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In the study of the Category of Graphs, the usual notion of a graph is that of a simple
graph with at most one loop on any vertex, and the usual notion of a graph homomorphism
is a mapping of graphs that sends vertices to vertices, edges to edges, and preserves incidence
of the mapped vertices and edges. A more general view is to create a category of graphs that
allows graphs to have multiple edges between two vertices and multiple loops at a vertex,
coupled with a more general graph homomorphism that allows edges to be mapped to vertices
as long as that map still preserves incidence. This more general category of graphs is named
the Category of Conceptual Graphs.

We investigate topos and topos-like properties of two subcategories of the Category of
Conceptual Graphs. The first subcategory is the Category of Simple Loopless Graphs with
Strict Morphisms in which the graphs are simple and loopless and the incidence preserving
morphisms are restricted to sending edges to edges, and the second subcategory is the Category
of Simple Graphs with Strict Morphisms where at most one loop is allowed on a vertex. We
also define graph objects that are their graph equivalents when viewed in any of the graph
categories, and mimic their graph equivalents when they are in other categories. We conclude
by investigating the possible reflective and coreflective aspects of our two subcategories of
graphs.
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Notations
E(G) the set of edges of a graph G pg.2
V (G) the set of vertices of a graph G pg.3
A×A unordered product of set A with itself pg.3
∂G the incidence function of a graph G pg.3
ιG the inclusion map of vertices into edges of a graph G pg.3
∆ the unordered diagonal map pg.3
(u v) the unordered pair of u and v pg.3
1B the local identity morphism on an object B pg.7
Grphs the Category of Conceptual Graphs pg.8
SiStGraphs the Category of Simple Graphs with Strict Morphisms pg.10
SiLlStGraphs the Category of Simple Loopless Graphs with Strict Morphisms pg.10
K2 the complete graph on 2 vertices pg.17
K1 the complete graph on 1 vertex pg.23
A∪̇B the disjoint union of sets A and B pg.24
Kc

n the empty edge graph on n vertices pg.26
| − | the underlying set functor pg.26
A –a B functor A is left adjoint to functor B pg.26
](X) the cardinality of a set X pg.30
K`

2 the complete graph on 2 vertices with a loop at each vertex pg.37
K`

n the complete graph on n vertices with a loop at each vertex pg.39
Ab the Category of Abelian Groups and Group Homomorphisms pg.45
tw the twist automorphism of the edge object pg.48
↪→ an inclusion morphism pg.2
→ a morphism between objects pg.7
∼→ a functor between categories pg.16
� an epimorphism between objects pg.16
� a monomorphism between objects pg.18
7→ function assignment pg.70
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Chapter 1

Introduction to the Categories of

Graphs

1.1 Introduction

In [11], F. W. Lawvere defines the Category of Sets and Functions, Sets , axiomatically, and

in [15], D. Schlomiuk defines the Category of Topological Spaces and Continuous Maps, Top,

axiomatically. Berry Mitchell’s [13] embedding theorem says that abstract abelian categories

are quite concrete categories of modules. This has set a precedent for other mathematical

fields to find an axiomatization of their categories. With recent advances in vertex coloring

problems in graph theory, graph homomorphisms have been studied. This naturally leads to

studying the categories of graphs and in 1977 P. Hell in [7] makes a case as to why graph

theorists should do so.

To help in the long term goal of finding an axiomatic characterization of the Categories of

Graphs we investigate two graph categories. We investigate the Category of Simple Graphs

with Strict Morphisms, where the graphs have at most one edge between any two distinct

1



1.2. GRAPHS AND GRAPH HOMOMORPHISMS 2

vertices, and at most one loop at any vertex. The strict morphisms refer to graph homo-

morphisms that send vertices to vertices and edges to edges (strictly) while preserving the

incidence of the mapped edges. A more general morphism allows edges to be mapped to

vertices. Then we restrict ourselves to Simple Loopless Graphs with Strict Morphisms, where,

in addition to being simple, the graphs cannot have loops.

There is a much more general category of graphs in which our chosen two categories live.

This is the Category of Conceptual Graphs, where the morphisms allow edges to be sent to

vertices, as long as incidence is still preserved, and the objects are graphs with multiple edges

between any two vertices, and multiple loops at a vertex. In the view of this category, we are

able to give, for the first time, an abstract categorial definition to graph-like objects as well as

an abstract categorial definition of a strict morphism. This allows an investigation of graph-

like objects in an abstract category. We also view our chosen categories as subcategories of the

Category of Conceptual Graphs and investigate, for the first time, their categorial reflective

and co-reflective properties.

We follow the notation of [1] for topics related to graphs and graph results. We follow the

notation of [12] for topics related to categories and categorial results, with the exception that

we use capital letters to stand for objects, and lower case letters to stand for morphisms inside

our categories.

1.2 Graphs and Graph Homomorphisms

In our graphs, we want to start out with as great a generality as possible and add restrictions

later. This means we want to allow graphs to have multiple edges between any two vertices

and multiple loops at any vertex. We will define our graphs in the style of Bondy and Murty

[1].

Definition 1.2.1. A conceptual graph G consists of

G = 〈E(G), V (G); ∂G : E(G) → V (G)×V (G), ιG : V (G) ↪→ E(G)〉 where E(G) is the set
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of edges of G, V (G) is the set of vertices of G, V (G)×V (G) is the set of unordered pairs of

vertices of G, ∂G is the incidence map from the set of edges to the unordered pairs of vertices,

ιG is the inclusion map of the vertex set into the edge set, and for ∆ : V (G)→ V (G)×V (G)

the unordered diagonal map, ∂G ◦ ιG = ∆.

Figure 1.1: Incidence Mappings for Vertices

Henceforth, we will frequently abbreviate conceptual graph to graph. Furthermore, in our

study here, we have no need to restrict our edge sets and vertex sets of our graphs to be finite

sets.

We note the following. First, we naturally use the topologist’s “boundary” symbol for

incidence. Second, an unordered pair in V (G)×V (G) is denoted u v or (u v), for vertices

u, v ∈ V (G). Thus the natural unordered diagonal map ∆ : V (G) → V (G)×V (G) is given

by ∆(v) = v v or (v v). Finally, we have chosen to consider our vertex set to be a subset of

the edge set (i.e. we consider the vertices to be “trivial edges”). Thus as an abstract data

structure our graphs are a pair of sets: a set (of edges) and a distinguished subset (called

vertices). This is done to make the description of morphisms more natural, i.e. functions

between the over sets that takes the distinguished subset to the other distinguished subset.

This is what topologists do in the Category of Topological Pairs of Spaces.

Often in graph theory the set of graphs is restricted to allow only one edge between any two

vertices (see [8]), and at most one edge between a vertex and itself (a loop). We call these

graphs simple graphs and define them in terms of conceptual graphs.
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Figure 1.2: An Example of a (non-simple) Conceptual Graph

Definition 1.2.2. A simple graph G is a conceptual graph such that for all u, v ∈ V (G) with

u 6= v, there is at most one e ∈ E(G) such that ∂G(e) = (u v), and for all w ∈ V (G) there

is at most one f ∈ E(G)\image(ιG) such that ∂G(f) = (w w) (where (u v) is the unordered

pair of vertices u and v).

Thus, a graph is simple if and only if the incidence map is injective (i.e. one-to-one).

Figure 1.3: An Example of a Simple Graph

Another common restriction is to not allow loops at all (see [5]). This restriction is often

required when discussing vertex coloring. We call these graphs loopless graphs.

Definition 1.2.3. A loopless graph G is a conceptual graph such that for all u ∈ V (G) there

is no e ∈ E(G)\image(ιG) such that ∂G(e) = (u u).
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Figure 1.4: An Example of a (non-simple) Loopless Graph

In [1] a graph does not have the inclusion map, ι, but such a map will be critical when

defining a graph homomorphism. In this way, we can think of the vertex “part” of the graph

as a special type of edge “part” of the graph. When we refer to an edge it will be our con-

vention to refer to an element of E(G)\image(ιG), and we do allow G = ∅, the empty graph,

to be considered a graph. However, since ∂G is required to be a function, if V (G) = ∅ then

E(G) = ∅.

Almost every textbook on Graph Theory defines a graph isomorphism early in their discus-

sion of Graph Theory (see [1] and [2]) but few define a graph homomorphism. Vertex colorings

of a graph have led into research of graph homomorphisms (see [14]) and in 2004 Hell and

Nešetřil published the first graph homomorphism textbook [8]. The following definition is a

modified form of the definition presented in [8] to apply to conceptual graphs.

Definition 1.2.4. Let G and H be conceptual graphs. A strict graph homomorphism (or

strict morphism) f : G → H is a function fE : E(G) → E(H) such that fV : V (G) →

V (H), where fV is the restriction of fE to V (G), i.e. fV = fE |V (G); incidence is preserved:

∂H(fE(e)) = (fV (x) fV (y)) whenever ∂G(e) = (x y), for some x, y ∈ V (G); and, in addition

the strict edge condition is satisfied: for all e ∈ E(G)\image(ιG), fE(e) ∈ E(H)\image(ιH).

The condition, ∂H(fE(e)) = (fV (x) fV (y)) whenever ∂G(e) = (x y), assures that the in-

cidence of the edges in G is preserved in H under f . Note that the above definition also

requires that vertices be mapped to vertices and edges be mapped (strictly) to edges. How-

ever, sometimes it may be beneficial to allow edges to be mapped to vertices. Such a morphism

would allow a graph to naturally map to the contraction or quotient graph obtained by the
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contraction of an edge, but this could not be a strict morphism. As such, we call the above

definition of a graph homomorphism a strict graph morphism and now define a more general

graph (homo)morphism.

Definition 1.2.5. f : G → H is a graph (homo)morphism of conceptual graphs from G to

H if f is a function fE : E(G) → E(H) and fV = fE |V (G) : V (G) → V (H) that preserves

incidence, i.e. ∂H(fE(e)) = (fV (x) fV (y)) whenever ∂G(e) = (x y), for all e ∈ E(G) and

some x, y ∈ V (G).

Figure 1.5: The Graph Morphism

This definition allows a graph homomorphism to map an edge to a vertex as long as the

incidence of the edges are preserved. As an edge, e ∈ E(G), can be mapped to the edge set

of the codomain graph, H, so that it is the image of a vertex, i.e. f(e) = ιH(v) for some

v ∈ V (H).

Now that we have defined our graphs and graph homomorphisms, we are ready to discuss

categories of graphs.
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1.3 Categories of Graphs

We begin this section by defining a category axiomatically (as in [4]).

Definition 1.3.1. A category, C , comprises

(1) a class of objects (e.g. dots • or capital letters A,B, and C);

(2) a class of morphisms (e.g. arrows → or lower case letters f, g, and h);

(3) operations assigning each morphism, f , an object Dom(f) (the “domain” of f) and an

object Cod(f) (the “codomain” of f). If A=Dom(f) and B=Cod(f) we display this as f :

A→ B or A
f−→ B;

(4) an operation assigning each pair 〈g, f〉 of morphisms with Dom(g)=Cod(f), a morphism

g ◦ f , the composite of f and g, with Dom(g ◦ f)=Dom(f) and Cod(g ◦ f)=Cod(g), i.e.

g ◦ f :Dom(f) →Cod(g), such that the associative law holds, i.e. given A
f−→ B

g−→ C
h−→ D

then (h ◦ g) ◦ f = h ◦ (g ◦ f);

(5) an assignment to each object B a morphism 1B : B → B, called the local identity of B,

such that the identity law holds, i.e. for all morphisms f : A→ B and g : B → C, 1B ◦ f = f

and g ◦ 1B = g.

The associative law asserts that the following diagram commutes:

Figure 1.6: The Associative Law
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While the identity law asserts that the following diagram commutes:

Figure 1.7: The Identity Law

We now define an isomorphism in a category. We think of isomorphisms as morphisms that

preserve the complete structure of an object.

Definition 1.3.2. A morphism f : A → B is an isomorphism if there exists a morphism

g : B → A such that f ◦ g = 1B and g ◦ f = 1A

We also think of isomorphisms as (two-sided) invertible morphisms. Now that a conceptual

graph, graph morphism, and a category are defined, we can define the categories of graphs.

Definition 1.3.3. The Category of Conceptual Graphs, Grphs, is a category where the objects

are conceptual graphs and the morphisms are graph morphisms.

We now must show the axioms of a category are satisfied by this definition.

Proposition 1.3.4. Grphs is a category.

Proof. Since our objects and morphisms are defined, and in our definition of a graph homo-

morphism, a domain and codomain are defined, Grphs satisfies axioms (1),(2), and (3). Now

we naturally define the compositions of graph homomorphisms and show that these compo-

sitions are graph homomorphisms. Let A,B, and C be objects in Grphs , and let f and g be

morphisms in Grphs such that A
f−→ B

g−→ C. We then define g ◦ f to be a pair of compositions

of set functions gV ◦ fV : V (A)→ V (C) and gE ◦ fE : E(A)→ E(C).
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Now let e ∈ E(A), then there are vertices u, v ∈ V (A) such that ∂A(e) = (u v). Now con-

sider ∂C(gE ◦ fE(e)). Since f is a graph homomorphism, ∂B(fE(e)) = (fV (u) fV (v)). Since

g is a graph homomorphism, ∂C(gE ◦ fE(e)) = ∂C(gE(fE(e))) = (gV (fV (u)) gV (fV (v))) =

((gV ◦fV (u)) (gV ◦fV (v))). Hence incidence is preserved, and g ◦f is a graph homomorphism.

Now let A,B,C, and D be objects in Grphs , and let f, g, and h be morphisms in Grphs such

that A
f−→ B

g−→ C
h−→ D. Consider (h ◦ g) ◦ f . Since composition of graph homomorphisms are

graph homomorphisms, (h ◦ g) ◦ f is a pair of set functions (hV ◦ gV ) ◦ fV : V (A)→ V (D) and

(hE ◦ gE) ◦ fE : E(A) → E(D) that preserve incidence. Since set functions are associative,

(hV ◦gV )◦fV = hV ◦(gV ◦fV ) and (hE◦gE)◦fE = hE◦(gE◦fE) and hence (h◦g)◦f = h◦(g◦f).

Therefore the associative law is satisfied and, as such, so is axiom (4).

We now show there are local identities and that the identity morphism satisfies the iden-

tity law. Let B be an object in Grphs . Define 1B : B → B as the pair of set functions

1V (B) : V (B)→ V (B) and 1E(B) : E(B)→ E(B) where 1V (B) is the identity function on the

set V (B) and 1E(B) is the identity function on E(B). Let e ∈ E(B) such that ∂B(e) = (u v)

for some u, v ∈ V (B), then ∂B(1E(B)(e)) = ∂B(e) = (u v) = (1V (B)(u) 1V (B)(v)). Thus 1B

preserves incidence and is a graph homomorphism.

Let A be an object in Grphs with a morphism f : A→ B, and C be an object in Grphs with a

morphism g : B → C. Consider 1B ◦ f . Since the composition 1B ◦ f is a pair of set functions

1V (B) ◦ fV and 1E(B) ◦ fE , and since 1V (B) ◦ fV = fV and 1E(B) ◦ fE = fE , 1B ◦ f = f . Now

consider g◦1B. g◦1B is a pair of set functions gV ◦1V (B) and gE ◦1V (B). Since gV ◦1V (B) = gV

and gE ◦ 1E(B) = gE , g ◦ 1B = g. Hence 1B satisfies the identity law and therefore axiom (5).

Thus Grphs is a category.

The next graph category is the only undirected graph category in the literature. It is used

in [16], [3], and unofficially in [8], although one of the authors, Pavol Hell, officially uses this

category in [7].
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Definition 1.3.5. The Category of Simple Graphs with Strict Morphisms, SiStGraphs, is a

category where the objects are simple graphs and the morphisms are strict graph homomor-

phisms.

Proposition 1.3.6. SiStGraphs is a category.

