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The first half of this dissertation focuses on computational methods for solving the con-
strained quadratic program (QP) within the support vector machine (SVM) classifier. One of
the SVM formulations requires the solution of bound and equality constrained QPs. We begin
by describing an augmented Lagrangian approach which incorporates the equality constraint
into the objective function, resulting in a bound constrained QP. Furthermore, all constraints
may be incorporated into the objective function to yield an unconstrained quadratic pro-
gram, allowing us to apply the conjugate gradient (CG) method. Lastly, we adapt the scaled
gradient projection method of [10] to the SVM QP and compare the performance of these
methods with the state-of-the-art sequential minimal optimization algorithm and MATLAB’s
built in constrained QP solver, quadprog. The augmented Lagrangian method outperforms
other state-of-the-art methods on three image test cases.

The second half of this dissertation focuses on computational methods for large-scale Kalman
filtering applications. The Kalman filter (KF) is a method for solving a dynamic, coupled sys-
tem of equations. While these methods require only linear algebra, standard KF is often
infeasible in large-scale implementations due to the storage requirements and inverse calcu-
lations of large, dense covariance matrices. We introduce the use of the CG and Lanczos
methods into various forms of the Kalman filter for low-rank approximations of the covari-
ance matrices, with low-storage requirements. We also use CG for efficient Gaussian sampling
within the ensemble Kalman filter method. The CG-based KF methods perform similarly
in root-mean-square error when compared to the standard KF methods, when the standard
implementations are feasible, and outperform the limited-memory Broyden-Fletcher-Goldfarb-
Shanno approximation method.

ii



Acknowledgments

I would like to thank my advisor, Dr. Johnathan Bardsley, for being an outstanding example
of what it means to be an avid researcher. You have undoubtedly provided me with the skills
I will need to succeed as I venture forth from this institution. This past six years you have
worked to mold me into a well-rounded mathematician and your efforts do not go unnoticed.
I will forever be thankful for the time I have spent as your student.

Thank you, Dr. Jon Graham, for your strong example of teaching and work ethic. From
day one, you demand respect from your students and show them respect in return, creating a
wonderful class dynamic. I like to think that some of my teaching methodologies have been
developed by observing you. Additionally, you have demonstrated that sometimes in life we
can have it all if we are willing to sacrifice sleep.

I would like to thank Dr. David Patterson for reminding me to think outside the box, even in
statistics. I will never forget that one can estimate the number of blades of grass on the Oval
by taking a sample of mowed grass and weighing it. I will always strive to attain your level
of understanding, as you always find a way to ask intelligent questions in every seminar you
attend.

To Dr. Jesse Johnson, thank you for sharing your passion of the sciences, love for teaching,
and enthusiasm to develop the sciences in young minds. You demand a lot from your students,
but the depth of understanding we gain from it is absolutely worthwhile.

Thank you, Dr. Albert Parker for your post-graduate advice, contribution to this dissertation,
collaborative research, and for not being afraid to step on Grizzly territory, by which you have
taught me courage. I hope we may continue collaborating on research in the future.

To my husband, Kaleb, thank you for your strength and support. You never once asked me
to choose between education and you – that means more to me than I can express. Thank
you. Lastly, through it all, my family has always been a wealth of encouragement to me and
has always kept me laughing. We are nothing if we don’t have laughter.

Thank you, everyone.

iii



Notations

′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prime denotes transposition of matrix/vector

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Real numbers

xk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A vector indicating the kth iterate of vector x

xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A scalar indicating the ith component of vector x

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Training set size

∀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . For all

∈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Element of a set

|T | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The cardinality of set T

E[·] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expected value

∇xf(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gradient of f(x)

ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slack variable

Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Primal Lagrangian

Ld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Dual Lagrangian

< x,y > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inner product of vectors x and y

K(x,z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kernel 〈φ(x), φ(z)〉
x ⊥ y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vectors x and y are independent

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identity matrix
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Preface

This dissertation consists of two parts: a chapter on constrained optimization methods for

classification with the support vector machine and a chapter on conjugate gradient implemen-

tation within the Kalman filter.

Chapter 1 opens with a review of classification techniques, followed by derivations for the

support vector machine classifier. Optimization methods developed by the author are pre-

sented for the bound and linear equality constrained quadratic program. Numerical examples

demonstrate the improvement of the newly designed algorithms over state-of-the-art tech-

niques.

A discussion of various Kalman filter methods is given in Chapter 2, followed by our imple-

mentation of the conjugate gradient (CG) method as a means for optimization and to build

low-storage, low-rank approximations of covariance and inverse-covariance matrices. Exam-

ples compare the Kalman filter methods with CG to that with limited-memory BFGS, with

improvement in root-mean-square error demonstrated by the methods utilizing CG. The im-

plementation of CG within the Kalman filter, variational Kalman filter, and extended Kalman

filter has been published in [6]. A second paper regarding implementation of CG within the

ensemble Kalman filter has also been published [7].

xiii



Chapter 1

Constrained Optimization Methods

for Support Vector Machine

Classification

The first chapter of this dissertation presents our work with the support vector machine

classification method. Within the support vector classifier framework, we introduce new

algorithms for solving the bound and equality constrained quadratic program.

1.1 Introduction

Solving practical and mathematical problems on the computer often requires a written pro-

gram that calculates the desired outputs explicitly from the inputs. As the problem becomes

more and more complex, the computation may become too expensive, or there may be no

known method for calculating outputs directly from inputs. One method to circumvent this

problem is to have computers learn by example.

1



1.1. INTRODUCTION 2

Computers have demonstrated a great ability to learn from experience and through exam-

ples, though the extent of this ability has not yet been determined [22]. Reliable learning

tactics are necessary as many tasks may not be solved via classical programming techniques.

For example, computer programmers have not written a program that can automatically

recognize handwritten characters without first learning to recognize the characters through

examples, just as a child learns to read [22]. This is referred to as statistical learning. Fur-

thermore, computers detect spam emails by learning from examples [49].

Supervised learning uses the input/output examples provided by the user to build a pre-

diction model for new data. The output variable serves to aide in the creation of the learner

during the learning process. The training data are the paired input/output data used to train

the machine. For example, in imaging problems, the training data are sets of pixels that

correspond to each class in the image. A classifier is built from the training data, which is

then applied to the test set. To continue with the imaging example, the test set is the set

of remaining pixels in the image for which the classes are unknown. While it would be most

beneficial to learn the target function–the underlying function that maps inputs to outputs–

this function does not always exist, such as for cases in which outputs are noisy [22]. Rather,

the solution, or decision function, is the estimate of the target function, which is output by

the learning algorithm.

The learning task in unsupervised learning is to gain understanding of the process which gen-

erated the data, describing how the data are clustered and organized, and therefore does not

use the output training data in the learning process. Some common methods of unsupervised

learning include clustering, density estimation, and learning the support of a distribution.

Unsupervised learning is less developed in the literature [49] and is not a focus of this thesis.

In classical statistical literature, the inputs are known as predictors or independent variables

and the outputs are referred to as responses or dependent variables. The type of output

depends on the problem. Determining digitized numbers on a mailed envelope is a type of
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qualitative output, for which the set of outputs has the form G = {0, 1, . . . , 9}. Here we

have categories, or classes, as outputs. These qualitative variables are also referred to as

categorical variables, discrete variables, or factors. Quantitative variables have a numerical

value and measurements closer in value are closer in nature than measurements further in

value. Some numerical outputs, such as the binary output set {0, 1}, can be considered as

either quantitative or qualitative outputs, depending on the meaning behind the numbers.

When learning from data, it is typical to have an outcome measurement, typically qualitative

(heart attack/no heart attack, diabetes/no diabetes) or quantitative (stock price, atmospheric

pressure), that we wish to predict based on a set of features (such as diet and clinical mea-

surements). The training set is the paired observed feature measurements and outcomes for

a set of objects (people, pixels, etc). Using the training data we build a prediction model, or

learner, which allows us to predict outcomes for new and unseen objects. The goal of a good

learner is to accurately predict the output from the inputs.

This distinction between the types of output variables gave rise to different names for the

set of predictions from learners. When requiring qualitative responses, the process is referred

to as classification and when the output is quantitative, the process is called regression. Here

we focus primarily on classification methods.

A learning problem with binary outputs, such as the detection of disease, is a binary classi-

fication problem and the outcomes are typically represented numerically by 0/1 or by -1/+1.

These numeric codes for categorical responses are often referred to as targets. In the binary

case, the target may also be treated as a quantitative output, generally lying in the interval

[0, 1]. A learning problem with a finite number of categorical outputs, such as identifying

letters of the alphabet, is multi-class classification. For example, the famous iris data set

presented by R. A. Fisher uses quantitative inputs (sepal length, sepal width, petal length,

petal width) to predict iris species with class set G = {Setosa, Versicolor, Virginica}.
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The method in which the training data are presented to the learner determines the type of

learning. With batch learning, the learner is provided with all the training data at the start of

the learning process, by which the classifier is learned. For on-line learning, a single training

datum is given to the learner, from which the learner determines its estimate of the output

and then receives the corresponding correct output value to determine how it performed. This

process is repeated for the entire training data set, adding one datum at a time to determine

its estimated output so that the learner can update its hypothesis after each new training

datum is presented to obtain the final classifier.

On-line learning lends itself to a simple form of assessment: totaling the number of mistakes

made during learning. For batch learning, a good assessment of the classifier on unknown

data is not immediately as clear, however the goal of early machine learning was to perform a

correct classification of the training data [22] and problems may arise when such a hypothesis

is created to be consistent with the training data. Also, if the training data are noisy, then

there may be no decision function to correctly map inputs to outputs.

If we can find a decision function that is consistent with the training data, there is no

guarantee it will correctly classify the unseen data. When the decision function becomes too

complex in order to remain consistent with the training data, it has become overfit. For

example, decision trees may be grown large enough that each leaf is a training example [49].

Therefore, one may choose to prune the decision tree to reduce overfitting.

The remainder of this chapter is organized as follows. We introduce notation in Section 1.2,

followed by a discussion on widely-used batch learning methods in Section 1.3. Methods for

determining misclassification error are discussed in Section 1.4. The support vector classifier

is derived in Section 1.5 and the heart of the research contributed in this chapter by the author

on constrained quadratic programming is given in Section 1.6. Section 1.7 introduces three

image test cases to compare the constrained quadratic optimization methods and conclusions

are given in Section 1.8.
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1.2 Notation

The most common notation used in this chapter is presented here. Input variables are typically

vectors, and are denoted by X. Outputs are represented by Y and qualitative outputs are

represented by G (categorical group). We let G represent the set of categorical outputs. The

ith observation of variable X is denoted xi and the jth component of vector x is denoted xj .

Bold lowercase letters represent vectors while matrices will be represented with bold uppercase

letters. The transposes of x and A are denoted x′ and A′, respectively. We assume p pairs of

training data are provided for batch learning, and are represented by (xi, yi), with i = 1, . . . , p.

The prediction for quantitative outputs is ŷ(x) and for categorical outputs is Ĝ. Thus if Y

takes on values in R, then so should ŷ(x). Similarly, if the outputs take on values from the

set of classes G, then so should the prediction, Ĝ(x). We denote an observation x belonging

to the kth class of G by x ∈ gk.

Typically, in the support vector machine (SVM) literature, the number of features of obser-

vation x is n and the number of training observations is p; however, in the statistical literature,

it is the opposite. Since this chapter focuses on the SVM implementation, we use the common

SVM notation, even for the literature review of other classification methods.

1.3 A Review of Supervised Classification Methods

The purpose of this section is to introduce the reader to widely used classification methods

as a background to the support vector machine method introduced in Section 1.5. A variety

of algorithms exist for supervised classification, but they all consist of the same basic steps.

First, a set of output categories must be chosen for the data set. For example, if working with a

satellite image of a floodplain, the categories may include water, cobble, regenerative material,

deciduous forest, shrubbery, etc. Second, training data are chosen for each output category.
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Continuing with the satellite image example, the training data are sets of pixels corresponding

to each category chosen. Third, the training data are used to estimate parameters that describe

either the probability model or the partitions in feature space. Lastly, once the classifier has

been learned, it is used to classify the test set. Returning to the satellite image example, this

consists of classifying the remaining pixels not in the training set. Preferably some method

to assess accuracy would then be applied.

1.3.1 Least Squares

The least squares method places structural assumptions on the data in feature space (linear

separability) and produces stable, though possibly inaccurate, predictions [49]. We begin

by describing the linear model which leads to least squares. Linear models have become an

important tool of classical statistics [49]. Considering an input x = (x1, x2, . . . , xn)
′, where

n is the number of features, the quantitative output variable Y is predicted using the linear

model

ŷ(x) = β̂0 +
n∑

i=1

xiβ̂i, (1.1)

where the intercept β̂0 is known as the bias in machine learning [49, p. 11]. If we choose to

rewrite x = (1, x1, . . . , xn)
′, then (1.1) becomes the inner product

ŷ(x) = x′β̂,

where β̂ = (β̂0, β̂1, . . . , β̂n)
′. If the constant of 1 is included in x, then (x, ŷ) represents a

hyperplane that passes through the origin in (n+1)-dimensional space. When the constant is

not included, the n-dimensional hyperplane (x, ŷ) intercepts the y-axis at (0, β̂0). We assume

the constant is included. Here ŷ is a scalar and x is a vector, but we note that we can use

this model to predict the outcome of many realizations at one time by letting X be a matrix

of observational input columns and ŷ a vector.
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The least squares method chooses the vector β that minimizes the residual sum of squares

(RSS)

RSS(β) =

p∑

i=1

(yi − x′
iβ)

2

= (y −X′β)′(y −X′β),

(1.2)

where X = [x1,x2, . . . ,xp], the matrix of p observations. The normal equations are obtained

through differentiation of (1.2) with respect to β,

X(y −X′β) = 0.

Assuming XX′ is nonsingular, or the rows of X are linearly independent, the unique least

squares solution is

β̂ = (XX′)−1Xy.

The vector β̂ is built from training data inputs X and outputs y, from which we calculate

ŷi = xi
′β̂ to be the predicted (fitted) value for any input observation xi. It is mentioned

in [49, p. 12] that a large training data set is not needed to fit the least squares model.

Note that the least squares model may be fit to binary output data of 0’s and 1’s using the

rule

Ĝ(x) =





0 if ŷ(x) ≤ 0.5,

1 if ŷ(x) > 0.5.
(1.3)

In this case the decision boundary–the boundary in input feature space which divides the

classes–is {x : x′β = 0.5}. This is one possible approach for binary output data in other

models as well [22], though logistic regression is another common technique [49].

When the training data are generated from Gaussian distributions, linear decision bound-

aries are most appropriate; however, should the data be mixtures of tightly clustered Gaus-

sians, a nonlinear and disjoint decision boundary is more optimal [49, p. 14].
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1.3.2 k-Nearest Neighbor

Nearest neighbor methods are cluster methods that use training observations closest in input

feature space to a new observation x to predict Y (x). While the k-nearest neighbor (k-NN)

learner is supervised, it requires no structural assumption on the data as inference via least

squares does, and thus predictions may be more accurate, but are also sometimes unstable

due to the decision boundary which is heavily influenced training data [49, p. 16]. Moreover,

this algorithm is typically computationally expensive [48,79].

Essentially, when a prediction is desired for a new data vector x, k-NN averages the k closest

training data in input feature space to observation x. Mathematically, this prediction is

ŷ(x) =
1

k

∑

xi∈Nk(x)

yi,

where Nk(x), the neighborhood of x, is defined as the k training points xi closest in feature

space to unknown observation x. To determine closeness, the Euclidean distance metric is

typically used.

This can also be adapted for classification, in addition to regression learning, by using an

equation such as (1.3) for binary classification, or for multi-class classification, determining

which class dominates (the mode function) amongst the k closest training samples. The deci-

sion boundaries for k-NN are far more irregular than the linear decision boundary produced

in least squares, which allows for the learner to respond to local areas of clustered data in

which one class dominates over another [49].
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1.3.3 Bayes’ Classifier

The formulation of Bayes’ classifier is intuitive and its decision rule places an observation into

the most probable class, based on some assumed probability distribution. Bayes’ classifier

does not make distributional assumptions on the data x and solely describes the decision

rule. Classification methods such as linear discriminant analysis and quadratic discriminant

analysis make distributional assumptions and use the Bayes’ classifier decision rule to classify

observations.

We begin by considering a loss function, L(G, Ĝ(X)), which penalizes prediction errors. The

loss function indicates L(gk, ĝl) is the price paid for an observation belonging to gk predicted

(classified) as being in gl. It is typical for categorical output data to use the zero-one loss

function [49], which can be represented by matrix LK×K where K = |G| and the ijth entry of

L is defined as

[L(G, Ĝ(X)]i,j =





0 if i = j,

1 if i 6= j.
(1.4)

The expected prediction error (EPE) is the expectation of the prediction error function, or

EPE = E
[
L
(
G, Ĝ(X)

)]
, (1.5)

where the expectation is with respect to the joint distribution p(G,X). Conditioning on X

and using iterated expectations, the expectation in (1.5) can be rewritten as

EPE = EX

[
EG|X

[
L(gk, Ĝ(X))|X

]]

= EX

[
K∑

k=1

L(gk, Ĝ(X))p(gk|X)

]
.
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Minimizing the expected prediction error can be done point-wise [49, p. 21], yielding

Ĝ(X = x) = gk if p(gk|X = x) ≥ p(gl|X = x), ∀ l 6= k. (1.6)

Equation (1.6) defines the Bayes’ classifier. In simplest terms, the observation x is placed into

the most probable class defined using the conditional distribution p(G|X). Now that we have

Bayes’ classifier, it remains to define p(G|X).

Considering the probability p(gk|x), Bayes’ theorem yields

p(gk|x) =
p(x|gk)p(gk)

p(x)
, (1.7)

where p(x|gk) is the probability of data vector x given class gk, p(gk) is the relative frequency

with which the kth class occurs in the data set and p(x) is the probability of observing data

vector x. In Bayes’ terminology, p(gk) is referred to as the prior probability and is used to

model a priori knowledge, while p(gk|x) is referred to as the class posterior.

Substituting (1.7) into (1.6), Bayes’ classifier places x into class gk when

p(x|gk)p(gk) > p(x|gl)p(gl), ∀ l 6=k. (1.8)

To simplify (1.8), we define the discriminant function δk (x) to be the natural logarithm of

the left-hand side of (1.8). Performing this transform on both sides of (1.8) preserves the

inequality since the logarithm is a monotone increasing function:

δk (x) = ln p(x|gk) + ln p(gk), k = 1, . . . ,K. (1.9)

Thus the Bayes’ classifier places x into class gk when

δk(x) > δl(x), ∀ l 6=k. (1.10)
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It remains to specify p(x|gk) and p(gk). Two widely-used techniques for determining a model

of p(x|gk) are linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA),

both of which perform well on large data sets [49]. While derivations for both techniques are

determined from Gaussian assumptions and LDA assumes equal covariance matrices between

classes, it is suggested in [49, p. 111] that their wide use is due to the fact that data often

have linear or quadratic decision boundaries, in which case, the estimates provided by LDA

and/or QDA are accurate, as well as stable.

A Gaussian assumption on p(x|gk) leads to

p(x|gk) =
1√

(2π)n|Σk|
e−

1
2
(x−mk)

′
Σ

−1
k (x−mk),

where n is the number of features and mk and Σk are the mean vector and covariance matrix,

respectively, of the data belonging to class gk. In practice, we estimate mk and Σk using the

training data. The prior probability p(gk) is determined using a priori knowledge of the data

set. Here we assume a particular vector x has the same probability of being classified into

any one of the classes. However, if one has reason to believe that a data vector is more likely

to be in one class than another, then different priors may be assigned.

Linear Discriminant Analysis

Linear discriminant analysis (LDA) is derived from the assumption that the classes have

equal covariance matrices, that is Σk = Σ for all k. Given this covariance assumption and

the Gaussian assumption on p(x|gk), the discriminant function in (1.9) is reduced to

δk(x) = −n

2
ln 2π − 1

2
ln |Σ| − 1

2
(x−mk)

′Σ−1(x−mk) + ln p(gk).

