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Severino, Michael D., Ph.D., May 2014 Mathematical Sciences

Digraphs and Homomorphisms: cores, colorings, and constructions

Chairperson: Mark Kayll, Ph.D.

A natural digraph analogue of the graph-theoretic concept of an ‘independent set’ is that
of an acyclic set, namely a set of vertices not spanning a directed cycle. Hence a digraph
analogue of a graph coloring is a decomposition of the vertex set into acyclic sets. In the
spirit of a famous theorem of P. Erdős [Graph theory and probability, Canad. J. Math. 11:34–
38, (1959)], it was shown probabilistically in [D. Bokal, G. Fijavz̆, M. Juvan, P. M. Kayll, and
B. Mohar, The circular chromatic number of a digraph, J. Graph Theory 46(3): 227–240,
(2004)] that there exist digraphs with arbitrarily large digirth and chromatic number. Here
we give a construction of such digraphs and define a new product of these highly chromatic
digraphs with the directed analogue of the complete graph. This product gives a construction
of uniquely n-colorable digraphs without short cycles.

The graph-theoretic notion of ‘homomorphism’ also gives rise to a digraph analogue. An
acyclic homomorphism from a digraph D to a digraph H is a mapping ϕ ∶ V (D) → V (H)
such that uv ∈ A(D) implies that either ϕ(u)ϕ(v) ∈ A(H) or ϕ(u) = ϕ(v), and all the ‘fibers’
ϕ−1(v), for v ∈ V (H), of ϕ are acyclic. In this language, a core is a digraph D for which there
does not exist an acyclic homomorphism from D to a proper subdigraph of itself. Here we
prove some basic results about digraph cores and construct new classes of cores. We also define
a digraph-theoretic analogue to the graph-theoretic ‘fractional chromatic number’ and prove
results relating it to other well-known digraph invariants. We see that it behaves similarly to
the graph-theoretic analogue.
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Chapter 1

Introduction

One of the oldest areas within graph theory is graph coloring. It dates back to the nineteenth

century and the Four-Color Conjecture which famously eluded proof for nearly a century.

Over the course of the last century the idea of assigning colors to the vertices of a graph

such that adjacent vertices are colored differently has blossomed into a beautiful field of

mathematics with countless applications in the modern digital era. Colorings naturally give

rise to the study of graph homomorphisms: vertex mappings which preserve adjacency. The

concept of graph homomorphisms was introduced over fifty years ago by G. Sabidussi [26]

and Z. Hedrĺın and A. Pultr [17]. For those readers not familiar with colorings and graph

homomorphisms, Chapter 2 explores the needed definitions, concepts, and results. For a more

thorough treatment of the subject, the reader is encouraged to consult [11], [19], or [13]. For

basic notation and terminology concerning graphs and directed graphs (digraphs) we mainly

follow [6] and [2] respectively.

This dissertation is mainly concerned with building upon the footings of [3, 10, 15, 16, 35]

in order to uncover digraph analogues of some of the rich existing collection of results on

graph homomorphisms. Chapter 2 introduces precisely the digraph analogue of graph ho-
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CHAPTER 1. INTRODUCTION 2

momorphism, namely ‘acyclic homomorphism’, that the authors of the aforementioned works

have used. This definition provides the skeleton upon which the rest of the theory hangs.

Chapter 2 also surveys selected previous results, both graph- and digraph-theoretic, relating

to colorings and homomorphisms. In Chapter 3 we prove a number of basic lemmas for our

tool box needed to build up our theory. Here we see such homomorphism nuts and bolts as

‘cores’, ‘retracts’, and ‘homomorphic equivalence’.

The theory of graph homomorphisms is intimately tied to that of graph products, and in

Chapter 4 we prove new results which build the theory of digraph products. For an excellent

resource covering graph products, the reader is referred to [14]. If the reader pursues this

resource, it will be clear that there is much left to investigate regarding digraph products.

The ‘chromatic number’, ‘circular chromatic number’, and ‘fractional chromatic number’ are

three of many standard graph invariants (see, e.g., [11,19]) related to colorings and homomor-

phisms. Chapter 5 introduces an analogue of the fractional chromatic number for digraphs

and establishes several results which actually generalize the analogous graph results. In what

sense they are generalized is covered in Chapter 2, where we introduce most of our terminol-

ogy. Our versions of the circular chromatic number and chromatic number of a digraph were

first studied in [3], and Chapter 4 also investigates these parameters.

Chapter 6 presents the main results of this dissertation. These results are digraph analogues

of theorems stemming from questions answered by P. Unger and B. Descartes (a well-known

pseudonym for W.T. Tutte) [33] in 1954 and A.A. Zykov [41]. The basic question asks if

it is possible to have a graph which one would need many colors for proper coloring while

remaining sparse in the sense of ‘edge density’. The question was answered in the affirmative,

going against common intuition, and resulted in numerous theorems from some of the most

influential mathematicians of the past century. I am honored and humbled to add my results

as a small piece of a puzzle which has been put together incrementally for over a century.
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Finally, in Chapter 7, we point to a few future directions possibly continuing from this work.

Alas, though I am proud of my work here, there is much to be done. The reader should not

want for enticing problems to solve upon finishing this dissertation. As mathematicians, it is

clear to us that the questions, not the solutions, are of utmost importance. Before diving into

this body of work, the reader is left with a quote from Anna Karenina by Leo Tolstoy [32]:

Some mathematician, I believe, has said that true pleasure lies not in the

discovery of truth, but in the search for it.



Chapter 2

Background: notation, definitions,

and history

This chapter introduces the definitions, concepts, and results needed to proceed. We survey

several results relating homomorphisms and colorings of both graphs and digraphs. We aim

both to introduce the reader to precise definitions and to put the original results of this

dissertation into their proper historical context.

2.1 The chromatic number and homomorphisms

One of the most basic objects we will deal with is that of a graph. A graph G is a set V (G)

of vertices together with a set E(G) of edges, each of which is a two-element subset of V (G).

Throughout this dissertation we consider only finite simple graphs; i.e., V (G) is finite, E(G)

contains only pairs of distinct vertices (no loops), and a pair x, y ∈ V (G) may appear at most

once in E(G) (no multiple edges). We restrict ourselves to such graphs because we are dealing

with colorings and homomorphisms. We note here that one diversion from [6] is that we do

4



2.1. THE CHROMATIC NUMBER AND HOMOMORPHISMS 5

not reserve n for ∣V (G)∣ or m for ∣E(G)∣. We say that two vertices x, y are adjacent in G if

{x, y} ∈ E(G). As is standard, we will denote an edge {x, y} as xy for the remainder of this

work. An independent set of vertices is a subset S of V (G) such that no two elements of S are

adjacent. An assignment σ ∶ V (G) → C of ‘colors’ C to V (G) is a proper coloring if no two

adjacent vertices are assigned the same color, i.e. if the set of fibers σ−1(c), for c ∈ C, forms

a partition of the vertex set into independent sets. Finally we define the chromatic number

χ = χ(G) of G to be the minimum number of sets needed to partition V (G) into independent

sets.

As is standard (see, e.g., [11, 19]), we define a graph homomorphism from a graph G to a

graph H to be a mapping f ∶ V (G) → V (H) such that xy ∈ E(G) implies that f(x)f(y) ∈

E(H), i.e., a mapping from one graph to another which preserves adjacency. If there exists a

homomorphism from G to H we say that G is homomorphic to H and write G→H. The fibers

of f are the inverse images of the vertices of H. Notice that the fibers of a homomorphism

are independent sets because we are considering exclusively graphs without loops. We now

start to see a potential relationship between graph homomorphisms and graph colorings. In

order to complete this thought we need an extremely important family of graphs. For n ≥ 1,

the complete graph Kn has n vertices and all (n2) edges between them. It becomes easy to see

that an equivalent definition of the chromatic number is

χ(G) ∶= min{n ∣ G→Kn}.

In this way, homomorphisms generalize colorings, and we say that G is H-colorable if G is

homomorphic to H.

For the original results presented in this dissertation, the most important object is a ‘di-

graph’. As defined in [19], a digraph D is a finite set V (D) of vertices, together with a binary

relation A(D), the arc set, on D. The elements (u, v) of A(D) are called arcs of D and

notated as uv for the remainder of the dissertation. As with graphs, we will consider only di-
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graphs which have an irreflexive relation, i.e., no loops. Notice that finiteness and not allowing

repeated arcs in the same direction are built in to the definition. However it is acceptable to

have two arcs in opposite directions between two vertices. We say that a digraph is symmetric

if its binary relation is symmetric. In fact symmetric digraphs are really graphs in disguise.

We define a complete biorentation of a graph G, denoted
↔

G, to be the digraph with vertex set

V (G) and an arc from u to v and v to u whenever u is adjacent to v in G; i.e., we replace each

edge of G by two oppositely directed arcs in
↔

G. It is easy to see that a digraph is symmetric

if and only if it is the complete biorientation of some graph. Hence we may think of the set

of graphs as a subset of the set of digraphs. This is the sense in which some of our results

generalize graph-theoretic results.

The following definitions are modeled from their graph analogues in [19]. A directed walk

in a digraph D is a sequence of vertices v0, v1, . . . , vk of D such that vi−1vi ∈ A(D), for each

i = 1,2, . . . , k. A directed walk is closed if v0 = vk. The integer k is called the length of the

walk. A directed path in D is a directed walk in which all the vertices are distinct. A directed

cycle in a digraph is a sequence of distinct vertices v1, v2, . . . , vk of D such that vi−1vi ∈ A(D),

for i = 2,3, . . . k, and vkv1 ∈ A(D). Notice that a directed cycle is a directed closed walk,

and hence the definition of length is still applicable. We refer to a directed cycle of length

k as a k-cycle. In general when we talk about a directed cycle in D we are talking about a

subdigraph of D with vertex set {v1, v2, . . . , vk} and arc set {vi−1vi ∣ i = 2,3, . . . k}∪{vkv1}. We

denote this digraph as
→

Ck. The digirth
→

g(D) of a digraph is the length of a shortest directed

cycle in D. We define the digirth of an acyclic digraph to be infinity.

An acyclic digraph is one which does not contain a cycle. The subdigraph of D induced by a

subset S of V (D), denoted D[S], is the digraph with vertex set S and an arc from u to v when

uv ∈ A(D). An acyclic set A in a digraph D is a subset of V (D) such that the subdigraph of

D induced by A is acyclic. Notice that an acyclic set in a digraph is a natural generalization

of an independent set in a graph as a set is independent in a graph G if and only if the same

set is acyclic in
↔

G. We now are prepared to define an analogue of the graph-theoretic concept
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of coloring. Here we follow [3, 10, 25] rather than [2, 6, 19]. We define a coloring of a digraph

D to be a partition of V (D) into acyclic sets and the chromatic number χ of D to be the

minimum number of sets needed for such a partition. Notice that this definition generalizes

from graphs to digraphs since χ(G) = χ(
↔

G).

Finally we would like to relate digraph colorings to homomorphisms. An acyclic homomor-

phism from a digraph D to a digraph H is a mapping ϕ ∶ V (D)→ V (H) such that uv ∈ A(D)

implies that either ϕ(u)ϕ(v) ∈ A(H) or ϕ(u) = ϕ(v), and all the fibers of ϕ are acyclic. If

ϕ is an acyclic homomorphism such that all uv ∈ A(D) satisfy ϕ(u) ≠ ϕ(v) then ϕ is a non-

contracting homomorphism. As with graphs, if there exists an acyclic homomorphism from a

digraph D to a digraph H we say that D is homomorphic to H and denote this by D → H.

Since we deal almost exclusively with acyclic homomorphisms when considering digraphs, we

often write ‘homomorphism’ when it is clear from the context that we mean ‘acyclic homomor-

phism’. It is an easy exercise to check that acyclic homomorphisms compose. Furthermore,

as in the case of graphs, the digraph chromatic number satisfies χ(D) = min{n ∣ D →
↔

Kn}.

Thus we obtain the following result; see [3]:

Lemma 2.1. For any digraphs D and H, if D →H then χ(D) ≤ χ(H).

2.2 The circular chromatic number

A well-studied refinement of the (graph) chromatic number is the circular chromatic number

χc which was first introduced by Vince [34] in 1988 as the ‘star chromatic number’. The

original definition, as it appears in [39], is quoted below:

For two integers 1 ≤ q ≤ p, a (p, q)-coloring of a graph G is a coloring c of the

vertices of G with colors {0,1,2, . . . , p − 1} such that:

xy ∈ E(G) Ô⇒ q ≤ ∣c(x) − c(y)∣ ≤ p − q.
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The circular chromatic number of G is defined as:

χc(G) = inf{p/q ∣ G has a (p, q)-coloring}.

It was proved in [34] that the infimum in this definition is attained; i.e.,

χc(G) = min{p/q ∣ G has a (p, q)-coloring}.

It was shown by Zhu [36] that an equivalent definition of the circular chromatic number is

as follows:

Let C be a circle in R2 of length 1, and let r ≥ 1 be any real number. Denote

by C(r) the set of all open intervals of C of length 1/r. An r-circle-coloring of a

graph G is a mapping c from V (G) to C(r) such that c(x) ∩ c(y) = ∅ whenever

xy ∈ E(G). If such an r-coloring exists, we say that G is r−circle-colorable. The

circular chromatic number of G is

χc(G) = inf{r ∣ G is r-circle-colorable}.

We now relate the circular chromatic number to homomorphisms. In order to do so we

once again need to define an important family of graphs. For 1 ≤ q ≤ p, the rational complete

graph Kp/q has vertices {0,1, . . . , p − 1} and edge set {ij ∣ q ≤ ∣i − j∣ ≤ p − q}. An alternate but

equivalent definition of the circular chromatic number of a graph G is then

χc(G) = min{p/q ∣ G→Kp/q}

(see [19]). It is worth noting that Kp/q is empty unless p ≥ 2q, that Kp/1 is isomorphic to Kp,

and thatK(2k+1)/k is isomorphic to the odd cycle C2k+1. In order to justify calling the circular

chromatic number a refinement of the chromatic number we give the following standard result
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(see e.g. [19, 39]) valid for all graphs G:

χ(G) − 1 < χc(G) ≤ χ(G).

One obvious question to ask is for which graphs does χc(G) = χ(G)? Sufficient conditions for

graphs under which equality holds were investigated in [1,5,30]. The interested reader should

consult the survey [39] for an in-depth discussion of the circular chromatic number for graphs;

now we move on to the digraph analogue.

The circular chromatic number of a digraph first appeared in [3] and was defined as follows

(where, to remain faithful to the quote, we write E(D) for our own A(D) and ‘edge’ for ‘arc’):

For a positive real number p, denote by Sp ⊂ R2 the circle with perimeter p

(hence with radius p/2π) centered at the origin of R2. We can identify Sp with

the set R/pZ in the obvious way. For x, y ∈ Sp, let us denote by Sp(x, y) the arc

on Sp from x to y in the clockwise direction, and let d(x, y) denote the length of

this arc. The set R/pZ can also be identified with the real interval [0, p), where

the “distance” function d(x, y) can be expressed as

d(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y − x, if x precedes y on [0, p)

p + y − x, otherwise.