Proof. The proof follows similarly to the proof of Proposition 1.3.3., given that we prove that

the composition of strict graph homomorphisms are strict graph homomorphisms. So let A,B,

and C be graphs (not necessarily simple) with strict graph homomorphisms f and g where

A
f−→ B

g−→ C. Since f and g are graph homomorphisms, by the proof of Proposition 1.3.3.,

g ◦ f is a graph homomorphism. Let e ∈ E(A)\image(ιA), and consider g ◦ f(e). Since f

is a strict graph homomorphism, f(e) ∈ E(B)\image(ιB). Then since g is a strict graph

homomorphism, g ◦ f(e) = g(f(e)) ∈ E(C)\image(ιC). Hence the composition of strict graph

homomorphisms is a strict graph homomorphism.

Many Graph Theory textbooks, especially those aimed at undergraduates, restrict their

graphs to be simple graphs without loops (see [2] and [5]). When the need for graphs with

multiple edges or loops arise, they are often called multigraphs [2] or pseudographs [5]. This

restriction on the type of graphs allowed in their discussion leads naturally to a graph category.

Definition 1.3.7. The Category of Simple Loopless Graphs with Strict Morphisms, SiLlStGraphs,

is the category where the objects are simple graphs without loops, and the morphisms are strict

graph homomorphisms.

Proposition 1.3.8. SiLlStGraphs is a category.

Proof. Since SiLlStGraphs is contained in SiStGraphs as a restriction of the objects, the proof

follows similarly to Proposition 1.3.5.

The usual justification of the restriction is that it simplifies the theory. Many times this
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is the case and theorems related to both matchings and colorings of a graph require this

restriction as a hypothesis, but we find taking this restriction as the definition of a graph

leads to a impoverished category.

1.4 Categorial Constructions

We highlight some categorial constructions, providing definitions and basic results. This

will not be a comprehensive list, but a comprehensive list of definitions for the categorial

constructions used in this paper can be found in Appendix A. Since much of the literature

related to the categories of graphs is focused on products (see [16] and [6]), we start by defining

products.

Definition 1.4.1. Products exist in a category C , if for all objects A and B in C , there exists

an object A × B with morphisms πA : A × B → A and πB : A × B → B in C such that for

all objects X with morphisms fA : X → A and fB : X → B, there exists a unique morphism

f : X → A×B such that fA = πA ◦ f and fB = πB ◦ f .

This definition is expressed as the following commuting diagram.

Figure 1.8: The Product

In the Category of Sets and Functions, Sets , the product is the Cartesian product (for a proof
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see [12]). The form of the definition of the product, ∀ . . . ∃ . . . such that ∀ . . . ∃! . . . , is a general

form for categorial constructions known as a universal mapping property. Universal mapping

properties define an object universally such that every other object with the same properties

“factors through” the universal object with a unique morphism. Such a definition gives rise

to a generic proof that the “universally constructed” object is unique up to isomorphism in

the category.

Proposition 1.4.2. Given objects A and B in a category with products, then the product

A×B is unique up to isomorphism.

Proof. Suppose that for two objects A and B in the category, there are two products, P

with morphisms πA : P → A and πB : P → B, and P ′ with morphisms π′A : P ′ → A

and π′B : P ′ → B. Then by the definition of products there exists two unique morphisms

f : P → P ′ and f ′ : P ′ → P such that the following diagram commutes.

Hence there is a unique morphism f ′ ◦ f : P → P such that πA ◦ (f ′ ◦ f) = πA and

πB ◦ (f ′ ◦ f) = πB. However, the identity morphism 1P satisfies those two equations as well.

Since the morphism is unique, f ′ ◦ f = 1P .

A similar argument give us f ◦ f ′ = 1P ′ . Hence f is an isomorphism and P ∼= P ′.

We now consider the dual construction of the product. A dual construction in a category

is obtained by “reversing the arrows” of a categorial construction. That is, the morphisms

will be pointing the opposite way. Though in practice, when a diagram of the dual is drawn,

the arrows point the same direction (i.e. left to right and up to down) and the objects are
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interchanged. The dual of the product is called the coproduct.

Definition 1.4.3. Coproducts exist in a category C , if for all objects A and B in C , there

exists an object A + B with morphisms iA : A → A + B and iB : B → A + B such that for

all objects X with morphisms gA : A → X and gB : B → X, there exists a unique morphism

g : A+B → X.

We now give a similar diagram that represents the coproduct.

Figure 1.9: The Coproduct

In Sets the disjoint union of two sets is the coproduct (for a proof see [12]). Note that the

coproduct is also defined in terms of a universal mapping property, thus a similar proof to

Proposition 1.4.2. yields the following.

Proposition 1.4.4. Given objects A and B in a category with coproducts, then the coproduct

A+B is unique up to isomorphism.

A more general categorial construction is that of limits and colimits. We define these

constructions in the way of [4]. We will first define a diagram in a category.

Definition 1.4.5. In a category C a diagram D of C is a collection of objects Di, Dj , . . . in

C along with a collection of morphisms f : Di → Dj between certain objects in the diagram.

An example of a diagram of two objects with two morphisms is A⇒ B . Now that we have

the definition of a diagram, we can define a cone for a diagram.



1.4. CATEGORIAL CONSTRUCTIONS 14

Definition 1.4.6. A cone for a diagram D in a category C consists of an object C in C

together with a morphism fi : C → Di for each object in D such that for every morphism

g : Di → Dj in D, g ◦ fi = fj.

The definition of a cone asserts that the following diagram commutes for every morphism g

in a diagram D.

Figure 1.10: The Cone for a Diagram

For convenience, we often represent a cone for D by {fi : C → Di}. We can now define a limit

in terms of a cone for a diagram.

Definition 1.4.7. A limit of a diagram D is a (“universal”) cone for D, {fi : L←−→ Di}, such

that for any other cone for D, {f ′i : C ′ → Di}, there exists a unique morphism f : C ′ → L←−
such that f ′i = fi ◦ f for all objects Di in D.

The definition states that the following diagram commutes for all objects Di of D.

Figure 1.11: The Limit of a Diagram

The product is a limit of the diagram just consisting of two objects A and B with no morphisms

between them. Many categorial constructions can be defined in terms of limits. To define the

dual of the limit, the colimit, we first must define the co-cone.
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Definition 1.4.8. The co-cone for a diagram D, {fi : Di → C}, is an object C with mor-

phisms fi : Di → C for every object Di in D, such that for every morphism g : Di → Dj in

D, fi = fj ◦ g.

Similar to the definition of a cone, the definition of a co-cone states that the following digram

commutes for all objects Di of D.

Figure 1.12: The Co-cone for a Diagram

The colimit is now defined in terms of the co-cone for a diagram.

Definition 1.4.9. A colimit of a diagram D is a (“universal”) co-cone for D, {fi : Di → L−→},

such that for any other co-cone for D, {f ′i : Di → C ′}, these exists a unique morphism

f : L−→→ C ′ such that f ′i = f ◦ fi for all objects Di in D.

The definition asserts that the following diagram commutes for all objects Di of D.

Figure 1.13: The Colimit of a Diagram

The coproduct is a colimit of the diagram just consisting of two objects A and B with no

morphisms between them. Many co-constructions can be phrased in terms of colimits. We

now turn our attention to special morphisms and concrete categories. We define a concrete

category via a faithful functor as in [12].
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1.5 Functors, Concrete Categories, and Special Morphisms

Definition 1.5.1. A functor F : C ∼→ B is a morphism of categories such that F assigns

each object C of C an object F (C) in B and for each morphism g : C → C ′ a morphism

F (g) : F (C)→ F (C ′) such that F (1C) = 1F (C) and for each composition g◦h in C , F (g◦h) =

F (g) ◦ F (h).

Functors constitute a large part of the study of Category Theory. A proposition that follows

straight from the definition of functors is that functors preserve isomorphisms. In Chapter 5,

we will study functors between the categories of graphs.

Definition 1.5.2. A functor T : C ∼→ B is faithful if for every pair of objects C and C ′ in C

and for every pair of parallel morphisms f1, f2 : C → C ′ of C , T (f1) = T (f2) implies f1 = f2.

Definition 1.5.3. A concrete category is a pair 〈C , U〉 where C is a category and U is a

faithful functor U : C ∼→ Sets.

Since U is a faithful functor, we can identify each morphism f in C with a function U(f). So

we can think of objects C of a concrete category as having an underlying set U(C) with added

structure. U is often called the underlying set functor. Often | − | is used for the underlying

set functor and we will later use this notation, especially for the underlying vertex set functor.

Often times whenever functions or homomorphisms are discussed in any theory of mathe-

matics, discourse about surjective functions and injective functions are not far behind. Since

the definition of both surjective functions and injective functions (or homomorphisms) rely

upon an underlying set, they can only be discussed in terms of concrete categories. A more

general property surjective functions satisfy gives rise to the notion: epimorphism. We define

an epimorphism following the style of [12].

Definition 1.5.4. A morphism h : A� B in a category C is an epimorphism if for any two

morphisms g1, g2 : B → C the equality g1 ◦ h = g2 ◦ h implies g1 = g2.
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Epimorphisms are right cancellable. In Sets the epimorphisms are precisely the surjective

functions. As we will prove, surjections are always epimorphisms, but the converse need not

necessarily be true. For example, j : Kc
2 ↪→ K2, the inclusion of the two vertices into the

complete graph on two vertices, is injective and a monomorphism in all the categories of

graphs, but j is not an epimorphism. Consider the following:

where α takes K2 to the left (a) and β takes K2 to the right (b), so α 6= β even though

α ◦ j = β ◦ j. However, jV is surjective. Also, in the category of SiLlStGraphs this j is an

epimorphism!

Proposition 1.5.5. In concrete categories, surjective morphisms are epimorphisms.

Proof. Let A and B be objects in our concrete category with a surjective morphism f : A→ B.

Let g1, g2 : B → C be morphisms in our concrete category such that g1 ◦ f = g2 ◦ f , for some

object C. Consider U(g1 ◦ f) where U is the underlying set functor associated with our

concrete category. Since U is a functor and g1 ◦ f = g2 ◦ f , U(g1 ◦ f) = U(g2 ◦ f) and

U(g1) ◦ U(f) = U(g1 ◦ f) = U(g2 ◦ f) = U(g2) ◦ U(f).

Let x ∈ U(B). Since U(f) is an surjection, there is a y ∈ U(A) such that U(f)(a) =

x. Consider U(g1)(x). U(g1)(x) = U(g1)(U(f)(a)) = U(g2)(U(f)(a)) = U(g2)(x). Hence

U(g1) = U(g2), and since U is a faithful functor, g1 = g2. Hence f is an epimorphism.

As in the example above (for SiLlStGraphs), we give a new result that the vertex function of

an epimorphism is surjective.
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Proposition 1.5.6. (i) In Grphs, if f : A→ B is an epimorphism, then the associated vertex

function fV : V (A)→ V (B) is surjective.

(ii) In SiLlStGraphs and SiStGraphs, f : A → B is an epimorphism if and only if the vertex

function fV : V (A)→ V (B) is surjective.

Proof. Part (i): Suppose fV is not surjective. Then there exists v ∈ V (B)\image(fV ). Con-

struct the graph C by appending a vertex v′ to B such that v′ is adjacent to every vertex v

is adjacent to. By construction B is a subgraph of C.

Since v ∈ V (B)\image(fV ), no edge incident to v is in the image of fE . Now consider

i : B → C the inclusion morphism and g : B → C defined by g(u) = i(u) for all u ∈ V (B)\{v},

g(v) = v′, g(e) = i(e) for all edges e not incident to v, and for edge f incident to v, set g(f)

to be the corresponding edge incident to v′. Then i ◦ f = g ◦ f but i 6= g, a contradiction to

f being an epimorphism. Hence epimorphisms in Grphs have surjective vertex set functions.

Part (ii): (⇒) The same proof in part (i) applies.

(⇐) Suppose f : A → B is a morphism and fV is surjective. We will show f if an epimor-

phism, i.e. for morphisms h, k : B → C such that h ◦ f = k ◦ f , we will show h = k. Since

fV is surjective and hV ◦ fV = kV ◦ fV , hV = kV . So if h 6= k there exists a (nontrivial) edge

e ∈ B such that h(e) 6= k(e), even though hV = kV . There are three possibilities for h(e) and

k(e), either as different vertices, loops, or edges. But in both SiLlStGraphs and SiStGraphs this

would contradict C being simple, or h and k being strict morphisms.

Just as there are epimorphisms which relate to surjections, there are monomorphisms which

relate to injections. We will define a monomorphism following the style of [12].

Definition 1.5.7. A morphism h : B � C in a category C is a monomorphism if for any

two morphisms f1, f2 : A→ B the equality h ◦ f1 = h ◦ f2 implies f1 = f2.

Monomorphisms are left cancellable. In Sets the monomorphisms are precisely the injective

functions. Similar to epimorphisms, injections are always monomorphisms, but the converse
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need not necessarily be true.

Proposition 1.5.8. In concrete categories, injective morphisms are monomorphisms.

Proof. Let B and C be objects in our concrete category with an injective morphism

m : B → C. Let g1, g2 : A → B be morphisms in our concrete category such that m ◦ g1 =

m◦g2, for some object A. Consider U(m◦g1) where U is the underlying set functor associated

with our concrete category. Since U is a functor and m ◦ g1 = m ◦ g2, U(m ◦ g1) = U(m ◦ g2)

and U(m) ◦ U(g1) = U(m ◦ g1) = U(m ◦ g2) = U(m) ◦ U(g2).

Let x ∈ A. Then U(m)◦U(g1)(x) = U(m)◦U(g2)(x). Since U(m) is an injection U(g1)(x) =

U(g2)(x). Hence since U is faithful g1 = g2, and m is a monomorphism.

We conclude this chapter by mentioning that while isomorphisms are epimorphisms and

monomorphisms, the converse in not necessarily true in an abstract category. We shall see

more explicit examples later (e.g. section 2.2).



Chapter 2

Categorial Comparisons of Simple

Loopless Graphs with Strict

Morphisms and Simple Graphs with

Strict Morphisms

2.1 Lack of Topos-like Properties in SiLlStGraphs

This chapter provides a new categorial perspective with an emphasis on the morphisms of two

familiar categories of graphs. We first investigate the topos-like properties of SiLlStGraphs . For

this section, many of the existence constructions follow very closely to those of [3] and [8] for

SiStGraphs as we will see in section 3 of this chapter, but the results pertaining to the lack of

categorial structure are new. It is possible that SiLlStGraphs has been investigated before, but

no results pertaining to it are in the literature.

In [4], an elementary topos is a category that has all finite limits, all finite colimits, exponen-

20
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tiation and evaluation, as well as a subobject classifier and all of these are defined by universal

mapping properties using only elementary (first order) logic sentences. We investigate these

properties in SiLlStGraphs starting with finite limits. Mac Lane [12] proves on page 113 that if

a category has all products, all equalizers, and a terminal object, then that category has all

finite limits.

Theorem 2.1.1. In SiLlStGraphs

(i) All finite products exist.

(ii) All equalizers exist.

(iii) A terminal object does not exist.

Before we prove this theorem, we will define the classical constructions for products (as in

[8]) and for equalizers (as in [3]); and then in the proof of the theorem, we will show these

classical definitions will satisfy the categorial universal mapping definitions

Definition 2.1.2. Given two graphs G and H in SiLlStGraphs, the classical product, G×H, is a

graph with the vertex set V (G)×V (H) in which there is an edge e ∈ E(G×H)\image(ιG×H)

with ∂G×H(e) = ((u, v) (u′, v′)) whenever there exists f ∈ E(G)\image(ιG) with ∂G(f) =

(u u′) and g ∈ E(H)\image(ιH) with ∂H(g) = (v v′). The projection morphisms of G ×H,

πG : G×H → G and πH : G×H → H, are defined by the set maps πV (G) : V (G×H)→ V (G)

where πV (G)((u, v)) = u, πV (H) : V (G ×H) → V (H) where πV (G)((u, v)) = v for all (u, v) ∈

V (G×H), πE(G) : E(G×H)→ E(G) where πE(G)((e, f)) = e, and πE(H) : E(G×H)→ E(H)

where πE(G)((e, f)) = f for all (e, f) ∈ E(G×H).

