Topos-like Properties in Two Categories of Graphs and Graph-like Features in an Abstract Category

Demitri Joel Plessas
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Plessas, Demitri Joel, "Topos-like Properties in Two Categories of Graphs and Graph-like Features in an Abstract Category" (2008). Graduate Student Theses, Dissertations, \& Professional Papers. 1124.
https://scholarworks.umt.edu/etd/1124

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

TOPOS-LIKE PROPERTIES IN TWO CATEGORIES OF GRAPHS AND GRAPH-LIKE FEATURES IN AN ABSTRACT CATEGORY

By
Demitri Joel Plessas
B.S. Montana Tech of the University of Montana, USA, 2006
Thesis
presented in partial fulfillment of the requirements for the degree of
Master of Arts
in Mathematics
The University of Montana
Missoula, MT
Spring 2008
Approved by:
Dr. David A. Strobel, Dean
Graduate School
Dr. George McRae, Chair
Mathematical Sciences
Dr. Adam Nyman
Mathematical Sciences
Dr. Joel Henry
Computer Science

Topos-like Properties in Two Categories of Graphs and Graph-like Features in an Abstract Category

Committee Chair: George McRae, Ph.D.
In the study of the Category of Graphs, the usual notion of a graph is that of a simple graph with at most one loop on any vertex, and the usual notion of a graph homomorphism is a mapping of graphs that sends vertices to vertices, edges to edges, and preserves incidence of the mapped vertices and edges. A more general view is to create a category of graphs that allows graphs to have multiple edges between two vertices and multiple loops at a vertex, coupled with a more general graph homomorphism that allows edges to be mapped to vertices as long as that map still preserves incidence. This more general category of graphs is named the Category of Conceptual Graphs.

We investigate topos and topos-like properties of two subcategories of the Category of Conceptual Graphs. The first subcategory is the Category of Simple Loopless Graphs with Strict Morphisms in which the graphs are simple and loopless and the incidence preserving morphisms are restricted to sending edges to edges, and the second subcategory is the Category of Simple Graphs with Strict Morphisms where at most one loop is allowed on a vertex. We also define graph objects that are their graph equivalents when viewed in any of the graph categories, and mimic their graph equivalents when they are in other categories. We conclude by investigating the possible reflective and coreflective aspects of our two subcategories of graphs.

Acknowledgements

I would like to thank my advisor, Dr. George McRae, for all of his help and guidance from the conception of this paper to its completion, the members of the Thesis Committee for their participation in my Thesis process, and the Department of Mathematical Sciences at the University of Montana for giving me this opportunity. I would also like to thank my wife, Ashley Plessas, for all of her love, help and support.

Notations			
$E(G)$	the set of edges of a graph G	pg. 2	
$V(G)$	the set of vertices of a graph G	pg. 3	
$A \times A$	unordered product of set A with itself	pg. 3	
∂_{G}	the incidence function of a graph G	pg. 3	
ι_{G}	the inclusion map of vertices into edges of a graph G	pg. 3	
$\underline{\Delta}$	the unordered diagonal map	pg. 3	
($u _v$)	the unordered pair of u and v	pg. 3	
1_{B}	the local identity morphism on an object B	pg. 7	
Grphs	the Category of Conceptual Graphs	pg. 8	
SiStGraphis	the Category of Simple Graphs with Strict Morphisms	pg. 10	
SiLlStgraphis	the Category of Simple Loopless Graphs with Strict Morphisms	pg. 10	
K_{2}	the complete graph on 2 vertices	pg. 17	
K_{1}	the complete graph on 1 vertex	pg. 23	
$A \cup \dot{B}$	the disjoint union of sets A and B	pg. 24	
K_{n}^{c}	the empty edge graph on n vertices	pg. 26	
\| -		the underlying set functor	pg. 26
$A \dashv B$	functor A is left adjoint to functor B	pg. 26	
$\sharp(X)$	the cardinality of a set X	pg. 30	
K_{2}^{ℓ}	the complete graph on 2 vertices with a loop at each vertex	pg. 37	
K_{n}^{ℓ}	the complete graph on n vertices with a loop at each vertex	pg. 39	
$\mathfrak{A b}$	the Category of Abelian Groups and Group Homomorphisms	pg. 45	
$t w$	the twist automorphism of the edge object	pg. 48	
\hookrightarrow	an inclusion morphism	pg. 2	
\rightarrow	a morphism between objects	pg. 7	
\sim	a functor between categories	pg. 16	
\rightarrow	an epimorphism between objects	pg. 16	
\mapsto	a monomorphism between objects	pg. 18	
\mapsto	function assignment	pg. 70	

Contents

Abstract ii
Acknowledgements iii
Notations iv
List of Figures vii
1 Introduction to the Categories of Graphs 1
1.1 Introduction 1
1.2 Graphs and Graph Homomorphisms 2
1.3 Categories of Graphs 7
1.4 Categorial Constructions 11
1.5 Functors, Concrete Categories, and Special Morphisms 16
2 Categorial Comparisons of Simple Loopless Graphs with Strict Morphisms and Simple Graphs with Strict Morphisms 20
2.1 Lack of Topos-like Properties in SiLIStGraphs 20
2.2 Other Categorial Constructions in SiLIStGrapfis 28
2.3 Existence of Topos-like Properties in SiStGraphs 33
2.4 Other Categorial Constructions in SiStGraphs 39
2.5 SiLLStGraphs is a Topos Impoverished Category 43
3 Investigation of Graph-like Objects in an Abstract Category 45
3.1 Abstract Categorial Definitions of Graph-like Objects 45
3.2 Graph-like Objects in the Categories of Graphs 49
3.3 Graph-like Objects in Other Categories 57
4 Reflective and Coreflective Subcategories of Graph Categories 60
4.1 The Theory of Reflective and Coreflective Subcategories 60
4.2 Relationships in the Categories of Graphs 62
5 Conclusion 65
A Primer of Category Theory 66
Bibliography 78

List of Figures

1.1 Incidence Mappings for Vertices 3
1.2 An Example of a (non-simple) Conceptual Graph 4
1.3 An Example of a Simple Graph 4
1.4 An Example of a (non-simple) Loopless Graph 5
1.5 The Graph Morphism 6
1.6 The Associative Law 7
1.7 The Identity Law 8
1.8 The Product 11
1.9 The Coproduct 13
1.10 The Cone for a Diagram 14
1.11 The Limit of a Diagram 14
1.12 The Co-cone for a Diagram 15
1.13 The Colimit of a Diagram 15
2.1 Example of $K_{2} \times K_{2}$ in SiLIStGrapfs 22
2.2 Example of a Quotient Graph in SiStGrapfis 34
2.3 Example of a $K_{2}^{K_{2}}$ in SiStGraphs 36
3.1 The Twist Automorphism, tw 48
3.2 The "Graph" of $(\mathbb{Z},+)$ 59
4.1 The Categories of Graphs 64
A. 1 The Equalizer 67
A. 2 The Coequalizer 67
A. 3 The Product 68
A. 4 The Coproduct 69
A. 5 Exponentiation and Evaluation 69
A. 6 The Pullback 70
A. 7 The Pullback Square 70
A. 8 The Free Object 75
A. 9 The Cofree Object 75
A. 10 A Projective Object 76
A. 11 An Injective Object 76

Chapter 1

Introduction to the Categories of Graphs

1.1 Introduction

In [11], F. W. Lawvere defines the Category of Sets and Functions, Sets, axiomatically, and in [15], D. Schlomiuk defines the Category of Topological Spaces and Continuous Maps, Top, axiomatically. Berry Mitchell's [13] embedding theorem says that abstract abelian categories are quite concrete categories of modules. This has set a precedent for other mathematical fields to find an axiomatization of their categories. With recent advances in vertex coloring problems in graph theory, graph homomorphisms have been studied. This naturally leads to studying the categories of graphs and in 1977 P. Hell in [7] makes a case as to why graph theorists should do so.

To help in the long term goal of finding an axiomatic characterization of the Categories of Graphs we investigate two graph categories. We investigate the Category of Simple Graphs with Strict Morphisms, where the graphs have at most one edge between any two distinct
vertices, and at most one loop at any vertex. The strict morphisms refer to graph homomorphisms that send vertices to vertices and edges to edges (strictly) while preserving the incidence of the mapped edges. A more general morphism allows edges to be mapped to vertices. Then we restrict ourselves to Simple Loopless Graphs with Strict Morphisms, where, in addition to being simple, the graphs cannot have loops.

There is a much more general category of graphs in which our chosen two categories live. This is the Category of Conceptual Graphs, where the morphisms allow edges to be sent to vertices, as long as incidence is still preserved, and the objects are graphs with multiple edges between any two vertices, and multiple loops at a vertex. In the view of this category, we are able to give, for the first time, an abstract categorial definition to graph-like objects as well as an abstract categorial definition of a strict morphism. This allows an investigation of graphlike objects in an abstract category. We also view our chosen categories as subcategories of the Category of Conceptual Graphs and investigate, for the first time, their categorial reflective and co-reflective properties.

We follow the notation of [1] for topics related to graphs and graph results. We follow the notation of [12] for topics related to categories and categorial results, with the exception that we use capital letters to stand for objects, and lower case letters to stand for morphisms inside our categories.

1.2 Graphs and Graph Homomorphisms

In our graphs, we want to start out with as great a generality as possible and add restrictions later. This means we want to allow graphs to have multiple edges between any two vertices and multiple loops at any vertex. We will define our graphs in the style of Bondy and Murty [1].

Definition 1.2.1. A conceptual graph G consists of
$G=\left\langle E(G), V(G) ; \partial_{G}: E(G) \rightarrow V(G) \times V(G), \iota_{G}: V(G) \hookrightarrow E(G)\right\rangle$ where $E(G)$ is the set
of edges of $G, V(G)$ is the set of vertices of $G, V(G) \times V(G)$ is the set of unordered pairs of vertices of G, ∂_{G} is the incidence map from the set of edges to the unordered pairs of vertices, ι_{G} is the inclusion map of the vertex set into the edge set, and for $\underline{\Delta}: V(G) \rightarrow V(G) \times V(G)$ the unordered diagonal map, $\partial_{G} \circ \iota_{G}=\underline{\Delta}$.

Figure 1.1: Incidence Mappings for Vertices

Henceforth, we will frequently abbreviate conceptual graph to graph. Furthermore, in our study here, we have no need to restrict our edge sets and vertex sets of our graphs to be finite sets.

We note the following. First, we naturally use the topologist's "boundary" symbol for incidence. Second, an unordered pair in $V(G) \times V(G)$ is denoted $u_{-} v$ or ($u_{-} v$), for vertices $u, v \in V(G)$. Thus the natural unordered diagonal map $\underline{\Delta}: V(G) \rightarrow V(G) \underline{\times}(G)$ is given by $\underline{\Delta}(v)=v_{-} v$ or $\left(v_{-} v\right)$. Finally, we have chosen to consider our vertex set to be a subset of the edge set (i.e. we consider the vertices to be "trivial edges"). Thus as an abstract data structure our graphs are a pair of sets: a set (of edges) and a distinguished subset (called vertices). This is done to make the description of morphisms more natural, i.e. functions between the over sets that takes the distinguished subset to the other distinguished subset. This is what topologists do in the Category of Topological Pairs of Spaces.

Often in graph theory the set of graphs is restricted to allow only one edge between any two vertices (see [8]), and at most one edge between a vertex and itself (a loop). We call these graphs simple graphs and define them in terms of conceptual graphs.

Figure 1.2: An Example of a (non-simple) Conceptual Graph

Definition 1.2.2. A simple graph G is a conceptual graph such that for all $u, v \in V(G)$ with $u \neq v$, there is at most one $e \in E(G)$ such that $\partial_{G}(e)=\left(u_{-} v\right)$, and for all $w \in V(G)$ there is at most one $f \in E(G) \backslash$ image $\left(\iota_{G}\right)$ such that $\partial_{G}(f)=\left(w_{-} w\right)$ (where (u_v) is the unordered pair of vertices u and v).

Thus, a graph is simple if and only if the incidence map is injective (i.e. one-to-one).

Figure 1.3: An Example of a Simple Graph

Another common restriction is to not allow loops at all (see [5]). This restriction is often required when discussing vertex coloring. We call these graphs loopless graphs.

Definition 1.2.3. A loopless graph G is a conceptual graph such that for all $u \in V(G)$ there is no $e \in E(G) \backslash \operatorname{image}\left(\iota_{G}\right)$ such that $\partial_{G}(e)=\left(u_{-} u\right)$.

Figure 1.4: An Example of a (non-simple) Loopless Graph

In [1] a graph does not have the inclusion map, ι, but such a map will be critical when defining a graph homomorphism. In this way, we can think of the vertex "part" of the graph as a special type of edge "part" of the graph. When we refer to an edge it will be our convention to refer to an element of $E(G) \backslash \operatorname{image}\left(\iota_{G}\right)$, and we do allow $G=\emptyset$, the empty graph, to be considered a graph. However, since ∂_{G} is required to be a function, if $V(G)=\emptyset$ then $E(G)=\emptyset$.

Almost every textbook on Graph Theory defines a graph isomorphism early in their discussion of Graph Theory (see [1] and [2]) but few define a graph homomorphism. Vertex colorings of a graph have led into research of graph homomorphisms (see [14]) and in 2004 Hell and Nešetřil published the first graph homomorphism textbook [8]. The following definition is a modified form of the definition presented in [8] to apply to conceptual graphs.

Definition 1.2.4. Let G and H be conceptual graphs. A strict graph homomorphism (or strict morphism) $f: G \rightarrow H$ is a function $f_{E}: E(G) \rightarrow E(H)$ such that $f_{V}: V(G) \rightarrow$ $V(H)$, where f_{V} is the restriction of f_{E} to $V(G)$, i.e. $f_{V}=\left.f_{E}\right|_{V(G)}$; incidence is preserved: $\partial_{H}\left(f_{E}(e)\right)=\left(f_{V}(x)_{-} f_{V}(y)\right)$ whenever $\partial_{G}(e)=\left(x _y\right)$, for some $x, y \in V(G)$; and, in addition the strict edge condition is satisfied: for all $e \in E(G) \backslash \operatorname{image}\left(\iota_{G}\right), f_{E}(e) \in E(H) \backslash \operatorname{image}\left(\iota_{H}\right)$.

The condition, $\partial_{H}\left(f_{E}(e)\right)=\left(f_{V}(x)_{-} f_{V}(y)\right)$ whenever $\partial_{G}(e)=\left(x_{-} y\right)$, assures that the incidence of the edges in G is preserved in H under f. Note that the above definition also requires that vertices be mapped to vertices and edges be mapped (strictly) to edges. However, sometimes it may be beneficial to allow edges to be mapped to vertices. Such a morphism would allow a graph to naturally map to the contraction or quotient graph obtained by the
contraction of an edge, but this could not be a strict morphism. As such, we call the above definition of a graph homomorphism a strict graph morphism and now define a more general graph (homo)morphism.

Definition 1.2.5. $f: G \rightarrow H$ is a graph (homo)morphism of conceptual graphs from G to H if f is a function $f_{E}: E(G) \rightarrow E(H)$ and $f_{V}=\left.f_{E}\right|_{V(G)}: V(G) \rightarrow V(H)$ that preserves incidence, i.e. $\partial_{H}\left(f_{E}(e)\right)=\left(f_{V}(x)_{-} f_{V}(y)\right)$ whenever $\partial_{G}(e)=\left(x _y\right)$, for all $e \in E(G)$ and some $x, y \in V(G)$.

Figure 1.5: The Graph Morphism

This definition allows a graph homomorphism to map an edge to a vertex as long as the incidence of the edges are preserved. As an edge, $e \in E(G)$, can be mapped to the edge set of the codomain graph, H, so that it is the image of a vertex, i.e. $f(e)=\iota_{H}(v)$ for some $v \in V(H)$.

Now that we have defined our graphs and graph homomorphisms, we are ready to discuss categories of graphs.

1.3 Categories of Graphs

We begin this section by defining a category axiomatically (as in [4]).
Definition 1.3.1. A category, \mathcal{C}, comprises
(1) a class of objects (e.g. dots \bullet or capital letters A, B, and C);
(2) a class of morphisms (e.g. arrows \rightarrow or lower case letters f, g, and h);
(3) operations assigning each morphism, f, an object $\operatorname{Dom}(f)$ (the "domain" of f) and an object $\operatorname{Cod}(f)$ (the "codomain" of f). If $A=\operatorname{Dom}(f)$ and $B=\operatorname{Cod}(f)$ we display this as f : $A \rightarrow B$ or $A \xrightarrow{f} B ;$
(4) an operation assigning each pair $\langle g, f\rangle$ of morphisms with $\operatorname{Dom}(g)=\operatorname{Cod}(f)$, a morphism $g \circ f$, the composite of f and g, with $\operatorname{Dom}(g \circ f)=\operatorname{Dom}(f)$ and $\operatorname{Cod}(g \circ f)=\operatorname{Cod}(g)$, i.e. $g \circ f: \operatorname{Dom}(f) \rightarrow \operatorname{Cod}(g)$, such that the associative law holds, i.e. given $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ then $(h \circ g) \circ f=h \circ(g \circ f)$;
(5) an assignment to each object B a morphism $1_{B}: B \rightarrow B$, called the local identity of B, such that the identity law holds, i.e. for all morphisms $f: A \rightarrow B$ and $g: B \rightarrow C, 1_{B} \circ f=f$ and $g \circ 1_{B}=g$.

The associative law asserts that the following diagram commutes:

Figure 1.6: The Associative Law

While the identity law asserts that the following diagram commutes:

Figure 1.7: The Identity Law

We now define an isomorphism in a category. We think of isomorphisms as morphisms that preserve the complete structure of an object.

Definition 1.3.2. A morphism $f: A \rightarrow B$ is an isomorphism if there exists a morphism $g: B \rightarrow A$ such that $f \circ g=1_{B}$ and $g \circ f=1_{A}$

We also think of isomorphisms as (two-sided) invertible morphisms. Now that a conceptual graph, graph morphism, and a category are defined, we can define the categories of graphs.

Definition 1.3.3. The Category of Conceptual Graphs, Grpfis, is a category where the objects are conceptual graphs and the morphisms are graph morphisms.

We now must show the axioms of a category are satisfied by this definition.
Proposition 1.3.4. Grpfs is a category.

Proof. Since our objects and morphisms are defined, and in our definition of a graph homomorphism, a domain and codomain are defined, Grpfs satisfies axioms (1),(2), and (3). Now we naturally define the compositions of graph homomorphisms and show that these compositions are graph homomorphisms. Let A, B, and C be objects in Grpfs, and let f and g be morphisms in Grpfs such that $A \xrightarrow{f} B \xrightarrow{g} C$. We then define $g \circ f$ to be a pair of compositions of set functions $g_{V} \circ f_{V}: V(A) \rightarrow V(C)$ and $g_{E} \circ f_{E}: E(A) \rightarrow E(C)$.

Now let $e \in E(A)$, then there are vertices $u, v \in V(A)$ such that $\partial_{A}(e)=\left(u_{-} v\right)$. Now consider $\partial_{C}\left(g_{E} \circ f_{E}(e)\right)$. Since f is a graph homomorphism, $\partial_{B}\left(f_{E}(e)\right)=\left(f_{V}(u)_{-} f_{V}(v)\right)$. Since g is a graph homomorphism, $\partial_{C}\left(g_{E} \circ f_{E}(e)\right)=\partial_{C}\left(g_{E}\left(f_{E}(e)\right)\right)=\left(g_{V}\left(f_{V}(u)\right)_{-} g_{V}\left(f_{V}(v)\right)\right)=$ $\left(\left(g_{V} \circ f_{V}(u)\right)_{-}\left(g_{V} \circ f_{V}(v)\right)\right)$. Hence incidence is preserved, and $g \circ f$ is a graph homomorphism.

Now let A, B, C, and D be objects in $\mathcal{G r p h s}$, and let f, g, and h be morphisms in $\mathcal{G r p h s}$ such that $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$. Consider $(h \circ g) \circ f$. Since composition of graph homomorphisms are graph homomorphisms, $(h \circ g) \circ f$ is a pair of set functions $\left(h_{V} \circ g_{V}\right) \circ f_{V}: V(A) \rightarrow V(D)$ and $\left(h_{E} \circ g_{E}\right) \circ f_{E}: E(A) \rightarrow E(D)$ that preserve incidence. Since set functions are associative, $\left(h_{V} \circ g_{V}\right) \circ f_{V}=h_{V} \circ\left(g_{V} \circ f_{V}\right)$ and $\left(h_{E} \circ g_{E}\right) \circ f_{E}=h_{E} \circ\left(g_{E} \circ f_{E}\right)$ and hence $(h \circ g) \circ f=h \circ(g \circ f)$. Therefore the associative law is satisfied and, as such, so is axiom (4).

We now show there are local identities and that the identity morphism satisfies the identity law. Let B be an object in Grpfis. Define $1_{B}: B \rightarrow B$ as the pair of set functions $1_{V(B)}: V(B) \rightarrow V(B)$ and $1_{E(B)}: E(B) \rightarrow E(B)$ where $1_{V(B)}$ is the identity function on the set $V(B)$ and $1_{E(B)}$ is the identity function on $E(B)$. Let $e \in E(B)$ such that $\partial_{B}(e)=\left(u _v\right)$ for some $u, v \in V(B)$, then $\partial_{B}\left(1_{E(B)}(e)\right)=\partial_{B}(e)=\left(u_{-} v\right)=\left(1_{V(B)}(u)_{-} 1_{V(B)}(v)\right)$. Thus 1_{B} preserves incidence and is a graph homomorphism.

