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The noise contained in images collected by a charge coupled device (CCD) camera is pre-
dominantly of Poisson type. This motivates the use of the negative logarithm of the Poisson
likelihood in place of the ubiquitous least squares fit-to-data. However, if the underlying math-
ematical model is assumed to have the form z = Au, where A is a linear, compact operator,
the problem of minimizing the negative log-Poisson likelihood function is ill-posed, and hence
some form of regularization is required. In this work, it involves solving a variational problem
of the form

uα
def= arg min

u≥0
`(Au; z) + αJ(u),

where ` is the negative-log of a Poisson likelihood functional, and J is a regularization func-
tional. The main result of this thesis is a theoretical analysis of this variational problem for
four different regularization functionals. In addition, this work presents an efficient computa-
tional method for its solution, and the demonstration of the effectiveness of this approach in
practice by applying the algorithm to simulated astronomical imaging data corrupted by the
CCD camera noise model mentioned above.
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Chapter 1

Introduction

The following problem is very common in imaging science: given a blurred, noisy N×N image

array z, obtain an estimate of the underlying N×N true object array uexact by approximately

solving a linear system of the form

z = Au. (1.1)

Here z has been column stacked so that it is N2×1, and A is a known N2×N2 ill-conditioned

matrix.

The focus of this work is on astronomical imaging, in which case A is the blurring matrix and

z is an image of an object uexact in outer space collected by a charge couple device (CCD)

camera. The CCD camera was invented in 1969 by Willard Boyle and George E. Smith at AT

& T Bell Labs [1]. It has the ability to receive charge via the photoelectric effect, allowing for

the creation of electronic images. A CCD camera consists of a grid of pixels, each of which

detects roughly 70% of incident light (photographic film captures only about 2%). At each

pixel an electric charge accumulates that is proportional to the amount of light it receives.

This charge is converted into voltage, digitized, and stored in memory.

The collected image z is blurred due to the fact that the light from the object being viewed

has travelled through layers in the earth’s atmosphere with variable degrees of refraction.

Furthermore, diffractive blurring occurs due to the finite aperture of the telescope. This

1



CHAPTER 1. INTRODUCTION 2

process is represented by the picture in Figure 1.1.

-

-
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Figure 1.1: Blurring process schematic.

In practice, the noise in the image z is random. Thus z is a realization of a random vector ẑ.

A statistical model for ẑ is given by (c.f. [31])

ẑ ∼ Poiss(Auexact) + Poiss(γ · 1) +N(0, σ2I). (1.2)

Here 1 is an N2 × 1 vector of all ones, and I is the N2 × N2 identity matrix. (1.2) means

that each element ẑi of the vector ẑ, has a mixture distribution, it is a random variable with

distribution

ẑi =
1
3

(nobj(i) + n0(i) + g(i)) , i = 1, . . . , N2, (1.3)

where

• nobj(i) is the number of object dependent photoelectrons measured by the ith detector

in the CCD array. It is a Poisson random variable with Poisson parameter [Auexact]i.

• n0(i) is the number of background photoelectrons, which arise from both natural and

artificial sources, measured by the ith detector in the CCD array. It is a Poisson random

variable with a fixed positive Poisson parameter γ.
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• g(i) is the so-called readout noise, which is due to random errors caused by the CCD

electronics and errors in the analog-to-digital conversion of measured voltages. It is a

Gaussian random variable with mean 0 and fixed variance σ2.

The random variables nobj(i), n0(i), and g(i) are assumed to be independent of one another

and of nobj(j), n0(j), and g(j) for i 6= j.

The image and object in Figure 1.2 illustrate the light emanating from the star cluster uexact

on the left hand side, it travels through the earth’s atmosphere, and the telescope’s CCD

camera collects the blurred noisy image z on the right.

Figure 1.2: Illustration of image formation.

In order to obtain a workable maximum likelihood problem for obtaining estimates of uexact,

approximating (1.2) is necessary. As in [31], following [18, pp. 190 and 245], this is done using

the approximation

N(σ2, σ2) ≈ Poiss(σ2). (1.4)

From this, together with the independence properties of the random variables in (1.3) it
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follows,

ẑ + σ2 · 1 ∼ Poiss(Auexact) + Poiss(γ · 1) +N(σ2 · 1, σ2I)

≈ Poiss(Auexact) + Poiss(γ · 1) + Poiss(σ2 · 1)

∼ Poiss(Auexact + γ · 1 + σ2 · 1). (1.5)

Assuming that (1.5) is the true statistical model, the maximum likelihood estimator of uexact,

given a realization z from ẑ defined in (1.5), is the minimizer with respect to u of the negative-

log Poisson likelihood functional

T0(u) def=
N2∑
i=1

([Au]i + γ + σ2)−
N2∑
i=1

(zi + σ2) log([Au]i + γ + σ2), (1.6)

where [Au]i and zi are the ith components of Au and z respectively.

Before continuing, let address the question of whether or not using (1.5) to approximate (1.2)

will have a negative effect on the accuracy of the estimates obtained by minimizing (1.6).

For large values of σ2 (the simulations suggest that σ2 > 30 suffices), (1.4) is accurate, in

which case (1.5) will well-approximate (1.2). This will also be true if the signal is sufficiently

strong, since then the readout noise will have negligible effect. However, there are certainly

instances in which (1.5) will not well-approximate (1.2), in particular, in regions of an image

with very low light intensity. The likelihood that results, however, from the correct model

(1.2) is non-trivial, as can be seen in [30]. In the sequel, the assumption that (1.5) is accurate

is made.

Since A is an ill-conditioned matrix, computing the minimizer of (1.6) is an ill-posed problem.

Thus regularization must be used. This involves solving a problem of the form

arg min
u≥0

{
Tα(u) def= T0(u) + αJ(u)

}
, (1.7)

where J(u) and α > 0 are known as the regularization function and parameter, respectively,

and minimization is subject to the constraint u ≥ 0 due to the fact that light intensity is
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non-negative.

The use of four different regularization functions is the main point of this thesis, also an

important subject is that (1.7) can be motivated from a Bayesian perspective. The Bayesian

perspective and the computational method used to solve (1.7) are the main topic of Chapter

4. The reader not interested in the theoretical arguments that constitute the remainder of

this Chapter, as well as Chapter 2 and 3, should skip to Chapter 4 now.

Practically speaking, the computational problem (1.7) is very important, as it is the solution

of (1.7) that will yield a regularized estimate of uexact. However, of equal importance is the

relationship between (1.7) and its analogue in the function space setting, which results from

the operator equation analogue of (1.1) given by

z(x) = Au(x) def=
∫

Ω
a(x, y)u(y) dy. (1.8)

Here, Ω ⊂ Rd is the closed bounded computational domain, and a which is known as the point

spread function, is nonnegative and bounded, moreover it is reasonable to assumed that it is

measurable with respect to the Lebesgue measure, and hence is in L2(Ω×Ω). Although in the

numerical experiments, d = 2, in the analysis, d can be any positive integer, unless otherwise

specified, so that the results are as general as possible. Given the true image uexact ∈ L2(Ω),

let define z = Auexact. The functional analogue of (1.6) is then given by

T0(Au; z + γ) =
∫

Ω

(
(Au+ γ + σ2)− (z + γ + σ2) log(Au+ γ + σ2)

)
dx. (1.9)

Note that if mid-point quadrature is used to discretize the integral in (1.8) and a collocation

of indices is used to discretize the x-variable, the resulting numerical approximation of (1.9)

will have the form (1.6). Thus in addition to stochastic errors, z also contains numerical

dicretization errors. The functional analogue of (1.7) is then given by

uα = arg min
u≥0

{
Tα(Au; z + γ) def= T0(Au; z + γ) + αJ(u)

}
, (1.10)
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where J is now a regularization functional.

The main results of this thesis involve the analysis of problems of the form (1.10). In particu-

lar, although minimizing (1.9) is an ill-posed problem, problem (1.10) is well-posed if certain

reasonable assumptions hold; that is, solutions of (1.10) exist, are unique, and depend contin-

uously of the data z and the operator A. Noting that this is an important result because in

practice there will always be errors in the measurements of z and A. Well-posedness implies

that if these errors are small, the estimates will be near to those that would be obtained if

the exact data z and operator A were known.

To state this mathematically, let introduce a sequence of operators equations

zn(x) = Anu(x) + γ
def=
∫

Ω
an(x, y)u(y) dy + γ, (1.11)

where an ∈ L2(Ω× Ω) and corresponding minimization problems

uα,n = arg min
u≥0

{
Tα(Anu; zn) def= T0(Anu; zn) + αJ(u)

}
. (1.12)

Proving that (1.10) is well posed amounts to showing that if An → A and zn → z + γ then

uα,n → uα, where uα is defined in (1.10). Another important result is that as An and zn

become arbitrarily close to A and z+ γ, respectively, αn can be chosen so that uαn,n becomes

arbitrarily close uexact; that is if An → A and zn → z + γ there exists a positive sequence

{αn} such that αn → 0 and uαn,n → uexact. The main results of this thesis are proofs of these

important properties for four different regularization functionals.



Chapter 2

Mathematical Preliminaries

In this chapter, the goal is to provide a mathematical background for the theoretical analysis

of Chapter 3, which serves as the main result of this thesis.

This begins by proving a number of facts about Fredholm first kind integral operators, of

which A, defined in (1.8), is an example.

2.1 Some Results Regarding Fredholm Integral Operators

Most functions will be element of L2(Ω), ‖.‖2 and 〈., .〉 denote the L2(Ω) norm and inner

product, respectively. The operator A will be assumed to be of Fredholm first kind type, i.e.

Au(x) def=
∫

Ω
a(x, y)u(y)dy, (2.1)

where a ∈ L2(Ω × Ω) and is measurable with respect to the Lebesgue measure. Then A :

L2(Ω) −→ L2(Ω).

Definition 2.1.1. A linear operator A : L2(Ω) −→ L2(Ω) is said to be compact if it maps the

unit ball to a relatively compact set, that is, a set whose closure is a compact subset of L2(Ω).

The proofs in this section follow those in [4, chapter 4].

Theorem 2.1.2. If a ∈ L2(Ω×Ω), then (2.1) is a compact operator and ||A||2 ≤ ||a||L2(Ω×Ω).

7
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The following lemma is necessary in order to prove Theorem 2.1.2.

Lemma 2.1.3. If {ei : i ∈ I} is an orthonormal basis for L2(Ω) and

φij(x, y) = ei(x)ej(y) (2.2)

for i, j ∈ I and x, y ∈ Ω then {φij : i, j ∈ I} is an orthonormal basis for L2(Ω× Ω).

Proof. Since
∫

Ω

∫
Ω |φij |

2dxdy =
∫

Ω

∫
Ω |ei(x)ej(y)|2dxdy = ||ei||22||ej ||22 = 1, φij ∈ L2(Ω× Ω).

Moreover, if (k, l) 6= (i, j) then

〈φkl, φij〉 =
∫

Ω

∫
Ω
φk(x)φl(y)φi(x)φj(y)dxdy

=
∫

Ω

(∫
Ω
φk(x)φi(x)dx

)
φl(y)φj(y)dy

= 〈φk, φi〉〈φl, φj〉

= 0.

Therefore {φij} is an orthonormal set.

To see that {φij} is a basis for L2(Ω×Ω), let choose φ ∈ L2(Ω×Ω) and define φy(x) = φ(x, y).

Then φy ∈ L2(Ω), and hence, fi(y) = 〈ei, φy〉 =
∫

Ω φ(x, y)ei(x)dx is well defined. Moreover

||fi||22 =
∑
j

|〈ej , fi〉|2

=
∑
j

∣∣∣∣∫
Ω
fi(y)ej(y)dy

∣∣∣∣2
=

∑
j

∣∣∣∣∫
Ω

∫
Ω
φ(x, y)ei(x)ej(y)dxdy

∣∣∣∣2
=

∑
j

∣∣∣∣∫
Ω

∫
Ω
φ(x, y)φij(x, y)dxdy

∣∣∣∣2
=

∑
j

|〈φ, φij〉|2 .

Thus, if φ is orthogonal to φij for all i and j, fi = 0 for all i and hence φy = 0 in L2(Ω),
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implying φ = 0. From this it follows immediately that {φij} is a basis for L2(Ω× Ω).

Now let prove Theorem 2.1.2.

Proof. The first step is to prove that ||A||2 ≤ ||a||L2(Ω×Ω). Let {ei} and {φij} be as in the

previous lemma. Then

||a||2L2(Ω×Ω) =
∑
i,j

|〈a, φij〉|2

=
∑
i,j

∣∣∣∣∫
Ω

∫
Ω
a(x, y)ei(x)ej(y)dxdy

∣∣∣∣2
=

∑
i,j

∣∣∣∣∫
Ω

[∫
Ω
a(x, y)ej(y)dy

]
ei(x)dx

∣∣∣∣2
=

∑
i,j

|〈Aej , ei〉|2.

Moreover, if u =
∑

j αjej ∈ L2(Ω), then ||u||22 =
∑

j |αj |2 <∞, and hence

|〈Au, ei〉|2 =

∣∣∣∣∣∣
∑
j

αj〈Aej , ei〉

∣∣∣∣∣∣
2

≤

∑
j

|αj |2
∑

j

|〈Aej , ei〉|2
 ,

implies

||Au||22 =
∑
i

|〈Au, ei〉|2 ≤ ||a||2L2(Ω×Ω)||u||
2
2,

which in turn implies ||A||2 ≤ ||a||L2(Ω×Ω).

It remains to show that A is compact. Let J be the smallest (with respect to the number of

its elements) set such that

a =
∑
i,j∈J

αijφij .
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Such a representation exists by Lemma 2.1.3. If J is a finite set, then

Au(x) =
∫

Ω
a(x, y)u(y)dy

=
∫

Ω

∑
i,j∈J

αijφij(x, y)

u(y)dy

=
∑
i,j∈J

αij

∫
Ω
ei(x)ej(y)u(y)dy

=
∑
i,j∈J

αijei(x)〈ej , u〉.

Hence, A has finite rank and is therefore compact since it is bounded [33, chapter 2 page 17].

On the other hand, if J is not finite it is countably infinite, and hence

a =
∞∑

i,j=1

αijφij .

Let define

an =
n∑

i,j=1

αijφij .

Then

||an − a||L2(Ω×Ω) −→ 0 as n −→∞.

Moreover, if

Anu(x) def=
∫

Ω
an(x, y)u(y)dy,

then given that ||u||2 is finite,

|Anu(x)−Au(x)| =
∣∣∣∣∫

Ω
[an(x, y)− a(x, y)]u(y)dy

∣∣∣∣ ≤ ||an − a||L2(Ω×Ω)||u||2 −→ 0,

and hence, ||An−A||2 → 0. Since the An’s are finite dimensional, they are compact, implying

that A is compact [4, chapter 4 page 41].

Next, is to show that A, defined in (2.1), has a singular value decomposition, which will be
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useful when proving that (2.1) is ill-posed.

Definition 2.1.4. A singular system for a linear operator A : L2(Ω) −→ L2(Ω) is a countable

set of triples {uj , sj , vj}j with the following properties:

1. the right singular vectors vj form an orthonormal basis for Null(A)⊥, where

Null(A) def=
{
u ∈ L2(Ω) | Au = 0

}
,

and ⊥ denotes the orthogonal complement;

2. the left singular vectors uj form an orthonormal basis for the closure of Range(A);

3. the singular values sj are positive real numbers and are in nonincreasing order, i.e.

s1 ≥ s2 ≥ · · · > 0. Moreover, if Range(A) is infinite-dimensional, one has the additional

property limj→∞ sj = 0.

4. for all j

Avj = sjuj , and A∗uj = sjvj .

Where A∗ is such that

〈Av, u〉 = 〈v,A∗u〉 for all u, v ∈ L2(Ω).

Next is the statement of an important theorem regarding compact operators.