Definition 2.1.3. Let G and H be two graphs in SiLlStGraphs with morphisms f, g : G→ H.

The classical equalizer Eq with inclusion morphism eq : Eq ↪→ G is the vertex induced subgraph

of G on the vertex set V (Eq) = {v ∈ V (G)|f(v) = g(v)}.
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Figure 2.1: Example of K2 ×K2 in SiLlStGraphs

Proof. Part (i): Let G and H be two graphs in SiLlStGraphs . Let G×H be defined as above.

We first show that πG and πH are indeed strict graph homomorphisms.

Let (e, f) ∈ E(G×H) with ∂G×H((e, f)) = ((u, v) (u′, v′)) for some (u, v), (u′, v′) ∈ V (G×

H). Consider ∂G(πG((e, f))). By the definition of G × H, ∂G(πG((e, f))) = ∂G(e) = (u u′).

Then since (u u′) = (πG(u, v) πG(u′, v′)), incidence is preserved and πG is a graph homomor-

phism. Clearly by the definition of G×H, πG will send edges to edges and vertices to vertices,

and hence πG is a strict graph homomorphism. The proof for πH follows similarly.

Now let X be a graph in SiLlStGraphs with morphisms fG : X → G and fH : X → H. We

need to show there exists a unique morphism f : X → G × H such that πG ◦ f = fG and

πH ◦ f = fH . Let v ∈ V (X), and suppose fG(v) = vG and fH(v) = vH . Then, since graph

homomorphisms must send vertices to vertices, f(v) = (vG, vH) is the only possibility for such

an f such that πG ◦ f = fG and πH ◦ f = fH .

Let e ∈ E(X)\image(ιX) with ∂X(e) = (v1 v2), fG(e) = a with ∂G(a) = (a1 a2), and

fH(e) = b with ∂H(b) = (b1 b2). If fG(v1) = a1 and fH(v1) = b1 then fG(v2) = a2 and

fH(v2) = b2. Then by the definition of G×H, there is an edge c ∈ E(G×H)\image(ιG×H)

with ∂G×H(c) = ((a1, b1) (a2, b2)). Then for πG ◦ f = fG and πH ◦ f = fH to hold, f(e) = c

and is uniquely determined. Similarly, if fG(v1) = a1 and fH(v1) = b2, or fG(v1) = a2 and

fH(v1) = b1, there are edges c1, c2 ∈ E(G × H) such that ∂G×H(c1) = ((a1, b2) (a2, b1)), or

∂G×H(c2) = ((a2, b1) (a1, b2)), and f(e) = c1 or f(e) = c2 respectively. Hence such an f is

uniquely determined by fG and fH and is clearly a morphism.

Part (ii): Let G and H be graphs in SiLlStGraphs with morphisms f, g : G → H. Let
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the equalizer, Eq and eq : Eq → G, be defined as above. Clearly by the definition of Eq,

f ◦eq = g ◦eq. Now let X be in SiLlStGraphs with morphism h : X → G such that f ◦h = g ◦h.

We must show there is a unique morphism h such that eq ◦ h = h.

Let v ∈ V (X). Since f ◦ h = g ◦ h, h(v) ∈ {u ∈ V (G)|f(u) = g(u)}. Then h(v) is in the

image of V (Eq) under eq, and hence the image of the V (X) under h is contained in the image

of V (Eq) under eq. Since inclusion maps are injections, there is a unique w ∈ V (G) such that

eq(w) = h(v). Then since eq ◦ h = h, h(v) = w is uniquely determined. Since the image of

V (X) under h is contained in the image of V (Eq) under eq, as a vertex set map, h is well

defined.

Now let e ∈ E(X) with ∂X(e) = (v1 v2) for some v1, v2 ∈ V (X). Since f ◦ h = g ◦ h,

h(e) ∈ {a ∈ E(G)|f(a) = g(a), and if ∂G(a) = (u1 u2), f(u1) = g(u1) and f(u2) = g(u2)},

otherwise f(h(v1)) 6= g(h(v1)) and f(h(v2)) 6= g(h(v2)), and hence f ◦ h 6= g ◦ h.

Now note that {a ∈ E(G)|f(a) = g(a) and if ∂G(a) = (u1 u2), f(u1) = g(u1) and

f(u2) = g(u2)} is precisely E(Eq). So the image of E(X) under h is contained in the image

of E(Eq) under eq. Then since eq is an injection, there is a unique d ∈ E(Eq) such that

eq(d) = h(e). Then since eq ◦ h = h, h(e) = d is uniquely determined. Since the image of

E(X) under h is contained in the image of E(Eq) under eq, as an edge set map, h is well

defined. It is clear from the definition of h that incidence is preserved and edges map to edges.

Thus h exists is a uniquely determined by h.

Part (iii): We show no terminal object exists by examining the two cases for a graph G in

SiLlStGraphs . Either G has no edges, E(G)\image(ιG) = ∅, or G has an edge, there exists an

edge e ∈ E(G)\image(ιG). If E(G)\image(ιG) = ∅, then since strict graph homomorphisms

must send edges to edges, a graph that does contain an edge does not admit a strict graph

homomorphism to G. Hence, G cannot be a terminal object.

If there is an edge e ∈ E(G)\image(ιG), since the graphs in SiLlStGraphs are loopless,

∂G(e) = (u v) for some u, v ∈ V (G) where u and v are distinct. The consider the mor-

phisms from K1, the graph containing only a single vertex, w, to G. Since u and v are

distinct, there are two distinct morphisms, f, g : K1 → G defined by f(w) = u and g(w) = v.
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Hence G is not a terminal object since not every graph admits a unique morphism to G.

In SiLlStGraphs , we notice that the product K2 × K2 is isomorphic to the coproduct K2 +

K2. Also in SiLlStGraphs K1 × K2 is isomorphic to K1 + K1. Furthermore, the canonical

projection morphism to each factor of the product in SiLlStGraphs is an epimorphism because

the restriction to the vertex map is surjective (see Proposition 1.5.6).

We now investigate the dual; If all finite coproducts exist, all coequalizers exist, and an

initial object exists, then the category has all finite colimits.

Theorem 2.1.4. In SiLlStGraphs

(i) All finite coproducts exist.

(ii) Coequalizers do not exist.

(iii) An initial object exists and is the empty graph, ∅.

Before we begin the proof, we will define the classical coproduct and use it to satisfy the

universal mapping definition.

Definition 2.1.5. Let G and H be graphs in SiLlStGraphs. The classical coproduct of G and

H, G + H, is the disjoint union of graphs G and H with V (G + H) = V (G)∪̇V (H) and

E(G + H) = E(G)∪̇E(H), natural inclusion maps, iG : G ↪→ G + H and iH : H ↪→ G + H,

and ∂G+H defined by ∂G+H(e) = ∂G(a) if e = iG(a) or ∂G+H(e) = ∂H(a) if e = iH(a).

Proof. Part (i): We first note that the classical coproduct defined above is indeed a con-

ceptual graph for since V (G) ↪→ E(G) and V (H) ↪→ E(H), the natural inclusion map

ιG+H : V (G + H) ↪→ E(G + H) exists, which was the missing part in the conceptual graph

definition of coproduct.

Now let X be in SiLlStGraphs with morphisms fG : G→ X and fH : H → X. We must show

there exists a unique morphism f : G+H → X such that fG = f ◦ iG and fH = f ◦ iH . Let

v ∈ V (G+H). If v = iG(a) for some a ∈ V (G) then for f ◦iG(a) = fG(a) to hold, f(v) = fG(a)
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is uniquely determined. Similarly if v = iH(b) for some b ∈ V (H) then for f ◦ iH(b) = fH(b)

to hold, f(v) = fH(b) is uniquely determined. Since V (G+H) is the disjoint union of V (G)

and V (H), v has a preimage in either V (G) or V (H) exclusively. Hence, as a vertex set map,

f is well defined.

Let e ∈ E(G + H), if e = iG(a) for some a ∈ e(G) then for f ◦ iG(a) = fG(a) to hold,

f(e) = fG(a) is uniquely determined. Similarly if e = iH(b) for some b ∈ E(H) then for

f ◦ iH(b) = fH(b) to hold, f(e) = fH(b) is uniquely determined. Since E(G + H) is the dis-

joint union of E(G) and E(H), e has a preimage in either E(G) or E(H) exclusively. Hence,

as an edge set map, f is well defined. Since any edge in G+H is either in E(G) or E(H) it

is incidence to vertices only in V (G) or V (H) respectively. Then since fA and fB are strict

graph homomorphisms, f is a strict graph homomorphism, and is uniquely determined by fA

and fB.

Part (ii): Assume coequalizers exist. Let A = B = K2, the complete graph on 2 vertices

a and b with edge e, and consider the following two morphisms id, tw : A → B where id is

the identity morphism and tw is the morphism where tw(a) = b, tw(b) = a, and tw(e) = e.

The coequalizer, Coeq with morphism coeq : B → Coeq such that coeq ◦ id = coeq ◦ tw, exists

by hypothesis. Since coeq ◦ id = coeq ◦ tw and id(e) = tw(e) = e, coeq(id(e)) = coeq(e) =

coeq(tw(e)), and since morphisms must send edges to edges, coeq(e) is an edge of Coeq.

Let ∂Coeq(coeq(e)) = (u v) for some u, v ∈ V (Coeq). Then since morphisms preserve inci-

dence, coeq(id(a)) = coeq(a) is incident to coeq(e), and coeq(id(b)) = coeq(b) is incident to

coeq(e). Hence coeq(a) = u or coeq(a) = v.

Without loss of generality, let coeq(a) = u. Then coeq(b) = v, and since coeq(id(a)) =

coeq(tw(a)), u = coeq(a) = coeq(b) = v. Hence e is a loop of Coeq, which contradicts our

hypothesis that Coeq was in SiLlStGraphs . Thus coequalizers do not exist in SiLlStGraphs .

Part (iii): A terminal object must have a unique morphism to every object in the category.

Clearly ∅ has a unique morphism, namely inclusion, to every graph in SiLlStGraphs .

It is evident that from part (ii), since we do not allow loops in our graphs in SiLlStGraphs
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we cannot use equivalence relations to form quotient graphs. But we will see that allowing

loops is enough to certify the existence of coequalizers in SiStGraphs . We now investigate the

existence of exponentiation and evaluation and a subobject classifier in SiLlStGraphs .

Before we do so, we need an adjoint relationship between the underlying vertex set functor

| − |V : SiLlStGraphs ∼→ Sets where |G|V = V (G) for a graph G and |f |V = fV for a morphism

f , and the free graph functor F (−) : Sets ∼→ SiLlStGraphs , namely F (−) is left adjoint to

| − |V , denoted F (−) –a | − |V . To show F (−) –a | − |V , we will show the empty edge graphs

where F (X) is the empty edge set graph with vertex set X, E(F (X))\image(ιF (X)) = ∅, and

F (g) is the strict graph homomorphism where F (g)V = g and F (g)E = g satisfy the universal

mapping property of free objects.

Lemma 2.1.6. The empty edge graphs, Kc
n for n ≥ 0, are the free objects in SiLlStGraphs;

furthermore the free graph functor F is left adjoint to the underlying vertex set functor | − |V ,

F –a | − |V , i.e. homSiLlStGraphs(F (X), G) ∼= homSets(X, |G|V ).

Proof. Let X be a set in Sets with n elements, and let F (X) = Kc
n where V (F (X)) = X. Now

let G be a graph in SiLlStGraphs such that there is a function g : X → |G|V . We must show there

is a unique graph morphism g : F (X)→ G such that g = |g|V ◦ u for some u : X → |F (X)|V .

Note that |F (X)|V = V (F (X)) = X. Hence define the function u : X → |F (X)|V as u = 1X .

Let g be the pair of function maps gV = g and gE = g. Since there are no edges in

F (X), incidence is clearly preserved, edges are sent to edges vacuously, and g is a strict graph

homomorphism. Then since g = |g|V ◦ u must hold, u = 1X , and |g|V = gV = g, g is uniquely

determined by g.

Robert Goldblatt proves [4, p. 441] that satisfying the universal mapping property for a

free object in any concrete category provides the adjoint relationship: F –a | − |. Also, in

general, if products exist and exponentiation with evaluation exists, then (−) × Y –a (−)Y ;

we will consider this situation in our graph category SiLlStGraphs .
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Proposition 2.1.7. In SiLlStGraphs

(i) Exponentiation with evaluation does not exist.

(ii) A subobject classifier does not exist.

Proof. Part (i): Assume exponentiation with evaluation exists. We will first show that

given this hypothesis, there is the adjoint bijection between homSiLlStGraphs(X × Y,Z) and

homSiLlStGraphs(X,ZY ) for all graphs X,Y and Z. We prove this via [4] page 71.

Let X,Y , and Z be graphs in SiLlStGraphs . We show there is a bijection φ : homSiLlStGraphs(X×

Y,Z)→ homSiLlStGraphs(X,ZY ). Since, by hypothesis, exponentiation and evaluation exists, for

g : X × Y → Z there is a unique map g : X → ZY such that for the evaluation map

ev : ZY ×X → Z, ev ◦ (g × 1Y ) = g. We define φ by φ(g) = g.

If g = h for some h : X → ZY , then ev ◦ (g × 1Y ) = ev ◦ (h × 1Y ) and thus g = h. Hence

φ is injective. Now let h : X → ZY and define g : X × Y → Z by g = ev ◦ (h × 1Y ).

Then since exponentiation and evaluation exists, there exists a unique g : X → ZY such that

g = ev ◦ g × 1Y . Since g is unique, g = h. Hence φ is surjective, and thus a bijection of sets.

We can now achieve our contradiction. Consider KK2
2 where K2 has vertices a and b and

edge e. Since the free graph functor is left adjoint to the underlying vertex set functor,

V (KK2
2 ) = {id, tw, paq, pbq}. Where id is the identity vertex map, tw (called the “twist”

map) is defined by tw(a) = b and tw(b) = a, paq is the “constantly a” map, and pbq is the

“constantly b” map.

Since in SiLlStGraphs , K2 ×K2
∼= K2 +K2 and there are 4 morphisms from K2 +K2 to K2,

namely the 4 combinations of id and tw from each component of K2 +K2 to K2. Then since

there is a bijection in sets of homSiLlStGraphs(K2×K2,K2) and homSiLlStGraphs(K2,K
K2
2 ) there are

4 morphisms from K2 to KK2
2 . Since K2 admits two morphisms to any edge of any graph in

SiLlStGraphs , there are 2 edges in KK2
2 .

Let e ∈ E(KK2
2 ) such that ∂

K
K2
2

(e) = (paq pbq). We will now show that no other edge can

be in KK2
2 without causing a contradiction in the evaluation map ev : KK2

2 ×K2 → K2. Let

f ∈ E(KK2
2 ) be the other edge distinct from e. Since e is incident to paq and pbq, f must be
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incident to id or tw, for if not, it would also be incident to paq and pbq, which would be a

multiple edge in KK2
2 .

Case 1: f is incident to id. If f is also incident to tw, there is an edge f ′ in KK2
2 × K2

such that ∂
K

K2
2 ×K2

(f ′) = ((id, a) (tw, b)). Hence since ev is a strict graph homomorphism,

∂K2(ev(f ′)) = (a a), a contradiction to K2 being loopless.

If f is also incident to paq, there is an edge f ′ in KK2
2 × K2 such that ∂

K
K2
2 ×K2

(f ′) =

((id, a) (paq, b)). Hence ∂K2(ev(f ′)) = (a a), a contradiction to K2 being loopless. If f is

also incident to pbq, there is an edge f ′ in KK2
2 ×K2 such that ∂

K
K2
2 ×K2

(f ′) = ((id, b) (pbq, a)).

Hence ∂K2(ev(f ′)) = (b b), a contradiction to K2 being loopless. Hence f cannot be incident

to id.