Let A be an object in Grpfs with a morphism $f: A \rightarrow B$, and C be an object in $\mathcal{G r p f i s}$ with a morphism $g: B \rightarrow C$. Consider $1_{B} \circ f$. Since the composition $1_{B} \circ f$ is a pair of set functions $1_{V(B)} \circ f_{V}$ and $1_{E(B)} \circ f_{E}$, and since $1_{V(B)} \circ f_{V}=f_{V}$ and $1_{E(B)} \circ f_{E}=f_{E}, 1_{B} \circ f=f$. Now consider $g \circ 1_{B} . g \circ 1_{B}$ is a pair of set functions $g_{V} \circ 1_{V(B)}$ and $g_{E} \circ 1_{V(B)}$. Since $g_{V} \circ 1_{V(B)}=g_{V}$ and $g_{E} \circ 1_{E(B)}=g_{E}, g \circ 1_{B}=g$. Hence 1_{B} satisfies the identity law and therefore axiom (5).

Thus Grphis is a category.

The next graph category is the only undirected graph category in the literature. It is used in [16], [3], and unofficially in [8], although one of the authors, Pavol Hell, officially uses this category in [7].

Definition 1.3.5. The Category of Simple Graphs with Strict Morphisms, SiStGraphs, is a category where the objects are simple graphs and the morphisms are strict graph homomorphisms.

Proposition 1.3.6. SiStGrapfs is a category.

Proof. The proof follows similarly to the proof of Proposition 1.3.3., given that we prove that the composition of strict graph homomorphisms are strict graph homomorphisms. So let A, B, and C be graphs (not necessarily simple) with strict graph homomorphisms f and g where $A \xrightarrow{f} B \xrightarrow{g} C$. Since f and g are graph homomorphisms, by the proof of Proposition 1.3.3., $g \circ f$ is a graph homomorphism. Let $e \in E(A) \backslash \operatorname{image}\left(\iota_{A}\right)$, and consider $g \circ f(e)$. Since f is a strict graph homomorphism, $f(e) \in E(B) \backslash \operatorname{image}\left(\iota_{B}\right)$. Then since g is a strict graph homomorphism, $g \circ f(e)=g(f(e)) \in E(C) \backslash$ image $\left(\iota_{C}\right)$. Hence the composition of strict graph homomorphisms is a strict graph homomorphism.

Many Graph Theory textbooks, especially those aimed at undergraduates, restrict their graphs to be simple graphs without loops (see [2] and [5]). When the need for graphs with multiple edges or loops arise, they are often called multigraphs [2] or pseudographs [5]. This restriction on the type of graphs allowed in their discussion leads naturally to a graph category.

Definition 1.3.7. The Category of Simple Loopless Graphs with Strict Morphisms, SiLIStGrapfs, is the category where the objects are simple graphs without loops, and the morphisms are strict graph homomorphisms.

Proposition 1.3.8. SiLLStGraphs is a category.

Proof. Since SiLlStGrapfs is contained in SiStGrapfs as a restriction of the objects, the proof follows similarly to Proposition 1.3.5.

The usual justification of the restriction is that it simplifies the theory. Many times this
is the case and theorems related to both matchings and colorings of a graph require this restriction as a hypothesis, but we find taking this restriction as the definition of a graph leads to a impoverished category.

1.4 Categorial Constructions

We highlight some categorial constructions, providing definitions and basic results. This will not be a comprehensive list, but a comprehensive list of definitions for the categorial constructions used in this paper can be found in Appendix A. Since much of the literature related to the categories of graphs is focused on products (see [16] and [6]), we start by defining products.

Definition 1.4.1. Products exist in a category \mathcal{C}, if for all objects A and B in \mathcal{C}, there exists an object $A \times B$ with morphisms $\pi_{A}: A \times B \rightarrow A$ and $\pi_{B}: A \times B \rightarrow B$ in C such that for all objects X with morphisms $f_{A}: X \rightarrow A$ and $f_{B}: X \rightarrow B$, there exists a unique morphism $\bar{f}: X \rightarrow A \times B$ such that $f_{A}=\pi_{A} \circ \bar{f}$ and $f_{B}=\pi_{B} \circ \bar{f}$.

This definition is expressed as the following commuting diagram.

Figure 1.8: The Product

In the Category of Sets and Functions, Sets, the product is the Cartesian product (for a proof
see [12]). The form of the definition of the product, $\forall \ldots \exists \ldots$ such that $\forall \ldots \exists!\ldots$, is a general form for categorial constructions known as a universal mapping property. Universal mapping properties define an object universally such that every other object with the same properties "factors through" the universal object with a unique morphism. Such a definition gives rise to a generic proof that the "universally constructed" object is unique up to isomorphism in the category.

Proposition 1.4.2. Given objects A and B in a category with products, then the product $A \times B$ is unique up to isomorphism.

Proof. Suppose that for two objects A and B in the category, there are two products, P with morphisms $\pi_{A}: P \rightarrow A$ and $\pi_{B}: P \rightarrow B$, and P^{\prime} with morphisms $\pi_{A}^{\prime}: P^{\prime} \rightarrow A$ and $\pi_{B}^{\prime}: P^{\prime} \rightarrow B$. Then by the definition of products there exists two unique morphisms $f: P \rightarrow P^{\prime}$ and $f^{\prime}: P^{\prime} \rightarrow P$ such that the following diagram commutes.

Hence there is a unique morphism $f^{\prime} \circ f: P \rightarrow P$ such that $\pi_{A} \circ\left(f^{\prime} \circ f\right)=\pi_{A}$ and $\pi_{B} \circ\left(f^{\prime} \circ f\right)=\pi_{B}$. However, the identity morphism 1_{P} satisfies those two equations as well. Since the morphism is unique, $f^{\prime} \circ f=1_{P}$.

A similar argument give us $f \circ f^{\prime}=1_{P^{\prime}}$. Hence f is an isomorphism and $P \cong P^{\prime}$.

We now consider the dual construction of the product. A dual construction in a category is obtained by "reversing the arrows" of a categorial construction. That is, the morphisms will be pointing the opposite way. Though in practice, when a diagram of the dual is drawn, the arrows point the same direction (i.e. left to right and up to down) and the objects are
interchanged. The dual of the product is called the coproduct.
Definition 1.4.3. Coproducts exist in a category \mathcal{C}, if for all objects A and B in \mathcal{C}, there exists an object $A+B$ with morphisms $i_{A}: A \rightarrow A+B$ and $i_{B}: B \rightarrow A+B$ such that for all objects X with morphisms $g_{A}: A \rightarrow X$ and $g_{B}: B \rightarrow X$, there exists a unique morphism $\bar{g}: A+B \rightarrow X$.

We now give a similar diagram that represents the coproduct.

Figure 1.9: The Coproduct

In Sets the disjoint union of two sets is the coproduct (for a proof see [12]). Note that the coproduct is also defined in terms of a universal mapping property, thus a similar proof to Proposition 1.4.2. yields the following.

Proposition 1.4.4. Given objects A and B in a category with coproducts, then the coproduct $A+B$ is unique up to isomorphism.

A more general categorial construction is that of limits and colimits. We define these constructions in the way of [4]. We will first define a diagram in a category.

Definition 1.4.5. In a category \mathcal{C} a diagram \mathcal{D} of \mathcal{C} is a collection of objects D_{i}, D_{j}, \ldots in C along with a collection of morphisms $f: D_{i} \rightarrow D_{j}$ between certain objects in the diagram.

An example of a diagram of two objects with two morphisms is $A \rightrightarrows B$. Now that we have the definition of a diagram, we can define a cone for a diagram.

Definition 1.4.6. A cone for a diagram \mathcal{D} in a category \mathcal{C} consists of an object C in \mathcal{C} together with a morphism $f_{i}: C \rightarrow D_{i}$ for each object in \mathcal{D} such that for every morphism $g: D_{i} \rightarrow D_{j}$ in $\mathcal{D}, g \circ f_{i}=f_{j}$.

The definition of a cone asserts that the following diagram commutes for every morphism g in a diagram \mathcal{D}.

Figure 1.10: The Cone for a Diagram

For convenience, we often represent a cone for \mathcal{D} by $\left\{f_{i}: C \rightarrow D_{i}\right\}$. We can now define a limit in terms of a cone for a diagram.

Definition 1.4.7. A limit of a diagram \mathcal{D} is a ("universal") cone for \mathcal{D}, $\left\{f_{i}: \underset{L}{L} \rightarrow D_{i}\right\}$, such that for any other cone for $\mathcal{D},\left\{f_{i}^{\prime}: C^{\prime} \rightarrow D_{i}\right\}$, there exists a unique morphism $\bar{f}: C^{\prime} \rightarrow \underline{L}$ such that $f_{i}^{\prime}=f_{i} \circ \bar{f}$ for all objects D_{i} in \mathcal{D}.

The definition states that the following diagram commutes for all objects D_{i} of \mathcal{D}.

Figure 1.11: The Limit of a Diagram

The product is a limit of the diagram just consisting of two objects A and B with no morphisms between them. Many categorial constructions can be defined in terms of limits. To define the dual of the limit, the colimit, we first must define the co-cone.

Definition 1.4.8. The co-cone for a diagram \mathcal{D}, $\left\{f_{i}: D_{i} \rightarrow C\right\}$, is an object C with morphisms $f_{i}: D_{i} \rightarrow C$ for every object D_{i} in \mathcal{D}, such that for every morphism $g: D_{i} \rightarrow D_{j}$ in $\mathcal{D}, f_{i}=f_{j} \circ g$.

Similar to the definition of a cone, the definition of a co-cone states that the following digram commutes for all objects D_{i} of \mathcal{D}.

Figure 1.12: The Co-cone for a Diagram

The colimit is now defined in terms of the co-cone for a diagram.

Definition 1.4.9. A colimit of a diagram \mathcal{D} is a ("universal") co-cone for \mathcal{D}, $\left\{f_{i}: D_{i} \rightarrow \underset{L}{L}\right\}$, such that for any other co-cone for $\mathcal{D},\left\{f_{i}^{\prime}: D_{i} \rightarrow C^{\prime}\right\}$, these exists a unique morphism $\bar{f}: \underset{\sim}{L} \rightarrow C^{\prime}$ such that $f_{i}^{\prime}=\bar{f} \circ f_{i}$ for all objects D_{i} in \mathcal{D}.

The definition asserts that the following diagram commutes for all objects D_{i} of \mathcal{D}.

Figure 1.13: The Colimit of a Diagram

The coproduct is a colimit of the diagram just consisting of two objects A and B with no morphisms between them. Many co-constructions can be phrased in terms of colimits. We now turn our attention to special morphisms and concrete categories. We define a concrete category via a faithful functor as in [12].

1.5 Functors, Concrete Categories, and Special Morphisms

Definition 1.5.1. A functor $F: \mathcal{C} \sim \mathcal{B}$ is a morphism of categories such that F assigns each object C of \mathcal{C} an object $F(C)$ in \mathcal{B} and for each morphism $g: C \rightarrow C^{\prime}$ a morphism $F(g): F(C) \rightarrow F\left(C^{\prime}\right)$ such that $F\left(1_{C}\right)=1_{F(C)}$ and for each composition $g \circ h$ in $\mathcal{C}, F(g \circ h)=$ $F(g) \circ F(h)$.

Functors constitute a large part of the study of Category Theory. A proposition that follows straight from the definition of functors is that functors preserve isomorphisms. In Chapter 5, we will study functors between the categories of graphs.

Definition 1.5.2. A functor $T: \mathcal{C} \sim \mathcal{B}$ is faithful if for every pair of objects C and C^{\prime} in \mathcal{C} and for every pair of parallel morphisms $f_{1}, f_{2}: C \rightarrow C^{\prime}$ of $\mathcal{C}, T\left(f_{1}\right)=T\left(f_{2}\right)$ implies $f_{1}=f_{2}$.

Definition 1.5.3. A concrete category is a pair $\langle\mathcal{C}, U\rangle$ where \mathcal{C} is a category and U is a faithful functor $U: \mathcal{C} \sim$ Sets.

Since U is a faithful functor, we can identify each morphism f in \mathcal{C} with a function $U(f)$. So we can think of objects C of a concrete category as having an underlying set $U(C)$ with added structure. U is often called the underlying set functor. Often $|-|$ is used for the underlying set functor and we will later use this notation, especially for the underlying vertex set functor.

Often times whenever functions or homomorphisms are discussed in any theory of mathematics, discourse about surjective functions and injective functions are not far behind. Since the definition of both surjective functions and injective functions (or homomorphisms) rely upon an underlying set, they can only be discussed in terms of concrete categories. A more general property surjective functions satisfy gives rise to the notion: epimorphism. We define an epimorphism following the style of [12].

Definition 1.5.4. A morphism $h: A \rightarrow B$ in a category \mathcal{C} is an epimorphism if for any two morphisms $g_{1}, g_{2}: B \rightarrow C$ the equality $g_{1} \circ h=g_{2} \circ h$ implies $g_{1}=g_{2}$.

Epimorphisms are right cancellable. In Sets the epimorphisms are precisely the surjective functions. As we will prove, surjections are always epimorphisms, but the converse need not necessarily be true. For example, $j: K_{2}^{c} \hookrightarrow K_{2}$, the inclusion of the two vertices into the complete graph on two vertices, is injective and a monomorphism in all the categories of graphs, but j is not an epimorphism. Consider the following:

where α takes K_{2} to the left (a) and β takes K_{2} to the right (b), so $\alpha \neq \beta$ even though $\alpha \circ j=\beta \circ j$. However, j_{V} is surjective. Also, in the category of $\operatorname{SiLIStGrapfs}$ this j is an epimorphism!

Proposition 1.5.5. In concrete categories, surjective morphisms are epimorphisms.

Proof. Let A and B be objects in our concrete category with a surjective morphism $f: A \rightarrow B$. Let $g_{1}, g_{2}: B \rightarrow C$ be morphisms in our concrete category such that $g_{1} \circ f=g_{2} \circ f$, for some object C. Consider $U\left(g_{1} \circ f\right)$ where U is the underlying set functor associated with our concrete category. Since U is a functor and $g_{1} \circ f=g_{2} \circ f, U\left(g_{1} \circ f\right)=U\left(g_{2} \circ f\right)$ and $U\left(g_{1}\right) \circ U(f)=U\left(g_{1} \circ f\right)=U\left(g_{2} \circ f\right)=U\left(g_{2}\right) \circ U(f)$.

Let $x \in U(B)$. Since $U(f)$ is an surjection, there is a $y \in U(A)$ such that $U(f)(a)=$ x. Consider $U\left(g_{1}\right)(x)$. $U\left(g_{1}\right)(x)=U\left(g_{1}\right)(U(f)(a))=U\left(g_{2}\right)(U(f)(a))=U\left(g_{2}\right)(x)$. Hence $U\left(g_{1}\right)=U\left(g_{2}\right)$, and since U is a faithful functor, $g_{1}=g_{2}$. Hence f is an epimorphism.

As in the example above (for $\operatorname{SiLLStGrapfis}$), we give a new result that the vertex function of an epimorphism is surjective.

Proposition 1.5.6. (i) In Grpfs, if $f: A \rightarrow B$ is an epimorphism, then the associated vertex function $f_{V}: V(A) \rightarrow V(B)$ is surjective.
(ii) In SiLlStGraphs and SiStGraphs, $f: A \rightarrow B$ is an epimorphism if and only if the vertex function $f_{V}: V(A) \rightarrow V(B)$ is surjective.

Proof. Part (i): Suppose f_{V} is not surjective. Then there exists $v \in V(B) \backslash \operatorname{image}\left(f_{V}\right)$. Construct the graph C by appending a vertex v^{\prime} to B such that v^{\prime} is adjacent to every vertex v is adjacent to. By construction B is a subgraph of C.
Since $v \in V(B) \backslash \operatorname{image}\left(f_{V}\right)$, no edge incident to v is in the image of f_{E}. Now consider $i: B \rightarrow C$ the inclusion morphism and $g: B \rightarrow C$ defined by $g(u)=i(u)$ for all $u \in V(B) \backslash\{v\}$, $g(v)=v^{\prime}, g(e)=i(e)$ for all edges e not incident to v, and for edge f incident to v, set $g(f)$ to be the corresponding edge incident to v^{\prime}. Then $i \circ f=g \circ f$ but $i \neq g$, a contradiction to f being an epimorphism. Hence epimorphisms in Grpfis have surjective vertex set functions. Part (ii): (\Rightarrow) The same proof in part (i) applies.
(\Leftarrow) Suppose $f: A \rightarrow B$ is a morphism and f_{V} is surjective. We will show f if an epimorphism, i.e. for morphisms $h, k: B \rightarrow C$ such that $h \circ f=k \circ f$, we will show $h=k$. Since f_{V} is surjective and $h_{V} \circ f_{V}=k_{V} \circ f_{V}, h_{V}=k_{V}$. So if $h \neq k$ there exists a (nontrivial) edge $e \in B$ such that $h(e) \neq k(e)$, even though $h_{V}=k_{V}$. There are three possibilities for $h(e)$ and $k(e)$, either as different vertices, loops, or edges. But in both SiLIStGraphs and SiStGraphs this would contradict C being simple, or h and k being strict morphisms.

Just as there are epimorphisms which relate to surjections, there are monomorphisms which relate to injections. We will define a monomorphism following the style of [12].

Definition 1.5.7. A morphism $h: B \mapsto C$ in a category C is a monomorphism if for any two morphisms $f_{1}, f_{2}: A \rightarrow B$ the equality $h \circ f_{1}=h \circ f_{2}$ implies $f_{1}=f_{2}$.

Monomorphisms are left cancellable. In Sets the monomorphisms are precisely the injective functions. Similar to epimorphisms, injections are always monomorphisms, but the converse need not necessarily be true.

Proposition 1.5.8. In concrete categories, injective morphisms are monomorphisms.

Proof. Let B and C be objects in our concrete category with an injective morphism $m: B \rightarrow C$. Let $g_{1}, g_{2}: A \rightarrow B$ be morphisms in our concrete category such that $m \circ g_{1}=$ $m \circ g_{2}$, for some object A. Consider $U\left(m \circ g_{1}\right)$ where U is the underlying set functor associated with our concrete category. Since U is a functor and $m \circ g_{1}=m \circ g_{2}, U\left(m \circ g_{1}\right)=U\left(m \circ g_{2}\right)$ and $U(m) \circ U\left(g_{1}\right)=U\left(m \circ g_{1}\right)=U\left(m \circ g_{2}\right)=U(m) \circ U\left(g_{2}\right)$.

Let $x \in A$. Then $U(m) \circ U\left(g_{1}\right)(x)=U(m) \circ U\left(g_{2}\right)(x)$. Since $U(m)$ is an injection $U\left(g_{1}\right)(x)=$ $U\left(g_{2}\right)(x)$. Hence since U is faithful $g_{1}=g_{2}$, and m is a monomorphism.

We conclude this chapter by mentioning that while isomorphisms are epimorphisms and monomorphisms, the converse in not necessarily true in an abstract category. We shall see more explicit examples later (e.g. section 2.2).

Chapter 2

Categorial Comparisons of Simple Loopless Graphs with Strict

Morphisms and Simple Graphs with

Strict Morphisms

2.1 Lack of Topos-like Properties in SiLfStGrapfs

This chapter provides a new categorial perspective with an emphasis on the morphisms of two familiar categories of graphs. We first investigate the topos-like properties of SiLIStGrapfs. For this section, many of the existence constructions follow very closely to those of [3] and [8] for SiStGrapfs as we will see in section 3 of this chapter, but the results pertaining to the lack of categorial structure are new. It is possible that SiLIStGrapfis has been investigated before, but no results pertaining to it are in the literature.

In [4], an elementary topos is a category that has all finite limits, all finite colimits, exponen-
tiation and evaluation, as well as a subobject classifier and all of these are defined by universal mapping properties using only elementary (first order) logic sentences. We investigate these properties in SiL[StGrapfs starting with finite limits. Mac Lane [12] proves on page 113 that if a category has all products, all equalizers, and a terminal object, then that category has all finite limits.

Theorem 2.1.1. In SiLIStGraphs
(i) All finite products exist.
(ii) All equalizers exist.
(iii) A terminal object does not exist.

Before we prove this theorem, we will define the classical constructions for products (as in $[8])$ and for equalizers (as in [3]); and then in the proof of the theorem, we will show these classical definitions will satisfy the categorial universal mapping definitions

Definition 2.1.2. Given two graphs G and H in SiLIStGrapfs, the classical product, $G \times H$, is a graph with the vertex set $V(G) \times V(H)$ in which there is an edge e $\in E(G \times H) \backslash i m a g e\left(\iota_{G \times H}\right)$ with $\partial_{G \times H}(e)=\left((u, v)_{-}\left(u^{\prime}, v^{\prime}\right)\right)$ whenever there exists $f \in E(G) \backslash \operatorname{image}\left(\iota_{G}\right)$ with $\partial_{G}(f)=$ $\left(u_{-} u^{\prime}\right)$ and $g \in E(H) \backslash$ image $\left(\iota_{H}\right)$ with $\partial_{H}(g)=\left(v_{-} v^{\prime}\right)$. The projection morphisms of $G \times H$, $\pi_{G}: G \times H \rightarrow G$ and $\pi_{H}: G \times H \rightarrow H$, are defined by the set maps $\pi_{V(G)}: V(G \times H) \rightarrow V(G)$ where $\pi_{V(G)}((u, v))=u, \pi_{V(H)}: V(G \times H) \rightarrow V(H)$ where $\pi_{V(G)}((u, v))=v$ for all $(u, v) \in$ $V(G \times H), \pi_{E(G)}: E(G \times H) \rightarrow E(G)$ where $\pi_{E(G)}((e, f))=e$, and $\pi_{E(H)}: E(G \times H) \rightarrow E(H)$ where $\pi_{E(G)}((e, f))=f$ for all $(e, f) \in E(G \times H)$.