Theorem 2.1.5. If A is a compact operator then A has a singular system.

Proof. The following proof is inspired by Exercise 2.9 of [33].

Let start by proving part 1. If A is compact then A∗ is compact as well [4, chapter 4, page

41]. Hence A∗A is compact and self adjoint. By [4, Theorem 5.1] the existence a set of real

eigenvalues and a corresponding set of orthonormal eigenfunctions is guaranteed, furthermore

they form a basis for Null(A∗A)⊥. Moreover, these eigenvalues are strictly positive. In addition

[14, Theorem 4.9.A] states that Null(A)⊥ = Null(A∗A)⊥. This completes the proof of part 1.
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For part 2, 3 and 4 let define σp(A∗A) to be the set of positive eigenvalues of A∗A. Then if

λi ∈ σp(A∗A) corresponds to the eigenfunction vi and satisfies λ1 ≥ λ2, · · · > 0, it is possible

to have si =
√
λi and ui = 1

si
Avi. This yields

〈ui, uj〉 =
〈

1
si
Avi,

1
sj
Avj

〉
=

1√
λiλj

〈A∗Avi, vj〉 =
λi√
λiλj
〈vi, vj〉 = δij .

Hence, {ui} is an orthonormal set. Moreover ui = 1
si
Avi implies A∗ui = sivi 6= 0, and

hence {ui} spans Null(A∗)⊥ = Range(A) [14]. Finally, noting that if Range(A) is infinite-

dimensional, σp(A∗A) will be infinite-dimensional as well, therefore by [4, corollary 7.8]

limi→∞ λi = 0 = limi→∞ si. Thus {vi, si, ui} forms a singular system for A.

Following is the definition of a notion which will be of great importance in the analysis.

Definition 2.1.6. Let A : L2(Ω) −→ L2(Ω) be a nonzero operator. Then the equation

Au = z (2.3)

is said to be well-posed provided

1. for each z ∈ L2(Ω) there exists u ∈ L2(Ω), called a solution, for which (2.3) holds;

2. the solution u is unique; and

3. the solution is stable with respect to perturbations in z and A. This mean that if Amum =

zm and Au = z, then um → u whenever zm → z and Am → A.

A problem that is not well-posed is said to be ill-posed.

The following result is fundamental to the work in this thesis.

Theorem 2.1.7. Let A : L2(Ω) −→ L2(Ω) be compact, then Au = z is ill-posed.

Proof. First, suppose dim(Range(A))=∞. The goal is to show that Condition 3 of Definition

2.1.6 fails. Without lost of generality let suppose that z = 0; indeed, one can generalize for

any nonzero z by using the linearity of A. Let {um, vm, sm}m be a singular system for A, and
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define Am = A and zm = srmum ∈ Range(A) with 0 < r < 1. Then ||zm||2 = ||srmum||2 =

|sm|r||um||2, implies zm −→ 0 when m −→ ∞. However zm = srmum = A(sr−1
m vm), with

||sr−1
m vm||2 −→∞ when m→∞. Therefore, Am −→ A and zm −→ 0 while um

def= sr−1
m vm 9

0. Thus Condition 3 of Definition 2.1.6 fails.

If dim(Range(A)) <∞, by the first fundamental theorem on homomorphisms

L2(Ω)/Null(A) ∼= Range(A), and hence, Null(A) is not a trivial space. If z ∈ L2(Ω)\Range(A),

then there is no u satisfying Au = z, and Condition 1 fails. Otherwise, if u satisfies Au = z,

and v ∈ Null(A) is nonzero then A(u+ v) = z, and Condition 2 fails.

However, in this thesis, in place of the operator equation Au = z, the task is to study the

variational problem

u = arg min
u≥0

T0(Au; z + γ), (2.4)

where A : L2(Ω) → L2(Ω) is a nonsingular operator satisfying Au ≥ 0 whenever u ≥ 0, z ∈

L∞(Ω) is nonnegative and γ > 0 is a fixed constant, and T0 is as defined in (1.9). Accordingly

to this variational problem, let now define what it means for (2.4) to be well-posed.

Definition 2.1.8. The variational problem (2.4) is said to be well-posed provided

1. for each nonnegative z ∈ L∞(Ω), there exists a solution u ∈ L2(Ω) of (2.4);

2. this solution is unique;

3. the solution is stable with respect to perturbations in z + γ and A; that is, if

u0,n
def= arg min

u≥0
T0(Anu; zn),

where An : L2(Ω) → L2(Ω) satisfies Anu ≥ 0 whenever u ≥ 0 and zn ∈ L∞(Ω)

is nonnegative, then un → u whenever zn → (z + γ) in L∞(Ω) and an → a in

L∞(Ω× Ω).

With this definition, the statement and proof of the analogue of Theorem 2.1.7 will be,

Theorem 2.1.9. The variational problem (2.4) is ill-posed.
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The gradient and Hessian of T0 is useful for proving Theorem 2.1.9. Also, the notion of Fréchet

derivative is needed [33, page 22] for a better understanding,

Definition 2.1.10. An operator T : L2(Ω) → L2(Ω) is said to be Fréchet differentiable at

u ∈ L2(Ω) if and only if there exists T
′
(u), element of the set of linear operator from L2(Ω)

to itself, called the Fréchet derivative of T at u, for which

T (u+ h) = T (u) + T
′
(u)h+ o(||h||2) (2.5)

The following identity, stated in Proposition 2.34 of [33], is used to derive the gradient:

d

dτ
T0(u+ τh)

∣∣∣∣
τ=0

= 〈∇T0(u), h〉. (2.6)

As a composite function of the natural logarithm and Au + γ + σ2, T0 is twice Fréchet

differentiable. Moreover, since A(u + τh) − (z + γ + σ2) log(A(u + τh) + γ + σ2) is twice

differentiable with respect to τ , its first and second derivatives are bounded over Ω. Hence

the Lebesgue Dominated Convergence Theorem implies

d

dτ
T0(A(u+ τh); z + γ)

∣∣∣∣
τ=0

=
d

dτ

∫
Ω

((Au+ τAh+ γ + σ2)

−(z + γ + σ2) log(Au+ τAh+ γ + σ2)) dx
∣∣
τ=0

=
∫

Ω

(
1− (z + γ + σ2)

Au+ τAh+ γ + σ2

)
Ahdx

∣∣∣∣
τ=0

=
〈(

1− (z + γ + σ2)
Au+ γ + σ2

)
, Ah

〉
=

〈
A∗
(

Au− z
Au+ γ + σ2

)
, h

〉
.

Thus from (2.6) it is obvious that

∇T0(Au; z + γ) = A∗
(

Au− z
Au+ γ + σ2

)
. (2.7)
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In the same fashion, let compute the Hessian using the relation [33, Definition 2.40]

d2

dρdτ
T0(A(u+ τh+ ρl); z + γ)

∣∣∣∣
ρ,τ=0

= 〈∇2T0(u)l, h〉. (2.8)

Once again using the Lebesque Dominated Convergence Theorem yields

d2

dρdτ
T0(A(u+ τh+ ρl); z + γ)

∣∣∣∣
τ,ρ=0

=
∫

Ω

d

dρ

(
Ah− (z + γ + σ2)Ah

Au+ γ + σ2

)
dx

∣∣∣∣
τ,ρ=0

=
∫

Ω

(
Ah(z + γ + σ2)Al

(Au+ τAh+ ρAl + γ + σ2)2

)
dx

∣∣∣∣
τ,ρ=0

=
〈
Al,

(
diag

(
(z + γ + σ2)

(Au+ γ + σ2)2

))
Ah

〉
=

〈
A∗
(

diag
(

(z + γ + σ2)
(Au+ γ + σ2)2

))
Al, h

〉
,

where diag(v) is defined by diag(v)w = vw. Thus, it results, from (2.8), that

∇2T0(Au; z + γ) = A∗
(

diag
(

z + γ + σ2

(Au+ γ + σ2)2

))
A. (2.9)

Noting, therefore, that

∇T0(Anu; zn) = A∗n

(
Anu− (zn − γ)
Anu+ γ + σ2

)
,

∇2T0(Anu; zn) = A∗n

(
diag

(
zn + σ2

(Anu+ γ + σ2)2

))
An.

Since z, zn ≥ 0, ∇2T0(Au, z + γ) and ∇2T0(Anu, zn) are positive semi-definite operators,

implying T0(Au; z + γ) and T0(Anu; zn) are convex [33, Theorem 2.42] and hence have min-

imizer over C = {u ∈ L2(Ω) |u ≥ 0}. Moreover, since A is nonsingular, T0(Au; z + γ) is

strictly convex and has unique minimizer uexact, recall that it has been assumed uexact ≥ 0

and Auexact = z.

The task is now to prove Theorem 2.1.9.
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Proof. Since it has been assumed that A is nonsingular, Condition 1 and 2 hold. Hence, let

show that Condition 3 fails. For this let proceed as in the first paragraph of the proof of

Theorem 2.1.7, assuming once again without lost of generality, that z = 0. Let {um, vm, sm}m

be a singular system for A, and define Am = A and zm = srmum + γ with 0 < r < 1. Since A

is invertible, by our discussion above,

um = arg min
u≥0

T0(Au; zm)

is unique and satisfies Aum = srmvm, and hence, um = sr−1
m vm. Thus zm → γ1 while ||um||2

= ||sr−1
m um||2 → +∞, implying that um 9 0, and hence, Condition 3 fails.

2.2 Regularization Schemes and the Operator Rα(A, z + γ)

Because (2.4) is ill-conditioned, well-posed methods for its approximate solution are important.

Regularization represents the most common such approach. The aim of this thesis is to study

a variational problems of the form

Rα(A, z + γ) def= arg min
u∈C

Tα(Au; z + γ), (2.10)

where Tα(Au; z+γ) = T0(Au; z+γ)+αJ(u), where J and α are the regularization parameter

and functional respectively. The task will be to show that Rα defines a regularization scheme

for four different regularization functionals.

In order to define a regularization scheme, let suppose that there is an operator R∗ such that

for each z in Range(A) there is an unique R∗(A, z+γ) ∈ L2(Ω) such that A(R∗(A, z+γ)) = z.

For this work, given the assumption and therefore discussion,

R0(Au; z + γ) = arg min
u∈C

T0(Au; z + γ).

From [33] is the following definition
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Definition 2.2.1. {Rα(A, z+γ)}α∈I is a regularization scheme that converges to R∗(A, z+γ)

if

1. for each α ∈ I, Rα is a continuous operator; and

2. given each z in Range(A), for any sequence {zn} ∈ L∞(Ω) that converges to z and

any sequence {An} of compact operators on L2(Ω) that converges to A, one can pick a

sequence {αn} ∈ I such that

lim
n→∞

Rαn(An, zn) = R∗(A, z + γ).



Chapter 3

Theoretical Analysis

In this chapter, the task is to prove that Rα(A, z + γ), defined by (2.10), is a regularization

scheme for four regularization functionals J .

Some standard assumption are made in all of the following arguments. Let Ω be a closed

bounded, convex domain with piecewise smooth boundary. Then |Ω| =
∫

Ω dx < ∞. Let | · |

denote the Euclidean norm in Rd and ‖ · ‖p the Banach space norm on Lp(Ω) for 1 ≤ p ≤ ∞.

Since Ω is bounded, Lp(Ω) ⊂ L1(Ω) for p > 1. It is assumed that the true solution uexact ≥ 0

and that Au ≥ 0 for every u ≥ 0, with A defined by

Au(x) =
∫

Ω
a(x, y)u(y)dy,

where a(x, y) is nonnegative, measurable with respect to the Lebesgue measure, and bounded

on L2(Ω×Ω). Then, as previously, the exact data satisfies z = Auexact ≥ 0. Furthermore, z is

assumed to be bounded, hence z ∈ L∞(Ω). Note that these are reasonable assumptions since

in practice the kernel function a is nonnegative and the image z has finite intensity at every

point in the computational domain. These assumptions hold for the perturbed operator An,

defined by

Anu =
∫

Ω
an(x, y)u(y)dy,

and data zn. Additionally, let {an}n≥1 ⊂ L∞(Ω) and {zn}n≥1 ⊂ L∞(Ω), an → a ∈ L∞(Ω×Ω)

18
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and zn → z + γ in L∞(Ω). Then, it follows that ||An −A||1 → 0, ||An −A||2 → 0, ||zn − (z +

γ)||∞ → 0, and that the an’s are uniformly bounded in L∞(Ω×Ω). All these facts are useful

for what follow.

In order to simplify the notation in the arguments, let Tα(u) denotes Tα(Au; z+γ) and Tα,n(u)

denotes Tα(Anu; zn) throughout the remainder of this analysis.

3.1 Tikhonov Regularization

The work in this subsection originally appeared in [8], though the modifications are significant.

Let begin the analysis with the most standard regularization functional:

J(u) =
1
2
‖u‖2. (3.1)

Let define

C = {u ∈ L2(Ω) |u ≥ 0}. (3.2)

Then the task is to show that

Rα(A, z + γ) def= arg min
u∈C

Tα(Au; z + γ) (3.3)

reward a regularization scheme as defined in Definition 2.2.1.

Let begin with definitions and results that will be needed in the later analysis. The following

theorem, proven in [35], will be useful.

Theorem 3.1.1. If S is a bounded set in L2(Ω), every sequence in S has a weakly convergent

subsequence in L2(Ω), where un converges to u weakly (denoted un ⇀ u) in L2(Ω) if 〈un −

u, v〉 → 0 for all v ∈ L2(Ω).

An important definition is what comes next.
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Definition 3.1.2. A functional T : L2(Ω)→ R is coercive if

T (u)→∞ whenever ‖u‖2 →∞. (3.4)

Recalling that a functional is said to be weakly lower continuous if

Definition 3.1.3. T is weakly lower continuous if

T (u∗) ≤ lim inf T (un) whenever un ⇀ u∗ (3.5)

3.1.1 Rα(A, z + γ) is Well-Defined

The following theorem, which is similar to [33, Theorem 2.30] helps to prove the existence

and uniqueness of the solutions of (2.10).

Theorem 3.1.4. If T : L2(Ω) → R is convex and coercive, then it has a minimizer over C.

If T is strictly convex, the minimizer is unique.

Proof. Let {un} ⊂ C be such that T (un) → T∗
def= infu∈C T (u). Then, by (3.4), the sequence

{un} is bounded in L2(Ω). By Theorem 3.1.1, this implies that {un} has a subsequence

{unj} that converges weakly to some u∗ ∈ C. Now, since T is convex, it is weakly lower

semi-continuous [33, page 21], and hence,

T (u∗) ≤ lim inf T (unj ) = limT (un) = T∗.

Thus u∗ minimizes T on C and is unique if T is a strictly convex functional since C is a convex

set.

Corollary 3.1.5. Rα(A, z + γ) is well-defined.

Proof. The convexity of Tα follows from the convexity of T0 (see the comments at the end of

Chapter 2) and the strict convexity of J(u).

For coercivity, noting that by Jensen’s inequality and the properties of the function x−c log x,
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for c > 0,

T0(u) ≥ ‖Au+ γ + σ2‖1 − ‖z + γ + σ2‖∞ log ‖Au+ γ + σ2‖1,

≥ ‖z + γ + σ2‖∞ − ‖z + γ + σ2‖∞ log ‖z + γ + σ2‖∞. (3.6)

Since z ≥ 0, T0 is bounded below. The coercivity of Tα(u) = T0(u) + α
2 ‖u‖

2
2 then follows

immediately.

By Theorem 3.1.4, Tα has a unique minimizer in C and hence Rα(A, z+γ) is well-defined.

3.1.2 Rα(A, z + γ) is Continuous

Let uα be the unique solution of Tα over C given by Corollary 3.1.5. A similar analysis yields

the existence and uniqueness of minimizers uα,n of Tα(Anu; z) in (1.12) for α ≥ 0 (recall that

An and zn satisfied the same assumptions as A and z).

