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There are many operators associated with a domain Ω ⊂ Cn with smooth boundary ∂Ω.
There are two closely related projections that are of particular interest. The Bergman projec-
tion B is the orthogonal projection of L2(Ω) onto the closed subspace L2(Ω) ∩ O(Ω), where
O(Ω) is the space of all holomorphic functions on Ω. The Szegö projection S is the orthogonal
projection of L2(∂Ω) onto the space H2(Ω) of boundary values of elements of O(Ω). On Ω,
these projection operators have integral representations

B[f ](z) =
�

Ω
f(w)B(z, w) dw, S[f ](z) =

�

∂Ω
f(w)S(z, w) dσ(w).

The distributions B and S are known respectively as the Bergman and Szegö kernels. In an
attempt to prove that B and S are bounded operators on Lp, 1 < p < ∞, many authors have
obtained size estimates for the kernels B and S for pseudoconvex domains in Cn.

In this thesis, we restrict our attention to the Szegö kernel for a large class of domains
of the form Ω =

�
(z, w) ∈ C2 : Im[w] > b (Re[z])

�
. Such a domain fails to be pseudoconvex

precisely when b is not convex on all of R. In an influential paper, Nagel, Rosay, Stein,
and Wainger obtain size estimates for both kernels and sharp mapping properties for their
respective operators in the convex setting. Consequently, if b is a convex polynomial, the
Szegö kernel S is absolutely convergent off the diagonal only. Carracino proves that the
Szegö kernel has singularities on and off the diagonal for a specific non-smooth, non-convex
piecewise defined quadratic b. Her results are novel since very little is known for the Szegö
kernel for non-pseudoconvex domains Ω. I take b to be an arbitrary even-degree polynomial
with positive leading coefficient and identify the set in C2 × C2 on which the Szegö kernel is
absolutely convergent. For a polynomial b, we will see that the Szegö kernel is smooth off the
diagonal if and only if b is convex. These results provide an incremental step toward proving
the projection S is bounded on Lp(∂Ω), 1 < p < ∞, for a large class of non-pseudoconvex
domains Ω.
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Chapter 1

Introduction

1.1 Background

For a domain Ω ⊂ Cn, let L2(Ω) denote the space of all square-integrable functions on Ω and

O(Ω) the space of holomorphic functions on Ω. We define the Bergman space to be B2(Ω) :=

L2(Ω) ∩O(Ω), which is the closed subspace of square-integrable holomorphic functions on Ω.

Although there are several operators naturally associated with each domain in Cn, two are

of particular interest. The Bergman projection B = BΩ is the orthogonal projection of L2(Ω)

onto the subspace B2(Ω). If Ω has a smooth boundary ∂Ω, the Szegö projection S = SΩ is

the orthogonal projection of L2(∂Ω) onto the space H2(Ω) of boundary values of elements of

O(Ω). These projections have are defined on Ω and have integral representations

B[f ](z) =

�

Ω
f(w)B(z, w) dw f ∈ L2(Ω)

S[f ](z) =

�

∂Ω
f(w)S(z, w) dσ(w) f ∈ L2(∂Ω),

1



1.1. BACKGROUND 2

where z ∈ Ω, dw denotes the Lebesgue measure on Ω, and dσ the Lebesgue measure on ∂Ω.

The distributions B and S are known respectively as the Bergman and Szegö kernels.

In order to prove the existence of the Bergman kernel, we start by fixing an orthonormal

basis {φj}∞j=1 for the space B2(Ω). Such a basis exists since B2(Ω) is a closed subspace of the

separable Hilbert space L2(Ω). Define the formal sum

B(z, w) =
∞�

j=1

φj(z)φj(w).

One shows that this converges uniformly on compact subsets of Ω × Ω. Then by the Riesz-

Fischer theorem, we have that B(z, ·) ∈ B2(Ω) for each z ∈ Ω. Moreover, for each g ∈ B2(Ω),

g(z) =

�

Ω
g(w)B(z, w) dw.

The function B is the Bergman kernel. The existence of the Szegö kernel follows from a similar

argument, replacing B2(Ω) with H2(Ω).

Many authors have analyzed the Bergman and Szegö projections on specific domains with

the hope of acquiring sharp size estimates for the kernels and showing that the projections

are bounded on Lp(Ω) and Lp(∂Ω), respectively. Korányi and Vági [14] showed that on

generalized half-spaces and the ball in Cn, the Szegö projection is bounded on Lp(∂Ω), for

1 < p < ∞. Phong and Stein [10] showed Lp-boundedness of the Szegö projection on all

bounded, strictly-pseudoconvex domains. McNeal and Stein acquired regularity theorems for

both projections on convex domains, see [11] and [12].

The Bergman and Szegö kernels themselves have also been studied extensively for a variety

of domains. The most notable of such work is for the unit ball in Cn. In this setting, the

Bergman and Szegö kernels have the explicit form

B(z, w) =
n!

πn

1

(1− z · w)n+1
and S(z, w) =

(n− 1)!

2πn

1

(1− z · w)n
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(see [5] for a full derivation). To see a kernel associated with a domain which lacks complete

symmetry, we turn to Greiner and Stein [13]. They computed the Szegö kernel for the domain

Hk := {(z, z1) ∈ C2 : Im(z1) > |z|2k}, for any positive integer k. More specifically, if

ζ := (z, t+ i
�
|z|2k + µ

�
and ω := (w, s+ i

�
|w|2k + η

�
, with µ, η > 0, then the Szegö kernel

is given by

S(ζ,ω) =
1

4π2

���
i

2
[s− t] +

|z|2k + |w|2k
2

+
µ+ η

2

�
− zw

�2

×
�
i

2
[s− t] +

|z|2k + |w|2k
2

+
µ+ η

2

�(k−1)/k
�−1

.

For general domains, finding an explicit formula can be a difficult, if not impossible, task.

Pseudoconvex domains with smooth boundary are an important, large class of domains

containing the above. Such domains have the form Ω = {z ∈ Cn : ρ(z) < 0}, where the

defining function ρ ∈ C∞(Cn) satisfies ∇ρ(z) �= 0 when ρ(z) = 0. Conceptually, one should

think of pseudoconvexity as a generalization of geometric convexity that is invariant under

biholomorphic mappings. Even though every pseudoconvex domain is geometrically convex,

the converse is not always true without added boundary conditions. A geometrically con-

vex domain is (weakly) pseudoconvex if it has a C2-boundary [5]. An analytic definition of

pseudoconvexity is given in Section (2.3).

The research done on the boundary behavior of the Bergman and Szegö kernels asso-

ciated with pseudoconvex domains is also quite extensive. For the Bergman kernel, J.J.

Kohn obtained the formula B = I − ∂̄∗N ∂̄, where N is the ∂̄-Neumann operator. With

this formula, connections between the ∂̄-Neumann problem and the Bergman kernel were

established. For more details, see [4] and [5]. By exploiting classical solutions to the ∂-

Neumann problem, N. Kerzmann showed in [3] that the Bergman kernel can be smoothly

extended to
�
Ω× Ω

�
\ � for strictly-pseudoconvex domains with smooth boundary, where

� := {(z, w) ∈ ∂Ω×∂Ω : z = w} is the diagonal of the boundary. For pseudoconvex domains
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of finite type in C2, Nagel, Rosay, Stein, and Wainger obtain size estimates for the Bergman

and Szegö kernels in terms of a “natural” non-isotropic metric described in [[16], NRSW;

clarify]. Using the same non-isotropic metric, they define a large class of integral operators

called non-isotropic smoothing (NIS) operators and show that the Szegö projection is an NIS

operator of order 0. As a consequence, they show that the Szegö projection possesses certain

mapping properties and is bounded on Lp(∂Ω) for 1 < p < ∞. They establish a relationship

between the Bergman and Szegö kernels and show that results for the Szegö kernel can be

obtained from those for the Bergman kernel. For pseudoconvex (model) domains with defining

function ρ which is a subharmonic, non-harmonic polynomial on C, [16] also comment that

the kernels have a much simpler relationship,

B(z, w) = 2i
∂S

∂w2
(z, w).

More generally, on pseudoconvex domains, it has been shown that both kernels are smooth

on Ω× Ω, but not necessarily on Ω× Ω, [[16]; clarify ].

In contrast with the amount of work done on pseudoconvex domains, very little has been

done concerning the Szegö kernel on non-pseudoconvex domains. An important exception is

the recent work of Carracino [1]. She obtained detailed estimates for the Szegö kernel on the

boundary of the non-smooth, non-pseudoconvex domain Ω =
�
(x+ iy, t+ iξ) ∈ C2 : ξ > b(x)

�
,

where

b(x) =






(x+ 1)2 , x < −1
2

−x2 + 1
2 ,−1

2 ≤ x ≤ 1
2

(x− 1)2 , 12 < x.

(1.1.1)

Our goal is to extend the results from this model to the large class of non-pseudoconvex

domains of the form

Ω =
�
(z1 := x+ iy, z2 := t+ iξ) ∈ C2 : ξ > b(x)

�
, (1.1.2)
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for which b is a real-valued, non-convex polynomial with positive leading coefficient. (In

Chapter 2 we verify that these are the correct conditions on b to make Ω non-pseudoconvex.)

1.2 The Szegö kernel as an integral

On the boundary of Ω, where ξ = b(x), we make the identification

∂Ω � (x+ iy, t+ ib(x)) ←→ (x, y, t) ∈ R3. (1.2.1)

Then a global generator for the set of tangential antiholomorphic vector fields, found in (2.3.1),

can be identified with the smooth vector field on R3 given by L =
∂

∂x
+ i

�
∂

∂y
− b�(x)

∂

∂t

�
.

Define

H2(Ω) :=

�
F ∈ O(Ω) : sup

�>0

�

∂Ω
|F (x+ iy, t+ ib(x) + i�)|2 dx dy dt < ∞

�
.

Then H2(Ω) can be identified with the space of all functions f ∈ L2(R3) which satisfy the

differential equation L[f ] = 0 in the distributional sense. (See [18] for detailed discussions

on Hp spaces.) Under this identification, the Szegö projection operator S is defined to be the

orthogonal projection of L2(R3) onto the null space of L.

It turns out that the projection

S[f ](x, y, t) =
� � �

f(r, s, u)S[(x, y, t), (r, s, u)] dr ds du (1.2.2)

associated with this Szegö kernel S is a singular integral operator. To motivate the delicate

approach that one must take when dealing with such operators, we recall the Hilbert transform.

This transform is given by the convolution of an Lp-function with the kernel K(x) =
1

πx
for
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x ∈ R, i.e.,

Hf(x) =
1

π

� ∞

−∞

f(y)

x− y
dy =

1

π

� ∞

−∞
f(y) K(x− y) dy.

The transform is at best conditionally convergent on Lp(R), for 1 < p < ∞, since the kernel

K(x − y) =
1

x− y
has a singularity on the diagonal at x = y. Thus we should imagine the

integral as a principal-value integral.

In [7], an explicit integral formula for the Szegö kernel has been obtained for domains of the

form (1.1.2). If z = (z1, z2) and w = (w1, w2) are elements of C2,

S(z, w) = c

� ∞

−∞

� ∞

0

τeητ [z1+w̄1]+iτ [z2−w̄2]
�∞
−∞ e2τ [ηλ−b(λ)] dλ

dη dτ, (1.2.3)

where c is an absolute constant. This thesis will follow in the footsteps of Haslinger [?Haslinger:95],

Carracino [1], Halfpap, Nagel, and Wainger [18], all of whom take (1.2.3) as their starting

point. After identifying the boundary with R3, the Szegö kernel becomes

S[(x, y, t), (r, s, u)] = c

� ∞

0

� ∞

−∞

τeτ [i(t−u)+iη(y−s)−[b(x)+b(r)−η(x+r)]]
�∞
−∞ e−2τ [b(λ)−ηλ] dλ

dη dτ. (1.2.4)

Unlike the Hilbert transform, it is not immediately clear where the Szegö kernel is smooth.

It was shown in [[16]; clarify] that for any convex polynomial b, the Szegö kernel is only

smooth off the diagonal ∆ = {[(x, y, t), (r, s, u)] : (x, y, t) = (r, s, u)} . As mentioned above,

[16] obtained size estimates for the Szegö kernel of the form

|S[(x, y, t), (r, s, u)]| ≤ C|B((x, y, t), δ)|−1,

with corresponding estimates for its derivatives. In the above, δ is the non-isotropic distance

between (x, y, t) and (r, s, u) induced by the domain Ω. For the Szegö kernel, the required

non-isotropic singular-integral theory is obtained by substituting the Euclidean metric with a

pseudometric which is non-isotropic. For a full description of this process, see [15] Balls and
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Metrics for details.

For the non-pseudoconvex domain considered by Carracino, singularities exist on and off the

diagonal. These singularities correspond to the non-unique location of the global minimum of

the function Bη(λ) = b(λ)− ηλ as a function of λ, which appears in the denominator integral.

She obtains precise estimates of the Szegö kernel near two critical locations off the diagonal,

namely at points corresponding to (x, r) = (±1,∓1). At these critical points, Carracino shows

that the lack of convexity of b causes the Szegö kernel to diverge. She then shows that away

from these two points, the convexity of b yields results which parallel those found in the convex

setting, i.e., singularities only when x = r.

The goal of this thesis is to show that for any even-degree polynomial with positive leading

coefficient, singularities occur off the diagonal if and only if b is non-convex. As in Carracino’s

work, we should expect that the singularities will correspond to non-unique locations of the

global minimum of Bη. We state these results more precisely in the next section.

1.3 Statement of the main theorems

We consider the integral defining S given in (1.2.4) for domains of the form (1.1.2) with b

a non-convex, even-degree polynomial. We may assume without loss of generality that b� is

monic. For each η ∈ R, define Bη(λ) := b(λ)−ηλ. Notice that by our choice of b, infλ∈RBη(λ)

is finite, and it is attained at some λ ∈ R. The collection of all such minimizing values is

denoted Λη. Also, define the Legendre transform of b by

b∗(η) := sup
λ∈R

(−Bη(λ)). (1.3.1)
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Let z and w be elements of C2 defined by

z = (z1, z2) = (x+ iy, t+ ib(x) + ih)

w = (w1, w2) = (r + is, u+ ib(r) + ik).

Set

Σ := { (z, w) : x, r ∈ Λη for some η ∈ R } .

We have the following theorems:

Theorem 1.3.1. If b is an even-degree polynomial with monic derivative, then the integral

defining the Szegö kernel is absolutely convergent in the region in which

h+ k + b(x) + b(r)− 2b∗∗
�
x+ r

2

�
> 0.

This is an open neighborhood of (Ω × Ω) \ Σ. More generally, if i1, j1, i2, and j2 are non-

negative integers, then

∂i1
z1∂

j1
w̄1
∂i2
z2∂

j2
w̄2
S(z, w) = c

� ∞

−∞

� ∞

0
eητ [z1+w̄1]+iτ [z2−w̄2] η

i1+j1τ i1+j1+i2+j2+1

N(η, τ)
dη dτ

is absolutely convergent in the same region. (By Lemma 3.3.1, b∗ is convex with super-linear

growth; hence b∗∗ is finite.)

By the definition of our domain, the point (z, w) is in
�
Ω× Ω

�
∪
�
Ω× Ω

�
if and only if

h + k > 0. The following theorems are meant to address the case in which h = k = 0. They

describe the points on the diagonal at which the Szegö kernel is divergent in terms of the local

behavior of Bη.

Theorem 1.3.2. If x and r are not in the same Λη for each η ∈ R, the Szegö kernel and all

of its partial derivatives converge absolutely.

Theorem 1.3.3. If x and r are both in Λη0 for some η0 ∈ R, then the Szegö kernel is not
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absolutely convergent.

These two lemmas and a result given in Chapter 4 allow us to prove a biconditional statement

relating the smoothness of the integral kernel off the diagonal to the convexity of b.

Corollary 1.3.4. The Szegö kernel is smooth off of the diagonal if and only if b is a convex

polynomial.



Chapter 2

Domains Under Consideration

We begin the chapter by motivating our choice of the function b given in (2.0.1). Then we

describe the manifold structure on ∂Ω and use it to prove the necessary conditions which

b must satisfy to guarantee that Ω is non-pseudoconvex. Finally, the chapter closes with a

section that explores how we may further restrict the form of b.

We study in domains of the form

Ω =
�
(z1 := x+ iy, z2 := t+ iξ) ∈ C2 : ξ > b(x)

�
, (2.0.1)

where b is an even-degree, non-convex polynomial with monic derivative.

2.1 Our assumptions on b

To motivate this particular class of domains, we turn our attention to more recent endeavors.

Nagel, Rosay, Stein, and Wainger studied unbounded model domains of the form (2.0.1),

where b is a sub-harmonic, non-harmonic polynomial of degree m. In [7], a report of their

10



2.2. MANIFOLD STRUCTURE 11

joint work, Nagel reviews spaces of homogenous type, where he obtains the explicit integral

formula for the Szegö kernel (1.2.4) and obtains sharp size estimates off the diagonal. Halfpap,

Nagel, and Wainger showed that when b is a smooth, convex function with a point of infinite

type satisfying certain growth conditions, the Bergman and Szegö kernels have singularities

on Ω × Ω that are away from the diagonal. As mentioned above, Carracino investigated a

non-pseudoconvex model domain Ω whose boundary was defined by a piecewise, non-smooth,

non-convex quadratic. To build on Carracino’s results, we have studied model domains of the

from (2.0.1), where b is a non-convex quartic polynomial. We used the explicit formula for

the Szegö kernel given in (1.2.4) and completely described the set on which the Szegö kernel

is absolutely convergent. It was shown that singularities off the diagonal correspond to the

existence of an inflection point of the quartic polynomial that defines the boundary.

This thesis is meant to compare and extend the results of Gilliam and Halfpap [2] to all

even-degree, non-convex polynomials with monic derivative. We take our polynomial b to

have the form

b(λ) =
1

2n
λ2n + a1λ

2n−1 + · · ·+ a2n−2λ
2 + a2n−1λ+ a2n, (2.1.1)

where n ≥ 2, and ai ∈ R, for i = 1, . . . , 2n. In turn, obtaining results on domains for which

b has this general form will provide a lens through which we can see the connection with the

convex results.