Definition 2.1.3. Let G and H be two graphs in SiLlStGrapfis with morphisms $f, g: G \rightarrow H$. The classical equalizer Eq with inclusion morphism eq : Eq $\hookrightarrow G$ is the vertex induced subgraph of G on the vertex set $V(E q)=\{v \in V(G) \mid f(v)=g(v)\}$.

Figure 2.1: Example of $K_{2} \times K_{2}$ in SiLLStGraphs

Proof. Part (i): Let G and H be two graphs in SiLLStGrapfs. Let $G \times H$ be defined as above. We first show that π_{G} and π_{H} are indeed strict graph homomorphisms.

Let $(e, f) \in E(G \times H)$ with $\partial_{G \times H}((e, f))=\left((u, v)_{-}\left(u^{\prime}, v^{\prime}\right)\right)$ for some $(u, v),\left(u^{\prime}, v^{\prime}\right) \in V(G \times$ $H)$. Consider $\partial_{G}\left(\pi_{G}((e, f))\right)$. By the definition of $G \times H, \partial_{G}\left(\pi_{G}((e, f))\right)=\partial_{G}(e)=\left(u _u^{\prime}\right)$. Then since $\left(u_{-} u^{\prime}\right)=\left(\pi_{G}(u, v)_{-} \pi_{G}\left(u^{\prime}, v^{\prime}\right)\right)$, incidence is preserved and π_{G} is a graph homomorphism. Clearly by the definition of $G \times H, \pi_{G}$ will send edges to edges and vertices to vertices, and hence π_{G} is a strict graph homomorphism. The proof for π_{H} follows similarly.

Now let X be a graph in SiLLStGraphs with morphisms $f_{G}: X \rightarrow G$ and $f_{H}: X \rightarrow H$. We need to show there exists a unique morphism $\bar{f}: X \rightarrow G \times H$ such that $\pi_{G} \circ \bar{f}=f_{G}$ and $\pi_{H} \circ \bar{f}=f_{H}$. Let $v \in V(X)$, and suppose $f_{G}(v)=v_{G}$ and $f_{H}(v)=v_{H}$. Then, since graph homomorphisms must send vertices to vertices, $\bar{f}(v)=\left(v_{G}, v_{H}\right)$ is the only possibility for such an \bar{f} such that $\pi_{G} \circ \bar{f}=f_{G}$ and $\pi_{H} \circ \bar{f}=f_{H}$.

Let $e \in E(X) \backslash \operatorname{image}\left(\iota_{X}\right)$ with $\partial_{X}(e)=\left(v_{1-} v_{2}\right), f_{G}(e)=a$ with $\partial_{G}(a)=\left(a_{1-} a_{2}\right)$, and $f_{H}(e)=b$ with $\partial_{H}(b)=\left(b_{1} b_{2}\right)$. If $f_{G}\left(v_{1}\right)=a_{1}$ and $f_{H}\left(v_{1}\right)=b_{1}$ then $f_{G}\left(v_{2}\right)=a_{2}$ and $f_{H}\left(v_{2}\right)=b_{2}$. Then by the definition of $G \times H$, there is an edge $c \in E(G \times H) \backslash \operatorname{image}\left(\iota_{G \times H}\right)$ with $\partial_{G \times H}(c)=\left(\left(a_{1}, b_{1}\right)_{-}\left(a_{2}, b_{2}\right)\right)$. Then for $\pi_{G} \circ \bar{f}=f_{G}$ and $\pi_{H} \circ \bar{f}=f_{H}$ to hold, $\bar{f}(e)=c$ and is uniquely determined. Similarly, if $f_{G}\left(v_{1}\right)=a_{1}$ and $f_{H}\left(v_{1}\right)=b_{2}$, or $f_{G}\left(v_{1}\right)=a_{2}$ and $f_{H}\left(v_{1}\right)=b_{1}$, there are edges $c_{1}, c_{2} \in E(G \times H)$ such that $\partial_{G \times H}\left(c_{1}\right)=\left(\left(a_{1}, b_{2}\right)_{-}\left(a_{2}, b_{1}\right)\right)$, or $\partial_{G \times H}\left(c_{2}\right)=\left(\left(a_{2}, b_{1}\right)_{-}\left(a_{1}, b_{2}\right)\right)$, and $\bar{f}(e)=c_{1}$ or $\bar{f}(e)=c_{2}$ respectively. Hence such an \bar{f} is uniquely determined by f_{G} and f_{H} and is clearly a morphism.

Part (ii): Let G and H be graphs in SiLIStGraphs with morphisms $f, g: G \rightarrow H$. Let
the equalizer, $E q$ and $e q: E q \rightarrow G$, be defined as above. Clearly by the definition of $E q$, $f \circ e q=g \circ e q$. Now let X be in SiLIStGrapfis with morphism $h: X \rightarrow G$ such that $f \circ h=g \circ h$. We must show there is a unique morphism \bar{h} such that $e q \circ \bar{h}=h$.

Let $v \in V(X)$. Since $f \circ h=g \circ h, h(v) \in\{u \in V(G) \mid f(u)=g(u)\}$. Then $h(v)$ is in the image of $V(E q)$ under $e q$, and hence the image of the $V(X)$ under h is contained in the image of $V(E q)$ under eq. Since inclusion maps are injections, there is a unique $w \in V(G)$ such that $e q(w)=h(v)$. Then since $e q \circ \bar{h}=h, \bar{h}(v)=w$ is uniquely determined. Since the image of $V(X)$ under h is contained in the image of $V(E q)$ under eq, as a vertex set map, \bar{h} is well defined.

Now let $e \in E(X)$ with $\partial_{X}(e)=\left(v_{1}-v_{2}\right)$ for some $v_{1}, v_{2} \in V(X)$. Since $f \circ h=g \circ h$, $h(e) \in\left\{a \in E(G) \mid f(a)=g(a)\right.$, and if $\partial_{G}(a)=\left(u_{1 _} u_{2}\right), f\left(u_{1}\right)=g\left(u_{1}\right)$ and $\left.f\left(u_{2}\right)=g\left(u_{2}\right)\right\}$, otherwise $f\left(h\left(v_{1}\right)\right) \neq g\left(h\left(v_{1}\right)\right)$ and $f\left(h\left(v_{2}\right)\right) \neq g\left(h\left(v_{2}\right)\right)$, and hence $f \circ h \neq g \circ h$.

Now note that $\left\{a \in E(G) \mid f(a)=g(a)\right.$ and if $\partial_{G}(a)=\left(u_{1-} u_{2}\right), f\left(u_{1}\right)=g\left(u_{1}\right)$ and $\left.f\left(u_{2}\right)=g\left(u_{2}\right)\right\}$ is precisely $E(E q)$. So the image of $E(X)$ under h is contained in the image of $E(E q)$ under eq. Then since $e q$ is an injection, there is a unique $d \in E(E q)$ such that $e q(d)=h(e)$. Then since $e q \circ \bar{h}=h, \bar{h}(e)=d$ is uniquely determined. Since the image of $E(X)$ under h is contained in the image of $E(E q)$ under $e q$, as an edge set map, \bar{h} is well defined. It is clear from the definition of \bar{h} that incidence is preserved and edges map to edges. Thus \bar{h} exists is a uniquely determined by h.

Part (iii): We show no terminal object exists by examining the two cases for a graph G in $\operatorname{SiLIStGrapfs}$. Either G has no edges, $E(G) \backslash \operatorname{image}\left(\iota_{G}\right)=\emptyset$, or G has an edge, there exists an edge $e \in E(G) \backslash \operatorname{image}\left(\iota_{G}\right)$. If $E(G) \backslash \operatorname{image}\left(\iota_{G}\right)=\emptyset$, then since strict graph homomorphisms must send edges to edges, a graph that does contain an edge does not admit a strict graph homomorphism to G. Hence, G cannot be a terminal object.

If there is an edge $e \in E(G) \backslash \operatorname{image}\left(\iota_{G}\right)$, since the graphs in SiLIStGraphs are loopless, $\partial_{G}(e)=\left(u _v\right)$ for some $u, v \in V(G)$ where u and v are distinct. The consider the morphisms from K_{1}, the graph containing only a single vertex, w, to G. Since u and v are distinct, there are two distinct morphisms, $f, g: K_{1} \rightarrow G$ defined by $f(w)=u$ and $g(w)=v$.

Hence G is not a terminal object since not every graph admits a unique morphism to G.

In SiLIStGrapfs, we notice that the product $K_{2} \times K_{2}$ is isomorphic to the coproduct $K_{2}+$ K_{2}. Also in SiLIStGraphs $K_{1} \times K_{2}$ is isomorphic to $K_{1}+K_{1}$. Furthermore, the canonical projection morphism to each factor of the product in SiLIStGraphs is an epimorphism because the restriction to the vertex map is surjective (see Proposition 1.5.6).

We now investigate the dual; If all finite coproducts exist, all coequalizers exist, and an initial object exists, then the category has all finite colimits.

Theorem 2.1.4. In SiLIStGraphs

(i) All finite coproducts exist.
(ii) Coequalizers do not exist.
(iii) An initial object exists and is the empty graph, \emptyset.

Before we begin the proof, we will define the classical coproduct and use it to satisfy the universal mapping definition.

Definition 2.1.5. Let G and H be graphs in SiLIStGrapfs. The classical coproduct of G and $H, G+H$, is the disjoint union of graphs G and H with $V(G+H)=V(G) \cup ் V(H)$ and $E(G+H)=E(G) \dot{\cup} E(H)$, natural inclusion maps, $i_{G}: G \hookrightarrow G+H$ and $i_{H}: H \hookrightarrow G+H$, and ∂_{G+H} defined by $\partial_{G+H}(e)=\partial_{G}(a)$ if $e=i_{G}(a)$ or $\partial_{G+H}(e)=\partial_{H}(a)$ if $e=i_{H}(a)$.

Proof. Part (i): We first note that the classical coproduct defined above is indeed a conceptual graph for since $V(G) \hookrightarrow E(G)$ and $V(H) \hookrightarrow E(H)$, the natural inclusion map $\iota_{G+H}: V(G+H) \hookrightarrow E(G+H)$ exists, which was the missing part in the conceptual graph definition of coproduct.

Now let X be in SiLIStGrapfs with morphisms $f_{G}: G \rightarrow X$ and $f_{H}: H \rightarrow X$. We must show there exists a unique morphism $\bar{f}: G+H \rightarrow X$ such that $f_{G}=\bar{f} \circ i_{G}$ and $f_{H}=\bar{f} \circ i_{H}$. Let $v \in V(G+H)$. If $v=i_{G}(a)$ for some $a \in V(G)$ then for $\bar{f} \circ i_{G}(a)=f_{G}(a)$ to hold, $\bar{f}(v)=f_{G}(a)$
is uniquely determined. Similarly if $v=i_{H}(b)$ for some $b \in V(H)$ then for $\bar{f} \circ i_{H}(b)=f_{H}(b)$ to hold, $\bar{f}(v)=f_{H}(b)$ is uniquely determined. Since $V(G+H)$ is the disjoint union of $V(G)$ and $V(H), v$ has a preimage in either $V(G)$ or $V(H)$ exclusively. Hence, as a vertex set map, \bar{f} is well defined.

Let $e \in E(G+H)$, if $e=i_{G}(a)$ for some $a \in e(G)$ then for $\bar{f} \circ i_{G}(a)=f_{G}(a)$ to hold, $\bar{f}(e)=f_{G}(a)$ is uniquely determined. Similarly if $e=i_{H}(b)$ for some $b \in E(H)$ then for $\bar{f} \circ i_{H}(b)=f_{H}(b)$ to hold, $\bar{f}(e)=f_{H}(b)$ is uniquely determined. Since $E(G+H)$ is the disjoint union of $E(G)$ and $E(H)$, e has a preimage in either $E(G)$ or $E(H)$ exclusively. Hence, as an edge set map, \bar{f} is well defined. Since any edge in $G+H$ is either in $E(G)$ or $E(H)$ it is incidence to vertices only in $V(G)$ or $V(H)$ respectively. Then since f_{A} and f_{B} are strict graph homomorphisms, \bar{f} is a strict graph homomorphism, and is uniquely determined by f_{A} and f_{B}.

Part (ii): Assume coequalizers exist. Let $A=B=K_{2}$, the complete graph on 2 vertices a and b with edge e, and consider the following two morphisms $i d, t w: A \rightarrow B$ where $i d$ is the identity morphism and $t w$ is the morphism where $t w(a)=b, t w(b)=a$, and $t w(e)=e$. The coequalizer, Coeq with morphism coeq : B \rightarrow Coeq such that coeq $\circ i d=c o e q \circ t w$, exists by hypothesis. Since $\operatorname{coeq} \circ i d=\operatorname{coeq} \circ t w$ and $i d(e)=t w(e)=e, \operatorname{coeq}(i d(e))=\operatorname{coeq}(e)=$ $\operatorname{coeq}(t w(e))$, and since morphisms must send edges to edges, coeq(e) is an edge of Coeq.

Let $\partial_{\text {Coeq }}(\operatorname{coeq}(e))=\left(u_{-} v\right)$ for some $u, v \in V($ Coeq $)$. Then since morphisms preserve incidence, $\operatorname{coeq}(i d(a))=\operatorname{coeq}(a)$ is incident to $\operatorname{coeq}(e)$, and $\operatorname{coeq}(i d(b))=\operatorname{coeq}(b)$ is incident to $\operatorname{coeq}(e)$. Hence $\operatorname{coeq}(a)=u$ or $\operatorname{coeq}(a)=v$.

Without loss of generality, let $\operatorname{coeq}(a)=u$. Then $\operatorname{coeq}(b)=v$, and since $\operatorname{coeq}(i d(a))=$ $\operatorname{coeq}(\operatorname{tw}(a)), u=\operatorname{coeq}(a)=\operatorname{coeq}(b)=v$. Hence e is a loop of Coeq, which contradicts our hypothesis that Coeq was in SiLIStGrapfs. Thus coequalizers do not exist in SiLIStGrapfs.

Part (iii): A terminal object must have a unique morphism to every object in the category. Clearly \emptyset has a unique morphism, namely inclusion, to every graph in SiLIStGrapfs.

It is evident that from part (ii), since we do not allow loops in our graphs in SiLIStGraphs
we cannot use equivalence relations to form quotient graphs. But we will see that allowing loops is enough to certify the existence of coequalizers in SiStGrapfs. We now investigate the existence of exponentiation and evaluation and a subobject classifier in SiLIStGrapfs.

Before we do so, we need an adjoint relationship between the underlying vertex set functor
 f, and the free graph functor $F(-):$ Sets \sim SiLlStGrapfis, namely $F(-)$ is left adjoint to
 where $F(X)$ is the empty edge set graph with vertex set $X, E(F(X)) \backslash \operatorname{image}\left(\iota_{F(X)}\right)=\emptyset$, and $F(g)$ is the strict graph homomorphism where $F(g)_{V}=g$ and $F(g)_{E}=g$ satisfy the universal mapping property of free objects.

Lemma 2.1.6. The empty edge graphs, K_{n}^{c} for $n \geq 0$, are the free objects in SiLIStGrapfs; furthermore the free graph functor F is left adjoint to the underlying vertex set functor $|-|_{V}$, $F \dashv|-|_{V}$, i.e. $\operatorname{hom}_{\text {SiLIStGGraphs }}(F(X), G) \cong \operatorname{hom}_{\text {Sets }}\left(X,|G|_{V}\right)$.

Proof. Let X be a set in Sets with n elements, and let $F(X)=K_{n}^{c}$ where $V(F(X))=X$. Now let G be a graph in SiLIStGrapfs such that there is a function $g: X \rightarrow|G|_{V}$. We must show there is a unique graph morphism $\bar{g}: F(X) \rightarrow G$ such that $g=|\bar{g}|_{V} \circ u$ for some $u: X \rightarrow|F(X)|_{V}$. Note that $|F(X)|_{V}=V(F(X))=X$. Hence define the function $u: X \rightarrow|F(X)|_{V}$ as $u=1_{X}$.

Let \bar{g} be the pair of function maps $\bar{g}_{V}=g$ and $\bar{g}_{E}=g$. Since there are no edges in $F(X)$, incidence is clearly preserved, edges are sent to edges vacuously, and \bar{g} is a strict graph homomorphism. Then since $g=|\bar{g}|_{V} \circ u$ must hold, $u=1_{X}$, and $|\bar{g}|_{V}=\bar{g}_{V}=g, \bar{g}$ is uniquely determined by g.

Robert Goldblatt proves [4, p. 441] that satisfying the universal mapping property for a free object in any concrete category provides the adjoint relationship: $F-1|-|$. Also, in general, if products exist and exponentiation with evaluation exists, then $(-) \times Y \dashv(-)^{Y}$; we will consider this situation in our graph category SiLIStGraphs.

Proposition 2.1.7. In SiLIStGraphs

(i) Exponentiation with evaluation does not exist.
(ii) A subobject classifier does not exist.

Proof. Part (i): Assume exponentiation with evaluation exists. We will first show that given this hypothesis, there is the adjoint bijection between $\operatorname{hom}_{\text {SiLIStGraphs }}(X \times Y, Z)$ and $\operatorname{hom}_{\text {SiLIStgrapfss }}\left(X, Z^{Y}\right)$ for all graphs X, Y and Z. We prove this via [4] page 71.

Let X, Y, and Z be graphs in $\operatorname{SiLIStGrapfs}$. We show there is a bijection $\phi: \operatorname{hom}_{\text {SiLIStGrapfs }}(X \times$ $Y, Z) \rightarrow \operatorname{hom}_{\text {SiLIStGraphs }}\left(X, Z^{Y}\right)$. Since, by hypothesis, exponentiation and evaluation exists, for $g: X \times Y \rightarrow Z$ there is a unique map $\bar{g}: X \rightarrow Z^{Y}$ such that for the evaluation map $e v: Z^{Y} \times X \rightarrow Z$, ev $\circ\left(\bar{g} \times 1_{Y}\right)=g$. We define ϕ by $\phi(g)=\bar{g}$.
If $\bar{g}=\bar{h}$ for some $\bar{h}: X \rightarrow Z^{Y}$, then $e v \circ\left(\bar{g} \times 1_{Y}\right)=e v \circ\left(\bar{h} \times 1_{Y}\right)$ and thus $g=h$. Hence ϕ is injective. Now let $\bar{h}: X \rightarrow Z^{Y}$ and define $g: X \times Y \rightarrow Z$ by $g=e v \circ\left(\bar{h} \times 1_{Y}\right)$. Then since exponentiation and evaluation exists, there exists a unique $\bar{g}: X \rightarrow Z^{Y}$ such that $g=e v \circ \bar{g} \times 1_{Y}$. Since \bar{g} is unique, $\bar{g}=\bar{h}$. Hence ϕ is surjective, and thus a bijection of sets.
We can now achieve our contradiction. Consider $K_{2}^{K_{2}}$ where K_{2} has vertices a and b and edge e. Since the free graph functor is left adjoint to the underlying vertex set functor, $V\left(K_{2}^{K_{2}}\right)=\{i d, t w,\ulcorner a\urcorner,\ulcorner b\urcorner\}$. Where $i d$ is the identity vertex map, $t w$ (called the "twist" map) is defined by $t w(a)=b$ and $t w(b)=a,\ulcorner a\urcorner$ is the "constantly a " map, and $\ulcorner b\urcorner$ is the "constantly b " map.

Since in SiLlStGraphs, $K_{2} \times K_{2} \cong K_{2}+K_{2}$ and there are 4 morphisms from $K_{2}+K_{2}$ to K_{2}, namely the 4 combinations of $i d$ and $t w$ from each component of $K_{2}+K_{2}$ to K_{2}. Then since there is a bijection in sets of $\operatorname{hom}_{\text {SiLIStGraphs }}\left(K_{2} \times K_{2}, K_{2}\right)$ and $\operatorname{hom}_{\text {SiLIStGrapfs }}\left(K_{2}, K_{2}^{K_{2}}\right)$ there are 4 morphisms from K_{2} to $K_{2}^{K_{2}}$. Since K_{2} admits two morphisms to any edge of any graph in SiLIStGrapfs, there are 2 edges in $K_{2}^{K_{2}}$.
Let $e \in E\left(K_{2}^{K_{2}}\right)$ such that $\partial_{K_{2}^{K_{2}}}(e)=\left(\ulcorner a\urcorner _\ulcorner \urcorner\right)$. We will now show that no other edge can be in $K_{2}^{K_{2}}$ without causing a contradiction in the evaluation map ev: $K_{2}^{K_{2}} \times K_{2} \rightarrow K_{2}$. Let $f \in E\left(K_{2}^{K_{2}}\right)$ be the other edge distinct from e. Since e is incident to $\ulcorner a\urcorner$ and $\ulcorner b\urcorner, f$ must be
incident to $i d$ or $t w$, for if not, it would also be incident to $\ulcorner a\urcorner$ and $\ulcorner b\urcorner$, which would be a multiple edge in $K_{2}^{K_{2}}$.