A circular p-coloring of a digraph D is a function c ∶ V (D) → Sp such that

every edge uv ∈ E(D) satisfies d(c(u), c(v)) ≥ 1. If D has at least one edge, then

the circular chromatic number χc(D) of D is the infimum of all real numbers p

for which there exists a circular p-coloring of D. If D has no edges, then we define

χc(D) = 1.
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As we have done repeatedly in this chapter, the authors of [3] recast their new coloring

invariant using the language of homomorphisms. For p ≥ q, we define the directed complete

rational graph
→

Kp/q to be the digraph with vertex set {0,1, . . . , p−1} and an arc from i to j if

j − i ∈ {q, q + 1, . . . , p − 1} (with arithmetic modulo p). It was shown in [3] that we may define

χc(D) = min{p/q ∣ D →
→

Kp/q}.

Thus if D →H then χc(D) ≤ χc(H). Two of the more important elementary results appearing

in [3] are the following.

Proposition 2.2. Every digraph D satisfies χ(D) − 1 < χc(D) ≤ χ(D).

Proposition 2.3. If p and q are positive integers with p ≥ q, then χc(
→

Kp/q) = p/q.

In the proof [3] of Proposition 2.3 we see that Kp/q is isomorphic to the symmetric part of
→

Kp/q. Hence it is easy to check that all graphs G satisfy χc(G) = χc(
↔

G), and we see that the

digraph circular chromatic number generalizes the graph version of this invariant.

2.3 Cores

In the last two sections we have seen two important families of graphs in coloring theory,

namely the complete graphs Kn and the complete rational graphs Kp/q. These two families

are examples of ‘cores’, a class of graphs much studied over the past 20 years. For example,

a MathSciNet search on the keywords ‘graph’ and ‘core’ produces 61 hits [22]. The modern

definition of core first appeared in [18] and was defined in the following manner.

A subgraph H of a graph G is called a core of G if there is a homomorphism of G

to H, but no homomorphism of G to any proper subgraph of H. A graph is called

a core if it is its own core.
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One of the more useful definitions of a core, of which there are numerous equivalent ones,

involves an important type of homomorphism. A retraction of a graph G to a subgraph H is

a homomorphism ϕ ∶ V (G)→ V (H) such that the restriction of ϕ to V (H) is the identity. If

there is a retraction from G to H we say that H is a retract of G and G retracts to H. It turns

out that the core of a finite graph is its smallest retract, and is unique up to isomorphism

(see, e.g., [11, 19]). If H is the core of G we denote it by G●.

Notice that G → G● and G● → G which implies that G and G● share some qualities; for

example, χ(G) = χ(G●). In general we say that G and H are homomorphically equivalent if

G→H and H → G. The following result appears in [11].

Proposition 2.4. Two graphs are homomorphically equivalent if and only if their cores are

isomorphic.

It is of interest to catalog cores because of their importance. At the start of this section we

have seen a couple of examples of cores. A couple more are odd cycles and ‘wheels’. The wheel

Wk on k + 1 vertices is a cycle of length k together with a central vertex that is adjacent to

every vertex of the cycle. The authors in [11] prove the following theorem and corollary which

together give us a class of cores related to prime numbers. We call a graph vertex transitive

if its automorphism group acts transitively on its vertex set.

Theorem 2.5. If G is a vertex transitive graph, then ∣V (G●)∣ divides ∣V (G)∣.

Corollary 2.6. If G is a non-empty vertex transitive graph with a prime number of vertices,

then G is a core.

In Chapter 3 we define the core of a digraph similarly to that of a graph. We prove a few

basic lemmas in order to establish digraph analogues of various results about graphs, their

cores, and homomorphisms. These lemmas serve as a tool box for the rest of the dissertation.

We also generalize Theorem 2.5 and Corollary 2.6 to digraphs in Chapter 3.
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2.4 Large girth and chromatic number

It is natural to consider if it is possible to have a graph which is both highly chromatic and

devoid of short cycles. One might venture to guess that it is not possible, for it is intuitive

to think of highly chromatic graphs as having dense edge sets and graphs with large girth

as having sparse edge sets. However this is not the case as Tutte [33] constructed highly

chromatic graphs with girth at least 6. He did this in answer to the following problem posed

by Ungar: Show that for any n > 1 there exists a triangle-free graph (girth at least 4) with

chromatic number n. Then in 1959 Erdős answered the question for arbitrarily large girth

with a ground-breaking probabilistic proof [9]. This result gives us insight into the fact that

the chromatic number is a global parameter rather than a local one.

At this point Ungar’s original question was more than answered but we still had no idea

what a graph with large girth and chromatic number looked like due to the nonconstructive

nature of Erdős’ proof. Then in 1968 Lovász [21] constructed hypergraphs with arbitrarily

large girth and chromatic number. However he noted that he was unable to give a construction

in purely graph-theoretic terms, although a simpler hypergraph construction [24] appeared

in 1979. Finally in 1989 Kř́ıž [20] produced the first purely graph-theoretic construction of

graphs with arbitrarily large girth and chromatic number. This however, we shall see, is far

from the end of the story.

To continue, we shall need a new graph coloring concept. We define a graph G to be uniquely

n-colorable ifG is n-chromatic and any two n-colorings ofG induce the same partition of V (G).

In light of Erdős’ theorem, one would like to know if there exist graphs with arbitrarily large

girth which are also uniquely n-colorable for any prescribed n > 1. In 1973 Nešetřil [23]

presented a construction which gives for each n ≥ 3 an infinite class of uniquely n-colorable

graphs of girth 4. Nešetřil noted that his construction for one of the graphs with n = 3

produces a graph with over half a billion vertices. To proceed we define the direct product
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G ×H of two graphs G, H to have vertex set V (G) × V (H) and an edge between (g1, h1)

and (g2, h2) if and only if g1g2 ∈ E(G) and h1h2 ∈ E(H). Using this product Greenwell and

Lovász [12] gave the following results in 1974.

Theorem 2.7. If χ(G) > n and G is connected, then Kn ×G is uniquely n-colorable (and the

shortest odd cycle in Kn ×G is at least as large as the shortest odd cycle in G).

Corollary 2.8. For all n ≥ 3, there is a uniquely n-colorable graph without odd cycles shorter

than any prescribed integer s ≥ 3.

Notice that Corollary 2.8 was for odd girth exclusively and was nonconstructive until Kř́ıž’s

work. Before that the graph used for Corollary 2.8 was known to exist only due to Erdős’

probabilistic proof. Two years later Bollobás and Sauer [4] proved probabilistically that there

exist graphs with arbitrarily large girth which are uniquely n-colorable for arbitrarily large

integers n.

Next came a generalization from n-coloring to H-coloring. For graphs G and H we say that

G is uniquely H-colorable if it is surjectively H-colorable, and for any two H-colorings φ, ψ of

G, the functions φ and ψ differ by an automorphism of H. Notice that a graph is uniquely n-

colorable if and only if it is uniquely Kn-colorable. Also, if there exists a uniquely H-colorable

graph, then H must be a core (see [19]). In 1996 Zhu [37] established probabilistically the

existence of uniquely H-colorable graphs with arbitrarily large girth for any given core H.

A few years later he was able to construct [38] uniquely H-colorable graphs with arbitrarily

large odd girth using the graph direct product that Greenwell and Lovász had exploited.

What came next were a couple of analogous results for digraphs. Bokal et al. proved

probabilistically in [3] that there exist digraphs with arbitrarily large digirth and chromatic

number. In Chapter 6 we construct digraphs with digirth k and chromatic number n for

any given pair of integers k and n exceeding one. This is analogous to Kř́ıž’s result [20];

however notice that it is slightly more precise because it is a construction for every pair of
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integers n and k whereas Kř́ıž did not pin down a specific chromatic number or girth. A

later paper by Harutyunyan et al. [15] proved probabilistically the existence of digraphs with

arbitrarily large digirth which are uniquely H-colorable (defined similarly to graphs) for any

given core H. In Chapter 6 we construct uniquely
↔

Kn-colorable digraphs with girth k for any

pair of integers k and n exceeding one. Thus our main results are constructive versions of

key theorems from [3] and [15], that were themselves sometimes intricate applications of the

(nonconstructive) probabilistic method.



Chapter 3

Preliminary results

In this chapter we prove some basic original results that serve as convenient tools throughout

this dissertation. We start with a few results that confirm digraph-theoretic cores share many

of the same properties as the analogous graph-theoretic cores. We then show that acyclic

homomorphisms act similarly to graph homomorphisms on cycles. For instance we show that

D → H implies that the order of a minimum-length directed cycle in D is at least as big as a

minimum-length directed cycle in H. Finally we identify a few classes of cores in Section 3.3,

the last of which is a result establishing a connection between cores of ‘vertex transitive’

digraphs and prime numbers.

3.1 Basic results about cores

In [15] the authors defined a few basic terms necessary for the study of cores of digraphs. A

digraph D is uniquely H-colorable if it is surjectively H-colorable, and for any two H-colorings

φ, ψ of D, the functions φ and ψ differ by an automorphism of H, and a digraph D is a core

if it is uniquely D-colorable. The authors also proved the following useful lemma in [15].

15
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Lemma 3.1. A digraph D is a core if and only if every acyclic homomorphism V (D)→ V (D)

is a bijection.

The condition that every acyclic homomorphism V (D) → V (D) is a bijection is equivalent

to saying that D is not homomorphic to a proper subdigraph of itself. An (acyclic) retraction

of a digraph D is an acyclic homomorphism φ from D to a subdigraph H of D such that the

restriction φ∣H is the identity map on H. Now we can state an equivalent definition of a core.

Lemma 3.2. A digraph D is a core if and only if it does not retract to a proper subdigraph

of itself.

Proof. The necessity is clear since an acyclic retraction is an acyclic homomorphism. Now

suppose that D is not a core, and let H be a proper subdigraph of D such that φ is an acyclic

homomorphism from D to H and D is not homomorphic to any proper subdigraph of H. The

existence of such an H is ensured by Lemma 3.1. We claim that H is a core, for suppose it

is not and let f be an acyclic homomorphism from H to a proper subdigraph of H. Then

f ○ φ is an acyclic homomorphism from D to a proper subdigraph of H, contradicting our

choice of H. Because of the claim, any homomorphism from H to itself is an automorphism

of H. Let ϕ ∶ V (D) → V (H) be an acyclic homomorphism. Since the restriction of a

homomorphism is a homomorphism, ψ ∶= ϕ∣H is an automorphism of H. Hence ψ−1 exists and

ψ−1 ○ ϕ ∶ V (D)→ V (H) is an acyclic retraction to a proper subdigraph of D.

We now define a subdigraph H of a digraph D to be a core in D if there exists an acyclic

retraction from D to H and H is a core.

Lemma 3.3. An acyclic retract of a digraph D is an induced subdigraph of D.

Proof. Let φ be an acyclic retraction from D to a subdigraph H of D. Suppose that x, y ∈

V (H) and xy ∈ A(D). Since H is a retract, both φ(x) = x and φ(y) = y and, as φ is a

homomorphism, xy is an arc in H.
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We say that two digraphs D and H are homomorphically equivalent if H is homomorphic

to D and D is homomorphic to H.

Lemma 3.4. If H and K are cores then they are homomorphically equivalent if and only if

they are isomorphic.

Proof. Let φ ∶ H → K and ψ ∶ K → H be acyclic homomorphisms. This implies that ψ ○ φ

and φ ○ψ are bijections since H and K are cores. Thus φ and ψ are both bijective and hence

H ≅K since, e.g., φ is a bijective homomorphism.

Lemma 3.5. Every finite digraph D has a core, which is an induced subdigraph and is unique

up to isomorphism.

Proof. Since D is finite and the identity mapping is an acyclic retraction, the family of subdi-

graphs of D to which D has an acyclic retraction is finite and nonempty and thus has a minimal

element D● with respect to inclusion. From the definition of ‘core in D’ and Lemma 3.2, we

see that D● is a core in D. Since D● is an acyclic retract, it is an induced subdigraph by

Lemma 3.3. Now let H1 and H2 be cores of D, and, for i = 1,2, let φi be an acyclic retrac-

tion from D to Hi. Then φ1∣H2 is an acyclic homomorphism from H2 to H1 and similarly

there exists an acyclic homomorphism from H1 to H2. Therefore, by the preceding lemma,

H1 ≅H2.

In the remainder of this dissertation we will always use D● for ‘core of D’ as is done for the

graph-theoretic analogue in [11].

Lemma 3.6. Cores of connected digraphs are connected.

Proof. Let D be a connected digraph and ϕ a retraction to D●. Suppose that x, y ∈ V (D●).

Then x, y are vertices of D because ϕ is a retraction. Since D is connected there exists a

sequence of vertices x = u1, u2, . . . , un = y in D such that for all i ∈ [n−1] we have uiui+1 ∈ A(D)
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or ui+1ui ∈ A(D) (possibly both). For i ∈ [n], define vi ∶= ϕ(ui). The fact that ϕ is a retraction

implies that v1 = x, vn = y, and the sequence of vertices v1, v2, . . . , vn has the property that all

i ∈ [n − 1] satisfy vivi+1 ∈ A(D), vi+1vi ∈ A(D), or vi = vi+1. Therefore D● is connected.

The following result displays one use of cores for testing homomorphic equivalence.

Lemma 3.7. Two digraphs are homomorphically equivalent if and only if their cores are

isomorphic.

Proof. Clearly, a digraph and its core are homomorphically equivalent. The sufficiency of the

condition follows. For necessity, let D● and H● be cores of the digraphs D and H respectively.

Assuming D and H are homomorphically equivalent, we have that D● is homomorphic to

D, D is homomorphic to H, and H is homomorphic to H●. Thus D● is homorphic to H●

using the fact that the composition of acyclic homomorphisms is an acyclic homomorphism.

Similarly H● is homomorphic to D●. Hence by Lemma 3.4, H● and D● are isomorphic.

Earlier we defined a digraph H to be a core if it is uniquely H-colorable. In fact we will see

that there is a looser condition governing whether H is a core. The next result shows that if

we find any digraph which is uniquely H-colorable, then H is a core.

Lemma 3.8. If there exists a uniquely H-colorable digraph, then H must be a core.

Proof. Let D be uniquely H-colorable and φ ∶ V (D) → V (H) a surjective acyclic homomor-

phism. Now suppose that ψ ∶ V (H) → V (H●) is an acyclic retraction and hence ψ ○ φ ∶

V (D) → V (H) is an acyclic homomorphism. Thus ψ ○ φ = π ○ φ for some π ∈ Aut(H), since

D is uniquely H-colorable. Now since φ is surjective, Im(π ○ φ) = V (H). This implies that

Im(ψ ○ φ) = V (H). But Im(ψ) = V (H●), so we’ve shown that V (H) ⊆ V (H●). Since the

reverse containment is always true, we conclude that H =H●.