2.2 Manifold structure

In order to understand the manifold structure, we view the boundary of Ω as a subset of R4,

∂Ω can be written as

∂Ω = {(x, y, t, ξ) ∈ R4 : ρ(x, y, t, ξ) := b(x)− ξ = 0}.
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If b is an even-degree polynomial with monic derivative, then observe how the boundary is

bounded in the negative-ξ direction since ξ = b(x). Also for each cross section perpendicular

to the y, t-axis, there are exactly two solutions whenever ξ > M, for M := max{|b(λ)| : λ ∈

R and b�(λ) = 0}. This domain is a tube-like domain.

The tangent space of ∂Ω at p ∈ ∂Ω is given by

Tp(∂Ω) =
�
Lp ∈ Tp(R4) : Lp[ρ] = 0

�
, (2.2.1)

where Lp is the smooth vector field L =
�
α1

∂
∂x + α2

∂
∂y + α3

∂
∂t + α4

∂
∂ξ

�
with αj ∈ C∞(R4)

evaluated at p. Forcing ρ(x, y, t, ξ) = b(x)− ξ to be a solution to the equation Lp[ρ] = 0 yields

a linear relationship on the coefficients,

Lp[ρ] = α1b
�(x)− α4 = 0 ⇐⇒ α4 = α1b

�(x),

which gives us a basis for the tangent space at p. The real tangent space at p ∈ ∂Ω written in

terms of its basis is

Tp(∂Ω) =

��
∂

∂x
+ b�(x)

∂

∂ξ

�

p

,
∂

∂y p
,

∂

∂tp

�
,

which is a real hyperplane.

To say more, we introduce a map on R4 (= Tp(R4)), denoted by J. This map is called the

complex structure map, which is a generalization of multiplication by i. It acts on the basis
�

∂
∂x1

, ∂
∂y1

, ∂
∂x2

, ∂
∂y2

�
in the following way:

J

�
∂

∂xj

�
=

∂

∂yj
and J

�
∂

∂yj

�
= − ∂

∂xj
.

The holomorphic tangent space at p ∈ ∂Ω is the largest J-invariant subspace of Tp(∂Ω) and
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is given by

Hp(∂Ω) := Tp(∂Ω) ∩ J [Tp(∂Ω)] =

��
∂

∂x
+ b�(x)

∂

∂ξ

�

p

,

�
∂

∂y
− b�(x)

∂

∂t

�

p

�
.

Notice that the real dimension of Hp(∂Ω) is constant and independent of p ∈ ∂Ω. A real

manifold with this property is called a CR manifold. Hence ∂Ω is a CR manifold with real

dimension 2.

For any vector space V, the complexified vector space V C is defined by the sum V C := V +iV.

Therefore the complexified tangent space at p ∈ ∂Ω is given by TC
p (∂Ω) = Tp(∂Ω) + iTp(∂Ω).

The −i eigenspace of TC
p (∂Ω) is denoted H(0,1)

p (∂Ω) and is generated by the single vector

Lp =
�

∂
∂z1

+ ib�
�p+p̄

2

�
∂

∂z2

�

p
. We can use the Lie bracket, defined by [L

1
, L

2
]p := L

1
pL

2
p −

L
2
pL

1
p, to construct additional generators for the complexified tangent space at p. Using Lp =

�
∂

∂z1
+ ib�

�p+p̄
2

�
∂

∂z2

�

p
,

Lp =

�
∂

∂z1
− ib�

�
p+ p̄

2

�
∂

∂z2

�

p

and
�
L,L

�
p
= −1

2
b��

�
p+ p̄

2

��
∂

∂z2
+

∂

∂z2

�

p

.

Under the operation of Lie brackets, one may verify that these are all the generators of the

complexified tangent space at p, unless b�� vanishes at p (in which case
�
L,L

�
p
= 0). Somewhat

surprisingly, this allows us to recover the complexified tangent space at p,

TC
p (∂Ω) =

�
Lp, Lp,

�
Lp, Lp

��
.

2.3 Pseudoconvexity

We are in a position to state the analytic definition of pseudoconvexity. The Levi form, at

a point p ∈ ∂Ω, applied to a smooth antiholomorphic vector Lp =
��n

j=1 ξj
∂

∂zj

�

p
is defined

as
�n

j,k=1
∂2ρ

∂zj∂z̄k
(p)ξj ξ̄k, where ξj := ξj(p). We say that Ω is strictly-pseudoconvex if the Levi
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form at point p is strictly positive or negative definite, i.e., if
�n

j,k=1
∂2ρ

∂zj∂z̄k
(p)ξj ξ̄k > 0 for

all smooth, non-zero vectors satisfying the differential equation Lp[ρ] = 0. We say that Ω is

weakly-pseudoconvex if the Levi form is semi-definite.

Lets determine which conditions on b are necessary to guarantee that our model domain

(1.1.2) fails to be pseudoconvex. On this domain, the set of all antiholomorphic smooth vector

fields that annihilate our defining function ρ(z1, z2) := b
�
z1+z1

2

�
+ z̄2−z2

2 is generated by one

element, the tangential Cauchy-Riemann operator applied to ∂Ω

L =
∂

∂z̄1
− ib�

�
z1 + z1

2

�
∂

∂z̄2
(2.3.1)

(see appendix for details). Accordingly, ξ1 = 1 and ξ2 = −ib�. Therefore the pseudoconvexity

of Ω is equivalent to the condition

0 ≤
2�

j,k=1

∂2ρ

∂zj∂z̄k
(p)ξj ξ̄k =

∂2ρ

∂z1∂z1
(p)|ξ1|2 =

1

4
b��

�
z1 + z̄1

2

�
=

1

4
b�� (x) .

Thus Ω is pseudoconvex if and only if b is convex. Hence, for novel results, we take b to be

non-convex.

We now further restrict the class of polynomials we consider. This process is used in the

quartic setting, which is covered in Chapter 7. Also, this process highlights a slight “symme-

try” that is occurring in the main integrand.

2.4 Additional restrictions on b

To start the section, recall that a simplification of the integral in question is

S[(x, 0, 0), (r, 0, 0)] = c

� ∞

0

� ∞

−∞

τe−τ [b(x)+b(r)−η(x+r)]
�∞
−∞ e−2τ [b(λ)−ηλ] dλ

dη dτ. (2.4.1)
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This integral is fairly complicated, so it might be to our advantage to apply linear transfor-

mations to b to obtain a new polynomial b̃, where b̃ vanishes to at least second order at the

origin and the coefficient of the term of second-largest degree is zero. We say that b̃ is the

reduced form of b.

To achieve this, we start by fixing a polynomial b of the form (2.1.1). In order to find the

appropriate linear transformation needed to eliminate the degree 2n− 1 term, set λ = x+ β.

Then

b(x+ β) =
1

2n
(x+ β)2n + a1(x+ β)2n−1 + · · ·

=
1

2n

�
x2n + 2nβx2n−1 + · · ·

�
+ a1

�
x2n−1 + (2n− 1)βx2n−2 + · · ·

�
+ · · ·

=
1

2n
x2n + (β + a1)x

2n−1 + · · · .

By taking β = −a1, we eliminate the degree 2n− 1 term. Let us relabel the coefficients with

bi’s so that

b(x− a1) =
1

2n
x2n + b2x

2n−2 · · ·+ b2n−2x
2 + b2n−1x+ b2n,

where b1 = 0. We claim that b̃(x) = b(x− a1)− b2n−1x− b2n.

Consider the integrand of S[(x− a1, 0, 0), (r − a1, 0, 0)]. The exponent of the numerator is

−τ
�
b(x− a1) + b(r − a1)− η(x+ r − 2a1)

�
.
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Under the mapping η �→ η + b2n−1, the numerator beomes

−τ
�
b(x− a1) + b(r − a1)− (η + b2n−1)(x+ r − 2a1)− 2b2n + 2b2n

�

= −τ
�
b(x− a1) + b(r − a1)− η(x+ r) + 2ηa1 − b2n−1(x+ r) + 2a1b2n−1 − 2b2n + 2b2n

�

= −τ

��
b(x− a1)− b2n−1x− b2n

�
+

�
b(r − a1)− b2n−1r − b2n

�
− η(x+ r)

�

−2τ
�
ηa1 + a1b2n−1 + b2n

�

= −τ
�
b̃(x) + b̃(r)− η(x+ r)

�
− 2τ

�
ηa1 − a1b2n−1 + b2n

�
. (2.4.2)

In order to compare, let us examine the exponent of the integrand of the λ-integral after the

change of variable λ �→ λ− a1,

−2τ
�
b(λ− a1)− (η + b2n−1)(λ− a1)− b2n + b2n

�

= −2τ
�
b(λ− a1)− ηλ+ ηa1 − b2n−1λ+ b2n−1a1 − b2n + b2n

�

= −2τ

��
b(λ− a1)− b2n−1λ− b2n

�
− ηλ

�
− 2τ

�
ηa1 + a1b2n−1 + b2n

�

= −2τ
�
b̃(λ)− ηλ

�
− 2τ

�
ηa1 + a1b2n−1 + b2n

�
. (2.4.3)

If we set C := −2τ
�
ηa1 + a1b2n−1 + b2n

�
and substitute (2.4.2) and (2.4.3), the integrand of

S[(x− a1, 0, 0), (r − a1, 0, 0)] reduces to

τe−τ [b̃(x)+b̃(r)−η(x+r)]+C

�∞
−∞ e−2τ [b̃(λ)−ηλ]+C dλ

=
τe−τ [b̃(x)+b̃(r)−η(x+r)]
�∞
−∞ e−2τ [b̃(λ)−ηλ] dλ

,

where b̃ vanishes to at least second order at the origin and the coefficient of the degree 2n− 1

term is zero.

It follows that S[(x, 0, 0), (r, 0, 0)] is divergent on
�
((x, 0, 0), (r, 0, 0)) : x, r ∈ R

�
if and only

if S[(x − a1, 0, 0), (r − a1, 0, 0)] is divergent on the shifted set
�
((x + a1, 0, 0), (r + a1, 0, 0)) :
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x, r ∈ R
�
. We may therefore assume W.L.O.G. our b has the form

b(λ) =
1

2n
λ2n + a2λ

2n−2 + · · ·+ a2n−2λ
2, (2.4.4)

where n ≥ 2, and ai ∈ R, for i = 2, . . . , 2n− 2.



Chapter 3

Global Behavior of λ(η) and Bη(λ)

In order to prove the main results of this thesis, it is essential to understand the behavior

of each factor of the integrand of (1.2.4). Since these are exponential functions, it will be

particularly useful to understand how the extreme values of the exponents and their location(s)

vary with η. In this chapter, we study the asymptotic behavior for both in detail. These

estimates will allow us to conclude that the η-integral in (1.2.4) is absolutely convergent at

infinity.

3.1 Definitions and notation

We fix a polynomial b of the form (2.1.1). We may refer to the family B := {Bη(λ) =

b(λ)− λη}η∈R for brevity. Since the global minimum of each member of B is always attained

at a finite number of points, we define the set containing these locations as well as its extreme

elements.

Definition 3.1.1. Let Λη be the set containing the location(s) of the global minimum of Bη

as a function of λ. Moreover, let the largest and smallest elements of Λη be λ(η) and σ(η),

18
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respectively. Thus

Λη := {σ(η), . . . ,λ(η)}

with σ(η) ≤ · · · ≤ λ(η). Often we will think of λ(η) and σ(η) as fixed numbers instead of

functions, so we set λη := λ(η) and ση := σ(η) for clarity. To distinguish between the

function λ and the variable λ, we will often denote the function λ(·). Finally, the image of

λ(·) is defined as Λ.

Notice that σ(·) and λ(·) are well-defined functions on R, and if the location of a global

minimum is unique, σ(η) = λ(η). In fact, σ(η) = λ(η) if and only if |Λη| = 1, where | · |

denotes the standard cardinality of a finite set.

3.2 Asymptotic behavior of λ(η)

We make some observations about λ(·), which follow from properties of b. The value λ(η) is a

critical point for Bη, i.e., it is a solution to the equation B�
η(λ) = b�(λ)− η = 0. Since b� is an

odd-degree polynomial, there exists at least one solution to the equation b�(λ) = η for each

η ∈ R. To find the values of η at which λ(η) is the unique solution, recall the properties of b.

The polynomial b is an even-degree, non-convex polynomial with positive leading coefficient, so

it has at least one inflection point. Thus the set {|b�(λ)| : λ ∈ R and b��(λ) = 0} is always non-

empty and contains a finite number of elements; henceM := max {|b�(λ)| : λ ∈ R and b��(λ) = 0}

is always finite. It follows that the equation b�(λ) = η has a unique solution whenever |η| > M .

By definition, λ(η) is precisely the unique solution to the equation

η = λ2n−1 +
2n−1�

k=1

bkλ
2n−1−k, (3.2.1)
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where bk := ak(2n − k). By applying the triangle inequality, the solution λ for each |η| > M

satisfies

|η|− |b2n−1| ≤ |η − b2n−1|

=

�����λ
2n−1 +

2n−2�

k=1

bkλ
2n−1−k

�����

≤ |λ|2n−1 +
2n−2�

k=1

|bk| |λ|2n−1−k

≤ C ·
�
|λ|2n−1 + 1

�

where C :=
�
1 +

�2n−2
k=1 |bk|

�
. We conclude that as |η| → ∞, the solution |λ| → ∞. Also from

(3.2.1),

η

λ2n−1
= 1 +

2n−1�

k=1

bkλ
−k (3.2.2)

whenever a solution λ �= 0. Thus if |λ| → ∞, |η| → ∞ and the sign of η and λ agree for

all |λ| sufficiently large. If we apply this and what we concluded just above to (3.2.2), then

η
λ2n−1 = 1+ o(1) as η → ±∞ (or λ → ±∞). By definition, we have just shown that η ∼ λ2n−1

as η → ±∞ (or λ → ±∞).

Indeed, we can say more. Notice that for any positive α and for x in, for example,

(−1/2, 1/2),

(1 + x)α = 1 + αx+O(x2)

= 1 + x(α+O(x)), (3.2.3)

so (1+x)α = 1+o(1) as x → 0. For all |η| (or |λ|) sufficiently large,
�2n−1

k=1 bkλ−k ∈ (−1/2, 1/2).

By (3.2.3),

η
1

2n−1

λ
= 1 + o(1)
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as η → ±∞ (or λ → ±∞). By definition, we have just proven that

η
1

2n−1 ∼ λ (3.2.4)

as η → ±∞ (or λ → ±∞). As a consequence, lim
η→∞

λ(η) = ∞ and lim
η→−∞

λ(η) = −∞.

These estimates allow us to make an immediate observation.

Lemma 3.2.1. For all N ∈ N,

Λ ∩ (−∞,−N) �= ∅ and Λ ∩ (N,∞) �= ∅.

3.3 Asymptotic behavior of Bη(λ(η))

As stated above, we want to derive asymptotic estimates that will allow us to establish conver-

gence of the η-integral in equation (1.2.4) at infinity. Understanding how the global minimum

of Bη varies for large |η| will prove useful. Fortunately, the prior section will shed some light

on these estimates; the asymptotic approximation of Bη(λη) and the derivatives B(j)
η (λη) can

be obtained from the asymptotic approximation of λ(·).

For each η ∈ R, the value of Bη at the global minimum can be expressed as

Bη(λη) = b(λη)− ηλη

=
1

2n
λ2n
η +

2n−1�

k=1

akλ
2n−k
η + a2n − ηλη.

From estimate (3.2.4), λ(η) = η
1

2n−1 (1+o(1)) as |η| → ∞. By substitution and an application
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of the little-o property given in (3.2.3),

Bη(λ(η)) =
1

2n
η

2n
2n−1 (1 + o(1))2n +

2n−1�

k=1

ak
�
η

1
2n−1 (1 + o(1))

�2n−k
+ a2n − η

2n
2n−1 (1 + o(1))

=
1

2n
η

2n
2n−1 (1 + o(1)) +

2n−1�

k=1

akη
2n−k
2n−1 (1 + o(1)) + a2n − η

2n
2n−1 (1 + o(1))

=

�
1− 2n

2n

�
η

2n
2n−1 (1 + o(1)) +

2n−1�

k=1

akη
2n−k
2n−1 (1 + o(1)) + a2n

=

�
1− 2n

2n

�
η

2n
2n−1

�
(1 + o(1)) +

�
2n

1− 2n

��
2n−1�

k=1

akη
−k

2n−1 (1 + o(1)) + a2nη
−2n
2n−1

��

=

�
1− 2n

2n

�
η

2n
2n−1 (1 + o(1))

as |η| → ∞. By defintion,

Bη(λ(η)) ∼
�
1− 2n

2n

�
η

2n
2n−1 (3.3.1)

as |η| → ∞. Since b∗(η) = −Bη(λ(η)), we have proved

Lemma 3.3.1.

b∗(η) ∼
�
2n− 1

2n

�
η

2n
2n−1 (3.3.2)

as |η| → ∞.

From this, we arrive at another asymptotic approximation that will be useful in later chap-

ters. For a fixed λ0 ∈ R,

b(λ0)− η(λ0) + b∗(η) ∼
�
2n− 1

2n

�
η

2n
2n−1 (3.3.3)

as |η| → ∞.
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3.4 Asymptotic behavior of b(j)(λη)

We now interpret b∗(η) as the appropriate quantity to add to Bη to acquire a non-negative

polynomial in λ, which vanishes to even order. In other words, for each fixed η ∈ R, b(λ) −

ηλ+ b∗(η) ≥ 0, and each real zero has even multiplicity. With this observation, Bη(λ)+ b∗(η)

has a Taylor series expansion about λη,

Bη(λ) + b∗(η) =
2n�

j=2

b(j)(λη)

j!
(λ− λη)

j . (3.4.1)

It is now very clear why we must understand the asymptotic behavior of b(j)(λη).

Since b(j) is polynomial in λ, for each j = 2, . . . , 2n, the technique used in the prior section

will give us the desired asymptotic estimates. λη ∼ η
1

2n−1 as |η| → ∞, so

b(j)(λη) ∼ (2n− 1)!

(2n− j)!
η

2n−j
2n−1 (3.4.2)

as |η| → ∞.

With these results, we turn our attention to the local behavior of the location(s) of the

global minimum of Bη. This is a bit more delicate and will be invaluable in describing the

singularities of the Szegö kernel, on and off the diagonal.