Case 1: f is incident to $i d$. If f is also incident to $t w$, there is an edge f^{\prime} in $K_{2}^{K_{2}} \times K_{2}$ such that $\partial_{K_{2}^{K_{2}} \times K_{2}}\left(f^{\prime}\right)=\left((i d, a)_{-}(t w, b)\right)$. Hence since $e v$ is a strict graph homomorphism, $\partial_{K_{2}}\left(e v\left(f^{\prime}\right)\right)=\left(a _a\right)$, a contradiction to K_{2} being loopless.
If f is also incident to $\ulcorner a\urcorner$, there is an edge f^{\prime} in $K_{2}^{K_{2}} \times K_{2}$ such that $\partial_{K_{2}^{K_{2}} \times K_{2}}\left(f^{\prime}\right)=$ $\left((i d, a)_{-}(\ulcorner a\urcorner, b)\right)$. Hence $\partial_{K_{2}}\left(e v\left(f^{\prime}\right)\right)=\left(a _a\right)$, a contradiction to K_{2} being loopless. If f is also incident to $\ulcorner b\urcorner$, there is an edge f^{\prime} in $K_{2}^{K_{2}} \times K_{2}$ such that $\partial_{K_{2}^{K_{2}} \times K_{2}}\left(f^{\prime}\right)=\left((i d, b)_{(}(\ulcorner b\urcorner, a)\right)$. Hence $\partial_{K_{2}}\left(e v\left(f^{\prime}\right)\right)=\left(b _b\right)$, a contradiction to K_{2} being loopless. Hence f cannot be incident to $i d$.

Case 2: f is incident to $t w$. From case $1, f$ cannot also be incident to $i d$. If f is incident to $\ulcorner a\urcorner$ or $\ulcorner b\urcorner$, a similar contradiction to that of f being incident to $i d$ and $\ulcorner a\urcorner$ or $\ulcorner b\urcorner$ arises. Therefore there is at most one edge in $K_{2}^{K_{2}}$, a contradiction. Hence exponentiation with evaluation does not exist in SiLIStGraphs.

Part (ii): Since a terminal object does not exist in SiLIStGrapfs, there is no subobject classifier.

2.2 Other Categorial Constructions in SiLIStGrapfis

We now move on to consider some other categorial properties in SiLIStGraphs. The results in this section are all new results. We first begin with a lemma about the behavior of morphisms in this category.

Lemma 2.2.1. In SiLLStGrapfs the inclusion of K_{n}^{c} into a graph G with n vertices $(n>1)$ and at least one edge is an epimorphism (but not a surjection); and, of course, this inclusion is also a monomorphism (and an injection); furthermore this inclusion is not an isomorphism.

Proof. Without loss of generality, since every empty edge graph on n vertices is isomorphic
to every other empty edge graph on n vertices, assume $V\left(K_{n}^{c}\right)=V(G)$. Then let $i: K_{n}^{c} \rightarrow G$ be the inclusion morphism. Let f and g be morphisms $f, g: G \rightarrow H$ for some graph H such that $f \circ i=g \circ i$, and let $v \in V(G)$. Since $V(G)=V\left(K_{n}^{c}\right), f(v)=f \circ i(v)=g \circ i(v)=g(v)$ and f and g agree on the vertices of G.

Now let e be an edge of $G, e \in E(G) \backslash$ image $\left(\iota_{G}\right)$. Since the graphs in SiLIStGrapfs are loopless, $\partial_{G}(e)=\left(u_{-} v\right)$ for distinct vertices $u, v \in V(G)$. Since the morphisms in SiLIStGraphs are strict and preserve incidence, $f(e)$ is incident to $f(u)$ and $f(v)$. Similarly $g(e)$ is incident to $g(u)$ and $g(v)$.

Since f and g agree on the vertices of $G, f(e)$ is incident to $f(u)=g(u)$ and $f(v)=g(v)$. Thus $f(e)$ and $g(e)$ are incident to the same vertices, and since the graphs of SiLLStGraphs are simple, $f(e)=g(e)$. Hence i is an epimorphism, and clearly not surjective.

Since the inclusion is an injection on the vertex sets (which composes K_{n}^{c}) it is a monomorphism. It is not an isomorphism as K_{n} does not admit a morphism to $K_{n}^{c}($ for $n>1$).

Since the inclusion of K_{n}^{c} into any graph G is a monomorphism, it is also evident that a morphism that is both a monomorphism and an epimorphism is not necessarily a isomorphism in SiLIStGraphs. Lemma 2.1.6 states that the free objects in SiLIStGraphs are the empty edge graphs. The following proposition shows us there are no co-free objects in SiLIStGrapfis.

Lemma 2.2.2. There are no cofree objects in SiLIStGraphs.

Proof. Assume there are. Let $X=\{x\}$ in Sets and $C(X)$ be the co-free graph associated with X and function $c:|C(X)|_{V} \rightarrow X$. Consider K_{2} with vertices a and b and edge e and set function $g:\left|K_{2}\right|_{V} \rightarrow X$ defined by $g(a)=g(b)=x$. Then since $C(X)$ is a cofree object, there is a unique morphism in SiLlStgrapfs, $\bar{g}: K_{2} \rightarrow C(X)$, such that $g=c \circ|\bar{g}|_{V}$. Since \bar{g} is a strict graph homomorphism, it must send e to an edge in $C(X)$. Thus $\bar{g}(e)=f$ for some $f \in E(C(X))$. Since graph homomorphisms preserve incidence, f is incident to $\bar{g}(a)=|\bar{g}|_{V}(a)=a^{\prime}$ for some vertex $a^{\prime} \in V(C(X))$ and $\bar{g}(b)=|\bar{g}|_{V}(b)=b^{\prime}$ for some vertex $b^{\prime} \in V(C(X))$.

Since $C(X)$ is loopless, $a^{\prime} \neq b^{\prime}$. Then since $g=c \circ|\bar{g}|_{V}, g(a)=c\left(|\bar{g}|_{V}(a)\right)=x$ and $g(b)=c\left(|\bar{g}|_{V}(b)\right)=x, c\left(a^{\prime}\right)=c\left(b^{\prime}\right)=x$. Now consider the morphism $\bar{h}: K_{2} \rightarrow C(X)$ defined by $\bar{h}(e)=f, \bar{h}(a)=b^{\prime}$ and $\bar{h}(b)=a^{\prime}$. Clearly $\bar{h} \neq \bar{g}$. Then $c\left(|\bar{h}|_{V}(a)\right)=c\left(b^{\prime}\right)=x=g(a)$ and $c\left(|\bar{h}|_{V}(b)\right)=c\left(a^{\prime}\right)=x=g(b)$. Thus $c \circ|\bar{h}|_{V}=g$, and \bar{g} is not unique, which is a contradiction to the universal mapping description of the cofree object.

The definitions for free objects and cofree objects are dependent on the category being a concrete category. We move on to other categorial constructions that are defined for any abstract category. We start with the injective objects and projective objects (see Appendix A for definitions). Note, since $|-|$ is reserved for the underlying set functor, when referring to the cardinality of a set X we will use $\sharp(X)$.

Theorem 2.2.3. In SiLfStGrapfs

(i): The projective objects are precisely the free objects and there are enough projective objects.
(ii): There are no injective objects.

Proof. Part (i): First, by Proposition 1.5.6., we note that if $f: A \rightarrow B$ is an epimorphism in SiLIStGraphs then the vertex set function f_{V} is surjective. We show that the free objects are projective objects. Clearly the empty graph \emptyset is projective since it is the initial object. Now let X be a non-empty set in Sets, G be a graph in SiLIStGraphs with a morphism $h: F(X) \rightarrow G$, and H be a graph in SiLIStGraphs with an epimorphism $g: H \rightarrow G$. We must show that there is a morphism $\bar{h}: F(X) \rightarrow H$ such that $g \circ \bar{h}=h$.

Since g is an epimorphism, g_{V} is a surjective function. Hence for all $v_{i} \in V(F(X))$, there is a $u_{i} \in V(H)$ such that $g\left(u_{i}\right)=h\left(v_{i}\right)$. Then define $\bar{h}\left(v_{i}\right)=u_{i}$ for every $v_{i} \in V(F(X))$. Then $g\left(\bar{h}\left(v_{i}\right)\right)=g\left(u_{i}\right)=h\left(v_{i}\right)$ for every vertex v_{i} of $F(X)$. Since $F(X)$ contains no edges, \bar{h} is a strict graph homomorphism. Thus $F(X)$ is projective.

Now let A be a graph in SiLIStGrapfis with at least 1 edge, and G be a graph on n vertices $(n>1)$ in SiLlStGrapfis with a morphism $h: A \rightarrow G$. By Lemma 2.2.1. there is an epimorphism
$e: K_{n}^{c} \rightarrow G$. Since strict graph homomorphisms must send edges to edges, A admits no morphism to K_{n}^{c}. Thus A is not projective.

Let G be a graph in SiLLStGrapfs with n vertices. To show there are enough projectives, we must show there is a projective object H and an epimorphism $e: H \rightarrow G$. By Lemma 2.2.1. the projective object K_{n}^{c} admits an epimorphism to G.

Part (ii): Suppose there were injective objects. Let Q be an injective object in $\operatorname{SiL} \mathcal{L S} \operatorname{SGraphs}$. Consider the complete graph K with $\sharp(V(K))>\sharp(V(Q))$, the cardinality of $V(K)$ is greater than that of $V(Q)$. Then consider the morphisms $i d: Q \rightarrow Q$ the identity on Q and $f: Q \rightarrow K$, the inclusion morphism of Q into K. Since inclusion morphisms are injections, they are monomorphisms.

Then since Q is injective, there is a morphism $\bar{f}: K \rightarrow Q$ such that $\bar{f} \circ f=i d$. Since $\sharp(V(K))>\sharp(V(Q))$ and \bar{f}_{V} is a set map, there are two distinct vertices $u, v \in V(K)$ such that $\bar{f}(u)=\bar{f}(v)$. Since \bar{f} is a strong morphism and K is a complete graph, the edge e incident to u and v in K must be sent to an edge in Q. Since graph homomorphisms preserve incidence and $\bar{f}(u)=\bar{f}(v), \partial_{Q}(\bar{f}(e))=\left(\bar{f}(u)_{-} \bar{f}(u)\right)$, and $\bar{f}(e)$ is a loop. This contradicts Q being loopless. Hence no injective objects exist.

The last topic for consideration in SiLIStGraphs are the generators and cogenerators.

Theorem 2.2.4. In SiLIStGraphs

(i): the empty edge graphs, K_{n}^{c}, are precisely the generators (for $n \geq 1$).
(ii): no cogenerators exist.

Proof. Part (i): Let $n \geq 1$. First we show K_{n}^{c} is a generator, then we show that any graph with an edge is not a generator. Let X and Y be graphs in SiLIStGrapfis with morphisms $f, g: X \rightarrow Y$ such that $f \neq g$. Then there is a vertex $v \in V(X)$ such that $f(x) \neq g(x)$, otherwise since the morphisms preserve incidence and there is at most one edge between any two vertices, $f(e)=g(e)$ for all edges $e \in E(X)$ and $f=g$.

First note $K_{1}=K_{1}^{c}$. Now consider the map $h: K_{1} \rightarrow X$ that sends the single vertex of K_{1},
u, to v. Then $f(h(u))=f(v) \neq g(v)=g(h(u))$. Hence $f \circ h \neq g \circ h$. Hence K_{1} is a generator.
To show K_{n}^{c} is a generator, we consider the morphism $\pi: K_{n}^{c} \rightarrow K_{1}$ that sends every vertex of K_{n}^{c} to u. Then clearly $f \circ(h \circ \pi) \neq g \circ(h \circ \pi)$, and hence K_{n}^{c} is a generator of SiLLStGrapfs.

Now let G be a graph in SiLIStGrapfis with at least one edge. Consider K_{2}^{c} with two vertices u and v with two morphisms $i d, t w: K_{2}^{c} \rightarrow K_{2}^{c}$ where $i d$ is the identity morphism and $t w$ is the "twist" morphism defined by $t w(u)=v$ and $t w(v)=u$. Clearly $i d \neq t w$, but since morphisms must send edges to edges, G admits no map to K_{2}^{c}. Thus G is not a generator.

Part (ii): To show there are no cogenerators in SiLlStGrapfis, we show there is no graph X such that any graph G admits a morphism to X. Assume such a graph X exists. Consider the complete graph K such that $\sharp(V(K))>\sharp(V(X))$. By hypothesis there is a morphism $f: K \rightarrow X$. Since $\sharp(V(K))>\sharp(V(X))$ and \bar{f}_{V} is a set map, there are two distinct vertices $u, v \in V(K)$ such that $\bar{f}(u)=\bar{f}(v)$. Let e be the edge in K incident to both u and v. Since graph homomorphisms preserve incidence and $\bar{f}(u)=\bar{f}(v), \partial_{X}(\bar{f}(e))=\left(\bar{f}(u)_{-} \bar{f}(u)\right)$. Then since edges must be sent to edges, $\bar{f}(e)$ is a loop. This contradicts X being loopless. Hence no such object exists.

We now note that every graph G with at least two vertices admits at least two distinct morphisms to the complete graph K with $\sharp(V(K))=\sharp(V(G))$, as the automorphism group of K is the symmetric group on $V(K)$. This fact coupled with the fact there is no graph such that any other graph admits a morphism to it proves no cogenerators exist.

We will now consider the same constructions in these last two sections in the category where we allow our graphs to have at most one loop on every vertex, but where the morphisms are still strict.

2.3 Existence of Topos-like Properties in SiStGraphs

We now consider the category SiStGraphis where the graphs are simple, but do allow at most one loop on any vertex, and the morphisms are still strict graph homomorphisms. The results in this section, except those about the subobject classifier, are known (see [3]) as this is the category most commonly used in the literature. We begin as we did in section 2.2, by investigating finite limits.

Theorem 2.3.1. In SiStGraphs
(i) All finite products exist.
(ii) All equalizers exist.
(iii) The graph with a single vertex and a loop at that vertex is the terminal object.

Hence all finite limits exist.

Proof. The products and equalizers in this proof have the same definition as those in SiLIStGraphs (definition 2.1.2. and definition 2.1.4.), and the proof of Part (i) and Part (ii) follows exactly as the proof given in Theorem 2.1.1.

Part (iii): Let 1 be defined as the graph with a single vertex, v, and a loop at that vertex, ℓ. Let G be a graph in SiStGrapfs. Then the map $f: G \rightarrow \mathbf{1}$ that sends every vertex of G to v and every edge of G to ℓ preserves incidence and is clearly strict. Hence f is a morphism of SiStGraphis. Since any morphism in SiStGraphs must send vertices to vertices and edges to edges, f is the only morphism from G to $\mathbf{1}$. Thus $\mathbf{1}$ is the terminal object.

Hence all finite limits exist in SiStGraphs. We will now investigate finite colimits. Before we do so, we must define a new graph construction, the classical quotient graph.

Definition 2.3.2. Given a graph G and an equivalence relation \sim on $V(G)$, the classical quotient graph, Q, has vertex set $V(Q)=V(G) / \sim$ and there is an edge $e^{\prime} \in E(Q) \backslash$ image $\left(\iota_{Q}\right)$ with $\partial_{Q}\left(e^{\prime}\right)=\left([u]_{[}[v]\right)$ if there is a single edge $e \in E(G) \backslash$ image $\left(\iota_{G}\right)$ with $\partial_{G}(e)=\left(u_{-} v\right)$ for
some u and v representatives of the equivalence classes $[u]$ and $[v]$ respectively.

Figure 2.2: Example of a Quotient Graph in SiStGraphs

Since there is at most one edge between any two distinct vertices and at most one loop at any single vertex, the quotient graph is clearly a graph in SiStGrapfs. We may think of the quotient graph as the graph obtained by identifying the vertices in the equivalence class, and then identifying any multiple edges or multiple loops that arise from the vertex identification. We now show there is a natural quotient morphism from a graph to its quotient graph.

Proposition 2.3.3. Given a graph G of SiStGrapfs and Q the quotient graph of G defined by an equivalence relation \sim on $V(G)$, then there is a quotient morphism $q: G \rightarrow Q$ defined by $q(v)=[v]$ for $v \in V(G)$ and $q(e)=e^{\prime}$ for $e \in E(G) \backslash$ image $\left(\iota_{G}\right)$ where $\partial_{G}(e)=\left(u_{_} v\right)$ and e^{\prime} is the edge in $E(Q) \backslash$ image $\left(\iota_{Q}\right)$ with $\partial_{Q}\left(e^{\prime}\right)=\left([u]_{-}[v]\right)$.

Proof. Clearly q sends vertices to vertices and edges to edges, so we must check that it preserves incidence. Let $e \in E(G)$ with $\partial_{G}(e)=\left(u_{-} v\right)$ for some $u, v \in V(G)$. Then since u is in the equivalence class $[u]$ and v is in the equivalence class $[v]$ with u and v incidence to e, then e^{\prime} is in $E(Q)$ with $\partial_{Q}\left(e^{\prime}\right)=\left([u]_{-}[v]\right)$. Hence $\partial_{Q}(q(e))=\partial_{Q}\left(e^{\prime}\right)=\left([u]_{-}[v]\right)=\left(q(u)_{-} q(v)\right)$ and incidence is preserved.

We can now define the classical coequalizer in SiStGraphs, and use it for the categorial (universal mapping) coequalizer.

Definition 2.3.4. Given graphs G and H in SiStGrapfis with morphisms $f, g: G \rightarrow H$, the coequalizer, Coeq, with the quotient morphism coeq : H \rightarrow Coeq is the quotient graph of H under the smallest equivalence relation \sim on $V(H)$ generated by $f(x) \sim g(x)$ for some $x \in V(G)$.

Theorem 2.3.5. In SiStGrapfis

(i) All finite coproducts exist.
(ii) All coequalizers exist.
(iii) The empty graph is the initial object.

Hence all finite colimits exist.

Proof. The classical coproducts in SiStGrapfis use the same classically defined coproducts as those in SiLIStGrapfs (definition 2.1.5.). The proofs of Part (i) and Part (iii) follow exactly as the proof given in Theorem 2.1.4.

Part (ii): Let G and H be graphs in SiStGrapfis with morphisms $f, g: G \rightarrow H$. Consider $x \in V(G)$. Since $V($ Coeq $)=V(H) / \sim$ where \sim is the (smallest) equivalence relation on $V(H)$ generated by $f(x) \sim g(x)$ for $x \in V(G)$, i.e. $g(x)$ is a representative of $[f(x)]$ and $\operatorname{coeq}(f(x))=$ $[f(x)]=[g(x)]=\operatorname{coeq}(g(x))$. Now consider $e \in E(G) \backslash \operatorname{image}\left(\iota_{G}\right)$ with $\partial_{G}(e)=\left(u_{-} v\right)$ for some vertices $u, v \in V(G)$. Since $f(u) \sim g(u)$ and $f(v) \sim g(v), \partial_{\text {Coeq }}(f(e))=([f(u)]-[f(v)])=$ $\left([g(u)]_{-}[g(v)]\right)=\partial_{\text {Coeq }}(g(e))$ and $\operatorname{coeq}(f(e))=\operatorname{coeq}(g(e))$. Hence coeq $\circ f=\operatorname{coeq} \circ g$.

Let X be a graph in SiStGrapfis with morphism $h: H \rightarrow X$ such that $h \circ f=h \circ g$. We must show there is a unique morphism $\bar{h}:$ Coeq $\rightarrow X$ such that $h=\bar{h} \circ$ coeq. By the construction of \sim, all the vertices in the same equivalence class of \sim must be sent to a single vertex in X or we would contradict $h \circ f=h \circ g$. For $h=\bar{h} \circ$ coeq to hold, define $\bar{h}([u])=h(u)$ for u a representative of $[u] \in V($ Coeq $)$, since all choices of u will be mapped to the same vertex in X, this is a well defined vertex set map and is uniquely determined by h.

By construction of a classical quotient graph, an edge $e^{\prime} \in E($ Coeq $) \backslash$ image $\left(\iota_{\text {Coeq }}\right)$ with $\partial_{\text {Coeq }}\left(e^{\prime}\right)=\left([u]_{[}[v]\right)$ exists only if there is an edge $e \in E(H) \backslash \operatorname{image}\left(\iota_{H}\right)$ with $\partial_{H}(e)=\left(u_{-} v\right)$ for some $u, v \in V(H)$ representatives of $[u]$ and $[v]$ respectively. Since all the vertices in $[u]$
and all the vertices $[v]$ are mapped to the vertices $h(u)$ and $h(v)$ respectively, for such an edge $e^{\prime} \in E($ Coeq $) \backslash \operatorname{image}\left(\iota_{\text {Coeq }}\right)$, there is an edge $e \in E(H)$ such that $\partial_{X}(h(e))=\left(h(u) _h(v)\right)$. Then for $h=\bar{h} \circ$ coeq to hold, define $\bar{h}\left(e^{\prime}\right)=h(e)$ and, as edge set map, \bar{h} is uniquely determined by h. Since this construction preserves incidence and sends edges (strictly) to edges, \bar{h} is a morphism in SiStGraphs and is uniquely determined by h.

We now investigate the last two topos-like properties of SiStGrapfs, exponentiation with evaluation and a subobject classifier. We first define the classical exponential graph, generalizing that in [8, p. 46].

Definition 2.3.6. Given graphs G and H in SiStGrapfs, the classical exponential graph, H^{G} has vertex set $V\left(H^{G}\right)=\{f: V(G) \rightarrow V(H)\}$, (i.e the collection of vertex set functions: $\left.V\left(H^{G}\right)=V(H)^{V(G)}\right)$, and $e^{\prime} \in E\left(H^{G}\right) \backslash$ image $\left(\iota_{H^{G}}\right)$ with $\partial_{H^{G}}\left(e^{\prime}\right)=\left(f_{-}\right)$only when for all vertices $u, v \in V(G)$, if there is an edge $e \in E(G) \backslash$ image $\left(\iota_{G}\right)$ with $\partial_{G}(e)=\left(u _v\right)$ then there is an edge $d \in E(H) \backslash$ image $\left(\iota_{H}\right)$ such that $\partial_{H}(d)=\left(f(u) _g(v)\right)$.

Figure 2.3: Example of a $K_{2}^{K_{2}}$ in SiStGrapfs
Theorem 2.3.7. In SiStGraphs
(i) Exponentiation and evaluation exists.
(ii) A subobject classifier does not exist.