3.2. HOMOMORPHISMS AND DIRECTED CYCLES 19

3.2 Homomorphisms and directed cycles

We now explore how acyclic homomorphisms interact with directed cycles. We will see it is

similar to the interaction between odd cycles and homomorphisms on the domain of graphs.

Corollary 3.10 is an indispensable tool throughout this dissertation, especially for the main

results in Chapter 6.

Lemma 3.9. Given any integers k, ` exceeding one,
→

Ck →
→

C` if and only if ` ≤ k.

Proof. Let V (
→

Ck) ∶= {v1, v2, . . . , vk} and A(
→

Ck) ∶= {vivi+1 ∣ i = 1,2, . . . , k−1}∪{vkv1}. Similarly,

we define V (
→

C`) ∶= {w1,w2, . . . ,w`} and A(
→

C`) ∶= {wiwi+1 ∣ i = 1,2, . . . , ` − 1} ∪ {w`w1}. We

first suppose that ` ≤ k. We may then define the mapping ϕ ∶ V (
→

Ck)→ V (
→

C`) by:

ϕ(vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wi if i ∈ {1,2, . . . , `}

w` otherwise.

This mapping is well-defined because ` ≤ k and it is easy to check that ϕ is a homomorphism

provided ` > 1. In order to prove the ‘only if’ direction we assume that σ ∶ V (
→

Ck)→ V (
→

C`) is

a homomorphism. This implies that for i = 1,2, . . . , k − 1 we have either σ(vi)σ(vi+1) ∈ A(
→

C`)

or σ(vi) = σ(vi+1) and σ(vk)σ(v1) ∈ A(
→

C`) or σ(vk) = σ(v1). Thus the sequence of vertices

σ(v1), σ(v2), . . . , σ(vk), σ(v1) is a closed directed walk possibly with some repeated entries.

Let r be the length of the walk. It is clear that r ≤ k and r > 0 because {v1, v2, . . . , vk} is

not an acyclic set. The shortest closed walk in
→

C` that is not a single vertex is w1,w2, . . . ,w`.

Therefore ` ≤ k.

Corollary 3.10. D → H implies that the order of a minimum-length directed cycle in D is

at least as big as a minimum-length directed cycle in H.

Proof. Suppose that the minimum-length of a directed cycle in D is k, so that
→

Ck is a subdi-
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graph of D. If ϕ ∶ V (D)→ V (H) is a homomorphism from D to H, then ϕ∣→
Ck

∶ V (
→

Ck)→ V (H)

is a homomorphism. It is easy to see that that the image of ϕ∣→
Ck

is a cycle and thus Lemma 3.9

implies that this cycle must have length at most k. The assertion follows.

Corollary 3.11. If φ ∶ V (D) → V (H) is a homomorphism then for every acyclic subset

B ⊆ V (H), the union ⋃
v∈β

φ−1(v) is acyclic in V (D).

3.3 A few classes of cores

Guided by analogous classes of graph-theoretic cores we explore a few classes of digraph-

theoretic cores in this section. We first notice that for any integer k ≥ 2 the cycle
→

Ck is a core

because the only induced subdigraphs of
→

Ck are acyclic (hence
→

Ck does not retract to any of

its induced subdigraphs).

Lemma 3.12. For each integer k ≥ 2 the directed wheel
Ð→
W k with all spokes directed in (or

out) is a core.

Proof. Let v0, v1, ..., vk−1 be the vertices of
Ð→
W k such that the subdigraph induced by

{v0, v1, ..., vk−1} is
Ð→
C k. Notice that

Ð→
C k is the only directed cycle of

Ð→
W k and hence any other

subset of V (
→

W k) with size at most k is acyclic. Thus any acyclic homomorphism φ from
Ð→
W k

to itself has the property that φ(V (Ð→C k)) =
Ð→
V (Ck) using Corollary 3.11. Hence the restriction

of φ to V (Ð→C k) is a bijection. Thus we may assume, without loss of generality, that for each

i = 0,1, ..., k − 1 (and subscripts taken mod k), we have φ(vi)φ(vi+1) is an arc of
Ð→
W k and

φ(vi)φ(vi−1) is not. Let c be the center vertex of
Ð→
W k, and assume, for a contradiction, that

φ(c) = φ(v0) (≠ φ(v1)). This would imply that φ is not an acyclic homomorphism, for the arc

v1c being in
→

W k would force the arc φ(v1)φ(c) = φ(v1)φ(v0) to be in the image (knowing as

we do that φ(v0) ≠ φ(v1)), while in fact it is not. Similarly, we see that φ(c) ≠ φ(vi) for each

i = 0,1, ..., k − 1, so that φ(c) = c, and φ is a bijection. Lemma 3.1 now implies that
→

W k is a
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core.

Recall from Section 2.1 that the digirth of a digraph D is the length of a shortest directed

cycle in D and infinity if D is acyclic. A 2-arc of a digraph D is a sequence of three vertices

xyz such that there is an arc in D between x and y (in either direction) and an arc in D

between y and z.

Proposition 3.13. If D is a connected digraph with finite digirth such that every two-arc lies

in a shortest directed cycle, then D ≅Ð→C k for some k ≥ 2.

Proof. Let D be a digraph such that every two-arc lies in a shortest directed cycle of length

k. This implies that
Ð→
C k is a subdigraph of D. Let v0, v1, ..., vk−1 be the vertices of

Ð→
C k and

{vivi+1} be the arc set with the subscripts taken modulo k. As
→

Ck is a shortest cycle, there are

no arcs with ends in {v0, v1, . . . , vk−1} besides the arcs of
→

Ck. If V (D) ∖ V (
→

Ck) is nonempty,

then, because D is connected, there exists x ∈ V (D)∖C(
→

Ck) and vi ∈ V (
→

Ck) such that xvi or

vix is in the arc set of D. If xvi is an arc, then xvivi−1 is a two-arc (not necessarily a directed

two-arc). However vivi−1 is not an arc of D which implies that xvivi−1 is not in a directed

cycle. A similar argument holds when vix is an arc of D. Thus D contains no vertices or arcs

besides those of
→

Ck, and therefore D ≅Ð→C k.

Lemma 3.14. If D is a vertex-transitive digraph, then its core D● is vertex transitive.

Proof. Let x and y be vertices of D●. Since D is vertex transitive there is an automorphism ϕ

of D such that ϕ(x) = y. Let ψ be an acyclic retraction from D to D●. Hence the restriction

ψ ○ ϕ∣D● is an acyclic homomorphism from D● to D●. Thus ψ ○ ϕ∣D● is an automorphism of

D● by Lemma 3.1. Also ψ ○ ϕ(x) = ψ(y) = y since ψ is a retraction.

Theorem 3.15. If D is a vertex-transitive digraph, then ∣V (D●)∣ divides ∣V (D)∣.
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Proof. It is enough to show that the fibers of any acyclic retraction ϕ from D to D● have the

same size. For any automorphism π of D the restriction π∣V (D●) is an acyclic homomorphism.

This implies that ϕ ○ π∣V (D●) is an acyclic homomorphism and hence ϕ ○ π∣V (D●) is surjective

by Lemma 3.1 since D● is a core. Thus π(V (D●)) has exactly one vertex in each fiber of ϕ

since the number of vertices in π(V (D●)) is the same as the number of vertices in D●. Now

let x be a vertex in D and F be the fiber of ϕ that contains x. Since D is vertex transitive

the number N of automorphisms π of D such that π(V (D●)) contains x is independent of the

choice of x. Since π(V (D●)) has exactly one vertex in common with F for all π ∈ Aut(D),

it follows that Aut(D) = ⋃
y∈F

{π ∈ Aut(D) ∣ π(D●) ∩ F = {y}}, and as this union is disjoint, we

see that ∣Aut(D)∣ = ∣F ∣ ⋅N . But N is independent of ∣F ∣ and therefore all fibers of ϕ have the

same size.

Corollary 3.16. If D is a vertex-transitive digraph with a prime number of vertices then D

is a core.

In this chapter we have confirmed that digraph cores behave similarly to their graph ana-

logues. We have also confirmed that acyclic homomorphisms interact with directed cycles in

the same way homomorphisms interact with odd cycles. We now have the tools needed to

prove some results about products of digraphs in Chapter 4; these tools also find extensive

use in Chapter 6.



Chapter 4

Products of digraphs

In this chapter we define three products of digraphs and prove a couple of results about

each regarding colorings. We define the ‘direct product’, ‘cartesian product’, and ‘lexico-

graphic product’. The direct product is related to Hedetniemi’s Conjecture, a well known

open problem in graph theory. The lexicographic product is the most important product for

this dissertation and we will see it again in Chapter 5. We also prove a few results about the

core of the lexicographic product of two digraphs.

4.1 The direct product

The direct product D×H of two digraphs D,H is the digraph with V (D)×V (H) as its vertex

set and an arc from (d1, h1) to (d2, h2) if d1d2 is an arc of D and h1h2 is an arc of H. It is

easy to see that this product is commutative. Important and useful mappings from any direct

product are the projections which are defined canonically; e.g., πD ∶ V (D ×H) → V (D) is

defined by πD((d, h)) = d whenever (d, h) ∈ V (D ×H).

Lemma 4.1. The projections πD ∶ V (D×H)→ V (D) and πH ∶ V (D×H)→ V (H) are acyclic

23
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homomorphisms.

Proof. Since the direct product is commutative we need only show that πD is an acyclic

homomorphism. If (d1, h1)(d2, h2) is an arc in D × H then d1d2=πD((d1, h1))πD((d2, h2))

must be an arc in D by the definition of D×H. As D has no loops, the fibers of πD are acyclic

and thus πD is an acyclic homomorphism.

An immediate consequence of Lemma 4.1 follows from Lemma 2.1 which states that D →H

implies that χ(D) ≤ χ(H).

Corollary 4.2. χ(D ×H) ≤min{χ(D), χ(H)}.

It is quite interesting that this corollary is so easy to prove for both digraphs and graphs,

while in graph theory it is a much studied conjecture, formulated by Stephen T. Hedetniemi

in 1966, that equality holds (see, e.g., [27]).

Hedetniemi’s Conjecture 4.3. For any graphs G and H, the chromatic number χ satisfies

χ(G ×H) = min{χ(G), χ(H)}.

It is also an open question as to whether equality holds in the case of digraphs.

4.2 The cartesian product

The cartesian product D ◻H of two digraphs D,H is the digraph with V (D) × V (H) as its

vertex set and an arc from (d1, h1) to (d2, h2) if d1d2 is an arc of D and h1 = h2, or d1 = d2 and

h1h2 is an arc of H. As with the direct product it is easy to see that the cartesian product is

commutative.

Theorem 4.4. Any digraphs D and H satisfy χ(D ◻H) =max{χ(D), χ(H)}.
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Proof. It is clear from the definition of the cartesian product that bothD andH are isomorphic

to a subdigraph of D◻H. Hence χ(D◻H) ≥ max{χ(D), χ(H)}. For the reverse inequality we

may assume without loss of generality that χ(D) ≥ χ(H). Let f ∶ V (D)→ {0,1, ..., χ(D) − 1}

and g ∶ V (H)→ {0,1, ..., χ(H)−1} be colorings ofD andH respectively. Define ϕ ∶ V (D◻H)→

{0,1, ..., χ(D) − 1} by ϕ(a, b) = f(a) + g(b) mod χ(D). Suppose by way of contradiction that

ϕ is not a proper coloring of D ◻H. This implies that there exists a directed cycle
Ð→
Cn that is

a subdigraph of D ◻H and ϕ(a, b) = i for all (a, b) ∈ V (
→

Cn) and some i ∈ {0,1, ..., χ(D) − 1}.

Let us write the vertices of
→

Cn sequentially as

((a10 , b10), (a11 , b10), (a12 , b10), .., (a1k1
, b10), (a1k1

, b11), (a1k1
, b12), (a1k1

, b13), ...,

(a1k1
, b1j1 ), (a20 , b1j1 )(a21 , b1j1 ), (a22 , b1j1 ), ..., (a2k2

, b1j1 ), (a2k2
, b20), (a2k2

, b21), ...).

If a10 is the only D-coordinate in
Ð→
C n then the H-coordinates of

Ð→
C n reveal a directed cycle of

length n in H. Thus for at least two vertices b1s , b1t of H we have g(b1s) ≠ g(b1t) since g is a

proper coloring of H. This leads to a contradiction as it implies that ϕ(a10 , b1s) ≠ ϕ(a10 , b1t)

since g(b) ≤ χ(D) − 1 for all b ∈ V (H). If a10 is not the only D-coordinate then the definition

of cartesian product forces the D-coordinates of
Ð→
C n to form a closed directed walk in D. Thus

for at least two of the vertices of this directed walk, say a`m and aqr , we have f(a`m) ≠ f(aqr)

because f is a proper coloring of D. We may assume without loss of generality that ` ≤ q and

that q is minimal. (What we mean here is that q is the least integer such that there exists

an r with f(a`m) ≠ f(aqr).) If ` = q then for some b ∈ V (H) the vertices (a`m , b) and (aqr , b)

belong to
Ð→
C n and ϕ((a`m , b)) ≠ ϕ((aqr , b)), which is a contradiction. Otherwise there exist

two vertices b, b′ of H such that

(aq−1kq−1
, b), (aq1 , b), (aq2 , b), ..., (aqr , b), ..., (aqkq , b), (aqkq , b

′)

is a contiguous subsequence of the vertices of
→

Cn. Since q is minimal we have f(aq−1kq−1
) =

f(a`m) ≠ f(aqr). This is a contradiction to
→

Cn being monochromatically colored as it implies
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that ϕ((aq−1kq−1
, b)) ≠ ϕ((aqr , b)). Therefore ϕ is a proper coloring of D ◻H which finally

implies that χ(D ◻H) =max{χ(D), χ(H)}.

4.3 The lexicographic product

The lexicographic product D ○ H of two digraphs D,H is defined to be the digraph with

V (D) × V (H) as its vertex set and with an arc from (d1, h1) to (d2, h2) if d1d2 is an arc in

D, or d1 = d2 and h1h2 is an arc in H.

Lemma 4.5. If D2 is an acyclic digraph then the projection πD1 ∶ V (H) → V (D1) is a

homomorphism for every subdigraph H of D1 ○D2.

Proof. Let (u, v)(x, y) be an arc of H. If u ≠ x then ux = πD1((u, v))πD1((x, y)) is an arc

of D1. Thus we assume that u = x which implies that vy is an arc of D2 and πD1((u, v)) =

πD1((x, y)) = u. Since the subdigraph of D1 ○D2 induced by the vertex set Fu = {(u,w)∣w ∈

V (D2)} is isomorphic to D2, the set π−1
D1

(u) is acyclic in H for all u ∈ V (D1). Therefore the

projection πD1 is a homomorphism.

