAPTER 7. CONCLUSION 140

# data frame where the first column is the number of

# clusters.

#

# The results will be sorted by S Only, D Only, then S & D

# to try to get some uniformity and get away from the arbitrary

# cluster numbers.

uni_clusters <- sort(unique(the_clusters))

num_clusters <- length(uni_clusters)

num_obs <- dim(the_data)[1]

results <- data.frame(

cluster = uni_clusters,

avg_records = 0,

search_only = 0,

display_only = 0,

s_and_d = 0,

avg_clicks=0,

pct_convs=0)

for (i in 1:num_clusters){

results[i,2] =

mean(the_data$RecordCount[the_clusters==uni_clusters[i]]) #

results[i,3] =

mean(the_data$SearchOnly[the_clusters==uni_clusters[i]]) # S

results[i,4] =

mean(the_data$DisplayOnly[the_clusters==uni_clusters[i]]) #D

results[i,5] =
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mean(the_data$SearchAndDisplay[the_clusters==uni_clusters[i]])

results[i,6] =

mean(the_data$Clicks[the_clusters==uni_clusters[i]]) # Clicks

results[i,7] =

sum(the_clusters==uni_clusters[i])/num_obs*100 # pct conv

}

order_idx = order(results$search_only,results$display_only,

results$s_and_d,results$avg_records,decreasing=TRUE)

return(results[order_idx,])

}

# SummarizeClusters(small_conv,cl10_daisy$clustering)

FindClusterSplits <- function(the_data,daisy_list,K=12, B=10,N=1000) {

# This function finds the splits in the clustering solution.

# The basic concept is that we split the data into a group of

# size N. We form clusters from 2 to K clusters and keep

# track of the number of clusters that are search only, display

# only and S&D.

# We do this (splitting, clustering, counting) B times and capture

# the results. What we’re looking for is 0 variation so we summarize

# our resulting data frame appropriately. (Ie, I haven’t figured

# out the summary as I write my comments.)

holder <- data.frame(trial = seq(1,(K-1)*B),

clusters = rep(seq(2,K),B),

num_s_only = 0,



CHAPTER 7. CONCLUSION 142

num_d_only = 0,

num_s_and_d = 0)

row_counter <- 1

for (i in 1:B) {

small_data_set <- some(the_data,n=N)

small_diss <- daisy(small_data_set, type = daisy_list)

for (j in 2:K) {

the_clusters = pam(small_diss,k=j)

cluster_results = SummarizeClusters(small_data_set,

the_clusters$clustering)

holder[row_counter,3] <- sum(cluster_results$search_only)

holder[row_counter,4] <- sum(cluster_results$display_only)

holder[row_counter,5] <- sum(cluster_results$s_and_d)

row_counter = row_counter + 1

}

}

# create our summary results. For each number of clusters

# we’ll calculate the mean and sd for the s, d and s&d

results <- data.frame(clusters=2:K,

s_only_mean = 0,

s_only_sd = 0,
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d_only_mean = 0,

d_only_sd = 0,

s_and_d_mean = 0,

s_and_d_sd = 0)

for (i in 2:K) {

results$s_only_mean[i-1] <-

mean(holder[holder$clusters==i,"num_s_only"])

results$s_only_sd[i-1] <-

sd(holder[holder$clusters==i,"num_s_only"])

results$d_only_mean[i-1] <-

mean(holder[holder$clusters==i,"num_d_only"])

results$d_only_sd[i-1] <-

sd(holder[holder$clusters==i,"num_d_only"])

results$s_and_d_mean[i-1] <-

mean(holder[holder$clusters==i,"num_s_and_d"])

results$s_and_d_sd[i-1] <-

sd(holder[holder$clusters==i,"num_s_and_d"])

}

return(results)

}

#FindClusterSplits(conv_data,daisy_type_list,K=10,B=2,N=1000)

.ls.objects = function (pos = 1, pattern, order.by,

decreasing=FALSE, head=FALSE, n=5) {

napply <- function(names, fn) sapply(names, function(x)

fn(get(x, pos = pos)))
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names <- ls(pos = pos, pattern = pattern)

obj.class <- napply(names, function(x) as.character(class(x))[1])

obj.mode <- napply(names, mode)

obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)

obj.size <- napply(names, object.size)

obj.dim <- t(napply(names, function(x)

as.numeric(dim(x))[1:2]))

vec <- is.na(obj.dim)[, 1] & (obj.type != "function")

obj.dim[vec, 1] <- napply(names, length)[vec]

out <- data.frame(obj.type, obj.size, obj.dim)

names(out) <- c("Type", "Size", "Rows", "Columns")

if (!missing(order.by)) out <- out[order(out[[order.by]],

decreasing=decreasing), ]

if (head) out <- head(out, n)

out

}

//////////////////////////////////////////////////////////

// VISUALIZATION FUNCTIONS //

//////////////////////////////////////////////////////////

# This file holds the functions needed to do the visualzation described

# in the "Conversion Attribution Visualization" chapter of the dissertation.

#

# John Chandler-Pepelnjak, January 2010

#

# TODO: Handle dates appropriately on y-axis
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#

emap_code_directory <-

"C:\\Analytics\\EngagementMapping\\EM_as_Model\\Code\\"

the_wd <- setwd(emap_code_directory)

source(’Definitions_EventBased.r’) # needs to precede data_input.r

#source(’CA_Model_Functions_Evt.r’)