Hence along with Theorem 2.3.1. SiStGrapfis is cartesian closed, but not a topos.

Proof. Part (i): First, define $e v: H^{G} \times G \rightarrow H$ by $e v((f, v))=f(v)$ for all vertices $(f, v) \in$ $V\left(H^{G} \times G\right)\left(=V(H)^{V(G)} \times V(G)\right)$ and for $e \in E\left(H^{G} \times G\right)$ such that $\partial_{H^{G} \times G}(e)=\left((f, v)_{-}(g, u)\right)$ define $e v(e)=d$ for $d \in E(H)$ with $\partial_{H}(d)=\left(f(v)_{-} g(u)\right)$. Such a d exists by construction of H^{G}, and by construction of $H^{G}, e v$ is a strict graph homomorphism.

Now let X be a graph in SiStGrapfs with morphism $g: X \times G \rightarrow H$. We must show there is a unique morphism $\bar{g}: X \rightarrow H^{G}$ such that $g=e v \circ\left(\bar{g} \times 1_{G}\right)$.

Let $x \in V(X)$ and consider $\{x\} \times G:=\{(x, v) \mid(x, v) \in V(X \times G)$ for some $v \in V(G)\} \subseteq$ $V(X \times G)$. Then $\left.g\right|_{\{x\} \times G}$ induces a function $f_{x}: V(G) \rightarrow V(H)$ defined by $f_{x}(v)=g((x, v))$. Then for $g=e v \circ\left(\bar{g} \times 1_{G}\right)$ to hold, define $\bar{g}(x)=f_{x}$, and \bar{g} is a vertex set function uniquely determined by g.

Now let $e \in E(X)$ with $\partial_{X}(e)=\left(x_{1} x_{2}\right)$. Consider $\{e\} \times G:=\left\{d \in E(X \times G) \mid \partial_{X \times G}(d)=\right.$ $\left(\left(x_{1}, u\right)_{-}\left(x_{2}, v\right)\right)$ for some $\left.u, v \in V(G)\right\} \subseteq E(X \times G)$. Note that for an edge $d \in\{e\} \times G$, $\partial_{X \times G}(d)=\left(\left(x_{1}, u\right)_{-}\left(x_{2}, v\right)\right)$ for some $u, v \in V(G)$ implies there is an edge $d^{\prime} \in E(G)$ such that $\partial_{G}\left(d^{\prime}\right)=\left(u_{-} v\right)$.

For such a d, since g preserves incidence, $\partial_{H}(g(d))=\left(g\left(x_{1}, u\right)_{-} g\left(x_{2}, v\right)\right)=\left(f_{x_{1}}(u)_{-} f_{x_{2}}(v)\right)$. Then for $g=e v \circ\left(\bar{g} \times 1_{G}\right)$ to hold, define $\bar{g}(e)=a$ where $\partial_{H^{G}}(a)=\left(f_{x_{1}-} f_{x_{2}}\right)$ which exists by definition of H^{G}, and is uniquely determined by g. Clearly \bar{g} is a morphism in SiStGraphs and is uniquely determined by g.

Part (ii): Given graphs A, B, and C in SiStGraphs with $f: A \rightarrow C$ and $g: B \rightarrow C$, we can find the pullback of f and g by taking the equalizer of $f^{\prime}, g^{\prime}: A \times B \rightarrow C$ where $f^{\prime}=f \circ \pi_{A}$ and $g^{\prime}=g \circ \pi_{B}$ (for a proof see Proposition A.0.10.). Then the equalizer defined in this way will be the pullback with $\pi_{A} \circ e q: E q \rightarrow A$ and $\pi_{B} \circ e q: E q \rightarrow B$ such that $f \circ \pi_{a} \circ e q=g \circ \pi_{B} \circ e q$, where $E q$ is the vertex induce subgraph of $A \times B$ on $V(E q)=\left\{(a, b) \in V(A \times B) \mid f\left(\pi_{A}((a, b))\right)=g\left(\pi_{B}((a, b))\right)\right\}$ with $e q: E q \rightarrow A \times B$ the inclusion morphism.

Assume a subobject classifier, Ω, exists with morphism $\top: \mathbf{1} \rightarrow \Omega$. Consider K_{2} having vertices a and b with an edge e between them with $!_{K_{2}}: K_{2} \rightarrow \mathbf{1}$ the unique morphism to the terminal object. Let $i: K_{2} \hookrightarrow K_{2}^{\ell}$ be inclusion where K_{2}^{ℓ} is K_{2} together with a loops ℓ_{a} and
ℓ_{b} at vertices a and b respectively. Then there exists a unique $\chi_{K_{2}}: K_{2}^{\ell} \rightarrow \Omega$ such that K_{2} is the pullback of T and $\chi_{K_{2}}$. Then $T \circ!_{K_{2}}=\chi_{K_{2}} \circ i$.

Since $!_{K_{2}}(a)=!_{K_{2}}(b)=v$ for v the vertex of $\mathbf{1}$ and $!_{K_{2}}(e)=\ell$ for ℓ the loop of $\mathbf{1}$, and since morphisms much send edges to edges, $T\left(!_{K_{2}}(a)\right)=T\left(!_{K_{2}}(b)\right)=T(v)$ and $T\left(!_{K_{2}}(e)\right)=T(\ell)$ where $\partial_{\Omega}(\top(\ell))=\left(\top(v)_{-} \top(v)\right)$. Since $T \circ!_{K_{2}}=\chi_{K_{2}} \circ i, \chi_{K_{2}}(i(a))=\chi_{K_{2}}(i(b))=T(v)$. Then since morphisms preserve incidence, $\partial_{\Omega}\left(\chi_{K_{2}}\left(\ell_{a}\right)\right)=\partial_{\Omega}\left(\chi_{K_{2}}\left(\ell_{b}\right)\right)=\left(\top(v)_{-} \top(v)\right)$. Since graphs in SiStGraphs can have at most one loop at any vertex, and morphisms must send edges to edges, $\chi_{K_{2}}\left(\ell_{a}\right)=\chi_{K_{2}}\left(\ell_{b}\right)=T(\ell)$.

Now consider the pullback of $\chi_{K_{2}}$ and T. It is the vertex induced subgraph of $K_{2}^{\ell} \times \mathbf{1}$ on $V(E q)=\left\{(c, v) \in V\left(K_{2}^{\ell} \times \mathbf{1}\right) \mid \chi_{K_{2}}\left(\pi_{K_{2}^{\ell}}((c, v))\right)=\top\left(\pi_{1}((c, v))\right)\right\}$. However, since $K_{2}^{\ell} \times \mathbf{1} \cong K_{2}^{\ell}$ and $\chi_{K_{2}}\left(\pi_{K_{2}^{\ell}}((a, v))\right)=\chi_{K_{2}}(a)=\top(v)=\chi_{K_{2}}(b)=\chi_{K_{2}}\left(\pi_{K_{2}^{\ell}}((b, v))\right), V(E q)=\{(a, v),(b, v)\}$ and $E q \cong K_{2}^{\ell}$. This contradicts that K_{2} is the pullback of $\chi_{K_{2}}$ and T. Hence no subobject classifier exists.

Since Theorem 2.3.1. states that all finite limits exist, Theorem 2.3.5 states that all finite colimits exist, and Theorem 2.3.7 states that exponentiation with evaluation exists, then SiStGrapfs is a "near" topos. The axiom it does not satisfy is the existence of a subobject classifier.

2.4 Other Categorial Constructions in SiStGrapfs

We continue in the same fashion as our investigation of SiLIStGraphs. The results in this section are new results. We first show that epimorphisms in SiStGrapfs are still not guaranteed to be surjections (see p. 28 for an analogous proposition in SiLLStGraphs).

Lemma 2.4.1. In SiStGrapfs the inclusion of K_{n}^{c} into a graph G with n vertices ($n>1$) and at least one edge is an epimorphism (but not a surjection); and of course, the inclusion is also a monomorphism (and an injection); furthermore, this inclusion is not an isomorphism.

Proof. Without loss of generality, since every empty edge graph on n vertices is isomorphic to every other empty edge graph on n vertices, assume $V\left(K_{n}^{c}\right)=V(G)$. Then let $i: K_{n}^{c} \rightarrow G$ be the inclusion morphism. Let f and g be morphisms $f, g: G \rightarrow H$ for some graph H such that $f \circ i=g \circ i$, and let $v \in V(G)$. Since $V(G)=V\left(K_{n}^{c}\right), f(v)=f \circ i(v)=g \circ i(v)=g(v)$ and f and g agree on the vertices of G.

For a non-loop edge $e \in E(G)$, the proof follows as in the proof of Lemma 2.2.1. and $f(e)=g(e)$. So consider a loop $\ell \in E(G)$ such that $\partial_{G}(\ell)=\left(u _u\right)$ for some $u \in V(G)$. Since morphisms preserve incidence and f and g agree on the vertices of $G, \partial_{H}(f(\ell))=$ $\left(f(u)_{-} f(u)\right)=\left(g(u)_{-} g(u)\right)=\partial_{H}(g(\ell))$. Since morphisms must send edges to edges, there is at most one loop incident to any vertex, and $f(\ell)$ is incident to the same vertices as $g(\ell)$, $f(\ell)=g(\ell)$. Hence $f=g$ and i is an epimorphism.

We now investigate the free objects and the cofree objects. The free objects are the same as in SiLlStGrapfs, but since loops are allowed in SiStGrapfis, we do have cofree objects.

Lemma 2.4.2. In SiStGraphs
(i) the free objects are K_{n}^{c} for $n \geq 0$.
(ii) the cofree objects are the complete graphs with a loop at every vertex K_{n}^{ℓ} for $n \geq 1$.

Proof. The proof of part (i) follows similarly to the proof in SiLIStGrapfs of Lemma 2.1.6.
Part (ii): Let X be a set in Sets and define $C(X)$ as the complete graph with a loop at every vertex with the vertex set $V(C(X))=X$. Let G be a graph in SiStGraphs with set function $g:|G|_{V} \rightarrow X$. We must show that there is a unique strict graph homomorphism $\bar{g}: G \rightarrow C(X)$ such that $g=c \circ|\bar{g}|_{V}$ for some set function $c:|C(X)|_{V} \rightarrow X$ Note that $|C(X)|_{V}=V(C(X))=X$. Hence we define c as 1_{X}.
For $g=1_{X} \circ|\bar{g}|_{V}$ to hold, $\bar{g}_{V}=g$ is uniquely determined. Then let e be an edge of G incident to vertices $x, y \in V(G)$ where x and y are not necessarily distinct. Then since strict graph homomorphisms must send edges to edges and preserve incidence, for \bar{g} to be a strict graph homomorphism, $\bar{g}(e)$ must map to the edge e^{\prime} of $C(X)$ incident to vertices $g(x)$ and $g(y)$. By the definition of $C(X)$ such an edge e^{\prime} exists. Hence \bar{g} exists and is uniquely determined by g.

We now investigate the projective and injective objects. The addition of loops to the graphs in our category allows it to have injective objects, and not only are there injective objects, there are enough injective objects.

Theorem 2.4.3. In SiStGrapfis

(i) the projective objects are precisely the free objects, and there are enough projective objects.
(ii) the injective objects are precisely the cofree objects, and there are enough injective objects.

Proof. Since we proved Lemma 2.3.1. for SiStGrapfs, the proof for part (i) follows similarly to the proof in Theorem 2.2.3. of the SiLIStGrapfs equivalent.

Part (ii): We first show that if $f: G \rightarrow H$ is a monomorphism, then $f_{V}: V(G) \rightarrow V(H)$ is an injective function. If not, then there are two distinct vertices $u, v \in V(G)$ such that $f(u)=f(v)$. Now consider the two morphisms $g, h: K_{1} \rightarrow G$ where $g(x)=u$ and $h(x)=v$ for x the vertex of K_{1}. Clearly $g \neq h$, but since $f(u)=f(v), f(g(x))=f(h(x))$. Hence $f \circ g=f \circ h$ contradicting that f is a monomorphism.
Let X be a nonempty set in Sets, and let G, H be graphs in SiStGrapfis with a morphism
$f: G \rightarrow C(X)$ and a monomorphism $g: G \rightarrow H$. We must show there is a morphism $\bar{f}: H \rightarrow C(X)$ such that $f=\bar{f} \circ g$.

Since g is a monomorphism, $g_{V}: V(G) \rightarrow V(H)$ is an injection. Then for all $v \in \operatorname{image}\left(g_{V}\right)$ there is a unique $v^{\prime} \in V(G)$ such that $g_{V}\left(v^{\prime}\right)=v$. Since X is non-empty, there is an element $x \in X$. We define a function $\bar{f}_{V}: V(H) \rightarrow X$ by $\bar{f}_{V}(v)=f\left(v^{\prime}\right)$ if $v \in \operatorname{image}\left(g_{V}\right)$ and $\bar{f}_{V}(v)=x$ otherwise. Then since $C(X)$ is a cofree object, there is a unique morphism $\bar{f}: H \rightarrow C(X)$ such that for $|\bar{f}|_{V}: V(H) \rightarrow|C(X)|_{V}=X, \bar{f}_{V}=1_{X} \circ|\bar{f}|_{V}=|\bar{f}|_{V}$. Since \bar{f} is unique, $|\bar{f}|_{V}=\bar{f}_{V}$. Then for all $v \in V(G), \bar{f}(g(v))=f(v)$.
Now let $e \in E(G) \backslash \operatorname{image}\left(\iota_{G}\right)$ with $\partial_{G}(e)=\left(u_{-} v\right)$. Then since morphisms preserve incidence, $\partial_{C(X)}(f(e))=\left(f(u)_{-} f(v)\right)=\left(\bar{f}\left(g(u)_{-} \bar{f}(g(v))\right)=\partial_{C(X)}(\bar{f}(g(e)))\right.$. Since morphisms must map edges to edges and there is a most one edge incident to any two vertices (not necessarily distinct), $f(e)=\bar{f}(g(e))$. Hence $f=\bar{f} \circ g$ and $C(X)$ is an injective object.

Now let G be a graph in SiStGraphs that is not a cofree object. Assume it is an injective object of SiStGraphs. Then there are vertices $u, v \in V(G)$ (not necessarily distinct) such that there is no edge $e \in E(G) \backslash \operatorname{image}\left(\iota_{G}\right)$ with $\partial_{G}(e)=\left(u_{-} v\right)$.

Then consider K_{2}^{c} with morphism $f: K_{2}^{c} \rightarrow G$ defined by $f(a)=u$ and $f(b)=v$, for a and b the two vertices of K_{2}^{c}, and $i: K_{2}^{c} \rightarrow K_{2}$ the inclusion morphism. Since the inclusion morphism is a monomorphism, there is a morphism $\bar{f}: K_{2} \rightarrow G$ such that $\bar{f} \circ i=f$. Then $\bar{f}(i(a))=\bar{f}(a)=u$ and $\bar{f}(i(b))=\bar{f}(b)=v$. Since morphisms preserve incidence, $\partial_{G}(\bar{f}(e))=\left(\bar{f}(a)_{-} \bar{f}(b)\right)=\left(u_{-} v\right)$. Then since edges must be sent to edges and there is at most one edge between any two vertices, there is an edge e^{\prime} such that $\partial_{G}\left(e^{\prime}\right)=\left(u_{_} v\right)$, a contradiction. Hence G is not an injective object.

To show there are enough injective objects we must show that for any graph G in SiStGrapfis, there is an injective object H with a monomorphism $f: G \rightarrow H$. If G is not the initial object, $C(V(G))$ is an injective object and $i: G \rightarrow C(V(G))$, the inclusion morphism, is a monomorphism. If $G=\emptyset$ then $\emptyset \hookrightarrow K_{1}^{\ell}$ suffices. Hence there are enough injective objects in SiStGrapfis.

We end this section by investigating the generators and cogenerators of SiStGraphs.

Theorem 2.4.4. In SiStGrapfs

(i): the empty edge graphs, K_{n}^{c}, are precisely the generators (for $n \geq 1$).
(ii): K_{2}^{ℓ} the complete graph on two vertices with a loop at every vertex is a cogenerator, and a cogenerators of SiStGraphis are precisely the graphs containing a subgraph isomorphic to K_{2}^{ℓ}.

Proof. The proof of part (i) follows similarly to the proof of Theorem 2.2.4. for the SiLIStGraphs equivalent.
Part (ii): Let K_{2}^{ℓ} have vertices u and v with edge e incident to u and v and loops ℓ_{u} and ℓ_{v} on u and v respectively. Let X and Y be graphs in SiStGrapfis with morphisms $f, g: X \rightarrow Y$ such that $f \neq g$. Since there is at most one loop at a vertex and at most one edge between any two vertices, there is a vertex $x \in V(X)$ such that $f(x) \neq g(x)$. Define a map $h: Y \rightarrow K_{2}^{\ell}$ by $h(f(x))=u$ and $h(y)=v$ for all vertices $y \in V(Y) \backslash\{f(x)\}$, and for $a \in E(Y) \backslash \operatorname{image}\left(\iota_{Y}\right)$, $h(a)=\ell_{v}$ if $\partial_{Y}(a)=\left(y_{1}-y_{2}\right)$ for $y_{1}, y_{2} \in V(Y) \backslash\{f(x)\}, h(a)=\ell_{u}$ if $\partial_{Y}(a)=\left(f(x)_{-} f(x)\right)$, and $h(a)=e$ if $\partial_{Y}(a)=\left(f(x) _y\right)$ for $y \in V(Y) \backslash\{f(x)\}$.

We now must show h is a strict graph homomorphism. Let $a \in E(Y) \backslash \operatorname{image}\left(\iota_{y}\right)$. If $h(a)=\ell_{v}$ then $\partial_{K_{2}^{\ell}}(h(a))=\left(v_{-} v\right)=\left(h\left(y_{1}\right)_{-} h\left(y_{2}\right)\right)$ for some $y_{1}, y_{2} \in V(Y) \backslash\{f(x)\}$. If $h(a)=\ell_{u}$ then $\partial_{K_{2}^{\ell}}(a)=\left(u_{-} u\right)=\left(h(f(x))_{-} h(f(x))\right)$. If $h(a)=e$ then $\partial_{K_{2}^{\ell}}(a)=\left(u_{-} v\right)=\left(h(f(x))_{-} h(y)\right)$ for some $y \in V(Y) \backslash\{f(x)\}$. Hence h preserves incidence, and since h sends edges to edges, h is a strict graph homomorphism.

Since $f(x) \neq g(x), h(f(x))=u$ and $h(g(x))=v$. Hence $h \circ f \neq h \circ g$, and K_{2}^{ℓ} is a cogenerator of SiStGrapfs.

If G is a graph in SiStGrapfs that contains a subgraph isomorphic to K_{2}^{ℓ} then clearly $(i \circ h) \circ f \neq(i \circ h) \circ g$, where i is the inclusion morphism (over the isomorphism) $i: K_{2}^{\ell} \rightarrow G$. Hence G is a cogenerator of SiStGraphis.

We now show that any cogenerator C of $\operatorname{SiStGrapfs}$ contains a subgraph isomorphic to K_{2}^{ℓ}. Suppose C does not, then no two vertices of G with loops are incident to the same edge. Consider the two morphisms $i d, t w: K_{2}^{\ell} \rightarrow K_{2}^{\ell}$ where $i d$ is the identity morphism and $t w$ is
the morphism defined by $t w(u)=v, t w(v)=u, t w(e)=e, t w\left(\ell_{u}\right)=\ell_{v}$, and $t w\left(\ell_{v}\right)=\ell_{u}$. Since C is a cogenerator, there is a morphism $h: K_{2}^{\ell} \rightarrow C$ such that $h \circ i d \neq h \circ t w$.

Let $h(u)=u^{\prime}$ for some $u^{\prime} \in C$ and $h(v)=v^{\prime}$ for some $v^{\prime} \in C$. If $u^{\prime}=v^{\prime}$, then since edges must be sent to edges and incidence is preserved, $\partial_{C}\left(h\left(i d\left(\ell_{v}\right)\right)\right)=\left(h(v)_{_} h(v)\right)=\left(v^{\prime} _^{\prime}\right)=$ $\left(u^{\prime} _u^{\prime}\right)=\partial_{C}\left(h\left(t w\left(\ell_{v}\right)\right)\right)$. Since there is at most one loop at a vertex, then $h\left(i d\left(\ell_{v}\right)\right)=$ $h\left(t w\left(\ell_{v}\right)\right)$. Similarly $h\left(i d\left(\ell_{u}\right)\right)=h\left(t w\left(\ell_{u}\right)\right)$ and $h(i d(e))=h(t w(e))$. Hence $h \circ i d=h \circ t w$, a contradiction. Thus $u^{\prime} \neq v^{\prime}$.

Since morphisms must send edges to edges, $\partial_{C}\left(h\left(\ell_{u}\right)\right)=\left(u^{\prime} _u^{\prime}\right)$, and $\partial_{C}\left(h\left(\ell_{v}\right)\right)=\left(v^{\prime} _v^{\prime}\right), u^{\prime}$ has a loop $\ell_{u^{\prime}}$ and v^{\prime} has a loop $\ell_{v^{\prime}}$. Now consider $h(e)$. Since $\partial_{C}(h(e))=\left(h(u) _h(v)\right)=\left(u^{\prime} v^{\prime}\right)$, u^{\prime} and v^{\prime} are two vertices with loops adjacent to the same edge, a contradiction. Hence C must contain a subgraph isomorphic to K_{2}^{ℓ}.

In the last section, we showed SiStGraphs is a "near" topos, as it only lacks a subobject classifier. In this section, we show that SiStGrapfs also contains a variety of useful categorial constructions, some of which will be crucial in defining graph-like objects in an abstract category.