Lemma 4.6. If D, F , and H are digraphs with H homomorphic to F , then D ○H is homo-

morphic to D ○ F .

Proof. Let ϕ ∶ V (H) → V (F ) be a homomorphism and define ρ ∶ V (D ○ H) → V (D ○ F )

by ρ((d, h)) = (d,ϕ(h)). For an arc (d1, h1)(d2, h2) of D ○ H, either d1d2 is an arc of D,

in which case ρ((d1, h1))ρ((d2, h2)) is an arc in D ○ F , or d1 = d2 and h1h2 is an arc in H.

Assuming h1h2 ∈ A(H), either ϕ(h1)ϕ(h2) is an arc of F or ϕ(h1) = ϕ(h2). Hence, as d1 = d2,

either ρ((d1, h1))ρ((d2, h2)) is an arc in D ○F or ρ((d1, h1)) = ρ((d2, h2)). Suppose, for some

vertex (d, f) of D ○ F , that ρ−1((d, f)) induces some n-cycle
→

Cn in D ○H. This implies from

the definition of ρ that
→

Cn = ((d, h1), (d, h2), ..., (d, hn)) where ϕ(hi) = f for i = 1,2, ..., n.
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Hence (h1, h2, ..., hn) is a cycle in H, completely mapped to f , which contradicts ϕ being a

homomorphism. Therefore ρ ∶ V (D ○H)→ V (D ○ F ) is indeed a homomorphism.

Theorem 4.7. If χ(H) = n then χ(D ○H) = χ(D ○
↔

Kn) for every digraph D.

Proof. Since χ(H) = n, the digraph H is homomorphic to
↔

Kn which implies that D ○H is

homomorphic to D ○
↔

Kn using Lemma 4.6. Thus χ(D ○H) ≤ χ(D ○
↔

Kn). Let m = χ(D ○H)

and suppose that g is an m-coloring of D ○H. Since χ(H) = n and the subdigraph of D ○H

induced by Hd ∶= {(d, h)∣h ∈ V (H)} is isomorphic to H, for all vertices d of D, there exist

subsets Ad of V (H) such that each ∣Ad∣ = n and g(d, h1) ≠ g(d, h2) for all pairs of distinct

h1, h2 ∈ Ad. Label the elements of Ad so that Ad = {hd1, hd2, ..., hdn}. Now define a mapping f

from V (D○
↔

Kn) to V (
↔

Km) by f((d, i)) ∶= g(d, hdi ). By way of contradiction assume that there

exists a color k such that a cycle
→

C` = ((d1, α1), (d2, α2), ..., (d`, α`)) is induced within the set

f−1(k). We first note that by the definition of f , if di = dj then f((di, αi)) ≠ f((dj , αj))

for αi ≠ αj . But f is monochromatic on
→

C`, so this shows that the entries di within
→

C`

must be distinct. Since
→

C` is a cycle in D ○
↔

Kn, it follows that (d1, d2, ..., d`) is a cycle in

D. However this implies that ((d1, h
d1
α1

), (d2, h
d2
α2

), ..., (d`, hd`α`
)) is a cycle in D ○H which is

a contradiction (of g being a coloring of D ○ H) since g(di, hdiαi
) = f(di, αi) for all i ∈ [`].

Therefore χ(D ○
↔

Kn) ≤m = χ(D ○H) and hence χ(D ○H) = χ(D ○
↔

Kn).

Lemma 4.8. If D and H are digraphs, then D ○H is homomorphically equivalent to D ○H●.

Proof. We first notice that D ○H● is homomorphic to D ○H because D ○H● is a subdigraph

of D ○ H. In order to show that D ○ H is homomorphic to D ○ H●, let ρ be a retraction

from H to H● and define φ ∶ V (D ○ H) → V (D ○ H●) by φ((d, h)) ∶= (d, ρ(h)). Suppose

that (d1, h1)(d2, h2) ∈ A(D ○ H). This implies that either d1d2 ∈ A(D) or d1 = d2 and

h1h2 ∈ A(H). If d1d2 ∈ A(D) then (d1, ρ(h1))(d2, ρ(h2)) ∈ A(D ○ H●) making φ a valid

homomorphism. Hence assume that d1 = d2 and h1h2 ∈ A(H). Since ρ is a retraction,

the inequality ρ(h1) ≠ ρ(h2) implies that (d1, ρ(h1))(d2, ρ(h2)) ∈ A(D ○ H●), making φ a
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valid homomorphism. If ρ(h1) = ρ(h2) =∶ w then φ(d1, h1) = φ(d2, h2) = (d1,w). Since

φ−1((d1,w)) = {(d1, x) ∣ x ∈ ρ−1(w)} and ρ−1(w) is acyclic (in H), we see that φ−1((d1,w)) is

acyclic (in D ○H). Hence φ is a homomorphism and D ○H is homomorphically equivalent to

D ○H●.

It was proven in [13] that for two connected graphs G and H, the core of G ○H can be

represented as the lexicographic product G′ ○H●, where G′ is a subgraph of G which itself is

a core. To close this chapter we present a directed analogue.

Theorem 4.9. If D is a connected symmetric digraph without loops and H is a connected

digraph then the core of D ○H is D′ ○H● where D′ is a subdigraph of D which itself is a core.

Proof. From Lemmas 3.7 and 4.8, it is enough to show that the core of D ○H● is D′ ○H●

with D′ as described in the statement. Let K = D ○H● and ρ be a retraction from K to K●.

For d ∈ V (D) let Fd be the set {(d, h)∣h ∈ V (H●)}. Let d be a vertex of D such that there

exists a vertex h1 in H● with (d, h1) ∈ K● which implies that ρ((d, h1)) = (d, h1). We first

show that for any such d the image of Fd under ρ is contained in Fd. Assume there exists

h2 ∈ V (H●) such that ρ((d, h2)) ≠ (d, h2) since if no such vertex exists we are done. Since

H● is connected (by Lemma 3.6), we may assume that either h1h2 ∈ A(H●) or h2h1 ∈ A(H●).

Let ρ((d, h2)) = (x, y). If h1h2 ∈ A(H●) then (d, h1)(d, h2) ∈ A(K) which implies that either

(d, h1)(x, y) ∈ A(K●) or (x, y) = (d, h1). If (x, y) = (d, h1), then ρ((d, h2)) ∈ Fd and we are

done. Hence assume that (d, h1)(x, y) ∈ A(K●) which implies that either d = x (and we are

done) or dx ∈ A(D). Since D is symmetric, xd ∈ A(D) which is a contradiction because this

would imply that (d, h2)(x, y) and (x, y)(d, h2) are arcs in K making ρ−1((x, y)) cyclic. The

same argument holds when h2h1 is an arc in H●. Thus the image of Fd under ρ is contained

in Fd.

Since K[Fd] ≅ H● the restriction of ρ to Fd is a bijection which implies that ρ(Fd) = Fd.

Hence K● =D′○H● where D′ is a subdigraph of D and D′ is symmetric since K● is an induced
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subdigraph of K (by Lemma 3.3). By way of contradiction assume now that D′ is not a core

and let ϕ be a retraction from D′ to a proper subdigraph J of D′. Define ψ ∶ V (D′ ○H●) →

V (J ○H●) by ψ((d, h)) = (ϕ(d), h). Suppose that (d, h)(u, v) ∈ A(D′ ○H●). This implies that

either du ∈ A(D′), or d = u and hv ∈ A(H●). If du ∈ A(D′) then ϕ(d)ϕ(u) ∈ A(J) which

implies that ψ((d, h))ψ((u, v)) ∈ A(J ○H●) or ϕ(d) = ϕ(u), the latter being impossible since

D′ is symmetric. If d = u and hv ∈ A(H●) then ψ((d, h))ψ((u, v)) ∈ A(J ○H●). Hence ψ is a

retraction which contradicts K● being a core. Thus D′ is a core.

We are now done introducing digraph products. In the next chapter we will see that the

lexicographic product plays an integral role in being able to define the ‘fractional chromatic

number’ in terms of homomorphisms.



Chapter 5

Fractional colorings of digraphs

In this chapter we look at the chromatic number of a digraph as the solution to an integer

program in order to define the ‘fractional chromatic number’ for digraphs. We then find

an alternate but equivalent definition using homomorphisms and the lexicographic product.

We will also prove how this fractional chromatic number relates to other digraph invariants,

namely the chromatic number and the circular chromatic number. Finally we show that the

fractional version of Hedetniemi’s Conjecture 4.3 is not true for digraphs.

5.1 Definition

Recall from the Chapter 2 that the directed analogue of the chromatic number of graphs that

we are interested in is the ‘(acyclic) chromatic number’ χ, namely the minimum number of

acyclic sets needed to cover the vertex set of a given digraph. If we let Φ denote the set of

acyclic subsets of the vertex set of a digraph D, it is easy to see that χ(D) is the optimum

30
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value of the following integer linear program:

min ∑
A∈Φ

xA

subject to ∑
A∋v

xA = 1, for each v ∈ V (D)

and xA ∈ {0,1} for each A ∈ Φ.

(5.1)

This is similar to the integer linear program for the undirected case. Following the lead of the

well-known undirected case, the fractional (acyclic) chromatic number χf(D) is the optimum

value of the continuous relaxation of (5.1) above:

min ∑
A∈Φ

xA

subject to ∑
A∋v

xA = 1, for each v ∈ V (D)

and xA ≥ 0 for each A ∈ Φ.

(5.2)

Let D be a digraph and n a positive integer. A function f from V (D) to the set ([n]
k
) of

k-subsets from [n] is a k-tuple n-coloring of D provided that for all β ⊆ ([n]
k
) with ⋂

B∈β

B ≠ ∅,

the union ⋃
B∈β

f−1({B}) is an acyclic subset of V (D). For a moment let

χ∗(D) = inf{n/k ∣ D admits a k-tuple n-coloring}. (5.3)

Notice that a trivial feasible solution to (5.2) is obtained by setting x{v} = 1 for all v ∈ V (D)

and all other acyclic subsets are given weight zero. Also the objective function, ∑
A∈Φ

xA, is

bounded below by 1 and all the coefficients in (5.2) are rational. Thus many introductory

linear programming books, see e.g. [8,31], verify that nothing is lost if we consider only rational

feasible and optimal solutions to the linear program (5.2). We may assume that all the xA

have a common denominator k and here we will take n to be n ∶= ∑
A∈Φ

kxA. Hence for all

v ∈ V (D) we have ∑
A∋v

kxA = k. This implies that there are n acyclic subsets of V (D), with
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repetition allowed, such that each vertex is in exactly k of these acyclic subsets. Label these

n acyclic sets A1,A2, ...,An and define f ∶ V (D) → ([n]
k
) by f(v) = {i ∣ v ∈ Ai}. Suppose

that β ⊆ ([n]
k
) with ⋂

B∈β

B ≠ ∅. This implies that there exists j ∈ [n] such that j ∈ B for all

B ∈ β. Hence ⋃
B∈β

f−1({B}) ⊆ Aj and thus this union is acyclic. Therefore f is a k-tuple

n-coloring of D. On the other hand assume that f is a k-tuple n-coloring of D, and, for

i ∈ [n], define Ai = {v ∣ i ∈ f(v)}. Since f is a k-tuple n-coloring of D and ⋂
v∈Ai

f(v) ⊇ {i}, the

union ⋃
v∈Ai

f−1({f(v)}) ⊇ Ai is an acyclic subset of V (D) (and thus so is Ai). Hence there are

n such Ai’s and each vertex of D is in exactly k Ai’s. Thus we may set each xAi = 1/k and

all other acyclic subsets are given weight zero to give a feasible solution to the linear program

(5.2) with value n/k.

Hence we first took an optimum solution to (5.2) with value n/k and built a k-tuple n-

coloring from that solution. This implies that χ∗ ≤ χf . Then we took an n-tuple k-coloring

and built a solution to (5.2) with value n/k giving the inequality in the other direction. Thus

χ∗ = χf and since χf = n′/k′ is rational implies that there is a k′-tuple n′-coloring of D, we

need only the minimum rather than the infimum in (5.3). Therefore we have the following

conclusion.

Theorem 5.1. The fractional (acyclic) chromatic number χf(D) of a digraph D is the min-

imum rational number n/k such that D admits a k-tuple n-coloring.

5.2 The lexicographic product and fractional colorings

For a given integer k ≥ 1, we now define the k-chromatic number χk(D) of a digraph D to be

the least integer n such that D admits a k-tuple n-coloring.

Theorem 5.2. If D is a digraph and k ≥ 1 an integer, then χk(D) = χ(D ○
↔

Kk).

Proof. First suppose that f is an n-coloring of D ○
↔

Kk. Define g ∶ V (D) → ([n]
k
) by g(v) =
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{i ∣ f(v, h) = i for some h ∈
↔

Kk}. As f is a proper coloring we have f(v, h1) ≠ f(v, h2) when

h1 ≠ h2. Thus ∣g(v)∣ = k for all v ∈ V (D). Assume that g is not a k-tuple n-coloring of

D. This implies that there exists a subset β of ([n]
k
) such that ⋂

B∈β

B ≠ ∅ and ⋃
B∈β

g−1(B)

contains a cycle, say (v1, v2, ..., vm), in D. Now ⋂
B∈β

B ≠ ∅ implies that there exists i ∈ [n]

such that for all vj ∈ ⋃
B∈β

g−1(B) there exists hj ∈ V (
↔

Kk) such that f(vj , hj) = i. This

contradicts f being a proper coloring because ((v1, h1), (v2, h2), ..., (vm, hm)) is a cycle in

D ○
↔

Kk and a subset of f−1(i). Thus g is a k-tuple n-coloring of D. On the other hand,

assume that g is a k-tuple n-coloring of D. For each d ∈ V (D), order the set g(d) from least

to greatest and define f ∶ V (D ○
↔

Kk) → [n] by f(d, i) = ith entry of g(d). Suppose that

((d1, h1), (d2, h2), ..., (dm, hm)) is a cycle in D ○
↔

Kk and a subset of f−1(j). This implies that

for all `, q ∈ [m] we have f(d`, h`) = f(dq, hq) = j. Hence d` = dq implies that h` = hq. Thus

using the definition of the lexicographic product we may conclude that (d1, d2, ..., dm) is a

cycle in D and a subset of ⋃
B∈([n]

k
)

B∋j

g−1(B), contradicting the fact that g is a k-tuple n-coloring.

Therefore f is an n-coloring of D ○
↔

Kk and χk(D) = χ(D ○
↔

Kk).

Corollary 5.3. Any digraph D satisfies χf(D) = min{χ(D ○
↔

Kk)/k ∣ k = 1,2,3...}.

Proof. It is clear from the preceding theorem that χf(D) = inf{χ(D ○
↔

Kk)/k ∣ k = 1,2,3...}

and since χf is the solution to a linear program with integer coefficients, χf is rational and

thus the infimum is attained.