Case 2: f is incident to tw. From case 1, f cannot also be incident to id. If f is incident

to paq or pbq, a similar contradiction to that of f being incident to id and paq or pbq arises.

Therefore there is at most one edge in KK2
2 , a contradiction. Hence exponentiation with

evaluation does not exist in SiLlStGraphs .

Part (ii): Since a terminal object does not exist in SiLlStGraphs , there is no subobject clas-

sifier.

2.2 Other Categorial Constructions in SiLlStGraphs

We now move on to consider some other categorial properties in SiLlStGraphs . The results in

this section are all new results. We first begin with a lemma about the behavior of morphisms

in this category.

Lemma 2.2.1. In SiLlStGraphs the inclusion of Kc
n into a graph G with n vertices (n > 1) and

at least one edge is an epimorphism (but not a surjection); and, of course, this inclusion is

also a monomorphism (and an injection); furthermore this inclusion is not an isomorphism.

Proof. Without loss of generality, since every empty edge graph on n vertices is isomorphic
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to every other empty edge graph on n vertices, assume V (Kc
n) = V (G). Then let i : Kc

n → G

be the inclusion morphism. Let f and g be morphisms f, g : G → H for some graph H such

that f ◦ i = g ◦ i, and let v ∈ V (G). Since V (G) = V (Kc
n), f(v) = f ◦ i(v) = g ◦ i(v) = g(v)

and f and g agree on the vertices of G.

Now let e be an edge of G, e ∈ E(G)\image(ιG). Since the graphs in SiLlStGraphs are loop-

less, ∂G(e) = (u v) for distinct vertices u, v ∈ V (G). Since the morphisms in SiLlStGraphs are

strict and preserve incidence, f(e) is incident to f(u) and f(v). Similarly g(e) is incident to

g(u) and g(v).

Since f and g agree on the vertices of G, f(e) is incident to f(u) = g(u) and f(v) = g(v).

Thus f(e) and g(e) are incident to the same vertices, and since the graphs of SiLlStGraphs are

simple, f(e) = g(e). Hence i is an epimorphism, and clearly not surjective.

Since the inclusion is an injection on the vertex sets (which composes Kc
n) it is a monomor-

phism. It is not an isomorphism as Kn does not admit a morphism to Kc
n (for n > 1).

Since the inclusion of Kc
n into any graph G is a monomorphism, it is also evident that a

morphism that is both a monomorphism and an epimorphism is not necessarily a isomorphism

in SiLlStGraphs . Lemma 2.1.6 states that the free objects in SiLlStGraphs are the empty edge

graphs. The following proposition shows us there are no co-free objects in SiLlStGraphs .

Lemma 2.2.2. There are no cofree objects in SiLlStGraphs.

Proof. Assume there are. Let X = {x} in Sets and C(X) be the co-free graph associated

with X and function c : |C(X)|V → X. Consider K2 with vertices a and b and edge e

and set function g : |K2|V → X defined by g(a) = g(b) = x. Then since C(X) is a cofree

object, there is a unique morphism in SiLlStGraphs , g : K2 → C(X), such that g = c ◦ |g|V .

Since g is a strict graph homomorphism, it must send e to an edge in C(X). Thus g(e) = f

for some f ∈ E(C(X)). Since graph homomorphisms preserve incidence, f is incident to

g(a) = |g|V (a) = a′ for some vertex a′ ∈ V (C(X)) and g(b) = |g|V (b) = b′ for some vertex

b′ ∈ V (C(X)).
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Since C(X) is loopless, a′ 6= b′. Then since g = c ◦ |g|V , g(a) = c(|g|V (a)) = x and

g(b) = c(|g|V (b)) = x, c(a′) = c(b′) = x. Now consider the morphism h : K2 → C(X) defined

by h(e) = f , h(a) = b′ and h(b) = a′. Clearly h 6= g. Then c(|h|V (a)) = c(b′) = x = g(a) and

c(|h|V (b)) = c(a′) = x = g(b). Thus c ◦ |h|V = g, and g is not unique, which is a contradiction

to the universal mapping description of the cofree object.

The definitions for free objects and cofree objects are dependent on the category being a

concrete category. We move on to other categorial constructions that are defined for any

abstract category. We start with the injective objects and projective objects (see Appendix

A for definitions). Note, since | − | is reserved for the underlying set functor, when referring

to the cardinality of a set X we will use ](X).

Theorem 2.2.3. In SiLlStGraphs

(i): The projective objects are precisely the free objects and there are enough projective

objects.

(ii): There are no injective objects.

Proof. Part (i): First, by Proposition 1.5.6., we note that if f : A→ B is an epimorphism in

SiLlStGraphs then the vertex set function fV is surjective. We show that the free objects are

projective objects. Clearly the empty graph ∅ is projective since it is the initial object. Now

let X be a non-empty set in Sets , G be a graph in SiLlStGraphs with a morphism h : F (X)→ G,

and H be a graph in SiLlStGraphs with an epimorphism g : H → G. We must show that there

is a morphism h : F (X)→ H such that g ◦ h = h.

Since g is an epimorphism, gV is a surjective function. Hence for all vi ∈ V (F (X)), there is

a ui ∈ V (H) such that g(ui) = h(vi). Then define h(vi) = ui for every vi ∈ V (F (X)). Then

g(h(vi)) = g(ui) = h(vi) for every vertex vi of F (X). Since F (X) contains no edges, h is a

strict graph homomorphism. Thus F (X) is projective.

Now let A be a graph in SiLlStGraphs with at least 1 edge, and G be a graph on n vertices

(n > 1) in SiLlStGraphs with a morphism h : A→ G. By Lemma 2.2.1. there is an epimorphism
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e : Kc
n → G. Since strict graph homomorphisms must send edges to edges, A admits no

morphism to Kc
n. Thus A is not projective.

Let G be a graph in SiLlStGraphs with n vertices. To show there are enough projectives, we

must show there is a projective object H and an epimorphism e : H → G. By Lemma 2.2.1.

the projective object Kc
n admits an epimorphism to G.

Part (ii): Suppose there were injective objects. Let Q be an injective object in SiLlStGraphs .

Consider the complete graph K with ](V (K)) > ](V (Q)), the cardinality of V (K) is greater

than that of V (Q). Then consider the morphisms id : Q→ Q the identity onQ and f : Q→ K,

the inclusion morphism of Q into K. Since inclusion morphisms are injections, they are

monomorphisms.

Then since Q is injective, there is a morphism f : K → Q such that f ◦ f = id. Since

](V (K)) > ](V (Q)) and fV is a set map, there are two distinct vertices u, v ∈ V (K) such

that f(u) = f(v). Since f is a strong morphism and K is a complete graph, the edge e

incident to u and v in K must be sent to an edge in Q. Since graph homomorphisms preserve

incidence and f(u) = f(v), ∂Q(f(e)) = (f(u) f(u)), and f(e) is a loop. This contradicts Q

being loopless. Hence no injective objects exist.

The last topic for consideration in SiLlStGraphs are the generators and cogenerators.

Theorem 2.2.4. In SiLlStGraphs

(i): the empty edge graphs, Kc
n, are precisely the generators (for n ≥ 1).

(ii): no cogenerators exist.

Proof. Part (i): Let n ≥ 1. First we show Kc
n is a generator, then we show that any graph

with an edge is not a generator. Let X and Y be graphs in SiLlStGraphs with morphisms

f, g : X → Y such that f 6= g. Then there is a vertex v ∈ V (X) such that f(x) 6= g(x),

otherwise since the morphisms preserve incidence and there is at most one edge between any

two vertices, f(e) = g(e) for all edges e ∈ E(X) and f = g.

First note K1 = Kc
1. Now consider the map h : K1 → X that sends the single vertex of K1,
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u, to v. Then f(h(u)) = f(v) 6= g(v) = g(h(u)). Hence f ◦h 6= g ◦h. Hence K1 is a generator.

To show Kc
n is a generator, we consider the morphism π : Kc

n → K1 that sends every vertex

of Kc
n to u. Then clearly f ◦ (h ◦ π) 6= g ◦ (h ◦ π), and hence Kc

n is a generator of SiLlStGraphs .

Now let G be a graph in SiLlStGraphs with at least one edge. Consider Kc
2 with two vertices

u and v with two morphisms id, tw : Kc
2 → Kc

2 where id is the identity morphism and tw

is the “twist” morphism defined by tw(u) = v and tw(v) = u. Clearly id 6= tw, but since

morphisms must send edges to edges, G admits no map to Kc
2. Thus G is not a generator.

Part (ii): To show there are no cogenerators in SiLlStGraphs , we show there is no graph X

such that any graph G admits a morphism to X. Assume such a graph X exists. Consider

the complete graph K such that ](V (K)) > ](V (X)). By hypothesis there is a morphism

f : K → X. Since ](V (K)) > ](V (X)) and fV is a set map, there are two distinct vertices

u, v ∈ V (K) such that f(u) = f(v). Let e be the edge in K incident to both u and v. Since

graph homomorphisms preserve incidence and f(u) = f(v), ∂X(f(e)) = (f(u) f(u)). Then

since edges must be sent to edges, f(e) is a loop. This contradicts X being loopless. Hence

no such object exists.

We now note that every graph G with at least two vertices admits at least two distinct

morphisms to the complete graph K with ](V (K)) = ](V (G)), as the automorphism group of

K is the symmetric group on V (K). This fact coupled with the fact there is no graph such

that any other graph admits a morphism to it proves no cogenerators exist.

We will now consider the same constructions in these last two sections in the category where

we allow our graphs to have at most one loop on every vertex, but where the morphisms are

still strict.
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2.3 Existence of Topos-like Properties in SiStGraphs

We now consider the category SiStGraphs where the graphs are simple, but do allow at most

one loop on any vertex, and the morphisms are still strict graph homomorphisms. The results

in this section, except those about the subobject classifier, are known (see [3]) as this is

the category most commonly used in the literature. We begin as we did in section 2.2, by

investigating finite limits.

Theorem 2.3.1. In SiStGraphs

(i) All finite products exist.

(ii) All equalizers exist.

(iii) The graph with a single vertex and a loop at that vertex is the terminal object.

Hence all finite limits exist.

Proof. The products and equalizers in this proof have the same definition as those in SiLlStGraphs

(definition 2.1.2. and definition 2.1.4.), and the proof of Part (i) and Part (ii) follows exactly

as the proof given in Theorem 2.1.1.

Part (iii): Let 1 be defined as the graph with a single vertex, v, and a loop at that vertex,

`. Let G be a graph in SiStGraphs . Then the map f : G → 1 that sends every vertex of G to

v and every edge of G to ` preserves incidence and is clearly strict. Hence f is a morphism

of SiStGraphs . Since any morphism in SiStGraphs must send vertices to vertices and edges to

edges, f is the only morphism from G to 1. Thus 1 is the terminal object.

Hence all finite limits exist in SiStGraphs . We will now investigate finite colimits. Before we

do so, we must define a new graph construction, the classical quotient graph.

Definition 2.3.2. Given a graph G and an equivalence relation ∼ on V (G), the classical

quotient graph, Q, has vertex set V (Q) = V (G)/ ∼ and there is an edge e′ ∈ E(Q)\image(ιQ)

with ∂Q(e′) = ([u] [v]) if there is a single edge e ∈ E(G)\image(ιG) with ∂G(e) = (u v) for



2.3. EXISTENCE OF TOPOS-LIKE PROPERTIES IN SISTGRAPHS 34

some u and v representatives of the equivalence classes [u] and [v] respectively.

Figure 2.2: Example of a Quotient Graph in SiStGraphs

Since there is at most one edge between any two distinct vertices and at most one loop at

any single vertex, the quotient graph is clearly a graph in SiStGraphs . We may think of the

quotient graph as the graph obtained by identifying the vertices in the equivalence class, and

then identifying any multiple edges or multiple loops that arise from the vertex identification.

We now show there is a natural quotient morphism from a graph to its quotient graph.

Proposition 2.3.3. Given a graph G of SiStGraphs and Q the quotient graph of G defined by

an equivalence relation ∼ on V (G), then there is a quotient morphism q : G → Q defined by

q(v) = [v] for v ∈ V (G) and q(e) = e′ for e ∈ E(G)\image(ιG) where ∂G(e) = (u v) and e′ is

the edge in E(Q)\image(ιQ) with ∂Q(e′) = ([u] [v]).

Proof. Clearly q sends vertices to vertices and edges to edges, so we must check that it

preserves incidence. Let e ∈ E(G) with ∂G(e) = (u v) for some u, v ∈ V (G). Then since u is

in the equivalence class [u] and v is in the equivalence class [v] with u and v incidence to e,

then e′ is in E(Q) with ∂Q(e′) = ([u] [v]). Hence ∂Q(q(e)) = ∂Q(e′) = ([u] [v]) = (q(u) q(v))

and incidence is preserved.

We can now define the classical coequalizer in SiStGraphs , and use it for the categorial (uni-

versal mapping) coequalizer.
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Definition 2.3.4. Given graphs G and H in SiStGraphs with morphisms f, g : G → H, the

coequalizer, Coeq, with the quotient morphism coeq : H → Coeq is the quotient graph of

H under the smallest equivalence relation ∼ on V (H) generated by f(x) ∼ g(x) for some

x ∈ V (G).

Theorem 2.3.5. In SiStGraphs

(i) All finite coproducts exist.

(ii) All coequalizers exist.

(iii) The empty graph is the initial object.

Hence all finite colimits exist.

Proof. The classical coproducts in SiStGraphs use the same classically defined coproducts as

those in SiLlStGraphs (definition 2.1.5.). The proofs of Part (i) and Part (iii) follow exactly as

the proof given in Theorem 2.1.4.

Part (ii): Let G and H be graphs in SiStGraphs with morphisms f, g : G → H. Consider

x ∈ V (G). Since V (Coeq) = V (H)/ ∼ where ∼ is the (smallest) equivalence relation on V (H)

generated by f(x) ∼ g(x) for x ∈ V (G), i.e. g(x) is a representative of [f(x)] and coeq(f(x)) =

[f(x)] = [g(x)] = coeq(g(x)). Now consider e ∈ E(G)\image(ιG) with ∂G(e) = (u v) for some

vertices u, v ∈ V (G). Since f(u) ∼ g(u) and f(v) ∼ g(v), ∂Coeq(f(e)) = ([f(u)] [f(v)]) =

([g(u)] [g(v)]) = ∂Coeq(g(e)) and coeq(f(e)) = coeq(g(e)). Hence coeq ◦ f = coeq ◦ g.

Let X be a graph in SiStGraphs with morphism h : H → X such that h ◦ f = h ◦ g. We must

show there is a unique morphism h : Coeq → X such that h = h ◦ coeq. By the construction

of ∼, all the vertices in the same equivalence class of ∼ must be sent to a single vertex in X

or we would contradict h ◦ f = h ◦ g. For h = h ◦ coeq to hold, define h([u]) = h(u) for u a

representative of [u] ∈ V (Coeq), since all choices of u will be mapped to the same vertex in

X, this is a well defined vertex set map and is uniquely determined by h.

By construction of a classical quotient graph, an edge e′ ∈ E(Coeq)\image(ιCoeq) with

∂Coeq(e′) = ([u] [v]) exists only if there is an edge e ∈ E(H)\image(ιH) with ∂H(e) = (u v)

for some u, v ∈ V (H) representatives of [u] and [v] respectively. Since all the vertices in [u]
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and all the vertices [v] are mapped to the vertices h(u) and h(v) respectively, for such an edge

e′ ∈ E(Coeq)\image(ιCoeq), there is an edge e ∈ E(H) such that ∂X(h(e)) = (h(u) h(v)).

Then for h = h ◦ coeq to hold, define h(e′) = h(e) and, as edge set map, h is uniquely

determined by h. Since this construction preserves incidence and sends edges (strictly) to

edges, h is a morphism in SiStGraphs and is uniquely determined by h.

