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General sufficient conditions are established for maps between function algebras to be com-
position or weighted composition operators, which extend previous results regarding spectral
conditions for maps between uniform algebras. Let X and Y be a locally compact Hausdorff
spaces, where A ⊂ C(X) and B ⊂ C(Y ) are function algebras, not necessarily with unit. Also
let ∂A be the Shilov boundary of A, δA the Choquet boundary of A, and p(A) the set of p-
points of A. A map T ∶A→ B is called weakly peripherally-multiplicative if the peripheral spec-
tra of fg and TfTg have non-empty intersection for all f,g in A. (i.e. σπ(fg)∩σπ(TfTg) ≠ ∅
for all f, g in A) The map is said to be almost peripherally-multiplicative if the peripheral
spectrum of fg is contained in the peripheral spectrum of TfTg (or if the peripheral spectrum
of TfTg is contained in the peripheral spectrum of fg) for all f, g in A.

Let X be a locally compact Hausdorff space and A ⊂ C(X) be a dense subalgebra of a
function algebra, not necessarily with unit, such that δA = p(A). We show that if T ∶A→ B is
a surjective map onto a function algebra B ⊂ C(Y ) that is almost peripherally-multiplicative,
then there is a homeomorphism ψ∶ δB → δA and a function α on δB so that (Tf)(y) =
α(y) f(ψ(y)) for all f ∈ A and y ∈ δB, i.e. T is a weighted composition operator where the
weight function is a signum function.

We also show that if T is weakly peripherally-multiplicative, and either σπ(f) ⊂ σπ(Tf)
for all f ∈ A, or, alternatively, σπ(Tf) ⊂ σπ(f) for all f ∈ A, then (Tf)(y) = f(ψ(y)) for all
f ∈ A and y ∈ δB. In particular, if A and B are uniform algebras and T ∶A → B is a weak
peripherally-multiplicative operator, that has a limit, say b, at some a ∈ A with a2 = 1, then
(Tf)(y) = b(y)a(ψ(y)) f(ψ(y)) for every f ∈ A and y ∈ δB.

Also, we show that if a weak peripherally-multiplicative map preserving peaking functions
in the sense P(B) ⊂ T [T ⋅ P(A)] or T [P(A)] ⊂ T ⋅ P(B) then T is a weighted composition
operator with a signum weight function. Finally, for function algebras containing sufficiently
many peak functions, including function algebras on metric spaces, it is shown that weak
peripherally-multiplicative maps are necessarily composition operators.
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Chapter 1

Introduction

This chapter describes the background and historical context of what are referred to as “spec-

tral preserver problems.” In general, one studies maps between Banach algebras and con-

ditions on these maps which imply a structure preserving property of the map, ultimately

relating the structure between two Banach algebras.

Structure-preserving maps are ubiquitous throughout mathematics. For example, in algebra,

a group is a set with a structure determined by the binary operation of the group. If several

groups are being considered, it is natural to ask if they have the same, or similar structure.

The topic of this thesis is maps between Banach algebras, and function algebras in particular.

A Banach algebra is an object that has a linear, multiplicative, and topological structures.

Therefore, maps that preserve all of these structures are most useful in determining whether

two Banach algebras are fundamentally different or similar. Structure preserving maps be-

tween Banach algebras are called isometric algebra isomorphisms. It is particularly interesting

to investigate particular conditions where we may deduce that the map is an isometric algebra

isomorphism, since this gives insight into the relationship between the various structures of

the algebras.

1



1.1. LINEAR AND SPECTRAL PRESERVER PROBLEMS 2

The goal of this dissertation is to present sufficient conditions for maps between function alge-

bras to be weighted composition operators, which operators are a type of structure preserving

map that describe the action of a map between algebras in terms of the elements it is acting on

(see Definition 4.1.1.) The first two chapters give a brief introduction to the general subject,

while the third builds the framework and basic tools for arguments in the later chapters. Much

of the theory and many results presented here have been developed previously for uniform

algebras. Here we widen our scope to the more general context of function algebras.

The remainder of this chapter provides some historical context and summary of several results

that appear in Chapters 4,5 and 6. The terminology and definitions are provided in Chapters

2,3 and 4.

1.1 Linear and Spectral Preserver Problems

The study of real-linear spaces is a historically significant and central topic in mathematics,

and it is an important precursor to the general study of Banach spaces. One of the first

significant results for real-linear normed vector space is the famed Mazur-Ulam Theorem.

Theorem 1.1.1 (Mazur-Ulam Theorem). Let f ∶ X → Y be a distance preserving surjective

map between normed vector spaces X,Y over R such that f(0) = 0. That is, ∣∣f(x) − f(y)∣∣ =

∣∣x − y∣∣ for all x, y ∈X. Then f is an isometric real-linear transformation.

More simply, the Mazur-Ulam Theorem states that every isometry between normed vector

spaces over the real numbers is an affine transformation. For the Mazur-Ulam theorem, as

well as the theorems in Chapters 5 and 6, the assumption of surjectivity is essential since

the theorem is not necessarily true for non-surjective mappings. Complex conjugation is

a simple counter-example that shows the Mazur-Ulam Theorem does not hold for complex

vector spaces.
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The linearity of the map f is a consequence of the Mazur-Ulam Theorem stated above. How-

ever, many classical results in the theory of Banach algebras assume the linearity of a map

and show, under other suitable hypotheses, that the map is multiplicative, thus an algebra

isomorphism. The following theorem is an important result in the theory of spectral preserves

and provides an example of a linear preserver problem.

Theorem 1.1.2 (Gleason-Kahane-Zelazko Theorem (1973)). [26] Let A be a unital com-

mutative Banach algebra and B a uniform algebra. If T ∶ A → B is a linear map with

σ(Tf) ⊂ σ(f), where σ(f) is the spectrum of f , for every f ∈ A, then T is multiplicative, i.e.,

T (fg) = T (f)T (g) for every f, g ∈ A.

The hypotheses in the Gleason-Kahane-Zelazko Theorem include the spectral condition σ(Tf) ⊂

σ(f), which is considered an analytic (or topological) condition on the map T (See Definition

2.2.4) and concludes that the map preserves the multiplicative structure of the algebras.

The following theorem is another classical linear preserver problem that describes sufficient

conditions for a map between spaces of continuous function to be a weighted composition

operator.

Theorem 1.1.3 (Banach-Stone Theorem (1936)). (e.g. in [2]) If X and Y are compact sets

and T ∶ C(X)→ C(Y ) is a surjective linear isometry, then there is a homeomorphism ψ ∶ Y →

X and a function α ∈ C(Y ) such that ∣α(y)∣ = 1 for all y ∈ Y and (Tf)(y) = α(y)f(ψ(y)) for

all f ∈ C(X) and y ∈ Y .

The Banach-Stone Theorem is a linear preserver problem giving sufficient conditions for a map

to be a weighted composition operator. This is the model used for the theorems presented in

Chapters 5 and 6.
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1.1.1 Multiplicative Spectral Preserver Problems

Another type of condition on a mapping T ∶ A → B between algebras of functions relates

the spectrum σ(fg) of the product fg with the spectrum σ(TfTg) of the product of the

images TfTg. Note that if A and B are algebras with multiplicative identities, 1A and 1B

respectively, then we say T is a unital map if T (1A) = 1B. The following theorem by Molnár

is one of the first to address the sufficient conditions of unital mappings with a multiplicative

spectral condition.

Theorem 1.1.4 (Molnár (2001)). [18] Let X be a first-countable compact space. A surjective,

unital mapping T ∶ C(X) → C(X) for which σ(TfTg) = σ(fg) for every f, g ∈ C(X) is an

isometric algebra automorphism.

In 2005, Rao and Roy showed in [23] that the theorem holds for any self map T ∶ A → A

where X is a compact Hausdorff space and A ⊂ C(X) is a uniform algebra. In [17] from 2007,

Luttman and Tonev improved the result to hold for maps between two, possibly different,

uniform algebras under a weakened hypothesis requiring only the preservation of a subset of

the spectrum, the peripheral spectrum (see Definition 2.2.5,) of the products fg and TfTg

for each f, g in A. The following theorem appears in Luttman and Tonev’s paper Uniform

algebra isomorphisms and peripheral multiplicativity.

Theorem 1.1.5 (Luttman-Tonev (2007)). [17] If T ∶ A → B is a surjective map (not necce-

sarily linear) between uniform algebras such that

σπ(TfTg) = σπ(fg)

for all f, g ∈ A, then there exists κ ∈ B with κ2 = 1 and a homeomorphism ψ ∶ δB → δA such

that

Tf = κ(f ○ ψ)

on ∂B for all f ∈ A. In particular, T̃ = κT ∶ A→ B is an isometric algebra isomorphism.
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Note that the previous theorem of Luttman and Tonev is a generalization of the result by Rao

and Roy since if σ(f) = σ(g), then σπ(f) = σπ(g) although the converse is not true. That

is, the peripheral multiplicativity condition σπ(fg) = σπ(TfTg) is a strictly weaker condition

than the spectral condition σ(fg) = σ(TfTg).

The result was strengthened by Luttman, Lambert and Tonev, again in 2007.

Theorem 1.1.6 (Lambert, Luttman, and Tonev (2007)). [14] A surjective mapping T ∶ A→ B

between uniform algebras with σπ(TfTg)∩σπ(fg) ≠ ∅ for all f, g ∈ A, and which preserves the

peripheral spectra of all elements, i.e. σπ(Tf) = σπ(f) for all f in A, is an isometric algebra

isomorphism.

If a map satisfies the condition σπ(TfTg) ∩ σπ(fg) ≠ ∅ for all f, g in A then T is said to be

weakly peripherally-multiplicative (see Definition 5.1.1.) Note that the condition σπ(TfTg) =

σπ(fg) implies the weakly peripherally-multiplicative condition, but not vice-versa. In chap-

ter 5 we establish sufficient conditions for maps between function algebras to be weighted

composition operators.

The following results were obtained by the author in the joint paper [12] with T. Tonev in

2011.

Theorem. 5.2.1 (A)[12] Let A ⊂ C(X) be a function algebra and B ⊂ C(Y ) a dense subal-

gebra of a function algebra, not necessarily with units, such that p(B) = δB, where X and Y

are locally compact Hausdorff spaces. If T ∶A→ B is a surjection such that

σπ(Tf ⋅ Tg) ⊂ σπ(fg) (1.1)

for all f, g ∈ A, then there exists a homeomorphism ψ∶ δB → δA and a continuous function α

on δB with α2 = 1 such that

(Tf)(y) = α(y) f(ψ(y))
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for every y ∈ δB.

The same conclusion follows under alternative symmetric conditions.

Theorem. 5.2.1 (B)[12] Let A ⊂ C(X) be a dense subalgebra of a function algebra, and

B ⊂ C(Y ) be a function algebra, not necessarily with units, where X and Y are locally compact

Hausdorff spaces. If T ∶A→ B is a surjection such that

σπ(fg) ⊂ σπ(Tf ⋅ Tg) (1.2)

for all f, g ∈ A, then there exists a homeomorphism ψ∶ δB → δA and a continuous function α

on δB with α2 = 1 such that

(Tf)(y) = α(y) f(ψ(y))

for every y ∈ δB.

We call a map T between function algebras A and B almost peripherally-multiplicative if

σπ(fg) ⊂ σπ(TfTg) or σπ(TfTg) ⊂ σπ(fg) for all f, g in A. The previous two theorems

can be summarized as follows: An almost peripherally-multiplicative map between function

algebras is necessarily a weighted composition operator where the weight function is a signum

function.

A clear sufficient condition for T to be an isometric algebra isomorphism is given in the

following corollary to the previous theorems.

Corollary 1.1.7. Let X and Y be locally compact Hausdorff spaces and A ⊂ C(X) and

B ⊂ C(Y ) be function algebras, not necessarily with unit. If T ∶A→ B is an almost peripheral-

multiplicative surjection, and d(σπ(f), σπ(Tf)) < 2 for all f ∈ A, then T is a composition

operator.
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1.2 Extensions for Function Algebras

The proofs of the above theorems rely on variations of Bishop’s Lemma, a classical result from

the theory of uniform algebras. Namely,

Theorem 1.2.1 (Classical Bishop’s Lemma). (e.g. in [4]) Let E be a peak set of a uniform

algebra A and f ∈ A such that f ∣E /≡ 0. Then there is a peaking function h ∈ PE(A) such that

fh takes its maximum modulus only within E = E(h).

In [14], Lambert extended Bishop’s Lemma for p-sets in uniform algebras.

Theorem 1.2.2 (Bishop’s Lemma for p-sets for Uniform Algebras). [14] Let A ⊂ C(X) be a

uniform algebra and E a p-set of A. If f ∈ A is such that f ∣E /≡ 0, then there is a peaking

function h ∈ PE(A) such that fh takes its maximum modulus on E.

In chapter 3 we prove the following theorem for function algebras A ⊂ C0(X) where X is a

locally compact Hausdorff space.

Theorem 1.2.3 (Bishop’s Lemma for p-sets in Function Algebras). Let X be a locally compact

Hausdorff space and A ⊂ C0(X) be a function algebra without unit. If f ∈ A and E is a p-set

of A with f ∣E ≠ 0, then there exists a peaking function h ∈ PE(A) such that fh takes its

maximum modulus in E.