#source(’Support_Functions.r’)

setwd(the_wd)

refresh_code <- function() {

# refreshes this code if I make a change

the_wd <- setwd(code_dir)

source("VisualizationFunctions.r")

setwd(the_wd)

}

plot_cookie_survival_curve <- function(cookie_event_data,

hazard_times, hazard_surv, model,

just_lines=F,plot_survival=F,main_title,...) {

# just makes use of the utility function.



CHAPTER 7. CONCLUSION 146

surv_estimates <- get_survival_estimates(cookie_event_data, hazard_times,

hazard_surv, model,return_survival=plot_survival)

this_times <- surv_estimates$time

plot_y <- surv_estimates$surv

if(plot_survival) {

y_lab <- "Non-conversion Probability"

if(missing(main_title)) main_title =

paste("Non-conversion Probability\nCookie:",

cookie_event_data$cookie[1])

} else {

if(missing(main_title)) main_title =

paste("Conversion Probability\nCookie:",

cookie_event_data$cookie[1])

y_lab = "Conversion Probability"

}

if(just_lines) {

lines(this_times,plot_y,...)

} else {

plot(this_times,plot_y,type="l",

main=main_title,

xlab = "Time",

ylab = y_lab,...)

}

}
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get_survival_estimates <- function(cookie_event_data, hazard_times,

hazard_surv, model,times,return_survival=F) {

# This function produces survival estimates and returns a

# data frame where

# the first column is the times and the second column is the times.

# gather model information we need

mod_coef <- ifelse(is.na(model$coefficients), 0, model$coefficients)

mod_asgn <- model$assign # gives us the look-up between model and data

mod_terms_obj <- terms(model) #gigantic terms object, used

# for other stuff

mod_terms <- names(mod_asgn)

# pulls out the relevant data for cookie

mod_frame <- model.frame(mod_terms_obj, data=cookie_event_data)

mod_mat <- model.matrix(delete.response(mod_terms_obj), mod_frame,

contr=model$contrasts)[,-1,drop=FALSE]

# a design matrix based on cookie.

# Handles coding of categorical

# drop the intercept in a PHM model

nterms <- length(mod_terms)

pred <- matrix(0,ncol=nterms,nrow=nrow(cookie_event_data))

mean_pred <- mod_coef * model$means

for (i in 1:nterms) {
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ii <- mod_asgn[[ mod_terms[i] ]]

pred[,i] <- mod_mat[,ii,drop=FALSE] %*% (mod_coef[ii])

}

# pred is now an n x m matrix where n = records and m =

# variables in model

risks <- exp(apply(pred,1,sum) - sum(mean_pred))

num_events <- dim(cookie_event_data)[1]

# first just build the full survival curve,

# don’t know another way to do this accurately

#Select down the baseline hazard data because

# our raw data can have hundreds of thousands of

# points that we don’t need to carry through for the calculation

this_haz_idx <- hazard_times < max(cookie_event_data$stop)

if(sum(this_haz_idx) == 0) {

warning("Last stop time for cookie is less than

minimum survival time.

\nReturning full survival curve.")

this_haz_idx <- rep(TRUE,length(hazard_times))

}

this_times <- hazard_times[this_haz_idx]

this_surv <- hazard_surv[this_haz_idx]

# create a product based version of this_surv
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temp <- c(1,this_surv)

this_surv_prod <- temp[2:(length(this_surv)+1)]/

temp[1:length(this_surv)]

# to generate any entry in this_surv[i] just take

# cumprod(this_surv_prod[1:i])[i]

# to the right point.

adj_surv <- this_surv_prod

# we use idx to determine what parts of this_surv_prod we need to raise

# to which power. Then we make adj_surv the cumprod

for (i in 1:num_events) {

idx <- (cookie_event_data$start[i] <= this_times &

this_times <= cookie_event_data$stop[i])

adj_surv[idx] <- adj_surv[idx]^risks[i]

}

adj_surv <- cumprod(adj_surv)

# that last bit took about a week of work. Although to be fair,

# the better part of the

# week was spent trying to figure out exactly what the

# differences were between

# S(t_i), \Lambda(t_i), and \lambda(t_i). This is what happens when

# you don’t have a class in suvival analysis!

#

# Anyway, the key insight, that took me forever to reach, was that

# the critcal component was the multiplicative

# aspect of the survival curve. At

# any time, t_i, you could derive, from the fit,

# a number $a$ that obeyed
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# the relationship a \cdot t_i = t_{i+1}.