We now investigate the last two topos-like properties of SiStGraphs , exponentiation with eval-

uation and a subobject classifier. We first define the classical exponential graph, generalizing

that in [8, p. 46].

Definition 2.3.6. Given graphs G and H in SiStGraphs, the classical exponential graph, HG

has vertex set V (HG) = {f : V (G) → V (H)}, (i.e the collection of vertex set functions:

V (HG) = V (H)V (G)), and e′ ∈ E(HG)\image(ιHG) with ∂HG(e′) = (f g) only when for all

vertices u, v ∈ V (G), if there is an edge e ∈ E(G)\image(ιG) with ∂G(e) = (u v) then there

is an edge d ∈ E(H)\image(ιH) such that ∂H(d) = (f(u) g(v)).

Figure 2.3: Example of a KK2
2 in SiStGraphs

Theorem 2.3.7. In SiStGraphs

(i) Exponentiation and evaluation exists.

(ii) A subobject classifier does not exist.

Hence along with Theorem 2.3.1. SiStGraphs is cartesian closed, but not a topos.
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Proof. Part (i): First, define ev : HG × G → H by ev((f, v)) = f(v) for all vertices (f, v) ∈

V (HG×G)(= V (H)V (G)×V (G)) and for e ∈ E(HG×G) such that ∂HG×G(e) = ((f, v) (g, u))

define ev(e) = d for d ∈ E(H) with ∂H(d) = (f(v) g(u)). Such a d exists by construction of

HG, and by construction of HG, ev is a strict graph homomorphism.

Now let X be a graph in SiStGraphs with morphism g : X ×G→ H. We must show there is

a unique morphism g : X → HG such that g = ev ◦ (g × 1G).

Let x ∈ V (X) and consider {x} × G := {(x, v)|(x, v) ∈ V (X × G) for some v ∈ V (G)} ⊆

V (X ×G). Then g|{x}×G induces a function fx : V (G)→ V (H) defined by fx(v) = g((x, v)).

Then for g = ev ◦ (g × 1G) to hold, define g(x) = fx, and g is a vertex set function uniquely

determined by g.

Now let e ∈ E(X) with ∂X(e) = (x1 x2). Consider {e} ×G := {d ∈ E(X ×G)|∂X×G(d) =

((x1, u) (x2, v)) for some u, v ∈ V (G)} ⊆ E(X × G). Note that for an edge d ∈ {e} × G,

∂X×G(d) = ((x1, u) (x2, v)) for some u, v ∈ V (G) implies there is an edge d′ ∈ E(G) such that

∂G(d′) = (u v).

For such a d, since g preserves incidence, ∂H(g(d)) = (g(x1, u) g(x2, v)) = (fx1(u) fx2(v)).

Then for g = ev ◦ (g × 1G) to hold, define g(e) = a where ∂HG(a) = (fx1 fx2) which exists by

definition of HG, and is uniquely determined by g. Clearly g is a morphism in SiStGraphs and

is uniquely determined by g.

Part (ii): Given graphs A,B, and C in SiStGraphs with f : A → C and g : B → C,

we can find the pullback of f and g by taking the equalizer of f ′, g′ : A × B → C where

f ′ = f ◦ πA and g′ = g ◦ πB (for a proof see Proposition A.0.10.). Then the equalizer

defined in this way will be the pullback with πA ◦ eq : Eq → A and πB ◦ eq : Eq → B

such that f ◦ πa ◦ eq = g ◦ πB ◦ eq, where Eq is the vertex induce subgraph of A × B on

V (Eq) = {(a, b) ∈ V (A × B)|f(πA((a, b))) = g(πB((a, b)))} with eq : Eq → A × B the

inclusion morphism.

Assume a subobject classifier, Ω, exists with morphism > : 1 → Ω. Consider K2 having

vertices a and b with an edge e between them with !K2 : K2 → 1 the unique morphism to the

terminal object. Let i : K2 ↪→ K`
2 be inclusion where K`

2 is K2 together with a loops `a and
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`b at vertices a and b respectively. Then there exists a unique χK2 : K`
2 → Ω such that K2 is

the pullback of > and χK2 . Then >◦!K2 = χK2 ◦ i.

Since !K2(a) =!K2(b) = v for v the vertex of 1 and !K2(e) = ` for ` the loop of 1, and since

morphisms much send edges to edges, >(!K2(a)) = >(!K2(b)) = >(v) and >(!K2(e)) = >(`)

where ∂Ω(>(`)) = (>(v) >(v)). Since >◦!K2 = χK2 ◦ i, χK2(i(a)) = χK2(i(b)) = >(v). Then

since morphisms preserve incidence, ∂Ω(χK2(`a)) = ∂Ω(χK2(`b)) = (>(v) >(v)). Since graphs

in SiStGraphs can have at most one loop at any vertex, and morphisms must send edges to

edges, χK2(`a) = χK2(`b) = >(`).

Now consider the pullback of χK2 and >. It is the vertex induced subgraph of K`
2 × 1 on

V (Eq) = {(c, v) ∈ V (K`
2 × 1)|χK2(πK`

2
((c, v))) = >(π1((c, v)))}. However, since K`

2 × 1 ∼= K`
2

and χK2(πK`
2
((a, v))) = χK2(a) = >(v) = χK2(b) = χK2(πK`

2
((b, v))), V (Eq) = {(a, v), (b, v)}

and Eq ∼= K`
2. This contradicts that K2 is the pullback of χK2 and >. Hence no subobject

classifier exists.

Since Theorem 2.3.1. states that all finite limits exist, Theorem 2.3.5 states that all finite

colimits exist, and Theorem 2.3.7 states that exponentiation with evaluation exists, then

SiStGraphs is a “near” topos. The axiom it does not satisfy is the existence of a subobject

classifier.
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2.4 Other Categorial Constructions in SiStGraphs

We continue in the same fashion as our investigation of SiLlStGraphs . The results in this section

are new results. We first show that epimorphisms in SiStGraphs are still not guaranteed to be

surjections (see p. 28 for an analogous proposition in SiLlStGraphs).

Lemma 2.4.1. In SiStGraphs the inclusion of Kc
n into a graph G with n vertices (n > 1) and

at least one edge is an epimorphism (but not a surjection); and of course, the inclusion is also

a monomorphism (and an injection); furthermore, this inclusion is not an isomorphism.

Proof. Without loss of generality, since every empty edge graph on n vertices is isomorphic

to every other empty edge graph on n vertices, assume V (Kc
n) = V (G). Then let i : Kc

n → G

be the inclusion morphism. Let f and g be morphisms f, g : G → H for some graph H such

that f ◦ i = g ◦ i, and let v ∈ V (G). Since V (G) = V (Kc
n), f(v) = f ◦ i(v) = g ◦ i(v) = g(v)

and f and g agree on the vertices of G.

For a non-loop edge e ∈ E(G), the proof follows as in the proof of Lemma 2.2.1. and

f(e) = g(e). So consider a loop ` ∈ E(G) such that ∂G(`) = (u u) for some u ∈ V (G).

Since morphisms preserve incidence and f and g agree on the vertices of G, ∂H(f(`)) =

(f(u) f(u)) = (g(u) g(u)) = ∂H(g(`)). Since morphisms must send edges to edges, there is

at most one loop incident to any vertex, and f(`) is incident to the same vertices as g(`),

f(`) = g(`). Hence f = g and i is an epimorphism.

We now investigate the free objects and the cofree objects. The free objects are the same

as in SiLlStGraphs , but since loops are allowed in SiStGraphs , we do have cofree objects.

Lemma 2.4.2. In SiStGraphs

(i) the free objects are Kc
n for n ≥ 0.

(ii) the cofree objects are the complete graphs with a loop at every vertex K`
n for n ≥ 1.



2.4. OTHER CATEGORIAL CONSTRUCTIONS IN SISTGRAPHS 40

Proof. The proof of part (i) follows similarly to the proof in SiLlStGraphs of Lemma 2.1.6.

Part (ii): Let X be a set in Sets and define C(X) as the complete graph with a loop at

every vertex with the vertex set V (C(X)) = X. Let G be a graph in SiStGraphs with set

function g : |G|V → X. We must show that there is a unique strict graph homomorphism

g : G → C(X) such that g = c ◦ |g|V for some set function c : |C(X)|V → X Note that

|C(X)|V = V (C(X)) = X. Hence we define c as 1X .

For g = 1X ◦|g|V to hold, gV = g is uniquely determined. Then let e be an edge of G incident

to vertices x, y ∈ V (G) where x and y are not necessarily distinct. Then since strict graph

homomorphisms must send edges to edges and preserve incidence, for g to be a strict graph

homomorphism, g(e) must map to the edge e′ of C(X) incident to vertices g(x) and g(y). By

the definition of C(X) such an edge e′ exists. Hence g exists and is uniquely determined by

g.

We now investigate the projective and injective objects. The addition of loops to the graphs

in our category allows it to have injective objects, and not only are there injective objects,

there are enough injective objects.

Theorem 2.4.3. In SiStGraphs

(i) the projective objects are precisely the free objects, and there are enough projective objects.

(ii) the injective objects are precisely the cofree objects, and there are enough injective objects.

Proof. Since we proved Lemma 2.3.1. for SiStGraphs , the proof for part (i) follows similarly to

the proof in Theorem 2.2.3. of the SiLlStGraphs equivalent.

Part (ii): We first show that if f : G → H is a monomorphism, then fV : V (G) → V (H)

is an injective function. If not, then there are two distinct vertices u, v ∈ V (G) such that

f(u) = f(v). Now consider the two morphisms g, h : K1 → G where g(x) = u and h(x) = v

for x the vertex of K1. Clearly g 6= h, but since f(u) = f(v), f(g(x)) = f(h(x)). Hence

f ◦ g = f ◦ h contradicting that f is a monomorphism.

Let X be a nonempty set in Sets , and let G,H be graphs in SiStGraphs with a morphism
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f : G → C(X) and a monomorphism g : G → H. We must show there is a morphism

f : H → C(X) such that f = f ◦ g.

Since g is a monomorphism, gV : V (G)→ V (H) is an injection. Then for all v ∈ image(gV )

there is a unique v′ ∈ V (G) such that gV (v′) = v. Since X is non-empty, there is an element

x ∈ X. We define a function fV : V (H) → X by fV (v) = f(v′) if v ∈ image(gV ) and

fV (v) = x otherwise. Then since C(X) is a cofree object, there is a unique morphism

f : H → C(X) such that for |f |V : V (H)→ |C(X)|V = X, fV = 1X ◦ |f |V = |f |V . Since f is

unique, |f |V = fV . Then for all v ∈ V (G), f(g(v)) = f(v).

Now let e ∈ E(G)\image(ιG) with ∂G(e) = (u v). Then since morphisms preserve incidence,

∂C(X)(f(e)) = (f(u) f(v)) = (f(g(u)) f(g(v))) = ∂C(X)(f(g(e))). Since morphisms must map

edges to edges and there is a most one edge incident to any two vertices (not necessarily

distinct), f(e) = f(g(e)). Hence f = f ◦ g and C(X) is an injective object.

Now let G be a graph in SiStGraphs that is not a cofree object. Assume it is an injective

object of SiStGraphs . Then there are vertices u, v ∈ V (G) (not necessarily distinct) such that

there is no edge e ∈ E(G)\image(ιG) with ∂G(e) = (u v).

Then consider Kc
2 with morphism f : Kc

2 → G defined by f(a) = u and f(b) = v, for a

and b the two vertices of Kc
2, and i : Kc

2 → K2 the inclusion morphism. Since the inclusion

morphism is a monomorphism, there is a morphism f : K2 → G such that f ◦ i = f .

Then f(i(a)) = f(a) = u and f(i(b)) = f(b) = v. Since morphisms preserve incidence,

∂G(f(e)) = (f(a) f(b)) = (u v). Then since edges must be sent to edges and there is at

most one edge between any two vertices, there is an edge e′ such that ∂G(e′) = (u v), a

contradiction. Hence G is not an injective object.

To show there are enough injective objects we must show that for any graph G in SiStGraphs ,

there is an injective object H with a monomorphism f : G → H. If G is not the initial

object, C(V (G)) is an injective object and i : G → C(V (G)), the inclusion morphism, is a

monomorphism. If G = ∅ then ∅ ↪→ K`
1 suffices. Hence there are enough injective objects in

SiStGraphs .
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We end this section by investigating the generators and cogenerators of SiStGraphs .

Theorem 2.4.4. In SiStGraphs

(i): the empty edge graphs, Kc
n, are precisely the generators (for n ≥ 1).

(ii): K`
2 the complete graph on two vertices with a loop at every vertex is a cogenerator, and

a cogenerators of SiStGraphs are precisely the graphs containing a subgraph isomorphic to K`
2.

Proof. The proof of part (i) follows similarly to the proof of Theorem 2.2.4. for the SiLlStGraphs

equivalent.

Part (ii): Let K`
2 have vertices u and v with edge e incident to u and v and loops `u and `v

on u and v respectively. Let X and Y be graphs in SiStGraphs with morphisms f, g : X → Y

such that f 6= g. Since there is at most one loop at a vertex and at most one edge between

any two vertices, there is a vertex x ∈ V (X) such that f(x) 6= g(x). Define a map h : Y → K`
2

by h(f(x)) = u and h(y) = v for all vertices y ∈ V (Y )\{f(x)}, and for a ∈ E(Y )\image(ιY ),

h(a) = `v if ∂Y (a) = (y1 y2) for y1, y2 ∈ V (Y )\{f(x)}, h(a) = `u if ∂Y (a) = (f(x) f(x)), and

h(a) = e if ∂Y (a) = (f(x) y) for y ∈ V (Y )\{f(x)}.

We now must show h is a strict graph homomorphism. Let a ∈ E(Y )\image(ιy). If h(a) = `v

then ∂K`
2
(h(a)) = (v v) = (h(y1) h(y2)) for some y1, y2 ∈ V (Y )\{f(x)}. If h(a) = `u then

∂K`
2
(a) = (u u) = (h(f(x)) h(f(x))). If h(a) = e then ∂K`

2
(a) = (u v) = (h(f(x)) h(y)) for

some y ∈ V (Y )\{f(x)}. Hence h preserves incidence, and since h sends edges to edges, h is a

strict graph homomorphism.

Since f(x) 6= g(x), h(f(x)) = u and h(g(x)) = v. Hence h◦f 6= h◦g, and K`
2 is a cogenerator

of SiStGraphs .

If G is a graph in SiStGraphs that contains a subgraph isomorphic to K`
2 then clearly

(i ◦ h) ◦ f 6= (i ◦ h) ◦ g, where i is the inclusion morphism (over the isomorphism) i : K`
2 → G.

Hence G is a cogenerator of SiStGraphs .

We now show that any cogenerator C of SiStGraphs contains a subgraph isomorphic to K`
2.

Suppose C does not, then no two vertices of G with loops are incident to the same edge.

Consider the two morphisms id, tw : K`
2 → K`

2 where id is the identity morphism and tw is
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the morphism defined by tw(u) = v, tw(v) = u, tw(e) = e, tw(`u) = `v, and tw(`v) = `u.

Since C is a cogenerator, there is a morphism h : K`
2 → C such that h ◦ id 6= h ◦ tw.

Let h(u) = u′ for some u′ ∈ C and h(v) = v′ for some v′ ∈ C. If u′ = v′, then since edges

must be sent to edges and incidence is preserved, ∂C(h(id(`v))) = (h(v) h(v)) = (v′ v′) =

(u′ u′) = ∂C(h(tw(`v))). Since there is at most one loop at a vertex, then h(id(`v)) =

h(tw(`v)). Similarly h(id(`u)) = h(tw(`u)) and h(id(e)) = h(tw(e)). Hence h ◦ id = h ◦ tw, a

contradiction. Thus u′ 6= v′.

Since morphisms must send edges to edges, ∂C(h(`u)) = (u′ u′), and ∂C(h(`v)) = (v′ v′), u′

has a loop `u′ and v′ has a loop `v′ . Now consider h(e). Since ∂C(h(e)) = (h(u) h(v)) = (u′ v′),

u′ and v′ are two vertices with loops adjacent to the same edge, a contradiction. Hence C

must contain a subgraph isomorphic to K`
2.