Chapter 4

Properties of λ(η)

In this chapter, we build on the prior by analyzing the local behavior of λ(·). This analysis

will establish the set on which the Szegö kernel fails to be absolutely convergent. We take a

heuristic approach to understanding the function λ(·) and start by posing some basic questions

that should be resolved: Given that λ(η) is a location of the global minimum of Bη, what is

the relationship between λ(·) and b�? If so, does λ(·) inherit any smoothness from b�? What

is the structure of Λ?

4.1 Properties I

Recall that for each η ∈ R, λ(η) is a critical point of Bη(λ) = b(λ) − ηλ. Because of this, we

first explore the relationship between the functions λ and b�Λ.

Lemma 4.1.1. The map η �→ λ(η) is injective.

24
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Proof. For each η ∈ R, λ(η) satisfies

sup
λ∈R

{ηλ− b(λ)} = ηλ(η)− b(λ(η)).

As mentioned, λ(η) is a critical point of Bη, so λ(η) satisfies b�(λ(η)) = η. Thus b� is a left

inverse for the function λ(·), and it follows that λ(·) is injective.

For concision, define b�Λ to be the restriction of b� to Λ, The prior proof foreshadowed the

following lemma.

Lemma 4.1.2. b�Λ : Λ −→ R and λ : R −→ Λ are inverses.

Proof. We showed in the proof of Lemma 4.1.1 that b�Λ is a left inverse for λ(·). Thus it remains

to prove λ(b�Λ(ω)) = ω for all ω ∈ Λ.

Fix ω ∈ Λ. There exists a unique ηω ∈ R such that ω = λ(ηω). Since this is a critical point

of λ �→ b(λ)− ηωλ,

b�Λ(ω) = b�Λ(λ(ηω)) = ηω.

Hence

λ(b�Λ(ω)) = λ(ηω) = ω.

With a relationship between the two functions established, we can say more about λ(·) by

considering b�Λ.

Lemma 4.1.3. b�Λ is increasing, i.e., if λ1,λ2 ∈ Λ with λ1 < λ2, then b�Λ(λ1) < b�Λ(λ2).

Proof. Fix λ1,λ2 ∈ Λ with λ1 < λ2. Since the map η �→ λ(η) is a function, this guarantees

the existence of η1, η2 ∈ R satisfying η1 �= η2 and λ1 = λ(η1), λ2 = λ(η2). Also, since b�Λ is the
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inverse of λ(·),

ηi = b�Λ(λ(ηi)) = b�(λi), i = 1, 2. (4.1.1)

Thus to prove the lemma we must show that η1 < η2.

Suppose, on the contrary, η2 < η1. By the definition of λi, Bη2(λ2) < Bη2(λ1). Since λ1 < λ2,

λ1 − λ2 < 0. Thus

Bη1(λ2)−Bη1(λ1) = b(λ2)− λ2η1 − b(λ1) + λ1η1

= (−λ2 + λ1)[η2 + (η1 − η2)] + b(λ2)− b(λ1)

= (−λ2 + λ1)(η1 − η2) +Bη2(λ2)−Bη2(λ1)

< 0,

so Bη1(λ2) < Bη1(λ1). This contradicts the fact that Bη1(λ) = b(λ) − λη1 attains its global

minimum at λ = λ1. As desired, we conclude η2 > η1.

By inverse properties, we get the following.

Corollary 4.1.4. The function λ : R −→ Λ is increasing.

As one might suspect, λ(·) inherits some “smoothness” from b�Λ, as will be discussed in the

following sections. In the meantime, we establish more local properties of .

4.2 Properties II

In order to understand the structure of Λ, we consider the set of all η ∈ R on which the

location of the global minimum of Bη is not unique.
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Definition 4.2.1. Let C be the set on which σ(η) < λ(η). In terms of Λη,

C := {η ∈ R : |Λη| > 1}.

From the statement at (3.2.1), C is a bounded subset of R. Below, we will prove C is empty

if and only if b is convex. Since most of the statements below become trivial without the

assumption that C �= ∅, we will often assume this without commment. Also, each element

c ∈ C has a corresponding interval [σc,λc) ⊂ R that is closely related to a subset of the

diagonal of R3 × R3 on which the Szegö kernel is absolutely convergent. Because of this, we

will call each non-empty interval [ση,λη) a safe zone.

This section will lay the ground work for a full description of Λ, which can be concisely

written in terms of the safe zones. Recall that, for each η ∈ R, Λη is the set containing the

location(s) of the global minimum of Bη.

Lemma 4.2.2. Take c ∈ C. Then if ω ∈ (σc,λc) \Λc, there exists no η ∈ R for which ω ∈ Λη.

Proof. Since ω is not a location of the global minimum of Bc,

b(ω)− ωc > b(σc)− σcc and b(ω)− ωc > b(λc)− λcc.

Clearly, λc − ω > 0. Thus if η > c,

Bη(ω)−Bη(λc) = b(ω)− ηω − b(λc) + ηλc

= (−ω + λc)[c+ (η − c)] + b(ω)− b(λc)

= [λc − ω][η − c] +Bc(ω)−Bc(λc)

> 0.

Similarly, for η < c, σc − ω < 0 and Bη(ω)−Bη(σc) > 0. We conclude that there is no η ∈ R
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for which ω is the location of the global minimum of Bη.

We have just provided the requisite information to show that the safe zones are mutually

disjoint. A concise representation of Λ is predicated on the following.

Lemma 4.2.3. For η1, η2 ∈ R with η1 �= η2, the intervals [ση1 ,λη1 ] and [ση2 ,λη2 ] are disjoint.

Proof. Since λ(·) is increasing, we may assume η1, η2 ∈ C with η1 < η2; hence λη1 < λη2 . It

will suffice to show λη1 < ση2 .

Suppose that λη1 ∈ [ση2 ,λη2 ]. By Lemma 4.2.2, λη1 ∈ Λη2 . Therefore b�Λ(λη1) satisfies

η1 = b�Λ(λη1) = η2,

which contradicts η1 �= η2. Thus λη1 < ση2 , and the given sets are disjoint.

By the lemma, the image of λ(·) takes a slightly more transparent form,

Λ =
� �

η∈R
Λη

�
\
�

c∈C
[σc,λc).

In order to clarify this description even further, it would be helpful if we could say something

about the cardinality of C.

Lemma 4.2.4. Let deg(b) = 2n ≥ 4. For the set C = {η ∈ R : |Λη| > 1}, |C| ≤ n− 1.

Proof. If c ∈ C, then there are at least two distinct points, σc and λc, at which the polynomial

Bc attains a global minimum. I claim there are at least two inflection points contained in the

interval (σc,λc).

For completeness, we prove the claim. By choice of b, B��
c is a non-constant polynomial.
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Since σc and λc are two distinct locations of the global minimum, there exists an � > 0 such

that the following properties hold:

1. B��
c (λ) > 0 whenever 0 < |σc − λ| < � or 0 < |λc − λ| < �,

2. B�
c(λ) > 0 for all λ ∈ (σc,σc + �),

3. B�
c(λ) < 0 for all λ ∈ (λc − �,λc).

If B��
c (λ) ≥ 0 for all λ ∈ (σc,λc), then B�

c is non-decreasing on (σc,λc). Thus B�
c(ω1) ≤ B�

c(ω2)

whenever ω1,ω2 ∈ (σc,λc) with ω1 < ω2. For ω1 ∈ (σc,σc+ �) and ω2 ∈ (λc− �,λc), properties

2 and 3 yield

0 < B�
c(ω1) ≤ B�

c(ω2) < 0,

which is a contradiction. Thus there exists some ω3 ∈ (σc,λc) such that B��
c (ω3) < 0. By prop-

erty 1 and the intermediate value property applied to B��
c , there exists at least two inflection

points ω1,ω2 satisfying ω1 ∈ (σc,ω3) and ω2 ∈ (ω3,λc). Thus there are at least two inflection

points contained in the interval (σc,λc).

Since the number of inflection points cannot exceed 2n − 2 (the degree of b��) and the safe

zones are disjoint, the cardinality of C cannot exceed 1
2(2n− 2), i.e., |C| ≤ n− 1.

Having shown that C is a finite set, we have the following obvious consequence which will be

useful in the near future.

Corollary 4.2.5. There exists � > 0 such that |Λη| = 1 for all η ∈ R and c ∈ C satisfying

0 < |η − c| < �.

Proof. This is simply a consequence of the fact that since C is a discrete subset of R, C is

closed; hence Cc is open.
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We close this chapter with a section that exploits the relationship between λ(·) and b�Λ, and

the disjoint safe zones.

4.3 Properties III

We start with a proposition that will assist us in showing that λ(·) is densely distributed

between consecutive safe zones. Then a complete description of Λ will follow from the con-

tinuity of λ(·). From a full description of the image Λ, the non-convexity of b is shown to be

biconditionally related to the existence of a safe zone. All of the facts above will be exploited,

and we will end the section by pointing out additional features of λ(·).

The following proposition presents an ideal setting to invoke the tube lemma.

Lemma 4.3.1 (The tube lemma, [6]). Consider the product space X×Y, where Y is compact.

If U is an open set of X × Y containing the slice {x0}× Y of X × Y, then U contains some

tube W × Y about {x0}× Y, where W is a neighborhood of x0 in X.

Proposition 4.3.2. Let F : R× R −→ R be a continuous function with

F (x0, y) > 0

for some x0 ∈ R and all y ∈ [a, b]. Then there exists some � > 0 such that, for all x ∈

(x0 − �, x0 + �) and all y ∈ [a, b],

F (x, y) > δ/2 > 0,

where δ := min
y∈[a,b]

F (x0, y).

Proof. First note that for fixed x0 ∈ R, F (x0, ·) is a continuous function of one variable.

Since {x0}× [a, b] is compact in R×R and F is continuous, its image is compact. Hence the

minimum δ defined above is attained and satisfies δ > 0.
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Define the open set V := (δ/2,∞). Since F is continuous, F−1(V ) is open in R×R and it

contains {x0}× [a, b] since F (x0, y) ≥ δ for all y ∈ [a, b]. Consider the subspace R× [a, b]. In

the subspace topology, there is an open subset of R × [a, b] containing the slice {x0} × [a, b],

i.e.,

{x0}× [a, b] ⊆ F−1(V ) ∩
�
R× [a, b]

�
⊆ R× [a, b].

Since [a, b] is compact, we can apply the tube lemma to get a neighborhood say B of x0 in

R so that

{x0}× [a, b] ⊆ B × [a, b] ⊆ F−1(V ) ∩
�
R× [a, b]

�
⊆ F−1(V ).

B is a neighborhood of x0 in R, so we may shrink B (if necessary) and assume B = B(x0, �)

for some � > 0. Thus we have an � > 0 such that, for all x ∈ B(x0, �) and all y ∈ [a, b],

F (x, y) ∈ V ⇐⇒ 0 < δ/2 < F (x, y).

The following lemma illustrates the density of λ(R) near the boundary of each safe zone.

This fact is essential and provides one of the last steps in obtaining a concise representation

of Λ.

Lemma 4.3.3. Fix η0 ∈ R and any real number α. Then

1. if α < ση0 , then (α,ση0) ∩ Λ �= ∅.

2. if α > λη0 , then (λη0 ,α) ∩ Λ �= ∅.

Proof. Consider the family B = {Bη(λ) = b(λ) − ηλ}η∈R, and recall that |Λη0 | = 1 ⇐⇒

σ(η0) = λ(η0).
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We start by proving the first statement. Since ση0 and λη0 are points at which the function

Bη0 attains its global minimum,

Bη0(ω) > Bη0(ση0) (4.3.1)

for all w < ση0 . Consider the continuous function

F (η,ω) := Bη(ω)−Bη(ση0).

For fixed N ∈ N (to be determined later) satisfying −N < α, F (η0,ω) > 0 for all ω ∈ [−N,α],

by inequality (4.3.1). We now apply Proposition 4.3.2. For δN := min
ω∈[−N,a]

F (η0,ω), there

exists an �N ∈ (0, 1) such that

F (η,ω) > δN/2 > 0 ⇐⇒ Bη(ω) > δN/2 +Bη(ση0) > Bη(ση0) (4.3.2)

for all η ∈ (η0 − �N , η0 + �N ) and all ω ∈ [−N,α].

In Section 3.2, we proved that η ∼ λ2n−1 as λ → −∞, with λ ∈ Λ. Thus if λ(η) → −∞,

η → −∞. It follows that there exists some N0 such that whenever λ ∈ Λ ∩ (−∞,−N0) ( �= ∅,

by Lemma 3.2.1), η satisfies η < η0 − �N . The above N satisfying −N < α was arbitrary. By

setting N := min{N0,α−1}, we get a δN > 0 and �N ∈ (0, 1) satisfying inequality (4.3.2) and

λ(η) < −N =⇒ η /∈ (η0 − �N , η0 + �N ). (4.3.3)

To summarize, inequality (4.3.2) showed that whenever η ∈ (η0 − �N , η0), λ(η) /∈ [−N,α].

Also by implication (4.3.3), λ(η) < −N implies η /∈ (η0 − �N , η0). Therefore, it must be that

λ(η) > α if η ∈ (η0 − �N , η0). Finally, by the monotonicity of λ(·) and the fact that safe zones

are non-overlapping, λ(η) < σ(η0) for each η ∈ (η0 − �N , η0). Thus for each η ∈ (η0 − �N , η0),

we have λ(η) ∈ (α,ση0), which yields the desired result.

The proof of the second statement follows by a similar argument.
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All of the hard work is now complete, and the desired facts may be proved.

Lemma 4.3.4. The map λ : R \ C −→ Λ \ λ [C] is a homeomorphism.

Proof. By Lemma 4.1.2 and the continuity of b�Λ, we just need to show λ(·) is continuous on

the open subset R \ C. Let {ηk}k be a sequence converging to η0 in R \ C. Since η0 is not in

the finite set C, there exists an �1 > 0 such that |Λη| = 1 for all η ∈ B(η0, �1). Without loss

of generality, we may assume {ηk}k ⊂ B(η0, �1). Suppose there exists a subsequence and an

�2 > 0 such that λ(ηkj ) /∈ B(λ(η0), �2) for all j ∈ N. By Lemma 4.3.3, there exists η1, η2 such

that

λ(η0)− �2 < λ(η1) < λ(η0) < λ(η2) < λ(η0) + �2.

Thus for all j ∈ N, λ(ηkj ) /∈ (λ(η1),λ(η2)); hence ηkj /∈ (η1, η2) by (4.1.1) and Lemma

4.1.3. This contradicts the fact that ηkj → η0. We conclude that λ(ηk) → λ(η0), so λ(·)

is continuous.

Notice that the prior proof can be used to show more. If {ηk}k ⊂ R \ C were a sequence

converging from the right to some c ∈ C, then the same argument gives limk→∞ λ(ηk) = λ(c).

In other words, we have the following:

Corollary 4.3.5. The map λ : R −→ Λ is continuous from the right.

We characterize the image Λ := {λ(η) : η ∈ R} in terms of the safe zones. In the fourth-

degree setting, it will be shown that the image can be characterized in terms of the coefficients

of b. Unfortunately, factoring an arbitrary even-degree polynomial is not an easy task, so we

will use the tools we have. In particular, let us use what have acquired about the safe zones.

Theorem 4.3.6. Λ = R \
�

c∈C
[σc,λc), where C = {η ∈ R : |Λη| > 1}.

Proof. Let C := {ci}ki=1 with ci < ci+1. To prove this result, we exploit the fact that the
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continuous image of a connected set is connected. By Lemmas 4.1.4, 4.2.3, and 4.3.4, we have

λ[(−∞, c1)] ⊆ (−∞,σc1), λ[[ck,∞)] ⊆ [λck ,∞), λ [[ci, ci+1)] ⊆ [λci ,σci+1),

for all ci ∈ C. Since the above sets are all connected intervals, it suffices to show that each set

containment is actually equality. This can be done by invoking Lemmas 3.2.1 and 4.3.3.

One might wonder why the Inverse Function Theorem was not invoked earlier, or at all.

Recall the theorem:

Theorem 4.3.7 (Inverse Function Theorem). Let f be a real-valued, continuously differen-

tiable function on (α,β) ⊂ R with f � nonzero on (α,β). Then f is invertible, and the inverse

is continuously differentiable on f [(α,β)].

Two questions had not been addressed: Does the image Λ contain any open intervals? What

happens at the points in Λ where b��Λ vanishes? Here is an example where Λ contains every

open interval and yet one still cannot use the Inverse Function Theorem on the entire domain

Λ of b�Λ.

Example 4.3.8. Consider the convex polynomial b(x) = 1
4x

4. By Lemma 4.3.4, Λ = R. If

η = 0, then λ(0) = 0. Also, b�(x) = η ⇐⇒ x3 = η. Using the notation above, b�Λ(x) = x3

which is invertible on R, however the inverse is not differentiable at the origin. Notice that

d
dxb

�
Λ(x) = 3x2. Since 0 ∈ Λ0 = {0}, we cannot apply the inverse function theorem on the

whole domain.

After removing any additional zeros of b��Λ, we can apply Theorems 4.3.6 and the Inverse

Function Theorem to get the anticipated diffeomorphism.

Lemma 4.3.9. Define N := {η ∈ R : b��Λ(λ(η)) = 0}. Then the function λ : R \ (C ∪N ) −→ Λ

is C∞, with derivative

λ�(η) =
1

b��(λ(η))
.
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Theorem 4.3.6 also allows us to relate the non-convexity of b to the existence of a safe zone.

Later, this connection will yield singularities of the Szegö kernel off the diagonal in R3 × R3,

but there is much more work to be done.

Corollary 4.3.10. Let b(x) be given by (2.1.1). Then |Λη| = 1 for all η ∈ R if and only if b

is a convex polynomial.

Proof. Suppose there exists an η0 ∈ R such that |Λη0 | > 1. Then the polynomial Bη0 would

have competing global minima; hence Bη0 would have inflection points. Since the inflection

points of Bη0 and b coincide, b is non-convex.

To show the converse, suppose b(λ) is non-convex. Then there exists some ω ∈ R such that

b��(ω) < 0. Hence, there is some interval (α,β) containing ω such that b��(λ) < 0 whenever

λ ∈ (α,β). This implies that b� is strictly decreasing on the interval (α,β). By Lemmas 4.1.3

and 4.3.6, b�Λ(λ) is increasing on the restricted domain Λ = R \
�

c∈C [σc,λc). Since the safe

zones are non-overlapping, the interval (α,β) must be contained in a safe zone [ση0 ,λη0). Thus

for η = η0, we have |Λη0 | > 1.