The following theorem gives conditions that guarantee this result.

Theorem 3.1.6. Let uα,n be the unique minimizer of Tα,n over C, and suppose that

1. for any sequence {un} ⊂ L2(Ω),

lim
n→∞

Tα,n(un) = +∞ whenever lim
n→∞

‖un‖2 = +∞; (3.7)

2. given B > 0 and ε > 0, there exists N such that

|Tα,n(u)− Tα(u)| < ε whenever n ≥ N, ‖u‖2 ≤ B. (3.8)

Then uα,n converges strongly to uα in L2(Ω).

Proof. Note that Tα,n(uα,n) ≤ Tα,n(uα). From this and (3.8), yields

lim inf Tα,n(uα,n) ≤ lim supTα,n(uα,n) ≤ Tα(uα) <∞. (3.9)
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Thus by (3.7), the uα,n’s are bounded in L2(Ω). By Theorem 3.1.1, there exists a subse-

quence {unj} that converges weakly to some û ∈ L2(Ω). Furthermore, by the weak lower

semicontinuity of Tα, (3.8), and (3.9) it follows

Tα(û) ≤ lim inf Tα(unj ),

= lim inf(Tα(unj )− Tα,nj (unj )) + lim inf Tα,nj (unj ),

≤ Tα(uα).

By uniqueness of minimizers, û = uα. Thus {unj} converges weakly to uα, and hence, uα,n ⇀

uα.

Let now prove strong convergence. This follows if ||uα,n||2 → ||uα||2 since uα,n ⇀ uα [4,

Exercise 8, page 128]. By the weak lower semi-continuity of the norm ||uα||2 ≤ lim inf ||uα,n||2.

However Tα,n(uα,n) ≤ Tα,n(uα) implies

lim inf ||uα,n||22 ≤ ||uα||22 +
2
α

(T0(uα)− lim inf T0(uα,n))

≤ ||uα||22

Since T0 is weakly, lower semi continuous. Hence ||uα,n||2 → ||uα||2 which in turn implies

uα,n → uα.

A corollary of Theorem 3.1.6 is the continuity result for (3.3) that concludes this part.

Corollary 3.1.7. Rα(A, z + γ) is continuous.

Proof. It suffices to show that conditions (i) and (ii) from Theorem 3.1.6 hold. For condition

(i), note that the analogue of inequality (3.6) for T0,n is given by

T0,n(uα,n) ≥ ‖zn + σ2‖∞ − ‖zn + σ2‖∞ log ‖zn + σ2‖∞,

which has a lower bound for all n since ‖zn − (z + γ)‖∞ → 0 and z ∈ L∞(Ω) is nonnegative.

Thus Tα,n(un) = T0,n(un) + α
2 ‖un‖

2
2 →∞ whenever ‖un‖2 →∞, and hence, (3.7) is satisfied.
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For condition (ii), note that, using Jensen’s inequality and the properties of the logarithm,

|Tα,n(u)− Tα(u)| =
∣∣∣∣∫

Ω

(
(An −A)u− (zn + σ2) log(Anu+ γ + σ2)

)
dx

+
∫

Ω

(
(z + γ + σ2) log(Au+ γ + σ2)

)
dx

∣∣∣∣ ,
≤ ‖An −A‖1‖u‖1

+‖zn − (z + γ)‖∞ log(‖An‖1‖u‖1 + (γ + σ2)|Ω|) (3.10)

+‖z + γ + σ2‖∞ log
∥∥(Au+ γ + σ2)/(Anu+ γ + σ2)

∥∥
1
.

By assumption, ‖An − A‖1, ‖zn − (z + γ)‖∞ → 0. Furthermore, by the Banach-Steinhaus

Theorem, ‖An‖1 is uniformly bounded, and since ‖u‖2 is bounded by assumption, by Theorem

3.1.1 ‖u‖1 is bounded as well. Thus the first two terms on the right-hand side in (3.10) tend

to zero as n→∞. For the third term note that

∥∥∥∥ Au+ γ + σ2

Anu+ γ + σ2
− 1
∥∥∥∥

1

≤
∥∥∥∥ 1
Anu+ γ + σ2

∥∥∥∥
1

‖An −A‖1 ‖u‖1,

which converges to zero since ‖1/(Anu + γ + σ2)‖1 is bounded and ‖An − A‖1 → 0. Thus

log(‖(Au+ γ + σ2)/(Aun + γ + σ2)‖1)→ log(1) = 0, and hence

|Tα,n(u)− Tα(u)| → 0. (3.11)

3.1.3 Rα(A, z + γ) is Convergent

The task in this section is to prove that Rα(A, z + γ) is convergent.

Theorem 3.1.8. Rα(A, z + γ) is convergent.

Proof. Suppose αn → 0 at a rate such that

(T0,n(uexact)− T0,n(u0,n))/αn → 0. (3.12)



3.1. TIKHONOV REGULARIZATION 24

Then since uαn,n minimizes Tαn,n, it is obvious that

Tαn,n(uαn,n) ≤ Tαn,n(uexact). (3.13)

Since {zn} and {An} are uniformly bounded and An → A in the L1(Ω) operator norm,

{Tαn,n(uexact)} is a bounded sequence. Hence {Tαn,n(uαn,n)} is bounded by (3.13).

Subtracting T0,n(u0,n) from both sides of (3.13) and dividing by αn yields

(T0,n(uαn,n)− T0,n(u0,n))/αn +
1
2
‖uαn,n‖22 ≤ (T0,n(uexact)− T0,n(u0,n))/αn

+
1
2
‖uexact‖22. (3.14)

By (3.12), the right-hand side is bounded, implying the left hand side is bounded. Since

T0,n(uαn,n)− T0,n(u0,n) is nonnegative, this implies that {uαn,n} is bounded in L2(Ω).

Let now show that uαn,n → uexact in L2(Ω) by showing that every subsequence of {uαn,n}

contains a subsequence that converges to uexact. Since {uαn,n} is bounded in L2(Ω), by

Theorem 3.1.1, each of its subsequences in turn has a subsequence that converges weakly in

L2(Ω). Let {uαnj ,nj} be such a sequence and û its weak limit. Then

T0(û) =
∫

Ω
(A(û− uαnj ,nj ) + (A−Anj )uαnj ,nj dx

+
∫

Ω
(znj − (z + γ)) log(Aû+ γ + σ2)) dx

−
∫

Ω
(znj + σ2) log((Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)) dx

+T0,nj (uαnj ,nj ),

which, as in previous arguments, yields

|T0,nj (uαnj ,nj ) − T0(û)|

≤
∣∣∣∣∫

Ω
A
(
û− uαnj ,nj

)
dx

∣∣∣∣
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+‖znj − (z + γ)‖∞ log(‖A‖1‖û‖1 + γ|Ω|)

+‖znj + σ2‖∞ log ‖(Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)‖1

+‖A−Anj‖1‖uαnj ,nj‖1.

Then

‖znj − (z + γ)‖∞ log(‖A‖1‖û‖1 + (γ + σ2)|Ω|)→ 0,

since ‖znj − (z + γ)‖∞ → 0 and log(‖A‖1‖û‖1 + (γ + σ2)|Ω|) is constant, and

‖A−Anj‖1‖uαnj ,nj‖1 → 0

since ‖A−Anj‖1 → 0 and ‖uαnj ,nj‖1 is bounded.

Since A is a bounded linear operator on L2(Ω) with Ω a set of finite measure, F (u) =
∫

ΩAu dx

is a bounded linear functional on L2(Ω). The weak convergence of {uαnj ,nj} then implies∫
ΩAuαnj ,nj dx→

∫
ΩAû dx, which yields

∫
ΩA

(
û− uαnj ,nj

)
dx→ 0.

Since A is compact, uαnj ,nj converges weakly to û, hence ‖Auαnj ,nj −Aû‖1 → 0 (cf. [4, Prop.

3.3]). Thus, since
∥∥∥ 1
Aû+γ+σ2

∥∥∥
1

is bounded, and

∥∥∥∥∥Anjuαnj ,nj + γ + σ2

Aû+ γ + σ2
− 1

∥∥∥∥∥
1

≤
∥∥∥∥ 1
Aû+ γ + σ2

∥∥∥∥
1

‖Anjuαnj ,nj −Aû‖1,

≤
∥∥∥∥ 1
Aû+ γ + σ2

∥∥∥∥
1

×(∥∥Anj −A∥∥1
‖uαnj ,nj‖1 + ‖Auαnj ,nj −Aû‖1

)
,

it results that ‖znj + σ2‖∞ log ‖(Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)‖1 → 0. Therefore

T0(û) = lim
nj→∞

T0,nj (uαnj ,nj ).
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Invoking (3.14), (3.12), and (3.11), respectively, yields

lim
nj→∞

T0,nj (uαnj ,nj ) = lim
nj→∞

T0,nj (uαnj ,nj ) = lim
nj→∞

T0,nj (uexact) = T0(uexact).

Thus T0(û) = T0(uexact). Since uexact is the unique minimizer of T0, it follows û = uexact.

Therefore {uαnj ,nj} converges weakly to uexact in L2(Ω).

With weak convergence in hand, the next task is to prove strong convergence, which is true pro-

vided ||uαn,n||2 → ||uexact||2. In order to prove this is the case, noting that by the weak lower

semi-continuity of the norm, ||uexact||22 ≤ lim inf ||uαn,n||22, and since T0,n(u0,n) ≤ T0,n(uαn,n),

then

Tα,n(uαn,n) ≤ Tαn,n(uexact)

⇒ αn, n

2
||uαn,n||22 + T0,n(uαn,n) ≤ αn, n

2
||uexact||22 + T0,n(uexact)

⇒ αn, n

2
||uαn,n||22 + T0,n(u0,n) ≤ αn, n

2
||uexact||22 + T0,n(uexact)

⇒ ||uαn,n||22 ≤ ||uexact||22 − 2
(
T0,n(u0,n)− T0,n(uexact)

(αn, n)

)
,

therefore with (3.12),

lim inf ||uαn,n||22 ≤ ||uexact||22 − 2 lim inf
(
T0,n(u0,n)− T0,n(uexact)

(αn, n)

)
≤ ||uexact||22.

Hence it is clear that ||uαn,n||22 → ||uexact||22 consequently uαn,n converges to uexact strongly in

L2(Ω).

A summary of the results is the next Theorem.

Theorem 3.1.9. Rα(A, z + γ), defined in (3.3) defines a regularization scheme.

Proof. By Corollaries 3.1.5 and 3.1.7 Rα is well-defined and continuous and therefore satisfies

Conditions 1 and 2 of Definition 2.2.1. Theorem 3.1.8 then gives convergence.
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3.2 Differential Regularization Theory

The work in this section appears in [7], though it has been modified the in presentation

significantly. In this section, the focus is to study the use of first-order differential operators

for regularization. Let define

〈u, v〉H1(Ω)
def= 〈u, v〉2 + 〈∇u,∇v〉2, (3.15)

where “∇ ” denotes the gradient. The set of all functions u ∈ C1(Ω) such that

‖u‖H1(Ω) =
√
〈u, u〉H1(Ω)

is finite is a normed linear space whose closure in L2(Ω) is the Sobolev space H1(Ω) [34].

Noting, moreover, that with the inner-product defined in (3.37), H1(Ω) is a Hilbert space.

Now, let introduce the d× d matrix valued function

[G(x)]ij = gij(x), 1 ≤ i, j ≤ d,

where G(x) is non-singular for all x ∈ Ω̄. Moreover, let assume that the gij ’s are continuously

differentiable for all i and j. Then a regularization functional can be defined, as in [24], by

J(u) =
1
2
‖G(x)∇u‖22. (3.16)

C is defined by

C = {u ∈ H1(Ω) | u ≥ 0} (3.17)

and

Rα(A, z + γ) = arg min
u∈C

{
T0(Au; z + γ) +

α

2
‖G(x)u‖2

}
. (3.18)

The task in this subsection is to show that (3.18) defines a regularization scheme as defined

in Definition 2.2.1.
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3.2.1 Rα(A, z + γ) is Well-Defined

With the ‖ · ‖H1(Ω) norm a function T is coercive if

T (u)→ +∞ whenever ‖u‖H1(Ω) → +∞. (3.19)

In order to prove the existence and uniqueness of solutions of (3.18), let introduce the following

theorem, which is similar to [33, Theorem 2.30].

Theorem 3.2.1. If T : H1(Ω)→ R is convex and coercive, then it has a minimizer on C. If

T is strictly convex it has a unique minimizer over C.

Proof. Let {un} ⊂ C be such that T (un)→ T∗
def= infu∈C T (u). Then, by (3.19), the sequence

{un} is bounded in H1(Ω). By the Rellich-Kondrachov Compactness Theorem [16, Theorem

1, Section 5.7], {un} has a subsequence {unj} that converges to some u∗ ∈ C. Now, since T is

convex, it is weakly lower semi-continuous [35], and hence,

T (u∗) ≤ lim inf T (unj ) = limT (un) = T∗.

Thus u∗ minimizes T on C. Uniqueness follows immediately if T strictly convex.

Corollary 3.2.2. Rα(A; z + γ) is well-defined.

Proof. First, recall that from the above arguments, T0 is strictly convex since A is invertible.

Next, note that

‖G(x)∇u‖2 =
d∑
`=1

∫
Ω

 d∑
j=1

glj(x)∂ju

2

dx (3.20)

=
d∑
`=1

∫
Ω
ḡjk(x)(∂ju)(∂ku) dx (3.21)

where ḡjk(x) def=
∑d

`=1 glj(x)glk(x). It is readily seen that if [Ḡ(x)]jk
def= ḡjk(x), then Ḡ(x) =

GT (x)G(x), and hence Ḡ(x) is symmetric and positive definite for all x. Since Ω̄ is a closed
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and bounded set, the eigenvalues of Ḡ(x) will be uniformly bounded away from 0 on Ω. Thus

there exists a constant θ > 0 such that

n∑
j,k=1

ḡjk(x)ξjξk ≥ θ|ξ|2 (3.22)

for all x ∈ Ω and ξ = (ξ1, · · · , ξn) ∈ Rn. Equation (3.22) implies that for u ∈ H1(Ω),

J(u) ≥ θ
∫

Ω
∇u · ∇u dx. (3.23)

Moreover, the Poincaré inequality [16, Theorem 3, Chapter 5], implies that there exists a

constant C such that

‖u‖22 ≤ C‖∇u‖22.

Therefore,

J(u) + Cθ‖∇u‖22 ≥ θ‖u‖2H1(Ω).

But by (3.23), ‖∇u‖22 ≤ θ−1J(u), and so this yields to, finally,

J(u) ≥ θ

1 + C
‖u‖2H1(Ω). (3.24)

Thus J is coercive, and is convex by results shown in [13].

The strict convexity of Tα over C follows immediately.

To show that Tα is coercive, noting that by Jensen’s inequality and the properties of the

function x− c log x for c > 0,

T0(u) ≥ ‖Au+ γ + σ2‖1 − ‖z + γ + σ2‖∞ log ‖Au+ γ + σ2‖1,

≥ ‖z + γ + σ2‖∞ − ‖z + γ + σ2‖∞ log ‖z + γ + σ2‖∞. (3.25)

Since z ≥ 0, T0 is bounded below. Thus the coercivity of J implies the coercivity of Tα.

The desired result then follows from Theorem 3.2.1
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Remark: The choice of boundary conditions will also determine the space in which solutions

can be expected to be found. For example, if the boundary condition u = 0 on ∂Ω is used,

then J will be strictly convex on the set H1
0 (Ω) def= {u ∈ H1(Ω) | u = 0 on ∂Ω} [16], and

hence, by the arguments above Tα will have a unique minimizer on C0 = {u ∈ H1
0 (Ω) | u ≥ 0}.