In the last section, we showed SiStGraphs is a “near” topos, as it only lacks a subobject

classifier. In this section, we show that SiStGraphs also contains a variety of useful categorial

constructions, some of which will be crucial in defining graph-like objects in an abstract

category.

2.5 SiLlStGraphs is a Topos Impoverished Category

We conclude this chapter by comparing SiLlStGraphs to SiStGraphs . It becomes apparent that

loops are needed for a graph category to have structure while using strict graph homomor-

phisms as the only morphisms. By the proof of Theorem 2.2.4. part (ii), since there are no

loops in SiLlStGraphs , there is no graph which all graphs admit a morphism to. This causes a

lack of a terminal object, quotient graphs, coequalizers, cofree objects, injective objects, and

cogenerators.

When loops are allowed, we find there is much more structure. SiStGraphs has finite lim-

its, finite colimits, and exponentiation, each of which is lacking in SiLlStGraphs . Furthermore,
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SiStGraphs has cofree objects, injective objects (and enough of them), and cogenerators.

The reason for this lack of structure in SiLlStGraphs is because if loops are not allowed in a

graph category with only strict graph homomorphisms as morphisms, there is no morphism

that allows two vertices to be identified. While it is evident that this prevents quotient graphs

from being inside the category, we also have shown it prevents the existence of many other

categorial structures. We sum it up with a simple sentence. SiLlStGraphs is an impoverished

category (mostly because of the strictness of morphisms).

We conclude this chapter by noting that both categories lack a subobject classifier, which

was the third requirement for a topos.



Chapter 3

Investigation of Graph-like Objects

in an Abstract Category

3.1 Abstract Categorial Definitions of Graph-like Objects

The results in this chapter are new results. In this chapter we investigate elementary graph

theory objects such as a vertex, an edge, and a loop. We will view the objects in Grphs , and

then give categorial definitions for each of these as objects in a category. We will then prove

our definitions are the correct objects in our categories of graphs and then look at instances

of these definitions in the Category of Sets and Functions Sets and the Category of Abelian

Groups, Ab.

We want a way to find a vertex in an abstract category. In Grphs , as well as SiStGraphs and

SiLlStGraphs , K1 has a special role. Any graph homomorphism f : K1 → G for a graph G will

map the vertex of K1 to a single vertex, v, of G. Furthermore, such a graph homomorphism

will be the only morphism from K1 to G that has v as its image. So if we label the morphisms

by the vertices of G that they map to, we can recover V (G) as hom(K1, G). This leads us to

45
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define K1 as the vertex object in our categories of graphs.

Definition 3.1.1. K1 is the vertex object in Grphs, SiStGraphs, and SiLlStGraphs

To achieve a categorial definition, we must view the special categorial properties of K1. K1

is a free object in SiLlStGraphs and SiStGraphs , but defining K1 as a free object limits it to

only being defined in categories that are concrete. K1 is also a generator in SiLlStGraphs and

SiStGraphs , but it turns out K1 is not a generator of Grphs . We see this by considering two

morphisms id, g : K`
1 → K`

1 where id is the identity morphism and g is the morphism that

maps the loop of K`
1 to the vertex of K`

1. Since K1 only has the inclusion morphism to K`
1

and that morphism cannot differentiate between id and g, K1 is not a generator. However, as

we will prove in section 2 of this chapter, K1 is still projective in Grphs .

In order to define K1 as a projective object, since there are an infinite number of projective

objects in the graph categories, we need another way of describing K1. Another property that

defines K1 is that it is a “very small” graph. One way to describe “very small” graphs is to

define a minimum object in a collection (or class) of objects.

Definition 3.1.2. Given a collection X of objects of a category C . The minimum object of

X, is the object M such that M admits a monomorphism to every other object in X, and if

any other object in X admits a monomorphism to M then it is isomorphic to M .

It follows immediately from the definition that a minimum object of a collection is unique

up to isomorphism. Since the empty graph is trivially a projective object and it admits the

inclusion monomorphism to K1, we must first remove it from the collection of projective

objects under consideration. We are now ready to define the vertex object.

Definition 3.1.3. The vertex object, VO, of a category C is the minimum non-initial projec-

tive object.

Since the vertex object is a minimum object in the collection of non-initial projective objects,

it is unique up to isomorphism. We can now give a categorial definition of a vertex of an object.
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Definition 3.1.4. Given a category C with a vertex object VO. A vertex of an object A in C

is a morphism v : VO → A.

Finding an edge of a graph is more complex. So we consider the loop. The obvious choice to

consider is K`
1. We will show in section 2 of this chapter that a morphism in Grphs that sends

the loop of K`
1 to a vertex is not a monomorphism, and hence a monomorphism from K`

1 into

a graph will identify a loop in each category of graphs. In SiStGraphs , since the morphisms are

strict, K2 admits a single morphism to K`
1, but in Grphs , K2 admits two morphisms to K`

1. So

we define a loop separately.

Definition 3.1.5. K`
1 is the loop object in Grphs, SiStGraphs, and SiLlStGraphs

To give a categorial definition, we first notice that in the categories of graphs, there is a

single morphism from K1 → K`
1 which is clearly not an isomorphism. However, in Grphs , K1

admits such a morphism to an infinite number of one vertex graphs because multiple loops

are allowed. So we will again use the idea of a minimum object. We will also require that the

morphism K1 admits to K`
1 to be a monomorphism. This is trivially the case in the categories

of graphs, but this will allow the definition to exclude the zero object in abelian categories,

an object which is both the initial object and terminal object.

Definition 3.1.6. Given a category C with a vertex object VO, the loop object, LO, is the

minimum object for which VO admits a single monomorphism, v` : VO → LO, and VO � LO.

We can now give the categorial definition of a loop of an object.

Definition 3.1.7. Give a category C with a loop object LO, a loop of an object A is a

monomorphism ` : LO → A, and the vertex incident to the loop is the monomorphism ` ◦ v`.

Now that we have the categorial definition of a loop, we can define a loopless object.

Definition 3.1.8. In a category C an object A is loopless if when there is a loop object LO

there is no monomorphism ` : LO → A.
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If a category does not have a loop object, then all the objects of that category are vacuously

loopless. We now consider a non-loop edge. The obvious object to consider in the categories

of graphs is K2, for as a graph K2 has two vertices, u and v, connected by a single edge, e.

To view how it can identify an edge of a graph, consider a graph G in Grphs with a non-loop

edge a incident to vertices a1 and a2. Then K2 admits two monomorphisms that send edge

e to edge a, say f, g : K2 → G where f(u) = a1, f(v) = a2, g(u) = a2, and g(u) = a1. With

this pair of monomorphisms we can identify the edge a, and with the inclusion of K1 into K2

we can identify the incident vertices a1 and a2 of edge a.

Definition 3.1.9. K2 is the edge object in Grphs, SiStGraphs, and SiLlStGraphs

So to give a categorial definition of K2, we first note that it has two vertices, and categorially

that is described as ](hom(K1,K2)) = 2. However in Grphs , there are an infinite number of

non-isomorphic graphs with 2 vertices because multiple edges are allowed. However, if we

consider the graphs with an edge connecting the two vertices, K2 is the minimum one. To be

able to identify an edge in a set of multiple edges, we encapsulate the pair of monomorphisms

to an edge by using the twist automorphism, tw, inherent to K2.

Definition 3.1.10. Given a category C with coproducts and a vertex object VO. The edge

object, EO, is the minimum object such that ](hom(VO, EO)) = 2, EO � VO + VO, EO is

loopless, and there exists an automorphism tw : EO → EO such that for the two distinct

vertices u, v : VO → EO, tw ◦ u = v and tw ◦ v = u.

Figure 3.1: The Twist Automorphism, tw

We now define a non-loop edge of an object, as well as the incident vertices to the edge.
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Definition 3.1.11. Given a category C with an edge object EO. A non-loop edge of an object

A, e = 〈e1, e2〉, is a pair of distinct monomorphisms e1, e2 : EO → A such that e2 ◦ tw = e1

and e1 ◦ tw = e2.

Definition 3.1.12. Given an edge e = 〈e1, e2〉 of an object A, e1, e2 : EO → A, in a category

C , the vertices incident to e in A are e1 ◦ u and e1 ◦ v where u and v are the two distinct

morphisms u, v : VO → EO.

Now that we have a categorial definition of edges, both loop and non-loop edges, we can

finally give a categorial definition of a strict morphism in a category.

Definition 3.1.13. Given a category C with a vertex object VO, a morphism h : A → B is

strict when

(i): if there is an edge object EO in C , then for all edges e = 〈e1, e2〉 of A, there either exists

an edge e = 〈e1, e2〉 such that h ◦ e1 = e1 and h ◦ e2 = e2 or if there is also a loop object LO

in C , then for all epimorphisms ` : EO → LO, there is a loop `0 of B such that h ◦ e1 = ` ◦ `0

and h ◦ e2 = ` ◦ `0.

(ii): if there is a loop object, LO, then for all loops `0 of A, there exists a loop `0 of B such

that h ◦ `0 = `0.

In section 2 we will show that in Grphs the morphism that sends the edge of EO to the single

vertex in LO is not an epimorphism. Then we can think of an epimorphism ` : EO → LO as

an edge to loop morphism that allows us to identify when a non-loop edge is sent to a loop.

3.2 Graph-like Objects in the Categories of Graphs

We now check our definitions in the categories of graphs to ensure that our definitions identify

the correct graph objects. We begin with the vertex object in Grphs .

Proposition 3.2.1. In Grphs, K1 is the vertex object VO.
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Proof. We must show K1, with vertex u, is projective, then show K1 admits a monomorphism

to every other non-initial projective object, and then show that if a non-initial projective object

admits a monomorphism to K1, then it is an isomorphism.

By Proposition 1.5.6. part (i), any epimorphism is a surjective function on the vertex set.

Let G and H be graphs in Grphs with morphism f : K1 → G and epimorphism g : H → G.

Then since g is an epimorphism, gV : V (H)→ V (G) is a surjection. Hence for every vertex v

of G, there is a vertex v′ of H such that g(v′) = v.

Let f(u) = w. Then define f : K1 → H by f(u) = w′. Then g(f(u)) = g(w′) = w = f(u)

and g ◦ f = f . Hence K1 is projective.

We first note that ∅ is the initial object of Grphs . Let P be a projective object that is not

the initial object. Since P is not the initial object, it contains at least one vertex, v. Then

the inclusion morphism i : K1 → P , with i(u) = v is a monomorphism.

Now let Q be a non-initial projection with a monomorphism m : Q → K1. Since Q is

non-initial, Q has a vertex x. Suppose P has another vertex y, y 6= x. Then consider the

morphisms f, g : K1 → Q defined by f(u) = x and g(u) = y. Then f 6= g and m ◦ f = m ◦ g.

This contradicts m being a monomorphism. Hence Q has only one vertex.

Now suppose Q has a loop `. Then consider the morphisms id, pxq : Q → Q where id is

the identity morphism and pxq is the morphism that sends all loops to the vertex x. Then

pxq 6= id and m ◦ pxq = m ◦ id. This contradicts m being a monomorphism. Hence Q is

loopless and m is and isomorphism.

We now check the loop object and loops in Grphs .

Proposition 3.2.2. In Grphs

(i): the loop object LO is K`
1.

(ii): given a loop p of a graph G, there is a unique monomorphism p̃ : K`
1 → G such that

p̃(`) = p, and given a monomorphism q̃ : K`
1 → G, a loop q of G is identified.

Proof. Part (i): Let v` be the vertex of K`
1 and ` be the loop. VO only admits a single
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morphism to K`
1, the inclusion morphism which is a monomorphism but not an isomorphism.

Let G be a graph such that VO admits only a single monomorphism to G and it is not an

isomorphism. We must show that K`
1 admits a monomorphism to G.

Since all morphisms from VO are monomorphisms in Grphs , VO admits only a single morphism

to G and G has only a single vertex u. Since G is not isomorphic to VO, G must contain a

loop a. Then K`
1 admits an inclusion monomorphism into G.

Now let H be a graph such that VO only admits a single monomorphism to H which is not

an isomorphism, with a monomorphism m : H → K`
1. Similarly to G, H has a single vertex

v and at least one loop b. Suppose it has another loop c.

Consider f, g : K`
1 → H defined by f(v`) = v, f(`) = b, g(v`) = v, and g(`) = c. Then

f 6= g, but m ◦ f = m ◦ g, a contradiction to m being a monomorphism. Hence H has only a

single loop and m is clearly an isomorphism to K`
1.

Part (ii): Let p be a loop in G incident to a vertex u. Then the morphism p̃ : K`
1 → G

defined by p̃(v`) = u and p̃(`) = p suffices. To show it is unique, consider another such

monomorphism ˜̃p : K`
1 → G such that ˜̃p(`) = p. Since p is incident to u and incidence must

be preserved, ˜̃p(v`) = u and ˜̃p = p̃.

Now let a q̃ be a monomorphism q̃ : K`
1 → G. Since vertices must be sent to vertices,

q̃(v`) = v for some v ∈ V (G). We then show that the morphism f : K`
1 → G defined by

f(v`) = v and f(`) = v is not a monomorphism. Consider the morphism id, pv`q : K`
1 → K`

1

where id is the identity morphism and pv`q is the morphism defined by pv`q(v`) = v` and

pv`q(`) = v`. Then id 6= pv`q, but f ◦ id = f ◦ pv`q. Hence f is not a monomorphism. The

only other morphism K`
1 admits is to map ` to a loop b incident to v in G.

We now check the edge object and edge of an object definitions in Grphs .

Proposition 3.2.3. In Grphs

(i): the edge object EO is K2.

(ii): given a non-loop edge, a, of a graph G, there is a unique pair of distinct monomorphisms

ã = 〈ã1, ã2〉 such that ã1(e) = ã2(e) = a, ã1 ◦ tw = ã2, and ã1 = ã2 ◦ tw, and given a pair of
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distinct monomorphisms b̃ = 〈b̃1, b̃2〉 such that b̃1 ◦ tw = b̃2 and b̃1 = b̃2 ◦ tw, a non-loop edge

b is identified.

Proof. Part (i): Clearly ](hom(VO,K2)) = 2, K2 is loopless, and K2 � VO + VO
∼= Kc

2. Let

u : K1 → K2 and v : K1 → K2 be the two distinct vertices of K2 and let e be the edge incident

to both u and v. Then tw : K2 → K2 defined by tw(u) = v, tw(v) = u and tw(e) = e suffices

as the tw automorphism. Now let G be a graph such that ](hom(VO, G)) = 2, G is loopless,

G � Kc
2, and for the two distinct morphisms x, y : K1 → G, there is an automorphism twG

such that twG ◦ x = y and twG ◦ y = x. We must show K2 admits a monomorphism to G.

Since G is loopless, and G � Kc
2, the is an edge a of G incident to both x and y. Then K2

admits an inclusion monomorphism i : K2 → G defined by i(u) = x, i(v) = y, and i(e) = a.

Now let H be a graph such that ](hom(V,H)) = 2, H is loopless, H � Kc
2, for the two

distinct morphisms x, y : K1 → H, there is an automorphism twH such that twH ◦ x = y and

twH ◦y = x, and H admits a morphism m : H → K2. Since H is loopless and H � Kc
2, H has

an edge a incident to both x and y. Suppose H has another edge b. Consider the morphisms

f, g : K2 → H defined by f(u) = x, f(v) = y, f(e) = a, g(u) = x, g(v) = y, and g(e) = b.

Then f 6= g but m ◦ f = m ◦ g which contradicts m being a monomorphism. Hence there is

only one edge in H and m is an isomorphism.