The prior proof sheds some light on the location of the inflection points of b. As mentioned,

Bη and b have the same inflection points, which are independent of η ∈ R. The location of

the global minimum cannot be an inflection point, so all inflection points must be interior to

a safe zone.

The image Λ also reveals the location of the critical points of b relative to the safe zones. To

see this, start by fixing any η0 ∈ R. If there exists an ω ∈ R such that η0 = b�(ω) and ω �= λη0 ,

then ω ∈ [σc,λc) for some c ∈ C. Suppose the contrary, ω /∈ [σc,λc) for all c ∈ C. Then ω = λη1

for some η1 ∈ R because λ(·) maps R bijectively to R \
�

c∈C [σc,λc). Since ω = λη1 ,

η0 = b�(ω) = b�(λη1) = η1.
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Thus η0 = η1, which yields a contradiction since ω �= λη0 . If we set η0 = 0, then ω = λ(0) or

ω is in a safe zone.

By the last two paragraphs, we have proven the following.

Corollary 4.3.11. Except for σ(0) and λ(0), all critical points and inflection points of b are

contained in the interior of some safe zone.

Corollary 4.3.12. Every element of the family B is convex on (−∞,σδ−) ∪ (λδ+ ,∞), where

δ+ := max{λ : λ ∈ C} and δ− := min{λ : λ ∈ C}.

Proof. Start by observing B��
η = b��, which is independent of η. By Corollary 4.3.11, all the

inflection points of b, hence Bη, are in the interval [σδ− ,λδ+). Since B��
η is an even-degree

polynomial with positive leading coefficient, B��
η is non-negative on the desired set, for each in

η ∈ R.

To close this section, let us take a slight detour. By the results of Chapter 2, we may assume

b vanishes to even order at the origin. If we assume this, an interesting consequence arises.

Admittedly, this result is not essential to the thesis, but its consequence will surface in the

non-convex quartic setting.

Do something with the following!

If we define D := C ∪N , then (b∗)� = λ(·) on D by Lemma 5.2.3. Since b∗ is defined on R,

b∗ has a critical point at η0 ∈ D if and only if (b∗)�(η0) = λ(η0) = 0, which is unique since λ(·)

is increasing. Thus the global minimum of b∗ occurs at b∗(η0) = −Bη0(λ(η0)) = −Bη0(0) =

−b(0), which equals zero if we assume b(0) = b�(0) = 0.

Lemma 4.3.13. Suppose b is an even-degree polynomial with monic derivative, vanishing to

second order at the origin.

1. If λ(0) �= 0 and b(λ0) = 0, then λ(η) is bounded away from zero [0,∞),
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2. If λ(0) �= 0 and b(λ0) �= 0, then λ(η) is bounded away from zero on R.

Proof. In the first case, zero is a critical point and λ(0) �= 0, so zero is in some safe zone

according to Lemma 4.3.11. It follows that 0 ∈ [σ0,λ0); hence the desired result holds.

In the second case, B0(λ0) = b(λ0) < 0 because B0(λ0) ≤ B0(0) = b(0) and b(λ0) �= 0.

Recall that b(λ0) = −b∗(0) and b∗(0) < b∗(η) for all η �= 0, from above. From the first case,

we know that zero is in some safe zone, say 0 ∈ [σc,λc). Since the safe zones do not overlap,

we just need to show σc < 0. Suppose σc = 0. Then

−b∗(c) = Bc(λc) = Bc(σc) = Bc(0) = 0.

On the other hand, we know b∗(c) > b∗(0) > 0, which yields a contradiction. It follows that

σc < 0, and the desired result follows.



Chapter 5

Legendre Transform

Until this point, not much has been said about the Legendre transform, besides the definition

given in Chapter 1. Through a brief exposition, this chapter is designed to cover elementary

properties of this maximizing transform, whose geometric properties were used to find several

results proved in Chapter 4. Here we look at the definition, basic properties, an example, and

a factorization lemma. In relation to this thesis, the factorization lemma is the only necessary

result of this chapter. Without interrupting the flow, a reader that is only interested in the

new results of this thesis may skip to the last lemma.

5.1 Introduction

In order to motivate this chapter, we reflect on the integral in question with a slight rear-

rangement of an exponent,

S[(x, 0, 0), (r, 0, 0)] = c

� ∞

0

� ∞

−∞

τe−τ [(b(x)−ηx)+(b(r)−ηr)]
�∞
−∞ e−2τ [b(λ)−ηλ] dλ

dη dτ.

38
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As commented on several times before, estimating the size of this integral can become a

tractable task if we know more about the integrand and the behavior of the exponents. Ex-

tensive theory has been developed in an attempt to estimate integrals with an exponential

integrand, e.g., Laplace’s Method and stationary phase approximation. It is well understood

that the main contribution to an exponential integrand comes from the global maxima of the

exponent as they vary over their real parameter space (See the introduction to Chapter 6).

In our setting, the Legendre transform is a tool to help identify these extreme values. From

the integral above, this becomes apparent by noticing that both exponents are multiples of

Bη(λ) = b(λ) − ηλ. If b is an even-degree polynomial with positive leading coefficient, then,

for each η0 ∈ R, the global minimum of Bη0 is finite. Thus the maximum of (−Bη), over the

real parameter space λ, is a function of η. In Chapter 3, we defined the function λ(·) to be the

largest location in which the global minimum of Bη is achieved. So, at each η ∈ R, the value

−Bη(λ(η)) is precisely the maximum value that (−Bη) can achieve with the real parameter

λ. But what is this function −Bη(λ(η))? And is there a terse definition? To define this more

generally, we turn to the Legendre transform.

Definition 5.1.1. Let f be a real-valued function of a real variable. The Legendre transform

of f , denoted f∗, is given by

f∗(η) := sup
λ∈R

(ηλ− f(λ)).

Notice that even for well-behaved functions, the transform can take on infinite values. For

example, the Legendre transform is infinite everywhere whenever f is a concave function with

an upper bound. One can verify that the Legendre transform of a real-valued function f is

finite everywhere if and only if f has super-linear growth.

Like the Fourier transform, the Legendre transform is an operator which produces a function

of a different variable. Unlike many transforms that consist of integration with a kernel, the

Legendre transform uses maximization as its transformation procedure. This supremum may
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be interpreted in several, equally useful ways. For a fixed η0 ∈ R, the obvious interpretation

of f∗ is the supremum of the difference between the line y = η0λ and f(λ). If f is convex

and differentiable with solution λ0 to the equation f �(λ) = η0, then we can interpret f∗(η0)

as the negative of the y-intercept of the tangent line to the graph of f that has slope η0.

The convexity of f guarantees the uniqueness of the y-intercept, −f∗. If f is an even-degree

polynomial with positive leading coefficient, then our desired interpretation is

f∗(η) = (−1)min
λ∈R

(f(λ)− ηλ).

5.2 Properties

Let us work through some elementary properties of the transform.

Lemma 5.2.1. The function f∗ is convex.

Proof. Given η0, η1 ∈ R and t ∈ [0, 1],

(tη0 + (1− t)η1)λ− f(λ) = tη0λ+ (1− t)η1λ− tf(λ)− (1− t)f(λ)

= t (η0λ− f(λ)) + (1− t) (η1λ− f(λ)) .

We now take the supremum over the real parameter λ. By the subadditivity,

f∗(tη0 + (1− t)η1) ≤ tf∗(η0) + (1− t)f∗(η1)

for each t ∈ [0, 1]. By definition, f∗ is convex.

In order to see the process that one might take to compute f∗, we calculate the Legendre

transform of Chistine’s non-convex, piecewise quadratic b.
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Example 5.2.2. Consider

b(λ) =






(λ+ 1)2 ,λ < −1
2

−λ2 + 1
2 ,−1

2 ≤ λ ≤ 1
2

(λ− 1)2 , 1
2 < λ.

One can easily verify that b has a continuous derivative, so we can apply basic calculus

techniques to find b∗. The derivative of the map λ �→ Fη(λ) := ηλ− b(λ) is given by

F �
η(λ) =






−2λ− 2 + η ,λ < −1
2

2λ+ η ,−1
2 ≤ λ ≤ 1

2

−2λ+ 2 + η , 12 < λ.

Independently of η, the map Fη has the same inflection points as b, which is concave on the

interval (−1
2 ,

1
2). Hence the global maximum of Fη is only achieved by some value(s) in an

extreme interval.

By examining the function Fη, one finds that for each η ∈ (−1, 1), the function has two

local maxima occurring at λ = η−2
2 and λ = η+2

2 . By direct evaluation, the only time Fη has

a non-unique location where the global maximum occurs is when η = 0. It follows that

1. if η ≤ 0, then the global maximum occurs when λ = η−2
2 ;

2. if η ≥ 0, then the global maximum occurs when λ = η+2
2 .

By substitution, we get the Legendre transform

b∗(η) =






1
4η

2 − η , η ≤ 0

1
4η

2 + η , η ≥ 0.
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The region above the graph of b∗ is the intersection of the convex region above the graph of

1
4η

2 − η with the convex region above the graph of 1
4η

2 + η. Hence it is convex, and b∗ is a

convex funciton.

For an addition example, see Example ?? in the appendix.

As a consequence of its convexity, f∗ is Lipschitz continuous on each closed subset of R;

hence it is differentiable almost everywhere. For additional details and properties, see [9].

In order to say more, additional hypotheses on our function f are needed. Since this general

theory is not essential to the thesis, we will prove the remaining results for the special case

in which b is an even-degree polynomial with positive leading coefficient. Our choice of b has

the consequence that λ(η), the largest location of the global minimum of Bη, is smooth off of

a discrete set D, by Lemma 4.3.9. Because of this,

Lemma 5.2.3. (b∗)� = λ(·) on R \ D.

Proof. By Definition 3.1.1, b∗(η) = ηλ(η) − b(λ(η)). Also, λ(η) satisfies b�(λ(η)) = η. Since

λ(·) is smooth on R \ D,

(b∗)�(η) = ηλ�(λ) + λ(η)− b�(λ(η)) · λ�(η)

= ηλ�(λ) + λ(η)− ηλ�(η)

= λ(η).

Thus (b∗)� = λ(·) on R \ D.

An interesting result follows with the added condition that b is convex.

Lemma 5.2.4. For any non-constant, convex function b, the Legendre transform is an invo-
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lution, i.e.,

(b∗)∗(η) = b(η) for all η ∈ R.

Proof. First, we show that (b∗)∗(x0) ≤ b(x0) for each x0 ∈ R. Fix x0 ∈ R. Since (b∗)∗(x0) =

supη∈R(ηx0 − b∗(η)), there exists an η0 ∈ R for each � > 0 satisfying

(b∗)∗(x0) = sup
η∈R

(ηx0 − b∗(η))

≤ η0x0 − b∗(η0) + �

= η0x0 − sup
x∈R

(η0x− b(x)) + �

≤ η0x0 − η0x0 + b(x0) + �

= b(x0) + �.

Since � > 0 was arbitrary, we have (b∗)∗(x0) ≤ b(x0).

To obtain a reverse inequality, let us assume that (b∗)∗(x0) < b(x0). Since b is convex, there

exists a line with slope η0 and y−intercept c that separates the point (x0, (b∗)∗(x0)) from the

graph y = b(x). This line satisfies

(b∗)∗(x0) < η0x0 + c < b(x0) and η0x+ c < b(x), for all x ∈ R.

Therefore, η0x− b(x) < −c for all x ∈ R, which implies b∗(η0) < −c. Also from above,

η0x0 + c > sup
η∈R

(x0η − b∗(η))

≥ η0x0 − b∗(η0),

so b∗(x0) > −c This contradicts b∗(η0) < −c. Thus we must of had equality so that such a

separation could not exist. Since x0 was arbitrary, (b∗)∗ = b.

One should notice that the convexity of b was the only hypothesis required for the above
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result.

5.3 Factoring lemma

We conclude this chapter with a lemma, which is a key component of this thesis. The lemma

is a generalization of work done by Halfpap, see [ ]. Using results from Chapter 4, we can

extend her conclusion to the higher-degree setting.

For fixed ω ∈ R, we define Aω(η) := b(ω)− ηω + b∗(η).

Lemma 5.3.1. Suppose that b is an even-degree polynomial with monic derivative. Then for

each η0 ∈ R and ω ∈ Λη0 , Aω can be factored as

Aω(η) = (η − η0)Fω(η)

on the interval (η0,∞), where Fω is continuous from the right and bounded on each finite,

non-empty interval (η0, N).

Proof. Let ω ∈ Λη0 . Then λ(η0) := λη0 ≥ ω. Since λ(·) monotone, λη > ω if and only if η > η0.

By definition, λη is a solution to the equation

b∗(η) = ηλη − b(λη),
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which shows that Aω is non-negative. On the interval (η0,+∞),

Aω(η) = b(ω)− ηω + b∗(η)

= b(ω)− ηω + ηλη − b(λη)

= η(λη − ω) + b(ω)− b(λη)− η0(λη − ω) + η0(λη − ω)

= (η − η0)(λη − ω)− (λη − ω)2
�
b(λη)− b(ω)− η0(λη − ω)

(λη − ω)2

�

=: (η − η0)(λη − ω)− (λη − ω)2φω(η).

Notice that

φω(η) =
b(λη)− η0λη − [b(ω)− η0ω]

(λη − ω)2
=

Bη0(λη)−Bη0(ω)

(λη − ω)2
.

Since ω ∈ Λη0 , the minimality of Bη0(ω) yields Bη0(λη) ≥ Bη0(ω) for all η ∈ R. Therefore φω

is non-negative on the interval (η0,+∞). Since λ(·) is continuous from the right, so is φω. It

follows that for each η ∈ (η0,+∞),

Aω(η) = (η − η0)(λη − ω)− (λη − ω)2φω(η) ≥ 0 ⇐⇒ 1 ≥ (λη − ω)φω(η)

(η − η0)
. (5.3.1)

Hence, on (η0,+∞), we get the factorization

Aω(η) = (η − η0)(λη − ω)− (λη − ω)2φω

= (η − η0)(λη − ω)

�
1− (λη − ω)

φω(η)

(η − η0)

�

=: (η − η0)Fω(η).

By Lemma 4.3.5 and inequality (5.3.1), Fω is continuous from the right and bounded on each

finite, non-empty interval (η0, N). This gives us the desired result.

In our final chapter, we will use this result to show divergence of our main integral on a

specified domain. But for now, we move on to acquire some additional estimates needed.



Chapter 6

Estimates for N(η, τ )

When we consider the question of absolute convergence for the Szegö kernel, the integral to

be analyzed is

S[(x, 0, 0), (r, 0, 0)] = c

� ∞

−∞

� ∞

0

τe−τ [b(x)+b(r)−η(x+r)]
�∞
−∞ e−2τ [b(λ)−ηλ] dλ

dτ dη. (6.0.1)

In Chapter 3, we established asymptotic estimates for the largest location λ(η) of the global

minimum of Bη(λ) as well as for the global minimum Bη(λ(η)) as |η| → ∞. In order to

obtain size estimates for the integrand, more needs to be done. We turn our attention to the

denominator integral,

N(η, τ) :=

� ∞

−∞
e−2τ [b(λ)−ηλ] dλ.

For each η ∈ R and τ > 0, the integral N is of the form

� ∞

−∞
e−ρ(λ) dλ,

where ρ satisfies lim|λ|→∞ ρ(λ) = ∞. The heuristic principle that guides the analysis of such

integrals is that the main contribution comes from a neighborhood of the point(s) at which

46
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the exponent attains its global maximum. Using the Legendre transform of b, we can describe

the main contribution to N .

N(η, τ) =

� ∞

−∞
e−2τ [b(λ)−ηλ] dλ

= e2τb
∗(η)

� ∞

−∞
e−2τ [b(λ)−ηλ+b∗(η)] dλ

= e2τb
∗(η)

� ∞

−∞
e−2τ [b(λ+λη)−η(λ+λη)+b∗(η)] dλ

=: e2τb
∗(η)

� ∞

−∞
e−p(λ) dλ,

where p(λ) := 2τ [b(λ + λη) − η(λ + λη) + b∗(η)]. The polynomial p is a non-negative, even-

degree polynomial in λ, which vanishes to even order at the origin. Sharp estimates have

been obtained for integrals of the form
�
R e−p(λ) dλ whenever p is a non-negative, convex

polynomial which vanishes to even order at the origin. Hence it is natural to ask if similar

results follow when p is non-convex. The answer is in the affirmative only if the degree of

p is four. Because of this, we are forced take a different approach when the degree of p, or

equivalently b, is greater than four.

This chapter consists of three sections. In Section 6.1, we use an excerpt of our earlier paper

[2] to obtain uniform estimates ofN in the fourth-degree setting. This section surveys integrals

of the form
�
R e−p(λ) dλ, where p satisfies “nice” conditions. The techniques used in obtaining

these results will help the reader appreciate the complexity of these estimates. Starting in

Sections 6.2, we generalize to even-degree polynomials of the form (2.1.1). We develop a

canonical way of getting a uniform lower bound for N, which will allow us to establish the

convergence of (6.0.1) on a particular open set. Section 6.3 is dedicated to finding a local,

uniform upper bound for N, which in turn will be sufficient to show the divergence of the

Szegö kernel at specific points.
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6.1 Fourth-degree estimates, [[2],§4]

6.1.1 Definitions and notation

Let p be a real polynomial of even-degree with positive leading coefficient. We are interested

in estimates for � ∞

−∞
e−p(x) dx (6.1.1)

which are uniform in the coefficients of p.

Definition 6.1.1. We say that A and B are comparable, denoted A ≈ B, if for some positive

constant c, cB ≤ A ≤ c−1B. It will be understood whenever this notation is used that the

underlying constant c is independent of all important parameters.

If p is convex (i.e., if p��(x) ≥ 0 for all x) with p(0) = p�(0) = 0, we know that

� ∞

−∞
e−p(x) dx ≈ |{x : p(x) ≤ 1 }|, (6.1.2)

where this comparability is independent of the coefficients of the polynomial p and depends

only, perhaps, on the degree of p.

Our goal is to extend the estimate (6.1.2) to the situation in which p is a fourth-degree

polynomial with positive leading coefficient. By translating, shifting, and reflecting about the

y-axis if necessary, we can arrange it so that the (not necessarily unique) global minimum of

the polynomial is zero and occurs at x = 0, and so that p is convex for all x ≤ 0. Since p�� has

degree 2, if p fails to be convex on all of R, there is a single interval on which p�� is negative.