As a corollary, we obtain the version of Bishop’s lemma for p-points from [24], which is

fundamental to the results in chapters 5 and 6.

Theorem 1.2.4 (Strong Multiplicative Bishop’s Lemma). Let X be a locally compact Haus-

dorff space and A ⊂ C(X) be a function algebra without unit on X = ∂A. If f ∈ A and x0 ∈X

is a p-point of A with f(x0) ≠ 0, then there exists a peaking function h0 ∈ Px0(A) such that

σπ(fh0) = {f(x0)} (1.3)
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If E is a peak set of A which contains x0, then h0 can be chosen so that E(fh0) = E(h0) ⊂ E.

In Chapter 4 we state and prove several lemmas needed for the following theorem.

Theorem. 4.2.1 [24] Let A ⊂ C0(X) and B ⊂ C0(Y ) be dense subalgebras of function algebras

without units on X and Y with p(A) = δA and p(B) = δB. If T ∶A → B is a surjection such

that ∥Tf ⋅ Tg∥ = ∥fg∥ for all f, g ∈ A, then there is a homeomorphism ψ∶p(B) → p(A) such

that

∣(Tf)(y)∣ = ∣f(ψ(y))∣ (1.4)

for all f ∈ A and y ∈ p(B).

It is known that if A ⊂ C(X) is a function algebra, then ∣A∣ separates the points of X (e.g.

[23]). We provide an alternative proof of this result. Namely,

Lemma. 4.2.9 Let X be a locally compact Hausdorff space. If A ⊂ C0(X) separates the points

of X, then so does ∣A∣.

1.2.1 Weak Peripherally-Multiplicative Maps between Function Algebras

In [14] Lambert, Luttman, and Tonev show that weak peripherally-multiplicative maps be-

tween uniform algebras that preserve the peripheral spectrum of each element are isometric

algebra isomorphisms. In Chapter 6 we generalize this result to algebras of functions and

relax the condition of preserving the peripheral spectra to σπ(f) ⊂ σπ(Tf) for all f in A, or

σπ(Tf) ⊂ σπ(f) for all f in A.

Theorem. 6.0.5 (A)(2011) [12] Let X be a locally compact Hausdorff space where A ⊂ C(X)

is a dense subalgebra of a function algebra, not necessarily with unit, such that X = ∂A and

p(A) = δA. If T ∶A→ B is a surjection onto a function algebra B ⊂ C(Y ) such that

σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A (1.5)
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and

σπ(f) ⊂ σπ(Tf) for all f ∈ A, (1.6)

then T is a bijective ψ-composition operator on δB with respect to a homeomorphism ψ∶ δB →

δA. That is,

(Tf)(y) = f(ψ(y))

for all f ∈ A and y ∈ δB. In particular, A is necessarily a function algebra and T is an algebra

isomorphism.

Again, the result holds under symmetric conditions.

Theorem. 6.0.5 (B)(2011) [12] Let X be a locally compact Hausdorff space where A ⊂ C(X)

is a function algebra, not necessarily with unit such that X = ∂A, and B is a dense subalgebra

of a function algebra B ⊂ C(Y ) such that p(B) = δ(B). If T ∶A→ B is a surjection such that

σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A (1.7)

and

σπ(Tf) ⊂ σπ(f) for all f ∈ A, (1.8)

then T is a bijective ψ-composition operator on δB with respect to a homeomorphism ψ∶ δB →

δA. That is,

(Tf)(y) = f(ψ(y))

for all f ∈ A and y ∈ δB. In particular, B is necessarily a function algebra and T is an algebra

isomorphism.

In [9, Theorem 8] it is shown that weak peripherally-multiplicative maps between uniform

algebras that are continuous at the unity element are composition operators, and thus algebra

isomorphisms. We generalize this result by showing that it is not necessary for T to be

continuous at the unity element, but that it must have a limit at a point a ∈ A with a2 = 1.
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Theorem. 6.1.4 [Johnson and Tonev (2011)] [12] Let A and B be uniform algebras on com-

pact Hausdorff spaces X and Y . If T ∶A→ B is a surjective map such that

(i) σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A and

(ii) There exist an a ∈ A with a2 = 1 such that T has a limit, say b, at a,

then b2 = 1 and (Tf)(y) = b(y)a(ψ(y)) f(ψ(y)) for every f ∈ A and y ∈ δB, i.e. the map

f ↦ bT (af) is an isometric algebra isomorphism.

The following two theorems were proved for uniform algebras by Lambert,Luttman, and Tonev

in [14]. In chapter 6 we show that the theorems hold for algebras of functions, not necessarily

with a unit element.

Theorem. 6.1.6 (A)(2011) Let A be a dense subalgebra of a function algebra such that

p(A) = δA and B a function algebra on compact Hausdorff spaces X and Y respectively.

Suppose that T ∶ A→ B is surjective, σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A, and

P(B) ⊂ T [T ⋅P(A)]. (1.9)

Then there exists a homeomorphism ψ ∶ δB → δA and a continuous function α on δB with

α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))

for every y ∈ δB.

The same conclusion follows under a symmetric condition.

Theorem. 6.1.6 (B)(2011) Let A be a function algebra and B a dense subalgebra of a

function algebra such that p(B) = δB on compact Hausdorff spaces X and Y respectively.
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Suppose that T ∶ A→ B is surjective, σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A, and

T [P(A)] ⊂ T ⋅P(B). (1.10)

Then there exists a homeomorphism ψ ∶ δB → δA and a continuous function α on δB with

α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))

for every y ∈ δB.

These theorems also provide us with the following corollaries.

Corollary 1.2.5. Let A and B be function algebras on compact Hausdorff spaces X and Y .

Suppose that T is surjective and

σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅

for all f, g ∈ A and σπ(Tf) is a singleton whenever σπ(f) is a singleton (or vice-versa).

Then there exists a homeomorphism ψ ∶ δB → δA and a continuous function α on δB with

α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))

for every y ∈ δB.

Corollary 1.2.6. Let A and B be function algebras on compact Hausdorff spaces X and Y

with the hypotheses of the Theorem 6.1.6 (B). In addition, suppose that d(σπ(f), σπ(Tf)) < 2

for all f ∈ A. Then there exists a homeomorphism ψ ∶ δB → δA,

(Tf)(y) = f(ψ(y))

for every y ∈ δB. In other words, the weight function α ∶ δB → {1,−1} is identically 1 which



1.2. EXTENSIONS FOR FUNCTION ALGEBRAS 12

implies that T is a composition operator, thus an isometric algebraic isomorphism.

1.2.2 Function Algebras with Sufficiently many Peak Functions

If the underlying locally compact Hausdorff spacesX,Y are metric spaces, withA ⊂ C0(X) and

B ⊂ C0(Y ) function algebras, then we also show that A and B must contain sufficiently many

peak functions which further describe the behavior of a weakly peripherally-multiplicative map

T between A and B.

Theorem. 6.2.2 Let X,Y be locally compact Hausdorff spaces and let A ⊂ C(X),B ⊂ C(Y )

be dense subalgebras of function algebras, not necessarily with unit, with δA = p(A) and

δB = p(B). Let for every f ∈ A and any x ∈ δA there is a peak function h ∈ Px(A) so that

σπ(fh) = {f(x)}. If T ∶A→ B is a surjection such that

σπ(Tf Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A, (1.11)

then T is a weighted composition operator, namely, there exists a homeomorphism ψ∶ δB → δA

and a continuous function α on δB with α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))

for every f ∈ A and y ∈ δB.

Then we also have the following corollaries.

Corollary 1.2.7. Let X and Y be locally compact Hausdorff spaces and let A ⊂ C(X) and

B ⊂ C(Y ) be dense subalgebras of function algebras, not necessarily with unit with δA = p(A)

and δB = p(B). If T ∶A → B is a surjection such that σπ(Tf Tg) is a singleton for every
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f, g ∈ A for which σπ(fg) a singleton, and if

σπ(Tf Tg) ∩ σπ(fg) ≠ ∅

for all f, g ∈ A, then there exists a homeomorphism ψ∶ δB → δA and a continuous function α

on δB with α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))

for every f ∈ A and y ∈ δB.

The following corollary shows that each weakly peripherally-multiplicative surjective map

T ∶ A → B between function algebras on metric spaces are necessarily weighted composition

operators.

Corollary 1.2.8. Let A be a function algebra and B be a dense subalgebra of function algebra

on metric spaces X and Y respectively such that p(B) = δB. If T ∶A→ B is a surjection such

that

σπ(Tf Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A,

then there exists a homeomorphism ψ∶ δB → δA and a continuous function α on δB with α2 = 1

such that

(Tf)(y) = α(y)f(ψ(y))

for every f ∈ A and y ∈ δB.



Chapter 2

Commutative Banach Algebras

Some of the basic definitions and terminology in the theory of Banach Algebras are introduced

in this chapter, which provides a short presentation to a reader who is unfamiliar with the

subject. The exposition here, in general, follows [7].

2.1 Basic Properties and Definitions

2.1.1 Banach Spaces

Definition 2.1.1. A Banach Space is a pair (B, ∣∣ ⋅ ∣∣), where B is a vector space and ∣∣ ⋅ ∣∣ is

a norm on B that is complete with respect to the metric defined by the norm.

Example 2.1.1. Let K ∈ {R,C}. Then Kn forms a vector space over K with norm ∣∣x∣∣ =

(∑ni=1 ∣xi∣2)
1/2

. One can show that Kn is complete with respect to the norm, and is therefore

a Banach space.

Example 2.1.2. Suppose K ∈ {R,C} and fix p > 0. Define by `p all sequences x = {xn}∞n=1 in

14
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K such that
∞
∑
n=1

∣xn∣p <∞.

Then `p is a Banach space with the norm ∣∣x∣∣p = (∑∞
n=1 ∣xn∣p)

1/p.

Definition 2.1.2. An algebra B (over the complex numbers) is a vector space with a multi-

plication operation, making B into a ring. A Banach algebra B is a Banach space that is also

an algebra, and is equipped with a norm given in B under which

1. ∣∣ab∣∣ ≤ ∣∣a∣∣ ∣∣b∣∣ for all a, b ∈ B

2. α(ab) = (αa)b = a(αb) for all α ∈ C, a, b ∈ B

and B is complete with respect to the norm.

The Banach algebra B is unital if there exists a multiplicative identity element for the space

B viewed as a ring, i.e. if there exists an element e ∈ B such that e ⋅ a = a ⋅ e = a for all a ∈ B.

If B has a multiplicative identity e, it is unique and assumed that ∣∣e∣∣ = 1. The algebra B is

commutative if B is also a commutative ring.

If B is an algebra with unit element e, then the map α ∶ C → B defined by α ↦ αe is clearly

an algebra isomorphism and ∣∣αe∣∣ = ∣α∣. This identification is commonly used to assume that

C ⊆ B.

Example 2.1.3. Suppose X is a compact space. Then C(X), the space of continuous func-

tions on X into C is a Banach algebra with pointwise operations (f + g)(x) = f(x)+ g(x) and

(fg)(x) = f(x)g(x), and supremum norm

∣∣f ∣∣ = max
x∈X

∣f(x)∣.

Note that C(X) is unital with 1∣X as the unital ring element and the supremum is achieved
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since X is compact.

Example 2.1.4. Suppose X is a locally compact space. Define B(X) as the space of all

bounded continuous functions f ∶ X → C on X, i.e. functions f such that ∣∣f ∣∣ = sup{∣f(x)∣ ∶

x ∈ X} < ∞, again with pointwise operations. Then B(X) is complete with respect to the

norm and is a Banach algebra.

Example 2.1.5. Let C0(X) ⊂ B(X) denote all continuous functions f ∶X → C such that for

all ε > 0, {x ∈ X ∶ ∣f(x)∣ ≥ ε} is compact. Then C0(X) is a closed subalgebra of B(X), thus

complete, and therefore is also a Banach algebra.

Note that if X is locally compact (but not compact), then the algebra C0(X) does not contain

the element 1∣X and is indeed not unital. Therefore any subalgebra of C0(X) is also not unital.

For this paper, we are primarily interested in subalgebras of C(X) where X is a compact

Hausdorff space, and C0(X) where X is a locally compact Hausdorff space.

Definition 2.1.3 (Uniform Algebra). [7] Let X be a compact Hausdorff space and suppose

A is a subalgebra of C(X), the Banach algebra of continuous complex-valued functions on

X with pointwise operations and equipped with the supremum norm. Then A is a uniform

algebra if :

1. A contains the constant functions

2. A separates the points of X, that is, for every x ≠ y ∈ X there exists f ∈ A such that

f(x) ≠ f(y)

Since X is compact and Hausdorff, it is a normal topological space and thus C(X) separates

the points of X by Urysohn’s lemma, a well-known result of point-set topology. Thus C(X)

is a uniform algebra.
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Example 2.1.6 (The Disk Algebra). Let D = {z ∶ ∣z∣ < 1} be the open disk in the complex plane

and let A(D) denote the space of continuous functions in the closed unit disk D = {z ∶ ∣z∣ ≤ 1}

that are analytic in D. With pointwise operations and the uniform norm ∣∣f ∣∣ = maxx∈D{∣f(x)∣},

A(D) is a commutative Banach algebra called the disk algebra.