# That’s what’s in this_surv_prod.

if(!return_survival) adj_surv <- 1-adj_surv

if(missing(times)) {

# we want the full curve

return(data.frame(time=this_times,surv=adj_surv))

} else {

surv_holder <- numeric(length(times))

for (i in 1:length(times)) {

if (times[i]==0) { #handling an edge case

surv_holder[i] <- as.numeric(return_survival)

} else { # handling the normal case, some time in the middle

t_idx <- max(which(this_times < times[i]))

if(t_idx < 0) {

surv_holder[i] <- 1-as.numeric(return_survival)

} else {

surv_holder[i] <- adj_surv[t_idx]

}

}

}

return(data.frame(time=times,surv=surv_holder))

}

}

get_emap_scores <- function(x,time,theta,convWind=convWindow,
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col_sum=T,normalize=T,cume=T) {

# this function takes a cookie_event_data record (gulp),

# an emap function,

# and optionally some times. It returns a data frame where

# the first column

# holds the times and the second column holds the emap scores.

# This comes up with the share of credit

# scores for a set of data, assuming an EM model.

# If there is no t supplied then we use the conversion time.

# Otherwise we just come up with the score

# that would have resulted if there was a conversion

# at time t (where t could be a vector)

#

# Note: a lot of the really tricky programming (like "outer" usage)

# is required to support time vectors. Seems worthwhile, just harder.

clicks_vector = x[,colClick]

event_time_vector = x[,colEventTime]

act_time_vector = rep(max(x$stop),len=length(clicks_vector))

creative_type_vector = x[,colCreativeType,drop=TRUE]

ad_size_vector = x[,colAdSize,drop=TRUE]

if(missing(time)){

time <- min(act_time_vector)

}

# The conversion window needs to be defined relative to
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# the time and the events in the window.

if (!any(clicks_vector==1)){

# this is the easy case. No clicks means view window everywhere

conv_window <- convWind$view

in_window_idx = outer(event_time_vector,time,FUN=function(evt,t)

t-conv_window <= evt & evt <= t)

} else {

# this case is harder. If clicks exist we have to use the view window

# until the click happens, then switch to the click window

# for as long as the click is in.

# And I’d like to avoid using a loop because I think

# it’s going to be slower. (and this function gets called

# millions of times.)

# But I can’t figure it out right now so i’m going to loop

# start with the windows

view_in_window_idx =

outer(event_time_vector,time,FUN=function(evt,t)

t-convWind$view <= evt & evt <= t)

click_in_window_idx =

outer(event_time_vector,time,FUN=function(evt,t)

t-convWind$click <= evt & evt <= t)

in_window_idx = view_in_window_idx

#Iterate over the times, replacing the view with click

# columns if needed.

for (i in 1:length(time)) {
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if(any(clicks_vector[click_in_window_idx[,i]]==1)){

in_window_idx[,i] = click_in_window_idx[,i]

}

}

}

# First get the baseweights.

bw = theta$baseweights$bw[match(creative_type_vector,

theta$baseweights$creative_type_names)]

bw[clicks_vector==1] = theta$vars$bw[theta$vars$var_names=="Click"]

# determine size multiplier

size = ad_size_vector

size[clicks_vector==1] = 1 # No size and recency on clicks

#Recency is more complicated since t can be a vector

rec_exp = outer(event_time_vector,time,FUN=function(x,y)

(y-x)/convWind$view) #I’m amazed that worked on the first try

# even with vectorized time

# any events that happen after the action time will get a score of 0.

# You need this when time is a vector

rec_exp[!in_window_idx] = 0

# no recency on clicks

rec_exp[clicks_vector==1,] = 0

rec = (1-theta$vars$bw[theta$vars$var_names=="Recency"])^rec_exp

#Order: Only for active events which means just clicks at this point.
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# It’s a vector of 1s unless you are something other than the first

# click in which case it decrements according to

# Order = (1-amount used)^(n-1) for order n in (1,2,3,4)

ord_exp = ifelse(clicks_vector==1,1,0)

ord_exp = cumsum(ord_exp)-1

ord_exp = ifelse(clicks_vector==1,ord_exp,0)

ord = (1-theta$vars$bw[theta$vars$var_names=="Order"])^ord_exp

# Multiple values to get scores

# this is component-wise multiplication, not R’s %*% matrix multiplication

scores = matrix(rep(bw,length(time)),ncol=length(time)) * rec *

matrix(rep(size,length(time)),ncol=length(time)) *

matrix(rep(ord,length(time)),

ncol=length(time))

scores[!in_window_idx] = 0

if(col_sum){

scores = apply(scores,2,sum)

}

if(col_sum & cume) {

scores <- cumsum(scores)

}

if(normalize & col_sum) {

scores = scores/max(scores)

}
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return(data.frame(time=time,score=scores))

}
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