Thus suppose p�� has zeros at x = A and x = A + C where A,C > 0. Then there exists

B > 0 so that

p��(x) = B(x−A)(x− (A+ C)). (6.1.3)
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Remark 6.1.2. One checks easily that if A = 0, p can not have its global minimum at 0

unless C = 0 as well. In this case, we would have p(x) = Bx4, which is convex. Furthermore,

if A > 0 but C = 0, p�� is never negative, hence p is convex.

If we anti-differentiate (6.1.3) twice, using the assumption that p(0) = p�(0) = 0, we find

p(x) =
B

12
x2[x2 − 2(2A+ C)x+ 6A(A+ C)],

which is of the form (2.1.1). In the analysis that follows, it will be essential to know what

relationship, if any, exists between A and C. Thus write C = αA for α > 0. Then

p(x) =
B

12
x2[x2 − 2A(2 + α)x+ 6A2(1 + α)]. (6.1.4)

Proposition 6.1.3. Let p be as in (6.1.4), with A,B,α > 0. p is non-negative if and only if

0 < α ≤ 1 +
√
3.

Proof. p is non-negative if and only if the expression x2 − 2A(2 + α)x + 6A2(1 + α) is non-

negative for all x. The conclusion follows by finding those positive α for which this quadratic

has non-positive discriminant.

Next, we prove an inequality concerning the value of p at its inflection points:

Proposition 6.1.4. If p(x) = B
12 [x

4−2A(2+α)x3+6A2(1+α)x2] and 0 < α ≤ 1+
√
3, then

there exists c > 0 independent of A and B so that p((1 + α)A) ≥ p(A) ≥ cBA4.
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Proof. We have

p((1 + α)A) =
BA4

12
(1 + α)3(3− α)

=
BA4

12
(3 + 8α+ 6α2 − α4)

p(A) =
BA4

12
(3 + 4α)

The lower bound on p(A) follows immediately since for 0 < α ≤ 1 +
√
3, 3 + 4α is bounded

below by a positive constant.

Observe,

p((1 + α)A)− p(A) =
B

12
A4(4α+ 6α2 − α4).

One confirms easily that α = −2, α = 0, and α = 1+
√
3 are roots. One also verifies that the

fourth root is in (−1,−.5). Finally, since at α = 1,

p((1 + α)A)− p(A) =
B

12
A4(4 + 6− 1) > 0

we conclude that this difference is positive for all 0 < α < 1+
√
3. This proves the proposition.

A convex polynomial clearly has only one local extremum, which is necessarily the location

of the global minimum. For non-convex p, however, it is possible that p has other extrema.

More specifically, if p is a fourth-degree polynomial, p� is a polynomial of degree three, hence

it has either a single real root or three real roots. We have the following:

Proposition 6.1.5. Let p(x) = B
12 [x

4 − 2A(2 + α)x3 + 6A2(1 + α)x2], with A,B > 0 and

0 < α ≤ 1 +
√
3. Then p� has three real roots if and only if 2 ≤ α ≤ 1 +

√
3.
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Proof. We compute:

p�(x) =
B

12
x[4x2 − 6A(2 + α)x+ 12A2(1 + α)].

This has three real roots if and only if

9A2(2 + α)2 − 48A2(1 + α) = 3A2(3α2 − 4α− 4) ≥ 0.

This occurs if and only if

α ≤ −2

3
or α ≥ 2.

Since we have assumed 0 < α ≤ 1 +
√
3, the conclusion follows.

To analyze the integral (6.1.1), we begin by writing it as a sum:

� ∞

−∞
e−p(x) dx =

� 0

−∞
e−p(x) dx+

� A

0
e−p(x) dx

+

� (1+α)A

A
e−p(x) dx+

� ∞

(1+α)A
e−p(x) dx

= I + II + III + IV . (6.1.5)

Observe that p is convex on the intervals of integration for I, II, and IV . Obtaining sharp

estimates for these integrals requires the results of the next subsection.

6.1.2 Some estimates for functions on intervals of convexity

We will use the following results repeatedly. The first gives the size of the integral of e−p over

any interval on which p is convex. It uses a modification of an argument in Halfpap, Nagel,

and Wainger [18] proving an analogous estimate if p is convex on all of R.

Lemma 6.1.6. Let p : R → R be a smooth function satisfying lim|x|→∞ p(x) = ∞.
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1. Suppose p� is positive and increasing on an interval (x0, xf ), where xf may equal ∞.

Suppose further that in the case in which xf < ∞, p(xf ) ≥ p(x0) + 1. Then

� xf

x0

e−p(x) dx ≈ e−p(x0)|{x ∈ (x0, xf ) : p(x0) < p(x) < p(x0) + 1}|.

2. Suppose p� is negative and increasing on an interval (xf , x0), where xf may equal −∞.

Suppose further that in the case in which xf > −∞, p(xf ) ≥ p(x0) + 1. Then

� x0

xf

e−p(x) dx ≈ e−p(x0)|{x ∈ (xf , x0) : p(x0) < p(x) < p(x0) + 1}|.

3. Suppose p� is (i) positive and increasing on I = (x0, xf ) with xf < ∞ or (ii) negative

and increasing on I = (xf , x0) with xf > −∞. Suppose further that p(x0) < p(xf ) <

p(x0) + 1. Then �

I
e−p(x) dx ≈ e−p(x0)|xf − x0|.

Proof. We sketch the proof of (1). The remaining parts follow in a similar manner.

Suppose xf < ∞, and let J be the largest positive integer such that p(xf ) ≥ p(x0)+J . Our

hypotheses guarantee that such a J exists. For each positive integer j ≤ J , define xj to be

the largest element of (x0, xf ) for which p(xj) = p(x0) + j. (Of course, if p is a non-constant

polynomial satisfying all hypotheses of (1), xj is unique). Clearly,

e−p(x0)(x1 − x0) ≤
� xf

x0

e−p(x) dx.
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For the reverse inequality, observe that

� xf

x0

e−p(x) dx =
J−1�

j=0

� xj+1

xj

e−p(x) dx+

� xf

xJ

e−p(x) dx

≤
J−1�

j=0

e−p(x0)−j(xj+1 − xj) + e−p(x0)−J(xf − xJ)

≤ e−p(x0)



(x1 − x0) +
J−1�

j=1

e−j(xj+1 − x1) + e−J(xf − x1)



 .

We now estimate xj+1 − x1 in terms of x1 − x0.

j = p(xj+1)− p(x1)

=

� xj+1

x1

p�(x) dx

≥ p�(x1)(xj+1 − x1).

Since

p�(x1)(x1 − x0) ≥
� x1

x0

p�(x) dx = 1,

we have

xj+1 − x1 ≤ j(x1 − x0).

A similar estimate holds for xf − x1. It follows that

� xf

x0

e−p(x) dx � (x1 − x0)e
−p(x0).

Lemma 6.1.7 (Bruna, Nagel, Wainger [17]). Let p be a polynomial of degree m satisfying

p(0) = p�(0) = 0; i.e., p(x) =
�m

k=2 akx
k. If p is convex on an interval [0, A], then there exists
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a constant Cm, depending on m but independent of A, such that

p(x) ≥ Cm

m�

k=2

|ak|xk for all x ∈ [0, A].

This lemma is useful to us because it allows us to prove the following:

Proposition 6.1.8. Let p be as in Lemma 6.1.7. Suppose that p(A) > 1. Then p(x) = 1 has

a unique solution µ in [0, A] and

µ ≈
�

m�

k=2

|ak|1/k
�−1

. (6.1.6)

Proof. This is a standard argument, included here for completeness.

It follows from Lemma 6.1.7 that there exists Cm such that for all x ∈ [0, A]

Cm

m�

k=2

|ak|xk ≤
m�

k=2

akx
k ≤

m�

k=2

|ak|xk.

Define p̃(x) =
�m

k=2 |ak|xk. Then if y1 is the positive solution to

p̃(x) = 1

and y2 is the positive solution to

Cmp̃(x) = 1,

then

y1 ≤ µ ≤ y2.

It therefore suffices to show that y1 and y2 are comparable to the expression on the right of

(6.1.6). We show this for y2.
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By definition, y2 satisfies
m�

k=2

Cm|ak|yk2 = 1.

Thus for every k, 2 ≤ k ≤ m,

Cm|ak|yk2 ≤ 1,

and hence

y2 ≤ [C1/k
m |ak|1/k]−1.

Since this is true for any k, it is true for the k0 such that C1/k0
m |ak0 |1/k0 = max{2≤k≤m} C1/k

m |ak|1/k.

On the other hand,

C1/k0
m |ak0 |1/k0 ≥ 1

m− 1

m�

k=2

C1/k
m |ak|1/k.

It follows that

y2 ≤
�

1

m− 1

m�

k=2

C1/k
m |ak|1/k

�−1

≤ m− 1

C1/2
m

�
m�

k=2

|ak|1/k
�−1

.

This gives the desired upper bound on y2.

Next we obtain a lower bound. Let k1 be such that Cm|ak1 |yk12 = max{2≤k≤m} Cm|ak|yk2 .

Then

(m− 1)Cm|ak1 |yk12 ≥ p̃(y2) = 1,

and so

y2 ≥
�
(m− 1)1/k1C1/k1

m |ak1 |1/k1
�−1

≥
�

1

m− 1

�1/2� 1

Cm

�1/m �
|ak1 |1/k1

�−1

≥
�

1

m− 1

�1/2� 1

Cm

�1/m
�

m�

k=2

|ak|1/k
�−1

.

We have now proved the desired estimates for y2. The estimates on y1 follow by setting
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Cm = 1.

6.1.3 Estimates of the integral (6.1.1)

In this section we prove:

Lemma 6.1.9. If β > 0 and p(x) = βx4+γx3+ δx2 attains its global minimum at the origin,

then � ∞

−∞
e−[βx4+γx3+δx2] dx ≈ [β

1
4 + |γ| 13 + δ

1
2 ]−1.

Since the result is already known for convex p, it suffice to establish it for non-convex p,

taking β =
B

12
, γ = −BA(2 + α)

6
, and δ =

BA2(1 + α)

2
. As in (6.1.5), we consider this as a

sum of four integrals.

The integral I.

To estimate I, note that

q(x) = p(−x) =
B

12
[x4 + 2A(2 + α)x3 + 6A2(1 + α)x2]

is convex on (0,∞) with q(0) = q�(0) = 0. Thus by Lemma 6.1.6 and Proposition 6.1.8, I

satisfies the estimate (6.1.9), i.e.,

I ≈
��

B

12

�1/4

+

�
BA

6
(2 + α)

�1/3

+

�
BA2

2
(1 + α)

�1/2
�−1

≈
�
B1/4 +B1/3A1/3 +B1/2A

�−1
. (6.1.7)

In (6.1.7), we have also used Proposition 6.1.3 to conclude that 2 + α and 1 + α are both

comparable to 1.
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Since clearly I ≤ I+II+III+IV , the lemma will follow if we can show that II, III, IV � I.

The integral II.

We have two cases, depending on whether p(A) ≥ 1 or p(A) < 1.

First, if p(A) ≥ 1, then Lemma 6.1.6 and Proposition 6.1.8 imply, as they did in the case of

integral I, that

II ≈
�
B1/4 +B1/3A1/3 +B1/2A

�−1
≈ I,

as desired.

Suppose, then, that p(A) < 1. Then by Lemma 6.1.6,

II ≈ A. (6.1.8)

By Proposition 6.1.4, cBA4 ≤ p(A), and so if p(A) < 1, BA4 � 1. Thus to show that II � I,

we must show that if BA4 � 1, then A[B1/4 +B1/3A1/3 +B1/2A] is bounded. Indeed,

A[B1/4 +B1/3A1/3 +B1/2A] = B1/4A+B1/3A4/3 +B1/2A2

= (BA4)1/4 + (BA4)1/3 + (BA4)1/2

� 1.

The integral III.

This is the integral over the interval on which p�� is negative. This forces the minimum of p on

this interval to be either p((1 + α)A) or p(A). By Proposition 6.1.4, both are bounded below
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by cBA4 for some uniform positive constant c. Therefore

III ≤ αAe−cBA4 ≤ Ae−cBA4
.

This contribution is always less than that from the integral I. Indeed,

Ae−cBA4
[B1/4 +B1/3A1/3 +B1/2A]

is uniformly bounded since

Ae−cBA4
[B1/4 +B1/3A1/3 +B1/2A] = [(BA4)1/4 + (BA4)1/3 + (BA4)1/2]e−cBA4

and the function f(x) = (x1/4 + x1/3 + x1/2)e−cx is bounded on the positive real axis.

The integral IV .

As with integrals I and II, we are integrating over an interval on which p is convex. In order

to use Lemma 6.1.6, we need to know the minimum value of p on this interval. We distinguish

two cases.

First, suppose the minimum occurs at x = (1 + α)A. Note that this implies that p�((1 +

α)A) ≥ 0. We must find

|{x > (1 + α)A : p[(1 + α)A] ≤ p(x) ≤ p[(1 + α)A] + 1 }|.

If y is the unique solution to p(y) = p[(1 +α)A] + 1 in this interval, then the desired measure

is ν = y− (1 + α)A. Expanding p about (1 + α)A and recalling that p has an inflection point

at x = (1 + α)A, we find

p(x) = p[(1 +α)A] + p�((1 +α)A)(x− (1 +α)A) +
αBA

6
(x− (1 +α)A)3 +

B

12
(x− (1 +α)A)4.
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Thus ν is the solution to

p�((1 + α)A)ν +
αBA

6
ν3 +

B

12
ν4 = 1.

It follows that the solution to (6.1.3) is less than the ν̃ satisfying

αBA

6
ν̃3 +

B

12
ν̃4 = 1.

Since α, A,B > 0 and ν̃ is non-negative,

ν ≤ ν̃ ≈
�
B1/4 +B1/3(αA)1/3

�−1
.

Thus

IV � e−cBA4
�
B1/4 +B1/3(αA)1/3

�−1
.

We claim that IV � I. It suffices to show that

e−cBA4 B1/4 +B1/3A1/3 +B1/2A

B1/4 +B1/3(αA)1/3

is uniformly bounded.

Since α > 0, the above is

≤ e−cBA4 B1/4 +B1/3A1/3 +B1/2A

B1/4

= e−cBA4
[1 + (BA4)1/12 + (BA4)1/4].

Since f(x) = [1 + x1/12 + x1/4]e−cx is a bounded function on the positive real axis, the

conclusion follows.

Suppose, next, that the minimum of p on [(1 + α)A,∞) occurs at some point x0 interior to

the interval at which p� vanishes. In this case, p� has three real roots, and so by Proposition
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6.1.5, 2 < α ≤ 1 +
√
3. Precisely the same argument we used above to show that, regardless

of the size of p(A),

� A

−∞
e−p(x) dx ≈

� 0

−∞
e−p(x) dx ≈ e−p(0)|{x < 0 : 0 < p(x) < 1 }|

shows that, regardless of the size of p[(1 + α)A],

IV =

� ∞

(1+α)A
e−p(x) dx ≈

� ∞

x0

e−p(x) dx ≈ e−p(x0)|{x > x0 : p(x0) < p(x) < p(x0) + 1 }|.

Thus we must estimate p(x0) and the positive number y satisfying

p(x0) + 1 = p(x0 + y).

Expanding p in powers of y = x− x0 yields

p(x) = p(x0) + p�(x0)y +
1

2
p��(x0)y

2 +
1

6
p���(x0)y

3 +
1

24
p(4)(x0)y

4

= p(x0) +
B

2
[x20 −A(2 + α)x0 +A2(1 + α)]y2

+
B

6
[2x0 −A(2 + α)]y3 +

B

12
y4 (6.1.9)

We find that

p�(x) =
B

6
x[2x2 − 3A(2 + α)x+ 6A2(1 + α)].

Set

ε = 9α2 − 12α− 12.

This is positive by hypothesis. (See Proposition 6.1.5.) Then

x0 =
A

4
[3(2 + α) +

√
ε] (6.1.10)
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and

x20 =
A2

8
[9α2 + 12α+ 12 + 3(2 + α)

√
ε]. (6.1.11)

Substituting (6.1.10) and (6.1.11) into (6.1.9) yields

p(x0 + y)

= p(x0) +
BA2

48

�
ε+ 3(2 + α)

√
ε
�
y2 +

BA

12

�
2 + α+

√
ε
�
y3 +

B

12
y4.

Thus

1 =
BA2

48

�
ε+ 3(2 + α)

√
ε
�
y2 +

BA

12

�
2 + α+

√
ε
�
y3 +

B

12
y4,

and so

y ≈
�
B1/4 +B1/3A1/3(2 + α+

√
ε)1/3 +B1/2Aε1/4(

√
ε+ 3(2 + α))1/2

�−1
.

Since 2 < α ≤ 1 +
√
3, for such α,

0 < ε = 3(3α2 − 4α− 4) � 1.

Hence

y ≈
�
B1/4 +B1/3A1/3 +B1/2Aε1/4

�−1
.

Recall that we wish to show that IV � I, or, equivalently, that

e−p(x0)
�
B1/4 +B1/3A1/3 +B1/2Aε1/4

�−1
�

�
B1/4 +B1/3A1/3 +B1/2A

�−1
. (6.1.12)

Since e−p(x0) ≤ 1 and ε � 1, this follows immediately in the case in which ε is also bounded

below by an absolute constant β.

To prove (6.1.12) for all ε, therefore, it suffices to find an absolute constant β such that

(6.1.12) holds for all 0 < ε ≤ β. Since such an estimate is likely to rely upon the relative
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smallness of e−p(x0) compared to BA4, we need more information about the size of p(x0). A

calculation shows

p(x0) =
B

12
x20[x

2
0 − 2A(2 + α)x0 + 6A2(1 + α)]

=
BA4

(12)(64)
(9α2 + 12α+ 12 + 3(2 + α)

√
ε)(−3α2 + 12α+ 12− (2 + α)

√
ε)

≈ BA4(−3α2 + 12α+ 12− (2 + α)
√
ε).

We claim that there exist positive constants β and d such that for all α ∈ (2, 1+
√
3], if ε ≤ β,

−3α2 + 12α+ 12− (2 + α)
√
ε ≥ d,

from which it will follow that p(x0) ≥ dBA4.

Indeed, one shows that

−3α2 + 12α+ 12− (2 + α)
√
ε ≥ 6(1−

√
ε).