Many of the tools of Banach algebras require the use of invertible elements. If a Banach

algebra B is without unit, the following proposition shows a common method of isometrically

embedding B into a unital Banach algebra B′ such that the codimension of B in B′ is 1.

Proposition 2.1.4. [5] If B is a Banach algebra without identity, then the space B′ = B ×C

with algebraic operations

1. (a,α) + (b, β) = (a + b,α + β)

2. β(a,α) = (βa, βα)

3. (a,α)(b, β) = (ab + αb + βa,αβ)

and norm ∣∣(a,α)∣∣ = ∣∣a∣∣+ ∣α∣ defines a Banach algebra with identity (0,1). The map a↦ (a,0)

is an isometric isomorphism of B into B′. Thus B′ is a Banach algebra with identity that

naturally contains B such that dim B′/B = 1.

2.1.2 The Dual Space of a Commutative Banach Algebra

Since a Banach algebra B is a vector space, it naturally has a dual space B∗, the set of

continuous linear functions from B to C. The elements of this set are commonly referred to

as linear functionals. The linear structure of B∗ is defined as usual.

We say a linear functional ϕ is bounded if sup{∣ϕ(x)∣ ∶ ∣∣x∣∣ ≤ 1} <∞. In fact, continuity follows

for bounded linear functionals.
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Definition 2.1.5. The dual space, B∗, of the Banach space B is itself a Banach space with

norm

∣∣ϕ∣∣ = sup{∣ϕ(x)∣ ∶ ∣∣x∣∣ ≤ 1}, ϕ ∈ B∗

Although the dual space of a Banach algebra B is a Banach space, there is no natural operation

which turns B∗ into a Banach algebra.

There is however, and important topological structure on B∗, called the weak* topology.

Definition 2.1.6. Let B∗∗ denote the double dual of B. For f ∈ B let f∗∗ ∶ B∗ → C be defined

by f∗∗(ϕ) = ϕ(f).

The weak* topology on B∗ is the coarsest topology such that each f∗∗ ∶ B∗ → C is continuous

for every f∗∗ ∈ B∗∗.

It terms of convergence in B∗, the net {ϕα}α → ϕ in the weak* topology if and only if

ϕα(f) → ϕ(f) for every f ∈ A. That is, the weak* topology is the weakest topology where

convergence is pointwise.

2.2 Invertible Elements and the Spectrum

Definition 2.2.1. If B is a Banach algebra with unit, then an element f ∈ B is invertible if

there exists an element g ∈ B such that fg = e = gf . That is, e is a unit of B viewed as a ring.

Let B−1 denote the set of all invertible elements of B.

The invertible elements play a crucial role in the theory of Banach algebras. Since B is a ring,

we observe that B−1 forms a group under the multiplication operation.

The following propositions in this section give well-known results in the theory of Banach
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algebras, and can be found in chapter 1 of [25].

Proposition 2.2.2. Let B be a Banach algebra with unit and let f be an element of B such

that ∣∣f ∣∣ < 1. Then
∞
∑
n=0

fn is convergent and

∞
∑
n=0

fn = (e − f)−1

Proof. Since ∣∣f ∣∣ < 1, it follows that ∣∣fn∣∣ ≤ ∣∣f ∣∣n → 0 as n →∞. Therefore fn → 0 as n →∞.

Let gn =
n

∑
k=0

fk be the nth partial sum of the series, where f0 = e.

If m < n, the triangle inequality and the properties in Definition 2.1.2 imply

∣∣gn − gm∣∣ = ∣∣
n

∑
k=m+1

fk∣∣ ≤
n

∑
k=m+1

∣∣fk∣∣ ≤
n

∑
k=m+1

∣∣f ∣∣k =
n

∑
k=0

∣∣f ∣∣k −
m

∑
k=0

∣∣f ∣∣k

= 1 − ∣∣f ∣∣n+1
1 − ∣∣f ∣∣ − 1 − ∣∣f ∣∣m+1

1 − ∣∣f ∣∣ = ∣∣f ∣∣m+1 − ∣∣f ∣∣n+1
1 − ∣∣f ∣∣ ≤ ∣∣f ∣∣m+1

1 − ∣∣f ∣∣ .

Let ε > 0. Since ∣∣f ∣∣ < 1, the above inequality shows there exists m,n large enough so that

∣∣gn − gm∣∣ < ε. Therefore {gn} is a Cauchy sequence, and by the completeness of B must

converge to some g ∈ B. Let g =
∞
∑
n=0

fn.

Also,

g(e − f) = (
∞
∑
n=0

fn)(e − f) = ( lim
k→∞

k

∑
n=0

fn)(e − f)

= lim
k→∞

k

∑
n=0

(fn − fn+1) = lim
k→∞

(e − fk+1) = e − lim
k→∞

fk+1 = e

since fk+1 → 0 as k →∞. A similar calculation shows that (e−f)g = e, thus (e−f) is invertible

with inverse g.

Proposition 2.2.3. Let B be a unital Banach algebra, f ∈ B, and let s be a complex number



2.2. INVERTIBLE ELEMENTS AND THE SPECTRUM 20

such that ∣s∣ > ∣∣f ∣∣. Then the element se − f is invertible in B and

(se − f)−1 =
∞
∑
n=0

fn

sn+1
.

Proof. Observe that s ≠ 0 since ∣s∣ > ∣∣f ∣∣ ≥ 0 and define g = f/s = (1/s)f . Therefore we have

arranged that ∣∣g∣∣ = (1/∣s∣)∣∣f ∣∣ < 1.

From Proposition 2.2.2 we observe that g is invertible with
∞
∑
n=0

gn = (e − g)−1. Then

e = (e − g)
∞
∑
n=0

gn = (e − f
s
)

∞
∑
n=0

fn

sn
= se − f

s

∞
∑
n=0

fn

sn
= (se − f)

∞
∑
n=0

fn

sn+1
.

A similar calculation shows that
∞
∑
n=0

fn

sn+1
(se−f) = e, therefore se−f is invertible with inverse

∞
∑
n=0

fn

sn+1
as claimed.

Definition 2.2.4. The spectrum of an element f in a unital Banach algebra is the set

σ(f) = {λ ∈ C ∶ λe − f ∉ B−1}

From Proposition 2.2.3, it follows that ∣z∣ ≤ ∣∣f ∣∣ for all z ∈ σ(f). Consequently, the spectrum

of an algebra element is contained in the closure of the disk of radius ∣∣f ∣∣, thus σ(f) is always

a bounded set. Furthermore, σ(f) is closed and therefore a compact subset of C.

For some algebras, the spectrum of an element is easily described. Recall example 2.1.6.

Suppose f ∈ A(D) such that f(z) ≠ 0 for all z ∈ D. Note that the function 1/f is defined in all

of D is continuous and analytic inside D. Then 1/f ∈ A(D) with the property that f ⋅ 1/f = 1,

so any such f is invertible. Since operations are pointwise, we see that f − λ is invertible if

and only if λ ∉ Ran(f), thus σ(f) = Ran(f).

Definition 2.2.5. Let rf = max{∣z∣ ∶ z ∈ σ(f)} be called the spectral radius of f ∈ B. The
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peripheral spectrum of an element f in a unital Banach algebra B is the set

σπ(f) = {z ∈ σ(f) ∶ ∣z∣ = rf}

The following proof follows [25, Proposition 1.1.11]

Proposition 2.2.6 (Spectral Radius Formula). Let B be a Banach algebra, not necessarily

commutative. The sequence { n
√

∣∣fn∣∣}∞1 is convergent for every f ∈ B and

lim
n→∞

n
√

∣∣fn∣∣ = rf . (2.1)

Proof. Let f ∈ B and λ ∈ σ(f).

First we claim w = λn ∈ σ(fn). Let n
√
w = {λ1, . . . , λn} be the n roots of w. Note that λnj = w

for all n. Consider the polynomial expression fn −w = (f − λ1)⋯(f − λn), which shows that

fn −w is invertible if and only if f − λj is not invertible for some j. That is, w = λn ∈ σ(fn)

if and only if λj ∈ σ(f) for some j. Since λ ∈ σ(f), it follows that λn ∈ σ(fn) as claimed.

Then ∣λn∣ ≤ ∣∣fn∣∣, thus

∣λ∣ = n
√

∣λ∣n = n
√

∣λn∣ ≤ n
√

∣∣fn∣∣

for every n ∈ N. Hence ∣λ∣ ≤ lim infn∈N
n
√

∣∣fn∣∣ and thus

rf = max
λ∈σ(f)

∣λ∣ ≤ lim inf n
√

∣∣fn∣∣.

From Proposition 2.2.2, we may define r(λ) = (λ − f)−1 =
∞
∑
n=0

fn

λn+1
which holds on {λ ∈ C ∶

∣λ∣ > ∣∣f ∣∣}. Then the function

g(z) = 1

z
r(1/z) = 1

z

∞
∑
n=0

fn

(1/z)n+1 =
∞
∑
n=0

fnzn.
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defines a series which converges absolutely for ∣z∣ < 1

∣∣f ∣∣ .

Observe that the function r(λ) and λr(λ) are analytic in C∖σ(f), and are therefore analytic

in the subset C ∖D(rf) where D(rf) is the open disk of radius rf . Therefore g(z) =
∞
∑
n=0

fnzn

is analytic in D(1/rf).

Consider the related series h(z) =
∞
∑
n=0

∣∣fn∣∣zn, which has radius of convergence

R = 1

lim supn∈N
n
√

∣∣fn∣∣
.

Since ∣∣fnzn∣∣ = ∣∣fn∣∣∣zn∣, both series
∞
∑
n=0

fnzn and
∞
∑
n=0

∣∣fn∣∣zn are absolutely convergent on the

same set. Thus, from complex variables, it follows that the two series have the same radius

of absolute convergence, D(R) = {z ∈ C ∶ ∣z∣ < R}. Consequently, 1/rf ≤ R and

rf ≥ 1/R = lim sup
n∈N

n
√

∣∣fn∣∣

.

We have obtained

rf ≤ lim inf
n∈N

n
√

∣∣fn∣∣ ≤ lim sup
n∈N

n
√

∣∣fn∣∣ ≤ rf

and therefore the sequence { n
√

∣∣fn∣∣}∞n=1 is convergent with limit rf .

2.3 Multiplicative Linear Functionals and the Gelfand Trans-

form

An important technique in the theory of Banach algebras is to represent an algebra as an

algebra of continuous functions on a locally compact space. To do this we will need to
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investigate an important subset of the dual space, called the maximal ideal space.

2.3.1 Multiplicative Linear Functionals

The following theorem shows that there is, up to isomorphism, only one unital commutative

Banach algebra that is a field.

Theorem 2.3.1 (Gelfand-Mazur). A commutative Banach algebra with identity which is a

field must be isometrically isomorphic to the field of complex numbers.

Definition 2.3.2. A multiplicative linear functional on B is a non-zero element of the dual

space that preserves the multiplication in B. That is, ϕ ∈ B∗ such that

1. ϕ ≠ 0

2. ϕ(fg) = ϕ(f)ϕ(g)

for every f, g ∈ B. Denote by MB the set of all non-zero linear multiplicative functionals of

B.

Since ϕ(f) = ϕ(f ⋅ e) = ϕ(f)ϕ(e), it immediately follows that ϕ(e) = 1. Observe that each

multiplicative linear functional is a non-trivial complex valued ring homomorphism.

Lemma 2.3.3. Let ϕ ∶ B → C be a multiplicative linear functional from a unital commutative

Banach algebra B. Then:

1. ∣∣ϕ∣∣ = 1 = ϕ(e)

2. ϕ is continuous

3. kerϕ is a maximal ideal of B.
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Proof. Let ϕ be a multiplicative linear functional on B. Then ϕ(e) = ϕ(e2) = ϕ(e)ϕ(e) which

implies that ϕ(e) ∈ {0,1}. However, ϕ(e) = 0 implies that ϕ(f) = ϕ(fe) = ϕ(f)ϕ(e) = 0 for all

f ∈ B. Therefore ϕ(e) = 1.

Let f ∈ B. Note that λ − f ∈ B−1 for all λ such that ∣λ∣ > ∣∣f ∣∣. Then

1 = ϕ(e) = ϕ ((λ − f)(λ − f)−1) = ϕ(λ − f)ϕ((λ − f)−1)

which implies ϕ((λ − f)−1) = λ − ϕ(f) ≠ 0. Thus ϕ(f) ≠ λ. Therefore ϕ(f) ≤ ∣∣f ∣∣ for all f ∈ B

which shows that ϕ is continuous and that ∣∣ϕ∣∣ ≤ 1. Since ϕ(e) = 1 we have that

∣∣ϕ∣∣ = 1. (2.2)

Since ϕ is a ring homomorphism, basic results from algebra show that kerϕ is an ideal of B.