3.2.2 Rα(A, z + γ) is Continuous

Recalling that An and zn in (1.11) satisfy the same assumptions as A and z, the above

arguments give that uα,n (defined in (1.12)) exists, and is unique if An is invertible.

Theorem 3.2.3. Let uα be the unique minimizer of Tα over C, and for each n ∈ N let uα,n

a minimizer of Tα,n over C. Suppose, furthermore, that

1. for any sequence {un} ⊂ H1(Ω),

lim
n→∞

Tα,n(un) = +∞ whenever lim
n→∞

‖un‖H1(Ω) = +∞; (3.26)

2. given B > 0 and ε > 0, there exists N such that

|Tα,n(u)− Tα(u)| < ε whenever n ≥ N, ‖u‖H1(Ω) ≤ B. (3.27)

Then

uα,n → uα in L2(Ω). (3.28)

Proof. Note that Tα,n(uα,n) ≤ Tα,n(uα). From this and (3.27), it is obvious that

lim inf Tα,n(uα,n) ≤ lim supTα,n(uα,n) ≤ Tα(uα) <∞. (3.29)

Thus by (3.26), the uα,n’s are bounded in H1(Ω). The Rellich-Kondrachov Compactness

Theorem [16, Theorem 1, Section 5.7] then tells that there exists a subsequence {unj} that

converges strongly to some û ∈ L2(Ω). Furthermore, the weak lower semicontinuity of Tα,
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(3.27), and (3.29) imply

Tα(û) ≤ lim inf Tα(unj ),

= lim inf(Tα(unj )− Tα,nj (unj )) + lim inf Tα,nj (unj ),

≤ Tα(uα).

By uniqueness of minimizers, û = uα. Thus every convergent subsequence of {uα,n} converges

strongly to uα, and hence, it results (3.28).

The following corollary of Theorem 3.2.3 is the stability result for (3.18) that is desired.

Corollary 3.2.4. Rα(A, z + γ) is continuous.

Proof. It suffices to show that conditions (i) and (ii) from Theorem 3.2.3 hold. For condition

(i), note that the analogue of inequality (3.25) for T0,n is given by

T0,n(uα,n) ≥ ‖zn + σ2‖∞ − ‖zn + σ2‖∞ log ‖zn + σ2‖∞,

which has a lower bound for all n since ‖zn − (z + γ)‖∞ → 0 and z ∈ L∞(Ω) is nonnegative.

Thus by (3.24) Tα,n(un) = T0,n(un) + αJ(un) → +∞ whenever ‖un‖H1(Ω) → ∞, and hence

(3.26) is satisfied.

For condition (ii), note that using Jensen’s inequality and the properties of the logarithm

|Tα,n(u)− Tα(u)| =
∣∣∣∣∫

Ω

(
(An −A)u− (zn + σ2) log(Anu+ γ + σ2)

)
dx

+
∫

Ω

(
(z + γ + σ2) log(Au+ γ + σ2)

)
dx

∣∣∣∣ ,
≤ ‖An −A‖1‖u‖1

+‖zn − (z + γ)‖∞ log(‖An‖1‖u‖1 + (γ + σ2)|Ω|) (3.30)

+‖z + γ + σ2‖∞ log
∥∥(Au+ γ + σ2)/(Anu+ γ + σ2)

∥∥
1
.

By assumption, ‖An − A‖1, ‖zn − (z + γ)‖∞ → 0. Furthermore, by the Banach-Steinhaus
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Theorem, ‖An‖1 is uniformly bounded. Since it is assumed that ‖u‖H1(Ω) is bounded, and

H1(Ω) ⊂ L2(Ω), ‖u‖2 will be bounded as well. Moreover, since Ω is a bounded set, this

implies that ‖u‖1 is bounded. Thus the first two terms on the right-hand side in (3.30) tend

to zero as n→∞. For the third term note that

∥∥∥∥ Au+ γ + σ2

Anu+ γ + σ2
− 1
∥∥∥∥

1

≤
∥∥∥∥ 1
Anu+ γ + σ2

∥∥∥∥
1

‖An −A‖1 ‖u‖1,

which converges to zero since ‖1/(Anu + γ + σ2)‖1 is bounded and ‖An − A‖1 → 0. Thus

log(‖(Au+ γ + σ2)/(Aun + γ + σ2)‖1)→ log(1) = 0, and hence

|Tα,n(u)− Tα(u)| → 0. (3.31)

The desired result now follows from Theorem 3.2.3.

3.2.3 Rα(A, z + γ) is Convergent

The task now, is to prove that Rα(A, z + γ) is convergent, that is, Condition 2 of Definition

2.2.1 holds. For this, let assume that A is invertible so that uexact is the unique solution of

Au = z.

Theorem 3.2.5. Rα(A, z + γ) is convergent.

Proof. Suppose αn → 0 at a rate such that

(T0,n(uexact)− T0,n(u0,n))/αn (3.32)

is bounded. Then since uαn,n minimizes Tαn,n, this yields

Tαn,n(uαn,n) ≤ Tαn,n(uexact). (3.33)

Since {zn} and {An} are uniformly bounded and An → A in the L1(Ω) operator norm,

{Tαn,n(uexact)} is a bounded sequence. Hence {Tαn,n(uαn,n)} is bounded by (3.33).
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Subtracting T0,n(u0,n) from both sides of (3.33) and dividing by αn yields

(T0,n(uαn,n)− T0,n(u0,n))/αn + αJ(uαn,n) ≤ (T0,n(uexact)− T0,n(u0,n))/αn

+αJ(uexact). (3.34)

By (3.32), the right-hand side is bounded, implying that the left hand side is bounded. Since

T0,n(uαn,n) − T0,n(u0,n) is nonnegative, this implies that {J(uαn,n)} is bounded. Equation

(3.24) then tells that {uαn,n} is bounded in H1(Ω).

Next is to show that uαn,n → uexact in L2(Ω) by showing that every subsequence of {uαn,n}

contains a subsequence that converges to uexact. Since {uαn,n} is bounded in H1(Ω), it is

relatively compact in L2(Ω) by the Rellich-Kondrachov Compactness Theorem [16, Theorem

1, Section 5.7]. Thus each of its subsequences in turn has a subsequence that converges

strongly in L2(Ω). Let {uαnj ,nj} be such a sequence and û its limit. Then

T0(û) =
∫

Ω
(A(û− uαnj ,nj ) + (A−Anj )uαnj ,nj dx

+
∫

Ω
(znj − (z + γ)) log(Aû+ γ + σ2)) dx

−
∫

Ω
(znj + σ2) log((Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)) dx

+T0,nj (uαnj ,nj ),

which, as in previous arguments, yields

|T0,nj (uαnj ,nj ) − T0(û)|

≤
∫

Ω
A
(
û− uαnj ,nj

)
dx

+‖znj − (z + γ)‖∞ log(‖A‖1‖û‖1 + γ|Ω|)

+‖znj + σ2‖∞ log ‖(Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)‖1

+‖A−Anj‖1‖uαnj ,nj‖1.
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Then

‖znj − (z + γ)‖∞ log(‖A‖1‖û‖1 + (γ + σ2)|Ω|)→ 0,

since ‖znj − (z + γ)‖∞ → 0 and log(‖A‖1‖û‖1 + (γ + σ2)|Ω|) is constant, and

‖A−Anj‖1‖uαnj ,nj‖1 → 0

since ‖A−Anj‖1 → 0, and ‖uαnj ,nj‖1 is bounded since ‖uαnj ,nj‖H1(Ω) is bounded and H1(Ω)

is compactly embedded in L2(Ω) ⊂ L1(Ω).

Knowing that A is a bounded linear operator and Ω is a set of finite measure, gives F (u) =∫
ΩAu dx is a bounded linear functional on Lp(Ω). The convergence of {uαnj ,nj} then implies∫
ΩAuαnj ,nj dx→

∫
ΩAû dx, which yields

∫
ΩA

(
û− uαnj ,nj

)
dx→ 0.

Since A is compact, it is completely continuous, i.e. uαnj ,nj → û implies that ‖Auαnj ,nj −

Aû‖1 → 0 (cf. [4, Prop. 3.3]). Thus, since
∥∥∥ 1
Aû+γ+σ2

∥∥∥
1

is bounded and

∥∥∥∥∥Anjuαnj ,nj + γ + σ2

Aû+ γ + σ2
− 1

∥∥∥∥∥
1

≤
∥∥∥∥ 1
Aû+ γ + σ2

∥∥∥∥
1

‖Anjuαnj ,nj −Aû‖1,

≤
∥∥∥∥ 1
Aû+ γ + σ2

∥∥∥∥
1

×(∥∥Anj −A∥∥1
‖uαnj ,nj‖1 + ‖Auαnj ,nj −Aû‖1

)
,

hence ‖znj + σ2‖∞ log ‖(Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)‖1 → 0. Therefore

T0(û) = lim
nj→∞

T0,nj (uαnj ,nj ).

Invoking (3.34), (3.32), and (3.31), respectively, yields

lim
nj→∞

T0,nj (uαnj ,nj ) = lim
nj→∞

T0,nj (uexact) = T0(uexact).

Thus T0(û) = T0(uexact). Since uexact is the unique minimizer of T0, it results û = uexact.

Therefore {uαnj ,nj} converges strongly to uexact in L2(Ω).
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The result obtained in this subsection are summarized in the following Theorem.

Theorem 3.2.6. Rα(A, z + γ) defined in (3.18) defines a regularization scheme.

Proof. By Corollaries 3.2.2 and 3.2.4, Rα(A, z+γ) is well-defined and continuous, and therefore

satisfies Condition 1 of Definition 2.2.1. Theorem 3.2.5 then gives Condition 2 and hence Rα

defines a regularization scheme.

3.3 Higher Order Differential Regularization Theory

In this section, the focus is the use of m-order differential operators for regularization purpose.

Let define

τi =
m+1∑
j=1

qij(x)∂j−1
i , (3.35)

and

τ
def=

d∑
i=1

τiei, (3.36)

{ei}1≤i≤d being the canonical basis of Rd and ∂j−1
i = (∂/∂xi)j−1. The norm in this section is

||u||H0
m(Ω) =

 ∑
|α|≤m

∫
Ω
|∂αu|2 dx

 1
2

(3.37)

H0
m(Ω) is the completion of C∞c (Ω) with respect to || · ||H0

m(Ω).

In addition Q is a d× (m+ 1) real valued matrix of functions

[Q(x)]ij = qij(x), 1 ≤ i ≤ d, 1 ≤ j ≤ m+ 1

where the qij(x)’s are nonnegative and C∞(Ω) for all x ∈ Ω̄. Furthermore by assumption the

qi,n+1(x)’s are strictly positive. The regularizing functional is given by

J(u) = ‖τu‖22 =
d∑
i=1

∫
Ω

m+1∑
k,l=1

qik(x)qil(x)∂k−1
i u∂l−1

i u

 dx. (3.38)
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Lastly, Q(x) is such that there is θ > 0,

J(u) ≥ θ
d∑
i=1

∫
Ω

(qi,m+1(x))2(∂mi u)2 dx. (3.39)

The definition of C is then

C = {u ∈ H0
m(Ω) |u ≥ 0 }. (3.40)

The regularization scheme is

Rα(A, z + γ) = arg min
u∈C

{
T0(Au; z + γ) +

α

2
‖τu‖2

}
. (3.41)

The task in this subsection is to show that (3.41) defines a regularization scheme as defined

in Definition 2.2.1.

3.3.1 R(A; z + γ) is Well-Defined

Accordingly to the H0
m(Ω)-norm a function T is coercive if

T (u)→ +∞ whenever ‖u‖H0
m(Ω) → +∞. (3.42)

In order to prove the existence and uniqueness of solutions of (3.41), the use of the following

theorem, which is similar to [33, Theorem 2.30] helps.

Theorem 3.3.1. If T : H0
m(Ω)→ R is convex and coercive, then it has a minimizer on C. If

T is strictly convex it has a unique minimizer over C.

Proof. Let {un} ⊂ C be such that T (un)→ T∗
def= infu∈C T (u). Then, by (3.42), the sequence

{un} is bounded in H0
m(Ω). By the Rellich’s Theorem [5, Theorem 6.14], this implies that

{un} has a subsequence {unj} that converges to some u∗ ∈ C. Now, since T is convex, it is

weakly lower semi-continuous [35], and hence,

T (u∗) ≤ lim inf T (unj ) = limT (un) = T∗.
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Thus u∗ minimizes T on C. Uniqueness follows immediately if T is strictly convex.

Corollary 3.3.2. Rα(A, z + γ) is well-defined.

Proof. Since the qi,m+1’s are strictly positive , there is {ci,m+1}1≤i≤d such that

qi,m+1(x) ≥ ci,m+1 > 0 for all i and x ∈ Ω.

Hence ∫
Ω

d∑
i=1

(qi,n+1)2(∂ni u)2 dx ≥
∫

Ω

d∑
i=1

(ci,n+1)2(∂ni u)2 dx, (3.43)

by Theorem [5, 7.14], since the right hand side of (3.43) is such that
∑d

i=1(ci,n+1)2ξ2n
i 6= 0 for

all nonzero ξ ∈ Rd [5, page 210], it is elliptic with real coefficients, hence coercive on H0
m(Ω).

Thus, by (3.39) J is coercive, and is convex as a composite functional of linear functions and

the norm squared.

The convexity of Tα over C follows immediately, with strict convexity if A is invertible.

To show that Tα is coercive, noting that by Jensen’s inequality and the properties of the

function x− c log x for c > 0,

T0(u) ≥ ‖Au+ γ + σ2‖1 − ‖z + γ + σ2‖∞ log ‖Au+ γ + σ2‖1,

≥ ‖z + γ + σ2‖∞ − ‖z + γ + σ2‖∞ log ‖z + γ + σ2‖∞. (3.44)

Since z ≥ 0, T0 is bounded below. Thus the coercivity of J implies the coercivity of Tα.

The desired result then follows from Theorem 3.3.1

Remark: Even though, if u ∈ H0
m(Ω) then u = 0 on the boundary [5, Corollary 6.48], this

analysis can generalized to reflexive and periodic boundary conditions since in both cases no

boundary condition is assumed on the boundary of the extended function, which is the same

as assuming zero boundary condition on the extended function [22, page 31].
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3.3.2 Rα(A, z + γ) is Continuous

Recalling that An and zn in (1.11) satisfy the same assumptions as A and z, from the above

arguments uα,n (defined in (1.12)) exists, and is unique if An is invertible.

To prove stability, let assume that Tα has a unique minimizer uα over C and then show that

An → A and zn → z + γ implies uα,n → uα. The following theorem gives conditions that

guarantee this result. For completeness, let present the proof.

Theorem 3.3.3. Let uα be the unique minimizer of Tα over C, and for each n ∈ N let uα,n

a minimizer of Tα,n over C. Suppose, furthermore, that

1. for any sequence {un} ⊂ H0
m(Ω),

lim
n→∞

Tα,n(un) = +∞ whenever lim
n→∞

‖un‖H0
m(Ω) = +∞; (3.45)

2. given B > 0 and ε > 0, there exists N such that

|Tα,n(u)− Tα(u)| < ε whenever n ≥ N, ‖u‖H0
m(Ω) ≤ B. (3.46)

Then

lim
n→∞

‖uα,n − uα‖H0
k(Ω) = 0 for all k < m. (3.47)

Proof. Note that Tα,n(uα,n) ≤ Tα,n(uα). From this and (3.46), it follows

lim inf Tα,n(uα,n) ≤ lim supTα,n(uα,n) ≤ Tα(uα) <∞. (3.48)

Thus by (3.45), the uα,n’s are bounded in H0
m(Ω). Rellich’s Theorem [5, Theorem 6.14] then

tells us that there exists a subsequence {unj} that converges to some û ∈ H0
k(Ω) for k < m.
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Furthermore, by the weak lower semicontinuity of Tα, (3.46), and (3.48)

Tα(û) ≤ lim inf Tα(unj ),

= lim inf(Tα(unj )− Tα,nj (unj )) + lim inf Tα,nj (unj ),

≤ Tα(uα).