The terms −n

2
ln 2π, −1

2
ln |Σ| and x′Σx appear in all δk (x) and the term ln p(gk) is assumed

equal for all k, thus they can be ignored. Moreover, since it is (1.10) that is of interest, we
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can equivalently use the discriminant function

δk(x) = x′Σ−1mk −
1

2
m′

kΣ
−1mk. (1.11)

Note that δk(x) is linear in x, and finally that we have derived the LDA technique, which

uses the discriminant functions of (1.11) to classify the data using decision rule (1.10).

Quadratic Discriminant Analysis

If instead we assume the covariance matrices between classes are not equal, we obtain the

quadratic discriminant analysis (QDA) classifier. Then, canceling constant terms the discrim-

inant function takes the form

δk(x) = − ln |Σk| − (x−mk)
′Σ−1

k (x−mk). (1.12)

Note that δk(x) is quadratic in x, and we use the discriminant functions defined in (1.12) to

classify data using the decision rule in (1.10).

Minimum Distance

While QDA is a popular technique [79], it requires sufficient training data to estimate mk

and Σk. In the case when less training data are available, it may be wiser to use a method

which does not require a covariance matrix, rather only the mean positions of the classes. In

such a case, one can use the minimum distance classifier.

The minimum distance classifier is faster than QDA, but because it does not utilize the

covariance information, it is less accurate in its classification if the covariance can be estimated

[79]. Using training data to estimate a class mean, the minimum distance classifier then places
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each training data vector in the class corresponding to the nearest mean in Euclidean distance.

The squared Euclidean distance of unknown x to each of the class means is computed by

d(x,mk)
2 = (x−mk)

′(x−mk)

= x′x− 2m′
kx+m′

kmk, ∀ k (1.13)

Thus classification places x ∈ gk if

d(x,mk)
2 < d(x,ml)

2, ∀ l 6= k.

Simplifying, we notice the first term in the right hand side of (1.13) is the same regardless of

class, and by negating the expression we arrive at the discriminant function for the minimum

distance classifier,

δk(x) = 2m′
kx−m′

kmk, ∀ k,

which is used to classify data using the decision function in (1.10).

1.4 Error

The ability of a learning method to correctly predict new observations is called its gener-

alization. While there are many ways to approach error in the statistical modeling setting,

considering batch classification, two suggested methods for estimating prediction error are

cross-validation and bootstrapping [13].
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1.4.1 K-Fold Cross-Validation

Cross-validation is a simple and widely-used method for estimating prediction error [49]. The

expected error is directly estimated with

Err = E[L(G, Ĝ(X))],

where the expectation is with respect to the unconditional joint distribution of (X, G) and L

is the loss function of the model applied to a observation X [49, p. 220]. Again, it is typical

to use the zero-one loss function described in Section 1.3.3 for categorical data.

In an ideal world with an excess of training data, one would build the model with a majority

of the training data, while the remaining training data are saved to be used as a validation

set. However, training data may be difficult or expensive to obtain, in which case this is an

infeasible option. K-fold cross-validation is one solution to this problem and measures the

performance of the model [12,49,79].

The general process of K-fold cross-validation begins by randomly partitioning the training

data set into K approximately equal-sized parts. The first part is placed aside to become the

new testing set and the remaining K − 1 parts become the new training set. The classifier is

created with this adjusted training set and is used to classify the new testing set. For example,

when K = 5, 95% of the training data is used to build a classifier, from which the remaining

5% of the training data is classified. Since the true classification of the training set is known,

the classification of the new testing set can be compared to the truth with a loss function.

This process is repeated K times (folds) so that each of the K sets is used exactly once as a

testing set. Note that this process can be repeated and the results averaged for a more stable

estimate of error.

In the case of classification, the zero-one loss function may be used to give the estimate of



1.4. ERROR 15

prediction error as

ÊrrCV =
1

p

p∑

i=1

L(g(xi), Ĝ−i(xi)),

where L is defined in (1.4), g(xi) is the group that training point xi belongs to, and Ĝ−i(xi) is

the predicted group for observation xi using the classifier built without the kth training set to

which xi belongs. In this case, the estimated prediction error is the proportion of misclassified

observations. Furthermore, the case when K = p is known as leave-one-out cross-validation

because, for each fold, all observations but one are used to build the classifier, with the

remaining observation used as the testing set. It follows that p-fold cross-validation has the

highest computational cost when compared to any other chosen K. Since the p training sets

are very similar to one another, the cross-validation estimator has high variance, though it is

nearly unbiased ( [31], [49, p. 242]).

The recommended K for K-fold cross validation is K = 5 or 10 [13, 54]. With a smaller

number of folds, such as K = 5, the estimator has lower variance but perhaps higher bias

than in the case of more folds. The bias depends on how the learning method performance is

affected by the size of the training set.

1.4.2 Bootstrapping

Another method by which we can estimate prediction error is known as bootstrapping. The

bootstrap procedure takes samples of size p with replacement from the original training set.

This is repeated B times. Nowadays with larger computational power available, B can be

taken to be in the thousands or tens of thousands.

For each bootstrap sample b, we can build a classifier and compare it to the known input
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labels for all of the training data. That is, we calculate

Êrrboot =
1

p · B

B∑

b=1

p∑

i=1

L(g(xi), Ĝb(xi)), (1.14)

where Ĝb(xi) is the predicted group for observation xi for the classifier built from the bth

bootstrap sample. Unfortunately, the estimated error in (1.14) will typically be too low due

to the fact that the data in the bootstrap samples also occur in the training sample [49]. To

circumvent this issue, recall that K-fold cross-validation creates the training and test sets for

each fold with partitioned data.

The leave-one-out bootstrap estimate of prediction error only considers calculating the loss

function, in each bootstrap sample, for predictions of training observations not selected in

the bootstrap sample. Letting C−i be the set of indices of bootstrap samples b such that

observation xi is not in bootstrap sample b, then the estimate of prediction error for the

leave-one-out bootstrap is

Êrr(1) =
1

p

p∑

i=1

1

|C−i|
∑

b∈C−i

L(g(xi), Ĝb(xi)). (1.15)

To account for the fact that |C−i| could be zero, [49, p. 251] suggests either choosing B

large enough to ensure this does not occur or ignoring the zero terms in (1.15). Furthermore,

the estimate in (1.15) resolves the overfitting issue that occurs in (1.14) but has bias due to

training set size, just as with K-fold cross-validation for smaller K.

The complex .632 estimator overcomes the training-set-size bias of the leave-one-out boot-

strap estimate in (1.15) and is defined as

Êrr.632 = 0.632 Êrr(1) + 0.368 err,
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where

err =
1

p

p∑

i=1

L(g(xi), Ĝ(xi))

is the training error. This weighted average estimator aims to alleviate the upward bias in the

Êrr(1) estimator by averaging it with the downwardly biased estimator err [32]. While any

weight could be used, the value .632 comes from noting that any observation xi has probability

near 0.632 of being selected in any given bootstrap sample [31]:

p(xi ∈ b) = 1−
(
1− 1

p

)p

≈ 1− e−1

≈ 0.632.

Thus the probability of any given observation not being chosen in a sample (with replacement)

of size p is 0.368.

In [31], Efron compares leave-one-out cross-validation to the .632 bootstrap estimator and

found that, particularly for small samples, the .632 bootstrap estimator performed best; that

is, it was closer to the true prediction error. Efron and Tibshirani describe a variation to the

.632 estimator, designed to be a less biased compromise between Êrr(1) and err by putting

more weight on Êrr(1) for the case of extensive overfitting, i.e., when Êrr(1)−err is large [32].

In addition, [49] suggests that both bootstrap and cross-validation perform fairly equivalently

in their accuracy of estimating prediction error, except in fitting methods such as trees where

the estimators can underestimate true error by 10%.

1.5 Support Vector Classifiers

The support vector machine (SVM) is a well-known method for supervised classification and

is well documented throughout the literature; see, e.g., [15, 22, 36, 49, 94, 95]. It requires the
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solution of a constrained quadratic minimization problem, whose solution is our focus in

this chapter. Specifically, for computing the SVM classifier with bound and linear equality

constraints, we introduce an augmented Lagrangian technique similar to that of [65,70]. Fur-

thermore, we adapt the scaled gradient projection algorithm of [10] for use on the constrained

SVM quadratic program.

We now give a brief introduction to support vector classifiers. The idea behind the support

vector classifier (SVC) is to seek a separating hyperplane of the training data in feature space

and then apply that hyperplane to the test set, giving a classification of the data set.

For simplicity and visualization purposes, we begin with a data set whose response variable

consists of two classes. Later we discuss the extension of SVC to multi-class classification.

Following the work of [15,22,49], let the training data be the set {xi, yi}, i = 1, . . . , p, where

xi ∈ R
n is the set of n measurements for observation i and yi ∈ {−1,+1} represents its

inclusion into one of the two classes. Let a linear classifier for this training data be defined

by a vector w ∈ R
n, a scalar b, and the decision rule

G(x) = sign(w′x+ b), (1.16)

which places x into the -1 class if G(x) is negative and into the +1 class if it is positive.

Assuming completely separable data, there exist w and b such that the hyperplanew′x+b =

0 separates the training data. Figure 1.1 shows an example of the feature space for a two

class data set with n = 2 and a separating hyperplane. Let d+ (d−) be the shortest distance

from the separating hyperplane to the closest positive (negative) yi. The margin is defined as

d+ + d−.

Maximizing the margin is an intuitive approach that simultaneously distances all of the

training data as far from the hyperplane as possible, thereby minimizing the likelihood of a

misclassification. See Figure 1.2 for a visual demonstration of the optimality of the maximum
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Figure 1.1: An example of a two class data set in R
2 with a separating hyperplane (solid

line) in its feature space. The shortest distance between the dotted lines is the margin, and
training data that fall on the margin are called support vectors.

margin hyperplane in terms of misclassification error.

Figure 1.2: An example of a two class data set in R
2 with and without maximizing the margin

of a separating hyperplane. Training data appear as stars, test data appear as closed and
open circles for the two classes. Left: The maximized margin separating hyperplane from
Figure 1.1 applied to the test data. Note that one data point is misclassified. Right: A
separating hyperplane in which the margin is not maximized. Note that four data points are
misclassified.

Next, we show w is perpendicular to the hyperplane w′x+ b = 0, and then use this fact to

compute the margin, i.e., the distance between the two hyperplanes

w′x+ b = −1 and w′x+ b = 1. (1.17)
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For the hyperplane surface defined by f(x) = 0, the vector ∇xf(x) is a normal vector. Then

for the hyperplane f(x) = w′x+ b = 0, ∇xf(x) = w is a normal vector.

Now, two vectors x− = c−w and x+ = c+w lie on the two planes, respectively, in (1.17).

Plugging into (1.17) and solving for c− and c+ we obtain

c− =
−1− b

||w||2 and c+ =
1− b

||w||2 ,

from which the margin is calculated as

||x+ − x−|| = ||(c+ − c−)w||

=
2

||w|| .

Thus maximizing the margin corresponds to minimizing ||w||, or in what follows, ||w||2.

1.5.1 Support Vector Machine Variations

Many variations on the SVC formulation exist [22, 36], and each formulation has its own

merits. Three derivations of support vector classifiers based on different assumptions are pre-

sented here. These derivations lead to two types of quadratic optimization problems: those

with bound and equality constraints and those simply with bound constraints. The meth-

ods we developed are used to solve the bound and equality constrained quadratic program;

however, we include the SVC formulations for the bound constrained quadratic programs for

completeness. Following the derivations, we discuss the enlargement of the feature space using

kernels, which allows for the nonlinear separating hyperplane classification within the support

vector machine.
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Derivation of a Bound-Plus-Equality Constrained SVC

We assume a non-separable data set such that a hyperplane cannot partition the training data

in feature space into its classes without misclassification. For non-separable data, the SVC

seeks the hyperplane of maximal margin but introduces a nonnegative slack variable ξi for

each training point xi to measure the degree of the misclassification of xi. The slack variable

has value 0 if the training point is on the correct side of the margin, but when the training

point is on the wrong side of the margin, the perpendicular (shortest) distance to its margin

is given by ξi/||w||. Figure 1.3 gives an example of a non-separable training set, where the

red lines indicate positive slack variables for those training points on the wrong side of their

margin.

Figure 1.3: An example of a non-separable training set. For those training data on the wrong
side of the margin, the red line indicates its perpendicular distance to the margin and has a
length of ξi/||w||. For training points on the correct side of their margin, the corresponding
slack variable has value 0.

Cortes and Vapnik [21] suggest a soft margin method in which the objective function pe-

nalizes positive values of ξi, resulting in a trade off between a large margin and small penalty

errors in the optimization problem:

min
w, b

1
2 ||w||2 +C

p∑

i=1

ξi subject to




yi(w

′xi + b)− (1− ξi) ≥ 0 ∀ i

ξi ≥ 0 ∀ i





. (1.18)
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Definition 1.5.1. For a general optimization problem of the form

min
x

f(x) subject to




ci(x) = 0, i ∈ E

di(x) ≤ 0, i ∈ I





,

with solution x∗, where E and I are the equality and inequality constraint index sets, respec-

tively, the primal objective function is given by

Lp(x,λ,µ) = f(x) +
∑

i∈E

λici(x) +
∑

i∈I

µidi(x),

where λ, µ are the Lagrange multiplier vectors. This function is also referred to as the

Lagrangian [71].

Definition 1.5.2. At the solution x∗, there are Lagrange multiplier vectors λ∗ and µ∗ such

that the following Karush-Kuhn-Tucker (KKT) conditions are satisfied at (x∗,λ∗,µ∗):

Stationarity ∇xLp(x
∗,λ∗,µ∗) = 0,

Primal Feasibility ci(x
∗) = 0, ∀ i ∈ E ,

Primal Feasibility di(x
∗) ≤ 0, ∀ i ∈ I,

Dual Feasibility µ∗
i ≥ 0, ∀ i ∈ I,

Complementary Slackness µ∗
i di(x

∗) = 0, ∀ i ∈ I.

The gradient of Lp at the solution x∗ is 0, giving us the stationarity condition. In other

words,

∇xLp = ∇xf(x
∗) +

∑

i∈A(x∗)

µ∗
i∇xdi(x

∗) = 0,

where i ∈ A(x∗) when the constraint di(x) ≤ 0 is active at the solution x∗. The primal

feasibility KKT conditions are simply the constraints on the primal problem. The dual of

the primal [40] has non-negativity constraints on the Lagrange multipliers, yielding the dual

feasibility KKT condition. The complementary slackness KKT condition states that for all
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i ∈ I, either µ∗
i = 0 or di(x

∗) = 0, indicating when the inequality constraint is active (µ∗
i 6= 0)

and when it is inactive (µ∗
i = 0).

The primal objective function for (1.18) is given by

Lp(w, b, ξ,α,µ) =
1

2
||w||2 +

p∑

i=1

(C − µi)ξi −
p∑

i=1

αi(yi(w
′xi + b)− (1− ξi)), (1.19)

where αi and µi, for i = 1, . . . , p, are the Lagrange multipliers [49]. Solving the primal problem

(1.19) is equivalent to solving (1.18) [49, Theorem 12.1].

The stationarity KKT condition then implies

0 = ∇(w,b,ξ)Lp

=




∇wLp

∇bLp

∇ξLp




=




∇w

(
1
2w

′w −∑p
i=1 αiyi(w

′xi) + non-w terms
)

∇b (−
∑p

i=1 αiyib+ non-b terms)

∇ξ (
∑p

i=1 αi(1− ξi) + C
∑p

i=1 ξi −
∑p

i=1 µiξi + non-ξ terms)




=




w −∑p
i=1 αiyixi

−∑p
i=1 αiyi

−α+C − µ



,

where C = (C, . . . , C)′
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The KKT conditions for (1.18) can therefore be stated as follows:

Stationarity




w

0

α




=




p∑
i=1

αiyixi

p∑
i=1

αiyi

C − µ



,

Primal Feasibility yi(w
′xi + b)− (1− ξi) ≥ 0, i = 1, . . . , p,

Primal Feasibility ξi ≥ 0, i = 1, . . . , p,

Dual Feasibility (αi, µi) ≥ 0, i = 1, . . . , p,

Complementary Slackness αi(yi(w
′xi + b)− (1− ξi)) = 0, i = 1, . . . , p,

Complementary Slackness µiξi = 0, i = 1, . . . , p.

The Wolfe dual [40], Ld, is derived from maximizing the primal objective function, Lp,

with respect to the Lagrange multipliers subject to ∇(w,b,ξi)Lp = 0 (i.e., stationarity) and

αi, µi ≥ 0. By substituting the stationarity conditions into the primal objective function

(1.19) we obtain:

Ld(α) = Lp

(
p∑

i=1

αiyixi, b, ξ,α,µ

)

=
1

2

(
p∑

i=1

αiyixi

)′( p∑

i=1

αiyixi

)
+

p∑

i=1

(C − µi) ξi

−
p∑

i=1

αi


yi






p∑

j=1

αjyjxj




′

xi + b


− (1− ξi)




=
1

2

p∑

i=1

p∑

j=1

αiαjyiyjx
′
ixj +

p∑

i=1

(C − µi − αi)︸ ︷︷ ︸
=0

ξi

−
p∑

i=1

p∑

j=1

αiαjyiyjx
′
ixj − b

p∑

i=1

αiyi

︸ ︷︷ ︸
=0

+

p∑

i=1

αi

= −1

2

p∑

i=1

p∑

j=1

αiαjyiyjx
′
ixj − b

p∑

i=1

αiyi

︸ ︷︷ ︸
=0

+

p∑

i=1

αi
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=

p∑

i=1

αi −
1

2

p∑

i=1

p∑

j=1

αiαjyiyjx
′
ixj.

Notice that the Lagrange multipliers µi, slack variables ξi, hyperplane vector w, and inter-

cept b do not appear in this final formulation. The dual optimization problem is then written

as

min
α





1

2

p∑

i=1

p∑

j=1

αiαjyiyjx
′
ixj −

p∑

i=1

αi



 subject to





0 ≤ αi ≤ C ∀ i
p∑

i=1
αiyi = 0





, (1.20)

where the constraint 0 ≤ αi ≤ C comes from the fact that αi = C − µi and µi ≥ 0. We will

focus in this manuscript on solving (1.20). However, we note that it is also possible to solve

the primal problem [11,18,41,51,87].

Solving (1.20) for the Lagrange multipliers is equivalent to solving (1.19) for w, b, and

ξ [71, Theorems 12.5, 12.6], as well as (1.18). Once (1.20) is solved for Lagrange multiplier

vector α, it remains to find w and b that define the hyperplane and decision rule. These are

obtained from the KKT conditions. First we note that for each αi 6= 0, we have that xi is a

support vector, indicating that it lies on the margin (the dotted lines in Figure 1.1), in which

case ξi = 0. Letting S = {i|α∗
i 6= 0}, then by the stationarity KKT condition we have

w∗ =
∑

i∈S

α∗
i yixi. (1.21)

Using the KKT complementary slackness condition αi(yi(w
′xi + b) − (1 − ξi)) = 0, we solve

for b to obtain

b =
1− yiw

′xi

yi
,

for all i ∈ S. We take b∗ to be the average of those hyperplane intercepts suggested by the
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support vectors:

b∗ =
1

|S|
∑

i∈S

1− yi(w
∗)′xi

yi
.

Using the estimated hyperplane, (w∗)′x + b∗, the decision rule for classification is given by

(1.16).

Generalizing to more classes is a simple extension of the two class problem. Classification

with k classes requires an associated hyperplane (w∗
j , b

∗
j ) for each class, for j = 1, . . . , k. To

build the jth hyperplane, if xi ∈ gj , then we assign yi = 1, otherwise yi = −1 for xi 6∈ gj .

That is, we build a hyperplane for each training class versus the rest of the training set. In

a two class problem, it is unnecessary to build two hyperplanes since class 1 against class 2

would yield the same hyperplane as class 2 against class 1.

The decision rule is given by

Ĝ(x) = arg max
1≤j≤k

((w∗
j )

′x+ b∗j).

Geometrically, this creates a hyperplane for each class and assigns new data observation x to

the class for which x is furthest from the associated hyperplane if the observation is on the

“correct” side of the hyperplane for that class, i.e., x is on the “correct” side of the hyperplane

for class gj if (w∗
j )

′x+ bj is positive. Otherwise, if the observation is on the “incorrect” side

of the hyperplane for all hyperplanes, x is placed in the class for which it is closest to the

associated hyperplane.