Lemma 5.4. If D and H are digraphs with D →H, then D ○
↔

Kn →H ○
↔

Kn for every integer

n ≥ 1.

Proof. Suppose that f ∶ V (D) → V (H) is a homomorphism. Define ϕ from V (D ○
↔

Kn) to

V (H ○
↔

Kn) by ϕ((d, k)) ∶= (f(d), k) and suppose that (d1, k1)(d2, k2) is an arc of D ○
↔

Kn. We

have two cases to consider, depending on how this arc arose within D ○
↔

Kn.
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Case 1: d1 = d2 and k1k2 ∈ A(
↔

Kn). Here (f(d1), k1)(f(d2), k2) is an arc in H ○
↔

Kn by

definition.

Case 2: d1d2 ∈ A(D). Here, either f(d1)f(d2) ∈ A(H), which implies that

(f(d1), k1)(f(d2), k2) ∈ A(H ○
↔

Kn), or f(d1) = f(d2). Thus either (f(d1), k1) = (f(d2), k2) or

(f(d1), k1)(f(d2), k2) ∈ A(H ○
↔

Kn).

To confirm that ϕ is a homomorphism, it remains only to check that its fibers are acyclic.

So suppose, by way of contradiction, that ϕ−1((h, i)) contains a cycle
→

Cm = ((d1, i), (d2, i), ..., (dm, i)). This implies that (d1, d2, ..., dm) is a cycle in D contained in

f−1(h) which contradicts f being a homomorphism.

Using Corollary 5.3 and Lemma 5.4 we obtain the following result which gives us an impor-

tant relationship between homomorphic digraphs and the fractional chromatic number.

Corollary 5.5. If D and H are digraphs with D →H, then χf(D) ≤ χf(H).

5.3 Relationship with other digraph invariants

For graphs, the relationship between the fractional, circular, and regular chromatic numbers

is well-known to be

χf ≤ χc ≤ χ; (5.4)

see e.g. [19, 28]. Hence one would hope that the analogous relationship holds for digraphs,

and indeed it does. Recall from Section 2.2 that the directed graph
→

Kp/q, with q < p (which

we will assume for the remainder of this chapter), has vertex set V (
→

Kp/q) = {0,1,2.., p − 1}

and arc set A(
→

Kp/q) = {ij ∣ j − i (mod p) ∈ {q, q + 1, q + 2, ..., p − 1}}; see also [3]. The circular

chromatic number of a digraph D is χc(D) = min{p/q∣D →
→

Kp/q}. For digraphs, the second

inequality in (5.4) was proved in [3]. Thus to complete the chain, it will be enough to show
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that
→

Kp/q ○
↔

Kq →
↔

Kp (5.5)

and then apply Lemma 5.4. Indeed if χc(D) = p/q then D is homomorphic to
→

Kp/q by the

definition of χc and with (5.5), we obtain D○
↔

Kq →
↔

Kp. Thus we’ll have χ(D○
↔

Kq) ≤ χ(
↔

Kp) = p;

this and Corollary 5.3 will establish that χf(D) ≤ p/q = χc(D). Our next result fills in this

missing piece (5.5).

Lemma 5.6. For q < p, the product
→

Kp/q ○
↔

Kq is homomorphic to
↔

Kp.

Proof. Define f ∶ V (
→

Kp/q○
↔

Kq)→ V (
↔

Kp) by f(i, j) ∶= i+j (mod p). Since the target digraph is

complete, to show that f is a homomorphism it suffices to show that every fiber of f is acyclic.

By way of contradiction suppose that there exists k ∈ {0,1, ..., p−1} such that f−1(k) contains

(for some integer n ≥ 2) an n-cycle
→

Cn = ((i0, j0), (i1, j1), ..., (in−1, jn−1)). The definition of f

then shows that

iα + jα ≡ iβ + jβ ≡ k (mod p) for all α,β ∈ {0,1, ..., n − 1}. (5.6)

Notice that if iα = iβ then jα ≡ jβ (mod p) which implies that jα = jβ because 0 ≤ jα, jβ ≤

q − 1 < p. Similarly if jα = jβ then iα ≡ iβ (mod p) which implies that iα = iβ since 0 ≤

iα, iβ ≤ p − 1. Hence iγ ≠ iγ+1 and jγ ≠ jγ+1 for all γ ∈ {0,1,2, ..., n − 1} (where the subscripts

are taken modulo n). Thus by the definition of the lexicographic product, (i0, i1, i2, ..., in−1)

is a cycle in
→

Kp/q. This implies, using the definition of
→

Kp/q, that iγ+1 − iγ ≡ ϕγ (mod p)

where each ϕγ ∈ {q, q + 1, ..., p − 1}. Now (5.6), with α = γ and β = γ + 1, gives, again for

each γ ∈ {0,1, ..., n − 1}, iγ + jγ ≡ iγ+1 + jγ+1 (mod p). Hence jγ − jγ+1 ≡ ϕγ (mod p). Since

0 ≤ jγ , jγ+1 ≤ q − 1 and ϕγ ∈ {q, q + 1, ..., p − 1} we may conclude that jγ+1 > jγ always holds.

Hence we reach a contradiction because now j0 < j1 < j2 < ⋯ < jn−1 < j0. Therefore f is a

homomorphism as desired.

The conclusion of Lemma 5.6 together with our remarks preceding the statement of Lemma 5.6
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now gives us the digraph analogue of (5.4).

Corollary 5.7. Every digraph D satisfies χf(D) ≤ χc(D) ≤ χ(D).

It is worth noting that unlike the circular chromatic number and the regular chromatic

number, which satisfy the inequalities χ(D) − 1 < χc(D) ≤ χ(D) (see [3]), the fractional

chromatic number can be arbitrarily less than the circular chromatic number. This is shown

to be true in [7,14] for graphs. Since χf , χc, and χ for digraphs are generalizations of the same

parameters for graphs, the complete biorentations of the graphs in [7, 14] serve as examples

in which the fractional chromatic number of a digraph is arbitrarily less than the chromatic

number. We also note that Corollary 5.7 is sharp since χf(
↔

Kn) = χc(
↔

Kn) = χ(
↔

Kn) = n. It

is natural at this point to be curious about which digraphs have equality amongst all three

invariants and which do not. In order to begin answering these questions we need a few more

lemmas.

Recall that for a digraph D, the values χ(D) and χf(D) may be cast as optimum values of

linear programming problems; see (5.1) and (5.2). The linear program (5.2) however is not in

standard form so consider the following LP:

min ∑
A∈Φ

xA

subject to ∑
A∋v

xA ≥ 1, for each v ∈ V (D)

and xA ≥ 0 for each A ∈ Φ.

(5.7)

We claim that (5.2) and (5.7) are equivalent linear programs. Indeed any feasible solution of

(5.2) is a feasible solution of (5.7). We now show that any feasible solution x to (5.7) can be

perturbed into a feasible solution x′′ of (5.2) with the same objective function value. Consider

a vertex v ∈ V (D) such that ∑
v∋A

xA = b > 1. Let A1,A2, ...,At be a list of every acyclic subset

of V (D) containing v such that xAi > 0. Choose values a1, a2, ..., at such that ai ≤ xAi and
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t

∑
i=1
ai = b − 1. Now define

x′A ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xA − ai if A = Ai,

xA + ai if A = Ai − v and A ≠ ∅,

xA otherwise.

We now see that ∑
v∋A

x′A = ∑
v∋A

xA −
t

∑
i=1
ai = 1 and ∑

A∈Φ
xA = ∑

A∈Φ
x′A. Since D is finite we can

inductively define x′′ such that it is a feasible solution to (5.2) and ∑
A∈Φ

xA = ∑
A∈Φ

x′′A. Therefore

(5.2) and (5.7) are equivalent.

Mimicking the well-known graph analogue (see e.g. [11, 28]) we now define the fractional

diclique number ωf of D to be the value of an optimum solution to the LP dual of (5.7) which

is:

max ∑
v∈V (D)

yv

subject to ∑
v∈A

yv ≤ 1, for each A ∈ Φ

and yv ≥ 0 for each v ∈ V (D).

(5.8)

This linear program is useful for obtaining lower bounds on χf(D) since LP theory (see

e.g. [8, 31]) tells us that any feasible solution y to (5.8) satisfies ∑
v∈V (D)

yv ≤ χf(D).

Lemma 5.8. If AD and AH are acyclic subsets of V (D) and V (H) respectively, then AD×AH

is an acyclic subset of V (D ○H).

Proof. We first note that D ○ H[AD × AH] ≅ D[AD] ○ H[AH] (This isomorphism is well-

known and easy to check, in both the graph and digraph settings.). Thus, using Lemma 4.5

(which shows that the projection D[AD] ○ H[AH] → D[AD] is a homomorphism) we see

that D ○H[AD ×AH] is homomorphic to D[AD], which implies that χ(D ○H[AD ×AH]) ≤

χ(D[AD]) = 1. Therefore AD ×AH is acyclic.

Lemma 5.9. If D and H are digraphs, then χ(D ○H) ≤ χ(D) ⋅ χ(H).
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Proof. Suppose that u and v are optimum solutions to the primal integer program (5.1) for

D and H respectively. Define x by xA ∶= uAD
⋅vAH

when A = AD ×AH , where AD and AH are

acyclic subsets of V (D) and V (H) respectively, and xA ∶= 0 otherwise. The preceding lemma

ensures that AD×AH is an acyclic subset of V (D○H). Hence we have for all (d, h) ∈ V (D○H)

that

∑
A∋(d,h)

xA = ∑
AD∋d,AH∋h

xAD×AH
= ∑
AD∋d,AH∋h

uAD
⋅ vAH

= ∑
AD∋d

uAD
⋅ ∑
AH∋h

vAH
= 1,

since u and v are feasible solutions for their respective instances of (5.1). Thus x is feasible for

LP (5.1) on D ○H and the value at x is χ(D) ⋅χ(H). Therefore χ(D ○H) ≤ χ(D) ⋅χ(H).

Lemma 5.10. If D and H are digraphs, then χf(D ○H) = χf(D) ⋅ χf(H).

Proof. The proof that χf(D ○H) ≤ χf(D) ⋅ χf(H) follows essentially verbatim the proof of

Lemma 5.9, with the LP (5.2) in place of (5.1).

On the other hand assume that χf(D ○H) = n/k, which implies that

n ≥ χk(D ○H) = χ((D ○H) ○
↔

Kk) = χ(D ○ (H ○
↔

Kk))

using Theorem 5.1, Theorem 5.2, and the fact that the lexicographic product is associative

(see, e.g., [14]). If we let t = χ(H ○
↔

Kk) then Corollary 5.3 implies that χf(H) ≤ t/k and

Theorem 4.7 implies that n ≥ χ(D ○ (H ○
↔

Kk)) = χ(D ○
↔

Kt). Hence Corollary 5.3 yields

χf(D) ≤ n/t which gives us χf(D ○H) = n/k = n/t ⋅ t/k ≥ χf(D) ⋅ χf(H). Putting the two

bounds together yields the desired result.

It is interesting to note that even though the lexicographic product is not commutative,

Lemma 5.10 implies that χf(D ○H) = χf(H ○D) for any given digraphs D,H. When the

same relation holds for χ in place of χf , we have our answer to the question of when (5.4) is

sharp.
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Theorem 5.11. χf(D) = χc(D) = χ(D) if and only if χ(D○H) = χ(D) ⋅χ(H) for all digraphs

H.

Proof. In this proof, it will help to keep in mind the basic inequality χf ≤ χc ≤ χ from

Corollary 5.7. Let H be a given digraph with n ∶= χ(H). If χ(D) = χf(D) then Theorem 4.7

and Lemma 5.10 imply that χ(D ○H) = χ(D ○
↔

Kn) ≥ χf(D ○
↔

Kn) = χf(D) ⋅χf(
↔

Kn) = χ(D)n =

χ(D) ⋅ χ(H). Thus Lemma 5.9 yields χ(D ○H) = χ(D) ⋅ χ(H).

Now suppose that χ(D ○ H) = χ(D) ⋅ χ(H) for all digraphs H. Corollary 5.3 implies

that there exists a positive integer m such that χf(D) = χ(D ○
↔

Km)/m. Hence χf(D) =

χ(D) ⋅ χ(
↔

Km)/m = χ(D).

5.4 Fractional version of Hedetniemi’s Conjecture

We saw in Section 4.3 that the lexicographic product behaves similarly for graphs and digraphs.

However this is not always the case for the direct product, defined on p. 23. Consider the

following result, a fractional version of Hedetniemi’s Conjecture (4.3) for graphs.

Theorem 5.12. For any graphs G and H, the fractional chromatic number χf satisfies χf(G×

H) = min{χf(G), χf(H)}.

This theorem was recently proved by Zhu [40].

We now prove two propositions which together show that the fractional version of Hedet-

niemi’s Conjecture (4.3) for digraphs is not true.

Proposition 5.13. χf(
→

Cn) = 1 + 1/(n − 1).

Proof. Corollary 5.7 and [3] imply that χf(
→

Cn) ≤ χc(
→

Cn) = 1 + 1/(n − 1). For the other

direction, we define the canonical fractional clique y (i.e. feasible solution to LP (5.8)) by
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y(i) = 1/(n − 1) for all i ∈ V (
→

Cn). LP duality gives χf(
→

Cn) ≥ ωf(
→

Cn), but the right side here

is at least the objective function of (5.8) evaluated at y, namely 1 + 1/(n − 1). Thus indeed

χf(
→

Cn) ≥ 1 + 1/(n + 1), and the result is proved.

Proposition 5.14. For any two coprime integers m and n,
→

Cm ×
→

Cn ≅
→

Cmn.

Proof. Let V (
→

Cm) = {0,1, . . . ,m − 1} and V (
→

Cn) = {0,1, . . . , n − 1}, both with the canonical

arc set. The definition of the direct product implies that (i, j)(s, t) ∈ A(
→

Cm ×
→

Cn) if and only

if s − i ≡ 1 (mod m) and t − j ≡ 1 (mod n). Consider an algorithm starting with the vertex

(0,0) and adding 1 to each coordinate at each step (with the addition taken modulo m and

n respectively). Notice that each step in the algorithm represents an edge in
→

Cm ×
→

Cn. Hence

if the algorithm reaches every vertex before returning back to (0,0), we’ll have shown that
→

Cm ×
→

Cn contains a spanning subdigraph isomorphic to
→

Cmn. Suppose that the algorithm

reaches (0,0) on the kth step. This implies that both m and n divide k, and since they are

coprime, mn∣k, so that k ≥ mn.. Since there are mn ordered pairs, k is at most mn. Thus

k = mn, and the algorithm returns to (0,0) on the mnth step. As noted above, we now see

that
→

Cm ×
→

Cn contains a (spanning) copy of
→

Cmn. To see that in fact
→

Cm ×
→

Cn ≅
→

Cmn, notice

that each vertex of
→

Cm ×
→

Cn has outdegree 1, implying that ∣A(
→

Cm ×
→

Cn)∣ = mn = ∣
→

Cmn∣, so

that the containment
→

Cm ×
→

Cn ⊇
→

Cmn is not proper.