This is bounded below by 3 if ε ≤ 1
4 . The claim follows.

Return to the proof of (6.1.12) when ε ≤ 1
4 . The inequality will follow if we show that

e−dBA4 B1/4 +B1/3A1/3 +B1/2A

B1/4 +B1/3A1/3 +B1/2Aε1/4
= e−dBA4 1 + (BA4)1/12 + (BA4)1/4

1 + (BA4)1/12 + (BA4)1/4(ε)1/4
(6.1.13)

is bounded. This is indeed the case since

0 ≤ f(x) = e−dx 1 + x1/12 + x1/4

1 + x1/12 + x1/4ε1/4
≤ e−dx(1 + x1/12 + x1/4)

and the latter is bounded above on the positive real axis.
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Another interpretation.

In the case in which p is convex, (6.1.2) holds, i.e., if p(0) = p�(0) = 0,

� ∞

−∞
e−p(x) dx ≈ |{x : p(x) ≤ 1 }|.

We claim that our estimates show that the same is true in the case of any fourth-degree

polynomial with positive leading coefficient and global minimum at the origin. Indeed, set

µ = {x : p(x) ≤ 1 }

µ+ = {x > 0 : p(x) ≤ 1 }

µ− = {x < 0 : p(x) ≤ 1 }.

Clearly

e−1µ ≤
�

{x:p(x)≤1}
e−p(x) dx ≤

� ∞

−∞
e−p(x) dx.

On the other hand, the estimates of the previous section imply the existence of a constant

C > 0 such that � ∞

−∞
e−p(x) dx ≤ Cµ−.

Since µ− ≤ µ, it follows that � ∞

−∞
e−p(x) dx ≈ µ,

as claimed.

6.1.4 Remarks on polynomials of higher degree.

We now show that Lemma 6.1.9 does not extend to polynomials of degree greater than four.

As a consequence, the results in this section can not easily be extended to tube domains

(2.0.1) defined by higher-degree non-convex polynomials with positive leading coefficients. It
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is not clear what uniform estimates should replace Lemma 6.1.9 to obtain sharp estimates.

Fortunately, we do not need sharp estimates to prove the results of this thesis. In the following

sections, we obtain less precise estimates for N , which are sufficient for proving the main

theorems.

For the moment, consider the analogue of Lemma 6.1.9 for convex polynomials:

Lemma 6.1.10. Let n be a positive integer and define

p(x) =
2n�

j=2

βjx
j .

Suppose p is convex on R. Then

I :=

� ∞

−∞
e−p(x) dx ≈




2n�

j=2

|βj |
1
j




−1

. (6.1.14)

This lemma is not new; it follows easily from the results of Bruna, Nagel, and Wainger

discussed above. We saw in Lemma 6.1.9 that this same result holds if n = 2 even if we

replace the hypothesis that p is convex with the weaker hypotheses that p attains its global

minimum at 0 and β2n > 0. We claim that such a result does not hold if n = 3.

Indeed, consider

p(x) = x2(x− a)4

= x6 − 4ax5 + 6a2x4 − 4a3x3 + a4x2,

with a > 1. Clearly p is non-negative, attains its global minimum at the origin, and is convex
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for x ≤ 0. If the estimate of Lemma 6.1.10 were true, we would have

1

a2
≈ [1 + a

1
5 + a

1
2 + a+ a2]−1

≈ I

≥
� ∞

a
e−x2(x−a)4 dx

=

� ∞

0
e−(y+a)2y4 dy

≈ [1 + a
1
5 + a

1
2 ]−1

≈ 1

a
1
2

.

(We have used in the above the observation that q(y) = (y + a)2y4 is convex on the positive

real axis with global minimum at the origin.) Since there is no positive C independent of

a > 1 such that
1

a2
≥ C

a
1
2

, our claim is established. See Section ( ) of the appendix for a

general argument.

It is not hard to see what is going on; in the case of a non-convex fourth-degree polynomial,

if there are two competing global minima, they are both points at which the polynomial

vanishes to order two. A higher-degree polynomial can have different orders of vanishing at

different competing global minima. Thus order of vanishing must be taken into account in

the higher-degree case.

6.2 Higher degree: uniform lower bound for N(η, τ)

In this section, we fix a polynomial b of the form (2.1.1) and estimate N . Recall that we have

written N as

N(η, τ) = e2τb
∗(η)

� ∞

−∞
e−2τp(λ) dλ,
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where now p(λ) := b(λ + λη) − η(λ + λη) + b∗(η). The polynomial p is a non-negative, even-

degree polynomial in λ which has a monic derivative and vanishes to even order at the origin.

Moreover, p is non-convex precisely when b is non-convex. It was shown in the previous

section that the uniform estimate (6.1.14) does not hold when p is non-convex; hence we take

a different approach.

Consider the Taylor expansion of p, p(λ) =
�2n

j=2
b(j)(λη)λj

j! , about the origin. By the triangle

inequality, we can get an upper bound for p that is a convex function,

p(λ) =

������

2n�

j=2

b(j)(λη)λj

j!

������
≤

2n�

j=2

|b(j)(λη)||λ|j
j!

.

Thus, p(λ) ≤
�2n

j=2
|b(j)(λη)|λj

j! when λ ≥ 0. Since p is non-negative, this upper bounds gives a

lower bound on the integral N ,

N(η, τ) = e2τb
∗(η)

�� ∞

0
e−2τ

�2n
j=2

b(j)(λη)λj

j! dλ+

� 0

−∞
e−2τ

�2n
j=2

b(j)(λη)λj

j! dλ

�

≥ e2τb
∗(η)

� ∞

0
e−2τ

�2n
j=2

|b(j)(λη)|λj
j! dλ. (6.2.1)

For each η ∈ R and τ > 0, ρ(λ) := 2τ
�2n

j=2
|b(j)(λη)|λj

j! is convex on the positive real line. By

the estimate obtained at (6.1.7),

� ∞

0
e−ρ(λ) dλ ≈




2n�

j=2

τ1/j
���b(j)(λη)

���
1/j




−1

(6.2.2)

independent of the positive coefficients of ρ.

After applying (6.2.2) to inequality (6.2.1), we have the lower bound

e2τb
∗(η)




2n�

j=2

τ1/j
���b(j)(λη)

���
1/j




−1

� N(η, τ)
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uniformly in η and τ > 0.

6.3 Higher degree: upper bound for N(η, τ)

In a later chapter, we will use the uniform estimate from the prior section to show that the

η-integral is always absolutely convergent at infinity. Thus if the η-integral were to diverge,

it would do so because of the contribution from some interval of the form [η0, η0 + �]. Guided

by that reasoning, we only need to find an upper bound for N which is uniform on the set

[η0, η0 + �]× R+.

Completely factoring p might be a rather difficult task, maybe impossible because R is not

a splitting field. But, in theory, every even-degree real polynomial factors as a product of real

quadratics. Since p is a non-negative, even-degree polynomial satisfying p(0) = 0, its roots

are either real with even order or they occur as complex conjugate pairs. Thus

p(λ) = cnλ
2
n−1�

i=1

�
(λ− hi)

2 + ki
�
, (6.3.1)

for some hi = hi(η) ∈ R, ki = ki(η) ≥ 0, n ≥ 1, i = 1, . . . , n − 1, and cn = (2n + 2)−1. For

each 1 ≤ n ∈ N, it will suffice to consider the family of polynomials

λ2
n−1�

i=1

[(λ− hi)
2 + ki],

where hi ∈ R, and ki ≥ 0.

Even though it is clear that the coefficients of a polynomial vary continuously with the

parameters hi, ki, it is not evident that the parameters vary continuously with the coefficients

of p. In order for our approach to be valid, it must be shown that the hi, i = 1, . . . , n− 1, are

locally bounded in η.
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Lemma 6.3.1. Suppose p is of the form (6.3.1). For each η0 ∈ R and � > 0, there exists

C > 0 such that

|hi(η)| < C

for all i = 1, . . . , n− 1 and all η ∈ [η0, η0 + �].

Proof. Suppose that the conclusion did not hold for a polynomial p of degree 2n. In particular,

assume that for some i, say i = 1, there is an η0 and � > 0 such that |h1(ηj)| −→ ∞ for some

sequence {ηj}j ⊂ [η0, η0 + �]. Bolzano-Weiestrass guarantees a subsequence will converge to a

point in [η0, η0+�], so we may assume the original sequence has the limit η̂ ∈ [η0, η0+�]. Since

we can find another subsequence so that {h1(ηjk)}k is monotone, we may assume {h1(ηj)}j

and {ηj}j are both monotone.

Define p(η, x) := b(x+λη)− η(x+λη)+ b∗(η). For each x ∈ R, p(η, x) is bounded whenever

η is bounded because b∗ is continuous and λη is bounded on each compact subset of R. For

each m ∈ N, p(ηj ,m) is bounded for all j ∈ N. On the other hand, the factor

[(m− h1(ηj))
2 + k1(ηj)] −→ ∞ as j → ∞. (6.3.2)

This implies that there is a subsequence, {ηj�}� and one other factor, say i = 2, that converges

to zero, i.e.,

[(m− h2(ηj�))
2 + k2(ηj�)] −→ 0 as � → ∞. (6.3.3)

Since ki(ηj�) ≥ 0, h2(ηj�) → m as � → ∞.

If we replace m with m + 1, the boundedness of p(ηj� ,m + 1) and divergence (6.3.2) still

hold as � → ∞. Also, the factor associated with i = 2 will be bounded away from zero because

|m− h2(ηj�)| converges to zero. Thus there must be some subsequence of {ηj�}�, and a term,

say i = 3, such that convergence (6.3.3) occurs after m is replaced by m+1. We may suppose

the subsequence is {ηj�}�.
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If we iterate the process above n−2 times, each factor [(m+n−2−hi(ηj�))
2+ki(ηj�)], with

i = 2, . . . , n − 1, is bounded away from zero as � → ∞. Moreover, [(m + n − 2 − h1(ηj�))
2 +

k1(ηj�)] −→ ∞ as � → ∞. Thus p(ηj� ,m + n − 2) cannot possibly be bounded, which is a

contradiction.

It follows that there is no sequence {ηn}n in [η0, η0 + �] such that |h1(ηn)| −→ ∞. Hence

each hi(η), i = 1, . . . , n− 1, is bounded on [η0, η0 + �].

Fix η0 ∈ R and � > 0. From the lemma above, there exists some C > 1, depending on � and

η0, such that

|hi(η)| < C − 1

for all i = 1, . . . , n− 1 and all η ∈ [η0, η0 + �]. We can make the following estimates:

e−2τb∗(η)N(η, τ) =

� ∞

−∞
e−2τ [b(λ−λη)−η(λ−λη)+b∗(η)] dλ

=

� ∞

−∞
e−2cnτλ2 �n−1

i=1 [(λ−hi)2+ki] dλ

≤
� ∞

−∞
e−2cnτλ2 �n−1

i=1 (λ−hi)2 dλ

=

� ∞

C
e−2cnτλ2 �n−1

i=1 (λ−hi)2 dλ+

� C

−C
e−2cnτλ2 �n−1

i=1 (λ−hi)2 dλ

+

� −C

−∞
e−2cnτλ2 �n−1

i=1 (λ−hi)2 dλ

=: I + II + III.



6.3. HIGHER DEGREE: UPPER BOUND FOR N(η, τ) 70

Consider I.

I ≤
� ∞

C
e−2cnτλ2 �n−1

i=1 (C−hi)2 dλ

≤
� ∞

−∞
e−2cnτλ2 �n−1

i=1 (C−hi)2 dλ

≈
�
τ1/2

n−1�

i=1

|C − hi|
�−1

≤ τ−1/2.

The last inequality follows from the fact that |hi(η)| < C − 1, for all η ∈ [η0, η0 + �], implies

1 < C − |hi| ≤ |C − hi|; hence |C − hi|−1 < 1 for all i = 1, . . . , n− 1.

Consider II.

II =

� C

−C
e−2cnτλ2 �n−1

i=1 (λ−hi)2 dλ ≤ 2C � 1.

Consider III.

III ≤
� −C

−∞
e−2cnτλ2 �n−1

i=1 (−C−hi)2 dλ

≤
� ∞

−∞
e−2cnτλ2 �n−1

i=1 (C+hi)2 dλ

≈
�
τ1/2

n−1�

i=1

|C + hi|
�−1

≤ τ−1/2,

where the last inequality follows from the estimate of I.

After collecting the estimates for I, II, and III, we have the upper bound

N(η, τ) � e2τb
∗(η)

�
1 + τ1/2

τ1/2

�

uniformly in τ > 0 and η ∈ [η0, η0 + �].



Chapter 7

Non-Convex Quartic Results

In the first half of Chapter 6, we restricted our analysis to fourth-degree polynomials and

established uniform estimates for N(η, τ). In this chapter, we focus on fourth-degree polyno-

mials in order to analyze λ(η), which is defined as the largest location of the global minimum

of Bη(λ) = b(λ)− ηλ as a function of λ. This chapter is essentially Chapter 4 redux and will

consist almost entirely of work done in early 2010. See [2] for a full exposition.

In Section 1.2, we summarized Carracino’s detailed analysis of the Szegö kernel on the

non-pseudoconvex model domain

Ω = { (z1 = x+ iy, z2 = t+ iξ) : ξ > b(x) },

for a non-convex, piecewise quadratic function b.

Domains of the form Ω are non-pseudoconvex precisely when b fails to be convex. Recall

that very little research has been done on such domains. Thus Carracino’s findings are novel.

Building on her work, the results that follow extend the comprehensive study [16] from convex

to non-convex polynomial domains.

71



7.1. STATEMENT OF THE RESULTS, [[2],§2] 72

We start by making an appeal to Section 2.4. It suffices to consider quartic polynomials of

the form

b(x) =
1

4
x4 +

1

2
px2 + qx, p < 0, q ∈ R. (7.0.1)

These are the precise conditions needed for b to be non-convex since b��(x) = 3x2 + p ≥ 0 for

all x only if p ≥ 0. Hence Ω is a non-pseudoconvex domain. Recall that the Szegö kernel

associated with this domain takes the form (1.2.3) and that our goal is to identify subsets of

C2 × C2 on which the Szegö kernel and its derivatives converge absolutely.

7.1 Statement of the results, [[2],§2]

Let b be as in (7.0.1) and let

z = (z1, z2) = (x+ iy, t+ ib(x) + ih)

w = (w1, w2) = (r + is, u+ ib(r) + ik).

Define

Σ = { (z, w) : x = r, |x| >
√
−p } ∪ { (z, w) : |x| = |r| =

√
−p }. (7.1.1)

Theorem 7.1.1. The integral defining S(z, w) is absolutely convergent in the region in which

h+ k + b(x) + b(r)− 2b∗∗
�
x+ r

2

�
> 0.

This is an open neighborhood of (Ω × Ω) \ Σ. More generally, if i1, j1, i2, and j2 are non-

negative integers, then

∂i1
z1∂

j1
w̄1
∂i2
z2∂

j2
w̄2
S(z, w) = c

� ∞

−∞

� ∞

0
eητ [z1+w̄1]+iτ [z2−w̄2] η

i1+j1τ i1+j1+i2+j2+1

N(η, τ)
dη dτ

is absolutely convergent in the same region.
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Remark 7.1.2. Compare this with Theorem 3.2 in [?HNW:09]. In that theorem, the domain

is of the form (??) for b convex, and the region in which the integrals converge absolutely is

defined by the inequality

h+ k + b(x) + b(r)− 2b∗∗
�
x+ r

2

�
> 0.

These two theorems are, in fact, analogous since the Legendre transform is an involution on

the set of convex functions.

Theorem 7.1.3. If (x + iy, t + ib(x)), (r + is, u + ib(r)) ∈ Σ, S[(x, 0, 0), (r, 0, 0)] is infinite.

Also, if δ = h+ k > 0,

lim
δ→0+

S[(x, i(b(x) + h)), (r, i(b(r) + k))] = ∞.

These two theorems identify the subset of C2 × C2 on which the Szegö kernel converges

absolutely. In order to prove these results, we move directly to the study of the function λ(·).

In [[2],§3], there is one subtle difference in the development of the notation. First, the

local minima of Bη are denoted as λ− and λ+. Then the function λ(·), as defined in Chapter

3, is defined piecewise. Unlike in the higher-degree setting, simple calculus will allow us to

explicitly describe the set on which the Szegö kernel is absolutely convergent in terms of a

coefficient of b. It will become evident how the structure theorem in Section 4.3 generalizes

this simpler result.

7.2 Behavior of b(λ)− ηλ, [[2],§3]

Given a polynomial b of the form (7.0.1), Bη(λ) = b(λ)− ηλ is a fourth-degree polynomial in

λ with positive leading coefficient. Hence it tends to infinity as |λ| → ∞. It follows that its
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infimum is achieved at some λ for which B�
η vanishes; i.e., at some λ satisfying

λ3 + pλ− (η − q) = 0.

Note that this is a depressed cubic equation. Therefore, by considering its discriminant, one

finds:

Proposition 7.2.1. 1. If 4(−p)3 ≤ 27(η − q)2, there is a single λ at which B�
η changes

sign, hence Bη has a single local extremum, which is necessarily the location of the global

minimum.

2. If 4(−p)3 > 27(η − q)2, B�
η(λ) = 0 has three distinct solutions. Two correspond to local

minima of Bη. We label them λ−(η) and λ+(η), with λ−(η) < λ+(η).

The next propositions contain more specific information about the location(s) of the global

minima of Bη.

Proposition 7.2.2. Let g(λ) = λ3 + pλ. Then

1. g is negative on (−∞,−√−p) and (0,
√−p), and g is positive on (−√−p, 0) and (

√−p,∞).

2. g is decreasing on
�
−
�

−p/3,
�
−p/3

�
and increasing on (−∞,−

�
−p/3) and (

�
−p/3,∞).

Proof. (i): Notice that g(λ) < 0 only if one of the following two conditions are satisfied:

λ < 0 and λ2 + p > 0, or λ > 0 and λ2 + p < 0. The first occurs whenever λ < 0 and

λ2 > −p. The second occurs whenever λ > 0 and λ2 < −p. By putting these together,

it follows that g is negative on (−∞,−√−p) and (0,
√−p).

Since g vanishes to first order at 0,±√−p, g is positive on (−√−p, 0) and (
√−p,∞).