1.5. SUPPORT VECTOR CLASSIFIERS 27

Derivation of a Bound Constrained SVC Without Intercept

Consider again the minimization problem (1.18) but with the assumption that the hyperplane

does not have an intercept, i.e., b = 0. Then our primal objective function is

Lp(w, ξ,α,µ) =
1

2
||w||2 −

p∑

i=1

αi(yiw
′xi − (1− ξi)) + C

p∑

i=1

ξi −
p∑

i=1

µiξi.

Since b does not appear in the objective function anymore, we no longer have the constraint

∑p
i=1 αiyi = 0. Thus the dual optimization problem becomes

min
α




1

2

p∑

i=1

p∑

j=1

αiαjyiyjx
′
ixj −

p∑

i=1

αi



 subject to 0 ≤ αi ≤ C, ∀ i. (1.22)

Notice that (1.22) has the same objective as (1.20), but that the equality constraint has

been removed. This simplification of the constraint set is a motivation for the assumption

that the intercept is zero. Once again, after (1.22) is solved for Lagrange multipliers α∗, the

associated w∗ is defined by (1.21) and the decision rule by (1.16) with b = 0. The result of

assuming b = 0 forces the hyperplane to pass through the origin and reduces the degrees of

freedom by one.

Derivation of a Bound Constrained SVC with Penalized Intercept

The third SVC formulation considered here is one that suggests maximizing the margin with

a penalty placed on large values of b if it is suspected that b should remain small. We now

consider the problem

min
w,b

1

2

∣∣∣∣[w′, δb]
∣∣∣∣2 + C

p∑

i=1

subject to




yi(w

′xi + b)− (1− ξi) ≥ 0

ξi ≥ 0





, (1.23)
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where δ is a penalty parameter specified by the user. The primal objective function is given

by

Lp(w, b, ξ,α,µ) =
1

2
||[w′, δb]||2 −

p∑

i=1

αi(yi(w
′xi + b)− (1− ξi)) + C

p∑

i=1

ξi −
p∑

i=1

µiξi.

The KKT conditions derived are similar to the bound-plus-equality constrained SVC above

and are given by

Stationarity




w

b


 =

∑
i∈S

αiyi




xi

1
δ2


 ,

Stationarity α = C − µ,

Primal Feasibility yi(w
′xi + b)− (1− ξi) ≥ 0, i = 1, . . . , p,

Primal Feasibility ξi ≥ 0, i = 1, . . . , p,

Dual Feasibility (αi, µi) ≥ 0, i = 1, . . . , p,

Complementary Slackness αi(yi(w
′xi + b)− (1− ξi)) = 0, i = 1, . . . , p,

Complementary Slackness µiξi = 0, i = 1, . . . , p.

The corresponding Wolfe dual [40] is given by

Ld(α) = Lp

(
p∑

i=1

αiyixi,

p∑

i=1

αiyi
1

δ62 , ξ

)

=
1

2

(
p∑

i=1

αiyixi

)′( p∑

i=1

αiyixi

)
+

1

2
δ2

(
1

δ2

p∑

i=1

αiyi

)(
1

δ2

p∑

i=1

αiyi

)

−
p∑

i=1

αi


yi






p∑

j=1

αjyjxj




′

xi +


 1

δ2

p∑

j=1

αjyj




− (1− ξi)


+

p∑

i=1

(C − µi) ξi

=
1

2

p∑

i=1

p∑

j=1

αiαjyiyjx
′
ixj +

1

2δ2

p∑

i=1

p∑

j=1

αiαjyiyj −
p∑

i=1

p∑

j=1

αiαjyiyjx
′
ixj

− 1

δ2

p∑

i=1

p∑

j=1

αiαjyiyj +

p∑

i=1

αi +

p∑

i=1

(C − µi − αi)︸ ︷︷ ︸
=0

ξi
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= −1

2

p∑

i=1

p∑

j=1

αiαjyiyj




xi

1
δ




′ 


xj

1
δ


+

p∑

i=1

αi

=

p∑

i=1

αi −
1

2

p∑

i=1

p∑

j=1

αiαjyiyj




xi

1
δ




′ 


xj

1
δ


 .

The Wolfe dual formulation of (1.23) then simplifies to

min
α





1

2

p∑

i=1

p∑

j=1

αiαjyiyj

[
x′
i

1
δ

]


xj

1
δ


−

p∑

i=1

αi





subject to 0 ≤ αi ≤ C ∀ i. (1.24)

Notice that this formulation again removes the equality constraint that appeared in (1.20),

reducing the dual to a bound constrained quadratic program. Note also that as δ → ∞, the

quadratic program converges to (1.22).

Solving the dual yields the Lagrange multipliers α∗
i from which we would use the nonzero

α∗
i to compute w∗ and b∗ using the KKT stationarity equation



w∗

b∗


 =

∑

i∈S

α∗
i yi



xi

1
δ2


 ,

where we recall that {xi|i ∈ S} are the support vectors. The decision rule is then given by

(1.16) with w = w∗ and b = b∗.

1.5.2 Expanding the Feature Space with Kernels

For the SVC, the decision function is a linear function of x, creating linear decision boundaries

in the input feature space. This is not always optimal and by enlarging the feature space using

basis expansions, the classifier has better training class separation in the original feature space,
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i.e., the boundaries become nonlinear in feature space.

Nonlinear boundaries arise when the Euclidean inner-product x′
ixj , appearing in the above

dual objective functions, is replaced by the evaluation of a kernel function, K(xi,xj), yielding

the support vector machine (SVM). An advantage of using kernels when the data is not linearly

separable is that the nonlinear decision boundaries are computed cheaply [49].

The underlying idea is illustrated as follows. First, we transform the training data using m

basis functions: h(xi) = (h1(xi), . . . , hm(xi)), for i = 1, . . . , p. We then apply the SVC to the

transformed data, yielding the dual function

Ld(α) =

p∑

i=1

αi −
1

2

p∑

i=1

p∑

j=1

αiαjyiyj 〈h(xi),h(xj)〉 ,

which can be used in the Wolfe-dual optimization problems (1.20) and (1.22), and the dual

function for (1.24) is given by

Ld(α) =

p∑

i=1

αi −
1

2

p∑

i=1

p∑

j=1

αiαjyiyj

(
〈h(xi),h(xj)〉+

1

δ2

)
,

where the inner product is defined as

〈h(xi),h(xj)〉 = h(xi)
′h(xj) =

m∑

k=1

hk(xi)hk(xj).

Then the corresponding hyperplane solution has the form

G(x) = (w∗)′h(x) + b∗ =

p∑

i=1

αiyi 〈h(xi),h(x)〉+ b∗.

Notice that in all of the above equations, the basis functions appear only within an inner
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product, and hence it suffices to know the kernel function defined by

K(u,v) = 〈h(u),h(v)〉 ,

which computes inner products in the transformed space. The following three kernels were

the first ones used in pattern recognition and are still popular:

dth Degree polynomial: K(u,v) = (1 + 〈u,v〉)d,

Radial basis: K(u,v) = e−σ||u−v||2 ,

Neural Network: K(u,v) = tanh(κ1 〈u,v〉+ κ2).

In enlarged feature space, the cost parameter C (the upper-bound on the inequality con-

straint in (1.20), (1.22) and (1.24)), is more understandable in the role it plays. With complete

separation often plausible in the enlarged feature space, a larger value of C corresponds to a

greater number of support vectors (fewer positive slack variables ξi) and thus a wiggly, pos-

sibly overfit boundary in the original feature space [49]. A smaller value of C corresponds to

fewer support vectors and a smoother boundary, allowing more positive values of ξi.

Figure 1.4 visually demonstrates the improvement in classification error for non-separable

data using the radial basis kernel versus no kernel. In the left image, no kernel was used,

resulting in linear boundaries for the classification. In this case, we see there are four misclas-

sifications: two triangles are misclassified as circles, a circle is misclassified as a square, and a

square is misclassified as a triangle. In the right image where a radial basis kernel was used

to create nonlinear boundaries for classification, none of the training data were misclassified.
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Figure 1.4: Training data for three classes are indicated by the large circles, triangles, and
squares. Classification for R

2 is given, where the smaller dots correspond to the large circle
class, the smaller triangles correspond to the large triangle class, and the empty space corre-
sponds to the square class. The left image gives the classification for the training set using
linear boundaries (no kernel) while the right image gives the classification using a radial basis
kernel with σ = 0.2. Both classifications use C = 105. Notice the linear decision boundaries
misclassify four of the training data points due to non-separability while the nonlinear decision
boundaries correctly classify the training data.

1.6 Constrained Quadratic Programming Methods

We have presented two basic forms of optimization problems for solving SVMs and they are

rewritten here in matrix notation for implementation in optimization algorithms. The bound

and equality constrained quadratic program (1.20) can be written in the form

min
α

{
f(α) =

1

2
α′Aα−α′b

}

subject to l ≤ α ≤ u and y′α = 0,

(1.25)
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where the inequality is component-wise, α = (α1, . . . , αp)
′, b = (1, . . . , 1)′, l = (0, . . . , 0)′,

u = (C, . . . , C)′, y′ = (y1, . . . , yp)
′, and

A =




y1x
′
1

...

ypx
′
p




[
y1x1 . . . ypxp

]
. (1.26)

The bound constrained quadratic programs (1.22) and (1.24) can be written in the form

min
α

{
f(α) =

1

2
α′Aα−α′b

}

subject to l ≤ α ≤ u,

(1.27)

where all vectors and matrices are given as above with A as in (1.26) for (1.22) and

A =




y1x
′
1

1
δy1

...
...

ypx
′
p

1
δyp






y1x1 . . . ypxp

1
δy1 . . . 1

δ yp




for (1.24).

We note that matrix A is symmetric positive definite if the training data (x1, . . . ,xp) are

linearly independent, otherwise it is symmetric semipositive definite.

While there are many approaches for solving the SVM problem as mentioned above, here we

focus solely on the dual formulations provided in Section 1.5.1. Methods such as cutting planes

and the stochastic sub-gradient take advantage of the primal formulation [11, 18, 41, 51, 87]

but are not discussed here. Interior point methods which exploit the low-rank structure

of the problem are another common approach but are not discussed here [29, 37]. While we

incorporate the use of projected Newton and conjugate gradient algorithms into the augmented

Lagrangian algorithms, various other active set methods could also be used [69,83,88].
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The focus of this section is on numerical algorithms for the bound and equality constrained

SVM quadratic program (QP) (1.25). Methods for solving (1.27) are well-documented and

well-studied. In particular, gradient projection (GP) [53], projected Newton (PN) [53] and

gradient projection conjugate gradient (GPCG) [69] are methods that may be used to solve

(1.27). The remainder of this section focuses on developing numerical methods for solving the

bound-plus-equality constrained QP.

1.6.1 The Augmented Lagrangian

The augmented Lagrangian (AL) method is also known as the method of multipliers and

solves the constrained optimization problem

min
α

f(α) subject to





hi(α) = 0 ∀ i ∈ E

gi(α) ≤ 0 ∀ i ∈ I





, (1.28)

where E and I are the equality and inequality constraint index sets, respectively. The general

idea behind the AL method is to incorporate some or all of the constraints into the objective

function f(α) [9, 71]. We present AL formulations for the SVM quadratic programming

problem (1.25) here.

In [65,70], the equality constraint is incorporated into the Lagrangian function, leaving only

the bound constraints. In [70], gradient projection conjugate gradient (GPCG) [69] is used

to solve the resulting bound constrained quadratic program, whereas in [65] an approximate

problem is solved analytically. Here we follow the approach of [70] but use projected Newton

[53] in place of GPCG as it reduces computational time and is easier to implement. We

also take the AL algorithm one step further and incorporate both the bound and equality

constraints into the Lagrangian, allowing us to construct an iterative algorithm requiring the

solution of a sequence of unconstrained quadratic programs, which can be solved with less

sophisticated methods, and whose solutions converge to the solution of (1.25).
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Before continuing, we note that the LANCELOT algorithm is a well-known method for

solving general problems of the form (1.28) using the AL technique [20]. Due to the size of

the class of problems in (1.28), the algorithm is necessarily complex. Since our focus is on

the much smaller subclass of problems of the form (1.25), we are able to present two AL

algorithms that are much simpler than LANCELOT and that exploit the specific structure of

the optimization problem.

The Bound Constrained Augmented Lagrangian

In the bound constrained AL technique, we add a quadratic penalty to the Lagrangian func-

tion. For (1.25), the AL function is given by

L(α, λ, µ) = f(α) + λy′α+
µ

2
(y′α)2, (1.29)

where λ is a Lagrange multiplier and µ > 0 is a penalty parameter.

Note that as µ increases, failure to satisfy the equality constraint y′α = 0 is increasingly

penalized, forcing the optimization towards the feasible region. One might think that adding

the quadratic penalty term alone to f(α) would be enough, however the resulting problem

is ill-conditioned in the sense that as µ → ∞, a systematic perturbation to the minimizers

results [71]. Adding only the Lagrange multiplier term and not the quadratic penalty term

would be using the Lagrangian method again, which was not explored here.

To create the bound constrained AL algorithm, at iteration k, we fix λ = λk and µ = µk,

and define αk to be the minimizer of L(α, λk, µk) with respect to α and subject to l ≤ α ≤ u.
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The KKT conditions state that the minimizer (α∗, λ∗, µ∗) of L(α, λ, µ) satisfies

0 = ∇αL(α∗, λ∗, µ∗)

= ∇αf(α
∗) + λ∗y + µ∗(y′α∗

︸ ︷︷ ︸
=0

)y

= ∇αf(α
∗) + λ∗y.

(1.30)

Moreover, we have that at each iteration k,

0 = ∇αL(αk, λk, µk) = ∇αf(α
k) + (λk + µk(y

′αk))y. (1.31)

Equating (1.30) and (1.31) motivates the update

λk+1 = λk + µky
′αk. (1.32)

Bertsekas discusses selecting a penalty parameter in [9], noting that µk needs to increase fast

enough to have a decent convergence rate but slow enough to reduce ill-conditioning. Various

updates for penalty parameter µk are given in [9], one of which we use here: let β > 1 and

0 < ν < 1, then

µk+1 =





βµk if ||y′αk|| > ν||y′αk−1||,

µk if ||y′αk|| ≤ ν||y′αk−1||,
(1.33)

with a recommended choice of ν = 0.25, and we take β = 3 [9]. This increases the penalty

parameter by a factor of β only if the constraint violation has not decreased by a factor of ν

from the previous minimization.

We can now present the first AL method, which solves (1.25) by cyclically minimizing

L(α, λk, µk) with respect to α subject to l ≤ α ≤ u using projected Newton [53], or one of

many other bound constrained optimizers [69–71], and by updating λk and µk via (1.32) and

(1.33), respectively. Pseudocode for projected Newton is given in Section 1.6.3. Pseudocode

for this augmented Lagrangian approach is presented in Algorithm 1.
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Algorithm 1 The Bound Constrained Augmented Lagrangian Method

Given µ0 ≥ 0 and initial points α0 and λ0, set k = 0.

1. Use projected Newton to find the approximate minimizer αk+1 of L(α, λk, µk) in (1.29)
subject to l ≤ α ≤ u with starting point αk.

2. If |y′αk+1| < 10−6, stop with approximate solution αk+1.

3. Update the Lagrange multiplier via (1.32) to obtain λk+1, and choose a new penalty
parameter µk+1 via (1.33).

4. Set k = k + 1 and return to Step 1.

Bertsekas gives a basic convergence result in [9], restated here for completeness.

Theorem 1. Assume that f and h are continuous functions and that the constraint set {l ≤

α ≤ u|h(α) = 0} is nonempty. For k = 0, 1, . . . , let αk be a global minimum of the problem

minimize L(α, λk, µk)

subject to l ≤ α ≤ u,

where {λk} is bounded, 0 < µk < µk+1 for all k, and µk → ∞. Then every limit point of the

sequence {αk} is a global minimum of the original problem

minimize f(α)

subject to h(α) = 0, l ≤ α ≤ u.

(1.34)

Proof. Let ᾱ be a limit point of {αk}. We have by definition of αk

L(αk, λk, µk) ≤ L(α, λk, µk), ∀ l ≤ α ≤ u. (1.35)
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Let f∗ denote the the optimal value of the original problem (1.34). We have

f∗ = inf
h(α)=0, l≤α≤u

f(α)

= inf
h(α)=0, l≤α≤u

{
f(α) + λkh(α) + µk

2 ||h(α)||2
}

= inf
h(α)=0, l≤α≤u

L(α, λk, µk).

Hence, by taking the infimum of the right-hand side of (1.35) over l ≤ α ≤ u, h(α) = 0, we

obtain

L(αk, λk, µk) = f(αk) + λkh(α
k) + µk

2 ||h(αk)||2 ≤ f∗.

The sequence {λk} is bounded and hence it has a limit point λ̄. Without loss of generality,

we may assume that λk → λ̄. By taking the supremum in the relation above and by using the

continuity of f and h, we obtain

f(ᾱ) + λ̄h(ᾱ) + lim
k→∞

sup
µk

2
||h(αk)||2 ≤ f∗. (1.36)

Since ||h(αk)||2 ≥ 0 and µk → ∞, it follows that h(αk) → 0 and

h(ᾱ) = 0, (1.37)

for otherwise the left-hand side of (1.36) would equal ∞, while f∗ < ∞ (since the constraint

set is assumed nonempty). Since l ≤ α ≤ u is a closed set, we also obtain that l ≤ ᾱ ≤ u.

Hence, ᾱ is feasible, and since from (1.36) and (1.37) we have f(ᾱ) ≤ f∗, it follows that ᾱ is

optimal.

The Unconstrained Augmented Lagrangian Method

Bertsekas indicates in [9] that bound constraints may be included into the AL function using

nonzero slack variables si and ti satisfying li − αi + s2i = 0 and αi − ui + t2i = 0. Then (1.25)
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can be alternatively written

min
α

f(α) =
1

2
α′Aα−α′b

subject to y′α = 0,

li − αi + s2i = 0, for i = 1, . . . , p,

αi − ui + t2i = 0, for i = 1, . . . , p.

(1.38)

Next, we incorporate all of the constraints into the augmented Lagrangian, using one penalty

parameter as per [9], to obtain

L(α, λ,γ, µ, s, t) = f(α) + λy′α+ µ
2 (y

′α)2

+

p∑

i=1

[
γli(li − αi + s2i ) + γui(αi − ui + t2i )

]

+ µ
2

p∑

i=1

[
(li − αi + s2i )

2 + (αi − ui + t2i )
2
]
,

(1.39)

with s = (s1, . . . , sp)
′, t = (t1, . . . , tp)

′. Each iteration of the AL method updates the Lagrange

multiplier parameters λ and

γ = (γ′
l,γ

′
u)

′ = (γl1 , . . . , γlp , γu1 , . . . , γup)
′,

and quadratic penalty parameter µ.

To remove s from (1.39), we consider minimizing the augmented Lagrangian with respect

to s and setting it to equal to 0:

0 = ∇sL(α, λ,γ, µ, s, t)

= 2γ l ⊙ s+ µ(l −α+ s2)⊙ 2s

= 2s⊙ (γ l + µ(l−α+ s2)), (1.40)
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where ‘⊙’ indicates component-wise multiplication. Thus by (1.40), we have that either s∗i = 0

or (s∗i )
2 = −(γli/µ+li−αi). Thus we can write the solution as (s∗)2 = max

{
0,−(

γ l
µ + l −α)

}
,

where the maximum function is component-wise. Substituting (s∗)2 into the summation terms

in (1.39) involving s2i yields

p∑

i=1

[
γli

(
li − αi +max

{
0,− 1

µ(γli + µ(li − αi))
})

+ µ
2

(
li − αi +max

{
0,− 1

µ(γli + µ(li − αi))
})2 ]

=

p∑

i=1





γli(li − αi) +
µ
2 (li − αi)

2 if γli + µ(li − αi) > 0

− 1
2µγ

2
li

otherwise

=
1

2µ

p∑

i=1





(2µγli(li − αi) + µ2(li − αi)
2) if γli + µ(li − αi) > 0

−γ2li otherwise

=
1

2µ

p∑

i=1





(γli + µ(li − αi))
2 − γ2li if γli + µ(li − αi) > 0

−γ2li otherwise

=
1

2µ

p∑

i=1

[max{0, γli + µ(li − αi)}2 − γ2li ].