Using Proposition 5.13 we see that χf(
→

Cmn) = 1 + 1/(mn − 1), χf(
→

Cm) = 1 + 1/(m − 1),

and χf(
→

Cn) = 1 + 1/(n − 1). Putting these facts together with Proposition 5.14, we see that

χf(
→

Cm ×
→

Cn) is strictly less than both χf(
→

Cm) and χf(
→

Cn). Therefore the generalization to

digraphs of the fractional version (Theorem 5.12) of Hedetniemi’s Conjecture is not true.

We now have a working definition of the fractional chromatic number χf of a digraph. We

have seen that χf is intimately tied to the lexicographic product and homomorphisms. Also

we now understand how it relates to other digraph parameters, namely the chromatic number

and the circular chromatic number. Though there is more to explore about χf , we choose to

move on to Chapter 6 and the main results of this dissertation.



Chapter 6

New constructions and cores

This chapter finally brings us to our main results. First we construct highly chromatic digraphs

without short cycles in (the proof of) Theorem 6.1. Furthermore we will see that, in fact, the

digraphs constructed are cores. Then in Section 6.2 we prove the deepest result (Theorem 6.9)

of this dissertation: for any pair n, k of integers both exceeding one, we construct uniquely

n-colorable digraphs with digirth equal to k.

6.1 Highly chromatic digraphs without short cycles

In this section, we construct digraphs with arbitrarily large digirth and chromatic number. In

fact, the construction strengthens the probabilistic result in [3] because it produces a digraph

with digirth k and chromatic number n for each pair k,n of integers exceeding one. It is also of

interest that unlike the analogous graph constructions in [20], [21], and [24], our construction

is primitively recursive in n. Additionally Theorem 6.3 establishes that these digraphs belong

to the special class of cores.

41
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Theorem 6.1. For any given integers k and n exceeding one, there exists an n-chromatic

digraph D with
→

g(D) = k.

Proof. For n = 2, the directed k-cycle will suffice. For n ≥ 2, we proceed by induction on n and

suppose that we have already constructed a digraph Dn with chromatic number n, digirth k,

and V (Dn) = {d1, d2, ..., dm}. We now define Dn+1.

For each i ∈ [m] let Di
n be a digraph with vertex set V (Di

n) = {(d1, i), (d2, i), ..., (dm, i)}

which is isomorphic to Dn in the natural way. Next construct m directed paths Pdi , for

1 ≤ i ≤ m, each of length k − 2, with vertex sets {(di, p1), (di, p2), ...(di, pk−1)} and arc sets

A(Pdi) ∶= {
ÐÐÐÐÐÐÐÐÐÐ→
(di, pj)(di, pj+1) ∣ j ∈ [k − 2]}. Now define m digraphs H(n, i), for 1 ≤ i ≤m, in the

following manner. The vertex sets are V (H(n, i)) ∶= V (Di
n) ∪ V (Pdi), and the arc sets are

A(H(n, i)) ∶= A(Di
n) ∪A(Pdi) ∪ {

ÐÐÐÐÐÐÐ→
(d, i)(di, p1) ∣d ∈ V (Dn)} ∪ {

ÐÐÐÐÐÐÐÐÐ→
(di, pk−1)(d, i) ∣d ∈ V (Dn)} .

Finally, we define Dn+1 to be the digraph with

V (Dn+1) ∶=
m

⋃
i=1

V (H(n, i))

and

A(Dn+1) ∶=
m

⋃
i=1

A(H(n, i)) ∪ {
ÐÐÐÐÐÐÐÐÐ→
(di, p`)(dj , ph) ∣didj ∈ A(Dn) and `, h ∈ [k − 1]} .

In order to illustrate this construction, we include in Figure 6.1 a diagram of D3 with k = 3.

All double-tailed arrows represent numerous arcs in the diagram. The double-tailed arrows

running horizontally indicate an arc from every vertex at the tail to every vertex at the head.

The double-tailed arrows running up and down rindicate an arc from every vertex at the

tail to one vertex at the head and from one vertex at the tail to every vertex at the head

respectively. The three remaining diagrams in this section follow similar schematics.
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D2
2

Pd1

H(2, 1) H(2, 2) H(2, 3)

Figure 6.1: D3 with k = 3

We first show that the digirth of Dn+1 is k. Since the digirth of each H(n, i) is k and

there are no arcs from Di
n to Dj

n for j ≠ i, any cycle containing a vertex from some Di
n has

length exceeding k−1. Hence it suffices to show that the subdigraph Σ of Dn+1 induced by the

vertices of the Pdi ’s has digirth exceeding k−1. Because there exists an acyclic homomorphism

ψ ∶ V (Σ)→ V (Dn) (sending every vertex in Pdi to di), we have
→

g(Σ) ≥ →g(Dn) = k. Therefore

→

g(Dn+1) = k.

It is clear that χ(Dn+1) ≥ χ(Dn) = n since Dn is isomorphic to a subdigraph of Dn+1. If

Dn+1 is n-chromatic, then there exists an acyclic homomorphism σ ∶ V (Dn+1) → V (
↔

Kn). To

set up the contradiction we are about to derive, fix a σ ‘color’ α ∈ V (
↔

Kn). Since Di
n is iso-

morphic to Dn, the function σ maps V (Di
n) onto V (

↔

Kn) for all i ∈ [m]. Every vertex in Di
n

is in a cycle with the vertices of Pdi , which implies that there exists a vertex vi ∈ Pdi such that

σ(vi) ≠ α. The subdigraph Λ of Dn+1 induced by {v1, v2, .., vm} is isomorphic to Dn. This

contradicts the fact that Dn has chromatic number n since σ, now seen to avoid α on V (Λ),

effectively maps V (Λ) to V (
↔

Kn−1) acyclically. Thus χ(Dn+1) ≥ n + 1. We now show that

χ(Dn+1) = n + 1 by giving an acyclic homomorphism from Dn+1 to
↔

Kn+1. Let ζ be an acyclic

homomorphism from Dn to
↔

Kn. Define a mapping φ ∶ V (Dn+1) → V (
↔

Kn+1) as follows. For
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vertices (dj , i) ∈ V (Di
n), let

φ((dj , i)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ζ(dj) if ζ(dj) ≠ ζ(di),

n + 1 if ζ(dj) = ζ(di).

For vertices (di, p) ∈ V (Pdi), define φ((di, p)) = ζ(di).

As the target digraph of φ is complete, to show that φ is an acyclic homomorphism, it

will suffice to show that each fiber of φ is acyclic. The fibers of φ∣V (Di
n)

are acyclic for all

i ∈ [m] because they are identical, up to relabeling, to the fibers of ζ. This implies that

the fibers of φ∣V (H(n,i)) are acyclic since φ(V (Pdi)) ∩ φ(V (Di
n)) = ∅. Hence it suffices to

show that the restriction of φ to Σ(=Dn+1 [
m

⋃
i=1

V (Pdi)]) is an acyclic homomorphism. Let

ψ ∶ V (Σ)→ V (Dn) be defined as above and notice that φ∣V (Σ) = ζ○ψ since φ((di, p)) = ζ(di) for

all vertices (di, p) ∈ V (Pdi). As ζ and ψ are acyclic homomorphisms, so too is their composition

φ∣V (Σ). Therefore φ is an acyclic homomorphism which finally implies that χ(Dn+1) = n+1.

The preceding theorem (and proof) will also appear in [29]. We remark here on the number

of vertices in the Dn’s. We see from the construction that we have the recurrence relation:

∣V (Dn)∣ = ∣V (Dn−1)∣2 + (k − 1) ⋅ ∣V (Dn−1)∣ with ∣V (D2)∣ = k.

It is easy to confirm that ∣V (Dn)∣ = 22n−1 −1 for k = 3. For a general k we do not have a closed

form. However we may inductively argue that ∣V (Dn)∣ is O (22n−3 ⋅ k2n−2) after observing that

∣V (D2)∣ = k and ∣V (D3)∣ = 2k2 − k.

We need the next result as a tool for strengthening Theorem 6.1.

Lemma 6.2. For k = →g(Dn), every arc of Dn is in a directed k-cycle.

Proof. We notice that the assertion is true for n = 2 because D2 ≅
→

Ck and proceed by induction.

Next assume its truth for Dn and let uv be an arc in Dn+1. If, for an i ∈ [m], uv is an arc in
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Di
n, which is isomorphic to Dn, then we may use the inductive hypothesis to see that uv is

in a k-cycle. Another easy case is when uv is an arc of some Pdi since uv is in a k-cycle for

all i ∈ [m] by our construction. Similarly, for all i ∈ [m], our construction implies that uv is

in a k-cycle when either u ∈ V (Di
n) and v = (di, p1) or v ∈ V (Di

n) and u = (di, pk−1). The last

case to inspect is when u ∈ V (Pdi) and v ∈ V (Pdj) for i, j ∈ [m] with i ≠ j. In this case, by

our construction, uv is an arc in Dn+1 if and only if didj is an arc in Dn. Thus didj is in a

k-cycle of Dn by the induction hypothesis. Finally this in turn implies that uv is in a k-cycle

of Dn+1 and the proof is complete.

We now are prepared to say something substantially stronger about the digraphs constructed

in the proof of Theorem 6.1: they are cores. This suggests that there is a sort of minimality

to this construction. For the proof, we need to recall a definition. A digraph D is strongly

connected if for every pair u, v of distinct vertices in D, there exists a directed walk from u

to v and from v to u, i.e., if every vertex of D is reachable from every other vertex in D. It

is straightforward to see that the digraphs constructed for proving Theorem 6.1 are strongly

connected.

Theorem 6.3. For any given integers n > 1 and k > 2 the digraph Dn constructed in Theo-

rem 6.1 is a core with
→

g(Dn) = k.

Proof. It is clear that D2 is a core since D2 ≅
→

Ck so that we may proceed by induction.

Assume that Dn is a core with n ≥ 2 and let ϕ ∶ V (Dn+1)→ V (Dn+1) be a retraction (defined

on p. 16). Define Γ to be the image of ϕ and thus our goal is to show that Γ = V (Dn+1). Since

ϕ is a retraction and Γ induces a subdigraph of Dn+1, the function ϕ must map k-cycles (i.e.

shortest cycles) to k-cycles. Thus

if two vertices u, v are in the same k-cycle then ϕ(u) ≠ ϕ(v). (6.1)

Thus Lemma 6.2 implies that all arcs uv of Dn+1 satisfy ϕ(u) ≠ ϕ(v). In other words ϕ is a



6.1. HIGHLY CHROMATIC DIGRAPHS WITHOUT SHORT CYCLES 46

non-contracting homomorphism (defined on p. 7).

We first proceed to show that for the subdigraph Σ(=Dn+1 [
m

⋃
i=1

V (Pdi)]) of Dn+1, as defined

in the proof of Theorem 6.1, the image of ϕ restricted to V (Σ) is contained in V (Σ). Let

u ∈ V (Pdi) and v ∈ V (Dj
n), for some i, j, and we will show that ϕ(u) ≠ v. This and the

fact that Dn is strongly connected will suffice to show that ϕ(V (Σ)) ⊆ V (Σ), for we can

repeat our argument below as necessary to force every such ϕ(u) into V (Σ). If i = j, then

the construction of Dn+1 puts u and v together in a k-cycle and hence they cannot be in the

same fiber of ϕ. This proves that ϕ(u) ≠ v for otherwise, with ϕ being the identity on Γ,

we’d have ϕ(u) = ϕ ○ ϕ(u) = ϕ(v), contradicting (6.1). Notice that there exists a directed

path from di to dj for all i, j ∈ [m] because Dn is strongly connected. For the case i ≠ j, we

proceed by induction on the distance, s, from di to dj in Dn. Assume that this distance is

s+1 and that for every r ∈ [m] with 0 ≤
ÐÐÐÐÐÐ→
dist(di, dr) ≤ s we have ϕ(u) ≠ z for all z ∈ V (Dr

n). By

assumption there is a path P = (di, di+1, ..., di+s, dj) in Dn which by our construction implies

that u(di+1, p`) is an arc in Dn+1 for all ` ∈ [k − 1]. Hence the induction hypothesis implies

that ϕ(u) ≠ ϕ((di+1, p`)) for all ` ∈ [k − 1]. Thus if ϕ(u) = v then vϕ(di+1, p`) ∈ A(Dn+1)

for all ` ∈ [k − 1] because ϕ is a non-contracting homomorphism. However the induction

hypothesis again implies that ϕ(di+1, p`) ∉ V (Dj
n) which forces ϕ(di+1, p`) to be (dj , p1) for

every ` ∈ [k − 1]. This cannot happen because k > 2 and (di+1, p`) and (di+1, pt) are in a

k-cycle together for all `, t ∈ [k−1] with ` ≠ t. Therefore the restriction of ϕ to V (Σ) is indeed

contained in V (Σ).

The next step is to show that Dn+1[Γ] cannot be a subdigraph of Dn+1 −H(n, i) for any

i ∈ [m]. By way of contradiction we assume that there is an i such thatDn+1[Γ] is a subdigraph

ofDn+1−H(n, i). Choose exactly one vertex vj from each Pdj and define Λ to be the subdigraph

of Dn+1 induced by the vj ’s which by our construction is isomorphic to Dn. Define ψ ∶

V (Σ) → V (Λ) by ψ(d`, ps) = v` for all ` ∈ [m] and s ∈ [k − 1]. Consider the homomorphism

ψ∣ζ ○ ϕ∣V (Λ) ∶ V (Λ) → V (Λ) where ζ ∶= Im(ϕ∣V (Λ)). (Note that these restrictions compose

because ψ is defined on ζ ⊂ Im(ϕ∣V (Σ)) ⊆ V (Σ).) Since we’re under the assumption that the
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image of ϕ is contained in V (Dn+1 −H(n, i)), there exists an α ∈ [m] such that ϕ(vα) ≠ vα.

Thus vα is not in the image of ψ∣ζ ○ ϕ∣V (Λ) which implies that ψ∣ζ ○ ϕ∣V (Λ) is not a bijection.

Thus by Lemma 3.1 the digraph Λ is not a core. This contradicts the induction hypothesis

that Dn is a core because Λ is isomorphic to Dn. Therefore Dn+1[Γ] cannot be a subdigraph

of Dn+1 −H(n, i) for any i ∈ [m].

We now show that

for all i ∈ [m] there exists a j ∈ [k − 1] such that ϕ((di, pj)) = (di, pj) ∈ Γ. (6.2)

By way of contradiction assume that Γ is contained in V (Dn+1 − Pdi). This follows from the

negation of (6.2) because the definition of retraction implies that

for any vertices u, v ∈ V (Dn+1), if ϕ(u) = v then ϕ(v) = v.