Also, ϕ is clearly onto C which implies B/(kerϕ) is isomorphic to C by the first isomorphism

theorem. Since B/(kerϕ) is a field, it follows that kerϕ is a maximal ideal.

Proposition 2.3.4. For a unital commutative Banach algebra, MB is in bijective correspon-

dence with the maximal ideals of B.

Proof. Let J be a maximal ideal of B. Then B/J is a field, and by Theorem 2.3.1 is isomet-

rically isomorphic to C. Next we may consider the natural map ϕ ∶ B → B/J to be a complex

homomorphism onto C. Therefore ϕ is the unique multiplicative linear function defined by

this map. Conversely, if ϕ is a multiplicative linear functional then kerϕ is clearly an ad-

ditive subgroup, and also an ideal since ϕ(fg) = ϕ(f)ϕ(g) = 0 for all f ∈ A and g ∈ kerϕ.

Since ϕ is non-zero, it is surjective and therefore B/kerϕ ≡ C by the isomorophism theorem.

Since B/kerϕ is a field, kerϕ is a maximal ideal. Therefore, ϕ ↦ kerϕ defines the bijection

required.
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The setMB of multiplicative linear functionals is often called the maximal ideal space, which

is justified by the previous proposition.

The spaceMB comes equipped with a natural topology, the subspace topology inherited from

the weak* topology on B∗ from Definition 2.1.6. The topology is described more explicitly in

terms of a subbase; form a fundamental system of neighborhoods of ϕ0 ∈MB by taking finite

intersections of neighborhoods of the form {ϕ ∶ ∣ϕ(f) − ϕ0(f)∣ < ε}, where f ∈ B and ε > 0.

This topology on the maximal ideal space is called the Gelfand topology.

Theorem 2.3.5 (Alaoglu). The closed unit ball of the dual space of a normed vector space is

compact in the weak* topology.

The proof is a classic result in the theory of Banach spaces and is omitted here. It is assumed

that the norm on the dual space is described by the norm from Definition 2.1.5.

The theorem by Alaoglu is helpful for the following proposition.

Proposition 2.3.6. If B is a unital commutative Banach algebra, then MB is a compact

Hausdorff space.

The proof follows the arguments from [11].

Proof. By (2.2), ∣∣ϕ∣∣ = 1 which implies MB is a subset of the unit sphere in B∗.

Recall that for any {ϕα}α, ϕα → ϕ if and only ϕα(f) → ϕ(f) for every f . Suppose ϕα → ϕ

for {ϕα} ⊂MB and let f, g ∈ B. Then by the continuity of multiplication in C,

ϕ(fg) = lim
α
ϕα(fg) = lim

α
(ϕα(f)ϕα(g)) = (lim

α
ϕα(f))(lim

α
ϕα(g)) = ϕ(f)ϕ(g).

Therefore ϕ ∈MB which implies thatMB is a closed subset of the unit ball in B∗, a compact

set in the weak* topology by Theorem 2.3.5. Thus MB is compact.
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Next we show MB is homeomorphic to a Hausdorff space. Let Df = {z ∈ C ∶ ∣z∣ ≤ ∣∣f ∣∣}, the

disk of radius ∣∣f ∣∣ in C. Define D = ∏f∈BDf with the product topology, a Hausdorff space.

Consider the map

Φ ∶MB →D, where ϕ↦ {ϕ(f)}f∈B (2.3)

Certainly Φ is injective and onto its image, Φ(MB). The convergence in the weak* topology

also shows Φ is a homeomorphism onto the subspace Φ(MB) showing that MB is indeed

Hausdorff.

2.3.2 The Gelfand Transform

Definition 2.3.7. Let f be an element of a commutative Banach algebra B. The Gelfand

transform of f is the function f ∶MB → C defined by

f̂(ϕ) = ϕ(f), ϕ ∈MB

The function f̂ is a continuous function on MB. If ϕα → ϕ is a net inside MB, then by

the definition of the weak* topology we see that f̂(ϕα) = ϕα(f) → ϕ(f) = f̂(ϕ). The map

Λ ∶ B → C(MB) by f ↦ f̂ is called the Gelfand representation of B. Let B̂ denote the set

{f̂ ∶ f ∈ B}.

The Gelfand transform gives us an alternative perspective of the spectrum of an element.

Theorem 2.3.8. Let B be a commutative Banach algebra. Then the Gelfand transformation

Λ ∶ B → C(MB) by f ↦ f̂ is an algebraic homomorphism such that ∣∣f̂ ∣∣MB
≤ ∣∣f ∣∣ and separates

points of MB. If B is unital, then Λ preserves the constant functions.

Proof. Let f, g ∈ B. Then by definition and the dual properties of ϕ ∈MB we have f̂ + g(ϕ) =

ϕ(f + g) = ϕ(f) + ϕ(g) = f̂(ϕ) + ĝ(ϕ). Also f̂g(ϕ) = ϕ(fg) = ϕ(f)ϕ(g) = f̂(ϕ)ĝ(ϕ).
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We have already seen from the proof of lemma 2.3.3 that ∣ϕ(f)∣ ≤ ∣∣f ∣∣ for all f ∈ B. It follows

that ∣f̂(ϕ)∣ ≤ ∣∣f ∣∣ for every ϕ ∈ MB thus ∣∣f̂ ∣∣ ≤ ∣∣f ∣∣. Therefore f̂ is a bounded continuous

function on MB.

Let ϕ1, ϕ2 ∈MB such that for every f ∈ B we have f̂(ϕ1) = f̂(ϕ2). Then ϕ1(f) = ϕ2(f) for

all f ∈ B which implies ϕ1 = ϕ2. Therefore B̂ separates the points of MB.

Finally, if e ∈ B is the unit element, then ê(ϕ) = ϕ(e) = 1. Therefore Λ preserves the unit

element and consequently all constant functions in MB.

Proposition 2.3.9. Let B be a unital commutative Banach algebra. Then the spectrum of

any element B coincides with the range of its Gelfand transform f̂ , that is

σ(f) = f̂(MB) = Ran(f̂).

Proof. [11] Let λ ∈ σ(f) and consider the ideal J generated by f − λe. Then J is not all of B

since f −λe is not invertible. Therefore there exists a maximal ideal I containing J . From the

correspondence between maximal ideals and multiplicative linear functionals, we know there

exists a multiplicative linear functional ϕ which vanishes on I. Therefore for all λ ∈ σ(f),

0 = ϕ(f − λe) = ϕ(f) − λϕ(e) = f̂(ϕ) − λ = 0

which implies f̂(ϕ) = λ.

Now suppose that λ ∉ σ(f). Then the element f −λe generates all of B, so in particular there

exists some g ∈ B such that

e = g(f − λe).

Then for an arbitrary multiplicative linear function ϕ, we have

1 = ϕ(e) = ϕ(g)(ϕ(f) − ϕ(λe)) = ϕ(g)(ϕ(f) − λ) = ĝ(ϕ)(f̂(ϕ) − λ)
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which shows that λ cannot be in the range of f̂ .

Notice that as a consequence of proposition 2.3.9,

rf = max
ϕ∈MB

∣f̂(ϕ)∣ (2.4)

and we may describe the peripheral spectrum of an element f ∈ B as

σπ(f) = {λ ∈ C ∶ ∣λ∣ ≥ ∣z∣ for all z ∈ σ(f)} = {λ ∈ C ∶ ∣λ∣ ≥ ∣f̂(ϕ)∣ for all ϕ ∈MB}.

Proposition 2.3.10. The Gelfand transformation Λ ∶ B → B̂ is an isometry if and only if

∣∣f2∣∣ = ∣∣f ∣∣2 for every f ∈ B.

Proof. If Λ is an isometry, then by basic properties of the supremum,

∣∣f2∣∣ = ∣∣f̂2∣∣MB
= sup
ϕ∈MB

∣f̂2(ϕ)∣ = ( sup
ϕ∈MB

∣f̂(ϕ)∣)
2

= ∣∣f ∣∣2MB
.

On the other hand, if ∣∣f2∣∣ = ∣∣f ∣∣2 an inductive argument shows that ∣∣f2n ∣∣ = ∣∣f ∣∣2n for all

n ∈ N. Consequently,

∣∣f ∣∣ = 2n
√

∣∣f ∣∣2n = 2n
√

∣∣f2n ∣∣→ rf = max
ϕ∈MB

∣f̂(ϕ)∣ = ∣∣f ∣∣MB

by Proposition 2.2.6 and (2.4).

The following standard example (e.g. in [1]) shows that for a commutative Banach algebra,

the Gelfand transformation Λ may not be an isometry.

Example 2.3.1. Let (R,Σ, µ) be a measure space. Consider the set M of all measurable
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functions f from R to C such that

∣∣f ∣∣L1 = ∫
∞

∞
∣f ∣dµ <∞ (2.5)

Consider the map Φ ∶M → R by f ↦ ∣∣f ∣∣L1 . Define L1(R) to be the quotient space M/(kerΦ),

where each f ∈ L1(R) is considered to be a representative in its equivalence class. The set of

such functions forms a vector space with pointwise operations and is a Banach space.

Define the convolution product (f, g)↦ f ∗ g on L1(R) by

(f ∗ g)(x) = ∫
∞

−∞
f(x − t)g(t)dt (x ∈ R). (2.6)

One can verify that (f ∗ g)(x) can be defined almost everywhere on R with ∣∣f ∗ g∣∣L1 ≤

∣∣f ∣∣L1 ∣∣g∣∣L1 for every f, g ∈ L1(R), and (L1(R), ∣∣ ⋅ ∣∣L1 ,∗) is a commutative Banach algebra.

Let f = 2χ[0,1] where χ[0,1] is the characteristic function on [0,1] ⊂ R. That is χ[0,1] = 1 on

[0,1] and χ[0,1] = 0 on R ∖ [0,1]. Then one can easily see that

(f ∗ f)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x ∶ 0 ≤ x ≤ 1

4 − 2x ∶ 1 < x ≤ 2

0 ∶ otherwise

where ∣∣f ∣∣L1 = 2 and ∣∣f ∗ f ∣∣L1 = 2. Therefore ∣∣f ∗ f ∣∣L1 = 2 < 4 = ∣∣f ∣∣2L1 hence by Proposition

2.3.10, the Gelfand map L1(R)→ L̂1(R) is not an isometry.

2.4 Function Algebras without Unit

Definition 2.4.1 (Function Algebra). [16] Let X be a locally compact Hausdorff space and

suppose A is a subalgebra of C0(X), the Banach algebra of continuous complex-valued func-
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tions on X vanishing at infinity, and equipped with the supremum norm. Then A is a function

algebra if it is uniformly closed and separates points in the strong sense. That is, for every

x ≠ y ∈X there exists f ∈ A such that f(x) ≠ f(y) and for every z ∈X, there exists g ∈ A such

that g(z) ≠ 0.

Most of the commutative Banach algebras considered in this paper are function algebras, not

necessarily with a unit. The need for strong separation condition is apparent in the following

proposition.

Let A ⊂ C0(X) be a function algebra on the locally compact (but not compact) Hausdorff

space X, and let X∞ =X∪{∞} be the one-point compactification of X. Consider the following

family of functions

A′ = {f + λ ∶ f ∈ A,λ ∈ C} (2.7)

where each function f ∈ A is extended continuously to X∞ by defining f(∞) = 0.

Proposition 2.4.2. The family A′ is a point-separating subalgebra of C(X∞), contains the

constant functions, and is closed under the supremum norm.

Proof. For f, g ∈ A and λ,µ ∈ C, we have (f+λ)(g+µ) = fg+gλ+fµ+λµ ∈ A′ since fg+gλ+fµ ∈

A. Clearly A′ preserves sums, thus A′ is a subalgebra of C(X∞) that contains A. Note that

for x, y ≠∞, the points will be separated by a function f ∈ A. However, if {∞, x} ⊂ X∞ then

by the strong separation, there exists a function g ∈ A such that g(x) ≠ 0 = g(∞). Therefore

A′ separates the points of X∞.

Consider a sequence {fn+λn}n ⊂ A′ converging uniformly to g ∈ C(X∞). Then ∣∣fn+λn−g∣∣→

0 uniformly on X∞. In particular, fn(∞) + λn(∞) − g(∞) = λn(∞) − g(∞) → 0. Define

g(∞) = lim
n→∞

λn = λ and let f = g − λ. Then taking the uniform limit over X shows

0 = lim
n→∞

∣∣fn + λn − g∣∣ = ∣∣ lim
n→∞

(fn + λn − (f + λ))∣∣ = ∣∣ lim
n→∞

fn − f ∣∣ = lim
n→∞

∣∣fn − f ∣∣.
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Since A is complete as a function algebra, this implies that f ∈ A. Therefore g = f + λ ∈ A′ as

desired.

Proposition 2.4.2 shows that any function algebra A without unit is naturally contained in

the uniform algebra A′. Consider a function algebra A ⊂ C0(X) and define A′ as in (2.7). Let

(ϕ∞ ∶ A′ → C) ∈MA′ denote the point evaluation homomorphism at ∞. Then we see that

kerϕ∞ = A is closed in A′ since ϕ∞ is continuous. Certainly A′ is unital and ∣∣f2∣∣ = ∣∣f ∣∣2 for

every f ∈ A′, so A′ is isometrically isomorphic to the space of Gelfand transforms.