Performing the analogous computation for the slack variable t, the augmented Lagrangian

in (1.39) simplifies to

L(α, λ,γ, µ) = f(α) + λy′α+ µ
2 (y

′α)2

+
1

2µ

p∑

i=1

[max{0, γli + µ(li − αi)}2 − γ2li ]

+
1

2µ

p∑

i=1

[max{0, γui + µ(αi − ui)}2 − γ2ui
].

(1.41)

Notice the similarity between (1.41) and (1.29), yet we now have included both bound and

equality constraints in the augmented Lagrangian.

The update rule for λ and γ are derived from (1.41). The KKT conditions state that the
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minimizer (α∗, λ∗,γ∗, µ∗) of L(α, λ,γ, µ) satisfies

0 = ∇αL(α∗, λ∗,γ∗, µ∗) = ∇αf(α
∗) + λ∗y +

p∑

i=1

γ∗li∇αgli(α
∗) +

p∑

i=1

γ∗ui
∇αgui(α

∗), (1.42)

where gli(α) = li − αi and gui(α) = αi − ui are the inequality constraints and we used the

fact that y′α∗ = 0. Moreover, we have that at each iteration k,

0 = ∇αL(αk, λk,γ
k, µk) = ∇αf(α

k) + (λk + µky
′αk)y

+
∑

{i|−γk
li
<µk(li−αk

i )}

(γkli + µk(li − αk
i ))∇αgli(α

k)

+
∑

{i|−γk
ui

<µk(αk
i −ui)}

(γkui
+ µk(α

k
i − ui))∇αgui(α

k).

(1.43)

Equating (1.42) and (1.43), we see the update rule for λ is still given by (1.32), while the

update for the Lagrangian vector γ is given by

γk+1
l = max{0,γk

l + µk(l −αk)},

γk+1
u = max{0,γk

u + µk(α
k − u)}.

(1.44)

Summarizing thus far, applying this method to the bound and equality constrained program

of (1.28) requires the solution of a sequence of minimizations of (1.41). Bertsekas states in [9]

that this is equivalent to the equality constrained problem of (1.38), and therefore (1.25), where

the convergence result of Theorem 1 still holds, with the addition of Lagrange multiplier vector

γ.

However, in order to apply an unconstrained optimization method such as the conjugate

gradient to (1.41), we require that L(α, λ,γ, µ) is quadratic in α. This can be done by

obtaining linear approximations of the maximum function in (1.41), where we assume α = αk
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and define

[Il,k]ii =





1 if γli + µ(li − αk
i ) > 0

0 otherwise





,

[Iu,k]ii =





1 if γui + µ(αk
i − ui) > 0

0 otherwise





.

(1.45)

Theorem 2. The augmented Lagrangian in (1.41) can be approximated by the quadratic

function

Lk(α) =
1

2
α′Âkα−α′b̂k, (1.46)

where

Âk = A+ µk(yy
′ + Il,k + Iu,k), (1.47)

and

b̂k = b− λky + Il,k(µkl + γk
l ) + Iu,k(µku− γk

u). (1.48)

Proof. We begin with the form of the augmented Lagrangian in (1.41) and incorporate the

indicator matrices in (1.45).

Lk(α) = L(α, λk,γ
k, µk)

= f(α) + λky
′α+ µk

2 (y′α)2

+
1

2µk

p∑

i=1





−(γkli)
2 if γkli + µk(li − αi) < 0

(γkli + µk(li − αi))
2 − (γkli)

2 otherwise

+
1

2µk

p∑

i=1





−(γkui
)2 if γkui

+ µk(αi − ui) < 0

(γkui
+ µk(αi − ui))

2 − (γkui
)2 otherwise

=
1

2
α′Aα−α′b+ λky

′α+ µk
2 α′yy′α

+
1

2µk

p∑

i=1





0 if γkli + µk(li − αi) < 0

−2µkγ
k
li
αi + µ2

k(α
2
i − 2liαi) otherwise
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+
1

2µk

p∑

i=1





0 if γkui
+ µk(αi − ui) < 0

2µkγ
k
ui
αi + µ2

k(α
2
i − 2uiαi) otherwise

+ non-α terms

=
1

2
α′
(
A+ µkyy

′
)
α−α′ (b− λky)

+
1

2µk

(
−2µk(γ

k
l )

′Il,kα+ µ2
kα

′Il,kα− 2µ2
kl

′Il,kα
)

+
1

2µk

(
2µk(γ

k
u)

′Iu,kα+ µ2
kα

′Iu,kα− 2µ2
ku

′Iu,kα
)
+ non-α terms

=
1

2
α′
(
A+ µk(yy

′ + Il,k + Iu,k)
)
α−α′(b− λky + Il,k(µkl+ γk

l ) + Iu,k(µku− γk
u))

+ non-α terms

All non-α terms above may be disregarded as they do not affect the minimization of the

augmented Lagrangian with respect to α, in which case, we obtain (1.46), where Â and b̂ are

defined in (1.47) and (1.48), respectively.

The benefit of (1.46) is that an unconstrained quadratic optimizer, such as the conjugate

gradient method or even a direct solver such as Gaussian elimination for small-scale problems,

can be used to compute its minimizer, yielding the updated approximation αk+1. Note,

however, that the Hessian must be symmetric and positive definite in order to apply CG,

which will occur if the training data (x1, . . . ,xp) are linearly independent. To ensure positive

definiteness, we add machine epsilon to the diagonal of the Hessian. Pseudocode for the

conjugate gradient method can be found in Section 1.6.3.

The pseudocode for this AL method is given in Algorithm 2, which closely resembles Algo-

rithm 1, with the added update for the Lagrangian parameter vector γ. We use the conjugate

gradient method to minimize (1.46) with relative residual norm stopping tolerance 10−6, where

the relative residual norm is defined rn = ||b−Aαk||/||b||.

To the best of our knowledge, the unconstrained augmented Lagrangian method represented

by Algorithm 2 has not been developed elsewhere nor applied to the SVM optimization prob-
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Algorithm 2 Unconstrained Augmented Lagrangian Method

Given µ0 ≥ 0 and initial points α0, λ0 and γ0, set k = 0.

1. Fix constant indicator matrices (1.45) using αk, then use the conjugate gradient method
to find the approximate minimizer αk+1 of Lk(α) in (1.46), with starting point αk and
with relative residual norm stopping tolerance of 10−6.

2. If |y′αk| < 10−6 and bound constraints hold, stop with approximate solution αk+1.

3. Update Lagrange multipliers via (1.32) and (1.44) to obtain λk+1 and γk+1, and choose
a new penalty parameter µk+1 via (1.33).

4. Set k = k + 1 and return to Step 1.

lem.

1.6.2 Scaled Gradient Projection

The scaled gradient projection (SGP) algorithm was proposed for image restoration appli-

cations in [10]. We note that to our knowledge, this method has not been adapted, nor

implemented, for the solution of SVMs. We do so here.

To apply SGP to (1.25), we must make adjustments to the method presented in [10] and

hence we present a majority of the algorithm here. We define the current iterate αk, the

feasible set

Ω =
{
α ∈ R

n | l ≤ α ≤ u, y′α = 0
}
,

where the inequality is component-wise, and the projection operator

PΩ(α) ≡ arg min
β∈Ω

||β −α||2 = arg min
β∈Ω

(
1

2
β′β − β′α

)
. (1.49)

The authors of [10] suggest a more general scaled projection, but we found (1.49) worked best.

Next we define

βk = PΩ(α
k − λk(Aαk − b)), (1.50)
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to be the projection of the negative gradient path onto Ω, where λk is chosen by the Barzilai

and Borwein-like steplength selection method of [10] given in Section 1.6.3. If βk = αk, we

have αk as a stationary point, otherwise the descent direction is taken as dk = βk−αk, and a

backtracking line search is used to ensure a sufficient decrease in the objective function value

at the current iterate over the last M iterations. For M = 1, this backtracking loop is simply

the Armijo rule in (1.55) below [1]. These steps completely describe one iteration of the SGP

method in [10].

The projection remains to be defined and is where our derivation differs from [10]. Given

the quadratic programming problem (1.25), the SGP projection (1.50) is equivalent to the

solution of the constrained and strictly convex quadratic program

α∗ =

{
argmin

α

1

2
α′α−α′z subject to l ≤ α ≤ u and y′α = 0

}
, (1.51)

where z = αk − λk(Aαk − b). Then βk = α∗.

Letting α∗ be the solution of (1.51), using the KKT first order optimality conditions, there

exist Lagrange multipliers λ∗ ∈ R and µ∗,γ∗ ∈ R
n such that we have:

Stationarity α∗ − z + λ∗y − µ∗ + γ∗ = 0,

Primal Feasibility y′α∗ = 0,

Primal Feasibility α∗ ≥ 0,

Primal Feasibility α∗ ≤ u,

Dual Feasibility µ∗ ≥ 0,

Dual Feasibility γ∗ ≥ 0,

Complementary Slackness µ∗
iα

∗
i = 0, ∀ i = 1, . . . , p,

Complementary Slackness γ∗i (α
∗
i − ui) = 0, ∀ i = 1, . . . , p.

For simplicity, let b(λ) = z − λy. The stationarity condition yields equations for α∗, µ∗, and
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γ∗, as functions of one another and λ∗:

α∗
i (λ

∗) = µ∗
i − γ∗i + [b(λ∗)]i

µ∗
i (λ

∗) = γ∗i + α∗
i − [b(λ∗)]i

γ∗i (λ
∗) = µ∗

i − α∗
i + [b(λ∗)]i.

Theorem 3. The complementary slackness KKT conditions yield α∗ as a function solely of

λ∗:

α∗
i = max {0,min {(zi − λ∗yi), u

∗
i }} . (1.52)

Proof. The two complementary slackness KKT conditions yield two different sets of cases for

solving for α∗, µ∗, and γ∗ as functions of λ∗. Condition µ∗
iα

∗
i = 0 indicates for all i = 1, . . . , p

either α∗
i = 0 (case 1) or µ∗

i = 0 (case 2). Condition γ∗i (α
∗
i−ui) = 0 indicates for all i = 1, . . . , p

that either α∗
i − ui = 0 (case A) or γ∗i = 0 (case B).

Combining the cases appropriately, we obtain the feasible solutions. Obviously case 1 and

case A cannot simultaneously occur as we assume the upper and lower bounds are not identical,

i.e., ui 6= li. Case 2 and case A have solution

µ∗
i = 0, α∗

i = ui, and γ∗i (λ
∗) = [b(λ∗)]i − ui.

Case 1 and case B yield

α∗
i = 0, γ∗i = 0, and µ∗

i (λ
∗) = −[b(λ∗)]i.

Lastly, case 2 and case B have solution

µ∗
i = 0, γ∗i = 0, and α∗

i (λ
∗) = [b(λ∗)]i.
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The question that remains is, within the algorithm, how do we know which case we have?

The feasible solution depends on the sign, and sometimes magnitude, of [b(λ∗)]i.

If [b(λ∗)]i < 0, the combination of cases 2 and B contain a contradiction with the nonneg-

ativity constraint on α ≥ 0, namely α∗
i (λ

∗) 6= [b(λ∗)]i < 0. Considering the combination of

cases 2 and A,

γi = [b(λ∗)]i︸ ︷︷ ︸
<0

−ui︸︷︷︸
<0

< 0.

But by the nonnegativity constraint on Lagrange multiplier γi, this also leads to a contradic-

tion. However, the combination of cases 1 and B are feasible with the KKT conditions and

therefore

α∗
i = 0, γ∗i = 0, and µ∗

i (λ
∗) = −[b(λ∗)]i

whenever [b(λ∗)]i < 0.

If 0 < [b(λ∗)]i < ui, the combination of cases 1 and B are not feasible due to the non-

negativity constraints on Lagrange multiplier µi. Similarly, cases 2 and A lead to the same

contradiction on Lagrange multiplier γi with

γi = [b(λ∗)]i︸ ︷︷ ︸
<ui

−ui < 0.

However, the combination of cases 2 and B do not contradict the KKT conditions and therefore

µ∗
i = 0, γ∗i = 0, and α∗

i (λ
∗) = [b(λ∗)]i

whenever 0 < [b(λ∗)]i < ui.

If [b(λ∗)]i > ui, then the constraint αi ≤ ui is violated in the combination of cases 2 and

B. As before, [b(λ∗)]i > ui violates the nonnegativity constraints on Lagrange multiplier µi

in cases 1 and B. However, the solution in cases 2 and A is feasible with the KKT conditions
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and

µ∗
i = 0, α∗

i = ui, and γ∗i (λ
∗) = [b(λ∗)]i − ui

whenever [b(λ∗)]i > ui.

If [b(λ∗)]i = ui, cases 2 and A yield the same results as cases 2 and B:

µ∗
i = 0, γ∗i = 0, and α∗

i = ui.

Trivially, if [b(λ∗)]i = 0, then α∗
i = 0, µ∗

i = 0, and γ∗i = 0.

Combining all of the above discussion, we can now write α∗ as (1.52).

Thus, to solve the KKT system, we must find λ∗ satisfying the remaining constraint

p∑

i=1

α∗
i (λ

∗)yi = 0. (1.53)

The solution λ∗ of (1.53) can be computed using one of many root finding algorithms. We

use MATLAB’s fzero, while in [24] a secant-based method is introduced. Note, the solution

α∗ defined by (1.52) and (1.53) yields the desired SGP projection of (1.50), βk = α∗.

Convergence of SGP is proven in [10]. Recall that αk is a stationary point if βk = αk.

We consider the following additional termination criteria for SGP: a maximum number of

iterations and a projected gradient norm or step norm tolerance of 10−6, with the projected

gradient defined in (1.57). Pseudocode for SGP is given in Algorithm 3. In our trials, initial

algorithm parameter values are taken as η = 10−4, θ = 0.4, λmin = 10−5 and λmax = 105, as

suggested in [10]. Pseudocode for the suggested Barzilai and Borwein-like steplength selection

method is given in Section 1.6.3.
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Algorithm 3 Scaled Gradient Projection (SGP)

Given initial, feasible α0, parameters η, θ ∈ (0, 1), 0 < λmin < λmax, and positive integer M ,
set k = 0. Iterate on k:

1. Select λk ∈ [λmin, λmax] using the Barzilai and Borwein-like steplength selection
method defined in [10].

2. Project βk = PΩ(α
k − λk∇f(αk)) by solving (1.52) and (1.53). If βk = αk, stop

with stationary point αk. If other stopping tolerances are met, stop with approximate
solution α∗.

3. Compute descent direction dk = βk −αk.

4. Set ρk = 1 and fmax = max0≤j≤min(k,M−1) f(α
k−j).

5. Backtracking loop: If f(αk + ρkd
k) > fmax + ηρk∇f(αk)′dk, then set ρk = θρk and

return to step 5.

6. Set αk+1 = αk + ρkd
k and k = k + 1. Return to Step 1.

1.6.3 Supportive Algorithms

This section contains both the projected Newton and conjugate gradient methods used in the

augmented Lagrangian algorithms described above, as well as the Barzilai and Borwein-like

steplength selection process described in [10], for completeness.

Projected Newton

Bertsekas introduces the projected Newton (PN) algorithm in [8] as being well suited for

solving large-scale, bound constrained, quadratic programming problems of the form (1.27).

We define the feasible set

Ω = {α ∈ R
n|l ≤ α ≤ u},

and the current iterate αk. Then the new PN iterate has the form

αk+1 = P(αk − λkR−1
k ∇f(αk)),
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where P(·) is the projection onto the feasible set Ω defined by

P(αi) =





li if αi ≤ li

αi if li < αi < ui

ui if αi ≥ ui





,

λk is the steplength parameter given by the line search method below, andRk is the symmetric,

positive definite reduced Hessian described below.

For λ > 0, we define

αk(λ) = P(αk − λR−1
k ∇f(αk)). (1.54)

Note then that αk+1 = αk(λk). Moreover, for large scale problems, the conjugate gradient

algorithm can be applied to efficiently approximate R−1
k ∇f(αk) without directly calculating

the inverse of the reduced Hessian.

A common line search method for selecting the steplength parameter λk is the Armijo

rule [1, 53], which in its simplest form is given by the sufficient decrease condition

f(αk(λk))− f(αk) ≤ −β

λk
||αk −αk(λk)||2, (1.55)

where λk = γm, γ ∈ (0, 1), with m the least positive integer such that (1.55) holds. We take

γ = 0.1, with β = 10−4 as suggested in [53].

We now define the reduced Hessian, Rk. For α ∈ Ω, following Kelley [53], we define

ǫk = min

(
||αk −αk(1)||,min

i
(ui − li)/2

)
.

The ǫ-active set at αk is then defined

Aǫ(αk) = {i|ui − αk
i ≤ ǫk or αk

i − li ≤ ǫk},
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and the symmetric reduced Hessian matrix takes the form

[Rk]ij =





δij if i or j ∈ Aǫk(αk),

Aij otherwise,

for 1 ≤ i, j ≤ n, where δij is the Kronecker delta:

δij =





1 i = j,

0 i 6= j.

Termination for PN is related to the measure of stationarity, ||α−α(1)||, such that termi-

nation occurs at iteration k if

||αk −αk(1)|| ≤ τa + τrr0, (1.56)

where τa and τr are absolute and relative tolerances, respectively, and r0 = ||α0 −α0(1)||. In

our implementation, we use τa = 10−6 and τr = 0.05. In addition, the PN algorithm is also

set to terminate if either a maximum number of iterations is exceeded or if the tolerance is

met for the norm of the step or for the norm of the projected gradient, defined by

[∇Pf(α)]i =





[Aα− b]i if αi ∈ (li, ui),

min{[Aα− b]i, 0} if αi = li,

max{[Aα− b]i, 0} if αi = ui.

(1.57)

We take a projected gradient norm tolerance of 10−6. Pseudocode for the PN algorithm is

given in Algorithm 4.

In the first iteration of PN, Step 1(b) requires the computation of α1(1) via (1.54); however,

we note that R1 has not yet been calculated. Bertsekas suggests in [8] using a fixed diagonal

positive definite matrix M , such as the identity matrix, in place of R1 in that case.
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Algorithm 4 Projected Newton (PN)

Given α1, f(α1), λ1, τa, τr, and maxiter,

1. For k = 1,. . . ,maxiter

(a) Compute f(αk) and ∇f(αk); test for termination using (1.56).

(b) Set ǫk = min(||αk −αk(λ)||,min(ui − li)/2).

(c) Compute and factor Rk = Rk(∇2f(αk), ǫk). If Rk is not positive definite, termi-
nate with a failure message.

(d) Solve Rkd = −∇f(αk).

(e) Find the least integer mk such that (1.55) holds for λk = βmk .

(f) Set αk = αk(λ) defined in (1.54).

2. If k = maxiter and the termination test failed, we have signal failure. If step norm
or projected gradient norms are met, stop with approximate solution αk. Otherwise,
return to Step 1.

Conjugate Gradient

The conjugate gradient algorithm is an iterative algorithm for solving the unconstrained linear

system Aα = b, or equivalently, minimizing 1
2α

′Aα − α′b, where An×n is symmetric and

positive definite. A nice property of the CG algorithm is that it converges to the solution

A−1b in at most n steps [4]. The pseudocode for the CG method is given in Algorithm 5.

Algorithm 5 Conjugate Gradient (CG)

Given A, b and α0, let r0 = b−Aα0, p0 = r0, and k = 1. Specify some stopping tolerance
ǫ. Iterate:

1. γk−1 =
r′

k−1rk−1

p′

k−1Apk−1
is the 1-D minimizer of φ in the direction αk−1 + γpk−1.

2. αk = αk−1 + γk−1pk−1.

3. rk = −∇αφ(α
k) = b−Aαk = rk−1 − γk−1Apk−1 is the residual.

4. βk = − r′

krk

r′

k−1rk−1
.

5. pk = rk − βkpk−1 is the next conjugate search direction.

6. Quit if ||rk|| < ǫ. Else set k = k + 1 and return to Step 1.
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Barzilai and Borwein Steplength Selection

The steplength λk in Step 1 of SGP (Algorithm 3) is selected using the Barzilai and Borwein-

like updating method given in Algorithm 6.