By uniqueness of minimizers, û = uα. Thus every convergent subsequence of {uα,n} converges

to uα, which implies, (3.47).

The following corollary of Theorem 3.3.3 is the stability result for (3.41) that is sought.

Corollary 3.3.4. Rα(A, z + γ) is continuous in H0
k(Ω) for k < m.

Proof. It suffices to show that conditions (i) and (ii) from Theorem 3.3.3 hold. For condition

(i), note that the analogue of inequality (3.44) for T0,n is given by

T0,n(uα,n) ≥ ‖zn + σ2‖∞ − ‖zn + σ2‖∞ log ‖zn + σ2‖∞,

which has a lower bound for all n since ‖zn − (z + γ)‖∞ → 0 and z ∈ L∞(Ω) is nonnegative.

Thus by the coercivity of J , Tα,n(un) = T0,n(un) +αJ(un)→ +∞ whenever ‖un‖H0
m(Ω) →∞,

and hence (3.45) is satisfied.

For condition (ii), note that using Jensen’s inequality and the properties of the logarithm

|Tα,n(u)− Tα(u)| =
∣∣∣∣∫

Ω

(
(An −A)u− (zn + σ2) log(Anu+ γ + σ2)

)
dx

+
∫

Ω

(
(z + γ + σ2) log(Au+ γ + σ2)

)
dx

∣∣∣∣ ,
≤ ‖An −A‖1‖u‖1

+‖zn − (z + γ)‖∞ log(‖An‖1‖u‖1 + (γ + σ2)|Ω|) (3.49)

+‖z + γ + σ2‖∞ log
∥∥(Au+ γ + σ2)/(Anu+ γ + σ2)

∥∥
1
.

By assumption, ‖An − A‖1, ‖zn − (z + γ)‖∞ → 0. Furthermore, by the Banach-Steinhaus
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Theorem, ‖An‖1 is uniformly bounded. Since it is assumed that ‖u‖H0
m(Ω) is bounded, by

Rellich’s Theorem [5, Theorem 6.14] ‖u‖H0
k(Ω) will be bounded as well for k < m. Moreover,

since Ω is a bounded set, this implies that ‖u‖1 is bounded. Thus the first two terms on the

right-hand side in (3.49) tend to zero as n→∞. For the third term note that

∥∥∥∥ Au+ γ + σ2

Anu+ γ + σ2
− 1
∥∥∥∥

1

≤
∥∥∥∥ 1
Anu+ γ + σ2

∥∥∥∥
1

‖An −A‖1 ‖u‖1,

which converges to zero since ‖1/(Anu + γ + σ2)‖1 is bounded and ‖An − A‖1 → 0. Thus

log(‖(Au+ γ + σ2)/(Aun + γ + σ2)‖1)→ log(1) = 0, and hence

|Tα,n(u)− Tα(u)| → 0. (3.50)

The desired result now follows from Theorem 3.3.3.

3.3.3 R(A, z + γ) is Convergent

It remains to show that a sequence of positive regularization parameters {αn} can be chosen

so that uαn,n → uexact as αn → 0.

Theorem 3.3.5. Rα(A, z + γ) is convergent.

Proof. Suppose αn → 0 at a rate such that

(T0,n(uexact)− T0,n(u0,n))/αn (3.51)

is bounded. Since uαn,n minimizes Tαn,n,

Tαn,n(uαn,n) ≤ Tαn,n(uexact). (3.52)

Since {zn} and {An} are uniformly bounded and An → A in the L1(Ω) operator norm,

{Tαn,n(uexact)} is a bounded sequence. Hence {Tαn,n(uαn,n)} is bounded by (3.80).
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Subtracting T0,n(u0,n) from both sides of (3.52) and dividing by αn yields

(T0,n(uαn,n)− T0,n(u0,n))/αn + αJ(uαn,n) ≤ (T0,n(uexact)− T0,n(u0,n))/αn

+ αJ(uexact). (3.53)

By (3.51), the right-hand side is bounded, implying the left hand side is bounded. Since

T0,n(uαn,n)−T0,n(u0,n) is nonnegative, this implies that {J(uαn,n)} is bounded. The coercivity

of J then tells us that {uαn,n} is bounded in H0
m(Ω).

Coming next is proving that uαn,n → uexact in H0
k(Ω) by showing that every subsequence of

{uαn,n} contains a subsequence that converges to uexact. Since {uαn,n} is bounded in H0
m(Ω),

each of its subsequences in turn has a subsequence that converges strongly in H0
k(Ω) for k < m

[5, Theorem 6.14]. Let {uαnj ,nj} be such a sequence and û its limit. Then

T0(û) =
∫

Ω
(A(û− uαnj ,nj ) + (A−Anj )uαnj ,nj dx dy

+
∫

Ω
(znj − (z + γ)) log(Aû+ γ + σ2)) dx dy

−
∫

Ω
(znj + σ2) log((Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)) dx dy

+T0,nj (uαnj ,nj ),

which, as in previous arguments, yields

|T0,nj (uαnj ,nj ) − T0(û)|

≤
∫

Ω
A
(
û− uαnj ,nj

)
dx dy

+‖znj − (z + γ)‖∞ log(‖A‖1‖û‖1 + γ|Ω|)

+‖znj + σ2‖∞ log ‖(Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)‖1

+‖A−Anj‖1‖uαnj ,nj‖1.

Then

‖znj − (z + γ)‖∞ log(‖A‖1‖û‖1 + (γ + σ2)|Ω|)→ 0,
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since ‖znj − (z + γ)‖∞ → 0 and log(‖A‖1‖û‖1 + (γ + σ2)|Ω|) is constant, and

‖A−Anj‖1‖uαnj ,nj‖1 → 0

since ‖A−Anj‖1 → 0, and ‖uαnj ,nj‖1 is bounded since ‖uαnj ,nj‖H0
m(Ω) is bounded and H0

m(Ω)

is compactly embedded in L2(Ω) ⊂ L1(Ω).

Since A is a bounded linear operator and Ω is a set of finite measure, therefore F (u) =∫
ΩAu dx is a bounded linear functional on Lp(Ω). The convergence of {uαnj ,nj} then implies∫
ΩAuαnj ,nj dx→

∫
ΩAû dx, which yields

∫
ΩA

(
û− uαnj ,nj

)
dx→ 0.

Since A is compact, it is completely continuous, i.e. uαnj ,nj → û implies that ‖Auαnj ,nj −

Aû‖1 → 0 (cf. [4, Prop. 3.3]). Thus, since
∥∥∥ 1
Aû+γ+σ2

∥∥∥
1

is bounded and

∥∥∥∥∥Anjuαnj ,nj + γ + σ2

Aû+ γ + σ2
− 1

∥∥∥∥∥
1

≤
∥∥∥∥ 1
Aû+ γ + σ2

∥∥∥∥
1

‖Anjuαnj ,nj −Aû‖1,

≤
∥∥∥∥ 1
Aû+ γ + σ2

∥∥∥∥
1

×(∥∥Anj −A∥∥1
‖uαnj ,nj‖1 + ‖Auαnj ,nj −Aû‖1

)
,

on the other hand, ‖znj + σ2‖∞ log ‖(Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)‖1 → 0. Therefore

T0(û) = lim
nj→∞

T0,nj (uαnj ,nj ).

Invoking (3.53), (3.51), and (3.50), respectively, yields

lim
nj→∞

T0,nj (uαnj ,nj ) = lim
nj→∞

T0,nj (uexact) = T0(uexact).

Thus T0(û) = T0(uexact). Since uexact is the unique minimizer of T0, û = uexact. Therefore

{uαnj ,nj} converges strongly to uexact in H0
k(Ω) for k < m.

In this second part let suppose that uexact /∈ C.
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Definition 3.3.6. Let uexact ∈ L2(Ω). ubapprox is called a best approximation to uexact if

ubapprox = arg min
u∈C
‖u− uexact‖. (3.54)

The existence of ubapprox is guaranteed since C is closed [11, Theorem V.2].

Now the goal is to show that {αn} can be chosen so that uαn,n → ubapprox as αn → 0

Corollary 3.3.7. There is a sequence {αn} such that uαn,n ∈ C and

uαn,n → ubapprox. (3.55)

Proof. Since C is a closed subspace of L2(Ω), it follows

L2(Ω) = C ⊕ C⊥

hence

uexact = ubapprox + (I − PC)uexact

⇒ z = Aubapprox +A(I − PC)uexact

Let have

Aubapprox = zbapprox

∇T0(Au; z + γ) = A∗
(
Au− zbapprox

Au+ γ + σ2

)
+ A∗

(
A(PC − I)uexact

Au+ γ + σ2

)
. (3.56)

From the above decomposition of∇T0(Au; z+γ) it is readily seen that ubapprox is the minimizer

of T0(Au; zbapprox + γ) . By theorem 3.3.5, since ubapprox ∈ C there is {αn} such that uαn,n →
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ubapprox. Moreover, when applied to T0(Au; z+γ) this sequence will lead to ubapprox since the

first term of the right hand side of (3.56) will go to zero.

Putting together the well-posedness of Rα(A, z + γ), its continuity and convergence yield to

the final Theorem of this section.

Theorem 3.3.8. Rα(A, z + γ) defined in (3.41) is a regularization scheme.

3.4 Total Variation Regularization

The work in this section appears in [9]. In this section, the subject is to study total variation

regularization [2, 12,26]. In theory, this is accomplished by taking

J(u) = Jβ(u) def= sup
v∈V

∫
Ω

(
−u∇ · v +

√
β(1− |v(x)|2)

)
dx, (3.57)

where β ≥ 0 and

V = {v ∈ C1
0 (Ω; Rd) : |v(x)| ≤ 1 x ∈ Ω}.

Noting that if u is continuously differentiable on Ω, (3.57) takes the recognizable form [2,

Theorem 2.1]

Jβ(u) def=
∫

Ω

√
|∇u|2 + β dx. (3.58)

J0(u) is known as the total variation of u.

When (3.57) is used, minimizers of Tα will lie (as it will be shown later) in the space of

functions of bounded variation on Ω, which is defined by

BV (Ω) = {u ∈ L1(Ω) : J0(u) < +∞}. (3.59)

This motivates the following definition of C

C = {u ∈ BV (Ω) | u ≥ 0 almost everywhere}. (3.60)
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Let now give a number of results and definitions regarding BV (Ω); further background and

details on BV spaces can be found in [17, 19]. First of all, BV (Ω) is a Banach space with

respect to the norm

‖u‖BV = ‖u‖1 + J0(u).

√
x ≤
√
x+ β ≤

√
x+
√
β for β, x ≥ 0, yields

J0(u) ≤ Jβ(u) ≤ J0(u) +
√
β|Ω|. (3.61)

Inequality (3.61) will allow to assume, without loss of generality, that β = 0 in several of the

arguments.

With this norm, two useful definitions for this section are

Definition 3.4.1. A set S ⊂ BV (Ω) is said to be BV -bounded if there exists M > 0 such

that ‖u‖BV ≤M for all u ∈ S.

Definition 3.4.2. A functional T : Lp(Ω)→ R is said to be BV -coercive if

T (u)→ +∞ whenever ‖u‖BV → +∞. (3.62)

Note that BV (Ω) ⊂ L1(Ω), by definition. Also, as a consequence of the following theorem,

whose proof is found in [2], BV (Ω) ⊂ Lp(Ω) for 1 ≤ p ≤ d/(d − 1), where d/(d − 1) def= +∞

for d = 1.

Theorem 3.4.3. Let S be a BV -bounded set of functions. Then S is relatively compact, i.e.

its closure is compact, in Lp(Ω) for 1 ≤ p < d/(d−1). S is bounded and thus relatively weakly

compact for dimensions d ≥ 2 in Lp(Ω) for p = d/(d− 1).

Let define

Rα(A; z + γ) = arg min
u∈C
{T0(Au; z + γ) + αJβ(u)} . (3.63)

The task is to show that Rα(A, z + γ) defines a regularization scheme.
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3.4.1 Rα(A, z + γ) is Well-Defined

In order to prove the existence and uniqueness of solutions of (3.63), (3.60), the following

theorem, which is similar to [2, Theorem 3.1] will be useful.

Theorem 3.4.4. If T : Lp(Ω)→ R is convex and BV -coercive, and 1 ≤ p ≤ d/(d− 1), then

T has a minimizer over C. If T is strictly convex there is a unique minimizer.

Proof. Let {un} ⊂ C be such that T (un)→ infu∈C T (u). Then T (un) is bounded, and hence,

by (3.62), {un} is BV -bounded. Theorem 3.4.3 implies that there exists a subsequence {unj}

that converges to some û ∈ Lp(Ω). Convergence is weak if p = d/(d− 1). Since T is convex,

it is weakly lower semi-continuous [35], and hence,

T (û) ≤ lim inf T (unj ) = limT (un) = T∗,

where T∗ is the infimum of T on C. Thus û minimizes T on C. Uniqueness follows immediately

if T is a strictly convex functional and C is a convex set.

Using Theorem 3.4.4, requires showing that Tα is both strictly convex and BV -coercive.

Lemma 3.4.5. Tα is strictly convex on C.

Proof. It was shown above that T0 is strictly convex since A is nonsingular. The strict con-

vexity of Tα then follows immediately from the fact that Jβ is convex, which is proved in

[2].

Lemma 3.4.6. Tα is BV -coercive on C.

Proof. By (3.62), if ‖u‖BV → +∞, then Tα(u)→ +∞. A straightforward computation yields

the following decomposition of a function u ∈ BV (Ω):

u = v + w, (3.64)
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where

w =
(∫

Ω
u dx

/
|Ω|
)
χΩ, and

∫
Ω
v dx = 0. (3.65)

Here χΩ is the indicator function on Ω. It is shown in [2] that there exists C1 ∈ R+ such that,

for any u = v + w in BV (Ω),

‖v‖p ≤ C1J0(v), (3.66)

for 1 ≤ p ≤ d/(d − 1). Equation (3.66), the triangle inequality, and the fact that J0(w) = 0

yield

‖u‖BV ≤ ‖w‖1 + (C1 + 1)J0(v). (3.67)

Let {un} ⊂ BV (Ω) be a sequence with un = vn+wn as above, and suppose that lim inf Tα(un) =

K < +∞. Let {unk} ⊂ {un} be a subsequence such that Tα(unk) → lim inf Tα(un) = K.

Then, since Tα(unk) is uniformly bounded, αJ0(vnk) ≤ Tα(unk) − T0(uexact) implies that

J0(vnk) also is uniformly bounded. Noting that

‖Awnk‖1 = (‖AχΩ‖1 /|Ω|) ‖wnk‖1 = C2‖wnk‖1 (3.68)

and Au ≥ 0 for all u ∈ C, Jensen’s inequality together with (3.66) and (3.68) yields

Tα(unk) ≥ ‖Aunk + γ + σ2‖1 − ‖z + γ + σ2‖∞ log ‖Aunk + γ + σ2‖1, (3.69)

≥ ‖Awnk‖1 − ‖Avnk‖1 − (γ + σ2)|Ω|

−‖z + γ + σ2‖∞ log
(
‖Awnk‖1 + ‖Avnk‖1 + (γ + σ2)|Ω|

)
,

≥ C2‖wnk‖1 − ‖A‖1C1J0(vnk)− (γ + σ2)|Ω|

−‖z + γ + σ2‖∞ log
(
C2‖wnk‖1 + ‖A‖1C1J0(vnk) + (γ + σ2)|Ω|

)
,

≥ C2‖wnk‖1 −M − ‖z + γ + σ2‖∞ log(C2‖wnk‖1 +M), (3.70)

where M is an upper bound for ‖A‖1C1J0(vnk) + (γ + σ2)|Ω|, and ‖A‖1 is the operator norm
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induced by the norm on L1(Ω). Thus

lim inf
(
C2‖wnk‖1 −M − ‖z + γ + σ2‖∞ log(C2‖wnk‖1 +M)

)
≤ lim inf Tα(unk) = K.