2.5 SiLIStGraphis is a Topos Impoverished Category

We conclude this chapter by comparing SiLIStGraphs to SiStGraphs. It becomes apparent that loops are needed for a graph category to have structure while using strict graph homomorphisms as the only morphisms. By the proof of Theorem 2.2.4. part (ii), since there are no loops in SiLIStGrapfs, there is no graph which all graphs admit a morphism to. This causes a lack of a terminal object, quotient graphs, coequalizers, cofree objects, injective objects, and cogenerators.

When loops are allowed, we find there is much more structure. SiStGraphs has finite limits, finite colimits, and exponentiation, each of which is lacking in SiLIStGrapfs. Furthermore,

SiStGraphs has cofree objects, injective objects (and enough of them), and cogenerators.
The reason for this lack of structure in SiLIStGraphs is because if loops are not allowed in a graph category with only strict graph homomorphisms as morphisms, there is no morphism that allows two vertices to be identified. While it is evident that this prevents quotient graphs from being inside the category, we also have shown it prevents the existence of many other categorial structures. We sum it up with a simple sentence. SiLLStGrapfs is an impoverished category (mostly because of the strictness of morphisms).

We conclude this chapter by noting that both categories lack a subobject classifier, which was the third requirement for a topos.

Chapter 3

Investigation of Graph-like Objects in an Abstract Category

3.1 Abstract Categorial Definitions of Graph-like Objects

The results in this chapter are new results. In this chapter we investigate elementary graph theory objects such as a vertex, an edge, and a loop. We will view the objects in Grphs, and then give categorial definitions for each of these as objects in a category. We will then prove our definitions are the correct objects in our categories of graphs and then look at instances of these definitions in the Category of Sets and Functions Sets and the Category of Abelian Groups, $\mathfrak{A b}$.

We want a way to find a vertex in an abstract category. In Grpfis, as well as SiStGraphis and SiLIStGraphs, K_{1} has a special role. Any graph homomorphism $f: K_{1} \rightarrow G$ for a graph G will map the vertex of K_{1} to a single vertex, v, of G. Furthermore, such a graph homomorphism will be the only morphism from K_{1} to G that has v as its image. So if we label the morphisms by the vertices of G that they map to, we can recover $V(G)$ as $\operatorname{hom}\left(K_{1}, G\right)$. This leads us to
define K_{1} as the vertex object in our categories of graphs.
Definition 3.1.1. K_{1} is the vertex object in Grpfs, SiStGraphs, and SiLIStGraphs

To achieve a categorial definition, we must view the special categorial properties of K_{1}. K_{1} is a free object in SiLLStGrapfis and SiStGrapfs, but defining K_{1} as a free object limits it to only being defined in categories that are concrete. K_{1} is also a generator in SiLIStGraphs and SiStGrapfis, but it turns out K_{1} is not a generator of Grpfis. We see this by considering two morphisms $i d, g: K_{1}^{\ell} \rightarrow K_{1}^{\ell}$ where $i d$ is the identity morphism and g is the morphism that maps the loop of K_{1}^{ℓ} to the vertex of K_{1}^{ℓ}. Since K_{1} only has the inclusion morphism to K_{1}^{ℓ} and that morphism cannot differentiate between $i d$ and g, K_{1} is not a generator. However, as we will prove in section 2 of this chapter, K_{1} is still projective in Grpfis.

In order to define K_{1} as a projective object, since there are an infinite number of projective objects in the graph categories, we need another way of describing K_{1}. Another property that defines K_{1} is that it is a "very small" graph. One way to describe "very small" graphs is to define a minimum object in a collection (or class) of objects.

Definition 3.1.2. Given a collection X of objects of a category \mathcal{C}. The minimum object of X, is the object M such that M admits a monomorphism to every other object in X, and if any other object in X admits a monomorphism to M then it is isomorphic to M.

It follows immediately from the definition that a minimum object of a collection is unique up to isomorphism. Since the empty graph is trivially a projective object and it admits the inclusion monomorphism to K_{1}, we must first remove it from the collection of projective objects under consideration. We are now ready to define the vertex object.

Definition 3.1.3. The vertex object, V_{O}, of a category \mathcal{C} is the minimum non-initial projective object.

Since the vertex object is a minimum object in the collection of non-initial projective objects, it is unique up to isomorphism. We can now give a categorial definition of a vertex of an object.

Definition 3.1.4. Given a category C with a vertex object V_{O}. A vertex of an object A in C is a morphism $v: V_{O} \rightarrow A$.

Finding an edge of a graph is more complex. So we consider the loop. The obvious choice to consider is K_{1}^{ℓ}. We will show in section 2 of this chapter that a morphism in Grpfs that sends the loop of K_{1}^{ℓ} to a vertex is not a monomorphism, and hence a monomorphism from K_{1}^{ℓ} into a graph will identify a loop in each category of graphs. In SiStGraphs, since the morphisms are strict, K_{2} admits a single morphism to K_{1}^{ℓ}, but in $\mathcal{G r p f s}, K_{2}$ admits two morphisms to K_{1}^{ℓ}. So we define a loop separately.

Definition 3.1.5. K_{1}^{ℓ} is the loop object in Grphs, SiStGrapfs, and SiLIStGrapfis

To give a categorial definition, we first notice that in the categories of graphs, there is a single morphism from $K_{1} \rightarrow K_{1}^{\ell}$ which is clearly not an isomorphism. However, in $\mathcal{G r p h s}, K_{1}$ admits such a morphism to an infinite number of one vertex graphs because multiple loops are allowed. So we will again use the idea of a minimum object. We will also require that the morphism K_{1} admits to K_{1}^{ℓ} to be a monomorphism. This is trivially the case in the categories of graphs, but this will allow the definition to exclude the zero object in abelian categories, an object which is both the initial object and terminal object.

Definition 3.1.6. Given a category \mathcal{C} with a vertex object V_{O}, the loop object, L_{O}, is the minimum object for which V_{O} admits a single monomorphism, $v_{\ell}: V_{O} \rightarrow L_{O}$, and $V_{O} \not \neq L_{O}$.

We can now give the categorial definition of a loop of an object.
Definition 3.1.7. Give a category \mathcal{C} with a loop object L_{O}, a loop of an object A is a monomorphism $\ell: L_{O} \rightarrow A$, and the vertex incident to the loop is the monomorphism $\ell \circ v_{\ell}$.

Now that we have the categorial definition of a loop, we can define a loopless object.
Definition 3.1.8. In a category \mathcal{C} an object A is loopless if when there is a loop object L_{O} there is no monomorphism $\ell: L_{O} \rightarrow A$.

If a category does not have a loop object, then all the objects of that category are vacuously loopless. We now consider a non-loop edge. The obvious object to consider in the categories of graphs is K_{2}, for as a graph K_{2} has two vertices, u and v, connected by a single edge, e. To view how it can identify an edge of a graph, consider a graph G in Grpfs with a non-loop edge a incident to vertices a_{1} and a_{2}. Then K_{2} admits two monomorphisms that send edge e to edge a, say $f, g: K_{2} \rightarrow G$ where $f(u)=a_{1}, f(v)=a_{2}, g(u)=a_{2}$, and $g(u)=a_{1}$. With this pair of monomorphisms we can identify the edge a, and with the inclusion of K_{1} into K_{2} we can identify the incident vertices a_{1} and a_{2} of edge a.

Definition 3.1.9. K_{2} is the edge object in Grpfs, SiStGraphs, and SiLLStGraphs

So to give a categorial definition of K_{2}, we first note that it has two vertices, and categorially that is described as $\sharp\left(h o m\left(K_{1}, K_{2}\right)\right)=2$. However in $\mathcal{G r p h s}$, there are an infinite number of non-isomorphic graphs with 2 vertices because multiple edges are allowed. However, if we consider the graphs with an edge connecting the two vertices, K_{2} is the minimum one. To be able to identify an edge in a set of multiple edges, we encapsulate the pair of monomorphisms to an edge by using the twist automorphism, $t w$, inherent to K_{2}.

Definition 3.1.10. Given a category C with coproducts and a vertex object V_{O}. The edge object, E_{O}, is the minimum object such that $\sharp\left(\operatorname{hom}\left(V_{O}, E_{O}\right)\right)=2, E_{O} \nexists V_{O}+V_{O}, E_{O}$ is loopless, and there exists an automorphism tw : $E_{O} \rightarrow E_{O}$ such that for the two distinct vertices $u, v: V_{O} \rightarrow E_{O}, t w \circ u=v$ and $t w \circ v=u$.

Figure 3.1: The Twist Automorphism, $t w$
We now define a non-loop edge of an object, as well as the incident vertices to the edge.

Definition 3.1.11. Given a category \mathcal{C} with an edge object E_{O}. A non-loop edge of an object $A, e=\left\langle e_{1}, e_{2}\right\rangle$, is a pair of distinct monomorphisms $e_{1}, e_{2}: E_{O} \rightarrow A$ such that $e_{2} \circ t w=e_{1}$ and $e_{1} \circ t w=e_{2}$.

Definition 3.1.12. Given an edge $e=\left\langle e_{1}, e_{2}\right\rangle$ of an object $A, e_{1}, e_{2}: E_{O} \rightarrow A$, in a category C, the vertices incident to e in A are $e_{1} \circ u$ and $e_{1} \circ v$ where u and v are the two distinct morphisms $u, v: V_{O} \rightarrow E_{O}$.

Now that we have a categorial definition of edges, both loop and non-loop edges, we can finally give a categorial definition of a strict morphism in a category.

Definition 3.1.13. Given a category \mathcal{C} with a vertex object V_{O}, a morphism $h: A \rightarrow B$ is strict when
(i): if there is an edge object E_{O} in \mathcal{C}, then for all edges $e=\left\langle e_{1}, e_{2}\right\rangle$ of A, there either exists an edge $\bar{e}=\left\langle\overline{e_{1}}, \overline{e_{2}}\right\rangle$ such that $h \circ e_{1}=\overline{e_{1}}$ and $h \circ e_{2}=\overline{e_{2}}$ or if there is also a loop object L_{O} in \mathcal{C}, then for all epimorphisms $\ell: E_{O} \rightarrow L_{O}$, there is a loop ℓ_{0} of B such that $h \circ e_{1}=\ell \circ \ell_{0}$ and $h \circ e_{2}=\ell \circ \ell_{0}$.
(ii): if there is a loop object, L_{O}, then for all loops ℓ_{0} of A, there exists a loop $\bar{\ell}_{0}$ of B such that $h \circ \ell_{0}=\bar{\ell}_{0}$.

In section 2 we will show that in $\mathcal{G r p h}$ fs the morphism that sends the edge of E_{O} to the single vertex in L_{O} is not an epimorphism. Then we can think of an epimorphism $\ell: E_{O} \rightarrow L_{O}$ as an edge to loop morphism that allows us to identify when a non-loop edge is sent to a loop.

3.2 Graph-like Objects in the Categories of Graphs

We now check our definitions in the categories of graphs to ensure that our definitions identify the correct graph objects. We begin with the vertex object in Grpfis.

Proposition 3.2.1. In Grpfs, K_{1} is the vertex object V_{O}.

Proof. We must show K_{1}, with vertex u, is projective, then show K_{1} admits a monomorphism to every other non-initial projective object, and then show that if a non-initial projective object admits a monomorphism to K_{1}, then it is an isomorphism.
By Proposition 1.5.6. part (i), any epimorphism is a surjective function on the vertex set. Let G and H be graphs in Grpfs with morphism $f: K_{1} \rightarrow G$ and epimorphism $g: H \rightarrow G$. Then since g is an epimorphism, $g_{V}: V(H) \rightarrow V(G)$ is a surjection. Hence for every vertex v of G, there is a vertex v^{\prime} of H such that $g\left(v^{\prime}\right)=v$.
Let $f(u)=w$. Then define $\bar{f}: K_{1} \rightarrow H$ by $\bar{f}(u)=w^{\prime}$. Then $g(\bar{f}(u))=g\left(w^{\prime}\right)=w=f(u)$ and $g \circ \bar{f}=f$. Hence K_{1} is projective.

We first note that \emptyset is the initial object of Grpfis. Let P be a projective object that is not the initial object. Since P is not the initial object, it contains at least one vertex, v. Then the inclusion morphism $i: K_{1} \rightarrow P$, with $i(u)=v$ is a monomorphism.

Now let Q be a non-initial projection with a monomorphism $m: Q \rightarrow K_{1}$. Since Q is non-initial, Q has a vertex x. Suppose P has another vertex $y, y \neq x$. Then consider the morphisms $f, g: K_{1} \rightarrow Q$ defined by $f(u)=x$ and $g(u)=y$. Then $f \neq g$ and $m \circ f=m \circ g$. This contradicts m being a monomorphism. Hence Q has only one vertex.

Now suppose Q has a loop ℓ. Then consider the morphisms $i d,\ulcorner x\urcorner: Q \rightarrow Q$ where $i d$ is the identity morphism and $\ulcorner x\urcorner$ is the morphism that sends all loops to the vertex x. Then $\ulcorner x\urcorner \neq i d$ and $m \circ\ulcorner x\urcorner=m \circ i d$. This contradicts m being a monomorphism. Hence Q is loopless and m is and isomorphism.

We now check the loop object and loops in Grpfs.

Proposition 3.2.2. In Grpfis

(i): the loop object L_{O} is K_{1}^{ℓ}.
(ii): given a loop p of a graph G, there is a unique monomorphism $\tilde{p}: K_{1}^{\ell} \rightarrow G$ such that $\tilde{p}(\ell)=p$, and given a monomorphism $\tilde{q}: K_{1}^{\ell} \rightarrow G$, a loop q of G is identified.

Proof. Part (i): Let v_{ℓ} be the vertex of K_{1}^{ℓ} and ℓ be the loop. V_{O} only admits a single
morphism to K_{1}^{ℓ}, the inclusion morphism which is a monomorphism but not an isomorphism. Let G be a graph such that V_{O} admits only a single monomorphism to G and it is not an isomorphism. We must show that K_{1}^{ℓ} admits a monomorphism to G.
Since all morphisms from V_{O} are monomorphisms in $\mathcal{G r p f s}, V_{O}$ admits only a single morphism to G and G has only a single vertex u. Since G is not isomorphic to V_{O}, G must contain a loop a. Then K_{1}^{ℓ} admits an inclusion monomorphism into G.

Now let H be a graph such that V_{O} only admits a single monomorphism to H which is not an isomorphism, with a monomorphism $m: H \rightarrow K_{1}^{\ell}$. Similarly to G, H has a single vertex v and at least one loop b. Suppose it has another loop c.

Consider $f, g: K_{1}^{\ell} \rightarrow H$ defined by $f\left(v_{\ell}\right)=v, f(\ell)=b, g\left(v_{\ell}\right)=v$, and $g(\ell)=c$. Then $f \neq g$, but $m \circ f=m \circ g$, a contradiction to m being a monomorphism. Hence H has only a single loop and m is clearly an isomorphism to K_{1}^{ℓ}.
Part (ii): Let p be a loop in G incident to a vertex u. Then the morphism $\tilde{p}: K_{1}^{\ell} \rightarrow G$ defined by $\tilde{p}\left(v_{\ell}\right)=u$ and $\tilde{p}(\ell)=p$ suffices. To show it is unique, consider another such monomorphism $\tilde{\tilde{p}}: K_{1}^{\ell} \rightarrow G$ such that $\tilde{\tilde{p}}(\ell)=p$. Since p is incident to u and incidence must be preserved, $\tilde{\tilde{p}}\left(v_{\ell}\right)=u$ and $\tilde{\tilde{p}}=\tilde{p}$.

Now let a \tilde{q} be a monomorphism $\tilde{q}: K_{1}^{\ell} \rightarrow G$. Since vertices must be sent to vertices, $\tilde{q}\left(v_{\ell}\right)=v$ for some $v \in V(G)$. We then show that the morphism $f: K_{1}^{\ell} \rightarrow G$ defined by $f\left(v_{\ell}\right)=v$ and $f(\ell)=v$ is not a monomorphism. Consider the morphism $i d,\left\ulcorner v_{\ell}\right\urcorner: K_{1}^{\ell} \rightarrow K_{1}^{\ell}$ where $i d$ is the identity morphism and $\left\ulcorner v_{\ell}\right\urcorner$ is the morphism defined by $\left\ulcorner v_{\ell}\right\urcorner\left(v_{\ell}\right)=v_{\ell}$ and $\left\ulcorner v_{\ell}\right\urcorner(\ell)=v_{\ell}$. Then $i d \neq\left\ulcorner v_{\ell}\right\urcorner$, but $f \circ i d=f \circ\left\ulcorner v_{\ell}\right\urcorner$. Hence f is not a monomorphism. The only other morphism K_{1}^{ℓ} admits is to map ℓ to a loop b incident to v in G.

We now check the edge object and edge of an object definitions in Grpfis.
Proposition 3.2.3. In Grpfis
(i): the edge object E_{O} is K_{2}.
(ii): given a non-loop edge, a, of a graph G, there is a unique pair of distinct monomorphisms $\tilde{a}=\left\langle\tilde{a}_{1}, \tilde{a}_{2}\right\rangle$ such that $\tilde{a}_{1}(e)=\tilde{a}_{2}(e)=a, \tilde{a}_{1} \circ t w=\tilde{a}_{2}$, and $\tilde{a}_{1}=\tilde{a}_{2} \circ t w$, and given a pair of
distinct monomorphisms $\tilde{b}=\left\langle\tilde{b}_{1}, \tilde{b}_{2}\right\rangle$ such that $\tilde{b}_{1} \circ t w=\tilde{b}_{2}$ and $\tilde{b}_{1}=\tilde{b}_{2} \circ t w$, a non-loop edge b is identified.

Proof. Part (i): Clearly $\sharp\left(\operatorname{hom}\left(V_{O}, K_{2}\right)\right)=2, K_{2}$ is loopless, and $K_{2} \nsupseteq V_{O}+V_{O} \cong K_{2}^{c}$. Let $u: K_{1} \rightarrow K_{2}$ and $v: K_{1} \rightarrow K_{2}$ be the two distinct vertices of K_{2} and let e be the edge incident to both u and v. Then $t w: K_{2} \rightarrow K_{2}$ defined by $t w(u)=v, t w(v)=u$ and $t w(e)=e$ suffices as the $t w$ automorphism. Now let G be a graph such that $\sharp\left(\operatorname{hom}\left(V_{O}, G\right)\right)=2, G$ is loopless, $G \not \equiv K_{2}^{c}$, and for the two distinct morphisms $x, y: K_{1} \rightarrow G$, there is an automorphism $t w_{G}$ such that $t w_{G} \circ x=y$ and $t w_{G} \circ y=x$. We must show K_{2} admits a monomorphism to G. Since G is loopless, and $G \not \not K_{2}^{c}$, the is an edge a of G incident to both x and y. Then K_{2} admits an inclusion monomorphism $i: K_{2} \rightarrow G$ defined by $i(u)=x, i(v)=y$, and $i(e)=a$.

Now let H be a graph such that $\sharp(\operatorname{hom}(V, H))=2, H$ is loopless, $H \not \not K_{2}^{c}$, for the two distinct morphisms $x, y: K_{1} \rightarrow H$, there is an automorphism $t w_{H}$ such that $t w_{H} \circ x=y$ and $t w_{H} \circ y=x$, and H admits a morphism $m: H \rightarrow K_{2}$. Since H is loopless and $H \not \neq K_{2}^{c}, H$ has an edge a incident to both x and y. Suppose H has another edge b. Consider the morphisms $f, g: K_{2} \rightarrow H$ defined by $f(u)=x, f(v)=y, f(e)=a, g(u)=x, g(v)=y$, and $g(e)=b$. Then $f \neq g$ but $m \circ f=m \circ g$ which contradicts m being a monomorphism. Hence there is only one edge in H and m is an isomorphism.

Part (ii): Let a be a non-loop edge incident to x and y in G. The pair of monomorphism $\tilde{a}=\left\langle\tilde{a}_{1}, \tilde{a}_{2}\right\rangle$ with $\tilde{a}_{1}, \tilde{a}_{2}: K_{2} \rightarrow G$ defined by $\left.\tilde{a}_{1}(u)=x, \tilde{a}_{1}(v)=y, \tilde{a}_{1}(e)=a, \tilde{a}_{2}^{(} u\right)=y$, $\tilde{a}_{2}(v)=x$, and $\tilde{a}_{2}(e)=a$ suffices. To show it is unique, suppose there were another pair of distinct monomorphisms $\tilde{\tilde{a}}=\left\langle\tilde{\tilde{a}}_{1}, \tilde{\tilde{a}}_{2}\right\rangle$ with $\tilde{\tilde{a}}_{1}, \tilde{\tilde{a}}_{2}: K_{2} \rightarrow G$ such that $\tilde{\tilde{a}}_{1}(e)=\tilde{\tilde{a}}_{2}(e)=a$. Then since vertices are sent to vertices and incidence is preserved, $\tilde{\tilde{a}}_{1}(u)$ is sent to either x or y. Without loss of generality, $\tilde{\tilde{a}}_{1}(u)=x$. Then $\tilde{\tilde{a}}_{1}(v)=y$ and since $\tilde{\tilde{a}}_{1}$ and $\tilde{\tilde{a}}_{2}$ are distinct, $\tilde{\tilde{a}}_{2}(u)=y$ and $\tilde{\tilde{a}}_{2}(v)=x$. Hence $\tilde{a}_{1}=\tilde{\tilde{a}}_{1}$ and $\tilde{a}_{2}=\tilde{\tilde{a}}_{2}$.
Let $\tilde{b}=\left\langle\tilde{b}_{1}, \tilde{b}_{2}\right\rangle$ be a pair of distinct monomorphisms $\tilde{b}_{1}, \tilde{b}_{2}: K_{2} \rightarrow G$ such that $\tilde{b}_{1} \circ t w=\tilde{b}_{2}$ and $\tilde{b}_{1}=\tilde{b}_{2} \circ t w$. Since vertices must be mapped to vertices, there are vertices x and y in G such that $\tilde{b}_{1}(u)=x$ and $\tilde{b}_{1}(v)=y$. Since $\tilde{b}_{1} \circ t w=\tilde{b}_{2}, \tilde{b}_{2}(u)=y$ and $\tilde{b}_{2}(v)=x$.