Algorithm 6 SGP Steplength Selection

if k = 0 then

set λ0 ∈ [λmin, λmax], τ1 ∈ (0, 1) and a nonnegative integer Mλ

else

if s′k−1tk−1 ≤ 0 then

λ
(1)
k = λmax

else

λ
(1)
k = max

{
λmin,min

{
s′k−1sk−1

s′k−1tk−1
, λmax

}}

end if

if s′k−1tk−1 ≤ 0 then

λ
(2)
k = λmax

else

λ
(2)
k = max

{
λmin,min

{
s′k−1tk−1

t′k−1tk−1
, λmax

}}

end if

if λ
(2)
k /λ

(1)
k ≤ τk then

λk = min
{
λ
(2)
j , j = max{1, k −Mλ}, . . . , k

}

τk+1 = 0.9τk
else

λk = λ
(1)
k

τk+1 = 1.1τk
end if

end if

1.7 Numerical Results

We now present three images for SVM classification using the methods presented here for

comparison. All programming code was written in MATLAB. Computational time, recorded in

seconds, is the average of five trials for the solution of the hyperplane for each class. Initial

parameter values for the bound constrained and unconstrained AL algorithms are set at λ0 = 5

and µ0 = 10. Initial Lagrange vector γ0 = 1 is used for the unconstrained AL algorithm. For
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all algorithms, regardless of constraints, the initial guess for α0 is chosen such that y′α0 = 0.

As previously discussed for multi-class classification, a separating hyperplane is built for

each of the k classes in the image; thus the quadratic program must be solved k times for

a single classification. To denote the algorithms, we use ‘AL w/ PN’ for the constrained

augmented Lagrangian with projected Newton as the quadratic solver and ‘AL w/ CG’ for

the unconstrained augmented Lagrangian with conjugate gradient as the quadratic solver.

The scaled gradient projection is denoted by ‘SGP’. The computational time to solve each

constrained quadratic program is compared with MATLAB’s built-in quadratic program solver

quadprog, which uses an active-set method described in [44]. Furthermore, we also compare

computational time with the widely-known sequential minimal optimization (SMO) algorithm,

introduced by Platt in [77] as a simple, fast, and easy-to-implement technique for solving a

bound and equality constrained SVM quadratic program. SMO has become a popular al-

gorithm in the SVM literature and is often used as a comparative algorithm to test new

methods [17, 22, 28, 58]. SMO solves a sequence of two-dimensional subproblems to obtain

asymptotic convergence. Each subproblem requires the computation of updates to two La-

grange multipliers, one of which violates the KKT conditions. This method and its pseudocode

are presented in [77].

We inspect the images visually to determine the number of classes. 10-fold cross-validation

is used to measure the performance of the algorithms [49, 79], with the average percent of

misclassified pixels is reported. If we had selected too few or too many classes during the

visual inspection and training data selection, this misjudgment would be reflected in the K-

fold cross-validation error. The effect of training set size on the algorithms was not explored

in any of the test cases.
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1.7.1 Cat

The image of the cat displayed in Figure 1.5 is a three-banded, red-green-blue (RGB) image

of size 196 × 293 × 3. Four classes are chosen for the training set as indicated in Figure 1.5:

the cat, the black background, the gray background, and the carpet. A total of 181 training

pixels are used, as indicated in the right image of Figure 1.5, where the number of training

pixels per class, given in order as above, is 32, 54, 35, and 60.
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Figure 1.5: Left: A 196 × 293 × 3 image of a cat with four classes. Right: Corresponding
training set for the four classes in the cat image indicated in numerical order: the cat, the
black background, the gray background, and the carpet. Bottom: The SVM classification of
the image.

For trials on the cat image, the radial basis kernel with parameter σ = 0.001 is used, along
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with parameter C = 10. The classification scheme is more sensitive to the value of σ than to

C. Specifically, a change in σ by an order of magnitude in either direction results in a poor

classification of the image, while reducing C by an order of magnitude yields a similar poor

classification. Increasing C does not affect the classification.

Classification of the cat image is presented in Figure 1.5. Table 1.1 summarizes the aver-

age CPU time and its standard deviations for five trials of the SVM formulation with the

optimization techniques presented above. Note that the AL and SMO algorithms classify

the image faster than the other two methods, with the unconstrained AL method leading

in computational time. The 10-fold cross-validation error for each algorithm is 0.00%, most

likely due to the fact that the selected training data were uniform and spatially well-separated.

However, note that in the image, not every pixel is correctly classified, e.g. in the upper-left

some carpet pixels are classified as cat pixels, which should be physically impossible.

Average Time in Seconds (Standard Deviation)
Method Class 1 Class 2 Class 3 Class 4

AL w/ PN 0.436 (0.005) 0.466 (0.001) 0.431 (0.002) 0.417 (0.001)
AL w/ CG 0.162 (0.024) 0.177 (0.031) 0.166 (0.026) 0.191 (0.031)

SGP 1.558 (0.062) 1.012 (0.007) 0.751 (0.003) 0.895 (0.005)
SMO 0.337 (0.070) 0.439 (0.089) 0.305 (0.061) 0.370 (0.063)

quadprog 0.998 (0.011) 0.844 (0.008) 0.926 (0.003) 0.867 (0.005)

Table 1.1: CPU average times and standard deviations over five trials for the optimization
method on each class for the SVM classification of the cat image.

1.7.2 Plumeria Flower

The image of the plumeria flower in Figure 1.6 is an RGB image of size 302 × 369 × 3. Six

classes are indicated by training data pixels in Figure 1.6: background grass, leaf, stem, bud,

flower center and flower petal. There are a total of 300 training data pixels, 50 in each class.

Classification with the bound and equality constrained SVM formulation is shown in Figure
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Figure 1.6: Left: A 302 × 369 × 3 image of a plumeria flower. Right: Training data for the
six classes in the flower image, indicated in numerical order as background grass, leaf, stem,
bud, flower center and flower petal. Bottom: The SVM classification of the image.

1.6. For all SVM classifications, C = 50 and a radial basis kernel is used with σ = 0.0005.

Decreasing C by an order of magnitude results in a poor classification while an increase of the

same size yields a near identical classification, with classification only changing slightly in the

lower left-hand corner of the image. Changing σ by an order of magnitude in either direction

results in a poor classification. Thus the classification is somewhat sensitive to the choice of

both σ and C.

Results from classification of the flower image are summarized in Table 1.2 with CPU

time averaged over five trials, along with corresponding standard deviation. Notice the AL



1.7. NUMERICAL RESULTS 58

Average Time in Seconds (Standard Deviation)
Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

AL w/ PN 0.50 (0.10) 0.45 (0.03) 0.49 (0.01) 0.51 (0.01) 0.49 (0.01) 0.50 (0.01)
AL w/ CG 0.49 (0.13) 0.46 (0.09) 0.41 (0.04) 0.34 (0.03) 0.35 (0.03) 0.35 (0.03)

SGP 1.68 (0.30) 1.07 (0.36) 1.24 (0.48) 2.35 (0.91) 2.18 (0.56) 2.95 (1.27)
SMO 1.14 (0.46) 1.15 (0.49) 1.70 (0.56) 1.61 (0.53) 1.23 (0.44) 1.26 (0.36)

quadprog 3.73 (0.40) 7.54 (1.59) 5.20 (0.49) 5.86 (0.69) 5.15 (0.72) 4.58 (0.91)

Table 1.2: CPU average times and standard deviations over five trials for the optimization
method on each class for the SVM classification of the flower image.

algorithms outperform the remaining methods in computational time. The 10-fold cross-

validation error of the flower image for each algorithm is 0.00%, most likely for the same

reasons as the previous example.

1.7.3 Clock Tower

The image of the clock tower in Figure 1.7 is an RGB image of size 995× 890× 3. Six classes

are indicated by training data pixels in Figure 1.7: sky, green roof, white steeple, gray pole,

red brick, black clock background. There are a total of 300 training data pixels, 50 in each

class.

Classification with the bound and equality constrained SVM formulation is shown in Figure

1.7. For all SVM classifications, C = 20 and a radial basis kernel is used with σ = 0.001.

Decreasing C by an order of magnitude results in a slightly poorer classification while an

increase of up to four orders of magnitude yields a near identical classification. Decreasing

σ by an order of magnitude or increasing it by two orders of magnitude results in a poor

classification. Thus the classification is somewhat sensitive to the choice of σ and less sensitive

to the choice of C.

Results from classification of the clock tower image are summarized in Table 1.3 with CPU
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Figure 1.7: Left: A 995 × 890 × 3 image of a clock tower. Right: Training data for the six
classes in the clock tower image, indicated in numerical order as sky, green roof, white steeple,
gray pole, red brick, black clock background. Bottom: The SVM classification of the image.

time averaged over five trials, along with corresponding standard deviation. Note that, once

again, the AL algorithms outperform the remaining methods in computational time. The

10-fold cross-validation error of the clock tower image for each algorithm is 0.00%, most likely

for the same reasons as the previous example.
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Average Time in Seconds (Standard Deviation)
Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

AL w/ PN 1.18 (0.60) 0.96 (0.13) 1.00 (0.18) 1.04 (0.09) 0.86 (0.18) 0.81 (0.28)
AL w/ CG 0.71 (0.03) 0.85 (0.01) 0.77 (0.13) 0.54 (0.13) 0.59 (0.11) 0.81 (0.14)

SGP 3.97 (0.92) 4.13 (0.27) 1.73 (0.52) 2.89 (0.46) 2.76 (0.75) 3.04 (0.69)
SMO 1.86 (0.81) 2.16 (0.64) 1.28 (0.49) 1.52 (0.46) 2.47 (0.81) 2.96 (0.69)

quadprog 6.83 (1.21) 5.75 (0.28) 5.75 (1.00) 4.93 (0.60) 4.37 (0.34) 4.72 (0.42)

Table 1.3: CPU average times and standard deviations over five trials for the optimization
method on each class for the SVM classification of the clock tower image.

1.8 Conclusion

In this chapter we have introduced an unconstrained augmented Lagrangian (AL) technique for

numerically solving the bound and equality constrained quadratic program (QP) that arises

in support vector machine (SVM) classification problems. We use the term unconstrained

because the algorithm requires only the use of the conjugate gradient method or some other

unconstrained quadratic minimization solver. We have also presented a bound constrained

AL method for solving the SVM QP, which requires the minimization of bound constrained

QP subproblems. Finally, we have presented an extension of the scaled gradient projection

method of [10] for solving the SVM QP.

We compare these three optimization methods with MATLAB’s built-in constrained quadratic

solver, quadprog, and with the sequential minimal optimization algorithm of [77] on the

SVM QP problems arising in three image classification examples. In all three test cases, the

unconstrained AL method is the most efficient. Moreover, it is straightforward to implement,

suggesting that it will be useful to the wider SVM community.



Chapter 2

Conjugate Gradient Based Kalman

Filters for Large-Scale Estimation

Problems

The second chapter of this dissertation presents our work with the Kalman filter and discusses

how we implement the conjugate gradient method to efficiently solve quadratic minimization

tasks and create low-rank, low-storage covariance approximations. This work has been pub-

lished in [6,7]. My contribution to this work lies in the MATLAB code written for the conjugate

gradient and Lanczos methods, as well as writing those sections of the paper.

2.1 Introduction

The Kalman filter was introduced in 1960 by Rudolf E. Kalman [52] as a linear, dynamical

method for finding the minimum variance estimator of a temporal variable when provided

with observations of a related temporal variable. This statistically optimal method has been

61
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extended for use in nonlinear systems as well, with applications in ocean and weather fore-

casting [23,30,64,68,73], autonomous and assisted navigation [5, 19,27,59,76], and fish stock

assessment [46,47,55].

We begin in the Introduction by briefly describing each of the Kalman filter based methods

of interest to us in this chapter: the Kalman filter (KF), the extended Kalman filter (EKF),

the variational Kalman filter (VKF), and the ensemble Kalman filter (EnKF). These methods

will be discussed in more detail later in the chapter.

2.1.1 The Kalman Filter

The Kalman filter (KF) is a method for solving the following coupled system of discrete,

linear, stochastic difference equations,

xk = Mkxk−1 + ǫ
p
k, (2.1)

yk = Kkxk + ǫok. (2.2)

In (2.1), the vector xk denotes the unknown n× 1 state vector of the system at time step k,

which is to be estimated by KF. The matrix Mk is the known n×n linear evolution operator.

The n× 1 random vector ǫpk is the prediction error, which comprises stochastic measurement

errors, errors in the model, and the corresponding numerical approximations. In (2.2), yk

is the m × 1 observed data vector at time step k; the matrix Kk is the known m × n linear

observation operator ; and ǫok is the m×1 stochastic observation error ] vector. We assume that

both error terms are independent and normally distributed with zero mean and covariances

Cǫp
k
and Cǫo

k
, respectively.

The goal of KF is to estimate xk and its error covariance Ck, denoted xest
k and Cest

k , given

the evolution and observation operators, observed data vector, error covariance matrices,

and estimates for the state and its covariance at the previous time step, xest
k−1 and Cest

k−1,



2.1. INTRODUCTION 63

respectively.

Standard implementations of KF require only linear algebra, even in the nonlinear case.

However, for large-scale problems, matrix inversion and storage requirements of the full n×n

covariance matrices become too computationally expensive, making standard implementations

of KF, as well as its nonlinear extension, infeasible. Oftentimes, approximations can be made

to avoid these problems, as will be discussed later.

We will provide a derivation of the Kalman filter below, but first we discuss a nonlinear

extension, an equivalent variational method, and an ensemble method for the Kalman filter.

2.1.2 The Extended Kalman Filter

The Kalman filter has been adapted to the nonlinear case, where the linear operators, Mk of

(2.1) and Kk of (2.2), are replaced with nonlinear functions M(xk−1) and K(xk), respectively.

The resulting method is known as the extended Kalman filter (EKF) [99], where a linearization

of M and K is required. The linearization is best computed using adjoint and tangent linear

codes, which are model specific and often tedious to develop. Furthermore, like KF for large-

scale problems, EKF is computationally prohibitive due to the storage of, and computations

with, dense n× n covariance matrices.

2.1.3 The Variational Kalman Filter

The variational Kalman filter (VKF) is equivalent to KF and results from a sequential appli-

cation of Bayes’ Theorem, whereas KF is derived using minimum variance estimation. Later,

we will use both of these approaches to derive the respective filters. VKF also extends to

the nonlinear case and is equivalent to EKF; moreover, it is similar to three-dimensional

variational data assimilation [61], which is commonly used in weather forecasting. In large-
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scale problems, an advantage of VKF over KF is that its formulation suggests the use of an

optimization algorithm for finding xest
k and Cest

k .

Various methods have been developed for approximating the covariance matrices appearing

in KF, VKF and EKF, such as projecting the state space onto a smaller subspace [16,25,38,

43,92,97]. A downside to this approach is that a chosen subspace is typically fixed in time and

cannot capture the temporal dynamics of the system [39]. The iterative method of limited

memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) has been used for state estimation and

low-storage/full-rank covariance approximation for both regular and variational forms of KF

and EKF [2,3, 96].

Our contribution, which is a focus of this chapter, is to apply the conjugate gradient (CG)

method to the quadratic minimization tasks within KF, VKF and EKF, and to use CG

iterations to compute low-rank, low-storage approximations of the covariance and inverse-

covariance matrices [6]. In one case, we utilize the connection between CG and the Lanczos

method to compute the covariance approximations. These low-rank approximations allow

for efficient implementation of KF, VKF and EKF, and reduce the storage requirements of

the covariance and inverse-covariance matrices. Moreover, we note that the CG covariance

approximations change with each iteration of the filter, and hence are better able to capture

the temporal dynamics of the system than the projection methods mentioned in the previous

paragraph. In our application of CG, we show improvement over the LBFGS implementation

of [2, 3].

2.1.4 The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) is an alternative to EKF, and a full overview of its

formulation and practical implementation is given in [34]. Introduced in [33], EnKF is ad-

vantageous over EKF in the sense that it does not require the linearization of the nonlinear
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evolution operator, nor does it require storage of full-rank covariance matrices.

In EnKF, at each time step, an ensemble of random samples of the state vector xk is created

and the state and covariance estimates are taken to be the empirical mean and covariance of the

ensemble, respectively. The ensemble size is typically much less than n, thus greatly decreasing

storage requirements. EnKF computes a low-rank, low-storage approximation of the model

covariance rather than the full-rank covariance as in EKF. To return the approximation to

full-rank, an additional matrix may be added through the technique of covariance inflation

[72, 100], but we do not do this here.

EnKF is not exempt from problems: sampling errors due to ensemble sample sizes much

less than n, underestimation of the covariance due to random perturbations of the model, and

ensemble inbreeding are well-documented [60, 66, 82]. Model perturbations are discussed in

[14], stating that random errors must be added to the observations to alleviate underestimation

of the ensemble covariance, that is, the spread of the finite number of ensemble members

always underestimates the mean squared difference between the ensemble mean and the true

state [82]. However, [100] discusses that in the case of a finite ensemble size, the errors added

to the observations still produce an ensemble which underestimates the covariance; to which

end, they suggest building a filter that does not require perturbing the observations. Ensemble

inbreeding refers to the fact that we use the same ensemble for analysis as we do to compute

the estimate of error [82].

Our contribution to EnKF is similar to that of [90], where the LBFGS method is used to

minimize a quadratic function yielding an estimate xest
k of xk as well as a new ensemble for

time step k. In the same fashion, we apply the CGmethod and utilize the CG sampler of [74] to

compute the ensemble, as it is simple and intuitive, requiring minimal added computations [7].

Implementing CG does not invoke the problems associated with random perturbations of the

model since the prediction and observation errors are not directly sampled, nor does it require

covariance inflation. Our CG implementation within EnKF results in a faster converging
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and more accurate filter than classical EnKF or than the implementation using the LBFGS

method of [90].

The remainder of this chapter is organized as follows. In Section 2.2, we present each of

the four filters mentioned in the Introduction. We then present our CG-based Kalman filters

in Section 2.3, along with a description of the CG sampler and an analysis of the CG-based

methods. Two commonly used KF test cases are given in Section 2.4 to demonstrate the

various CG Kalman filter performances, and we end with conclusions in Section 2.5.

2.2 Deriving the Various Kalman Filters

We begin this section with statistical properties that will become useful later in the derivations

of the various Kalman filter methods. We then move on to a discussion of minimum variance

estimation, since the classical Kalman filter is derived as a sequential minimum variance

estimator, before finally presenting the Kalman filter methods.

2.2.1 Preliminaries

Let x = (x1, . . . , xn)
′ be a random vector with mean

E(x) = (E(x1), . . . , E(xn))
′ = (µ1, . . . , µn)

′ = µ,

and covariance

[cov(x)]ij = E((xi − µi)(xj − µj)), 1 ≤ i, j ≤ n.

Given Am×n

cov(Ax) = Acov(x)A′, (2.3)

where, typically, m ≤ n and A is full-rank, such that Acov(x)A′ is positive definite.
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The cross correlation matrix, Γxy, of random vectors xn×1 and ym×1 is defined as

Γxy = E(xy′).

Note that if x and y are independent with zero means, then Γxy = 0. Furthermore, if

E(x) = 0, then Γxx = cov(x).

If we assume x ∼ N(µ,Σ), where E(x) = µ and cov(x) = Σ, the probability density

function has the form

p(x) =
1√

(2π)ndet(Σ)
e

(

−
1
2 (x−µ)′Σ−1(x−µ)

)

,

where det(Σ) is the determinant of Σ.

Finally, we will frequently use the matrix inversion lemma, also known as the Woodbury

matrix identity, which states that

(S+UCV)−1 = S−1 − S−1U(C−1 +VS−1U)−1VS−1, (2.4)

where Sn×n, Un×m, Cm×m and Vm×n.

2.2.2 Minimum Variance Estimation

Linear models, as previously discussed in Chapter 1, are well-addressed in the statistical

literature [78], and have the form

y = Ax+ e, (2.5)

where y is the vector of observed data, A is the known observation matrix, x is the unknown

vector of parameters, and e is typically a zero mean Gaussian random vector, generally referred

to as the error vector.
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Oftentimes, the least squares estimation method is used to solve for the unknown deter-

ministic parameter vector x [42]. If we consider (2.5), the least squares estimator is given

by

xls = (A′A)−1A′y.

Here we take a Bayesian approach and assume x ∼ N(0,Cx) with x ⊥ e, and use minimum

variance estimation [91] to solve (2.5) as an extension of least squares.

Definition 2.2.1. Let x and y be random vectors defined on the same probability space, whose

components have finite expected squares. Then the minimum variance estimator of x from y

is

xest = B̂y, (2.6)

where

B̂ = arg min
Bn×n

E(||By − x||22).