Notice that ϕ∞ ∉MA since ϕ∞∣A = 0. In fact, the maximal ideal spaces of A and A′ are related

byMA′ =MA∪{ϕ∞} =MA∪{0}. In general, the maximal ideal spaces of non-unital function

algebras are not compact but locally compact, i.e. MA′ is the one-point compactification of

MA and the Gelfand transform f̂ of f ∈ A is an element of C0(MA).

The spectrum of an element is defined in terms of invertible elements, so an alternative

definition from 2.2.4 is needed for commutative Banach algebras without unit. Let A be a

function algebra without unit and maximal ideal spaceMA. For f ∈ A, define the spectrum of

f to be σ(f) = f̂(MA′). IfMA is not compact, then f̂(MA′) = f̂(MA)∪{0}. This definition,

along with several other equivalent algebraic definitions, are given in [16, Theorem 5].

Also note that for a function algebra A, Lemma 2.3.3 holds for the uniform algebra A′. In

particular, each ϕ ∈MA =MA′ ∖ {0} is continuous and ∣∣ϕ∣∣ = 1.



Chapter 3

Boundaries in Commutative Banach

Algebras

This chapter discusses the boundaries of commutative Banach algebras. In particular, the

Shilov boundary and Choquet boundary are defined for uniform and function algebras.

3.1 General Boundaries in Commutative Banach Algebras

Let B be a commutative Banach algebra. As we have seen previously, each f ∈ B can be

represented as a function f̂ on the maximal ideal space MB. It is often useful to focus on

subsets of the maximal ideal space which give only the pertinent information for an element

in the algebra. This leads to the concept of a boundary.

Definition 3.1.1. A boundary of a commutative algebra B is a subset E of the maximal ideal

space MB such that

max
ϕ∈E

∣f̂(ϕ)∣ = max
ϕ∈MB

∣f̂(ϕ)∣

32
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Clearly MB is always a boundary for B.

Let A ⊂ C0(X) be a function algebra without unit. Clearly for each x ∈X, the point evaluation

functional ϕx ∶ A → C is multiplicative and x ↦ ϕx gives a map from X into MA. Again

consider the uniform algebra A′ on X∞. As discussed in chapter 4 of [16], the correspondence

x ↦ ϕx maps X∞ homeomorphically onto a compact subset of MA′ since A′ separates the

points of X∞.

Therefore the point evaluation map identifies X as a closed subspace of MA. Note that for

x ∈ X, the identification implies that f(x) = ϕx(f) = f̂(ϕx), therefore it is common to write

f̂(x) with the understanding that x is a member of the maximal ideal space.

Lemma 3.1.2. Let X be a locally compact Hausdorff space. If A ⊂ C0(X) is a function

algebra, then X ↪MA is a boundary for A.

Proof. Let f ∈ B. Clearly maxϕ∈MB
{∣f̂(ϕ)∣} ≥ maxx∈X{∣f(x)∣} where X is regarded as a

subset of MB. On the other hand, from Lemma 2.3.3, we see that

∣f̂(ϕ)∣ = ∣ϕ(f)∣ ≤ ∣∣f ∣∣ = max
x∈X

{∣f(x)∣}

for all ϕ ∈MB. This implies maxϕ∈MB
{∣f̂(ϕ)∣} ≤ maxx∈X{∣f(x)∣}, thus maxϕ∈MB

{∣f̂(ϕ)∣} =

maxx∈X{∣f(x)∣} as claimed.

In light of Lemma 3.1.2, we may identify the boundaries as subsets E ⊂X.

The following lemma stresses the significance of boundaries for function algebras.

Lemma 3.1.3. Let A be a function algebra on X and E ⊂MA be a boundary for A. Then

the restriction map r ∶ A → A∣E ⊂ C(E) by r(f) = f ∣E is an isometric algebra isomorphism
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between function algebras.

Proof. From basic properties of functions, the map is clearly linear, multiplicative and surjec-

tive. Since E is a boundary, we know the norm of each function is preserved by E. Thus r

is a linear isometric mapping and therefore automatically injective. For AE to be a function

algebra, it only remains to show that AE separates points, but this is a property that AE

clearly inherits from A.

3.1.1 The Shilov Boundary

The following theorem due to Shilov asserts the existence of a smallest closed boundary in a

commutative Banach algebra.

Theorem 3.1.4 (Shilov). (e.g. in [8]) The intersection of all closed boundaries of a unital

commutative Banach algebra is a closed boundary.

A somewhat technical lemma is required for the proof of Shilov’s theorem. The lemma de-

scribes an important relationship between open neighborhoods in the maximal ideal space

and closed boundaries.

Lemma 3.1.5. Let B be a commutative Banach algebra and let V be a fixed Gelfand neigh-

borhood in MB. Then either V meets every boundary of B or its complement E ∖ V in each

closed boundary E of B is also a closed boundary of B.

Proof. ([25]) Let V = V (ϕ; f1, . . . , fn; 1) = {ψ ∈ MB ∶ ∣ψ(fj)∣ < 1, ψ(fj) = 0, j = 1, . . . , n}.

Suppose that E is a closed boundary of B such that E ∖ V is not a boundary. It remains to

show that V meets every boundary of B.

First consider the case where E ∖ V = ∅. Then V ⊃ E. The condition for membership in V

guarantees that ∣f̂j ∣ < 1 for all j and all ϕ ∈ V , thus ∣f̂j ∣ < 1 for all j and all ϕ ∈ E. But E is
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a boundary, which implies that ∣f̂j ∣ < 1 for all j and ϕ ∈MB. Therefore V =MB and clearly

meets every boundary of B.

Next suppose that E ∖ V ≠ ∅. By assumption E/V is not a boundary of B, thus

max
ϕ∈MB

∣f̂(ϕ)∣ = 1 > max
ϕ∈E∖V

∣f̂(ϕ)∣

for some f ∈ B. The first equality follows from the fact that ∣∣ϕ∣∣ = 1 for all ϕ ∈MB.

Now note that the function f̂n → 0 uniformly on the closed set E ∖ V . Therefore there exists

some integer m such that

max
ϕ∈E∖V

∣f̂m(ϕ)∣∣f̂j(ϕ)∣ < 1

for all ϕ ∈ E ∖V and every j. We also have ∣fj(ϕ)∣ < 1 for all j by definition of membership in

V and it follows that the inequality above holds on all of E. Since E is a boundary, we have

max
ϕ∈MB

∣f̂m(ϕ)f̂j(ϕ)∣ = max
ϕ∈E

∣f̂m(ϕ)f̂j(ϕ)∣ < 1

for all j.

Since f̂ ∶MB → C such that ∣∣f̂ ∣∣ = 1 and MB is compact, there exists some point ϕ1 ∈MB

such that ∣f̂(ϕ1) = 1∣. Then ∣f̂m(ϕ1)∣ = 1 and the inequality

1 > ∣f̂m(ϕ1)f̂j(ϕ1)∣ = ∣f̂j(ϕ1)∣

for all j expresses that ϕ1 ∈ V . Therefore ϕ ↦ ∣f̂(ϕ)∣ attains its maximum within V , which

shows that V indeed meets every boundary of B.

We now have all the ingredients to prove Shilov’s theorem.

Proof of Shilov’s Theorem. ([25]) Let E0 be the intersection of all closed boundaries, E, of B.
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It is first shown that for any f ∈ B such that ∣f̂(ϕ)∣ < 1 on E0, necessarily ∣f̂(ϕ)∣ < 1 on MB.

It follows immediately that the maximum of ∣f̂ ∣ taken over E0 is also the maximum taken over

MB.

By way of contradiction, suppose that the set K = {ϕ ∈MB ∶ ∣f̂(ϕ)∣ ≥ 1} is nonempty and let

ϕ0 ∈ K. Then K ∩ E0 = ∅ which implies ϕ ∉ E0. Therefore ϕ0 is not in the intersection of

all closed boundaries so there exists a closed boundary E such that ϕ0 ∉ E. Therefore there

exists a Gelfand neighborhood V0 such that V0 ∩E = ∅. By the previous lemma, this implies

that E ∖ V0 is a boundary of B.

Since MB is compact and K ⊂MB is closed, K is also a compact set. Therefore there exists

a finite integer k, points ϕ1, . . . , ϕk, boundaries E1, . . . ,Ek, and neighborhoods V1, . . . , Vk such

that Vi ∩Ei = ∅ and the union of the Vis cover K.

We claim that the set Ẽ =MB ∖⋃nj=1 Vj is also a nonempty closed boundary of B. Clearly Ẽ

is a closed set. Also Ẽ cannot be the empty set since none of the Vj meet E0, thus ⋃nj=1 Vj

does not meet E0 so at least E0 ⊂ Ẽ. If MB ∖ (V1 ∪ V2) is not a boundary, then there exists

some f ∈ B such that ∣f̂ ∣ < 1 onMB ∖ (V1 ∪V2) but ∣f̂ ∣ = 1 on V1 ∪V2. This is impossible since

both MB ∖ Vi ⊃ Ei ∖ Vi are boundaries for i = 1,2. An inductive argument shows that Ẽ is

also a boundary.

Since ⋃nj=1 Vj covers K, we see that ∣f̂ ∣ < 1 on the set Ẽ ⊂MB ∖K. But this implies that

∣f̂ ∣ < 1 holds on all of MB since Ẽ is a boundary of B. This contradicts the assertion that K

was a non-empty set. Therefore E0 is a boundary as claimed.

Definition 3.1.6. The intersection of all closed boundaries of a commutative Banach algebra

is called the Shilov boundary of B and is denoted by ∂B.

By definition 3.1.6, the Shilov boundary is the smallest closed boundary of B, in that it is

contained in every closed boundary of B. Since MB is compact, it follows that ∂B is also
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compact.

Example 3.1.1. Let D be the unit disk in C and recall the disk algebra, A(D), in example

2.1.6. For i = 1,2, let Di be a copy of the unit disk in C. Define D = D1 ∐ D2, the disjoint

union of D1 with D2, and let A(D) be the algebra of functions on D, continuous on D and

analytic inside D with pointwise operations. Then A(D) is a uniform, hence function algebra

such that for each f ∈ A(D), f1 = f ∣D1 ∈ A(D1) and f2 = f ∣D2 ∈ A(D2). The Shilov boundary

of A(D) is given by ∂A(D) = T1 ∐T2.

3.2 Peak Sets and Peaking Functions

Suppose A ⊂ C(X) is a function algebra on a locally compact and Hausdorff set X with

MA =X. There are certain points in the Shilov Boundary that are easily identifiable.

Definition 3.2.1. A point x0 ∈ X is a peak point of a function algebra A if there exists a

function f ∈ A such that f(x0) = 1 and ∣f̂(x)∣ < 1 for every x ∈ X ∖ {x0}. The function f is

called a peak function.

Clearly each peak point is necessarily contained in every boundary, thus every peak point

belongs to ∂A. In general, the set of peak points may be properly contained in ∂A and may

not be a boundary for B at all. However, the peak points do form a boundary when the

maximal ideal space is metrizable.

Definition 3.2.2. A peak set is a non-empty set F ⊂ X such that there exists an f ∈ A with

f(x) = 1 on F and ∣f̂(x)∣ < 1 on X ∖ F . Each such function f is called a peaking function.

Note that f ∈ A is a peaking function if and only if σπ(f) = {1}. Let P(A) denote the family

of peaking functions in A. For f ∈ P(A), we see that f̂−1(1) is always a peak set. Clearly

every singleton peak point is a peak set of A, and every peak function is a peaking function.
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Let K ⊂MA and denote by PK(A) ⊂ P(A) be the collection of peaking functions f ∈ A such

that K ⊂ f̂−1(1). For each f ∈ PK(A) we say that f peaks on K.

Let f ∈ A ⊂ C(X) be a peaking function with F = f̂−1(1) ⊂MA. We see immediately that

each peak set is closed since it is the inverse image of a closed set under a continuous function.

Since f̂ ∈ C0(MA), there exists a compact set K such that K ⊃ {ϕ ∈MA ∶ ∣f̂(ϕ)∣ > 1/2}. Since

F ⊂K, F is a closed subset of a compact set and is therefore compact.

Another important subset associated to each function f ∈ A is the maximizing set (or maxi-

mum modulus set),

E(f) = {x ∈X ∶ ∣f(x)∣ = ∣∣f ∣∣} (3.1)

which is not necessarily a peak set but useful in describing the behavior of functions in A.

Note that E(f) is a compact set for each f in the function algebra A.

If X is a locally compact Hausdorff space and A ⊂ C0(X) a nonzero function algebra , then

the following lemma shows that A contains peaking functions and X contains peak sets. The

proof follows the argument in [24], Lemma 2.3(a).

Lemma 3.2.3. Let A be a dense subalgebra of a function algebra and let f ∈ A be such that

f ≠ 0. If λ ∈ σπ(f), then the function

h = 1

2λ
⋅ (f

2

λ
+ f) (3.2)

is a peaking function in A such that E(h) = f−1(λ) and σπ(fh) = {λ}.