Notice that for all α ∈ V (Di
n) the arc ϕ(α)ϕ(di, p1) is in Dn+1[Γ] because α(di, p1) is an

arc in Dn+1. However, in the construction of Dn+1, the only arcs from Di
n to Σ are those

from Di
n to (di, p1). Thus ϕ(α) ∈ V (Dn+1 − H(n, i)) for every α ∈ V (Di

n). However this

and the fact that ϕ is a retraction imply that Γ is contained in V (Dn+1 − H(n, i)) which

contradicts the preceding paragraph. Thus we’ve established (6.2). This fact will now allow

us to show that for every i ∈ [m] the vertices (di, p1) and (di, pk−1) are sent to the same

Pd by ϕ. We again proceed by way of contradiction and assume that for two distinct ver-

tices u1, uk−1 of Dn, we have ϕ(di, p1) ∈ V (Pu1) and ϕ(di, pk−1) ∈ V (Puk−1). Considering

an α ∈ V (Di
n) we see that both ϕ(di, pk−1)ϕ(α) and ϕ(α)ϕ(di, p1) must be in the arc set

of Dn+1[Γ] since ϕ is a non-contracting homomorphism. The preceding sentence and our

construction of Dn+1 thus imply that ϕ(α) ∈ V (Σ), say ϕ(α) ∈ V (Pu0), because u1 ≠ uk−1.

Similarly (ϕ(α), ϕ(di, p1), ϕ(di, p2), ..., ϕ(di, pk−1)) is a k−cycle in Dn+1[Γ]. This implies that

(u0, u1, ..., uk−1) is a cycle in Dn. We may thus assume that the uj ’s are distinct for other-

wise (u0, u1, ..., uk−1) would contain a cycle of length less than k. Now (6.2) shows that there



6.1. HIGHLY CHROMATIC DIGRAPHS WITHOUT SHORT CYCLES 48

exists j ∈ [k − 1] such that uj = di. If we let ` = j − 1 (mod k), then the preceding sentence

implies that u`di ∈ A(Dn). Thus for all r, s ∈ [k − 1] the arc (u`, pr)(di, ps) is in Dn+1 and

(6.2) implies that ϕ(di, p`) = (u`, pt) for some t ∈ [k − 1]. Hence (u`, pt) is in the image of ϕ

implying that ϕ((u`, pt)) = (u`, pt) because ϕ is a retraction (ϕ is the identity on its image).

This contradicts the fact that ϕ is a non-contracting homomorphism. Thus for every i ∈ [m]

the vertices (di, p1) and (di, pk−1) are indeed sent to the same Pd by ϕ.

We next show that in fact for every i ∈ [m] all the vertices of Pdi are sent to the same

Pd by ϕ for some d ∈ V (Dn). By way of contradiction assume that some s ∈ [k − 1] and

` ∈ {2,3, ..., k−2} satisfy ϕ(di, p`) = (v, ps) while ϕ(di, p1) ∈ V (Pu), where u and v are distinct

vertices of Dn. The preceding paragraph implies that (di, pk−1) is sent to Pu as well. As Pdi is

a directed path of length k−2, the image under ϕ of V (Pdi) induces a directed path of length

not exceeding k − 2. However since ϕ(di, p1), ϕ(di, pk−1) ∈ V (Pu) and u ≠ v, the preceding

sentence implies that there is a cycle in Dn containing u and v which has length less than k.

This contradiction lets us deduce that for every i ∈ [m] all the vertices of Pdi are sent to Pd by

ϕ for some d ∈ V (Dn). This implies that the restriction of ϕ to V (Σ) is the identity because of

(6.2). For u ∈ V (Di
n), the image ϕ(u) lies in neither Dj

n, for j ≠ i, nor Pdi because we already

know that ϕ fixes Pdi . Also, ϕ(u) ∈ Pdj with dj ≠ di implies that djdi and didj are arcs in Dn

because u(di, p1) and (di, pk−1)u are arcs in Dn+1. Hence we see that for all u ∈ V (Di
n) the

image ϕ(u) lies in Di
n. This implies that the restriction of ϕ to each V (Di

n) is a retraction of

Di
n to itself. Since each Di

n is isomorphic to Dn, a core by induction, each Di
n is also a core.

Thus, the restriction of ϕ to each V (Di
n), for i ∈ [m], is the identity. Therefore, we’ve finally

established that Γ = V (Dn+1) and hence by induction reached the conclusion that the Dn’s

are cores.
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6.2 Uniquely n-colorable digraphs without short cycles

We now reach the section containing the main result of this dissertation. The proof of The-

orem 6.9 constructs uniquely n-colorable digraphs with digirth k for any pair n, k of suitable

integers. This result is a constructive version of the probabilistic proof appearing in [15] and

is analogous to the undirected construction appearing in [38]. For the proof of Theorem 6.9

we first need to prove a few lemmas and to construct a few other digraphs related to the Dn of

Section 6.1. The first of these digraphs, denoted Bn, is a spanning subdigraph of Dn. We will

define Bn inductively and start by setting B2 to be the path of length k − 1. We now define

Bn+1 from Bn. Suppose that V (Bn) = {d1, d2, ..., dm} = V (Dn) and set V (Bn+1) = V (Dn+1).

For i ∈ [m] let Bi
n be Bn tagged with an i. Now define m digraphs F (n, i), for 1 ≤ i ≤ m, in

the following manner. The vertex sets are V (F (n, i)) ∶= V (Bi
n)∪V (Pdi), and the arc sets are

A(F (n, i)) ∶= A(Bi
n) ∪A(Pdi) ∪ {

ÐÐÐÐÐÐÐ→
(d, i)(di, p1) ∣d ∈ V (Dn) = V (Bn)} .

Finally, we define Bn+1 to be the digraph with

V (Bn+1) ∶=
m

⋃
i=1

V (F (n, i))

and

A(Bn+1) ∶=
m

⋃
i=1

A(F (n, i)) ∪ {
ÐÐÐÐÐÐÐÐÐ→
(di, p`)(dj , ph) ∣didj ∈ A(Bn) and `, h ∈ [k − 1]} .

It may be helpful for the reader to view Figure 6.2 for an example of this construction.

Lemma 6.4. Bn is acyclic for all n.

Proof. We proceed by induction and notice first that B2 is acyclic as it is just a directed path.

Now, assuming that Bn is acyclic, we see that each subdigraph Bi
n of Bn+1 is acyclic by our

induction hypothesis. Thus there does not exist a cycle in Bn+1 containing a vertex from any

Bi
n since there are no arcs from any vertex of the Pdi ’s to any vertex of the Bi

n’s. Since the
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B̂2
2

Pd1

F (2, 1) F (2, 2) F (2, 3)

Figure 6.2: B3 with k = 3

subdigraph Σ̂ of Bn+1 induced by the vertices of the Pdi ’s is homomorphic to Bn via projection

onto the first coordinate, we see that
→

g(Σ̂) ≥ →g(Bn) =∞. Therefore Bn+1 is also acyclic.

.Lemma 6.5. If (α0, α1, ..., αk−1) is a shortest cycle in Dn, then there exists a unique ` ∈

{0,1, . . . , k − 1} such that the arc α`α`+1 is in A(Dn) ∖A(Bn).

Proof. Proceeding by induction, again we see that the statement is true for B2. Thus by

our induction hypotheses the statement is true for any shortest cycle contained in any Di
n.

Since all shortest cycles containing a vertex (d, i) from a Di
n and a vertex from a Pdj have

the form ((d, i), (di, p1), .., (di, pk−1)), the unique arc in A(Dn+1) ∖ A(Bn+1) for such cycles

is (di, pk−1)(d, i). Thus it remains to show that the statement is true for shortest cycles

contained in Σ (defined on p. 43). So let us now suppose that the cycle (α0, α1, ..., αk−1) is

contained in Σ; as we have seen in Theorem 6.1 we may assume that αj = (dj , prj), where

(d0, d1, ..., dk−1) is a shortest cycle in Dn−1. Thus the induction hypothesis yields that there

exists a unique ` such that d`d`+1 is in A(Dn−1) ∖A(Bn−1). Therefore α`α`+1 is the unique

arc of (α0, α1, ..., αk−1) in A(Dn) ∖A(Bn), and the proof is complete.
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Next we construct digraphs D′

n with digirth k. For n = 2, the directed k-cycle will suffice.

For n ≥ 2, we proceed by induction on n and suppose that we have already constructed a

digraph D′

n with digirth k and V (D′

n) = {d1, d2, ..., dm}. We now define D′

n+1.

For each i ∈ [m] let D̂i
n be a digraph with vertex set V (D̂i

n) = {(d1, i), (d2, i), ..., (dm, i)}

which is isomorphic to D′

n in the natural way. Next construct m directed paths Pdi , for

1 ≤ i ≤ m, each of length k − 2, with vertex sets {(di, p1), (di, p2), ...(di, pk−1)} and arc sets

A(Pdi) = {
ÐÐÐÐÐÐÐÐÐÐ→
(di, pj)(di, pj+1) ∣ j ∈ [k − 2]}. Now define m digraphs H ′(n, i), for 1 ≤ i ≤m, in the

following manner. The vertex sets are V (H ′(n, i)) ∶= V (D̂i
n) ∪ V (Pdi), and the arc sets are

A(H ′(n, i)) ∶= A(D̂i
n) ∪A(Pdi) ∪ {

ÐÐÐÐÐÐÐ→
(d, i)(di, p1) ∣d ∈ V (D′

n)} ∪ {
ÐÐÐÐÐÐÐÐÐ→
(di, pk−1)(d, i) ∣d ∈ V (D′

n)} .

Finally, we define D′

n+1 to be the digraph with

V (D′

n+1) ∶=
m

⋃
i=1

V (H ′(n, i))

and

A(D′

n+1) ∶=
m

⋃
i=1

A(H ′(n, i)) ∪ {αβ ∣α ∈ V (H ′(n, i)), β ∈ V (H ′(n, j)) and didj ∈ A(D′

n)} .

Figure 6.3 is included on the following page in order to clarify the construction of D′

n.

It is clear from the construction of D′

n that Dn is a spanning subdigraph of D′

n for all n

which implies that χ(D′

n) ≥ χ(Dn) = n and
→

g(D′

n) ≤
→

g(Dn).

Lemma 6.6. For each integer n ≥ 2, the digraph D′

n has digirth
→

g(D′

n) =
→

g(Dn) = k.

Proof. We observe that D′

2 has digirth k and proceed by induction. Using the induction

hypothesis, we see that
→

g(D̂i
n) = k for all i ∈ [m], which combined with the construction of

D′

n+1 implies that
→

g(H ′(n, i)) = k for all i ∈ [m]. Thus we need only consider cycles which

contain vertices α and β where α ∈ V (H ′(n, i)), β ∈ V (H ′(n, j)) and i ≠ j. But this implies,
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D̂2
2

Pd1

H ′(2, 1) H ′(2, 2) H ′(2, 3)

Figure 6.3: D′

3 with k = 3

from the construction of D′

n+1, that there exists a path in D′

n from di to dj and from dj to

di. Thus the induction hypothesis also implies that the cycle containing α and β has length

at least k. Combining these observations, we see that
→

g(D′

n+1) = k, and induction gives the

lemma.

Finally we define B′

n inductively and start by letting B′

2 be the path of length k − 1. We

now define B′

n+1 from B′

n. Suppose that V (B′

n) = {d1, d2, ..., dm} = V (D′

n) and set V (B′

n+1) =

V (D′

n+1). For i ∈ [m] let B̂i
n be B′

n tagged with an i. Now define m digraphs F ′(n, i), for

1 ≤ i ≤ m, in the following manner. The vertex sets are V (F ′(n, i)) ∶= V (B̂i
n) ∪ V (Pdi), and

the arc sets are

A(F ′(n, i)) ∶= A(B̂i
n) ∪A(Pdi) ∪ {

ÐÐÐÐÐÐÐ→
(d, i)(di, p1) ∣d ∈ V (Dn) = V (B′

n)} .
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Finally, we define B′

n+1 to be the digraph with

V (B′

n+1) ∶=
m

⋃
i=1

V (F ′(n, i))

and, for all s, t ∈ [m],

A(B′

n+1) ∶=
m

⋃
i=1

A(F ′(n, i)) ⋃{
ÐÐÐÐÐÐÐÐÐ→
(di, p`)(dj , ph) ∣didj ∈ A(B′

n) and `, h ∈ [k − 1]}

⋃{
ÐÐÐÐÐÐÐ→
(ds, i)(dt, j) ∣didj ∈ A(B′

n)} ⋃{
ÐÐÐÐÐÐÐÐ→
(ds, i)(dj , ph) ∣didj ∈ A(D′

n) and h ∈ [k − 1]} .

It is clear from the construction that Bn is a spanning subdigraph of B′

n. Figure 6.4 may help

bring to light some of the nuances of this construction.

B̂2
2

Pd1

F ′(2, 1) F ′(2, 2) F ′(2, 3)

Figure 6.4: B′

3 with k = 3

Lemma 6.7. B′

n is acyclic for all n.

Proof. It is easy to see that B′

2 is acyclic and thus we continue by induction. Once again

the induction hypothesis and the construction of B′

n+1 imply that F ′(n, i) is acyclic for every

i ∈ [m]. Since there is no arc from any vertex of a Pdi to any vertex of a B̂j
n, it suffices
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to consider the subdigraph of B′

n+1 induced by the vertices of the Pdi ’s and the subdigraph

induced by the B̂i
n’s. Both of these subdigraph s are homomorphic to B′

n and thus are acyclic

by induction. Therefore B′

n+1 is acyclic.

We may now define directed graphs D′

m∗
↔

Kn which will be shown to be uniquely n-colorable

with digirth equal to
→

g(D′

m). The vertex set of D′

m∗
↔

Kn is V (D′

m∗
↔

Kn) = V (D′

m) × V (
↔

Kn)

and there is an arc from (d1, h1) to (d2, h2) if d1d2 ∈ A(D′

m) and h1h2 ∈ A(
↔

Kn), or d1d2 ∈

A(B′

m) and h1 = h2. It is worth noting that the direct product D′

m ×
→

Kn is a spanning

subdigraph of D′

m∗
↔

Kn. The first two properties to notice about D′

m∗
↔

Kn are that it has

digirth at least
→

g(D′

m) and is n-colorable because the projections are homomorphisms. (The

projection onto
↔

Kn being a homomorphism relies on the fact that B′

m is acyclic.) We now

introduce some notation for future use. Let the vertices of
↔

Kn be 0,1, ..., n − 1 and, for

t ∈ V (
↔

Kn), let Ht(m − 1, i) be the set of vertices V (H ′(m − 1, i)) × {t}. Similarly define P tdi

and Dt(m−1, i) to be V (Pdi)×{t} and V (D̂i
m−1)×{t} respectively. Lastly define Ωn(m−1, j)

to be the subdigraph of D′

m∗
↔

Kn induced by ⋃n−1
i=0 D

i(m−1, j). The next lemma provides the

linchpin to proving that D′

m∗
↔

Kn is uniquely n-colorable when m > n.