We can rewrite the minimum variance estimator using linear algebra, as demonstrated by

the following theorem.

Theorem 4. Let y and x be random vectors defined on the same probability space and whose

components have finite expected squares. If Γyy is invertible, then the minimum variance

estimator of x from y can be written as

xest = Γxy(Γyy)
−1y. (2.7)

Proof. We begin by rewriting

E(||By − x||22) = trace
(
E
[
(By − x)(By − x)′

])

= trace
(
B
[
E(yy′)

]
B′ −B

[
E(yx′)

]
− E(xy′)B′ + E(xx′)

)

= trace
(
BΓyyB

′
)
− 2 · trace

(
BΓyx

)
+ trace (Γxx) . (2.8)
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To find the minimum argument of E(||By−x||22), we differentiate (2.8) with respect to B, set

it equal to 0, and solve for B. First it will be beneficial to note a few properties of the trace

function, so we define [B]ij = bij and [C]ij = cij for 1 ≤ i, j ≤ n. We can write

trace (BC) =

n∑

i=1

n∑

j=1

bijcji.

Thus

∂ trace(BC)

∂bij
= cji,

which shows that

d(trace(BC))

dB
= C′.

Similarly,

trace
(
BCB′

)
=

n∑

i=1

n∑

j=1

n∑

k=1

bijbikcjk,

and hence

∂trace(BCB′)

∂bij
= 2bijcjj +

∑

k 6=j

bik(ckj + cjk)

=


bijcjj +

∑

k 6=j

bikckj


+


bijcjj +

∑

k 6=j

bikcjk




= [BC]ij +
[
BC′

]
ij
,

which shows that

d(trace(BCB′))

dB
= BC+BC′.

Applying these properties to the derivative of (2.8) leads to

d

dB
E(||By − x||22) = BΓyy +B(Γyy)

′ − 2(Γyx)
′

= 2BΓyy − 2Γxy .
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Setting d
dBE(||By − x||22) = 0 and solving for B yields

B̂ = Γxy(Γyy)
−1. (2.9)

Finally, by substituting (2.9) into (2.6), we have (2.7).

2.2.3 Deriving the Kalman Filter

We now return to the problem of estimating xk in the discrete, stochastic system at the

beginning of the chapter, (2.1) and (2.2). Simply stated, the Kalman filter is the application

of minimum variance estimation to the problem of sequentially estimating {x1,x2, . . .} in

(2.1), given the observed data {y1,y2, . . .} in (2.2).

Suppose we have the model as described in (2.1), (2.2), where ǫ
p
k ∼ N(0,Cǫp

k
) and ǫok ∼

N(0,Cǫo
k
). We wish to estimate xk from both yk and the estimate xest

k−1, where it is assumed

that xest
k−1 ∼ N(xk−1,C

est
k−1). In order to do this, we rewrite (2.1) and (2.2), and then apply

minimum variance estimation. We begin by defining

x
p
k = Mkx

est
k−1, (2.10)

zk = xk − x
p
k, (2.11)

rk = yk −Kkx
p
k. (2.12)

By subtracting (2.10) from (2.1), subtracting Kkx
p
k from both sides of (2.2), and substituting

(2.11) and (2.12) appropriately, we obtain the following coupled, stochastic, linear equations:

zk = Mk(xk−1 − xest
k−1) + ǫ

p
k, (2.13)

rk = Kkzk + ǫok. (2.14)
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The minimum variance estimator of zk from rk given (2.13) and (2.14) is then given by

Theorem 4 as

zest
k = Γzkrk

(Γrkrk
)−1rk. (2.15)

We assume that random vectors (xk−1 − xest
k−1) and zk have zero mean and are independent

of ǫpk and ǫok, respectively. We can use (2.15) and (2.11) to obtain the KF estimate

xest
k = x

p
k + Γzkrk

(Γrkrk
)−1(yk −Kkx

p
k), (2.16)

but first we solve for the necessary cross correlation matrices in (2.16).

We note that xk is not a random variable, so cov(xk) = 0. Since zk has zero mean, we

begin with

Γzkzk
= cov(zk)

= cov(Mk(xk−1 − xest
k−1) + ǫ

p
k)

= cov(Mk(−xest
k−1)) + cov(ǫpk)

= MkC
est
k−1M

′
k +Cǫp

k

def
= C

p
k,

where, by (2.11), Cp
k is the covariance matrix of zk, and therefore, the covariance matrix of

x
p
k.

Since we assumed ǫok ⊥ zk and xk−1 − xest
k−1 ⊥ ǫ

p
k, where all sets of variables have zero

means, then it follows that E [zk(ǫ
o
k)

′] = 0 and E
[
(xk−1 − xest

k−1)(ǫ
p
k)

′
]
= 0, so we have

Γzkrk
= E

[
(Mk(xk−1 − xest

k−1) + ǫ
p
k)(Kkzk − ǫok)

′
]

= E
[
Mk(xk−1 − xest

k−1)z
′
kK

′
k

]
+ E

[
ǫ
p
kz

′
kK

′
k

]
+ E

[
Mk(xk−1 − xest

k−1 + ǫ
p
k)(ǫ

o
k)

′
]
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= MkE
[
(xk−1 − xest

k−1)z
′
k

]
K′

k + E
[
ǫ
p
kz

′
k

]
K′

k + E
[
zk(ǫ

o
k)

′
]

︸ ︷︷ ︸
=0 by above

= MkE
[
(xk−1 − xest

k−1)(Mk(xk−1 − xest
k−1) + ǫ

p
k)

′
]
K′

k

+E
[
ǫ
p
k(Mk(xk−1 − xest

k−1) + ǫ
p
k)

′
]
K′

k

= MkE
[
(xk−1 − xest

k−1)(xk−1 − xest
k−1)

′M′
k

]
K′

k +Mk E
[
(xk−1 − xest

k−1)(ǫ
p
k)

′
]

︸ ︷︷ ︸
=0 by above

K′
k

+E
[
ǫ
p
k(xk−1 − xest

k−1)
′
]

︸ ︷︷ ︸
=0 by above

M′
kK

′
k + E[ǫpk(ǫ

p
k)

′]K′
k

= MkE
[
(xk−1 − xest

k−1)(xk−1 − xest
k−1)

′
]
M′

kK
′
k +Cǫp

k
K′

k

= MkC
est
k−1M

′
kK

′
k +Cǫp

k
K′

k

= C
p
kK

′
k.

Finally, we have

Γrkrk
= E

[
(Kkzk + ǫok)(Kkzk + ǫok)

′
]

= KkE[zkz
′
k]K

′
k +Kk E[zk(ǫ

o
k)

′]︸ ︷︷ ︸
=0

+E[ǫokz
′
k]︸ ︷︷ ︸

=0

K′
k +Cǫo

k

= KkΓzkzk
K′

k +Cǫo
k

= KkC
p
kK

′
k +Cǫo

k
.

Substituting these cross-correlation matrices into (2.16), and defining the Kalman Gain

matrix as

Gk = C
p
kK

′
k(KkC

p
kK

′
k +Cǫo

k
)−1, (2.17)

we can now write the Kalman filter estimate of xk as

xest
k = x

p
k +Gk(yk −Kkx

p
k). (2.18)
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In addition, we wish to have a closed form equation for the covariance of xest
k . Using (2.3),

we obtain

Cest
k = cov(xest

k )

= cov((I −GkKk)x
p
k) + cov(Gkyk)

= (I−GkKk)cov(x
p
k)(I −GkKk)

′ +Gkcov(Kkxk + ǫok)G
′
k

= (I−GkKk)C
p
k(I−GkKk)

′ +GkKk cov(xk)︸ ︷︷ ︸
=0

K′
kG

′
k +Gkcov(ǫ

o
k)G

′
k

= (I−GkKk)C
p
k(I−GkKk)

′ +GkCǫo
k
G′

k

+GkKkC
p
k −Gk(KkC

p
kK

′
k +Cǫo

k
)(KkC

p
kK

′
k +Cǫo

k
)−1KkC

p
k︸ ︷︷ ︸

adding zero

= (I−GkKk)C
p
k(I−GkKk)

′ +GkCǫo
k
G′

k +GkKkC
p
k

−Gk(KkC
p
kK

′
k)(KkC

p
kK

′
k +Cǫo

k
)−1KkC

p
k −GkCǫo

k
(KkC

p
kK

′
k +Cǫo

k
)−1KkC

p
k

= (I−GkKk)C
p
k(I−GkKk)

′ +GkCǫo
k
G′

k +GkKkC
p
k

−GkKkC
p
kK

′
kG

′
k −GkCǫo

k
G′

k (by definition of Gk)

= (I−GkKk)C
p
k(I−GkKk)

′ +GkKkC
p
k −GkKkC

p
kK

′
kG

′
k (terms canceled)

= (I−GkKk)C
p
k(I−GkKk)

′ +GkKkC
p
k(I−GkKk)

′

=
[
(I−GkKk)C

p
k +GkKkC

p
k

]
(I−GkKk)

′

= C
p
k −C

p
kK

′
kG

′
k.

Since Cest
k is a symmetric covariance matrix, we can write Cest

k = C
p
k −GkKkC

p
k.

With both the Kalman estimate and covariance in hand, we now present the Kalman filter

method in Algorithm 7.
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Algorithm 7 The Kalman Filter (KF)

1. Select initial guesses for xest
0 and Cest

0 , and set k = 1.

2. Compute the evolution model estimate and covariance:

(a) Compute x
p
k = Mkx

est
k−1.

(b) Define C
p
k = MkC

est
k−1M

′
k +Cǫp

k
.

3. Compute the Kalman filter and covariance estimates:

(a) Define the Kalman Gain Gk = C
p
kK

′
k(KkC

p
kK

′
k +Cǫo

k
)−1.

(b) Compute the Kalman filter estimate xest
k = x

p
k +Gk(yk −Kkx

p
k).

(c) Define the estimate covariance Cest
k = C

p
k −GkKkC

p
k.

4. Set k = k + 1 and return to Step 2.

2.2.4 Deriving The Extended Kalman Filter

As was discussed in the introduction, in the presence of nonlinearity, KF has been adapted to

the case where (2.1) and (2.2) are replaced by

xk = M(xk−1) + ǫ
p
k, (2.19)

yk = K(xk) + ǫok, (2.20)

where the possibly nonlinear functions M and K are the evolution and observation operators,

respectively. The extended Kalman filter (EKF) is the best known extension of KF to (2.19)

and (2.20). It has the same form as Algorithm 7, but with Step 2(a) replaced by the non-

linear model forward integration calculation x
p
k = M(xest

k−1), and elsewhere using the linear

approximations of M and K,

Mk =
∂M(xest

k−1)

∂x
and Kk =

∂K(xp
k)

∂x
, (2.21)

where ∂/∂x denotes the Jacobian of the function with respect to x. The EKF method is

given in Algorithm 8.
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Algorithm 8 The Extended Kalman Filter (EKF)

1. Select initial guesses for xest
0 and Cest

0 , and set k = 1.

2. Compute the evolution model estimate and covariance:

(a) Compute x
p
k = M(xest

k−1).

(b) Define Mk = ∂M(xest
k−1)/∂x and C

p
k = MkC

est
k−1M

′
k +Cǫp

k
.

3. Compute the Kalman filter and covariance estimates:

(a) Define the Kalman Gain Gk = C
p
kK

′
k(KkC

p
kK

′
k+Cǫo

k
)−1, whereKk = ∂K(xp

k)/∂x.

(b) Compute the Kalman filter estimate xest
k = x

p
k +Gk(yk −Kkx

p
k).

(c) Define the estimate covariance Cest
k = C

p
k −GkKkC

p
k.

4. Set k = k + 1 and return to Step 2.

While the use of finite differences is one common approach to computing the linearizations

of M and K in (2.21), using adjoint and tangent linear codes is more accurate, and is more

efficient computationally and in terms of storage. The adjoint and tangent linear codes are

model dependent and are difficult to write in many instances, though they are available in

many highly-used models such as weather forecasting [26]. Specifically, for the evolution

and observation operators, the adjoint code computes multiplication of a vector by M′
k and

K′
k, and the tangent linear code computes multiplication of a vector by Mk and Kk. The

linearization may be infeasible or computationally problematic in the case of large-scale EKF

problems, and numerical approximations may yield inaccuracies.

2.2.5 The Variational Kalman Filter

An alternative derivation of KF yields the variational Kalman filter (VKF), which may be

formulated for both linear and nonlinear models. While, as we will see, VKF is equivalent

to KF (and EKF in the nonlinear case), it has advantages in large-scale problems, where

the estimates and covariances can be approximated with iterative methods. However, VKF

may still have computational difficulties in large-scale problems due to the storage of, and
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multiplication by, dense n× n covariance matrices.

VKF follows from using Bayes’ Theorem rather than minimum variance estimation. From

Bayes’ formula we can write the posterior density p(x|y) as

p(xk|yk) ∝ p(yk|xk)p(xk), (2.22)

where xk is the unknown state vector, yk is the vector of observation measurements, p(xk)

denotes the prior density and p(yk|xk) is the density of yk given xk. We wish to maxi-

mize (2.22), yielding the maximum a posteriori (MAP) estimate of xk. This is equivalent to

minimizing the negative log of p(xk|yk),

ℓ(xk|yk) = − log p(yk|xk)− log p(xk).

The prior density is given by (2.1) or (2.19) and has the form xk ∼ N(xp
k,C

p
k). From the

linear model in (2.2) or (2.20), yk|xk ∼ N(Kkxk,Cǫo
k
), where Kk is the linearization of K in

the nonlinear case. Hence we have

ℓ(xk|yk) =
1

2
(yk −Kkxk)

′C−1
ǫo
k
(yk −Kkxk) +

1

2
(xk − x

p
k)

′(Cp
k)

−1(xk − x
p
k), (2.23)

where the normalizing terms (non-xk terms) for p(xk|yk) are dropped because they do not

affect the minimization. We obtain the variational Kalman filter estimate by taking the

gradient of (2.23), setting it equal to 0,

0 = ∇ℓ(xk|yk)

= −K′
kC

−1
ǫo
k
(yk −Kkxk) + (Cp

k)
−1(xk − x

p
k)

= −K′
kC

−1
ǫo
k
yk +K′

kC
−1
ǫo
k
Kkxk + (Cp

k)
−1xk − (Cp

k)
−1x

p
k;
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then solving for xk:

xest
k = (K′

kC
−1
ǫo
k
Kk + (Cp

k)
−1)−1(K′

kC
−1
ǫo
k
yk + (Cp

k)
−1x

p
k)

= (K′
kC

−1
ǫo
k
Kk + (Cp

k)
−1)−1K′

kC
−1
ǫo
k
yk + (K′

kC
−1
ǫo
k
Kk + (Cp

k)
−1)−1(Cp

k)
−1x

p
k

+(K′
kC

−1
ǫo
k
Kk + (Cp

k)
−1)−1K′

kC
−1
ǫo
k
Kkx

p
k − (K′

kC
−1
ǫo
k
Kk + (Cp

k)
−1)−1K′

kC
−1
ǫo
k
Kkx

p
k︸ ︷︷ ︸

adding zero

= (K′
kC

−1
ǫo
k
Kk + (Cp

k)
−1)−1K′

kC
−1
ǫo
k
yk − (K′

kC
−1
ǫo
k
Kk + (Cp

k)
−1)−1K′

kC
−1
ǫo
k
Kkx

p
k

+ (K′
kC

−1
ǫo
k
Kk + (Cp

k)
−1)−1(K′

kC
−1
ǫo
k
K′

k + (Cp
k)

−1)xp
k

= x
p
k + (K′

kC
−1
ǫo
k
Kk + (Cp

k)
−1)−1K′

kC
−1
ǫo
k
(yk −Kkx

p
k) (2.24)

= x
p
k − [∇2ℓ(xp

k|yk)]
−1∇ℓ(xp

k|yk),

where ‘∇’ and ‘∇2’ denote the gradient and Hessian operators, respectively.

To see that (2.24) is the same as the KF state estimate (2.18), note that

(
(Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk

)−1
K′

kC
−1
ǫo
k

= C
p
k

[
I− I+ (Cp

k)
−1((Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk)

−1
]
K′

kC
−1
ǫo
k

= C
p
k


I−

(
(Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk

)(
(Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk

)−1

︸ ︷︷ ︸
the identity


K′

kC
−1
ǫo
k

+C
p
k

[
(Cp

k)
−1
(
(Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk

)−1
]
K′

kC
−1
ǫo
k

= C
p
k

[
I−K′

kC
−1
ǫo
k
Kk

(
(Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk

)−1
]
K′

kC
−1
ǫo
k

(terms canceled)

+C
p
k

[
(Cp

k)
−1
(
(Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk

)−1
]
K′

kC
−1
ǫo
k

−C
p
k

[
(Cp

k)
−1
(
(Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk

)−1
]
K′

kC
−1
ǫo
k





adding zero

=

[
C

p
kK

′
kC

−1
ǫo
k
−C

p
kK

′
kC

−1
ǫo
k
Kk

(
(Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk

)−1
K′

kC
−1
ǫo
k

]

= C
p
kK

′
k

[
C−1
ǫo
k
−C−1

ǫo
k
Kk

(
(Cp

k)
−1 +K′

kC
−1
ǫo
k
Kk

)−1
K′

kC
−1
ǫo
k

]
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= Gk,

where the last equality follows from the matrix inversion lemma (2.4) and the Kalman Gain

Gk is given in (2.17).

One further useful fact comes from using the matrix inversion lemma (2.4), yet again:

Cest
k = C

p
k −C

p
kK

′
k(KkC

p
kK

′
k +Cǫo

k
)−1KkC

p
k,

= (K′
kC

−1
ǫo
k
Kk + (Cp

k)
−1)−1

=
[
∇2ℓ(xk)

]−1
.

Finally, to avoid repetition, we present the VKF method for the nonlinear model case (2.19),

(2.20) in Algorithm 9. In the linear case, the only change is that M(xest
k−1) is replaced by

Mkx
est
k−1, and the linearizations in Steps 2(b) and 3 are not needed.

Algorithm 9 The Variational Kalman Filter (VKF)

1. Select initial guesses for xest
0 and Cest

0 , and set k = 1.

2. Compute the evolution model estimate and covariance:

(a) Compute x
p
k = M(xest

k−1).

(b) Define Mk = ∂M(xest
k−1)/∂x and C

p
k = MkC

est
k−1M

′
k +Cǫp

k
.

3. Compute the Kalman filter and covariance estimates:

Compute the minimizer xest
k and inverse Hessian Cest

k of

ℓ(x|yk) =
1
2 (yk −Kkx)

′C−1
ǫo
k
(yk −Kkx) +

1
2(x− x

p
k)

′(Cp
k)

−1(x− x
p
k),

where Kk = ∂K(xp
k)/∂x.

4. Set k = k + 1 and return to Step 2.
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2.2.6 The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was proposed by Geir Evensen in [33] as an alternative

to EKF for nonlinear filtering problems of the form (2.19) and (2.20). Unlike EKF, EnKF

does not require storage of full covariance matrices nor linearization of the nonlinear function

M, and therefore is advantageous for many large-scale, nonlinear problems. Instead, EnKF

generates a random sample of the state, called an ensemble, at each iteration of the filter, from

which the Kalman state and covariance estimate are calculated as the empirical mean and

covariance of the ensemble, respectively. However, if K is nonlinear, then the linearization of K

will be required as previously discussed. The pseudocode for EnKF is provided in Algorithm

10.

Computations for EnKF remain efficient when the covariance C
p
k and the Kalman Gain

matrix are kept in a low-rank ‘ensemble form’ rather than being explicitly computed at each

iteration [35]. The low-rank covariance matrix, however, may need to be regularized using the

technique of covariance inflation [72, 100]. Furthermore, the model is not restricted to using

Gaussian distributed noise, even though it is most common to do so [34].

It is worth mentioning that a slight error in the initial guess for the ensemble error does not

highly influence the results of the filter [34]. The ensemble size, N , needs to be chosen large

enough so that the estimator in Step 3(c) is accurate; otherwise the method may perform

poorly [34]. When the state vector dimension n is large, this likely means that N must be

large as well, which will limit the computational advantage of EnKF. Further inaccuracies

may be fostered by random perturbations of the model states in Steps 2(a) and 3(b).