(ii): Consider g�(λ) = 3λ2+p. This is a quadratic polynomial with positive leading coefficient,

which has zeros at ±
�

−p/3. Thus g� is negative on
�
−
�
−p/3,

�
−p/3

�
and positive

on (−∞,−
�
−p/3) and (

�
−p/3,∞). From this, the result follows.
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Proposition 7.2.3. Let Bη(λ) = b(λ)− ηλ, with b as in (7.0.1).

(i) If η − q = 0, λ−(η) = −√−p, λ+(η) =
√−p, and Bη(λ−(η)) = Bη(λ+(η)). In other

words, the global minimum of Bη is achieved at two distinct points λ−(η) and λ+(η).

(ii) If 0 < η − q <
�
4(−p)3

27

� 1
2
,

−
√
−p < λ−(η) < 0 <

√
−p < λ+(η)

and Bη(λ+) < Bη(λ−).

(iii) If
�
4(−p)3

27

� 1
2 ≤ η−q, Bη has a single local (hence global) minimum at λ = λ+(η) >

√−p,

and λ+(η) ∼ η
1
3 as η → ∞.

(iv) If −
�
4(−p)3

27

� 1
2
< η − q < 0,

λ−(η) < −
√
−p < 0 < λ+(η) <

√
−p

and Bη(λ−) < Bη(λ+).

(v) If η − q < −
�
4(−p)3

27

� 1
2
< 0, Bη has a single local (hence global) minimum at λ =

λ−(η) < −√−p, and λ−(η) ∼ η
1
3 as η → −∞.

Proof. (i): If η = q, then the local extrema of Bη occur at solutions to g(λ) = 0. The three

solutions are λ = −√−p, 0,
√−p, and the local minimum is attained at λ = ±√−p. Since in

this case Bη(λ) =
1
4λ

4 + 1
2pλ

2 is even, the conclusion follows.

(ii): By Proposition 7.2.1, the upper bound on η guarantees that Bη in fact has two local

minima. Since η − q > 0, for λ ∈ [0,
√−p],

B�
η(λ) = (λ3 + pλ)− (η − q) = g(λ)− (η − q) < 0.
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Since g is increasing for λ >
�

−p
3 , g(λ)− (η− q) = 0 has precisely one solution in (

√−p,∞),

and it is the location of a local minimum for Bη. We have named this point λ+(η). On the

other hand, since g(λ)− (η − q) is also negative on (−∞,−√−p], the second local minimum

λ−(η) is in (−√−p, 0).

Now, η − q > 0 and λ− < 0 imply (η − q)λ− < (η − q)(−λ−). Since λ+ is the location of

the global minimum of the restriction of Bη to the positive real axis,

Bη(λ−) =

�
1

4
λ4
− +

1

2
pλ2

−

�
− (η − q)λ−

>

�
1

4
(−λ−)

4 +
1

2
p(−λ−)

2

�
− (η − q)(−λ−)

= Bη(−λ−)

> Bη(λ+).

This proves (ii).

(iii): By Proposition 7.2.1, we are in the situation in which B�
η(λ) = 0 has a single solution.

An identical argument to the one used to prove (ii) shows that the solution, which we call

λ+(η), satisfies
√−p < λ+(η).

We now prove the statement about the asymptotic behavior of λ+(η). Since λ3
+ > λ3

+ +

pλ+ = η − q, λ+(η) → ∞ as η → ∞. Also, since

λ3
+ = η − q − pλ+,

we have

1 =
η

λ3
+
+ o(1).

Thus λ3
+ ∼ η, i.e., λ3

+ = η[1 + o(1)] as η → ∞. It follows that λ+(η) ∼ η
1
3 as η → ∞.

The proofs of (iv) and (v) are almost identical to the proofs of (ii) and (iii) and are omitted.
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Define the function

λ(η) =






λ−(η) η < q

√−p η = q

λ+(η) η > q.

Thus for η �= q, λ(η) is the location of the global minimum of Bη. For η = q, the global

minimum is achieved at two points, ±√−p. Which of these we choose for the value of λ(q) is

arbitrary. Notice that by our choice of λ(q), it follow that σ(q) = −√−p, which is the smallest

location of the global minimum.

Proposition 7.2.4. The function η �→ λ(η) maps R onto R \ [−√−p,
√−p). Furthermore, it

is

(a) differentiable on R \ {q},

(b) continuous from the right at η = q, and

(c) increasing and injective on R.

Proof. The equation

η = q + λ3 + pλ

clearly expresses η as a function of λ. Furthermore, the restriction of this function to

(−∞,−√−p) ∪ [
√−p,∞) is easily seen to be one-to-one with image R. Thus its inverse

function is well-defined on R and maps this set to (−∞,−√−p) ∪ [
√−p,∞). Since λ re-

stricted to R \ {q} is the inverse of a function which is smooth with non-vanishing derivative

on its (restricted) domain, λ is itself continuous and differentiable there, with derivative

λ�(η) =
1

3[λ(η)]2 + p
> 0.
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The proposition is established.

Remark 7.2.5. The first statement of the proposition can be reformulated using the notation

established in Chapter 3. This gives an explicit version of the structure theorem, Theorem

4.3.6. In particular,

Λ = R \ [−
√
−p,

√
−p)

with Λq = {−√−p,
√−p} being the only non-singleton. Also, we can rewrite Σ, given in

(7.1.1), as Σ = { (z, w) : x, r ∈ Λη for some η ∈ R, and δ = 0 }.

Corollary 7.2.6. The functions η �→ |λ(η)| and η �→ b∗(η) are continuous on R.

Proof. Since λ is continuous on R \ {q}, we need only consider the behavior at q. The first

statement then follows since limη→q− λ(η) = −√−p and limη→q+ λ(η) =
√−p = |λ(q)|.

For the second statement, note

b∗(η) = (η − q)λ(η)− 1

4
[λ(η)]4 − p

2
[λ(η)]2.

Since η − q and λ(η) both switch from negative to positive at η = q,

b∗(η) = |η − q||λ(η)|− 1

4
|λ(η)|4 − p

2
|λ(η)|2.

The continuity of b∗ follows.



Chapter 8

Proofs for Main Theorems

In this chapter, we prove the main results of this thesis: Theorem 1.3.1, Theorem 1.3.2,

and Theorem 1.3.3. Together with Corollary 4.3.10, these theorems give the necessary and

sufficient conditions on b to guarantee the smoothness of the Szegö kernel and its derivatives

off of the diagonal of the boundary: Corollary 1.3.4. These novel results are an incremental

step toward extending [16] to all even-degree polynomials with positive leading coefficients.

8.1 Fourth degree

Let us start by proving the main results for the special case in which b is a fourth-degree

polynomial of the form (7.0.1). We begin by proving Theorems 7.1.1 and 7.1.3 in order to

shed light on the issues that surface while trying to prove more general results. Although the

higher-degree analogues will follow in a similar fashion, it is worth seeing how we are able to

express certain singularities of the Szegö kernel off of the diagonal in terms of a coefficient of

b. Aside from minor changes in notation and a few remarks, this section is from our earlier

paper.

79
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8.1.1 Fourth degree: proof of Theorem 7.1.1, [[2],§5]

We now return to the analysis of the integral N .

N(η, τ)

= e2τb
∗(η)

� ∞

−∞
e2τ [ηλ−b(λ)+Bη(λ(η))] dλ

= e2τb
∗(η)

� ∞

−∞
e2τ [ηλ−b(λ)−ηλ(η)+b(λ(η))] dλ

= e2τb
∗(η)

� ∞

−∞
e2τ [−b��(λ(η)) (λ−λ(η))2

2 −b���(λ(η)) (λ−λ(η))3

6 − (λ−λ(η))4

4 ] dλ

= e2τb
∗(η)

� ∞

−∞
e−[2τb��(λ(η)) y

2

2 +2τb���(λ(η)) y
3

6 +2τ y4

4 ] dy

≈ e2τb
∗(η)

��τ
2

� 1
4
+

����
τb���(λ(η))

3

����

1
3

+
�
τb��(λ(η))

� 1
2

�−1

≈ e2τb
∗(η)

�
τ

1
4 + τ

1
3 |λ(η)| 13 + τ

1
2 (3λ(η)2 + p)

1
2

�−1
,

where we have used Lemma 6.1.9 in the second-to-last line.

We set z = (z1, z2) = (x + iy, t + ib(x) + ih), w = (w1, w2) = (r + is, t + ib(r) + ik),

and δ = h + k. Also, for non-negative integers i1, j1, i2, and j2, define s = i1 + j1 and

m = i1 + j1 + i2 + j2 (so that m ≥ s).

We now prove Theorem 7.1.1. If we show that each integral

� ∞

−∞

� ∞

0
eητ [z1+w̄1]+iτ [z2−w̄2] η

i1+j1τ i1+j1+i2+j2

N(η, τ)
dη dτ

is absolutely convergent in the region

h+ k + b(x) + b(r)− 2b∗∗
�
x+ r

2

�
> 0,
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it will follow that the integral in fact equals ∂i1
z1∂

j1
w̄1
∂i2
z2∂

j2
w̄2
S(z, w). The integral becomes

� ∞

−∞

� ∞

0
eητ [x+r+i(y−s)]+iτ [t−u+i(b(x)+b(r)+δ)] η

sτm+1

N(η, τ)
dη dτ,

which we will call Ss,m,δ.

Ss,m,δ converges absolutely if and only if

�Ss,m,δ =

� ∞

−∞

� ∞

0
e−τ [δ+b(x)+b(r)−η(x+r)] |η|sτm+1

N(η, τ)
dτ dη < ∞. (8.1.1)

From above,

�Ss,m,δ ≈
� ∞

−∞

� ∞

0
τ

1
4 |η|sτm+1e−τ [δ+b(x)+b(r)−η(x+r)+2b∗(η)] dτ dη

+

� ∞

−∞

� ∞

0
τ

1
3 |λ(η)| 13 |η|sτm+1e−τ [δ+b(x)+b(r)−η(x+r)+2b∗(η)] dτ dη

+

� ∞

−∞

� ∞

0
τ

1
2 (3λ(η)2 + p)

1
2 |η|sτm+1e−τ [δ+b(x)+b(r)−η(x+r)+2b∗(η)] dτ dη.

=: Is,m,δ
1 + Is,m,δ

2 + Is,m,δ
3 .

Furthermore, let Is,m,δ
j (η) denote the integrand of the η-integral defining Is,m,δ

j , so that

Is,m,δ
j =

� ∞

−∞
Is,m,δ
j (η) dη.

Set

A(x, r, η) = b(x) + b(r)− η(x+ r) + 2b∗(η).

Since

A(x, r, η) = sup
λ
[ηλ− b(λ)]− [ηx− b(x)] + sup

λ
[ηλ− b(λ)]− [ηr − b(r)],

A is non-negative.
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Each Is,m,δ
j (η) involves an integral in τ of the form

� ∞

0
e−τ [δ+A(x,r,η)]τα dτ,

which yields

cα
1

[δ +A(x, r, η)]α+1
if δ +A(x, r, η) > 0. (8.1.2)

It is now clear that there are two potential barriers to the convergence of the full integrals

Is,m,δ
j :

1. insufficient growth of A in η at infinity, and

2. vanishing of δ +A(x, r, η) for some finite η for certain choices of x, r, and δ.

The next subsections explore these issues and in so doing establish the theorem.

8.1.2 Behavior of A(x, r, η) for large |η|.

Lemma 8.1.1. Fix x, r ∈ R. Then

A(x, r, η) ∼ 3

2
η

4
3 , |η| → ∞.

Proof. Recall from Proposition 7.2.3 that λ(η) ∼ η
1
3 as |η| −→ ∞, i.e., λ(η) = η

1
3 (1 + o(1))
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as |η| → ∞. Thus as |η| → ∞,

A(x, r, η)

= b(x) + b(r)− η(x+ r) + 2b∗(η)

= b(x) + b(r)− η(x+ r) + 2 [ηλ(η)− b (λ(η))]

= b(x) + b(r)− η(x+ r)

+ 2

�
η

4
3 (1 + o(1))− 1

4
η

4
3 (1 + o(1))4 − 1

2
pη

2
3 (1 + o(1))2 − qη

1
3 (1 + o(1))

�

= b(x) + b(r)− η(x+ r)

+ 2

�
η

4
3 (1 + o(1))− 1

4
η

4
3 (1 + o(1))

�
1− 1

2
pη−

2
3 (1 + o(1))− qη−1

��

=
3

2
η

4
3 + η

4
3 o(1) +O(|η|)

=
3

2
η

4
3 (1 + o(1)).

Remark 8.1.2. Our arguments can be extended to obtain a generalized asymptotic expansions

for λ(·) and A(x, r, ·). See Olver [8], Section 1.5 for a detailed discussion of such techniques.

This lemma, equation (8.1.2), and parts (iii) and (v) of Proposition 7.2.3, allow us to

conclude the following:

1. Is,m,δ
1 (η) ∼ c(η

4
3 )−( 54+m+1)|η|s = c|η|−3− 4

3m+s. Since m ≥ s ≥ 0, −3 − 4
3m + s ≤ −3,

and so for any fixed s, m, and δ, Is,m,δ
1 is convergent at infinity.

2. Is,m,δ
2 (η) ∼ c(η

4
3 )−( 43+m+1) · |η 1

3 | 13 · |η|s = c|η|−3− 4
3m+s, and so each Is,m,δ

2 is convergent

at infinity.

3. Is,m,δ
3 (η) ∼ c(η

4
3 )−( 32+m+1) · |η| 13 · |η|s = c|η|−3− 4

3m+s, and so each Is,m,δ
3 is convergent

at infinity.
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8.1.3 Vanishing of δ + A(x, r, η)

The estimates of the previous sections show that whether or not the integrals Is,m,δ
j converge

depends upon whether or not for some fixed x, r, and δ the function

η �→ δ +A(x, r, η)

vanishes for some finite η0 and, if so, the behavior of this function near such a point. In

particular, we have proved:

Proposition 8.1.3. If for some x, r, and δ fixed

inf
η∈R

[δ +A(x, r, η)] > 0,

then each Is,m,δ
j is finite.

Note, moreover, that

inf
η∈R

[δ +A(x, r, η)] = inf
η∈R

[δ + b(x) + b(r)− η(x+ r) + 2b∗(η)]

= δ + b(x) + b(r)− 2 sup
η∈R

�
η

�
x+ r

2

�
− b∗(η)

�

= δ + b(x) + b(r)− 2b∗∗
�
x+ r

2

�
.

(By Lemma 3.3.1, b∗ has super-linear growth. This guarantees the finiteness of the supremum

in the second-to-last line.) We have thus proved that the integrals defining the Szegö kernel

and all its derivatives converge absolutely in the region

δ + b(x) + b(r)− 2b∗∗
�
x+ r

2

�
> 0. (8.1.3)

We do not yet know which x, r, and δ are in this set. We claim first that if z = (z1, z2) =

(x + iy, t + ib(x) + ih) ∈ Ω and w = (w1, w2) = (r + is, t + ib(r) + ik) ∈ Ω, (z, w) is in the
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region in C2 defined by (8.1.3). Indeed, (z, w) ∈
�
Ω× Ω

�
∪
�
Ω× Ω

�
implies δ = h+ k > 0 by

the definition of Ω. It follows that δ+A(x, r, η) ≥ δ, and hence its infimum over η is bounded

below by δ as well. Thus inequality (8.1.3) is satisfied whenever (z, w) ∈
�
Ω× Ω

�
∪
�
Ω× Ω

�
.

To prove the remainder of Theorem 7.1.1, we must determine which (z, w) ∈ ∂Ω × ∂Ω are

in the region (8.1.3). For such (z, w), δ = 0. We thus need to know for which x and r fixed

A(x, r, η) is bounded away from zero independently of η.

Since

A(x, r, η) =

�
sup
λ
(ηλ− b(λ))− (ηx− b(x))

�
+

�
sup
λ
(ηλ− b(λ))− (ηr − b(r))

�
,

A is a sum of two non-negative functions

Ax(η) := sup
λ
(ηλ− b(λ))− (ηx− b(x)) = b∗(η)− (ηx− b(x)) (8.1.4)

Ar(η) := sup
λ
(ηλ− b(λ))− (ηr − b(r)) = b∗(η)− (ηr − b(r)). (8.1.5)

Thus for fixed x and r, A vanishes at some η0 if and only if both Ax(η0) and Ar(η0) vanish.

Furthermore, by Corollary 7.2.6, η �→ A(x, r, η) is continuous, and by Lemma 8.1.1, Ax(η) ∼

cη
4
3 as |η| → ∞. Thus if for some fixed x and r, A(x, r, ·) never vanishes, it is bounded below

by a positive constant for all η. We thus identify (z, w) in the region (8.1.3) by identifying

pairs x and r for which A(x, r, ·) never vanishes.

Case 1: |x| < √−p or |r| < √−p. For definiteness, suppose |x| < √−p. Ax could only vanish

if x were such that, for some value of η, the infimum of Bη(λ) = b(λ)− ηλ were achieved at x.

But Proposition 7.2.3 shows that the infimum of Bη is always achieved at one or more points

outside of (−√−p,
√−p). This completes the proof in this case.

Case 2: |x|, |r| > √−p, and x �= r. Since the map η �→ λ(η) maps R\{q} onto R\[−√−p,
√−p]

and is injective, there exists a unique η1 �= q and a unique η2 �= q such that λ(η1) = x and
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λ(η2) = r. Since x �= r, η1 �= η2. By the comment in the prior paragraph, it follows that

A(x, r, ·) never vanishes in this case.

Case 3: |x| =
√−p but |r| >

√−p. (A symmetric argument covers the case |r| =
√−p

but |x| > √−p.) Then Ax(η) = 0 only at η = q, where one easily computes that Ar(q) =

1
4(r

2 + p)2 > 0. Thus A(x, r, ·) does not vanish.

This completes the proof of Theorem 7.1.1.

Remark 8.1.4. Let us state these three cases using the notation established in Chapter 3. It

was just shown that A does not vanish when one of the following holds:

Case 1: For all η ∈ R, x /∈ Λη or r /∈ Λη.

Case 2: x ∈ Λη0 and r ∈ Λη1 for some η0, η1 ∈ R \ {q} with η0 �= η1.

Case 3: x ∈ Λq and r ∈ Λη0 for some η0 ∈ R \ {q}.