Suppose $x=y$. Then since \tilde{b}_{1} and \tilde{b}_{2} are distinct and $\tilde{b}_{1}(u)=\tilde{b}_{1}(v)=\tilde{b}_{2}(u)=\tilde{b}_{2}(v)$, $\tilde{b}_{1}(e)=a$ and $\tilde{b}_{2}(e)=b$ for two distinct loops a and b in G. However, $\tilde{b}_{1}(t w(e))=\tilde{b}_{1}(e) \neq \tilde{b}_{2}(e)$, a contradiction. Hence x and y are distinct. Then since incidence must be preserved, there is a non-loop edge b in G such that $\tilde{b}_{1}(e)=b$. Then $b=\tilde{b}_{1}(e)=\tilde{b}_{1}(t w(e))=\tilde{b}_{2}(e)$, and b is identified.

These propositions are what we should expect. Next we check that the strict graph homomorphisms of Grphs are strict morphisms in the categorial sense.

Proposition 3.2.4. In Grphs, $f: G \rightarrow H$ is a strict graph homomorphism if and only if it is strict morphism (in the categorial sense).

Proof. Let $f: G \rightarrow H$ be a strict graph homomorphism. We first prove there is one epimorphism el $: K_{2} \rightarrow K_{1}^{\ell}$ defined by $e l(u)=e l(v)=v_{\ell}$ and $e l(e)=\ell$. By inspection, the only other morphism from K_{2} to K_{1}^{ℓ} is $\left\ulcorner v_{\ell}\right\urcorner$ defined by $\left\ulcorner v_{\ell}\right\urcorner(u)=\left\ulcorner v_{\ell}\right\urcorner(v)=\left\ulcorner v_{\ell}\right\urcorner(e)=v_{\ell}$. Consider the morphisms $i d, g: K_{1}^{\ell} \rightarrow K_{1}^{\ell}$ where $i d$ is the identity morphism and g is defined by $g(\ell)=g\left(v_{\ell}\right)=v_{\ell}$. Then $i d \neq g$, but $i d \circ\left\ulcorner v_{\ell}\right\urcorner=g \circ\left\ulcorner v_{\ell}\right\urcorner$. Hence $\left\ulcorner v_{\ell}\right\urcorner$ is not an epimorphism.

If G contains no edges, then this is a vacuously true statement. So let a be a non-loop edge of G incident to vertices x and y. Then by Proposition 3.2.3. (ii), there is a unique pair of distinct monomorphisms $\tilde{a}=\left\langle\tilde{a}_{1}, \tilde{a}_{2}\right\rangle$ from K_{2} such that $\tilde{a}_{1}(e)=\tilde{a}_{2}(e)=a$. Since vertices must be mapped to vertices, without loss of generality $\tilde{a}_{1}(u)=x=\tilde{a}_{2}(v)$ and $\tilde{a}_{1}(v)=y=\tilde{a}_{2}(u)$. Since edges must be mapped to edges by a strict graph homomorphism, $f(a)=b$ for some edge b in H.

Suppose b is a non-loop edge incident to distinct vertices x^{\prime} and y^{\prime} such that $f(x)=x^{\prime}$ and $f(y)=y^{\prime}$. Then since b is a non-loop edge of H there exists a unique pair of distinct monomorphisms $\tilde{b}=\left\langle\tilde{b}_{1}, \tilde{b}_{2}\right\rangle$ from K_{2} such that $\tilde{b}_{1}(e)=\tilde{b}_{2}(e)=b$. Since vertices must be mapped to vertices and incidence preserved, without loss of generality $\tilde{b}_{1}(u)=\tilde{b}_{2}(v)=x^{\prime}$ and $\tilde{b}_{1}(v)=\tilde{b}_{2}(u)=y^{\prime}$. Then $\tilde{b}_{1}=f \circ \tilde{a}_{1}$ and $\tilde{b}_{2}=f \circ \tilde{a}_{1}$ as desired.
Suppose b is a loop incident to vertex $x^{\prime}=f(x)=f(y)$ in H. Then by Proposition 3.2.2. (ii)
there is a unique monomorphism $\tilde{b}: K_{1}^{\ell} \rightarrow H$ such that $\tilde{b}(\ell)=b$. Since incidence is preserved, $\tilde{b}\left(v_{\ell}\right)=x^{\prime}$. Since $e l$ is uniquely defined above, clearly $\tilde{b} \circ e l=f \circ \tilde{a}_{1}$ and $\tilde{b} \circ e l=f \circ \tilde{a}_{2}$, as desired.

Now let a be a loop of G incident to a vertex x. Then by Proposition 3.2.2. (ii) there is a unique monomorphism $\tilde{a}: K_{1}^{\ell} \rightarrow G$ such that $\tilde{a}(\ell)=a$. Since incidence is preserved, $\tilde{a}\left(v_{\ell}\right)=x$. Since edges must be sent to edges and incidence preserved, there is a loop b in H incident to a vertex x^{\prime} such that $f(a)=b$ and $f(x)=x^{\prime}$. Then since b is a loop of H there is a unique monomorphism $\tilde{b}: K_{1}^{\ell} \rightarrow H$ such that $\tilde{b}(\ell)=b, \tilde{b}\left(v_{\ell}\right)=x^{\prime}$. Then $f \circ \tilde{a}=\tilde{b}$ as desired.

Conversely, let $f: G \rightarrow H$ by a strict morphism in $\mathcal{G r p f i s}$. If G contains no edges, then by Proposition 3.2.2. (ii) and Proposition 3.2.3. (ii) there is no monomorphism to G from K_{2} or K_{1}^{ℓ} and the result is a vacuously true statement. So let a be an edge of G.
If a is a non-loop edge, then by Proposition 2.3.3. (ii) there is a unique pair of distinct monomorphisms $\tilde{a}=\left\langle\tilde{a}_{1}, \tilde{a}_{2}\right\rangle$ from K_{2} such that $\tilde{a}_{1}(e)=\tilde{a}_{2}(e)=a$. Since f is a strict morphism and a is a non-loop edge, there is either a pair of distinct monomorphisms $\tilde{b}=\left\langle\tilde{b}_{1}, \tilde{b}_{2}\right\rangle$ from K_{2} such that $f \circ \tilde{a}=\tilde{b}_{1}$ and $f \circ \tilde{a}_{2}=\tilde{b}_{2}$ or a monomorphism $\tilde{\tilde{b}}$ from K_{1}^{ℓ} such that $f \circ \tilde{a}_{1}=\tilde{\tilde{b}}$ and $f \circ \tilde{a}_{2}=\tilde{\tilde{b}}$.

In the first case, by Proposition 3.2.3. (ii) \tilde{b} identifies a non-loop edge b in H such that $f(\tilde{a}(e))=f(a)=\tilde{b}_{1}(a)=b$ and f sent an edge to an edge. In the second case by Proposition 3.2.2. (ii) $\tilde{\tilde{b}}$ identifies a loop b in H such that $f(\tilde{a}(e))=\tilde{\tilde{b}}(\ell)=b$, and f sent an edge to a loop. Hence f sends non-loop edges to edges.

Now let a be a loop of G. By Proposition 3.2.2. (ii) there is a unique monomorphism \tilde{a} from K_{1}^{ℓ} such that $\tilde{a}(\ell)=a$. Since f is a strict morphism, there is a monomorphism $\tilde{b}: K_{1}^{\ell} \rightarrow H$ such that $f \circ \tilde{a}=\tilde{b}$. By Proposition 3.2.2. (ii) \tilde{b} identifies a loop b in H such that $\tilde{b}(\ell)=b$. Hence $f(\tilde{a}(\ell))=f(a)=\tilde{b}(\ell)=b$ and f sends loops to loops. Hence f is a strict graph homomorphism.

We now check that these definitions of categorial graph-like objects are the correct objects in SiStGrapfs.

Proposition 3.2.5. In SiStGraphs

(i) the vertex object V_{O} is K_{1}.
(ii) the loop object L_{O} is K_{1}^{ℓ}.
(iii) given a loop p of a graph G, there is a unique monomorphism $\tilde{p}: K_{1}^{\ell} \rightarrow G$ such that $\tilde{p}(\ell)=p$, and given a monomorphism $\tilde{q}: K_{1}^{\ell} \rightarrow G$, a loop q of G is identified.
(iv) the edge object E_{O} is K_{2}.
(v) given a non-loop edge, a, of a graph G, there is a unique pair of distinct monomorphisms $\tilde{a}=\left\langle\tilde{a}_{1}, \tilde{a}_{2}\right\rangle$ such that $\tilde{a}_{1}(e)=\tilde{a}_{2}(e)=a$, and $\tilde{a}_{1} \circ t w=\tilde{a}_{2}$ and $\tilde{a}_{1}=\tilde{a}_{2} \circ t w$, and given a pair of distinct monomorphisms $\tilde{b}=\left\langle\tilde{b}_{1}, \tilde{b}_{2}\right\rangle$ such that $\tilde{b}_{1} \circ t w=\tilde{b}_{2}$ and $\tilde{b}_{1}=\tilde{b}_{2} \circ t w$, a non-loop edge b is identified.

Proof. Part (i): By Theorem 2.5.3. the non-initial projective objects of SiStGrapfis are K_{n}^{c} for $n \geq 1$. Clearly K_{1} admits a monomorphism to every K_{n}^{c} with $n \geq 1$. The rest of the proof follows similarly to the proof of Proposition 3.2.1.

Part (ii): Since K_{1} admits more than one monomorphism to all graphs with two or more vertices, and since K_{1} does not admit a morphism to \emptyset, K_{1} admits only a single morphism to graphs with 1 vertex. There are only two non-isomorphic graphs with 1 vertex in SiStGrapfs, K_{1} and K_{1}^{ℓ}. Hence K_{1}^{ℓ} is the only object that K_{1} admits a single monomorphism to that is not an isomorphism. Thus K_{1}^{ℓ} is trivially the minimum such object.

Part (iii): Since SiStGraphs is a subcategory of Grpfs, the proof follows from Proposition 3.2.2. (ii).

Part (iv): Since K_{2} is the only loopless graph with $\sharp\left(\operatorname{hom}\left(K_{1}, K_{2}\right)\right)=2$ that is not isomorphic to $K_{1}+K_{1}=K_{2}^{c}$, it is trivially the minimum such object. The proof K_{2} has the $t w$ automorphism follows similar to proof in Proposition 3.2.3. (i).

Part (v): Since SiStGraphs is a subcategory of Grphs, the proof follows from Proposition 3.2.3. (iii).

Corollary 3.2.6. The morphisms of SiStGraphs are strict morphisms (in the categorial sense).

Proof. Since the vertex object, the loop object, and the edge object of SiStGraphs are the same as those in Grpfs, and since all morphism are strict graph homomorphisms in SiStGrapfs, the result follows from Proposition 3.2.4.

We now check our definitions are the correct objects in SiLIStGraphs.

Proposition 3.2.7. In SiLIStGrapfis

(i) the vertex object V_{O} is K_{1}.
(ii) there is no loop object L_{O}.
(iii) the edge object E_{O} is K_{2}.
(iv) given a non-loop edge, a, of a graph G, there is a unique pair of distinct monomorphisms $\tilde{a}=\left\langle\tilde{a}_{1}, \tilde{a}_{2}\right\rangle$ such that $\tilde{a}_{1}(e)=\tilde{a}_{2}(e)=a$, and $\tilde{a}_{1} \circ t w=\tilde{a}_{2}$ and $\tilde{a}_{1}=\tilde{a}_{2} \circ t w$, and given a pair of distinct monomorphisms $\tilde{b}=\left\langle\tilde{b}_{1}, \tilde{b}_{2}\right\rangle$ such that $\tilde{b}_{1} \circ t w=\tilde{b}_{2}$ and $\tilde{b}_{1}=\tilde{b}_{2} \circ$ tw, a non-loop edge b is identified.

Proof. The proofs of parts (i), (iii), and (iv) follow similarly to those in Proposition 3.2.5.
Part (ii): The only graph in SiLLStGrapfs that K_{1} admits a single morphism to is K_{1}. Hence no loop object exists.

Corollary 3.2.8. The morphisms of SiLIStGraphs are strict morphisms (in the categorial sense).

Proof. Since the morphisms of SiLLStGraphs are strict graph homomorphisms, and the vertex object and edge object of SiLIStGrapfis are the same as those in Grpfis, the result follows from Proposition 3.2.4.

We then see that in each of our defined categories of graphs, the categorial definitions of the graph-like objects correctly identify graph objects.

3.3 Graph-like Objects in Other Categories

We now investigate our categorial definitions of graph-like objects in Sets and $\mathfrak{A b}$. We will start with Sets. First note that epimorphisms are surjections and monomorphisms are injections in Sets (for proof, see page $19[12]$). We will require the following lemma.

Lemma 3.3.1. Every object is projective in Sets.

Proof. Since \emptyset is the initial object of sets, \emptyset is projective. Let X be a non-empty set, we will show X is projective. Let Y and Z be sets with a function $f: X \rightarrow Y$ and a surjection $g: Z \rightarrow Y$.

Since g is a surjection, for every $y \in Y$, there is a $y^{\prime} \in Z$ such that $g\left(y^{\prime}\right)=y$ (use the Axiom of Choice). Then define a function $\bar{f}: X \rightarrow Z$ by $\bar{f}(x)=y^{\prime}$ for $f(x)=y$. Then $f=g \circ \bar{f}$.

We can now view our graph-like objects in Sets.

Proposition 3.3.2. In Sets

(i) 1, the one element set, is the vertex object.
(ii) there is no loop object.
(iii) there is no edge object.
(iv) all morphisms are strict.

Proof. Part (i): By Lemma 3.3.1., we must show 1 is the minimum non-initial set. Clearly there is an injection from 1 into any other non-empty set. Now let Y be a non-empty set such that $f: Y \rightarrow \mathbf{1}$ is a injection. Suppose Y has two or more elements. Then let $x, y \in Y$ be distinct. Since 1 has only one element, $f(x)=f(y)$. Sine f is an injection, $x=y$, a contradiction. Hence Y is a one element set and $\mathbf{1} \cong Y$.

Part (ii): Since $\sharp(\operatorname{hom}(\mathbf{1}, X))=\sharp(X)$ and every function from $\mathbf{1}$ is an injection, no loop object exists.

Part (iii): Since coproducts are disjoint union in Sets, [12], $\mathbf{1}+\mathbf{1}$ is a two element set. Since all two element sets are isomorphic in Sets, and $\sharp(\operatorname{hom}(\mathbf{1}, X))=\sharp(X)$, no edge object exists.

Part (iv): This result follows vacuously since there is no loop object nor edge object.

We see then, for a set X, the "graph" of X is just an empty edge graph with the vertex set X. We now move onto $\mathfrak{A b}$. We first note a widely known result. An abelian group is projective if and only if it is free (for a proof see [10] pg. 48). Furthermore free abelian groups are isomorphic to a direct product of the integers \mathbb{Z} under addition, and given an element, x, of a free abelian group, x can be written uniquely as a linear combination of the generators (with coefficients from \mathbb{Z}). We also note that in $\mathfrak{A b}$, monomorphisms are injections and epimorphisms are surjections (for a proof see [12] pg. 24).

Proposition 3.3.3. In $\mathfrak{A b}$

(i) the group $(\mathbb{Z},+)$ is the vertex object.
(ii) there is no loop object.
(iii) there is no edge object.
(iv) all morphisms are strict.

Proof. Part (i): We first note that the initial object is the zero object in $\mathfrak{A b}$, the trivial group. Let F be a non-initial free abelian group. Then there is a generator $x \in F$, and $f: \mathbb{Z} \rightarrow F$ defined by $f(1)=x$ is an injection.

Now let F be a non-initial free abelian group with an injection $m: F \rightarrow \mathbb{Z}$. Suppose F has two distinct generators x and y. Then since m is an injection $m(x) \neq m(y)$. Let $m(x)=k$ and $m(y)=n$ for some integers $k \neq n$. Then $m(n * x)=n * m(x)=k * m(y)=m(k * y)$. Since m is an injection, $n * x=k * y$ and the element $n * x$ is not uniquely represented, a contradiction to F being free. Hence $m(x)=m(y)$ and since m is an injection $x=y$. Then F is generated by one element and $F \cong \mathbb{Z}$.

Part (ii): Suppose G is an abelian group for which \mathbb{Z} admits a only single injection $f: \mathbb{Z} \rightarrow G$ and $G \not \equiv \mathbb{Z}$. Supposed $f(1)=x$ for some $x \in G$. Then $\langle x\rangle$, the subgroup of G generated by
x, is isomorphic to \mathbb{Z}.
Now consider $g: \mathbb{Z} \rightarrow\langle x\rangle$ defined by $g(1)=2 * x$. Let $a, b \in \mathbb{Z}$ such that $g(a)=g(b)$, then $2 a * x=2 b * x$. Since $\langle x\rangle \cong \mathbb{Z}, x$ is not a torsion element and $2 a=2 b$. Thus $a=b$, and g is an injection. Since the inclusion morphism $i:\langle x\rangle \hookrightarrow G$ is an injection, $i \circ g: \mathbb{Z} \rightarrow G$ is an injection. Hence \mathbb{Z} admits two injections to G, a contradiction. Hence no loop object exists.
Part (iii): Let G be an abelian group for which \mathbb{Z} admits only two distinct group homomorphisms $f, g: \mathbb{Z} \rightarrow G$. Since $\ulcorner e\urcorner: \mathbb{Z} \rightarrow G$, the morphism which maps all elements to the identity, e, of G, is always a group homomorphism, without loss of generality let $f=\ulcorner e\urcorner$. Since $g \neq f$ there is an element $x \in G$ such that $g(1)=x$. Since automorphisms of G are a group homomorphisms, and group homomorphisms must send e to e, there is no automorphism $t w$, such that $t w \circ f=g$. Hence there is no edge object.
Part (iv): As with Sets, this follows vacuously since there is no loop object or edge object.

We end this chapter with an interesting note about the vertex object of $\mathfrak{A b}$. Since \mathbb{Z} has a group homomorphism $x: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $x(1)=x$ for every element $x \in \mathbb{Z}$, i.e. each x is a "vertex" of the object \mathbb{Z} in the category $\mathfrak{A b}$; and there are no "edges" of the object \mathbb{Z} in the category $\mathfrak{A b}$. This gives the following "graph" of \mathbb{Z}.

Figure 3.2: The "Graph" of $(\mathbb{Z},+)$

Chapter 4

Reflective and Coreflective
 Subcategories of Graph Categories

4.1 The Theory of Reflective and Coreflective Subcategories

We finally look at the relationships of our Categories of Graphs. We first develop the theory of reflective and co-reflective subcategories following [12] pg. 90 and [9] pg. 275. We first define a reflective subcategory.

Definition 4.1.1. A subcategory \mathcal{A} of \mathcal{B} is a reflective subcategory if the inclusion functor $I: \mathcal{A} \hookrightarrow \mathcal{B}$ has a left adjoint $R: \mathcal{B} \leadsto \mathcal{A}, R \dashv I$. We call the functor R a reflector.

Dually we defined a coreflective subcategory.

Definition 4.1.2. A subcategory \mathcal{A} of \mathcal{B} is a co-reflective subcategory if the inclusion functor $I: \mathcal{A} \hookrightarrow \mathcal{B}$ has a right adjoint $C: \mathcal{B} \leadsto \mathcal{A}, I \dashv C$. We call the functor C a co-reflector.

Our first theorem states that adjoints imply continuity, i.e. colimits commute with left adjoints and limits commute with right adjoints. Mac Lane calls this "the most useful property of adjoints", [12, p. 114].

Theorem 4.1.3. Let \mathcal{A} and \mathcal{B} be categories with functors $G: \mathcal{A} \rightarrow \mathcal{B}$ and $F: \mathcal{B} \rightarrow \mathcal{A}$ such that F is left adjoint to $G, F \dashv G$, then
(i) F is right continuous, i.e. for ${\underset{\sim}{L}}_{D}(-)$ the colimit of a diagram $D, F\left({\underset{\sim}{L}}_{D}(-)\right)=$ $\underline{L}_{D}(F(-))$.
(ii) G is right continuous, i.e. for ${\underset{L}{L}}_{D}(-)$ the limit of a diagram $D, G\left({\underset{L}{L}}_{D}(-)\right)={\underset{L}{L}}(G(-))$.

We then apply the theorem to reflective and coreflective subcategories.
Corollary 4.1.4. (i) If \mathcal{A} is a reflective subcategory of \mathcal{B}, then $R \circ{\underset{\sim}{L}}_{D}={\underset{\rightarrow}{L}}_{D} \circ R$ and $I \circ{\underset{L}{L}}_{D}={\underset{L}{L}}_{D} \circ I$.
(ii) If \mathfrak{A} is a coreflective subcategory of \mathcal{B}, then $C \circ \underline{L}_{D}=\underline{L}_{D} \circ C$ and $I \circ \underline{L}_{D}=\underline{L}_{D} \circ I$.

We call a category complete when it has all limits, and cocomplete when it has all colimits. Then as a consequence of Corollary 4.1.4. we get the following two theorems and corollaries (see chapter 10 of Herrlich and Strecker [9]).