If ‖wnk‖1 → +∞, then the limit inferior on the left would equal +∞, so lim inf ‖wnk‖1 < +∞.

Let {unkj } ⊂ {unk} be a subsequence such that ‖wnkj ‖1 → lim inf ‖wnk‖1. Then ‖wnkj ‖1 is

uniformly bounded.

Since ‖unkj ‖BV ≤ ‖wnkj ‖1 + (C1 + 1)J0(vnkj ), ‖unkj ‖BV is uniformly bounded, which implies

that lim inf ‖un‖BV is finite.

Thus it has been shown that if lim inf Tα(un) < +∞, then lim inf ‖un‖BV is finite. Therefore

‖un‖BV → +∞ implies Tα(un)→ +∞.

Existence and uniqueness of solutions of (3.63), (3.60) now follows immediately. Thus the

following is result of this subsection

Theorem 3.4.7. Rα(A, z + γ) is well-defined.

Before continuing, let note that in the denoising case, i.e. when A is the identity operator,

the existence and uniqueness of minimizers of Tα(u) was proved in [3].

3.4.2 Rα(A, z + γ) is Continuous

Recalling that An and zn in (1.11) satisfy the same assumptions as A and z, the above

arguments give that uα,n (defined in (1.12)) exists, and is unique if An is invertible.

Theorem 3.4.8. For each n ∈ N, let uα be the unique minimizer of Tα over C and uα,n a

minimizer of Tα,n over C. Suppose, furthermore, that

1. for any sequence {un} ⊂ Lp(Ω),

lim
n→+∞

Tα,n(un) = +∞ whenever lim
n→+∞

‖un‖BV = +∞; (3.71)
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2. given M > 0 and ε > 0, there exists N such that

|Tα,n(u)− Tα(u)| < ε whenever n ≥ N, ‖u‖BV ≤M. (3.72)

Then

uα,n → uα in Lp(Ω) (3.73)

for 1 ≤ p < d/(d− 1). If d ≥ 2 and p = d/(d− 1) convergence is weak, i.e.

uα,n ⇀ uα. (3.74)

Proof. Note that Tα,n(uα,n) ≤ Tα,n(uα). This and (3.72), yield

lim supTα,n(uα,n) ≤ Tα(uα) < +∞. (3.75)

Thus by (3.71), {uα,n} is BV -bounded. By Theorem 3.4.3, there exists a subsequence {uα,nj}

that converges (weakly) to some û ∈ Lp(Ω). Furthermore, by the weak lower semicontinuity

of Tα, (3.72), and (3.75) it follows

Tα(û) ≤ lim inf Tα(uα,nj ),

= lim inf(Tα(uα,nj )− Tα,nj (uα,nj )) + lim inf Tα,nj (uα,nj ),

≤ Tα(uα).

Since uα is the unique minimizer of Tα, û = uα. Since every convergent subsequence of {uα,n}

converges to uα, hence uα,n → uα (weakly if p = d/(d− 1)).

The following corollary of Theorem 3.4.8 is the stability result for (3.63), (3.60).

Corollary 3.4.9. Rα(Au; z + γ) is continuous with respect to Lp(Ω) for 1 < p < d/(d − 1)

and is weakly continuous with respect to Lp(Ω) for p = d/(d− 1).

Proof. Without loss of generality, due to (3.61), let assume β = 0 and show that conditions
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(i) and (ii) from Theorem 3.4.8 hold. Also, all limits are assumed to be taken as n→ +∞.

For condition (i), let proceed as in the proof of Lemma 3.4.6. Taking uα,n = vα,n + wα,n,

suppose that lim inf Tα,n(uα,n) = K < +∞, and let {uα,nk} ⊂ {uα,n} be a subsequence such

that Tα,nk(uα,nk)→ K.

Note that T0,nk(u0,nk) is uniformly bounded below, since using the analogue of inequality

(3.69) together with the properties of x− c log x for c > 0 yields T0,nk(u0,nk) ≥ ‖znk +σ2‖∞−

‖znk+σ2‖∞ log ‖znk+σ2‖∞, which is uniformly bounded below since ‖znk−(z+γ)‖∞ → 0 and

z ∈ L∞(Ω). Thus Tα,nk(uα,nk) ≥ T0,nk(u0,nk) + αJ0(vα,nk) implies that J0(vα,nk) is uniformly

bounded.

Since J0(vα,nk) is bounded, from (3.70),

Tα,nk(uα,nk) ≥ C2‖wα,nk‖1 −M − ‖znk + σ2‖∞ log (C2‖wα,nk‖1 +M) , (3.76)

where M is the upper bound on ‖An‖1C1J0(vα,n) + (γ + σ2)|Ω| obtained using the uniform

boundedness of both ‖An‖ (Banach-Steinhaus) and J0(vα,nk). Since ‖zn + σ2‖∞ is uniformly

bounded and lim inf Tα,nk(uα,nk) = K, there exists a subsequence {uα,nkj } ⊂ {uα,nk} such

that ‖wα,nkj ‖1 is uniformly bounded. Thus ‖uα,nkj ‖BV ≤ ‖wα,nkj ‖1 + (C1 + 1)J0(vα,nkj )

implies that ‖uα,nkj ‖BV is uniformly bounded, so lim inf ‖uα,n‖BV is finite. It has been shown

that lim inf Tα,n(uα,n) < +∞ implies lim inf ‖uα,n‖BV is finite, so ‖uα,n‖BV → +∞ implies

Tα,n(uα,n)→ +∞.

For condition (ii), note that, using Jensen’s inequality and the properties of the logarithm,

|Tα,n(u)− Tα(u)| =
∣∣∣∣∫

Ω

(
(An −A)u− (zn + σ2) log(Anu+ γ + σ2)

)
dx

+
∫

Ω

(
(z + γ + σ2) log(Au+ γ + σ2)

)
dx

∣∣∣∣ ,
≤ ‖An −A‖1‖u‖1

+‖zn − (z + γ)‖∞ log(‖An‖1‖u‖1 + (γ + σ2)|Ω|)

+‖z + γ + σ2‖∞ log
∥∥∥∥ (Au+ γ + σ2)

(Anu+ γ + σ2)

∥∥∥∥
1

. (3.77)
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By assumption, ‖An − A‖1, ‖zn − (z + γ)‖∞ → 0. Furthermore, by the Banach-Steinhaus

Theorem, ‖An‖1 is uniformly bounded, and since it has been assumed that ‖u‖BV is bounded,

by Theorem 3.4.3 ‖u‖1 is bounded as well. Thus the first two terms on the right-hand side in

(3.77) tend to zero as n→ +∞. For the third term note that

∥∥∥∥ Au+ γ + σ2

Anu+ γ + σ2
− 1
∥∥∥∥

1

≤
∥∥∥∥ 1
Anu+ γ + σ2

∥∥∥∥
1

‖An −A‖1 ‖u‖1,

which converges to zero since ‖1/(Anu + γ + σ2)‖1 is bounded and ‖An − A‖1 → 0. Thus

log(‖(Au+ γ + σ2)/(Aun + γ + σ2)‖1)→ log(1) = 0, and hence

|Tα,n(u)− Tα(u)| → 0. (3.78)

The desired result now follows from Theorem 3.4.8.

Finally, the main result of this subsection now follows directly from Theorem 3.4.7 and Corol-

lary 3.4.9.

3.4.3 Rα(A, z + γ) is Convergent

The task in this section is to prove that Rα(A, z + γ) is convergent, that is, Condition 2 of

Definition 2.2.1 holds. For this, assuming that A is invertible so that uexact is the unique

solution of Au = z.

Theorem 3.4.10. Rα(Au; z + γ) is convergent with respect to Lp(Ω) for 1 ≤ p < d/(d − 1)

and is weakly convergent for p = d/(d− 1).

Proof. Suppose αn → 0 at a rate such that

(T0,n(uexact)− T0,n(u0,n)))/αn (3.79)

is bounded. Again, due to (3.61), it suffices to consider the β = 0 case. Then since uαn,n
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minimizes Tαn,n, yields

Tαn,n(uαn,n) ≤ Tαn,n(uexact). (3.80)

Since {zn} and {An} are uniformly bounded and An → A in the L1(Ω) operator norm,

{Tαn,n(uexact)} is a bounded sequence, and (3.80) implies that {Tαn,n(uαn,n)} is therefore also

a bounded sequence.

Subtracting T0,n(u0,n) from each term in (3.80), dividing by αn, and using the decomposition

uαn,n = vαn,n + wαn,n yields

(T0,n(uαn,n)− T0,n(u0,n))/αn + J0(vαn,n) ≤ (T0,n(uexact)− T0,n(u0,n))/αn (3.81)

+J0(uexact).

By (3.79), the right-hand side of (3.81) is bounded, implying the left hand side is bounded.

Since T0,n(uαn,n)−T0,n(u0,n) is nonnegative, J0(vαn,n) is therefore also bounded. The bound-

edness of Tαn,n(uαn,n) together with (3.76) imply that ‖wαn,n‖1 is bounded. The BV -

boundedness of {uαn,n} then follows from (3.67).

In order to show that ‖uαn,n − uexact‖p → 0 (uαn,n ⇀ uexact for p = d/(d− 1)) let proceed by

showing that every subsequence of {uαn,n} contains a subsequence that converges to uexact.

Every subsequence {uαnj ,nj} of {uαn,n} is BV -bounded since {uαn,n} is, and by Theorem

3.4.3, it is reasonable to assume that {uαnj ,nj} converges strongly (weakly for p = d/(d− 1))

to some û ∈ Lp(Ω). Then

T0(û) =
∫

Ω
(A(û− uαnj ,nj ) + (A−Anj )uαnj ,nj + (znj − (z + γ)) log(Aû+ γ + σ2)) dx

−
∫

Ω
(znj + σ2) log((Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)) dx+ T0,nj (uαnj ,nj ),
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which, as in previous arguments, yields

|T0,nj (uαnj ,nj )− T0(û)| ≤
∣∣∣∣∫

Ω
A
(
û− uαnj ,nj

)
dx

∣∣∣∣
+‖znj − (z + γ)‖∞ log(‖A‖1‖û‖1 + γ|Ω|)

+‖znj + σ2‖∞ log ‖(Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)‖1

+‖A−Anj‖1‖uαnj ,nj‖1.

Then for 1 ≤ p ≤ d/d− 1,

‖znj − (z + γ)‖∞ log(‖A‖1‖û‖1 + (γ + σ2)|Ω|)→ 0,

since ‖znj − (z + γ)‖∞ → 0 and log(‖A‖1‖û‖1 + (γ + σ2)|Ω|) is constant, and

‖A−Anj‖1‖uαnj ,nj‖1 → 0

since ‖A−Anj‖1 → 0 and ‖uαnj ,nj‖1 is uniformly bounded.

Since A is a bounded linear operator and Ω is a set of finite measure, F (u) =
∫

ΩAu dx

is a bounded linear functional on Lp(Ω). The weak convergence of {uαnj ,nj} then implies∫
ΩAuαnj ,nj dx→

∫
ΩAû dx, which yields

∫
ΩA

(
û− uαnj ,nj

)
dx→ 0.

Since A is compact, it is completely continuous, i.e. the weak convergence of uαnj ,nj to û

implies that ‖Auαnj ,nj − Aû‖1 → 0 (cf. [4, Prop. 3.3]). Thus, since
∥∥∥ 1
Aû+γ+σ2

∥∥∥
1

is bounded,

and

∥∥∥∥∥Anjuαnj ,nj + γ + σ2

Aû+ γ + σ2
− 1

∥∥∥∥∥
1

≤
∥∥∥∥ 1
Aû+ γ + σ2

∥∥∥∥
1

‖Anjuαnj ,nj −Aû‖1,

≤
∥∥∥∥ 1
Aû+ γ + σ2

∥∥∥∥
1

×
(∥∥Anj −A∥∥1

‖uαnj ,nj‖1 + ‖Auαnj ,nj −Aû‖1
)
,
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hence ‖znj + σ2‖∞ log ‖(Anjuαnj ,nj + γ + σ2)/(Aû+ γ + σ2)‖1 → 0. Therefore

T0(û) = lim
nj→+∞

T0,nj (uαnj ,nj ).

Invoking (3.81), (3.79), and (3.78), respectively, yields

lim
nj→+∞

T0,nj (uαnj ,nj ) = lim
nj→+∞

T0,nj (u0,nj ) = lim
nj→+∞

T0,nj (uexact) = T0(uexact).

Thus T0(û) = T0(uexact), and, since uexact is the unique minimizer of T0, û = uexact. Therefore

{uαnj ,nj} converges strongly (weakly for p = d/(d− 1)) to uexact in Lp(Ω).

The results obtained in this subsection are summarized in the following theorem.

Theorem 3.4.11. Rα(A, z + γ) defined in (3.63) defines a regularization scheme.

Proof. By Corollary 3.4.9 and Theorem 3.4.7 Rα(A, z+ γ) is well-defined and continuous and

therefore satisfies Condition 1 of Definition 2.2.1. Theorem 3.4.10 then gives Condition 2, and

hence Rα defines a regularization scheme.



Chapter 4

Numerical Method

4.1 An Efficient Numerical Method

In this section, the focus is on the computational problem of interest, which was last seen in

the Introduction:

arg min
u≥0

{
Tα(u) def= T0(u) +

α

2
J(u)

}
, (4.1)

where

T0(u) def=
N2∑
i=1

([Au]i + γ + σ2)−
N2∑
i=1

(zi + σ2) log([Au]i + γ + σ2), (4.2)

and J(u) is the regularization function, which is assumed to be nonnegative, convex, and

∇J(u) Lipschitz continous with Lipschitz constant L. Here A ∈ RN2×N2
, u, z ∈ RN2

are

assumed to have been obtained from a discretization (e.g. mid-point quadrature plus a collo-

cation of indices) of the underlying operator equation z = Au, followed by a lexicographical

ordering of unknowns. Also z is assumed to contain random noise.

For any image collected by a N×N CCD camera, the noise contained in z follows a well-known

distribution [31]. In particular, z is assumed to be a realization of the random vector

ẑ = Poiss(Au) + Poiss(γ · 1) +N(0, σ2I). (4.3)

55
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Here 1 is an N2× 1 vector of all ones. (4.3) means that ẑ is the sum of three random vectors:

the first two are Poisson with Poisson parameter vectors Au and γ · 1 respectively, and the

third is Normal with mean vector 0 and covariance matrix σ2I. Following arguments found

in the Introduction, a first approximation of (4.3) is

ẑ + σ2 · 1 = Poiss(Au + γ + σ2), (4.4)

where γ = γ1 and σ2 = σ21, which has probability density function

pz(z|u) :=
N2∏
i=1

([Au]i + γ + σ2)zi+σ
2

exp[−([Au]i + γ + σ2)]
(zi + σ2)!

. (4.5)

Even though Poisson random variables take on only discrete values, pz(z|u) should, in theory,

be positive only for z ∈ ZN2
+ . However to ease in both analysis and computation, pz is a

probability density defined on RN2
+ ∪ {0}.

In the Bayesian approach, a prior probability density pu(u) for u is also specified, and the

posterior density

pu(u|z) :=
pz(z|u)pu(u)

pz(z)
, (4.6)

given by Bayes’ Law, is maximized with respect to u. The maximizer of pu(u; z) is called the

maximum a posteriori (MAP) estimate. Since pz(z) does not depend on u, it is not needed in

the computation of the MAP estimate and thus can be ignored. Maximizing (4.6) is equivalent

to minimizing

T (u) = − ln pz(z|u)− ln pu(u)

= T0(u)− ln pu(u). (4.7)

with respect to u. The ln(zi+σ2) term is dropped from the summation for notational simplicity

since this term has no effect on the corresponding minimization problem. Comparing (4.7)

and (4.1), it is clear that − ln pu(u) corresponds to the regularization term in the classical
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penalized likelihood approach to regularization. However in the Bayesian setting, pu(u) is

the probability density known as the prior from which the unknown u is assumed to arise.