Proof. Let f ∈ A such that ∣∣f ∣∣ = ∣λ∣. Consider the function

h = 1

2λ
⋅ (f

2

λ
+ f) ∈ A. (3.3)
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Then h(x) = 1 for all x ∈ f−1{λ} and for all x ∉ f−1{λ} we have

∣h(x)∣ = ∣f(x)∣
2∣λ∣ ∣f(x)

λ
+ 1∣ ≤ 1

2
∣f(x)
λ

+ 1∣ < 1

Hence h ∈ P(A) such that h−1(1) = f−1(λ), a peak set.

Observe that f(x)h(x) = λ whenever x ∈ f−1(λ), and ∣f(x)h(x)∣ = ∣f(x)∣ ∣h(x)∣ < ∣∣fh∣∣ when

x ∉ f−1(λ). Therefore ∣∣fh∣∣ = ∣λ∣ and σπ(fh) = {λ}.

Lemma 3.2.4. Let A be a dense subalgebra of a function algebra without unit. Then for any

f ∈ A, the set E(f) is a disjoint union of peak sets for A.

Proof. Fix f ∈ A, then without loss of generality we can assume that ∣∣f ∣∣ = 1. Then

E(f) = ⋃
∣λ∣=1

λ∈Ran(f)

{f−1{λ}} (3.4)

Indeed, if x ∈ E(f) then f(x) = λ for some ∣λ∣ = 1. Also if f(x) = λ with ∣λ∣ = 1, then ∣f(x)∣ = 1

which implies x ∈ E(f). Now fix λ ∈ Ran(f) with ∣λ∣ = 1 and consider the function

g = 1

2λ
⋅ (f

2

λ
+ f)

as in Lemma 3.2.3. Then g(x) = 1 for all x ∈ f−1{λ}, while for all x ∉ f−1{λ} we have ∣g(x)∣ < 1.

Hence g ∈ P(A) and g−1(1) = f−1(λ), a peak set. The equality (3.4) implies that E(f) is the

union of such sets.
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3.3 The Choquet Boundary

Another important boundary for uniform and function algebras is the Choquet boundary. For

a function algebra A, the most general characterization defines the Choquet boundary as a

certain subset of the unit ball in the dual space, A∗, of A. We give an alternative definition

that provides a description based on the topology of the underlying space X. The following

construction is due to Phelps in [21].

3.3.1 Classical Definition

Definition 3.3.1. Let S be a convex set in a vector space V . Then the extreme points of

S are points x ∈ S such that x not an interior point of any line segment in S. That is, x is

extreme if and only if x = ty + (1 − t)z for t ∈ (0,1) and z ≠ y implies that y ∉ S or z ∉ S.

Let A be a unital Banach algebra. Recall from Proposition 2.3.5 that the unit ball B1 = {ϕ ∈

A∗ ∶ ∣∣ϕ∣∣ = 1} ⊂ A∗ is compact in the weak* topology. It is easy to see that B1 is a convex

subset of the vector space A∗ [21]. Denote by Ext(B1) the set of extreme points in B1 and

define the point evaluation map X →MA by x↦ ϕx, where ϕx(f) = f(x). Then we have the

following inclusion

Ext(B1) ⊆ {αϕx ∶ ∣α∣ = 1, α ∈ C, x ∈X}

(see e.g. in [6], page 441.)

Definition 3.3.2 (Choquet Boundary). The Choquet Boundary of A, denoted δA, is the set

δA = {x ∈X ∶ ϕx ∈ Ext(B1)}.
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3.3.2 Alternative Characterization of the Choquet Boundary

Note that peak functions and peaking functions can be defined for any set of functions. For a

locally compact Hausdorff space X, Araujo and Font [3] have shown that the Shilov boundary

exists for linear subspaces of C0(X) that strongly separate points. Here we present a con-

struction of the Choquet boundary for function algebras A ⊂ C0(X), which is an adjustment

of that in [13] that developes boundaries for arbitrary families of functions in C0(X) possibly

without any algebraic structure.

Definition 3.3.3. Let A ⊂ C0(X) be a function algebra. Then:

(i) A non-empty subset E ⊂X is called a p-set for A if E is the intersection of a family of

peak sets.

(ii) A point x ∈ MA is called a p-point of A (or, a generalized peak point, or strong

boundary point of A) if it is a singleton p-set. The set of all p-points, or strong boundary

points, is denoted p(A).

Note that every p-set is a compact set in X.

The following theorem demonstrates the significance of the set of strong boundary points for

function algebras A ⊂ C0(X) where X is a locally compact Hausdorff space.

Theorem 3.3.4. For a function algebra A ⊂ C0(X), the set of p-points p(A) is a boundary

for A.

The proof of Theorem 3.3.4 makes use of some well known topological lemmas.

Lemma 3.3.5. Let X be a Hausdorff space and {Eα} a family of compact sets. Suppose

E ∶= ⋂αEα. If U an open set that contains E, then there exists n ∈ N and {αi}ni=1 such that

E ⊂
n

⋂
i=1
Eαi ⊂ U.
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Proof. (e.g. [13]) Fix an Eα0 ∈ {Eα}. Then by the hypothesis we have

Eα0 ⊂ (X ∖E) ∪U = [X ∖ (⋂
α
Eα) ] ∪U = [⋃

α
(X ∖Eα)] ∪U.

Therefore ⋃α(X ∖Eα) ∪ U is an open cover for the compact set Eα0 , thus there exists n ∈ N

and {αi}ni=1 such that

Eα0 ⊂ [
n

⋃
i=1

(X ∖Eαi)] ∪U =X ∖ [
n

⋂
i=1
Eαi ∩ (X ∖U)].

Thus
n

⋂
i=1
Eαi ∩ (X ∖U) ⊂ (X ∖Eα0),

and taking the intersection with Eα0 on both sides of the inclusion shows that (Eα0 ∩⋂ni=1Eαi)∩

(X ∖U) ⊂ ∅, thus E ⊂ ⋂ni=0Eαi ⊂ U , which shows the conclusion holds with the set {Eαi}ni=0.

The previous lemma with U = ∅ shows the following:

Corollary 3.3.6 (Finite Intersection Property for Hausdorff Spaces). (e.g. in [19]) A family

of compact sets in a Hausdorff space has empty intersection if and only if there is a finite

subcollection with empty intersection.

For any subset E ⊂ X, let EE denote the family of all p-sets that are subsets of E. Note

that EE may be empty, and when EE is nonempty it can be partially ordered with respect

to inclusion. In particular, EX is non-empty for a nonzero function algebra A on X since X

contains a peak set by Lemma 3.2.3.

Lemma 3.3.7. Let X be a locally compact Hausdorff space. If F ⊂ X and A ⊂ C0(X) is a

function algebra such that the family EF is non-empty, then EF has a minimal element.
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Proof. Let F ⊂ X and C be a chain in EF . We aim to show that C has a lower bound and

apply Zorn’s lemma. The natural choice for a lower bound is ⋂E′∈C E
′, it remains to show

that this intersection is non-empty and is a p-set.

Suppose {E′
j}nj=1 is a finite collection of sets in C, and without loss of generality, suppose the

ordering is consistent with the partial ordering in C with j = 1 smallest. Then ⋂nj=1E′
j = E′

1

which is a non-empty p-set. Since the finite collection was arbitrary, Lemma 3.3.6 implies that

⋂E′∈C E
′ is non-empty. Also by the definition, ⋂E′∈C E

′ is an p-set since it is the intersection

of p-sets.

Thus every chain has a minimal element, so by Zorn’s lemma there exists a minimal element

in EF .

Observe that in particular, EX has a minimal p-set.

Lemma 3.3.8. Suppose X is a locally compact Hausdorff space and A ⊂ C0(X) is a function

algebra. Let E be a p-set. For every open set U containing E there exists h ∈ PE(A) such

that E(h) ⊂ U .

Proof. Let E be a p-set and U a neighborhood of E. Then there exists a family S ⊂ PE(A)

such that E = ⋂
f∈S

E(f).

Since each E(f) is compact, Lemma 3.3.5 implies that there exists a finite collection {h1, h2, . . . , hn} ⊂

S such that E ⊂
n

⋂
i=1
E(hi) ⊂ U .

Let h = h1 ⋅ h2⋯hn which is clearly in PE(A). Then E(h) =
n

⋂
i=1
E(hi) and it follows that

E(h) =
n

⋂
i=1
E(hi) ⊂ U as desired..

The following theorem is a generalization of a classical result for uniform algebras due to E.
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Bishop [4]. The arguments given here are an adjustment of Bishop’s lemma for p-sets for

uniform algebras found in [15].

Theorem 3.3.9 (Bishop’s Lemma for p-sets in Function Algebras). Let X be a locally compact

Hausdorff space and let A ⊂ C0(X) be a function algebra without unit. If f ∈ A and E is a

p-set of A with f ∣E ≠ 0, then there exists a peaking function h ∈ PE(A) such that fh takes its

maximum modulus in E.

Proof. Fix f ∈ A and without loss of generality, we may assume that max
x∈E

∣f(x)∣ = 1. Therefore

we necessarily have ∣∣f ∣∣ ≥ 1.

For every n ∈ N define the set

Un = {x ∈X ∶ ∣f(x)∣ < 1 + 1

2n+1
} .

Then for every integer n ≥ 1, Un is open, Un ⊂ Un−1 and Un ⊃ E. Since E is a p-set, Lemma 3.3.8

implies that for each n we can choose a peaking function kn ∈ PE(A) such that E(kn) ⊂ Un.

Then ∣kn(x)∣ < 1 on the closed set X ∖ Un, so for each n define hn to be a power of kn such

that

∣hn(x)∣ <
1

2n∣∣f ∣∣

on X ∖Un. Define h =
∞
∑
n=1

hn
2n

.

We claim that h is the desired function. Clearly the series is absolutely convergent, and

∣∣h∣∣ ≤ 1. Also since each kn is a peaking function, so is hn.

Observe that E(h) = ⋂∞n=1E(hn) ⊃ E since ∣h(x)∣ = 1 = h(x) if and only ∣hn(x)∣ = 1 = hn(x)

for every n. Therefore h ∈ PE(A).
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If x ∈ E, then ∣f(x)h(x)∣ = ∣f(x)∣. Consequently

∣∣fh∣∣ = max
x∈X

∣f(x)h(x)∣ ≥ max
x∈E

∣f(x)h(x)∣ = max
x∈E

∣f(x)∣ = 1. (3.5)

which shows that in fact ∣∣fh∣∣ ≥ 1. We claim that ∣∣fh∣∣ ≤ 1. Fix x ∈ X and let X = U0. There

are two cases.

Case 1: x ∈ Un−1 ∖Un for some n ≥ 1.

Then x ∈ U0, U1, . . . , Un−1 but x ∉ Um for m ≥ n. Therefore ∣f(x)∣ < 1 + 1

2n
and ∣hm(x)∣ <

1

2m∣∣f ∣∣ ≤
1

2
for all m ≥ n. Thus,

∣h(x)∣ =
n−1
∑
m=1

∣hm(x)∣
2m

+
∞
∑
m=n

∣hm(x)∣
2m

≤
n−1
∑
m=1

1

2m
+

∞
∑
m=n

1/2
2m

= (1 − 1

2n−1
) + 1

2
⋅ 1

2n−1
= 1 − 1

2n−1
(1 − 1

2
) = 1 − 1

2n

Consequently, ∣f(x)h(x)∣ < (1 + 1

2n
)(1 − 1

2n
) = 1 − 1

4n
< 1.

Case 2: x ∈
∞
⋂
n=1

Un.

Then x ∈ Un for all n which implies ∣f(x)∣ < 1+ 1

2n+1
for every n. Thus ∣f(x)∣ ≤ 1 which implies

that ∣f(x)h(x)∣ ≤ 1 since h ∈ P(A). Therefore ∣∣fh∣∣ ≤ 1 and we have established that ∣∣fh∣∣ = 1.

Then (3.5) shows that fh indeed takes its maximum modulus on E.

The following strong version of Bishop’s Lemma for p-points and function algebra A ⊂ C0(X),

not necessarily with unit, follows from Theorem 3.3.9. It plays an important role in the

theorems given in chapters 4, 5, and 6.

Theorem 3.3.10 (Strong Multiplicative Bishop’s Lemma). [24] Let X be a locally compact

Hausdorff space and A ⊂ C(X) be a function algebra without unit on X = ∂A. If f ∈ A and

x0 ∈X is a p-point of A with f(x0) ≠ 0, then there exists a peaking function h0 ∈ Px0(A) such
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that

σπ(fh0) = {f(x0)} (3.6)

If E is a peak set of A which contains x0, then h0 can be chosen so that E(fh0) = E(h0) ⊂ E.

Lemma 3.3.11. Let X be a locally compact Hausdorff space and A ⊂ C0(X) a function

algebra. If x0 ∈X is contained in a minimal p-set and f ∈ A with f(x0) ≠ 0, then there exists

an h ∈ Px0(A) such that σπ(fh) = {f(x0)}.

For uniform algebras Lemma 3.3.11 is proven in [15].