Now that we have finished introductions to, and derivations of, various Kalman filter meth-

ods, we move on to discuss our implementation of the conjugate gradient algorithm within

these filters.
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Algorithm 10 The Ensemble Kalman Filter (EnKF)

1. Select initial guesses for xest
0 and Cest

0 . Sample initial ensemble xest
0,i ∼ N(xest

0 ,Cest
0 ) for

i = 1, . . . , N , and set k = 1.

2. Integrate the ensemble forward in time and compute the evolution model estimate and
covariance:

(a) Sample ǫ
p
k,i ∼ N(0,Cǫp

k
), for i = 1, . . . , N and compute ensemble members xp

k,i =

M(xest
k−1,i) + ǫ

p
k,i.

(b) Set xp
k = M(xest

k−1) and compute the model covariance estimate

C
p
k =

1

N

N∑

i=1

(xp
k,i − x

p
k)(x

p
k,i − x

p
k)

′.

3. Compute a new ensemble using the Kalman filter formulas:

(a) Define the Kalman Gain Gk = C
p
kK

′
k(KkC

p
kK

′
k+Cǫo

k
)−1, whereKk = ∂K(xp

k)/∂x.

(b) Sample ǫok,i ∼ N(0,Cǫo
k
), for i = 1, . . . , N and then compute ensemble members

xest
k,i = x

p
k,i +Gk(yk −Kkx

p
k,i + ǫok,i).

(c) Compute the state estimate as the mean of the ensemble xest
k = 1

N

N∑
i=1

xest
k,i and the

covariance estimate as the empirical covariance

Cest
k =

1

N

N∑

i=1

(xest
k,i − xest

k )(xest
k,i − xest

k )′.

4. Set k = k + 1 and return to Step 2.
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2.3 Conjugate Gradient Based Kalman Filters

As previously discussed in the case of large-scale problems, KF, VKF and EKF are often

computationally prohibitive due to the storage and matrix inversion of the large, non-sparse

covariance matrices computed at every filter step. Additionally, EnKF incurs inaccuracies

due to perturbations of the measurements and may require covariance inflation. Schneider

and Willsky discuss the problems associated with using the conjugate gradient (CG) method

to build low-rank covariance and inverse-covariance matrix approximations in [85,86]. These

authors suggest the use of CG within KF in [84] but do not discuss details of its implementa-

tion.

We note that the CG-Lanczos connection is used in [93] to build preconditioners for CG

iterations within the four-dimensional variational data assimilation algorithm. LBFGS [71]

has also been used within the various forms of KF iterations to solve the necessary quadratic

minimization tasks, as well as to obtain low-storage, full-rank (low-rank + identity) approxi-

mations of covariance matrices [2, 3].

Here we introduce the use of CG within the previously discussed Kalman filters, for both

quadratic minimization tasks and low-rank, low-storage covariance and inverse-covariance

matrix approximations. We begin with a discussion of how CG and its connection to Lanczos

may be used to determine some of the matrix approximations, followed by a discussion of the

implementation of CG and Lanczos within KF and VKF. We end with a discussion of the

CG sampler [74], which is used to efficiently sample from a Gaussian distribution to create

ensembles in the EnKF method.
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2.3.1 The Conjugate Gradient and Lanczos Methods

CG is most widely known for solving a quadratic minimization problem of the form

φ(x) =
1

2
x′Ax− x′b, (2.25)

where An×n is symmetric and positive definite. It is mentioned in Chapter 1 that the min-

imizer of (2.25) is also the solution of Ax = b. We again give the pseudocode for CG, for

completeness, in Algorithm 11.

Algorithm 11 Conjugate Gradient (CG)

Given A, b and x0, let r0 = b −Ax0, p0 = r0, and j = 1. Specify stopping tolerance ǫ and
iterate:

1. γj−1 =
r′j−1rj−1

p′

j−1Apj−1
is the 1-D minimizer of φ in the direction xj−1 + γpj−1.

2. xj = xj−1 + γj−1pj−1.

3. rj = −∇xφ(xj) = b−Axj = rj−1 − γj−1Apj−1 is the residual.

4. βj = − r′jrj

r′

j−1rj−1
.

5. pj = rj − βjpj−1 is the next conjugate search direction.

6. Quit if ||rj || < ǫ. Else set j = j + 1 and return to Step 1.

In addition to using CG for optimization problems, we use it here to efficiently build a q-rank

approximation Bk,q ≈ A−1, where q < n indicates the stopping iteration of the CG algorithm

and k indicates the time step of the Kalman filter. Afterwards we will show how to construct

the low-rank (q-rank) approximation B
†
k,q ≈ A by exploiting the connection between the CG

and Lanczos iterations.

We begin by determining the form of Bk,q from the CG iterations in Algorithm 11. Define

Pq to be the n× q matrix with {pi}q−1
i=0 as columns and PB to be the n× (n− q) matrix with

{pi}n−1
i=q as columns. Then the theory of CG [45] states that in exact arithmetic, when A has
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n distinct eigenvalues,

Dn =




Dq 0

0 DB


 =




P′
qAPq 0

0 P′
BAPB


 = P′

nAPn

is an invertible diagonal matrix with entries [Dn]ii = p′
iApi. Thus we can write the inverse

of A as

A−1 = PnD
−1
n P′

n = PqD
−1
q P′

q +PBD
−1
B P′

B . (2.26)

For q < n, the q−rank approximation of A−1 given by the CG algorithm at filter time step k

is

Bk,q = PqD
−1
q P′

q

= (PqD
−1/2
q )(PqD

−1/2
q )′

def
= Xk,qX

′
k,q.

(2.27)

Storing Xk,q of size n × q, when q < n, reduces the storage requirements of the covariance

matrix. Thus we now have a way of determining a low-rank, low-storage approximation of

A−1; namely Bk,q = Xk,qX
′
k,q.

Next we consider the connection between Lanczos and CG, which we will use to determine

an approximation B
†
k,q of A.

Lanczos

The Lanczos algorithm is an iterative method for determining the singular value decomposition

of a rectangular matrix, specifically in the case of large, sparse matrices [56, 57], and its

performance in finite precision is well-studied [67, 75, 81]. The CG and Lanczos methods are

equivalent for symmetric, positive definite matrices, i.e. the iterations of one can be used to

obtain the other and vice versa [4, 45,67].
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In exact arithmetic, the Lanczos algorithm approximates the eigenvalue/eigenvector pairs

(λi,wi) of positive definite matrix An×n [74], so that Awi = λiwi, where the eigenvalues of

A are ordered by

λ1 < λ2 < · · · < λn.

In finite precision, Lanczos finds only a few eigenvalues of A, as well as the extreme and

well-separated ones.

For completeness, we present the two-term recurrence version of the Lanczos method due

to Paige [67] in Algorithm 12.

Algorithm 12 Lanczos

Given an initial vector ṽ0, let v0 =
ṽ0

||ṽ0||
, α0 = v′

0Av0, ṽ1 = Av0 − α0v0, and k = 1. Specify

some stopping tolerance ǫ. Iterate:

1. ηk = ||ṽk||. Quit if ηk < ǫ.

2. vk = ṽk
ηk

is a Lanczos vector.

3. uk = Avk − ηkvk−1.

4. αk = v′
kuk.

5. ṽk+1 = uk − αkvk.

6. Set k = k + 1 and return to Step 1.

From Lanczos iteration history, we define the tridiagonal Lanczos matrix Tq as

Tq =




α0 η1 0 0 · · · 0

η1 α1 η2 0 · · · 0

0 η2 α2 η3 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 ηq−2 αq−2 ηq−1

0 · · · 0 0 ηq−1 αq−1




,

and the matrix Vq to have orthogonal columns {vi}q−1
i=0 . Then [45, 67] state that we can
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rewrite the tridiagonal Lanczos matrix as

Tq = V′
qAVq. (2.28)

By the orthogonality of Vq, we have the following low-rank (q-rank) approximation of A:

B
†
k,q = VqTqV

′
q. (2.29)

As was stated above, we wish to obtain B
†
k,q in terms of the CG iteration history. First we

note that, using the CG residuals, Vq can be calculated with the relationship ( [45], [67] p.

50)

vi = (−1)i
ri

||ri||
,

where the residual ri from CG is calculated as ri = −∇xφ(xi). This, together with (2.28),

defines (2.29).

Now, since Tq is symmetric, it can be diagonalized:

Tq = UqSqU
′
q

where Uq = (u1, . . . ,uq) is the matrix with the orthonormal eigenvectors {ui} of Tq as its

columns and Sq is a diagonal matrix with the eigenvalues {si} of Tq on its diagonal. Hence

we can rewrite B
†
k,q as

B
†
k,q =VqUqSqU

′
qV

′
q

= VqUqS
1/2
q (VqUqS

1/2
q )′

def
= X∗

k,q(X
∗
k,q)

′. (2.30)

Storing X∗
k,q of size n× q reduces the storage requirements of the approximation of A. Note
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that only CG iteration history was used to build B
†
k,q. Furthermore, since Lanczos is used to

estimate the eigenvalue/eigenvector pairs of A, we note that the Ritz vectors {Vqui}qi=1 are

estimates of the q eigenvectors {wi} of A corresponding to {λi}.

Now that we have methods for approximating A and A−1 of (2.25), we discuss how these

methods are introduced into the Kalman filters.

2.3.2 Conjugate Gradient in the Kalman Filter

If we consider the nonlinear Kalman filter method in Algorithm 8, we can apply CG twice: first

to solve a linear system and second to calculate a covariance estimate. The first application

comes from examining steps 3(a) and 3(b) of the algorithm where we notice that the expression

(KkC
p
kK

′
k +Cǫo

k
)−1(yk −Kkx

p
k)

appears. By letting A = KkC
p
kK

′
k + Cǫo

k
and b = yk − Kkx

p
k, when we apply q iterations

of CG to solving Ax = b, we obtain xCG
q ≈ (KkC

p
kK

′
k +Cǫo

k
)−1(yk −Kkx

p
k). As above, we

denote the approximation of A−1 as Bk,q, where k indicates the time step in the Kalman filter

and q indicates the stopping iteration of CG. Note that if the dimension of the observation

space, m, is small, CG is not necessary to calculate this inverse.

CG is also applied to step 3(c) of Algorithm 8. If we use the CG/Lanczos relation and let

A = Cest
k ≈ C

p
k − C

p
kK

′
kBk,qKkC

p
k, where Bk,q ≈ (KkC

p
kK

′
k + Cǫo

k
)−1 was obtained in the

above application of CG, then we may obtain B
†
k,q, a q-rank, low-storage approximation of A

as in (2.30). We choose b in (2.25) to be the random vector with entries 1 or −1, determined

at random with equal probability, as this optimizes the accuracy of the covariance and inverse-

covariance approximations [50]. In our tests, we also used b ∼ N(0, I), which works equally

as well.
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The pseudocode for the implementation of CG within the extended Kalman filter follows

in Algorithm 13. We refer to this method as CG-KF. To ensure efficient computations, we

assume that multiplication by linearizations Mk and Kk, and their transposes, are efficient

both computationally and in terms of storage. Note that the linear Kalman filter model is

just a special case in which Step 2(a) is replaced with x
p
k = Mkx

est
k−1 since the linearizations

of M, K are simply the matrices Mk, Kk in (2.1) and (2.2).

Algorithm 13 The Kalman Filter with Conjugate Gradient (CG-KF)

1. Select initial guesses for xest
0 and lower-storage initial covariance B

†
0,0 = Cest

0 , and set
k = 1.

2. Compute the evolution model estimate and covariance:

(a) Compute x
p
k = M(xest

k−1).

(b) Define Mk = ∂M(xest
k )/∂x and C

p
k = MkB

†
k−1,qM

′
k +Cǫp

k
.

3. Compute the Kalman filter and covariance estimates:

(a) Apply CG to (2.25), with A = KkC
p
kK

′
k+Cǫ0

k
and b = (yk−Kkx

p
k) to obtain x∗

k,

and low-rank approximation Bk,q of A−1, where Kk = ∂K(xp
k)/∂x .

(b) Compute approximate Kalman filter estimate xest
k = x

p
k +C

p
kK

′
kx

∗
k.

(c) Apply CG to (2.25), with A = C
p
k−C

p
kK

′
kBk,qKkC

p
k and b is a white noise random

vector, to obtain low-rank approximation B
†
k,q of A.

4. Set k = k + 1 and return to Step 2.

2.3.3 Conjugate Gradient in the Variational Kalman Filter

Implementing CG within VKF is straightforward due to the existing quadratic minimization

task in Step 3(a) of Algorithm 9. Specifically, our task is to minimize (2.23), or equivalently

(2.25) with A = K′
kC

−1
ǫo
k
Kk + (Cp

k)
−1 and b = K′

kC
−1
ǫo
k
yk + (Cp

k)
−1x

p
k, and for this we use

CG. To ensure efficiency of the algorithm, we need multiplication by C−1
ǫo
k
and (Cp

k)
−1 to be

efficient. To this end, we choose Cǫo
k
to be diagonal, and, using the form of the inverse Hessian
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Cest
k found in (2.27), we use the matrix inversion lemma (2.4) to write

(Cp
k)

−1 = (MkC
est
k−1M

′
k +Cǫp

k
)−1

= ((MkXk,q)(MkXk,q)
′ +Cǫp

k
)−1

= C−1
ǫp
k
+C−1

ǫp
k
MkXk,q(I+X′

k,qM
′
kC

−1
ǫp
k
MkXk,q)

−1X′
k,qM

′
kC

−1
ǫp
k
. (2.31)

Note that if q, the stopping iteration of CG, is small enough so that the q × q inverse in

(2.31) is computed efficiently, then multiplication by (Cp
k)

−1 will be efficient. If, on the other

hand, q is too large for efficient computations with (2.31), we may return to optimization

calculations, as was done in Algorithm 13 in Step 3(c). In that case, we would apply CG

to (2.25) to obtain low-rank approximation Bk,q of A−1, with A = C
p
k and b a white noise

random vector.

We now present pseudocode for the implementation of CG within VKF in Algorithm 14; we

refer to this method as CG-VKF. As before, in the case of a linear model, the linearizations

of M and K are simply the matrices Mk and Kk of (2.1), (2.2). Furthermore, the nonlinear

function in Step 2(a) becomes xp
k = Mkx

est
k−1.

The matrix-vector multiplies dominate the cost of implementation in both CG-KF and CG-

VKF, with a cost of about 2n2 (or 2m2) flops in each CG iteration [98]. When the number of

CG iterations, q, is small relative to n, then CG-KF and CG-VKF are cheaper to implement

than KF and VKF. Additionally, in the implementation of CG, we store n × q elements for

the covariance approximations, as opposed to the original n× n covariance matrices.

2.3.4 Conjugate Gradient in the Ensemble Kalman Filter

Next we discuss how to use CG within EnKF. As mentioned above, perturbations of the model

from sampling the errors in the EnKF method of Algorithm 10, Steps 2(a) and 3(b) lead to
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Algorithm 14 The Variational Kalman Filter with Conjugate Gradient (CG-VKF)

1. Select initial guesses for xest
0 and low-rank covariance approximation B0,0 = X0X

′
0 ≈

Cest
0 , and set k = 1.

2. Compute the evolution model estimate and covariance:

(a) Compute x
p
k = M(xest

k−1).

(b) Define Mk = ∂M(xest
k )/∂x and (Cp

k)
−1 using (2.31).

3. Compute the Kalman filter and covariance estimates:

(a) Apply CG to the problem of minimizing

ℓ(x|yk) =
1

2
(yk −Kkx)

′C−1
ǫo
k
(yk −Kkx) +

1

2
(x− x

p
k)

′(Cp
k)

−1(x− x
p
k),

which has the form of (2.25) with A = K′
k(Cǫo

k
)−1Kk + (Cp

k)
−1, b =

K′
k(Cǫo

k
)−1yk + (Cp

k)
−1x

p
k, and where Kk = ∂K(xp

k)/∂x, to obtain minimizer xest
k

and inverse Hessian, low-rank approximation Bk,q = Xk,qX
′
k,q of Cest

k .

4. Set k = k + 1 and return to Step 2.

the underestimation of the state covariance. The method of [90] skirts this issue by integrating

forward the ensemble members xest
k−1,i with the evolution operator, for i = 1, . . . , N , as well

as the state estimate, xest
k−1. The prediction error covariance matrix Cǫp

k
is then added to the

ensemble empirical covariance to obtain C
p
k, similar to that of Step 2(b) in Algorithms 7, 8

and 9. This removes the perturbations of the model that occur due to sampling the errors.

Step 3 of the EnKF algorithm may be reformulated using the variational approach, by which

the minimizer xest
k and approximate inverse Hessian Bk,q ≈ Cest

k are calculated from (2.23).

To do so, we apply CG to (2.25) withA = K′
kC

−1
ǫo
k
Kk+(Cp

k)
−1 and b = K′

kC
−1
ǫo
k
yk+(Cp

k)
−1x

p
k.

With the state and covariance estimates in hand, we obtain the new ensemble estimates by

sampling from xest
k,i ∼ N(xest

k ,Bk,q ≈ Cest
k ) using the CG sampler.

The pseudocode for the resulting variational EnKF, which makes use of CG, is given in

Algorithm 15, with the necessary discussion of the CG sampler provided below. We refer to

this method as CG-EnKF, which is the ensemble-version of CG-VKF.
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Algorithm 15 The Ensemble Kalman Filter with Conjugate Gradient (CG-EnKF)

1. Select initial guesses for xest
0 and Cest

0 . Sample initial ensemble members xest
0,i ∼

N(xest
0 ,Cest

0 ) for i = 1, . . . , N and set k = 1.

2. Integrate the ensemble forward in time and estimate the covariance:

(a) Compute x
p
k = M(xest

k−1) and x
p
k,i = M(xest

k−1,i) for i = 1, . . . , N .

(b) Define the model covariance as

C
p
k =

1

N

N∑

i=1

(xp
k,i − x

p
k)(x

p
k,i − x

p
k)

′ +Cǫp
k
.

3. Compute a new ensemble using the CG sampler:

(a) Apply CG to (2.25) with A = K′
kC

−1
ǫo
k
Kk +(Cp

k)
−1 and b = K′

kC
−1
ǫo
k
yk +(Cp

k)
−1x

p
k

to estimate the minimizer xest
k and approximate inverse Hessian Bk,q ≈ Cest

k , as
well as compute new ensemble members xest

k,i ∼ N(xest
k ,Bk,q), for i = 1, . . . , N

using the CG sampler.

4. Set k = k + 1 and return to Step 2.

It remains to discuss the two computational limitations of this variational approach. The

first is that computations with (Cp
k)

−1 must remain efficient while adhering to the restriction

that no large and dense matrices be stored. Since we desire efficient multiplication by (Cp
k)

−1,

we begin by noting that we can rewrite the covariance estimate as Cp
k = XkX

′
k +Cǫp

k
, where

Xk =
[
(xp

k,1 − x
p
k), (x

p
k,2 − x

p
k), . . . , (x

p
k,N − x

p
k)
]
/
√
N,

and xk,i is the ith ensemble member at the kth time step of the filter. Then using the matrix

inversion lemma (2.4) we can compute, similar to (2.31),

(Cp
k)

−1 = (XkX
′
k +Cǫp

k
)−1

= C−1
ǫp
k
−C−1

ǫp
k
Xk(I+X′

kC
−1
ǫp
k
Xk)

−1XkC
−1
ǫp
k
. (2.32)

Assuming N is not too large, the inverse in (2.32) should be computationally feasible and

assuming computations with C−1
ǫp
k
are efficient, then computations with (2.32) will be efficient.



2.3. CONJUGATE GRADIENT BASED KALMAN FILTERS 91

In our examples, we assume Cǫp
k
is a diagonal matrix and use relatively small ensemble sizes.

Second, it must be efficient to obtain samples from N(xest
k ,Bk,q), where Bk,q ≈ Cest

k . Gaus-

sian sampling is typically computed through a Cholesky decomposition of the dense covariance

matrix; however, we do not wish to store or use a dense covariance matrix in the computa-

tions for large-scale problems. To circumvent the issues associated with Gaussian sampling,

we introduce the CG sampler for the Gaussian sampling in Step 3 of CG-EnKF, which can

be computed from the CG iterations determined in Step 3.