Thus the prior knowledge regarding the characteristics of u can be formulated in the form

of a probability density pu(u), this yields to a natural, and statistically rigorous, motivation

for the regularization method. In this chapter, one of the goal is to provide a statistical

interpretation for the use of standard Tikhonov, `2-norm of the gradient, and total variation

regularization for the negative-log prior − ln pu(u).

4.2 Statistical Interpretations of Regularization

Standard Tikhonov regularization corresponds to the following choice of negative-log prior:

− ln pu(u) =
α

2
‖u‖22.

This corresponds to the assumption that the prior for u is a zero-mean Gaussian random

vector with covariance matrix α−1I, which has the effect of penalizing reconstructions with

large `2-norm.

For `2-norm of the gradient regularization, the negative-log penalty has the similar form

− ln pu(u) =
α

2
‖Du‖22,

where D = [Γx,Γy]T is a discrete gradient operator. The discretization of the gradient

that is used to obtain D, or of the Laplacian to obtain DTD, determines the form of the

covariance matrix α−1(DTD)†, where “ † ” denotes psuedo-inverse. In this case, following

[21], the solution is assumed to be a “differentially Gaussian” random vector. The use of this

regularization function has the effect of penalizing reconstructions that aren’t smooth.

For total variation, u is a two-dimensional array. In [21], it is noted that for a large number

of two-dimensional signals [u]i,j = ui,j , the values of ui+1,j − ui,j and ui,j+1 − ui,j tend to be
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realistically modeled by a Laplace distribution with mean 0, which has the form

p(x) =
α

2
e−α|x|.

An analysis of 4000 digital images in [23] provides further support for this claim. The Laplace

distribution has heavy tails, which means that the probability of ui+1,j −ui,j and ui,j+1−ui,j

being large (such as is the case at a jump discontinuity in the image) is not prohibitively

small.

The main result of [21] is that for one-dimensional signals, the total variation method of [26],

with appropriate choice of regularization parameter, provides the MAP estimate given the

assumptions that the measurement noise is i.i.d. Gaussian and that adjacent pixel differences

are independent and satisfy a Laplacian distribution. For images of dimensions two and

higher, however, an analogous result has not been given. This is due in large part to the fact

that the one-dimensional Laplacian distribution does not extend in a straightforward manner

– as do the Gaussian and Poisson distributions – to the multivariate case. To see this, recall

that in [15] it is shown that if

[Γu]i,j = ([Γxu]i,j , [Γyu]i,j) := (ui+1,j − ui,j , ui,j+1 − ui,j)

is an i.i.d. Laplacian random vector, its probability density function is given by

α2

2π
K0

(
α
√

[Γxu]2i,j + [Γyu]2i,j
)
,

where K0 is the order zero, modified second kind Bessel function. Assuming independence,

this yields the negative-log prior

− ln pu(u) = c−
N∑

i,j=1

lnK0

(
α
√

[Γxu]2i,j + [Γyu]2i,j
)

(4.8)
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where c is a constant. Ignoring c and using the approximation

− lnK0(x) ≈ x,

whose accuracy is illustrated in Figure 4.1, hence

− ln pu(u) ≈ α
N∑

i,j=1

√
[Γxu]2i,j + [Γyu]2i,j ,

which is the discrete total variation function.

Figure 4.1: Plot of x (o) and − lnK0(x) (∗) on the interval [0, 500].

4.3 An Analysis of the Posterior Density Function

For notational convenience, (4.7) is

Tα(u) = T0(u) + αJ(u), (4.9)

where, in the case of total variation, J(u) is modify so that it has the form

Jβ(u) :=
N∑

i,j=1

√
[Γxu]2i,j + [Γyu]2i,j + β, (4.10)
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with β > 0 included to ensure the differentiability of Jβ.

The gradient and Hessian of Tα(u) are given by

∇Tα(u) = ∇T0(u) + α∇J(u),

∇2Tα(u) = ∇2T0(u) + α∇2J(u). (4.11)

The gradient and Hessian of the Poisson likelihood functional T0(u) have expressions

∇T0(u) = AT

(
Au− (z− γ)
Au + γ + σ2

)
, (4.12)

∇2T0(u) = ATdiag
(

z + σ2

(Au + γ + σ2)2

)
A, (4.13)

where diag(v) is the diagonal matrix with v as its diagonal. Here, and in what follows, x/y

is used, where x,y ∈ RN , to denote Hadamard, or component-wise, division, and x2 := x�x,

where “ � ” denotes the Hadamard product.

Note that for moderate to large values of σ2, say σ2 ≥ 32, it is extremely unlikely for zi to be

negative. Then, since Poisson random variables take on only nonnegative integer values, the

random vector z+σ21 is also highly unlikely to have nonpositive components. Assuming that

A is positive definite and that Au ≥ 0 whenever u ≥ 0, it immediately follows that ∇2T0(u)

is positive definite for all u ≥ 0, and hence T0 is strictly convex on u ≥ 0.

The gradient and Hessian of J for Tikhonov regularization are given by ∇J(u) = u and

∇2J(u) = I, respectively, whereas for `2-norm of the gradient regularization, they are given

by ∇J(u) = DTDu and ∇2J(u) = DTD, respectively. Moreover, both choices clearly yield

convex, Lipschitz continuous functions.

In the case of total variation the gradient and Hessian computations are somewhat involved.

∇Jβ(u) = L1(u)u, (4.14)

∇2Jβ(u) = L1(u) + 2L2(u), (4.15)
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where, if ψ(t) :=
√
t+ β, Γu2 := (Γxu)2 + (Γyu)2, and Γxyu := Γxu� Γyu,

L1(u) =

 Γx

Γy


T  diag(ψ′(Γu2)) 0

0 diag(ψ′(Γu2))


 Γx

Γy

 , (4.16)

L2(u) =

 Γx

Γy


T  diag((Γxu)2 � ψ′′(Γu2)) diag(Γxyu� ψ′′(Γu2))

diag(Γxyu� ψ′′(Γu2)) diag((Γyu)2 � ψ′′(Γu2))


 Γx

Γy

 .
For a more detailed treatment of these computations see [33]. Since ∇2Jβ(u) is positive semi-

definite for all u, and hence, Jβ is a convex function. The Lipschitz continuity of ∇Jβ follows

from (4.15).

It is now time to prove that Tα has a unique minimizer on u ≥ 0. This follows if Tα is strictly

convex and coercive on u ≥ 0 [33, Chapter 2]. Recall that Tα is coercive on u ≥ 0 provided

‖u‖2 →∞ implies Tα(u)→∞.

Theorem 4.3.1. Assume that z + σ21 > 0, A is positive definite and Au ≥ 0 for all

u ≥ 0. Then Tα is strictly convex and coercive on u ≥ 0, and hence has a unique nonnegative

minimizer.

Proof. First, noting that given the assumptions and discussion above, T0 is strictly convex on

u ≥ 0. It has been also argued that J is convex. Thus Tα is strictly convex on u ≥ 0.

The coercivity of Tα in all cases is proved using the following application of Jensen’s inequality:

T0(u) ≥ ‖Au + (γ + σ2)1‖1 − ‖z + σ2‖∞ ln ‖Au + (γ + σ2)1‖1 (4.17)

for u ≥ 0. Since A is positive definite ‖u‖2 → ∞ implies that ‖Au‖1 → ∞, which in turn

implies, via (4.17), that T0(u)→∞. Coercivity then follows from the fact that J(u) ≥ 0 for

all u.

It results, finally, from the fact that u ≥ 0 is a convex set.
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4.3.1 A Weighted Least Squares Approximation of T0(u, z)

First, a computation of various derivatives of T0 is given. The gradient and Hessian of T0 with

respect to u are given by

∇uT0(u; z) = AT

(
Au− (z− γ)
Au + γ + σ2

)
, (4.18)

∇2
uuT0(u; z) = ATdiag

(
z + σ2

(Au + γ + σ2)2

)
A, (4.19)

where division – here and for the remainder of the manuscript – is computed component-wise.

The gradient and Hessian of T0 with respect to z are given by

∇zT0(u; z) = − log(Au + γ + σ2), (4.20)

∇2
zzT0(u; z) = 0. (4.21)

The second order mixed partial derivatives of T0 are given by

∇2
uzT0(u; z) = −ATdiag

(
1

Au + γ + σ2

)
, (4.22)

∇2
zuT0(u; z) = −diag

(
1

Au + γ + σ2

)
A. (4.23)

Now, let ue be the exact object and ze
def= Aue + γ the background shifted exact data. Then,

letting k = z− ze and h = u−ue and expanding T0 in a Taylor series about ue and ze, gives

from (4.18)-(4.23)

T0(u; z) = T0(ue + h; ze + k),

= T0(ue; ze)− kT∇zT0(ue; ze) +
1
2
hT∇2

uuT0(ue; ze)h

+
1
2
kT∇2

uzT0(ue; ze)h +
1
2
hT∇2

zuT0(ue; ze)k +O(‖h‖32, ‖k‖32)

=
1
2

(Au− (z− γ))Tdiag
(

1
Aue + γ + σ2

)
(Au− (z− γ))

+T0(ue; z) +O(‖h‖32, ‖k‖32).
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Thus the quadratic Taylor series approximation of T0(u; z) about the points (ue; ze) is given

by

T0(ue; z) +
1
2

(Au− (z− γ))Tdiag
(

1
Aue + γ + σ2

)
(Au− (z− γ)). (4.24)

This Taylor series connection between the negative-log of the Poisson likelihood and (4.24)

has, to the knowledge of the authors, not been noted elsewhere.

It is important to emphasize that the quadratic approximation (4.24) of T0 will be accurate

provided ‖h‖2 and ‖k‖2 are small relative to ‖ue‖2 and ‖ze‖2. Since this will hold in practice

for typical data z and reasonable approximations of u, it is reasonable to expect that (4.24)

will be an accurate approximation of T0(u; z) in a region of (ue; ze) that is not restrictively

small.

In practice, if this approximation is to be used, Aue must in turn be approximated. The

natural choice is to use z + σ2 instead since E(z) = Aue + γ, where E is the expected value

of the random variable z. This yields the following weighted least squares approximation of

the Poisson likelihood function

Twls(u; z) def=
1
2
‖C−1/2(Au− (z− γ))‖22, where C = diag(z + σ2). (4.25)

Note that the constant term T0(ue; z) has been dropped since it does not effect the computa-

tions. In a large number of applications in which Poisson data is analyzed, T0 is approximated

by a weighted least squares function. The analysis above suggests that Twls is the natural

choice.

4.4 A Nonnegatively Constrained Convex Programming Method

In this section, the aim is to give an outline of a computationally efficient method for solving

(4.1), following the approach set forth in [10], which was developed for use on Tikhonov-

regularized Poisson likelihood estimation problems.
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4.4.1 Preliminaries

The projection of a vector u ∈ RN2
onto the feasible set {u ∈ RN2 | u ≥ 0} can be conveniently

expressed as

P(u) def= arg min
v∈Ω
||v − u||2 = max{u,0},

where max{u,0} is the vector whose ith component is zero if ui < 0 and is ui otherwise. The

active set for a vector u ≥ 0 is defined

A(u) = {i | ui = 0},

and the complementary set of indices, I(u), is known as the inactive set.

The next step is to make some definitions that will be required in the discussion of the iterative

method. The reduced gradient of Tα at u ≥ 0 is given by

[∇redTα(u)]i =


∂Tα(u)
∂ui

, i ∈ I(u)

0, i ∈ A(u),

the projected gradient of Tα by

[∇projTα(u)]i =


∂Tα(u)
∂ui

, i ∈ I(u), or i ∈ A(u) and ∂Tα(u)
∂ui

< 0,

0, otherwise,

and the reduced Hessian by

[∇2
redTα(u)]ij =


∂2Tα(u)
∂ui∂uj

, if i ∈ I(u) and j ∈ I(u)

δij , otherwise.

Finally, DI(u) is defined to be the diagonal matrix with components

[DI(u)]ii =

 1, i ∈ I(u)

0, i ∈ A(u),
(4.26)
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and DA(u) = I−DI(u). Note then that

∇redTα(u) = DI(u) ∇Tα(u), (4.27)

∇2
redTα(u) = DI(u) ∇2Tα(u) DI(u) + DA(u), (4.28)

4.4.2 Gradient Projection Iteration

A key component of the iterative method introduced in [10] is the gradient projection iteration

[25], which is presented now. Given uk ≥ 0, uk+1 is computed via

pk = −∇Tα(uk) (4.29)

λk = arg minλ>0 Tα(P(uk + λpk)) (4.30)

uk+1 = P(uk + λkpk) (4.31)

In practice, subproblem (4.30) is solved inexactly using a projected backtracking line search.

In the implementation used here, the initial step length parameter is

λ0
k =

||pk||22
〈∇2Tα(uk)pk,pk〉

. (4.32)

The quadratic backtracking line search algorithm found in [27] is then used to create a sequence

of line search parameters {λjk}
m
j=0, where m is the smallest positive integer such that the

sufficient decrease condition

Tα(uk(λ
j
k)) ≤ Tα(uk)−

µ

λjk
||uk − uk(λ

j
k)||

2
2 (4.33)

holds. Here µ ∈ (0, 1) and

uk(λ) = PΩ(uk + λpk). (4.34)

The approximate solution of (4.30) is then taken to be λmk .

The proof of a convergence result for gradient projection iterations now follows.
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Theorem 4.4.1. Under the same hypotheses as Theorem 4.3.1, the gradient projection iter-

ation applied to (4.1) yields a sequence {uk} that converges to the unique solution u∗.

Proof. First, let show that ∇Tα(u) is Lipshitz continuous.

‖∇Tα(u)−∇Tα(v)‖2 =
∥∥∥∥AT

(
Au + γ − z
Au + γ + σ2

− Av + γ − z
Av + γ + σ2

)
+ α(J(u)− J(v))

∥∥∥∥
2

≤ ‖A‖2F (u,v) + αL‖u− v‖2,

where L is the Lipschitz constant for J and

F (u,v) =
∥∥∥∥ (A(u− v))� (z + σ2)

(Au + γ + σ2)� (Av + γ + σ2)

∥∥∥∥
2

≤ ‖A‖2
∥∥∥∥ z + σ2

(γ + σ2)2

∥∥∥∥
2

‖u− v‖2.

Hence,

‖∇Tα(u)−∇Tα(v)‖ ≤
(
‖A‖2

∥∥∥∥ z + σ2

(γ + σ2)2

∥∥∥∥+ αL

)
‖u− v‖,

establishing that ∇Tα is Lipschitz continuous.

Then by [25, Theorem 5.4.5] the gradient projection iteration (4.29)-(4.31) is well defined.

Moreover, every limit point ū of the gradient projection iterates satisfies ∇projTα(u) = 0

[25, Theorem 5.4.6].

Now, {Tα(uk)} is a decreasing sequence that is bounded below by Tα(u∗), where u∗ is the

unique solution of (4.1) given by Theorem 4.3.1. Hence it converges to some Tα ≥ Tα(u∗).