Part (ii): Let a be a non-loop edge incident to x and y in G. The pair of monomorphism

ã = 〈ã1, ã2〉 with ã1, ã2 : K2 → G defined by ã1(u) = x, ã1(v) = y, ã1(e) = a, ã(
2u) = y,

ã2(v) = x, and ã2(e) = a suffices. To show it is unique, suppose there were another pair

of distinct monomorphisms ˜̃a = 〈˜̃a1, ˜̃a2〉 with ˜̃a1, ˜̃a2 : K2 → G such that ˜̃a1(e) = ˜̃a2(e) = a.

Then since vertices are sent to vertices and incidence is preserved, ˜̃a1(u) is sent to either x or

y. Without loss of generality, ˜̃a1(u) = x. Then ˜̃a1(v) = y and since ˜̃a1 and ˜̃a2 are distinct,

˜̃a2(u) = y and ˜̃a2(v) = x. Hence ã1 = ˜̃a1 and ã2 = ˜̃a2.

Let b̃ = 〈b̃1, b̃2〉 be a pair of distinct monomorphisms b̃1, b̃2 : K2 → G such that b̃1 ◦ tw = b̃2

and b̃1 = b̃2 ◦ tw. Since vertices must be mapped to vertices, there are vertices x and y in G

such that b̃1(u) = x and b̃1(v) = y. Since b̃1 ◦ tw = b̃2, b̃2(u) = y and b̃2(v) = x.
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Suppose x = y. Then since b̃1 and b̃2 are distinct and b̃1(u) = b̃1(v) = b̃2(u) = b̃2(v),

b̃1(e) = a and b̃2(e) = b for two distinct loops a and b in G. However, b̃1(tw(e)) = b̃1(e) 6= b̃2(e),

a contradiction. Hence x and y are distinct. Then since incidence must be preserved, there

is a non-loop edge b in G such that b̃1(e) = b. Then b = b̃1(e) = b̃1(tw(e)) = b̃2(e), and b is

identified.

These propositions are what we should expect. Next we check that the strict graph homo-

morphisms of Grphs are strict morphisms in the categorial sense.

Proposition 3.2.4. In Grphs, f : G→ H is a strict graph homomorphism if and only if it is

strict morphism (in the categorial sense).

Proof. Let f : G → H be a strict graph homomorphism. We first prove there is one epi-

morphism el : K2 → K`
1 defined by el(u) = el(v) = v` and el(e) = `. By inspection, the

only other morphism from K2 to K`
1 is pv`q defined by pv`q(u) = pv`q(v) = pv`q(e) = v`.

Consider the morphisms id, g : K`
1 → K`

1 where id is the identity morphism and g is defined

by g(`) = g(v`) = v`. Then id 6= g, but id◦pv`q = g ◦pv`q. Hence pv`q is not an epimorphism.

If G contains no edges, then this is a vacuously true statement. So let a be a non-loop edge

of G incident to vertices x and y. Then by Proposition 3.2.3. (ii), there is a unique pair of dis-

tinct monomorphisms ã = 〈ã1, ã2〉 from K2 such that ã1(e) = ã2(e) = a. Since vertices must

be mapped to vertices, without loss of generality ã1(u) = x = ã2(v) and ã1(v) = y = ã2(u).

Since edges must be mapped to edges by a strict graph homomorphism, f(a) = b for some

edge b in H.

Suppose b is a non-loop edge incident to distinct vertices x′ and y′ such that f(x) = x′

and f(y) = y′. Then since b is a non-loop edge of H there exists a unique pair of distinct

monomorphisms b̃ = 〈b̃1, b̃2〉 from K2 such that b̃1(e) = b̃2(e) = b. Since vertices must be

mapped to vertices and incidence preserved, without loss of generality b̃1(u) = b̃2(v) = x′ and

b̃1(v) = b̃2(u) = y′. Then b̃1 = f ◦ ã1 and b̃2 = f ◦ ã1 as desired.

Suppose b is a loop incident to vertex x′ = f(x) = f(y) in H. Then by Proposition 3.2.2. (ii)
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there is a unique monomorphism b̃ : K`
1 → H such that b̃(`) = b. Since incidence is preserved,

b̃(v`) = x′. Since el is uniquely defined above, clearly b̃ ◦ el = f ◦ ã1 and b̃ ◦ el = f ◦ ã2, as

desired.

Now let a be a loop of G incident to a vertex x. Then by Proposition 3.2.2. (ii) there

is a unique monomorphism ã : K`
1 → G such that ã(`) = a. Since incidence is preserved,

ã(v`) = x. Since edges must be sent to edges and incidence preserved, there is a loop b in H

incident to a vertex x′ such that f(a) = b and f(x) = x′. Then since b is a loop of H there is

a unique monomorphism b̃ : K`
1 → H such that b̃(`) = b, b̃(v`) = x′. Then f ◦ ã = b̃ as desired.

Conversely, let f : G → H by a strict morphism in Grphs . If G contains no edges, then by

Proposition 3.2.2. (ii) and Proposition 3.2.3. (ii) there is no monomorphism to G from K2 or

K`
1 and the result is a vacuously true statement. So let a be an edge of G.

If a is a non-loop edge, then by Proposition 2.3.3. (ii) there is a unique pair of distinct

monomorphisms ã = 〈ã1, ã2〉 from K2 such that ã1(e) = ã2(e) = a. Since f is a strict mor-

phism and a is a non-loop edge, there is either a pair of distinct monomorphisms b̃ = 〈b̃1, b̃2〉

from K2 such that f ◦ã = b̃1 and f ◦ã2 = b̃2 or a monomorphism ˜̃
b from K`

1 such that f ◦ã1 = ˜̃
b

and f ◦ ã2 = ˜̃
b.

In the first case, by Proposition 3.2.3. (ii) b̃ identifies a non-loop edge b in H such that

f(ã(e)) = f(a) = b̃1(a) = b and f sent an edge to an edge. In the second case by Proposition

3.2.2. (ii) ˜̃
b identifies a loop b in H such that f(ã(e)) = ˜̃

b(`) = b, and f sent an edge to a loop.

Hence f sends non-loop edges to edges.

Now let a be a loop of G. By Proposition 3.2.2. (ii) there is a unique monomorphism ã from

K`
1 such that ã(`) = a. Since f is a strict morphism, there is a monomorphism b̃ : K`

1 → H

such that f ◦ ã = b̃. By Proposition 3.2.2. (ii) b̃ identifies a loop b in H such that b̃(`) = b.

Hence f(ã(`)) = f(a) = b̃(`) = b and f sends loops to loops. Hence f is a strict graph

homomorphism.

We now check that these definitions of categorial graph-like objects are the correct objects

in SiStGraphs .
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Proposition 3.2.5. In SiStGraphs

(i) the vertex object VO is K1.

(ii) the loop object LO is K`
1.

(iii) given a loop p of a graph G, there is a unique monomorphism p̃ : K`
1 → G such that

p̃(`) = p, and given a monomorphism q̃ : K`
1 → G, a loop q of G is identified.

(iv) the edge object EO is K2.

(v) given a non-loop edge, a, of a graph G, there is a unique pair of distinct monomorphisms

ã = 〈ã1, ã2〉 such that ã1(e) = ã2(e) = a, and ã1 ◦ tw = ã2 and ã1 = ã2 ◦ tw, and given a pair

of distinct monomorphisms b̃ = 〈b̃1, b̃2〉 such that b̃1 ◦ tw = b̃2 and b̃1 = b̃2 ◦ tw, a non-loop

edge b is identified.

Proof. Part (i): By Theorem 2.5.3. the non-initial projective objects of SiStGraphs are Kc
n for

n ≥ 1. Clearly K1 admits a monomorphism to every Kc
n with n ≥ 1. The rest of the proof

follows similarly to the proof of Proposition 3.2.1.

Part (ii): Since K1 admits more than one monomorphism to all graphs with two or more

vertices, and since K1 does not admit a morphism to ∅, K1 admits only a single morphism to

graphs with 1 vertex. There are only two non-isomorphic graphs with 1 vertex in SiStGraphs ,

K1 and K`
1. Hence K`

1 is the only object that K1 admits a single monomorphism to that is

not an isomorphism. Thus K`
1 is trivially the minimum such object.

Part (iii): Since SiStGraphs is a subcategory of Grphs , the proof follows from Proposition 3.2.2.

(ii).

Part (iv): Since K2 is the only loopless graph with ](hom(K1,K2)) = 2 that is not isomor-

phic to K1 + K1 = Kc
2, it is trivially the minimum such object. The proof K2 has the tw

automorphism follows similar to proof in Proposition 3.2.3. (i).

Part (v): Since SiStGraphs is a subcategory of Grphs , the proof follows from Proposition 3.2.3.

(iii).

Corollary 3.2.6. The morphisms of SiStGraphs are strict morphisms (in the categorial sense).
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Proof. Since the vertex object, the loop object, and the edge object of SiStGraphs are the same

as those in Grphs , and since all morphism are strict graph homomorphisms in SiStGraphs , the

result follows from Proposition 3.2.4.

We now check our definitions are the correct objects in SiLlStGraphs .

Proposition 3.2.7. In SiLlStGraphs

(i) the vertex object VO is K1.

(ii) there is no loop object LO.

(iii) the edge object EO is K2.

(iv) given a non-loop edge, a, of a graph G, there is a unique pair of distinct monomorphisms

ã = 〈ã1, ã2〉 such that ã1(e) = ã2(e) = a, and ã1 ◦ tw = ã2 and ã1 = ã2 ◦ tw, and given a pair

of distinct monomorphisms b̃ = 〈b̃1, b̃2〉 such that b̃1 ◦ tw = b̃2 and b̃1 = b̃2 ◦ tw, a non-loop

edge b is identified.

Proof. The proofs of parts (i), (iii), and (iv) follow similarly to those in Proposition 3.2.5.

Part (ii): The only graph in SiLlStGraphs that K1 admits a single morphism to is K1. Hence

no loop object exists.

Corollary 3.2.8. The morphisms of SiLlStGraphs are strict morphisms (in the categorial

sense).

Proof. Since the morphisms of SiLlStGraphs are strict graph homomorphisms, and the vertex

object and edge object of SiLlStGraphs are the same as those in Grphs , the result follows from

Proposition 3.2.4.

We then see that in each of our defined categories of graphs, the categorial definitions of

the graph-like objects correctly identify graph objects.
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3.3 Graph-like Objects in Other Categories

We now investigate our categorial definitions of graph-like objects in Sets and Ab. We will start

with Sets . First note that epimorphisms are surjections and monomorphisms are injections in

Sets (for proof, see page 19 [12]). We will require the following lemma.

Lemma 3.3.1. Every object is projective in Sets.

Proof. Since ∅ is the initial object of sets, ∅ is projective. Let X be a non-empty set, we

will show X is projective. Let Y and Z be sets with a function f : X → Y and a surjection

g : Z → Y .

Since g is a surjection, for every y ∈ Y , there is a y′ ∈ Z such that g(y′) = y (use the Axiom

of Choice). Then define a function f : X → Z by f(x) = y′ for f(x) = y. Then f = g ◦ f .

We can now view our graph-like objects in Sets .

Proposition 3.3.2. In Sets

(i) 1, the one element set, is the vertex object.

(ii) there is no loop object.

(iii) there is no edge object.

(iv) all morphisms are strict.

Proof. Part (i): By Lemma 3.3.1., we must show 1 is the minimum non-initial set. Clearly

there is an injection from 1 into any other non-empty set. Now let Y be a non-empty set

such that f : Y → 1 is a injection. Suppose Y has two or more elements. Then let x, y ∈ Y

be distinct. Since 1 has only one element, f(x) = f(y). Sine f is an injection, x = y, a

contradiction. Hence Y is a one element set and 1 ∼= Y .

Part (ii): Since ](hom(1, X)) = ](X) and every function from 1 is an injection, no loop

object exists.
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Part (iii): Since coproducts are disjoint union in Sets , [12], 1 + 1 is a two element set. Since

all two element sets are isomorphic in Sets , and ](hom(1, X)) = ](X), no edge object exists.

Part (iv): This result follows vacuously since there is no loop object nor edge object.

We see then, for a set X, the “graph” of X is just an empty edge graph with the vertex

set X. We now move onto Ab. We first note a widely known result. An abelian group is

projective if and only if it is free (for a proof see [10] pg. 48). Furthermore free abelian

groups are isomorphic to a direct product of the integers Z under addition, and given an

element, x, of a free abelian group, x can be written uniquely as a linear combination of the

generators (with coefficients from Z). We also note that in Ab, monomorphisms are injections

and epimorphisms are surjections (for a proof see [12] pg. 24).

Proposition 3.3.3. In Ab

(i) the group (Z,+) is the vertex object.

(ii) there is no loop object.

(iii) there is no edge object.

(iv) all morphisms are strict.

Proof. Part (i): We first note that the initial object is the zero object in Ab, the trivial group.

Let F be a non-initial free abelian group. Then there is a generator x ∈ F , and f : Z → F

defined by f(1) = x is an injection.

Now let F be a non-initial free abelian group with an injection m : F → Z. Suppose F has

two distinct generators x and y. Then since m is an injection m(x) 6= m(y). Let m(x) = k

and m(y) = n for some integers k 6= n. Then m(n ∗ x) = n ∗m(x) = k ∗m(y) = m(k ∗ y).

Since m is an injection, n ∗ x = k ∗ y and the element n ∗ x is not uniquely represented, a

contradiction to F being free. Hence m(x) = m(y) and since m is an injection x = y. Then

F is generated by one element and F ∼= Z.

Part (ii): Suppose G is an abelian group for which Z admits a only single injection f : Z→ G

and G � Z. Supposed f(1) = x for some x ∈ G. Then 〈x〉, the subgroup of G generated by
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x, is isomorphic to Z.

Now consider g : Z→ 〈x〉 defined by g(1) = 2 ∗ x. Let a, b ∈ Z such that g(a) = g(b), then

2a ∗ x = 2b ∗ x. Since 〈x〉 ∼= Z, x is not a torsion element and 2a = 2b. Thus a = b, and g

is an injection. Since the inclusion morphism i : 〈x〉 ↪→ G is an injection, i ◦ g : Z → G is an

injection. Hence Z admits two injections to G, a contradiction. Hence no loop object exists.

Part (iii): Let G be an abelian group for which Z admits only two distinct group homo-

morphisms f, g : Z → G. Since peq : Z → G, the morphism which maps all elements to the

identity, e, of G, is always a group homomorphism, without loss of generality let f = peq.

Since g 6= f there is an element x ∈ G such that g(1) = x. Since automorphisms of G are

a group homomorphisms, and group homomorphisms must send e to e, there is no automor-

phism tw, such that tw ◦ f = g. Hence there is no edge object.

Part (iv): As with Sets , this follows vacuously since there is no loop object or edge object.

We end this chapter with an interesting note about the vertex object of Ab. Since Z has a

group homomorphism x : Z→ Z such that x(1) = x for every element x ∈ Z, i.e. each x is a

“vertex” of the object Z in the category Ab; and there are no “edges” of the object Z in the

category Ab. This gives the following “graph” of Z.

Figure 3.2: The “Graph” of (Z,+)



Chapter 4

Reflective and Coreflective

Subcategories of Graph Categories

4.1 The Theory of Reflective and Coreflective Subcategories

We finally look at the relationships of our Categories of Graphs. We first develop the theory

of reflective and co-reflective subcategories following [12] pg. 90 and [9] pg. 275. We first

define a reflective subcategory.

Definition 4.1.1. A subcategory A of B is a reflective subcategory if the inclusion functor

I : A ↪→ B has a left adjoint R : B ∼→ A, R –a I. We call the functor R a reflector.

Dually we defined a coreflective subcategory.

Definition 4.1.2. A subcategory A of B is a co-reflective subcategory if the inclusion functor

I : A ↪→ B has a right adjoint C : B ∼→ A, I –a C. We call the functor C a co-reflector.

60
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Our first theorem states that adjoints imply continuity, i.e. colimits commute with left

adjoints and limits commute with right adjoints. Mac Lane calls this “the most useful property

of adjoints”, [12, p. 114].