Proof. Let E be the minimal p-set containing x0. Then by Lemma 3.3.9 there exists a peaking

function k ∈ PE(A) such that fk takes its maximal modulus on E, that is max
x∈E

∣f(x)k(x)∣ =

∣∣fk∣∣ which implies E(fk) ∩E ≠ ∅.

Now by Lemma 3.2.4, E(fk) can be written as a disjoint union of peak sets

E(fk) = ⋃
λ∈σπ(fk)

(fk)−1(λ) = ⋃
λ∈σπ(fk)

Pλ

where Pλ = (fk)−1(λ).

Therefore E ∩ Pλ ≠ ∅ for some λ ∈ σπ(fk). Since E is a minimal p-set, we must have

E ⊂ Pλ ⊂ E(fk). Therefore x0 ∈ E ⊂ E(fk). Since k ∈ PE(A), we see that k(x0) = 1 and

consequently ∣f(x0)∣ = ∣f(x0)k(x0)∣ = ∣∣fk∣∣. Hence f(x0) ∈ σπ(fk).

Then by Lemma 3.2.3, H = (fk)−1(fk(x0)) = (fk)−1(f(x0)) is a peak set of A. Therefore

there exists a peaking function k′ ∈ P(A) such that E(k′) = (fk)−1(f(x0)). If h = kk′ then

h ∈ P(A) with x0 ∈ E(h) = E(k) ∩E(k′) ⊂H, since k′(x0) = 1 and k(x0) = 1.

Clearly ∣f(x0)∣ = ∣∣fk∣∣ ≥ ∣∣fkk′∣∣ = ∣∣fh∣∣, but fh(x0) = fkk′(x0) = f(x0) shows that ∣f(x0)∣ =

∣∣fh∣∣, thus f(x0) ∈ σπ(fh). Also for any x ∈ E(fh) = E(fk) ∩E(k′), we clearly have fk(x) =
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f(x0) since x ∈ H and k′(x) = 1 thus fh(x) = f(x0). Therefore σπ(fh) = {f(x0)} as desired.

Lemma 3.3.12. Let X be a locally compact Hausdorff space and A ⊂ C0(X) a function

algebra. Then the minimal elements of EX are singletons. Moreover, the set of minimal

elements of EX coincides with p(A).

Proof. Suppose E is a minimal p-set and x, y ∈ E.

We show that x = y by showing that f(x) = f(y) for every function f ∈ A. Since A separates

points, this proves the claim.

If f(x) = 0 = f(y) there is nothing to show. Otherwise let f(x) ≠ 0. By Lemma 3.3.11 there

exists a function h ∈ Px(B) such that σπ(fh) = {f(x)}. Consequently, x ∈ E(h) = h−1(1),

a peak set. Thus E ∩ E(h) ≠ ∅. By the minimality of E, we may assume that E ⊂ E(h).

Therefore we also have y ∈ E(h) ⊂ E(fh). Then y ∈ σπ(fh) = {f(x)} which implies f(y) =

f(y)h(y) = f(x). We deduce that x = y, which proves the lemma.

All of the ingredients are now in place to prove the main result of the section, that the set of

p-points form a boundary of a function algebra.

Theorem 3.3.13. Let A ⊂ C0(X) be a function algebra. Then p(A) is a boundary for A, and

is contained in the Shilov boundary. That is, p(A) ⊂ ∂A.

The following proof follows [15], Lemma 3.2.16 which establishes the result for uniform alge-

bras.

Proof. Let f ∈ A and let {x} be a minimal element of EE(f), which is neccesarily nonempty

by Lemma 3.2.3. Then {x} is an intersection of peak sets by the definition of EE(f), which



3.4. DENSE SUBALGEBRAS OF FUNCTION ALGEBRAS 48

implies x ∈ p(A) ∩E(f). Since E(f) meets p(A) for every f ∈ A, it follows that

max
x∈p(A)

∣f(x)∣ = ∣∣f ∣∣

for every f ∈ A, which shows that p(A) is a boundary for A.

Let E ⊂ X be a closed boundary of A. By way of contradiction, suppose that p(A) ∖E ≠ ∅.

Then there exists x ∈ (p(A)∖E) ⊂ (X ∖E). Since E is closed, X ∖E is an open neighborhood

of x in X, so by Lemma 3.3.8 there exists a peaking function h ∈ Px(A) such that x ∈ h−1(1) ⊂

X ∖ E. Therefore ∣∣h∣∣ = 1 but ∣h(x)∣ < 1 on E which contradicts that E is a boundary.

Consequently, p(A)∖E = ∅ which implies that p(A) is contained in E. Since E was arbitrary,

we see that p(A) is contained in every closed boundary.

It is a surprising and convenient fact that the set of strong boundary points, p(A), for a

function algebra A ⊂ C0(X) coincides with the Choquet boundary in definition 3.3.2.

Theorem 3.3.14. (e.g. in [23]) If A ⊂ C0(X) is a function algebra, then δA = p(A).

The proof will be omitted here, but is provided in [23], pages 2-3. The theorem, together with

the results above, show the Choquet boundary is indeed a boundary and is contained in the

Shilov boundary. Therefore δB ⊂ ∂B which implies that δB ⊂ ∂B. The simple observation

δB ⊂ δB shows δB is a closed boundary, so we also have ∂B ⊂ δB. It follows that δB = ∂B.

3.4 Dense Subalgebras of Function Algebras

Suppose that A ⊂ C0(X) is an algebra such that A is a function algebra, not necessarily com-

plete. Then A may inherit several useful properties from A, but the conclusion of Theorem

3.3.10 may not hold since the construction of the function h ∈ P(A) makes use of the com-

pleteness of A. In addition, it may not be the case that p(A) = δA, and in fact it can happen
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that p(A) = ∅. For this reason, the assumption p(A) = δA may be added as a hypothesis for

some later theorems on dense subalgebras of function algebras.

Also note that MA = MA. Indeed, every multiplicative linear functional ϕ is continuous,

consider f ∈ A such that f = lim fn, where fn ∈ A. Then ϕ(f) is determined as limϕ(fn).

Similarly, A∗ = A∗
and it follows that δA = δA since the Choquet boundary is defined as a

subset of the dual space.

Example 3.4.1. Let C(1)[a, b] denote the vector space of continuous complex-valued func-

tions on the interval [a, b] which are differentiable and whose derivatives are continuous on

[a, b]. Define a norm on C(1)[a, b] by

∣∣f ∣∣ = max
a≤t≤b

∣f(t)∣

With pointwise addition and multiplication, C(1)[a, b] is a commutative Banach algebra. How-

ever, C(1)[a, b] is not uniformly closed in C[a, b].

Example 3.4.2. Let P [a, b] = {∑ni=0 aixi ∶ n ∈ N, i = 1, . . . , n, ai ∈ C} be the set of polynomials

defined on the interval [a, b], again with pointwise operations and the supremum norm. Then

P [a, b] is a commutative algebra, but is not complete with respect to the norm. In fact,

P [a, b] = C[a, b] by the Stone-Weierstrass theorem.



Chapter 4

Norm-Multiplicative Mappings

between Function Algebras

Unless otherwise stated, throughout this chapter A ⊂ C(X) and B ⊂ C(Y ) will be function

algebras on locally compact spaces X and Y , respectively.

4.1 Basic Results

Definition 4.1.1. Let A ⊂ C(X) and B ⊂ C(Y ) be function algebras, and let ψ∶Y → X be a

continuous mapping. A map T ∶A→ B is called

(i) a ψ-composition operator on Y if (Tf)(y) = f(ψ(y)) for all f ∈ A and y ∈ Y , and

(ii) a weighted ψ-composition operator on Y if there is a continuous function α on Y so

that (Tf)(y) = α(y) f(ψ(y)) for all f ∈ A and y ∈ Y .

Proposition 4.1.2. If T ∶ A → B is a composition operator between function algebras, i.e.

50
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Tf = f ○ ψ for some homeomorphism ψ, then T is linear, multiplicative, injective, and an

isometry.

Proof. Let f, g ∈ A and α,β ∈ C. From the definitions of function operations we immediately

see that T (αf +βg) = αTf +β Tg. If Tf = Tg, then f ○ψ = g○ψ and therefore the injectivity of

T follows from the injectivity of the homeomorphism ψ. Also T (fg) = (fg)○ψ = (f ○ψ)(g○ψ) =

Tf Tg again by basic properties of functions. The fact that T is an isometry follows since

∣∣Tf ∣∣ = max
y∈Y

∣Tf(y)∣ = max
ψ(y)=x∈X

∣f(x)∣ = ∣∣f ∣∣ (4.1)

for all f ∈ A.

Note that a weighted composition operator T with ∣α∣ = 1 is also linear, injective and an

isometry, and the operator T /α is multiplicative. Observe that if ψ is a homeomorphism and

∣α(y)∣ = 1 for all y ∈ Y , then ∣Tf(y)∣ = ∣f(ψ(y))∣ for all y ∈ Y and therefore T is an isometry as

shown in equation (4.1). In [8,10,14,17,24], techniques were developed for sufficient conditions

for composition and weighted composition operators.

In general, an arbitrary isometric algebraic isomorphism between function algebras need not

be a composition operator. Recall the disk algebra A(D) identified with its image under the

Gelfand transformation Λ ∶ A(D) ↦ Â(D) ⊂ C(MA(D)). Making the usual identifications,

the maximal ideal space was given by MA(D) = D and the Shilov boundary was found to be

∂A(D) = T. Lemma 3.1.3 shows that the restriction map r ∶ A(D) → A(D)∣T from the disk

algebra to the algebra of restrictions is an isometric isomorphism. However a basic result from

topology shows that there is no continuous surjection from T to D.
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4.2 Norm Multiplicative Operators

Operators T ∶ A→ B between commutative Banach algebras A,B such that

∣∣TfTg∣∣ = ∣∣fg∣∣

for every f, g ∈ A are called norm-multiplicative operators ([14]). Norm-multiplicative oper-

ators were introduced in [14] where a version of the next theorem was proved for surjective

operators between uniform algebras. The version for function algebras plays a crucial role in

the sequel. The complete proof provided here follows the arguments of [24].

Theorem 4.2.1 ([24]). Let A ⊂ C0(X) and B ⊂ C0(Y ) be dense subalgebras of function

algebras without units on X = ∂A and Y = ∂B with p(A) = δA and p(B) = δB. If T ∶A → B

is a surjection such that ∥Tf ⋅ Tg∥ = ∥fg∥ for all f, g ∈ A, then there is a homeomorphism

ψ∶p(B)→ p(A) such that

∣(Tf)(y)∣ = ∣f(ψ(y))∣ (4.2)

for all f ∈ A and y ∈ p(B).

The proof of Theorem 4.2.1 requires several lemmas. For a function algebra A ⊂ C0(X) and

a subset E ⊂X, define FE(A) = {f ∈ A ∶ ∣∣f ∣∣ = 1, ∣f(x)∣ = 1 on E}.

Lemma 4.2.2. Let A ⊂ C0(X) be a subalgebra of a function algebra without unit, such that

X = ∂A. If h ∈ P(A) and V ⊂X is an open set containing E(h), then supX∖V ∣h(x)∣ < 1.

Proof. By way of contradiction, suppose that max{∣h(x)∣ ∶ x ∈ X ∖ V } = 1. Consider the

Gelfand transform ĥ. As discussed in 2.4, Â ⊂ C0(X) which implies that ĥ is a continuous

function such that limx→∞ ĥ(x) = 0. Therefore maxX ∣̂h(x)∣ is achieved on the closed set X∖V ,

so there exists x0 ∈ X such that ∣h(x0)∣ = max{∣h(x)∣ ∶ x ∈ X ∖ V } = 1. This contradicts the

assumption that V ⊃ E(h).
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Lemma 4.2.3. Let A ⊂ C0(X) be a subalgebra of a function algebra without unit, such that

X = ∂A, and let E ⊂X be a non-empty p-set for A. Then maxx∈E ∣f(x)∣ = infh∈FE(A) ∣∣fh∣∣ for

any f ∈ A. In particular, if x0 ∈ p(A), then ∣f(x0)∣ = infh∈FE(A) ∣∣fh∣∣.

Proof. Let f ∈ A and ε > 0. It suffices to find h ∈ FE(A) such that maxx∈E ∣f(x)∣ ≤ ∣∣fh∣∣ <

maxx∈E ∣f(x)∣ + ε.

Consider the open set V = {x ∈X ∶ ∣f(x)∣ < maxζ∈E ∣f(ζ)∣+ ε}. Note that E ⊂ V and let k ∈ PE

such that E(k) ⊂ V . By lemma 4.2.2 we have supX∖V ∣k(x)∣ < 1. Since f is bounded, there

exists n ∈ N such that h ∶= kn where ∣f(x)h(x)∣ ≤ maxζ∈E ∣f(ζ)∣+ε for all x ∈X∖V . Also, since

∣∣h∣∣ = 1, ∣f(x)h(x)∣ ≤ ∣f(x)∣ < maxζ∈E ∣f(ζ)∣ + ε for all x ∈ V . Therefore the inequality holds

over all of X, thus taking the supremum over all x ∈ X implies that ∣∣fh∣∣ ≤ maxζ∈E ∣f(ζ)∣ + ε.