Theorem 4.1.5. If \mathfrak{A} is reflective in \mathcal{B}, then \mathfrak{A} is closed under limits in \mathcal{B}.

Corollary 4.1.6. Reflective subcategories of complete categories are complete.

Theorem 4.1.7. If \mathfrak{A} is reflective in \mathcal{B} with reflector R, then the colimit, ${\underset{\rightarrow}{D}}_{D}$, in \mathcal{A} is the reflection of the colimit in $\mathcal{B}, R\left(\underline{L}_{D}\right)$.

Corollary 4.1.8. Reflective subcategories of cocomplete categories are cocomplete.

Dually we also have the following two theorems and corollaries.

Theorem 4.1.9. If \mathcal{A} is coreflective in \mathcal{B}, then \mathfrak{A} is closed under colimits in \mathcal{B}.

Corollary 4.1.10. Coreflective subcategories of cocomplete categories are cocomplete.

Theorem 4.1.11. If \mathfrak{A} is coreflective in \mathcal{B} with coreflector C, then the limit, \underline{L}_{D}, in \mathfrak{A} is the reflection of the limit in $\mathcal{B}, C\left({\underset{L}{L}}_{D}\right)$.

Corollary 4.1.12. Coreflective subcategories of complete categories are complete.

4.2 Relationships in the Categories of Graphs

The results in this section are new results. We now investigate the relationships of the Categories of Graphs we use in this paper. We have the containment SiLLStGraphs \hookrightarrow SiStGrapfs \hookrightarrow Grpfis. Are any of these subcategories reflective or coreflective? We answer this question by first investigating SiLLStGrapfs \hookrightarrow SiStGrapfs.

Proposition 4.2.1. SiLIStGraphs is neither a reflective nor coreflective subcategory of SiStGrapfs.

Proof. Since the limit, the terminal object, does not exist in SiLIStGraphs, then by the contrapositive to Theorem 4.1.5. SiLIStGrapfis is not a reflective subcategory of SiStGrapfs. Since the colimit, the coequalizer, does not exist in SiLLStGrapfs, then by the contrapositive to Theorem 4.1.9., SiLIStGraphs is not a coreflective subcategory of SiStGrapfs.

Since coequalizers exist in Grpfs and the terminal object exists in Grpfs, the same proof yields the following proposition.

Proposition 4.2.2. SiLLStGrapfs is neither a reflective nor coreflective subcategory of Grphs.

Lastly we investigate SiStGrapfis \hookrightarrow Grpfs.

Proposition 4.2.3. SiStGraphs is not a reflective or coreflective subcategory of Grpfis

Proof. Suppose SiStGraphs is a reflective subcategory of Grpfis with reflector R. Then by Theorem 4.1.7. the terminal object of SiStGrapfis is a reflection of the terminal object in Grpfs. Since every graph in Grpfs admits a unique morphism to K_{1} where every vertex and edge is mapped to the single vertex, K_{1} is the terminal object of $\mathcal{G r p h s}$. Hence $R\left(K_{1}\right)=K_{1}^{\ell}$.

Since $R \dashv I$, where I is the inclusion functor, $\operatorname{hom}_{\text {Sistgraphs }}\left(R\left(K_{1}\right), K_{2}\right) \cong \operatorname{hom}_{\mathcal{G r p h s}}\left(K_{1}, I\left(K_{2}\right)\right)$. Since $R\left(K_{1}\right)=K_{1}^{\ell}, \sharp\left(\operatorname{hom}_{\text {Sistgraphs }}\left(R\left(K_{1}\right), K_{2}\right)\right)=0$. Since $I\left(K_{2}\right)=K_{2}, \sharp\left(\operatorname{hom}_{\text {Grpfss }}\left(K_{1}, I\left(K_{2}\right)\right)\right)=$ 2. Then no such bijection exists, a contradiction. Hence SiStGraphs is not a reflective subcategory of Grphs.

Now suppose SiStGrapfs is a coreflective subcategory of Grpfs with coreflector C. In Grpfis, since K_{1} is the terminal object, $K_{1} \times K_{2}=K_{2}$. Then by Theorem 4.1.11. in SiLlStGrapfis, $C\left(K_{1} \times K_{2}\right)=K_{1} \times K_{2}=K_{2}^{c}$. Then since $I \dashv C$, where I is the inclusion functor, $\operatorname{hom}_{\text {Grphs }}\left(I\left(K_{2}\right), K_{1} \times K_{2}\right) \cong \operatorname{hom}_{\text {SistGraphs }}\left(K_{2}, C\left(K_{1} \times K_{2}\right)\right)$. But $\sharp\left(\operatorname{hom}_{\text {Grphts }}\left(I\left(K_{2}\right), K_{1} \times K_{2}\right)\right)=4$ and $\sharp\left(\operatorname{hom}_{\text {Sistgraphs }}\left(K_{2}, C\left(K_{1} \times K_{2}\right)\right)\right)=0$, a contradiction. Hence SiStGrapfs is not a coreflective subcategory of Grpfis.

We finish this chapter by looking at an overview of the categories of graphs. We form a "Hasse Diagram" using the inclusion functors of 6 categories of graphs (as well as the Category of Sets and Functions viewed as a category of edgeless graphs). In the following diagram \mathcal{G} stands for $\mathcal{G r p f i s}$ while the modifiers $\mathcal{S i}, \mathcal{L l}$, and St stand for the restrictions of simple, loopless, and strict respectively. The functors represented by dashed arrows are adjoints to the inclusion functor.

Figure 4.1: The Categories of Graphs

The functor $S_{1}:$ Grpfis \sim SiLLGrapfs is the simplification functor that removes loops (i.e. collapses loops to their incident vertex) and identifies multiple edges as a single edge. S_{1} is left adjoint to inclusion and, as such, SiLIGrapfis is a reflective subcategory of Grpfs. The functor $S_{2}:$ StGrapfis \sim SiStGraphs is the simplification functor that identifies loops as a single loop and multiple edges as a single edge. S_{2} is left adjoint to inclusion and, as such, SiStGraphs is a reflective subcategory of StGrapfs. We last note that if we consider Sets as the empty edge graphs, $|-|_{V}:$ Grpfis \sim Sets is right adjoint to inclusion and, as such, Sets is a coreflective subcategory of Grphs.

Chapter 5

Conclusion

We have discovered that SiLIStGraphs lacks many categorial constructions, and our investigation into SiStGrapfs gives us a glimpse as to why. If in a graph category, there is no morphism to a graph obtained by identifying vertices, many categorial constructions such as quotient graphs, coequalizers, and injective objects do not exist. However, we do find that both SiLLStGraphs and SiStGraphs do not have a subobject classifier, and therefore are not topoi.

Keeping the goal of an axiomatization of the categories of graphs in mind, we see that the categorial objects inherent in both SiStGraphs and SiLIStGraphs are necessary conditions that must be satisfied. With the categorial definitions of graph-like objects, and especially strict morphisms, we have a categorial way of differentiating between Grphs, SiStGrapfis and SiLIStGrapfis.

However, our list of necessary conditions is not a list of sufficient conditions. A further area of study would be to expand our list until an independent sufficient list of conditions is found.

We discovered that SiStGrapfs and SiLIStGraphs are not reflective or coreflective subcategories of Grphis. Another area of study would be to find reflective and coreflective subcategories of Grpfis which will inherit much of the structure of Grpfis.

Appendix A

Primer of Category Theory

Here you will find the definitions for all the categorial constructions used in this paper that were not included in the main body. We follow the format of [4] .

Definition A.0.4. An object $\mathbf{0}$ is initial in a category \mathcal{C} if for every other object in the category, A, there is one unique morphism from $\mathbf{0}$ to A.

The initial object is the colimit of the empty diagram. In Sets the initial object is the empty set, \emptyset, and in $\mathcal{A} 6$ the initial object is the trivial group.

Definition A.0.5. An object $\mathbf{1}$ is terminal in a category \mathcal{C} if for every other object in the category, A, there is one unique morphism from A to $\mathbf{1}$.

The terminal object is the limit of the empty diagram. In Sets the terminal object is the one element set, and in $\mathfrak{A b}$ the terminal object is the trivial group.

Definition A.0.6. Given a pair of morphisms $f, g: A \rightarrow B$ in a category \mathcal{C}, the equalizer is an object $E q$ with a morphism eq : $E q \rightarrow A$ such that:
(i) $f \circ e q=g \circ e q$ and,
(ii) whenever there is an object X and a morphism $h: X \rightarrow A$ such that $f \circ h=g \circ h$, there is a unique morphism $\bar{h}: X \rightarrow E q$ such that $h=e q \circ h$.

The definition states that the following diagram commutes.

Figure A.1: The Equalizer

The equalizer is the limit of the diagram: • \bullet. In Sets the equalizer of two functions is the subset of the domain in which the functions agree along with the inclusion function, and in $\mathscr{A b}$ the equalizer of two group homomorphisms f and g is $\operatorname{ker}(f-g)$.

Definition A.0.7. Given a pair of morphism $f, g: A \rightarrow B$ in a category \mathcal{C}, the coequalizer is an object Coeq and a morphism coeq : B Coeq such that:
(i) $c o e q \circ f=c o e q \circ g$ and,
(ii) whenever there is an object X with a morphism $h: B \rightarrow X$ such that $h \circ f=g \circ f$, there is a unique morphism $\bar{h}:$ Coeq $\rightarrow X$ such that $\bar{h} \circ$ coeq $=h$.

The definition states that the following diagram commutes.

Figure A.2: The Coequalizer

The coequalizer is the colimit of the diagram: $\bullet \rightrightarrows \bullet$. In Sets the coequalizer of two functions is the set of congruence classes defined by equivalence relation generated by the functions, and
in $\mathscr{A b}$ the coequalizer of two group homomorphisms f and g is the factor group obtained from the codomain through image $(f-g)$.

Definition A.0.8. Products exist in a category \mathcal{C}, if for all objects A and B in \mathcal{C}, there exists an object $A \times B$ with morphisms $\pi_{A}: A \times B \rightarrow A$ and $\pi_{B}: A \times B \rightarrow B$ in C such that for all objects X with morphisms $f_{A}: X \rightarrow A$ and $f_{B}: X \rightarrow B$, there exists a unique morphism $\bar{f}: X \rightarrow A \times B$ such that $f_{A}=\pi_{A} \circ \bar{f}$ and $f_{B}=\pi_{B} \circ \bar{f}$.

This definition states the following diagram commutes.

Figure A.3: The Product

The product is the limit of the diagram • •. In Sets the product of two sets is the cartesian product, and in $\mathfrak{A b}$ the product of two abelian groups is the direct product.

Definition A.0.9. Coproducts exist in a category \mathcal{C}, if for all objects A and B in \mathcal{C}, there exists an object $A+B$ with morphisms $i_{A}: A \rightarrow A+B$ and $i_{B}: B \rightarrow A+B$ such that for all objects X with morphisms $g_{A}: A \rightarrow X$ and $g_{B}: B \rightarrow X$, there exists a unique morphism $\bar{g}: A+B \rightarrow X$.

This definition states the following diagram commutes.

Figure A.4: The Coproduct

The coproduct is the colimit of the diagram - - In Sets the coproduct of two sets is the disjoint union, and in $\mathscr{A b}$ the coproduct of two abelian groups is the direct sum. In $\mathscr{A b}$ the product and coproduct of two finite abelian groups are naturally isomorphic.

Definition A.0.10. A category \mathcal{C} has exponentiation with evaluation if it has a product for any two objects and given two objects A and B, there is an object B^{A} in C with a morphism ev: $B^{A} \times A \rightarrow B$ such that for every other object X with morphism $g: X \times A \rightarrow B$, then there is a unique morphism $\bar{g}: X \rightarrow B^{A}$ such that $\mathrm{ev} \circ\left(\bar{g} \times 1_{A}\right)=g$. The assignment of \bar{g} to g establishes a bijection $\operatorname{hom}_{\mathcal{C}}(X \times A, B) \cong \operatorname{hom}_{\mathcal{C}}\left(X, B^{A}\right)$ in Sets.

The definition states that the following diagram commutes.

Figure A.5: Exponentiation and Evaluation

In Sets, given two sets A and B, B^{A} is the set of all functions from A to B. In $\mathfrak{A b}$, given two abelian groups, G and H, H^{G} is an abelian group with elements the group homomorphisms
from G to H, with addition defined element-wise and with evaluation the natural $(f, a) \mapsto$ $f(a)$.

Definition A.0.11. Given objects A, B, and C in a category C with morphisms $f: A \rightarrow C$ and $g: B \rightarrow C$, the pullback of f and g is an object D with morphisms $\bar{f}: D \rightarrow B$ and $\bar{g}: D \rightarrow A$ such that:
(i) $f \circ \bar{g}=g \circ \bar{f}$ and,
(ii): whenever there is an object X with morphisms $h: X \rightarrow A$ and $j: X \rightarrow B$ such that $f \circ h=f \circ j$, there exists a unique morphism $k: X \rightarrow D$ such that $h=\bar{g} \circ k$ and $j=\bar{f} \circ k$.

The definition states that the following diagram commutes,

Figure A.6: The Pullback
and the following diagram is called a pullback square.

Figure A.7: The Pullback Square

The pullback is the limit of the diagram $\bullet \rightarrow \bullet \leftarrow \bullet$. In Sets and $\mathfrak{A b}$, the pullback of $A \hookrightarrow C$ and $B \hookrightarrow C$ is the intersection $A \cap B$.

Proposition A.0.12. If a category \mathcal{C} has products and equalizers, then the pullback of f : $A \rightarrow C$ and $g: B \rightarrow C$ is the equalizer of $f \circ \pi_{A}: A \times B \rightarrow C$ and $g \circ \pi_{B}: A \times B \rightarrow C$.

Proof. Let A, B, and C be objects in a category C with morphisms $f: A \rightarrow C$ and $g: B \rightarrow C$.

We first take the product of A and B yielding $A \times B$ with the morphisms $\pi_{A}: A \times B \rightarrow A$ and $\pi_{B}: A \times B \rightarrow B$.

We then take the equalizer of $f \circ \pi_{A}$ and $g \circ \pi_{B}$ yielding $E q$ with morphism $e q: E q \rightarrow A \times B$ such that $f \circ \pi_{A} \circ e q=g \circ \pi_{B} \circ e q$.

We claim $E q$ is the pullback for f and g with morphisms $\pi_{A} \circ e q: E q \rightarrow A$ and $\pi_{B} \circ e q$: $E q \rightarrow B$. Let X be an object in \mathcal{C} with morphism $h: X \rightarrow B$ and $j: X \rightarrow A$ such that $g \circ h=f \circ j$.

Then by the universal property of $A \times B$, there is a unqiue morphism $k: X \rightarrow A \times B$ such that $\pi_{A} \circ k=j$ and $\pi_{B} \circ k=h$.

Then since $g \circ h=f \circ j, g \circ \pi_{B} \circ k=f \circ \pi_{A} \circ k$. So by the universal property of $E q$, there exists a unique morphism $l: X \rightarrow E q$ such that $e q \circ l=k$.

Since $e q \circ l=k, \pi_{B} \circ e q \circ l=h$ and $\pi_{A} \circ e q \circ l=j$ as desired.

Definition A.0.13. Given a category \mathcal{C} with a terminal object 1, then a subobject classifier for \mathcal{C} is an object Ω (called the "subobject classifier") with a morphism $\top: \mathbf{1} \rightarrow \Omega$ (called "truth") such that for every monomorphism $f: A \mapsto D$, there is a unique morphism χ_{f} : $D \rightarrow \Omega$ (some say χ_{A}) such that

is a pullback square.

In Sets, the subobject classifier is the two element set $\Omega=\{0,1\}$ and $\top: \mathbf{1}=\{1\} \hookrightarrow \Omega=$ $\{0,1\}$; and there is no subobject classifier in $\mathfrak{A b}$.

Definition A.0.14. Given a functor $F: \mathcal{A} \sim \mathcal{B}$ and a functor $G: \mathcal{B} \sim \mathcal{A}, F$ is left adjoint of $G, F \dashv G$, if there is a natural bijection in Sets of $\operatorname{hom}_{\mathcal{B}}(F(A), B) \cong h_{o m_{\mathfrak{A}}}(A, G(B))$.

Definition A.0.15. A concrete category is a category with an underlying set functor.

Definition A.0.16. Given a concrete category \mathcal{C} with an underlying set functor
 $u: B \rightarrow|F(B)|$ in Sets such that for any objects A in \mathcal{C} with function $g: B \rightarrow|A|$ in Sets, there is a unique morphism $\bar{g}: F(B) \rightarrow A$ in \mathcal{C} such that $|\bar{g}| \circ u=g$ in Sets.

Note that this defines a functor $F:$ Sets $\sim C$ such that $F \dashv|-|$. The definition states that the following diagram commutes.

Figure A.8: The Free Object

Definition A.0.17. Given a concrete category \mathcal{C} with underlying set functor $|-|: \mathcal{C} \sim$ Sets, the cofree object on a set $B, C(B)$, is an object in C with a function $c:|C(B)| \rightarrow B$ in Sets such that for any object A in C with function $g:|A| \rightarrow B$ in Sets, there is a unique morphism $\bar{g}: A \rightarrow C(B)$ such that $c \circ|\bar{g}|=g$ in Sets.

Note that this defines a functor C : Sets $\sim \mathcal{C}$ such that $|-| \dashv C$. The definition states that the following diagram commutes.

Figure A.9: The Cofree Object

For the next four definitions, we follow [12].

Definition A.0.18. In a category C an object P is called projective if for every morphism $h: P \rightarrow C$ and for every epimorphism $g: B \rightarrow C$, there is a morphism $\bar{h}: P \rightarrow C$ such that $h=g \circ \bar{h}$.

The definition states that the following diagram commutes.

Figure A.10: A Projective Object

In Sets, every set is projective, and in $\mathscr{A b}$ the projectives are the free abelian groups.

Definition A.0.19. A category \mathcal{C} has enough projectives if for any object C of C there exists a projective object P in C and an epimorphism $e: P \rightarrow C$.

Definition A.0.20. In a category \mathcal{C} an object Q is called injective if for every morphism $h: C \rightarrow Q$ and monomorphism $g: C \hookrightarrow B$, there is a morphism $\bar{h}: B \rightarrow Q$ such that $h=\bar{h} \circ g$.

The definition states that the following diagram commutes.

Figure A.11: An Injective Object

In Sets every set is injective; and in $\mathfrak{A b}$, the divisible abelian groups (like \mathbb{Q}) are injectives.

Definition A.0.21. A category \mathcal{C} has enough injectives if for any object C of \mathcal{C} there exists an injective object Q in C and monomorphism $m: C \mapsto Q$.

Definition A.0.22. An object G in category \mathcal{C} is a generator (also called a separator) if for all morphisms $f, g: X \rightarrow Y$ in C such that $f \neq g$, there is a morphism $h: G \rightarrow X$ such that $f \circ h \neq g \circ h$.

In Sets, any non-empty set, e.g. a one element set, is a generator; and in $\mathfrak{A b}$, the infinite abelian group $(\mathbb{Z},+)$ is a generator.

Definition A.0.23. An object C in a category \mathcal{C} is a cogenerator (also called a coseparator) if for all morphisms $f, g: X \rightarrow Y$ in \mathcal{C} such that $f \neq g$, there is a morphism $h: Y \rightarrow C$ such that $h \circ f \neq h \circ g$.

In Sets, any two element set (or superset there of) is a cogenerator; and in $\mathfrak{A b}$ the circle group $(\mathbb{R} / \mathbb{Z},+)$ is a cogenerator.

Bibliography

[1] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
[2] Reinhard Diestel, Graph theory, Third, Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Berlin, 2005.
[3] Anton Dochtermann, Hom complexes and homotopy theory in the category of graphs, arXiv:math.CO/0605275, 2006.
[4] Robert Goldblatt, Topoi, the categorial analysis of logic, Revised, Dover Publications, Inc., Mineola, NY, 2006.
[5] Edgar G. Goodaire and Michael M. Parmenter, Discrete mathematics with graph theory, Third, Prentice Hall, Upper Saddle River, New Jersey, 2006.
[6] R. Häggkvist, P. Hell, D. J. Miller, and V. Neumann Lara, On multiplicative graphs and the product conjecture, Combinatorica 8 (1988), no. 1, 63-74.
[7] Pavol Hell, An introduction to the category of graphs, Topics in graph theory, Ann. New York Acad. Sci. 328 (1977), 120-136.
[8] Pavol Hell and Jaroslav Nešetřil, Graphs and homomorphisms, Oxford Lecture Series in Mathematics and its Applications, vol. 28, Oxford University Press, Oxford, 2004.
[9] Horst Herrlich and George E. Strecker, Category theory: an introduction, Allyn and Bacon Inc., Boston, Mass., 1973. Allyn and Bacon Series in Advanced Mathematics.
[10] Peter Hilton and Yel Chiang Wu, A course in modern algebra, Wiley Classics Library, John Wiley \& Sons Inc., New York, 1989. Reprint of the 1974 original, A Wiley-Interscience Publication.
[11] F. William Lawvere, An elementary theory of the category of sets, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1506-1511.
[12] Saunders Mac Lane, Categories for the working mathematician, Second, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.
[13] Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York, 1965.
[14] Jaroslav Nešetřil and Xuding Zhu, On sparse graphs with given colorings and homomorphisms, J. Combin. Theory Ser. B 90 (2004), no. 1, 161-172.
[15] Dana I. Schlomiuk, An elementary theory of the category of topological spaces, Trans. Amer. Math. Soc. 149 (1970), 259-278.
[16] Claude Tardif, Multiplicative graphs and semi-lattice endomorphisms in the category of graphs, J. Combin. Theory Ser. B 95 (2005), no. 2, 338-345.