Since Tα is coercive, {uk} is bounded, and hence there exists a subsequence {ukj} converging

to some u. By the results mentioned in the first paragraph of the proof, ∇projTα(u) = 0,

and since Tα is strictly convex, u = u∗. Thus Tα(uk) → Tα(u∗). The strict convexity and

coercivity of Tα then implies [29, Corollary 27.2.2] that uk → u∗.
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4.4.3 The Reduced Newton Step and Conjugate Gradient

In practice, the gradient projection iteration is very slow to converge. However, a robust

method with good convergence properties results if gradient projection iterations are inter-

spersed with steps computed from the reduced Newton system

∇2
redTα(uk) p = −∇redTα(uk). (4.35)

Approximate solutions of (4.35) can be efficiently obtained using conjugate gradient iteration

(CG) [28] applied to the problem of minimizing

qk(p) = Tα(uk) + 〈∇redTα(uk),p〉+
1
2
〈∇2

redTα(uk) p,p〉. (4.36)

The result is a sequence {pjk} that converges to the minimizer of (4.36). Even with rapid CG

convergence, for large-scale problems it is important to choose effective stopping criteria to

reduce overall computational cost. The following stopping criterion from Moré and Toraldo

[27] is very effective:

qk(p
j−1
k )− qk(pjk) ≤ γCG max{qk(pi−1

k )− qk(pik) | i = 1, . . . , j − 1}, (4.37)

where 0 < γCG < 1. Then the approximate solution of (4.36) is taken to be the pmCG
k where

mCG is the smallest integer such that (4.37) is satisfied.

With pk := pmCG
k , applying again a projected backtracking line search, only this time, the

much less stringent acceptance criteria

Tα(uk(λmk )) < Tα(uk). (4.38)

is used.
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4.4.4 Sparse Preconditioner

Since there is a conjugate gradient stage in the above algorithm, it is natural to introduce

a preconditioner, yielding the proconditioned CG (PCG) iteration. The way in which the

implementation of PCG for (4.1) that differs from those given in [6, 10] is in the definition of

the preconditioner. However, the analysis nonetheless follow the general idea set forth in [10];

that is, a sparse preconditioner is used.

In practice, this amounts to create a sparse Hessian and use it as preconditioner. In particular,

noting that

∇2Tα(u) = AT diag(w(u)) A + α∇2J(u),

yields to the following definion of the sparse preconditioner

M(u) = ÂT diag(w(u)) Â + α∇2J(u), (4.39)

where Â is obtained by zeroing out all the “small” entries of A in the following fashion

[Â]ij =

 [A]ij if [A]ij ≥ τ ;

0 otherwise.

The truncation parameter τ is selected so that it this proportional to the largest entry of A

τ = rmax
ij

[A]ij , 0 < r < 1. (4.40)

Note that in the cases of interest here, ∇2J(u) in (4.39) is sparse, so that M is a sparse

matrix.

Now, implementing PCG at outer iteration k requires that solving a linear systems of the

form

Mred(uk)y = z
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efficiently is reachable, where

Mred(uk) = DI(uk)M(uk)DI(uk) + DA(uk)

for y, z ∈ RN2
. To do this, a way is to compute a Cholesky factorization of Mred(uk) at each

outer iteration prior to beginning the inner PCG iterations.

4.4.5 The Numerical Algorithm

In the first stage of the algorithm a stopping criteria is needed for the gradient projection

iterations. Borrowing from Moré and Toraldo [27] , gradient projection stops when

Tα(uk−1)− Tα(uk) ≤ γGP max{Tα(ui−1)− Tα(ui) | i = 1, . . . , k − 1}, (4.41)

where 0 < γGP < 1.

Gradient Projection-Reduced Newton-CG (GPRNCG) Algorithm

Step 0: Select initial guess u0, and set k = 0.

Step 1: Given uk.

(1) Take gradient projection steps until either (4.41) is satisfied or

GPmax iterations have been computed. Return updated uk.

Step 2: Given uk.

(1) Do PCG iterations to approximately minimize the quadratic (4.36)

until either (4.37) is satisfied or CGmax iterations have been

computed. Return pk = pmCG
k .

(2) Find λmk that satisfies (4.38), and return uk+1 = uk(λmk ).

(3) Update k := k + 1 and return to Step 1.

Since at each outer GPRNCG iteration at least one gradient projection step, with sufficient

decrease condition (4.38), is taken, Theorem 4.4.1 yields to the following result.
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Theorem 4.4.2. Under the same hypotheses as Theorem 4.3.1, the iterates {uk} generated

by GPRNCG are guaranteed to converge to the unique solution of problem (4.1).

Proof. The GPRNCG iteration is well-defined since the gradient projection iteration (Step 1)

is well-defined, and since the truncated CG search direction pk given in Step 2.1 is guaranteed

to be a descent direction [28]. In the proof of Theorem 4.4.1, [25, Theorem 5.4.6] is used.

The analogous result holds for GPRNCG: every limit point of the sequence {uk} generated

by GPRNCG satisfies ∇projTα(u) = 0. The proof requires a minor modification of the proof

of [25, Theorem 5.4.6]. Following the arguments given in the last paragraph of the proof of

Theorem 4.4.1, the result follows.

The Lagged-Diffusivity Modification for Total Variation

In the case of total variation, GPRNCG is much more efficient if the full Hessian is replaced

by ∇2T0(u)+αL1(u) (where L1(u) is defined in (4.16)) within Step 2 of the algorithm, i.e. in

(4.36) [6]. The name of this method is, gradient projection–reduced lagged diffusivity iteration

(GPRLD).

4.5 Numerical Experiments

Finally, to finish the chapter, some numerical experiments that demonstrate the effectiveness

of the various regularization methods in conjunction with the negative-log of the Poisson

likelihood function. The tests are performed using the 64× 64 simulated satellite seen on the

left-hand side in Figure 4.2. Generating corresponding blurred noisy data requires a discrete

PSF a, which is computed using the Fourier optics [20] PSF model

a =
∣∣∣fft2(p� eı̂φ

)∣∣∣2 ,
where p is the N × N indicator array for the telescopes pupil; “ � ” denotes Hadamard

(component-wise) product; φ is the N × N array that represents the aberrations in the

incoming wavefronts of light; ı̂ =
√
−1; and fft2 denotes the two-dimensional discrete Fourier
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Figure 4.2: On the left is the true object utrue. On the right, is the blurred, noisy image z.

transform. The 642 × 642 blurring matrix A is then defined by

Au = ifft2 (â� (fft2(u))) , â = fft2(fftshift(a)),

where ifft2 is the inverse discrete Fourier transform and fftshift swaps the first and third

and the second and fourth quadrants of the array a. Then A is block Toeplitz with Toeplitz

blocks (BTTB) [33]. For efficient computations, A is embedded in a 1282 × 1282 block circu-

lant with circulant block (BCCB) matrix, which can be diagonalized by the two-dimensional

discrete Fourier and inverse discrete Fourier transform matrices [33]. Data z with a signal-

to-noise ratio of approximately 35 is then generated using the statistical model (4.3) with

σ2 = 25 and γ = 10 – physically realistic values for these parameters. To generate Poisson

noise, the poissrnd function in MATLAB’s Statistics Toolbox is used. The corresponding

blurred, noisy data z is given on the right hand side in Figure 4.2.

Let present now the reconstructed images obtained using standard Tikhonov regularization,

total variation regularization, and regularization by the `2-norm of the gradient.
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4.5.1 Tikhonov Regularization

For Tikhonov regularization, GPRNCG is applied to problem (4.1). The regularization pa-

rameter α = 4×10−6 was chosen so that the solution error ‖uα−uexact‖2 is minimized. Noting

that this will not necessarily yield the “optimal” regularization parameter since slightly larger

values of α, though resulting in a larger solution error, may also yield reconstructions that are

more physically correct (in this case smoother). However, the objective in this dissertation

is only to show that this method works in practice. The question of optimal regularization

parameter choice is left for a later work. The choice of GPRNCG parameters included is

GPmax = 1, since more gradient projection iterations did not appreciably improve the conver-

gence properties of GPRNCG, CGmax = 50, and γCG = 0.25. GPRNCG iterations stops after

a 10 orders of magnitude decrease in the norm of ∇projTα(uk). In this example, this stopping

criteria was satisfied after only 12 GPRNCG iterations. The reconstruction is given on the

bottom in Figure 4.4.

One of the benefits of using the Poisson likelihood in place of least squares is that it is sensitive

to changes in the low intensity regions of images. This is illustrated by Figure 4.4 where a

cross section of uexact, z and uα are plotted corresponding to the 32nd row of the respective

arrays. The low intensity feature, which can also be seen in the two dimensional images in

Figure 4.2, is reconstructed with reasonable accuracy using the Poisson likelihood. The high

frequency artifacts in the high intensity regions, however, are not desirable. This observation

coincides with those made by others (see e.g., [32]); namely, that the Poisson likelihood is

sometimes less effective than least squares in regions of an image that are high intensity

and very smooth. For general interest, Richardson-Lucy iteration is also applied, stopping

iterations once ‖uk − uexact‖2 was minimized. Interestingly, the resulting reconstruction was

visually indistinguishable (cross sections included) from that obtained using GPRNCG with

α = 4 × 10−6. This supports the observation that both methods can be characterized as

regularized Poisson likelihood estimation schemes and hence should yield similar results. Also,

the energy of the GPRNCG and Richardson-Lucy reconstructions is the same. Finally, the

plot of the reconstruction obtained using GPRNCG with α = 4×10−5 is also presented. Note
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that though the solution error is larger for this choice of α, the reconstruction is smoother.

In [10], the object studied is a synthetically generated star-field – for which the Poisson

likelihood is particularly well-suited – and the data is generated using statistical model (4.3),

but with a significantly lower signal-to-noise of approximately 4.5. The method presented

here also works well on this example.

Figure 4.3: On the left is the reconstruction obtained by GPRNCG applied to (4.1) with J(u) = 1
2‖u‖

2
2

and α = 4×10−6. On the right is are plots of the 32nd row of the 64×64 arrays uexact, z and uα. The
dashed line corresponds to the true object; the dash-dotted line corresponds to the blurred, noisy data z;
the solid line corresponds to uα with α = 4× 10−6; and the line with circles to uα with α = 4× 10−5.

4.5.2 `2-Norm of the Gradient Regularization

For `2-norm of the gradient regularization, let apply GPRNCG to (4.1) with regularization

parameter α = 10−6, which was chosen so that the solution error ‖uα − uexact‖2 was near

to minimal (α = 2 × 10−7 minimized the solution error) but which yielded a reconstruction

that was noticeable effected by the smoothing properties of the regularization function. This

method of choosing α is admittedly ad hoc. However, the objective here is only to show that

the method works in practice and that reconstructions are indeed smooth. The optimization

parameters for GPRNCG iterations are the one used in the Tikhonov case. However, the

iterations stop after a 9 orders of magnitude decrease in the norm of projected gradient of

Tα. The reconstruction is given on the left in Figure 4.3. To demonstrate the effect of the

Laplacian regularization, on the right in Figure 4.3, the plot of the 32nd row of of the true
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image and the reconstructions with α = 1 × 10−6 and α = 2 × 10−7, which minimizes the

solution error, is provided.

Figure 4.4: On the left is the reconstruction obtained by GPRNCG applied to (4.1) with J(u) =
1
2‖Du‖22 and α = 1 × 10−6. On the right is the 32nd row of the true image and the reconstructions
with α = 1× 10−6 and α = 2× 10−7, which minimizes the solution error.

4.5.3 Total Variation Regularization

In this case, the data z was generated using (4.3) with a signal-to-noise ratio of approximately

30. With the blurred, noisy data in hand, the object is estimated by solving (4.1) using

GPRLD with GPmax = 1 (note that then a value for γGP is not needed), γCG = 0.25 with pre-

conditioning and 0.1 without, and CGmax = 40, which is only ever satisfied if preconditioning

is not used. Iterations stop once

‖∇projTα(uk)‖2/‖∇projTα(u0)‖2 < GradTol, (4.42)

where GradTol = 10−5. These parameter values are chosen in order to balance computational

efficiency with good convergence properties of the method. The initial guess was u0 = 1,

and the regularization parameter was taken to be α = 5 × 10−5. This choice of parameter

approximately minimizes ‖uα − uexact‖2. The reconstruction is given in Figure 4.5. In order

to compare this result with those obtained using other methods, a comparison of plots of cross
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Figure 4.5: On the left is the reconstruction obtained by GPRLD applied to (4.1) with J(u) = TV(u)
and α = 5× 10−5.

sections of different reconstructions corresponding to the 32nd row and 32nd column; note that

the sub-objects are all centered on one of these two cross-sections. In our first comparison, the

picture of plot reconstructions obtained using the approach presented in this thesis, RL, and

the projected Newton method applied to the problem of minimizing the Tikhonov regularized

Poisson likelihood function over {u | u ≥ 0}. For the latter method, CGmax = 50 is used,

GradTol = 10−8, and initial guess u0 = 1. The regularization parameter - chosen as above

- was α = 2 × 10−6. The RL reconstruction was taken to be the iterate that minimizes

‖uk − uexact‖. The results are given in Figure 4.6. The total variation reconstruction is

visually superior to the others, with the exception of the Gaussian with the high peak in the

left-hand plot. This is not surprising given the fact that it has been observed that standard

Poisson estimation is particularly effective at reconstructing objects with high intensity, but

small support, such as a star.
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Figure 4.6: Comparison of Cross-Sections of Reconstructions Obtained with a Variety of Poisson
Likelihood Methods. The left-hand plot corresponds to column 32 and the right-hand plot corresponds
to row 32 of the respective reconstructions. The true image is the solid line; the projected lagged-
diffusivity reconstruction is the line with circles; the Tikhonov solution is the line with stars; and the
Richardson-Lucy solution is the line with diamonds.



Chapter 5

Conclusion

The main results of this thesis are the proofs that Rα(A; z+γ) defines a regularization scheme,

where Rα is defined by (2.9), (1.12) for four different regularization functionals J : 1
2 ||u||

2
2,

1
2 ||G(x)∇u||22, 1

2 ||τu||
2
2 and

∫
Ω

√
|∇u|2 + βdx.

Following the theoretical analysis, is the computational method of [10]. This method is efficient

and very effective for nonnegatively constrained Poisson likelihood estimation problems. It is

also proved in this thesis that under reasonable circumstances, its iterations converge to the

unique minimizer of (4.1). In addition the demonstration the effectiveness of the approach

in general, and of the computational method in particular, on simulated astronomical data

generated using statistical model (1.2) is given.

The plan for the immediate future is to investigate a parameter selection method for α in the

four methods above.
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[12] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems,

Numerische Mathematik 76, Number 2 (1997April), 167–188.

[13] Richard Cottle, On the Convexity of Quadratic Forms Over Convex Sets, Operations Research 15 No. 1

(1967), 170–172.

78



BIBLIOGRAPHY 79

[14] Angus E. Taylor, Introduction to Funtional Analysis, Wiley Sons Inc, New York, 1961.

[15] Torbjørn Eltoft and Taesu Kim, On the Multivariate Laplace Distribution, IEEE Signal Processing Letters

13 (5) (2006May), 300–303.

[16] Lawrence Evans, Partial Differential Equations, American Mathematical Society, 1998.

[17] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.

[18] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1971.

[19] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics 80 (1984).

[20] J. W. Goodman, Introduction to Fourier Optics, 2nd ed., McGraw-Hill, 1996.

[21] M. Green, Statistics of images, the TV algorithm of Rudin-Osher-Fatemi for image denoising, and an

improved denoising algorithm, CAM Report (2002October), 02–55.

[22] Christian Hansen, James G. Nagy, Dianne P., and O
′
Leary, Deblurring Images. Matrices, Spectra, and

Filtering, SIAM, 2006.

[23] Jinggang Huang and David Mumford, Statistics of Natural Images and Models, Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (1999), 541–547.

[24] J. P. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, Inverse Problem with Structural Prior

Information, Inverse Problems 15 (1999), 713–729.

[25] C. T. Kelley, Iterative Methods for Optimization, Philadelphia, 1999.

[26] S. Osher L. I. Rudin and E. Fatemi, Nonlinear Total Variation Based Noise Removal Algorithms, Physica

D 60(1-4) (1992), 259 –268.
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