Theorem 4.1.3. Let A and B be categories with functors G : A → B and F : B → A such

that F is left adjoint to G, F –a G, then

(i) F is right continuous, i.e. for L−→D(−) the colimit of a diagram D, F (L−→D(−)) =

L−→D(F (−)).

(ii) G is right continuous, i.e. for L←−D(−) the limit of a diagram D, G(L←−D(−)) = L←−D(G(−)).

We then apply the theorem to reflective and coreflective subcategories.

Corollary 4.1.4. (i) If A is a reflective subcategory of B, then R ◦ L−→D = L−→D ◦ R and

I ◦ L←−D = L←−D ◦ I.

(ii) If A is a coreflective subcategory of B, then C ◦ L←−D = L←−D ◦ C and I ◦ L−→D = L−→D ◦ I.

We call a category complete when it has all limits, and cocomplete when it has all colimits.

Then as a consequence of Corollary 4.1.4. we get the following two theorems and corollaries

(see chapter 10 of Herrlich and Strecker [9]).

Theorem 4.1.5. If A is reflective in B, then A is closed under limits in B.

Corollary 4.1.6. Reflective subcategories of complete categories are complete.

Theorem 4.1.7. If A is reflective in B with reflector R, then the colimit, L−→D, in A is the

reflection of the colimit in B, R(L−→D).

Corollary 4.1.8. Reflective subcategories of cocomplete categories are cocomplete.

Dually we also have the following two theorems and corollaries.

Theorem 4.1.9. If A is coreflective in B, then A is closed under colimits in B.
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Corollary 4.1.10. Coreflective subcategories of cocomplete categories are cocomplete.

Theorem 4.1.11. If A is coreflective in B with coreflector C, then the limit, L←−D, in A is the

reflection of the limit in B, C(L←−D).

Corollary 4.1.12. Coreflective subcategories of complete categories are complete.

4.2 Relationships in the Categories of Graphs

The results in this section are new results. We now investigate the relationships of the Cate-

gories of Graphs we use in this paper. We have the containment SiLlStGraphs ↪→ SiStGraphs ↪→

Grphs . Are any of these subcategories reflective or coreflective? We answer this question by

first investigating SiLlStGraphs ↪→ SiStGraphs .

Proposition 4.2.1. SiLlStGraphs is neither a reflective nor coreflective subcategory of SiStGraphs.

Proof. Since the limit, the terminal object, does not exist in SiLlStGraphs , then by the contra-

positive to Theorem 4.1.5. SiLlStGraphs is not a reflective subcategory of SiStGraphs . Since the

colimit, the coequalizer, does not exist in SiLlStGraphs , then by the contrapositive to Theorem

4.1.9., SiLlStGraphs is not a coreflective subcategory of SiStGraphs .

Since coequalizers exist in Grphs and the terminal object exists in Grphs , the same proof

yields the following proposition.

Proposition 4.2.2. SiLlStGraphs is neither a reflective nor coreflective subcategory of Grphs.

Lastly we investigate SiStGraphs ↪→ Grphs .

Proposition 4.2.3. SiStGraphs is not a reflective or coreflective subcategory of Grphs



4.2. RELATIONSHIPS IN THE CATEGORIES OF GRAPHS 63

Proof. Suppose SiStGraphs is a reflective subcategory of Grphs with reflector R. Then by The-

orem 4.1.7. the terminal object of SiStGraphs is a reflection of the terminal object in Grphs .

Since every graph in Grphs admits a unique morphism to K1 where every vertex and edge is

mapped to the single vertex, K1 is the terminal object of Grphs . Hence R(K1) = K`
1.

SinceR –a I, where I is the inclusion functor, homSiStGraphs(R(K1),K2) ∼= homGrphs(K1, I(K2)).

SinceR(K1) = K`
1, ](homSiStGraphs(R(K1),K2)) = 0. Since I(K2) = K2, ](homGrphs(K1, I(K2))) =

2. Then no such bijection exists, a contradiction. Hence SiStGraphs is not a reflective subcate-

gory of Grphs .

Now suppose SiStGraphs is a coreflective subcategory of Grphs with coreflector C. In Grphs ,

since K1 is the terminal object, K1 × K2 = K2. Then by Theorem 4.1.11. in SiLlStGraphs ,

C(K1 × K2) = K1 × K2 = Kc
2. Then since I –a C, where I is the inclusion functor,

homGrphs(I(K2),K1×K2) ∼= homSiStGraphs(K2, C(K1×K2)). But ](homGrphs(I(K2),K1×K2)) = 4

and ](homSiStGraphs(K2, C(K1×K2))) = 0, a contradiction. Hence SiStGraphs is not a coreflective

subcategory of Grphs .

We finish this chapter by looking at an overview of the categories of graphs. We form a

“Hasse Diagram” using the inclusion functors of 6 categories of graphs (as well as the Category

of Sets and Functions viewed as a category of edgeless graphs). In the following diagram G

stands for Grphs while the modifiers Si , Ll , and St stand for the restrictions of simple, loopless,

and strict respectively. The functors represented by dashed arrows are adjoints to the inclusion

functor.
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Figure 4.1: The Categories of Graphs

The functor S1 : Grphs ∼→ SiLlGraphs is the simplification functor that removes loops (i.e.

collapses loops to their incident vertex) and identifies multiple edges as a single edge. S1 is left

adjoint to inclusion and, as such, SiLlGraphs is a reflective subcategory of Grphs . The functor

S2 : StGraphs ∼→ SiStGraphs is the simplification functor that identifies loops as a single loop

and multiple edges as a single edge. S2 is left adjoint to inclusion and, as such, SiStGraphs is

a reflective subcategory of StGraphs . We last note that if we consider Sets as the empty edge

graphs, | − |V : Grphs ∼→ Sets is right adjoint to inclusion and, as such, Sets is a coreflective

subcategory of Grphs .



Chapter 5

Conclusion

We have discovered that SiLlStGraphs lacks many categorial constructions, and our investigation

into SiStGraphs gives us a glimpse as to why. If in a graph category, there is no morphism to a

graph obtained by identifying vertices, many categorial constructions such as quotient graphs,

coequalizers, and injective objects do not exist. However, we do find that both SiLlStGraphs

and SiStGraphs do not have a subobject classifier, and therefore are not topoi.

Keeping the goal of an axiomatization of the categories of graphs in mind, we see that

the categorial objects inherent in both SiStGraphs and SiLlStGraphs are necessary conditions

that must be satisfied. With the categorial definitions of graph-like objects, and especially

strict morphisms, we have a categorial way of differentiating between Grphs , SiStGraphs and

SiLlStGraphs .

However, our list of necessary conditions is not a list of sufficient conditions. A further area

of study would be to expand our list until an independent sufficient list of conditions is found.

We discovered that SiStGraphs and SiLlStGraphs are not reflective or coreflective subcategories

of Grphs . Another area of study would be to find reflective and coreflective subcategories of

Grphs which will inherit much of the structure of Grphs .
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Appendix A

Primer of Category Theory

Here you will find the definitions for all the categorial constructions used in this paper that

were not included in the main body. We follow the format of [4] .

Definition A.0.4. An object 0 is initial in a category C if for every other object in the

category, A, there is one unique morphism from 0 to A.

The initial object is the colimit of the empty diagram. In Sets the initial object is the empty

set, ∅, and in Ab the initial object is the trivial group.

Definition A.0.5. An object 1 is terminal in a category C if for every other object in the

category, A, there is one unique morphism from A to 1.

The terminal object is the limit of the empty diagram. In Sets the terminal object is the

one element set, and in Ab the terminal object is the trivial group.

Definition A.0.6. Given a pair of morphisms f, g : A→ B in a category C , the equalizer is

an object Eq with a morphism eq : Eq → A such that:

(i) f ◦ eq = g ◦ eq and,
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(ii) whenever there is an object X and a morphism h : X → A such that f ◦h = g ◦h, there

is a unique morphism h : X → Eq such that h = eq ◦ h.

The definition states that the following diagram commutes.

Figure A.1: The Equalizer

The equalizer is the limit of the diagram: • ⇒ •. In Sets the equalizer of two functions is

the subset of the domain in which the functions agree along with the inclusion function, and

in Ab the equalizer of two group homomorphisms f and g is ker(f − g).

Definition A.0.7. Given a pair of morphism f, g : A → B in a category C , the coequalizer

is an object Coeq and a morphism coeq : B → Coeq such that:

(i) coeq ◦ f = coeq ◦ g and,

(ii) whenever there is an object X with a morphism h : B → X such that h◦f = g ◦f , there

is a unique morphism h : Coeq → X such that h ◦ coeq = h.

The definition states that the following diagram commutes.

Figure A.2: The Coequalizer

The coequalizer is the colimit of the diagram: •⇒ •. In Sets the coequalizer of two functions

is the set of congruence classes defined by equivalence relation generated by the functions, and
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in Ab the coequalizer of two group homomorphisms f and g is the factor group obtained from

the codomain through image(f − g).

Definition A.0.8. Products exist in a category C , if for all objects A and B in C , there exists

an object A × B with morphisms πA : A × B → A and πB : A × B → B in C such that for

all objects X with morphisms fA : X → A and fB : X → B, there exists a unique morphism

f : X → A×B such that fA = πA ◦ f and fB = πB ◦ f .

This definition states the following diagram commutes.

Figure A.3: The Product

The product is the limit of the diagram • •. In Sets the product of two sets is the cartesian

product, and in Ab the product of two abelian groups is the direct product.

Definition A.0.9. Coproducts exist in a category C , if for all objects A and B in C , there

exists an object A + B with morphisms iA : A → A + B and iB : B → A + B such that for

all objects X with morphisms gA : A → X and gB : B → X, there exists a unique morphism

g : A+B → X.
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This definition states the following diagram commutes.

Figure A.4: The Coproduct

The coproduct is the colimit of the diagram • •. In Sets the coproduct of two sets is the

disjoint union, and in Ab the coproduct of two abelian groups is the direct sum. In Ab the

product and coproduct of two finite abelian groups are naturally isomorphic.

Definition A.0.10. A category C has exponentiation with evaluation if it has a product for

any two objects and given two objects A and B, there is an object BA in C with a morphism

ev : BA × A → B such that for every other object X with morphism g : X × A → B, then

there is a unique morphism g : X → BA such that ev ◦ (g × 1A) = g. The assignment of g to

g establishes a bijection homC (X ×A,B) ∼=homC (X,BA) in Sets.

The definition states that the following diagram commutes.

Figure A.5: Exponentiation and Evaluation

In Sets , given two sets A and B, BA is the set of all functions from A to B. In Ab, given two

abelian groups, G and H, HG is an abelian group with elements the group homomorphisms
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from G to H, with addition defined element-wise and with evaluation the natural (f, a) 7→

f(a).

Definition A.0.11. Given objects A,B, and C in a category C with morphisms f : A → C

and g : B → C, the pullback of f and g is an object D with morphisms f : D → B and

g : D → A such that:

(i) f ◦ g = g ◦ f and,

(ii): whenever there is an object X with morphisms h : X → A and j : X → B such that

f ◦ h = f ◦ j, there exists a unique morphism k : X → D such that h = g ◦ k and j = f ◦ k.

The definition states that the following diagram commutes,

Figure A.6: The Pullback

and the following diagram is called a pullback square.

Figure A.7: The Pullback Square

The pullback is the limit of the diagram • → • ← •. In Sets and Ab, the pullback of A ↪→ C

and B ↪→ C is the intersection A ∩B.
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Proposition A.0.12. If a category C has products and equalizers, then the pullback of f :

A→ C and g : B → C is the equalizer of f ◦ πA : A×B → C and g ◦ πB : A×B → C.

Proof. Let A,B, and C be objects in a category C with morphisms f : A→ C and g : B → C.

We first take the product of A and B yielding A×B with the morphisms πA : A×B → A

and πB : A×B → B.

We then take the equalizer of f ◦πA and g ◦πB yielding Eq with morphism eq : Eq → A×B

such that f ◦ πA ◦ eq = g ◦ πB ◦ eq.
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We claim Eq is the pullback for f and g with morphisms πA ◦ eq : Eq → A and πB ◦ eq :

Eq → B. Let X be an object in C with morphism h : X → B and j : X → A such that

g ◦ h = f ◦ j.

Then by the universal property of A×B, there is a unqiue morphism k : X → A×B such

that πA ◦ k = j and πB ◦ k = h.
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Then since g ◦ h = f ◦ j, g ◦ πB ◦ k = f ◦ πA ◦ k. So by the universal property of Eq, there

exists a unique morphism l : X → Eq such that eq ◦ l = k.

Since eq ◦ l = k, πB ◦ eq ◦ l = h and πA ◦ eq ◦ l = j as desired.
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Definition A.0.13. Given a category C with a terminal object 1, then a subobject classifier

for C is an object Ω (called the “subobject classifier”) with a morphism > : 1 → Ω (called

“truth”) such that for every monomorphism f : A � D, there is a unique morphism χf :

D → Ω (some say χA) such that

is a pullback square.

In Sets , the subobject classifier is the two element set Ω = {0, 1} and > : 1 = {1} ↪→ Ω =

{0, 1}; and there is no subobject classifier in Ab.

Definition A.0.14. Given a functor F : A ∼→ B and a functor G : B ∼→ A, F is left adjoint

of G, F –a G, if there is a natural bijection in Sets of homB(F (A), B) ∼=homA(A,G(B)).

Definition A.0.15. A concrete category is a category with an underlying set functor.

Definition A.0.16. Given a concrete category C with an underlying set functor

| − | : C ∼→ Sets, the free object on a set B, F (B), is an object in C with a function

u : B → |F (B)| in Sets such that for any objects A in C with function g : B → |A| in Sets,

there is a unique morphism g : F (B)→ A in C such that |g| ◦ u = g in Sets.
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Note that this defines a functor F : Sets ∼→ C such that F –a | − |. The definition states

that the following diagram commutes.

Figure A.8: The Free Object

Definition A.0.17. Given a concrete category C with underlying set functor |−| : C ∼→ Sets,

the cofree object on a set B, C(B), is an object in C with a function c : |C(B)| → B in Sets

such that for any object A in C with function g : |A| → B in Sets, there is a unique morphism

g : A→ C(B) such that c ◦ |g| = g in Sets.

Note that this defines a functor C : Sets ∼→ C such that | − | –a C. The definition states

that the following diagram commutes.

Figure A.9: The Cofree Object

For the next four definitions, we follow [12].
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Definition A.0.18. In a category C an object P is called projective if for every morphism

h : P → C and for every epimorphism g : B � C, there is a morphism h : P → C such that

h = g ◦ h.

The definition states that the following diagram commutes.

Figure A.10: A Projective Object

In Sets , every set is projective, and in Ab the projectives are the free abelian groups.

Definition A.0.19. A category C has enough projectives if for any object C of C there exists

a projective object P in C and an epimorphism e : P � C.

Definition A.0.20. In a category C an object Q is called injective if for every morphism

h : C → Q and monomorphism g : C � B, there is a morphism h : B → Q such that

h = h ◦ g.

The definition states that the following diagram commutes.

Figure A.11: An Injective Object

In Sets every set is injective; and in Ab, the divisible abelian groups (like Q) are injectives.
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Definition A.0.21. A category C has enough injectives if for any object C of C there exists

an injective object Q in C and monomorphism m : C � Q.

Definition A.0.22. An object G in category C is a generator (also called a separator) if for

all morphisms f, g : X → Y in C such that f 6= g, there is a morphism h : G → X such that

f ◦ h 6= g ◦ h.

In Sets , any non-empty set, e.g. a one element set, is a generator; and in Ab, the infinite

abelian group (Z,+) is a generator.

Definition A.0.23. An object C in a category C is a cogenerator (also called a coseparator)

if for all morphisms f, g : X → Y in C such that f 6= g, there is a morphism h : Y → C such

that h ◦ f 6= h ◦ g.

In Sets , any two element set (or superset there of) is a cogenerator; and in Ab the circle

group (R/Z,+) is a cogenerator.
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