The Conjugate Gradient Sampler

Parker and Fox show in [74] that while the CG algorithm computes the minimizer of (2.25), it

can also approximately sample from wi,q ∼ N(0,A−1) with one additional line of code, where

i represents the ith ensemble member and q is the number of CG iterations. The sampler is

initialized with wi,0 = 0, for i = 1, . . . , N . Recalling that Xk,q = PqD
−1/2
q from (2.27), a CG

sample can be written as wi,q = PqD
−1/2
q z, where z ∼ N(0, I), for i = 1, . . . , N . Hence,

wi,q ∼ N(0,PqD
−1
q P′

q). (2.33)

The matrix PqD
−1
q P′

q is singular and the distribution of wi,q is an intrinsic Gaussian [80].

However, at iteration q = n of the CG sampler, in exact arithmetic and assuming n distinct

eigenvalues, by (2.26) and (2.33), we have

wi,n ∼ N(0,A−1).

In the case of non-distinct eigenvalues, or when only an approximate minimizer of (2.25) is

sought, CG terminates at iteration q < n [67].
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This allows us to compute the ensemble samples in Step 3(b) of CG-EnKF via

xest
k,i = xest

k +wi,q,

wherewi,q ∼ N(0,PqD
−1
q P′

q) and xest
k is the approximate minimizer computed by CG in Step

3(a) of CG-EnKF. Therefore, ensemble samples will have the distribution xest
k,i ∼ N(xest

k ,Bk,q),

where Bk,q = PqD
−1
q P′

q ≈ Cest
k . Pseudocode for the CG sampler is given in Algorithm 16,

to be used concurrently for Steps 3(a) and 3(b) of Algorithm 15. Note that Algorithm 16 is

simply Algorithm 11 with Step 3 added to compute the CG samples.

Algorithm 16 Conjugate Gradient Sampler

Given A, b, and x0, let r0 = b − Ax0, p0 = r0, d0 = p′
0Ap0, j = 1, and wi,0 = 0 for

i = 1, . . . , N . Set j = 1. Specify stopping tolerance ǫ and iterate:

1. γj−1 =
r′

j−1rj−1

dj−1
.

2. xj = xj−1 + γj−1pj−1.

3. wi,j = wi,j−1 + (zi/
√

dj−1)pj−1, where zi ∼ N(0, 1), for i = 1, . . . , N .

4. rj = b−Axj = rj−1 − γj−1Apj−1.

5. βj = − r′

jrj

r′

j−1rj−1
.

6. pj = rj − βjpj−1 and dj = p′
jApj .

7. Quit if ||rj || < ǫ. Else set j = j + 1 and return to Step 1.

It is worthwhile to note that as long as the number of CG iterations, q, remains small com-

pared to n, CG-EnKF is cheaper to implement than EnKF because the cost of implementing

CG is dominated by the matrix-vector multiplies with 2n2 flops per CG iteration [98].

2.3.5 Analysis of the Approximations

We now discuss the accuracy of the CG covariance approximation, Bk,q = PqD
−1
q P′

q. Recall

that this approximation is used in CG-KF, CG-VKF and CG-EnKF. Thus the following
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analysis extends to all presented implementations of CG within the filters.

If the eigenvalues of A are clustered into q distinct groups, CG returns the approximate

solution at the qth iteration in a q-dimensional Krylov space,

Kq(A, r0) = span(r0,Ar0,A
2r0, . . . ,A

q−1r0).

In [74], Remark 4, Parker and Fox show the Ritz vectors estimating the corresponding q

eigenvectors of A are the eigenvectors of var(wi,q|b) = PqD
−1
q P′

q and when CG converges

with residual rq = 0, then
[
A−1 −PqD

−1
q P′

q

]
v = 0,

for any v ∈ Kq(A, r0). At the convergence of CG, this Krylov space contains the eigenspaces

corresponding to the extreme and well-separated eigenvalues of A [67, 75, 81, 89]. Therefore,

PqD
−1
q P′

q is the best q-rank approximation to A−1 in the eigenspaces corresponding to the

extreme and well-separated eigenvalues of A.

Regarding the Lanczos approximation, (2.28) demonstrates that the Lanczos algorithm is

a Raleigh-Ritz process [75], where Tq is the minimizer of ρ(ζ|Vq) = ||AVq − Vqζ||2, or

equivalently,

min
ζ∈Rn×n

ρ(ζ|Vq) = ||(A−VqTqV
′
q)Vq||2,

resulting in B
†
k,q = VqTqV

′
q being the best q-rank approximation of A in range(Vq), the

q-dimensional Krylov space also spanned by the CG conjugate directions. Therefore, in this

Krylov subspace, B†
k,q is the optimal approximation of A.

Furthermore, these results on the accuracy of the approximations have been proven by

Parker and Fox [74, Theorem 3.1], given here for completion.
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Theorem 5. The covariance matrix of the CG sample wi,q is

var(wi,q|b) = VqT
−1
q Vq,

and it has q nonzero eigenvalues { 1
si
}, which are the Lanczos estimates of the eigenvalues of

A−1. The eigenvectors of var(wi,q|b) are the Ritz vectors Vqui which estimate the eigenvectors

of A. When ||rq|| = 0, then

var(Awi,q|b) = VqTqVq,

and the q eigenvector/eigenvalue pairs of var(Awi,q|b) with nonzero eigenvalues are the Lanc-

zos Ritz pairs (si,Vqui).

2.4 Numerical Results

Here we perform tests in MATLAB with CG-KF, CG-VKF and CG-EnKF, comparing results

to those obtained using the respective LBFGS techniques presented in [2,3,90] since the codes

for these algorithms were readily available to us. Two synthetic test cases are used here.

The Lorenz 95 system is a first-order, nonlinear, chaotic ODE system which shares similar

features to weather models, and therefore is an appropriate test case. The second example is

a two-dimensional heat equation that we use as a large-scale test case.

2.4.1 Lorenz 95

The Lorenz 95 test case was introduced in 1996 in [62] and analyzed two years later in [63].

The model is given by

∂xi
∂t

= (xi+1 − xi−2)xi−1 − xi + 8, i = 1, . . . , 40, (2.34)
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with periodic state space variables where x−1 = x39, x0 = x40 and x41 = x1. While this

test case has a rather small dimension of 40 variables, this system produces chaotic and

unpredictable behavior, like that of realistic atmospheric and weather forecasting models, in

addition to the periodic nature used in weather models [63].

The filters are applied to the problem of estimating the temporal state variables from data

generated using the nonlinear model in (2.34). The data are generated using a fourth order

Runge-Kutta (RK4) method with a time step of ∆t = 0.025. When using (2.34) as a test case

representing weather forecasting systems, [63] suggests the time step be three hours. Thus

by generating 42, 920 time steps of data, we obtain 5365 days worth of ‘truth’ data, at three

hour intervals. The initial state used is x20 = 8 + 0.008 and xi = 8 for i 6= 20. Visualizing

this data is difficult due to its dimension; however, a plot of the true values of x1 is given in

Figure 2.1.
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Figure 2.1: True values for variable x1 in the Lorenz 95 model plotted in time.

From the true data we compute the observed data, such that, after a 365 day interval, the

true data are observed at alternating time steps and at the last 3 grid points in each set of
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five. This yields the observation matrix Kk = K of size m× n with entries

[K]rs =





1 (r, s) ∈ {(3j + i, 5j + i+ 2) | i = 1, 2, 3, j = 0, . . . , 7},

0 otherwise.
(2.35)

For EKF and VKF, we use the system (2.19) and (2.20). Here K is the linear matrix given

in (2.35) and we take ǫ
p
k ∼ N(0, (0.05σclim)2I) and ǫok ∼ N(0, (σclim)2I), where σclim =

3.6414723 is the standard deviation of the model state used in climatological simulations. For

the ensemble filter, we use ǫpk ∼ N(0, (0.05σclim)2I) and ǫok ∼ N(0, (0.15σclim)2I). Since this

is a well-established test case, the tangent linear code is available to us from our collaborators

for this model, as needed in EKF and VKF.

Finally, initial guesses for all methods are taken to be xest
0 = 1 and Cest

0 = I. Sensitivity to

initial guesses was not examined here. In all implementations, CG is considered to have con-

verged, and iterations are stopped, when ||rk|| < 10−6, with a maximum number of iterations

set at 50. All tests are compared with LBFGS, using the same optimization settings above.

The root-mean-square error, √
1

N

∣∣∣
∣∣∣xk − xtruek

∣∣∣
∣∣∣
2
,

is computed to compare CG-KF and LBFGS-KF with EKF in the left-hand image in Figure

2.2, while the right-hand image compares CG-VKF and LBFGS-VKF with EKF. In both

images, the root-mean-square error tends to be lower for the CG methods than the LBFGS

methods. Also, CG-VKF has nearly the same root-mean-square error as EKF at each filter

iteration past k = 30. Average computational times of five trials for these Kalman filters

are compared in Table 2.1. The conjugate gradient-based methods are computationally faster

than the LBFGS-based methods, though the EKF method remains the fastest. However,

recall that in higher dimensional problems EKF becomes computationally infeasible.

The root-mean-square error of CG-EnKF is compared to the LBFGS-EnKF method of [90]
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Figure 2.2: Root-mean-square error versus filter iteration to compare (left) the EKF, CG-KF
and LBFGS-KF methods and (right) the EKF, CG-VKF and LBFGS-VKF methods, in the
Lorenz 95 example.

Method Average Time in Seconds (Standard Deviation)

CG-KF 9.6510 (0.0703)
LBFGS-KF 68.1245 (1.2075)
CG-VKF 13.4220 (0.3635)

LBFGS-VKF 48.6552 (2.2134)
EKF 3.3451 (0.0808)

Table 2.1: CPU average times and standard deviations of five trials for EKF and the CG-based
and LBFGS-based KF and VKF methods in the Lorenz 95 test case.

as well as EKF in Figure 2.3 for N = 20 and 50. Recall that the ensemble methods are

stochastic, thus the plotted errors are an average of 20 runs. EnKF typically performs poorly

with smaller ensemble sizes, thus we compare the approximate EnKF methods with EKF. For

both ensemble sizes, the root-mean-square error of the CG-based methods is lower than that

of the LBFGS methods, after the first ten iterations. Average computational times of five

trials for the ensemble Kalman filters are compared in Table 2.2. We see that CG-EnKF is

about twice as fast, computationally, as LBFGS-EnKF.

Figure 2.4 demonstrates that as the ensemble size increases, CG-EnKF approaches CG-

VKF. We use ensemble sizes N = 10, 20, and 50.
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Figure 2.3: Root-mean-square error versus filter iteration to compare the CG-EnKF, LBFGS-
EnKF and EKF methods for N = 20, 50 in the Lorenz 95 example.

Average Time in Seconds (Standard Deviation)
Method N = 20 N = 50

CG-EnKF 14.2249 (0.4285) 30.5166 (0.6312)
LBFGS-EnKF 28.8748 (1.5203) 58.1476 (1.1062)

Table 2.2: CPU average times and standard deviations of five trials for the CG-based and
LBFGS-based ensemble Kalman filter methods in the Lorenz 95 test case. The ensemble sizes
are N = 20, 50.

2.4.2 Heat Equation

This example demonstrates the nature of the Kalman filter methods when the dimension is

large. We consider the forced heat propagation equation

∂x

∂t
= −∂2x

∂u2
− ∂2x

∂v2
+ δe−

(u−2/9)2+(v−2/9)2

σ2 , (2.36)
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Figure 2.4: Root-mean-square error versus filter iteration to compare the ensemble sizes N =
10, 20, 50 for CG-EnKF with CG-VKF and EKF in the Lorenz 95 example.

where the temperature x(u, v) is a function over the domain Ω = {(u, v)|0 ≤ u, v ≤ 1} and

δ ≥ 0 is the magnitude of the external heat source. This yields a linear model to which we can

apply KF; however, as the dimension increases, the calculations for KF become infeasible.

With discretization of (2.36), we can control the dimension of the uniform S×S grid, which

leads to the linear forward model xk+1 = Mxk + f , where M = I − ∆tL. Here, f is the

constant vector determined by evaluating the forcing term in (2.36), ∆t is the time step,

and L is the discrete negative-Laplacian with Dirichlet boundary conditions. The observation

matrix Kk = K is the full weighting matrix defined by

K =
1

16




1 2 1

2 4 2

1 2 1



,

creating a weighted average of temperatures at the eight nearest neighboring points.
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Data are generated using the stochastic equations

xk+1 = Mxk + f + ǫ
p
k,

yk+1 = Kxk+1 + ǫok,

where ǫ
p
k ∼ N(0, (0.5σev)

2I) and ǫok ∼ N(0, (0.8σob)
2I). Furthermore, we set δ = 0.75 and

choose σev and σobs such that the signal-to-noise ratios ||x0||2/S2σ2
ev and ||Kx0||2/m2σ2

obs

are both 50. For data generation we use the initial condition

[x0]ij = e−((ui−1/2)2−(vj−1/2)2),

where (ui, vj) is the ijth grid point.

We use a biased model for filtering, i.e., we drop the forcing term by setting δ = 0. Our model

for implementation now reverts to (2.1) and (2.2), with ǫ
p
k ∼ N(0, σ2

evI) and ǫok ∼ N(0, σ2
obI).

We take xest
0 = 0 and Cest

0 = 0, though sensitivity to these initial conditions was not examined

here.

For the first test, we choose S = 25, yielding a computational grid of 32×32, or a dimension

of S2 = 1032. The second test uses S = 27, which yields a computational grid of 128 × 128,

or a dimension of S2 = 16384. A stopping tolerance of ||rk|| < 10−6 was used in all CG

implementations to indicate convergence, with a maximum number of iterations set to 40.

We compare CG-KF and CG-VKF with the LBFGS-KF method of [2] and the LBFGS-VKF

method of [3], using the same stopping tolerance and maximum number of iterations as CG.

Figure 2.5 shows the root-mean-square error for both grid sizes 32 × 32 and 128 × 128

comparing the CG-KF, LBFGS-KF, CG-VKF, LBFGS-VKF and KF methods. For S = 32,

CG-VKF and LBFGS-VKF have near identical root-mean-square errors, until the filter itera-

tion surpasses k = 45, otherwise, the CG-based methods tend to outperform the LBFGS-based

methods in root-mean-square error. For the case with S = 128, KF is infeasible to calculate
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Average Time in Seconds (Standard Deviation)
Method S = 32 S = 128

CG-KF 5.1404 (0.5692) 34.8790 (0.8832)
LBFGS-KF 43.7063 (5.8862) 667.0230 (50.0171)
CG-VKF 6.7937 (0.9334) 90.3871 (18.6978)

LBFGS-VKF 13.2907 (1.6821) 120.5410 (15.3847)
KF 19.7148 (1.2362) Computationally Infeasible

Table 2.3: CPU average times and standard deviations of five trials for KF and the CG-
based and LBFGS-based KF and VKF methods in the heat equation test case. Average
times are given for both grid sizes 32× 32 and 128 × 128. KF on the 128 × 128 grid was not
computationally feasible on the computer we used.

using a standard desktop computer and the CG-based methods tend to have lower root-mean-

square error than the LBFGS-based methods. Table 2.3 compares the computational average

and standard deviation of five trials for the approximate KF and VKF methods with KF. The

CG-based Kalman filter methods are at least twice as fast as the LBFGS-based methods, as

well as the KF method (when KF is computationally feasible).
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Figure 2.5: Root-mean-square error versus filter iteration to compare the KF, CG-KF,
LBFGS-KF, CG-VKF and LBFGS-KF methods on a 32 × 32 computational grid (left) and
128 × 128 computational grid (right), in the heat equation example.

For the ensemble Kalman filter comparisons, we compare CG-EnKF with the LBFGS-EnKF

method of [90] using an ensemble size of N = 50. EnKF typically performs poorly with smaller

ensemble sizes, thus we compare the approximate EnKF methods with KF for S = 32. As
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Average Time in Seconds (Standard Deviation)
Method S = 32 S = 128

CG-EnKF 10.3096 (0.9512) 178.6400 (26.4002)
LBFGS-EnKF 21.3020 (1.2775) 446.9500 (24.8992)

Table 2.4: CPU average times and standard deviations of five trials for the CG-based and
LBFGS-based ensemble Kalman filter methods in the heat equation test case. Average times
are given for both grid sizes 32× 32 and 128 × 128 and the ensemble size is N = 50.

before for S = 128, KF cannot be computed using the standard desktop computer. Figure 2.6

plots the root-mean-square error for both grid sizes for the ensemble filters. Recall that the

ensemble methods are stochastic, thus the plotted errors are an average of 20 runs. For both

grid sizes, CG-EnKF returns a smaller root-mean-square error than LBFGS-EnKF. Table 2.4

compares the average computational time and standard deviation for the approximate EnKF

methods. For both grid sizes, CG-EnKF is at least twice as fast as LBFGS-EnKF.
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Figure 2.6: Root-mean-square error versus filter iteration to compare the KF, CG-EnKF and
LBFGS-EnKF methods on a 32 × 32 computational grid (left) and CG-EnKF and LBFGS-
EnKF methods on a 128 × 128 computational grid (right) for ensemble size N = 50, in the
heat equation example.

Figure 2.7 demonstrates that as the ensemble size increases, CG-EnKF approaches CG-

VKF. We use ensemble sizes N = 10, 20, and 50 on grid size 32× 32.
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Figure 2.7: Root-mean-square error versus filter iteration to compare the ensemble sizes N =
10, 20, 50 for CG-EnKF with CG-VKF and KF using grid size 32 × 32, in the heat equation
example.

2.5 Conclusions

In the Lorenz 95 test case, the CG-KF and CG-VKF methods tend to outperform LBFGS-

KF and LBFGS-VKF when comparing root-mean-square error with the standard EKF. In

EnKF for ensemble sizes of N = 20 and 50, CG-EnKF methods outperformed the LBFGS-

EnKF methods in terms of root-mean-square error and were comparable to the standard

EKF implementation. As ensemble size grows, the CG and LBFGS methods return more

equivalent results as they approach EKF. Furthermore, as ensemble size increases, CG-EnKF

approaches CG-VKF. The CG-based methods were at least twice as fast, computationally, as

the LBFGS-based Kalman filter methods.

The CG approximation methods produced comparable root mean squared errors to KF in

the heat example on the 32×32 grid, but were about two to eight times faster computationally

than the respective LBFGS approximation methods, depending on the choice of Kalman filter.
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On the 128× 128 grid, KF was computationally infeasible but the CG methods outperformed

the LBFGS methods in terms of root-mean-square error and computational time. CG-VKF

tends to perform with root-mean-square error closer to KF than CG-KF, CG-EnKF, LBFGS-

KF, LBFGS-VKF, and LBFGS-EnKF. CG-VKF also has the added benefit of being more

computationally efficient than LBFGS-VKF due to only one CG optimization being required

per iteration of the filter. The LBFGS methods converge slower than the CG methods.

We have seen that for large-scale examples, KF becomes computationally infeasible on stan-

dard desktop computers, and approximation methods are desirable. By integrating CG into

the KF method, we are able to compute the quadratic minimization and find low-storage and

low-rank approximations for the covariance and inverse-covariance matrices. For CG-VKF, we

only require one optimization with CG per filter iteration, while for CG-KF, two CG optimiza-

tions are required per filter iteration for the covariance and inverse-covariance approximations.

In the two test cases presented above, the CG methods are more computationally efficient to

implement than KF and the LBFGS methods.

We also have seen that CG and its sampler may be implemented in EnKF for improvement

in efficiency. The ensemble members computed are optimal in a certain Krylov subspace and

implementation requires only one additional line of code to CG. CG-EnKF is computationally

efficient and outperforms the LBFGS methods in the examples above, even in the cases where

KF cannot be computed or standard EnKF performs poorly.

This method of incorporating CG and the CG sampler into EnKF yields a faster converging

filter than when LBFGS is used. Moreover, with LBFGS, additional storage of the covariance

approximation is required and an additional computation is required after the optimization

iterations have terminated [90]. The CG approach is also very intuitive and requires only

one additional line of inexpensive code within the CG iterations. Theory on the accuracy of

the CG ensembles is discussed in [74] and to our knowledge, theory for the accuracy of the

LBFGS covariance approximation is not yet developed.
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[96] Fabrice Veersé, Variable-Storage Quasi-Newton Operators for Modeling Error Covariances, Proceedings

of the 3rd WMO International Symposium on Assimilation of Observations in Meteorology and Oceanog-

raphy, 1999, pp. 7–11.
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