Lemma 6.8. If n ≤m − 1 and j ∈ {1,2, ..., ∣V (D′

m−1)∣}, then the chromatic number of

Ωn(m − 1, j) is n.

Proof. First we show that there exists an m-coloring φm of Dm such that αβ ∈ A(Dm)∖A(Bm)

implies that φm(α) ≠ φm(β). It is easy to see that φ2 exists and thus we may proceed by in-

duction. Define a mapping φm ∶ V (Dm)→ V (
↔

Km) as follows. For vertices (dj , i) ∈ V (Di
m−1),

let

φm((dj , i)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

φm−1(dj) if φm−1(dj) ≠ φm−1(di),

m − 1 if φm−1(dj) = φm−1(di).

For vertices (di, p) ∈ V (Pdi), define φm((di, p)) = φm−1(di).
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Now suppose that αβ ∈ A(Dm)∖A(Bm) which implies that either α,β are vertices of some

Di
m−1, or α is a vertex of some Pdi and β is a vertex of Di

m−1, or α is a vertex of some Pdi

and β is a vertex of some Pdj . In the case where α,β are vertices of some Di
m−1, we may

assume that α = (dj , i) and β = (dh, i), where djdh is in A(Dm−1) ∖A(Bm−1). Thus using the

induction hypothesis we see that φm−1(dj) ≠ φm−1(dh) which implies that φm(α) ≠ φm(β). In

the second case, where α is a vertex of some Pdi and β is a vertex of Di
m−1, it is clear from

the definition of φm that φm(α) ≠ φm(β). In the last case, in which α is a vertex of some Pdi

and β is a vertex of some Pdj , we may assume that didj is in A(Dm−1) ∖A(Bm−1). Thus the

inductive hypotheses and the definition of φm imply that φm(α) ≠ φm(β). Therefore φm is an

m-coloring of Dm such that αβ ∈ A(Dm) ∖A(Bm) implies that φm(α) ≠ φm(β).

We now define Γ to be the subdigraph of D′

n+1∗
↔

Kn induced by the set

{((α,1), φn(α))∣(α,1) ∈ V (D1
n)} and notice that Γ is a subdigraph of Ωn(n,1) and the di-

graph induced by Di(m − 1,1) is isomorphic to the digraph induced by Di(m − 1, j) for

all j ∈ {1,2, ..., ∣V (D′

m−1)∣}. Consider the mapping ρ ∶ V (Dn) → V (Γ) defined by ρ(α) =

((α,1), φn(α)). Since φn is an n-coloring of Dn (i.e. a homomorphism to
↔

Kn) ρ is well-defined

and bijective. We now suppose that αβ ∈ A(Dn) in order to show that ρ is in fact a homo-

morphism. The first case is when αβ is an arc in Bn which implies that (α,1)(β,1) ∈ A(B′

n+1)

and thus ((α,1), φn(α))((β,1), φn(β)) ∈ A(Γ) whether or not φn(α) = φn(β) (because of the

definition of our ∗-product). The second case is when αβ is an arc in Dn but not Bn. From

the preceding paragraph we know that this implies that φn(α) ≠ φn(β). Also the construction

of D′

n+1 implies that (α,1)(β,1) is an arc in D′

n+1. Hence ((α,1), φn(α))((β,1), φn(β)) is an

arc in Γ and ρ is a homomorphism. This now implies that χ(Γ) ≥ n and in fact χ(Γ) = n

since we saw above that D′

n+1∗
↔

Kn is n-colorable. Recall that Γ is a subdigraph of Ωn(n,1).

Since, for m > n, the digraph induced by Di(n,1) is isomorphic to a subdigraph of the di-

graph induced by Di(m − 1,1) for all i ∈ {0,1, . . . , n − 1}, the digraph Γ is isomorphic to

a subdigraph of Ωn(m − 1,1). Therefore the chromatic number of Ωn(m − 1, j) is n for all

j ∈ {1,2, ..., ∣V (D′

m−1)∣}.
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Finally we have all the necessary tools to prove the deepest result of this dissertation.

Theorem 6.9. For every integer n ≥ 2, the digraph D′

m∗
↔

Kn is uniquely n-colorable whenever

n ≤m − 1.

Proof. We have seen that the canonical projection π ∶ V (D′

m∗
↔

Kn) → V (
↔

Kn) is a surjective

homomorphism and thus D′

m∗
↔

Kn is n-colorable. Now suppose that there exists another

surjective homomorphism ψ ∶ V (D′

m∗
↔

Kn)→ V (
↔

Kn) and we will show that ψ is a composition

of π with an automorphism of
↔

Kn. Notice that since the target digraph is
↔

Kn this amounts

to showing that ψ((α, i)) = ψ((β, i)) for all vertices α, β of D′

m and i ∈ V (
↔

Kn). In other

words we need only show that the fibers of ψ are a relabeling of the fibers of π. The preceding

lemma has the direct consequence that for all j ∈ {1,2, ..., ∣V (D′

m−1)∣} and γs ∈ V (
↔

Kn) there

exists an α ∈ V (Ωn(m − 1, j)) such that ψ(α) = γs because Ωn(m − 1, j) is n-chromatic. For

each such j and γs, let αsj be such that αsj ∈ V (Ωn(m − 1, j)) and ψ(αsj) = γs.

Consider two vertices d0 and d1 of Dm−1 such that there is an arc from d0 to d1 in Dm−1.

Lemmas 6.2 and 6.5 imply that there exists a cycle (d0, d1, ..., dk−1) in Dm−1 and there exists

a unique ` ∈ [k] such that d`d`+1 ∈ A(Dm−1) ∖ A(Bm−1). Thus for all βh ∈ V (D̂h
m−1) the

sequence ((β0, i0), (β1, i1), ..., (βk−1, ik−1)) is a cycle in D′

m∗
↔

Kn whenever i` ≠ i`+1. Hence for

all s ∈ [n] and some i ∈ [n] (which depends on s) the vertices αs` and αs`+1 lie in Di(m − 1, `)

and Di(m − 1, ` + 1) respectively, for otherwise (αs0, αs1, ..., αsk−1) would be a monochromatic

cycle with respect to ψ. Similarly, supposing that αs` ∈Di(m − 1, `),

∄ν ∈Dr(m − 1, ` + 1) with ψ(ν) = γs nor a vertex µ ∈Hr(m − 1, `) with ψ(µ) = γs when r ≠ i,

(6.3)

for otherwise (αs0, αs1, ..., αs` , ν, αs`+2, ..., α
s
k−1) and (αs0, αs1, . . . , αs`−1, µ,α

s
`+1, α

s
`+2, ..., α

s
k−1) would

be monochromatic cycles with respect to ψ. Now consider the set

{i ∈ [n]∣ there exists an s such that αs` ∈ Di(m − 1, `)} and suppose that the size of this set is

less than n. This implies that for all s ∈ [n] there does not exist an αs` ∈ D1(m − 1, `), where
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the 1 is taken without loss of generality. This implies further that no αs`+1, for s ∈ [n], lies in

D1(m− 1, `+ 1) as we’ve established that for each fixed s ∈ [n], the vertices αs` and αs`+1 lie in

Di(m−1, `) and Di(m−1, `+1) respectively (i.e. share the same superscript i here). However

there exists some s1 ∈ [n] and β ∈ D1(m − 1, `) such that ψ(β) = γs1 because every vertex is

sent to some color, and we just concluded that αs1`+1 cannot be in D1(m − 1, ` + 1). Hence we

reach a contradiction because this leads to the cycle (αs10 , α
s1
1 , ..., α

s1
`−1, β,α

s1
`+1, ..., α

s1
k−1) being

monochromatic with respect to ψ. Thus we may conclude that for all i ∈ [n] there exists an

αs` ∈ Di(m − 1, `). Suppose that αsi` ∈ Di(m − 1, `). Appealing to (6.3), we now see that for

every i ∈ [n], when r ≠ i, there does not exist a vertex in Dr(m − 1, ` + 1) nor a vertex in

Hr(m − 1, `) either of which is colored γsi . Therefore H i(m − 1, `) and Di(m − 1, ` + 1) are

both monochromatic of the same color with respect to ψ.

Now suppose, in order to reach a contradiction, that for some color γs1 there exists a

vertex µ ∈ Dt1(m − 1, ` + 2) with ψ(µ) = γs1 , where Dt2(m − 1, ` + 1) is colored γs1 and

t1 ≠ t2. This implies that there does not exist a vertex β ∈ V (P t2`+1) such that ψ(β) = γs1 , for

otherwise the cycle (αs10 , α
s1
1 , ..., α

s1
` , β, µ,α

s1
`+3..., α

s1
k−1) would be monochromatic with respect

to ψ. Hence there exist vertices β2, β3 ∈ V (P t2`+1) such that ψ(β2) = γs2 , ψ(β3) = γs3 , and

s1, s2 and s3 are distinct because every vertex in V (Ωn(m − 1, ` + 1)) ∖Dt2(m − 1, ` + 1) is

in a cycle with the vertices in P t2`+1. This implies that there does not exist a vertex ν ∈

V (Ωn(m− 1, `+ 2))∖Dt2(m− 1, `+ 2) such that ψ(ν) = γsi , for i = 2 or i = 3, for otherwise the

cycle (αsi0 , α
si
1 , ..., α

si
` , βi, ν, α

si
`+3, ..., α

si
k−1) would be monochromatic with respect to ψ. However

this implies that Ωn(m− 1, `+ 2)∖Dt2(m− 1, `+ 2), which is isomorphic to Ωn−1(m− 1, `+ 2),

is (n − 2)-colored, contradicting Lemma 6.8. Thus for all i ∈ [n], the sets Di(m − 1, ` + 1)

and Di(m − 1, ` + 2) are monochromatic of the same color which in turn implies that P i`+1 is

monochromatic of the same color. Therefore we may inductively argue that all H i(m − 1, j),

for j ∈ [k], are monochromatically colored the same. As Dm is strongly connected, this implies

that ψ((α, i)) = ψ((β, i)) for all vertices α, β of D′

m and i ∈ V (
↔

Kn), and as we noted in the

first paragraph of this proof, this is enough to show that D′

m∗
↔

Kn is uniquely n-colorable.
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Recall from p. 54 and Lemma 6.6 that
→

g(D′

m∗
↔

Kn) ≥
→

g(D′

m) = k. In the preceding proof we

encountered a number of directed k-cycles in D′

m∗
↔

Kn implying that
→

g(D′

m∗
↔

Kn) =
→

g(D′

m).

We also note that we were able to construct D′

m with
→

g(D′

m) = k for any pair m,k of in-

tegers exceeding one. Therefore our proof of Theorem 6.9 constructs a uniquely n-colorable

digraph with digirth k for every pair n, k of integers both exceeding one. Thus we now have a

constructive and more precise version of (an important case of) the main theorem appearing

in [15].



Chapter 7

Future directions

Let us begin where we finished. In Chapter 6 we constructed uniquely n-colorable digraphs

with large digirth. Another way to describe these digraphs is that they are uniquely
↔

Kn-

colorable (and have large digirth). Noting that
↔

Kn is a core, and with an eye to the noncon-

structive results of [15], we would like to construct digraphs with arbitrarily large girth which

are uniquely H-colorable for any core H. In fact I feel confident that the construction is done,

but the proof still eludes me. Consider the following conjecture concerning the digraphs D′

m

constructed for Theorem 6.9, and notice that
→

g(D′

m∗H) ≥ →g(D′

m).

Conjecture 7.1. For all cores H and some constant c, the digraph D′

m∗H is uniquely

H-colorable for m > c ⋅ χ(H).

In Section 2.3 we saw that that the directed complete rational graphs
→

Kp/q (p ≥ q) are cores.

Notice that if D is a digraph which is uniquely
→

Kp/q-colorable, then χc(D) = p/q. Thus a

direct corollary of Conjecture 7.1 would be a construction of digraphs with circular chromatic

number p/q and arbitrarily large girth for any rational number p/q ≥ 1.

Another related problem of interest would be to construct highly chromatic digraphs with

arbitrarily large undirected girth. Also recall from Chapter 2 that we still do not have a prim-
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itively recursive (in n) construction of n-chromatic graphs with large girth nor a construction

of uniquely H-colorable graphs with arbitrarily large girth for general cores H. Note that

Zhu’s constructive theorem [38] concerned only odd girth.

The fractional chromatic number of a graph (see Chapter 5) gives rise to a famous graph:

the Kneser graph K(n, k) defined to have vertex set ([n]
k
), with two vertices adjacent exactly

when the corresponding k-subsets are disjoint. An alternate but equivalent definition of the

fractional chromatic number of a graph G is:

χf(G) = min{n/k ∣ G→K(n, k)};

cf. our original definition on p. 31. Thus another construction that would be of interest is a

directed analogue of the Kneser graphs.

Let us return to Hedetniemi’s Conjecture 4.3. In Chapter 5 we saw that though the fractional

version of this conjecture holds for graphs (Theorem 5.12), it fails to hold for digraphs (p. 40).

It would be of interest to find for any two digraphs D and H a lower bound on χf(D ×

H) in terms of min{χf(D), χf(H)}. Are there classes of digraphs such that χf(D ×H) =

min{χf(D), χf(H)}? Are there classes of digraphs such that χ(D ×H) = min{χ(D), χ(H)}?

Are there digraphs such that χ(D × H) < min{χ(D), χ(H)}? Each of these questions is

worthy of pursuit.

The final problem I propose here involves the circular chromatic number of a digraph. Recall

Theorem 5.11:

χf(D) = χc(D) = χ(D) if and only if χ(D ○H) = χ(D) ⋅ χ(H) for all digraphs H.

What are specific examples of digraphs D such that χf(D) = χc(D) = χ(D)? Can we find

examples or, better, classify digraphs such that χc(D) = χ(D)?

As often happens in mathematics, new results breed more questions than they answer. We

choose here to end.
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[4] Béla Bollobás and Norbert Sauer, Uniquely colourable graphs with large girth, Canad. J. Math. 28 (1976),

no. 6, 1340–1344. MR0429621 (55 #2632)

[5] J. A. Bondy and Pavol Hell, A note on the star chromatic number, J. Graph Theory 14 (1990), no. 4,

479–482. MR1067243 (91i:05052)

[6] J. A. Bondy and U. S. R. Murty, Graph theory, Graduate Texts in Mathematics, vol. 244, Springer, New

York, 2008. MR2368647 (2009c:05001)

[7] Peng-An Chen, A new coloring theorem of Kneser graphs, J. Combin. Theory Ser. A 118 (2011), no. 3,

1062–1071. MR2763055 (2012d:05141)

[8] Vašek Chvátal, Linear programming, A Series of Books in the Mathematical Sciences, W. H. Freeman and

Company, New York, 1983. MR717219 (86g:90062)
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