8.1.4 Proof of Theorem 7.1.3

We begin by observing that on C2 × C2

S[(x, i(b(x) + h)), (r, i(b(r) + k))] = c

� ∞

−∞

� ∞

0
τeητ(x+r)−τ [b(x)+b(r)+h+k]N(η, τ)−1 dη dτ

= �S0,0,δ,

and on R3 × R3

S[(x, 0, 0), (r, 0, 0)] = c

� ∞

−∞

� ∞

0
τeητ(x+r)−τ [b(x)+b(r)]N(η, τ)−1 dη dτ

= �S0,0,0,
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where �Sn,m,δ is as defined in (8.1.1). We will shorten the notation for these integrals to �Sδ

for δ ≥ 0. Thus to prove Theorem 7.1.3, we must show that whenever x and r satisfy the

hypotheses stated there

(i) �S0 is divergent, and

(ii) limδ→0+
�Sδ = ∞.

It is immediately clear that (ii) will follow from (i) since the integrand of �Sδ is non-negative

and converges pointwise and monotonically to the integrand of �S0 as δ → 0+. Furthermore,

(i) will follow if the corresponding statement holds for any of the three integrals I0,0,0
j (again,

abbreviated I0
j ). We will show that

(iii) I0
1 is divergent.

As we saw in the previous section, I0
1 converges if x and r are chosen in such a way that

A(x, r, ·) never vanishes. Thus in order to establish (iii), we need detailed information about

the behavior of A near values η0 for which A(x, r, η0) = 0.

Remark 8.1.5. In the language of Chapter 3, Theorem 7.1.3 is equivalent to saying that the

Szegö kernel is not absolutely convergent if x, r ∈ Λη0 for some η0 ∈ R.

Recall that if A(x, r, η) �= 0, (8.1.2) shows that the integrand of I0
1 is comparable to

[A(x, r, η)]−
9
4 . (8.1.6)

We prove (iii) by considering the behavior of A in three subcases.
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8.1.5 Case 1: x = r and |x| > √−p.

In this case, there exists a unique η0 �= q such that x = r = λ(η0).

Suppose η �= η0 and recall that

η = [λ(η)]3 + pλ(η) + q and η0 = x3 + px+ q

so that

η0 − η = (x− λ(η))(x2 + xλ(η) + [λ(η)]2 + p). (8.1.7)

Then (suppressing the dependence of λ on η )

A(x, x, η) = 2Ax(η)

= 2[ηλ− 1

4
λ4 − p

2
λ2 − qλ− ηx+

1

4
x4 +

p

2
x2 + qx]

= 2(x− λ)

�
1

4
(x+ λ)(x2 + λ2) +

p

2
(x+ λ)− (η − q)

�

= 2(x− λ)

�
1

4
(x+ λ)(x2 + λ2) +

p

2
(x+ λ)− λ3 − pλ

�

=
1

2
(x− λ)2(x2 + 2λx+ 3λ2 + 2p).

We are concerned with how this function varies with η. We have the following proposition

and corollary:

Proposition 8.1.6. For |x| > √−p fixed,

(a)

x2 + xλ(η) + [λ(η)]2 + p ≥






−2p |x| ≥ 2
√−p

|x|(|x|−√−p)
√−p < |x| < 2

√−p.
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(b)

x2 + 2xλ(η) + 3[λ(η)]2 + 2p ≥






−4p |x| ≥ 3
√−p

(|x|−√−p)2
√−p < |x| < 3

√−p.

That is, both expressions are bounded below by a positive constant independent of η.

Proof. Recall that |λ(η)| ≥ √−p. Our task in part (a) is thus to find the global minimum of

f(λ) = x2 + xλ+ λ2 + p

on {λ : |λ| ≥ √−p }. There are two cases to consider depending on whether f attains its

minimum at a critical point or at λ = ±√−p.

Observe, f �(λ) = x + 2λ = 0 when λ = −1
2x. If 1

2 |x| ≥
√−p, this indeed is the location of

the global minimum, which is then seen to be

3

4
x2 + p ≥ −2p.

If 1
2 |x| <

√−p, the global minimum is one of the two quantities x2 ± x
√−p− p+ p, which is

in turn

≥ x2 − |x|
√
−p = |x|(|x|−

√
−p).

This proves (a). The proof of (b) is similar and is omitted.

Corollary 8.1.7. If |x| > √−p,

A(x, x, η) ≈ (η − η0)
2(1 + |η|)− 2

3 .
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Proof. By Proposition 8.1.6, we may write

A(x, x, η) = (η − η0)
2 x

2 + 2xλ(η) + 3[λ(η)]2 + 2p

2(x2 + xλ(η) + [λ(η)]2 + p)2
=: (η − η0)

2g(η).

The proposition shows that g is finite for all η and bounded away from zero. Thus for η on any

fixed interval [−K,K], g(η) ≈ 1. On the other hand, Proposition 7.2.3 shows that λ(η) ∼ η
1
3

as |η| → ∞, and so

g(η) ≈ |η 1
3 |−2 for |η| > K.

Thus for all η,

g(η) ≈ (1 + |η|)− 2
3 .

By (8.1.6),

I0
1 (η) ≈ [(η − η0)

2(1 + |η|)− 2
3 ]−

9
4 ,

and thus I0
1 is divergent, establishing (iii) in this case.

8.1.6 Case 2: x = r and |x| = √−p.

Here, the analysis is slightly more delicate because the discontinuity of λ occurs at η = q, and

one of ±x − λ(η) vanishes at η = q. In this situation, the analogue of (8.1.7) above is the

relationship

η − q = λ(η)[λ(η)− x][λ(η) + x]. (8.1.8)

Furthermore, since x2 = −p, in this case

A(x, x, η) =
1

2
(x− λ)2(3λ− x)(λ+ x)
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Proposition 8.1.8. Let A be as above.

1. If x =
√−p, then for η > q,

A(x, x, η) ≈ (η − q)2(1 + |η|)− 2
3 .

2. If x = −√−p, then for η < q,

A(x, x, η) ≈ (η − q)2(1 + |η|)− 2
3 .

Proof. In both cases, it is enough to observe that for the values of η indicated, both |x+λ(η)| ≥

2|x| > 0 and |3λ(η)− x| ≥ 2|x| > 0. We may thus solve (8.1.8) for x− λ and substitute into

the expression for A. The estimate then follows, again using the fact (Proposition 7.2.3) that

λ(η) ∼ η
1
3 as |η| → ∞.

Thus in this case, as above, I0
1 is divergent.

8.1.7 Case 3: |x| = |r| = √−p but x = −r.

The point here is that although x �= r, there is an η0 for which Bη0 achieves its global minimum

at both x and r: when η = q and x = ±√−p and r = ∓√−p (See Proposition 7.2.3). In this

case, Ax(η) vanishes if and only if η = q. For η �= q

A±
√
−p(η) = (η − q)(λ(η)∓

√
−p)− 1

4
([λ(η)]2 + p)2.

Proposition 8.1.9. If |x| = √−p,

A(x,−x, η) = (η − q)h(η),
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where

|h(η)| ≈ (1 + |η|) 1
3 .

Proof. It follows from (8.1.8) that

[λ(η)]2 + p =
η − q

λ(η)

and so

A(±
√
−p,∓

√
−p, η) = 2(η − q)

�
λ(η)− [λ(η)]2 + p

4λ(η)

�

= (η − q)
3[λ(η)]2 − p

2λ(η)

=: (η − g)h(η).

Since the numerator is bounded below by −4p > 0 and the denominator is bounded in absolute

value away from zero, it follows that if we fix an interval [−K,K], |h(η)| ≈ 1 on the interval.

On the other hand, since λ(η) ∼ η
1
3 as |η| → ∞, for sufficiently large K,

|h(η)| ≈ |η| 13 for |η| > K.

The proposition follows.

Since the integrand of I0
1 is

≈ [|η − q|(1 + |η|) 1
3 ]−

9
4 ,

I0
1 diverges in this case as well. The proof of Theorem 7.1.3 is now complete.
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8.2 Higher-degree polynomials

We now turn to the higher-degree setting. In this context, our polynomial b has the form

(2.1.1). As before, we set δ = h + k, z = (z1, z2) = (x + iy, t + ib(x) + ih), and w =

(w1, w2) = (r + is, u + ib(r) + ik) on Ω. With h, k ≥ 0, we have δ > 0 if and only if (z, w) ∈
�
Ω× Ω

�
∪
�
Ω× Ω

�
.

8.2.1 Proof of Theorem 1.3.1

We prove Theorem 1.3.1, the analogue to Theorem 7.1.1, by applying the upper bound found

in Section 6.2. We acquired the upper bound

N(η, τ)−1 � e−2τb∗(η)
2n�

j=2

τ1/j
���b(j)(λη)

���
1/j

, (8.2.1)

for all η ∈ R and τ > 0. As stated earlier, we need to show that for all non-negative integers

i1, j1, i2, and j2, each integral

� ∞

−∞

� ∞

0
eητ [z1+w̄1]+iτ [z2−w̄2] η

i1+j1τ i1+j1+i2+j2+1

N(η, τ)
dη dτ (8.2.2)

is absolutely convergent in the region

δ + b(x) + b(r)− 2b∗∗
�
x+ r

2

�
> 0.

If this integral does converge absolutely, it equals ∂i1
z1∂

j1
w̄1
∂i2
z2∂

j2
w̄2
S(z, w).

Set s = i1 + j1, and m = i1 + j1 + i2 + j2 (so that m ≥ s). As before, the integral becomes

Ss,m,δ :=

��

τ>0
eητ [x+r+i(y−s)]+iτ [t−u+i(b(x)+b(r)+δ)] η

sτm+1

N(η, τ)
dη dτ,
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and it converges absolutely if and only if

�Ss,m,δ =

� ∞

−∞

� ∞

0
e−τ [δ+b(x)+b(r)−η(x+r)] |η|sτm+1

N(η, τ)
dτ dη < ∞.

From estimate (8.2.1),

�Ss,m,δ �
2n�

j=2

� ∞

−∞

� ∞

0
τ1/j |η|s

���b(j)(λη)
���
1/j

τm+1e−τ [δ+b(x)+b(r)−η(x+r)+2b∗(η)] dτ dη

=:
2n�

j=2

Is,m,δ
j ,

where Is,m,δ
j =:

� ∞

−∞
Is,m,δ
j (η) dη.

Set A(x, r, η) = b(x)+ b(r)−η(x+r)+2b∗(η). With the added hypothesis δ+A(x, r, η) > 0,

Is,m,δ
j (η) = cj |η|s

���b(j)(λη)
���
1/j

� ∞

0
e−τ [δ+A(x,r,η)]τm+1+ 1

j dτ

≈
|η|s

��b(j)(λη)
��1/j

[δ +A(x, r, η)]m+2+ 1
j

�� ∞

0
e−ττm+1+ 1

j dτ

�

≈
|η|s

��b(j)(λη)
��1/j

[δ +A(x, r, η)]m+2+ 1
j

. (8.2.3)

The same two issues that were addressed in the fourth-degree setting may inhibit the conver-

gence of the integrals Is,m,δ
j :

1. insufficient growth of A in η at infinity, and

2. vanishing of δ +A(x, r, η) for some finite η for certain choices of x, r, and δ.

Let us explore these issues.
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8.2.2 Higher degree: behavior of A(x, r, η) for large |η|.

Corollary 8.2.1. Fix x, r ∈ R. Then

A(x, r, η) ∼
�
2n− 1

n

�
η

2n
2n−1 , |η| → ∞.

Proof. Since A(x, r, η) = b(x) + b(r) − η(x + r) + 2b∗(η), the result follows directly from the

asymptotic approximation given in (3.3.3).

Applying this lemma and estimate (3.4.2) to (8.2.3) yields

Is,m,δ
j (η) ∼ |η|s

η
2n(m+2)

2n−1

|η|
2n−j

j(2n−1)

η
2n

j(2n−1)

=
|η|s |η|

−1
2n−1

η
2n(m+2)

2n−1

=
�
|η|(2n−1)s−1−2n(m+2)

� 1
2n−1

= |η|−2−(m−s)− m+3
2n−1

as |η| → ∞. Since m ≥ s ≥ 0,

−2− (m− s)− m+ 3

2n− 1
< −2.

Hence for any fixed s, m, j, and δ, Is,m,δ
j is convergent at infinity.
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8.2.3 Higher degree: vanishing of δ + A(x, r, η)

The estimates from the previous section show that if the integral Is,m,δ
j fails to converge, then

for some fixed x, r, and δ the function

η �→ δ +A(x, r, η)

vanishes for some finite η0. Therefore if for some x, r and δ fixed

inf
η
[δ +A(x, r, η)] = δ + b(x) + b(r)− 2b∗∗

�
x+ r

2

�
> 0, (8.2.4)

then each Is,m,δ
j is finite. Hence the integrals defining the Szegö kernel and all its derivatives

converge absolutely in the region defined by (8.2.4).

Using the argument directly following inequality (8.1.3), Theorem 1.3.1 will be established

if we can identify for which x and r fixed the function A(x, r, ·) is bounded away from zero.

This is done by proving the higher-degree analogue of Remark (8.1.4).

Lemma 8.2.2. If x and r are not in the same Λη for all η, then A(x, r, ·) is bounded away

from zero.

Proof. We consider three cases.

Case 1: Assume x ∈ Λη1 and r ∈ Λη2 with η2 �= η1. Without loss of generality, assume η1 < η2.

Fix any η0 ∈ (η1, η2). By definition A(x, r, η) = Ax(η) + Ar(η). Since b∗ is continuous,

both Ax and Ar are continuous, non-negative functions of η vanishing only at η1 and η2,

respectively. Since both have the asymptotic approximation cη2n/(2n−1) as |η| → ∞,

A(x, r, ·) is bounded away from zero.

Case 2: For all η ∈ R, x /∈ Λη or r /∈ Λη. Assume r /∈ Λη for all η ∈ R. (A symmetric argument

covers the case x /∈ Λη for all η ∈ R.) Since r /∈ Λη for all η, Ar is positive and continuous
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in η with the asymptotic approximation cη2n/(2n−1) as |η| → ∞. As a consequence,

A(x, r, ·) is bounded away from zero.

The lemma holds.

Earlier, we wrote A(x, r, η) = Ax(η) + Ar(η), where Ax, Ar are the non-negative functions

defined in (8.1.4) and (8.1.5). If we fix x and r, A(x, r, ·) vanishes at η0 if and only if Ax

and Ar both vanish at η0, which happens precisely when x, r ∈ Λη0 by definition. Using this

identification and Lemma 8.2.2, we have just identified all pairs x and r for which A(x, r, ·)

never vanishes. These pairs identify all points (z, w) ∈ ∂Ω × ∂Ω for which inequality (8.2.4)

is satisfied. This proves Theorem 1.3.1. Since each integral Is,m,δ
j is convergent whenever

A(x, r, ·) is bounded away from zero, the Szegö kernel (1.2.4) is absolutely convergent whenever

x and r are not in the same Λη for all η. This proves Theorem 1.3.2.

8.2.4 Proof of Theorem 1.3.3

As in Section 8.1.4, we set

�Sδ[(x, i(b(x) + h)), (r, i(b(r) + k))] = c

� ∞

−∞

� ∞

0
τe−τ [δ+b(x)+b(r)−η(x+r)]N(η, τ)−1 dτ dη,

for δ = h+ k ≥ 0. To prove Theorem 1.3.3, the analogue to Theorem 7.1.3, we show that

(i) �S0 is divergent, and

(ii) limδ→0+
�Sδ = ∞,

whenever we choose x and r so that A(x, r, ·) vanishes at a finite η0. Notice that (i) implies

(ii) since the integrand of �Sδ is non-negative and converges pointwise and monotonically to

the integrand of �S0 as δ → 0+.
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We begin by fixing x, r ∈ Λη0 , for any η0 ∈ R. Then recall the local, lower bound given in

Section 6.3. We found that for fixed η0 ∈ R and � > 0, we have

τ1/2

1 + τ1/2
� e2τb

∗(η)N(η, τ)−1, (8.2.5)

for all τ > 0 and η ∈ (η0, η0 + �). With this, we appeal to Lemma 5.3.1. More specifically, for

η0 ∈ R and � > 0, there exist locally-bounded, positive functions in η, Fx and Hr, such that

A(x, r, η) = (η − η0) (Fx(η) +Hr(η)) ,

for all η ∈ (η0, η0 + �). For brevity, set T = Fx +Hr.

We now apply estimate (8.2.5) and Lemma 5.3.1 to get a lower bound on �Sδ. By setting

A = A(x, r, η),

� ∞

−∞

� ∞

0
τe−τAe2τb

∗(η)N(η, τ)−1 dτ dη

>

� η0+�

η0

� ∞

0
τe−τAe2τb

∗(η)N(η, τ)−1 dτ dη

�
� η0+�

η0

� ∞

0

τ3/2e−τA

(1 + τ1/2)
dτ dη

=

� η0+�

η0

� ∞

0

e−τ τ3/2

A3/2

1 + τ1/2

A1/2

dτ

A
dη

=

� η0+�

η0

� ∞

0

e−τ τ3/2

A2

A1/2 + τ1/2
dτ dη

≥
� η0+�

η0

� 1

0

e−τ τ3/2

(η−η0)2T (η)2

(η − η0)1/2T (η)1/2 + 1
dτ dη

=

�� 1

0
τ3/2e−τ dτ

�� η0+�

η0

1
(η−η0)2T (η)2

(η − η0)1/2T (η)1/2 + 1
dη

≈
� η0+�

η0

G(η)

(η − η0)2T (η)2
dη,
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where G(η) is continuous from the right and bounded away from zero. Since T is also a

locally-bounded positive function, divergence follows. Since this happens whenever x, r ∈ Λη0

for some η0, Theorem 1.3.3 has been proved.

8.2.5 Proof of Corollary 1.3.4

In order to prove Corollary 1.3.4, we must recall Corollary 4.3.10. For a polynomial b of the

form (2.1.1), it states the following: b is non-convex if and only if there exists an η0 ∈ R such

that |Λη0 | > 1. Thus for a non-convex b, we can pick x, r ∈ Λη0 with x �= r. By Theorem

1.3.3, the Szegö kernel is divergent, hence not smooth, at each point off of the diagonal

((x, y, t), (r, y, t)), for each y, t ∈ R. For the converse, we turn to [16]. They showed that if b is

convex, then the Szegö kernel is smooth off of the diagonal. Together, these prove Corollary

1.3.4.
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