Therefore,

max
ζ∈E

∣f(ζ)∣ = max
ζ∈E

∣f(ζ)h(ζ)∣ ≤ max
ζ∈X

∣f(ζ)h(ζ)∣ = ∣∣fh∣∣ < max
ζ∈E

∣f(ζ)∣ + ε

which is the desired result.

Lemma 4.2.4. Let A ⊂ C0(X) be a dense subalgebra of a function algebra without unit, such

that X = ∂A and p(A) = δA. Then every non-empty set of type E = ⋂αE(fα) where ∣∣fα∣∣ = 1

meets p(A). That is, E ∩ p(A) ≠ ∅.

Proof. Let E = ⋂αE(fα) where ∣∣fα∣∣ = 1 for all α. Choose x ∈ E and let x ∈ Pα ⊂ E(fα) for

each α. Intersecting both sides over all α gives x ∈ ⋂αPα ⊂ E. Therefore x is an element of

p-set which is properly contained in E. Since A ⊂ A, we see ⋂αPα is also a peak set for A.

Consequently E meets δA = δA = p(A).

Definition 4.2.5. Suppose that X,Y are locally compact Hausdorff spaces with A ⊂ C(X)

and B ⊂ C(Y ) dense subalgebras of function algebras on X = ∂A and Y = ∂B with p(A) = δA

and p(B) = δB.
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� For a set S ⊂ C0(X), let ∣S∣ = {∣f ∣ ∶ f ∈ S} denote the modulus set of S.

� An operator Φ ∶ ∣A∣ → ∣B∣ is increasing if and only if for all f, g ∈ A, Φ(∣f ∣) ≤ Φ(∣g∣) on

Y whenever ∣f ∣ ≤ ∣g∣ on X.

� An operator Φ ∶ ∣A∣ → ∣B∣ is sup-norm multiplicative if ∣∣Φ(∣f ∣)Φ(∣g∣)∣∣ = ∣∣fg∣∣ for all

f, g ∈ A.

Lemma 4.2.6. Let X,Y be locally compact Hausdorff spaces, A ⊂ C0(X),B ⊂ C0(Y ) dense

subalgebras of function algebras without units such that X = ∂A,Y = ∂B and p(A) = δA, p(B) =

δB. Also suppose Φ ∶ ∣A∣→ ∣B∣ is an increasing bijection. If Φ is sup-norm multiplicative, then

there exists a homeomorphism ψ ∶ p(B) → p(A) with respect to which Φ is a ψ-composition

operator on p(B). That is, Φ(∣f ∣)(y) = ∣f(ψ(y))∣ for all f ∈ A and y ∈ p(B). In particular, Φ

is multiplicative.

The technique for the proof of the lemma was developed in [22].

Lemma 4.2.7. For any y ∈ p(B)

Ey = ⋂
f∈A

Φ(∣f ∣)∈∣Fy(B)∣

E(f) (4.3)

is nonempty and Ey ∩ p(A) ≠ ∅.

Proof. We first show the family {E(f) ∶ f ∈ A,Φ(∣f ∣) ∈ ∣Fy(B)∣} has the finite intersection

property. Let f1, . . . , fn such that Φ(∣fj ∣) ∈ ∣Fy(B)∣ for j = 1, . . . , n. Consider the product

Φ(∣f1∣)⋯Φ(∣fn∣). Since Φ is a bijection, there exists f ∈ A such that Φ(∣f ∣) = Φ(∣f1∣)⋯Φ(∣fn∣).

Since each Φ(∣fj ∣) ∈ ∣Fy(B)∣, we see that Φ(∣f ∣) ∈ ∣Fy(B)∣. Therefore Φ(∣f ∣) ≤ Φ(∣fj ∣) for each

j, so ∣f(ζ)∣ ≤ ∣fj(ζ)∣ for all ζ ∈X since Φ is increasing.

Note that ∣∣f ∣∣ = ∣Φ(∣f ∣)∣∣ = 1. Certainly ∣∣Φ(∣f ∣)∣∣ = 1 since we have already seen that Φ(∣f ∣) ∈

∣Fy(B)∣. Also the sup-norm multiplicativity implies that ∣∣f ∣∣2 = ∣∣f2∣∣∣∣Φ(∣f ∣)2∣∣ = ∣∣Φ(∣f ∣)∣∣2 so
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indeed ∣∣f ∣∣ = 1. Similarly, it follows that ∣∣fj ∣∣ = ∣∣Φ(∣fj ∣)∣∣ = 1 for all j = 1, . . . , n.

Consequently, we may choose x ∈ X such that ∣f(x)∣ = 1. The previous inequality shows that

∣fj(x)∣ = 1 for all j. Therefore E(f) ⊂ E(fj) for all j, and taking the intersection over all j

reveals E(f) ⊂ ⋂nj=1E(fj). Therefore ⋂nj=1E(fj) ≠ ∅, so the family has the finite intersection

property. Since each E(f) is a compact subset of the Hausdorff space X, Ey is also non-empty.

Therefore Ey ∩ p(A) ≠ ∅ by Lemma 4.2.4.

Lemma 4.2.8. If y ∈ p(B) and x ∈ Ey ∩ p(A), then

Φ(∣Fx(A)∣) ⊂ ∣Fy(B)∣. (4.4)

Proof. Let h ∈ Fx(A) and ∣k∣ = Φ(∣h∣). It suffices to show that ∣k(y)∣ = 1. Let V be a

neighborhood of y and q ∈ Fy(B) such that E(q) ⊂ V . If ∣p∣ ∈ Φ−1(∣q∣) then ∣∣p∣∣ = ∣∣q∣∣ = 1, thus

Ey ∩ p(A) ⊂ Ey = ⋂
f∈A,Φ(∣f ∣)∈∣Fy(B)∣

E(f) ⊂ E(p)

since p ∈ A such that Φ(∣p∣) ∈ ∣Fy(B)∣. Therefore x ∈ E(p) which implies p ∈ Fx(A).

Now 1 = ∣h(x)p(x)∣ = ∣∣hp∣∣ = ∣∣Φ(∣h∣)Φ(∣p∣)∣∣ = ∣∣kq∣∣ ≤ ∣∣k∣∣∣∣q∣∣ = 1. Therefore there exists some

yV ∈ E(q) ⊂ V such that ∣k(yV )q(yV )∣ = ∣k(yV )∣∣q(yV )∣ = 1, which implies ∣k(yV )∣ = 1 and

∣q(yV )∣ = 1. Since this holds for every neighborhood V of y, the continuity of k implies that

∣k(y)∣ = 1 as desired.

If A is a function algebra (or uniform algebra), then it separates points of X. Here we provide

a proof that A must in fact separate the points in moduli. The arguments given here are an

adapation of those found in [20].

Lemma 4.2.9. Let X be a locally compact Hausdorff space. If A ⊂ C0(X) separates the points

of X, then so does ∣A∣.
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Proof. Suppose that x, y ∈ X such that ∣f(x)∣ = ∣f(y)∣ for every f ∈ A. We must show that

x = y.

Clearly if f(y) = 0 then ∣f(x)∣ = ∣f(y)∣ = 0 which implies f(x) = 0.

Otherwise choose f, g ∈ A such that f(y) ≠ 0 and g(y) ≠ 0. Define h = f(y)g − g(y)f . Note

that h ∈ A and h(y) = 0. It follows that 0 = ∣h(y)∣ = ∣h(x)∣ which implies h(x) = 0. Therefore

0 = f(y)g(x)−g(y)f(x) or f(x)/f(y) = g(x)/g(y). Then for this common ratio t ∈ T, we have

f(x) = tf(y) for every f ∈ A such that f(y) ≠ 0.

Consider the identification of x, y with the point evaluation functionals ϕx, ϕy respectively.

Then ϕx = tϕy on A. In particular, for f ∈ A such that f(y) ≠ 0, we can write ϕx(f) = tϕy(f)

and ϕx(f2) = tϕy(f2) since f2 ∈ A. Thus t = ϕx(f)
ϕy(f)

and t = (ϕx(f)
ϕy(f)

)
2

simultaneously which

implies t = 1. Therefore ϕx = ϕy on A which states that f(x) = f(y) for all f ∈ A, and

consequently x = y since A separates the points of X.

Lemma 4.2.10. For any y ∈ p(B), the set Ey ∩ p(A) is a singleton.

Proof. By way of contradiction, suppose x ∈ Ey ∩ p(A) and z ∈ (Ey ∩ p(A)) ∖ {x}. Since

A separates the points of p(A), Lemma 4.2.9 provides the existence of h ∈ A such that

∣h(x)∣ ≠ ∣h(z)∣. By an appropriate scaling, we can assume without loss of generality that

h ∈ Fx(A) with ∣h(z)∣ < ∣h(x)∣ = 1. Then Φ(∣h∣) ∈ Fy(B) so as in the proof of Lemma 4.2.8, we

have Ey ∩ p(A) ⊂ E(h). Therefore z ∈ Ey ∩ p(A), a contradiction since then z ∈ E(h) which

implies ∣h(z)∣ = 1.

Therefore for each y ∈ p(B) we have the well-defined assignment ψ ∶ p(B)→ p(A) by {ψ(y)} =

{Ey ∩ p(A)}. We can rewrite 4.4 as

Φ(∣Fψ(y)(A)∣) ⊂ ∣Fy(B)∣. (4.5)
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Then for any h ∈ Fψ(y)(A), we have Φ(∣h∣) ∈ ∣Fy(B)∣ and it follows that

∣h(ψ(y))∣ = 1 = ∣Φ(h)(y)∣. (4.6)

It fact, we have that each k ∈ ∣Fy(B)∣ is in the image of h ∈ ∣Fψ(y)(A)∣ under Φ.

Corollary 4.2.11. For any y ∈ p(B), Φ−1(∣Fy(B)∣) = ∣Fψ(y)(A)∣.

Proof. First note that (4.5) implies that ∣Fψ(y)(A)∣ ⊂ Φ−1(∣Fy(B)∣).

Let y ∈ p(B), k ∈ Fψ(y)(A) and suppose ∣h∣ ∈ Φ−1(∣k∣). Then it remains to show h ∈ Fψ(y)(A).

Since Φ(∣h∣) = ∣k∣ ∈ ∣Fy(B)∣, (4.3) implies that {Ey ∩ p(B)} = {ψ(y)} ⊂ E(h). This implies

∣h(ψ(y))∣ = 1 = ∣k(y)∣ and therefore ∣∣h∣∣ = 1, thus h ∈ Fψ(y)(A) and the other inclusion is

proven.

We are now ready to prove Lemma 4.2.6.

Proof of lemma 4.2.6. Let f ∈ A and y ∈ p(B). Then lemma 4.2.3, corollary 4.2.11, and the

norm-multiplicativity of Φ imply

∣Φ(∣f ∣)(y)∣ = inf
k∈Fy(B)

∣∣Φ(∣f ∣) ⋅ ∣k∣∣∣ (4.7)

= inf
h∈Fψ(y)(A)

∣∣Φ(∣f ∣)Φ(∣h∣)∣∣ (4.8)

= inf
h∈Fψ(y)(A)

∣∣fh∣∣ (4.9)

= ∣f(ψ(y))∣. (4.10)

Therefore Φ is a ψ-composition operator.

It remains to show that ψ ∶ p(B)→ p(A) is a homeomorphism. Let y ∈ p(B) and some constant

0 < c < 1. Let U be an open neighborhood of ψ(y) in X. Then there exists a peaking function
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h ∈ Pψ(y)(A) such that E(h) ⊂ U and ∣h(x)∣ < c for all x ∈ X ∖ U . Take ∣k∣ = Φ(∣h∣) ∈ ∣Fy(B)∣

and therefore ∣k(y)∣ = ∣h(ψ(y))∣ = 1 > c by (4.6).

Consider the open set W = {η ∈ p(B) ∶ k(η) > c} containing y. Then c < ∣k(η)∣ = ∣h(ψ(η))∣

for all η ∈ W . Since h(ζ) < c for all ζ ∈ X ∖ U , it follows that ψ(η) ∈ U for all η ∈ W . Thus

ψ(W ) ⊂ U which shows that ψ is continuous.

Recall that Φ ∶ ∣A∣ → ∣B∣ is bijective and consider the inverse Φ−1 ∶ ∣B∣ → ∣A∣. Then Φ−1 is

a surjective map that satisfies all the hypothesis of lemma 4.2.6. Following the established

symmetric arguments, there exists a continuous map φ ∶ p(A)→ p(B) such that Φ−1(∣g∣)(x) =

∣g(φ(x))∣ for all g ∈ B and x ∈ p(A). Since Φ−1(∣Fy(B)∣) = ∣Fψ(y)(A)∣, for each ψ(y) = x we

have

{φ(x)} = Eψ(y) ∩ p(B) (4.11)

= [ ⋂
g∈B

Φ−1(∣g∣)∈∣Fψ(y)(A)∣

E(g)] ∩ p(B) (4.12)

= [ ⋂
g∈B

∣g∣∈Φ(∣F(y)(A)∣)

E(g)] ∩ p(B) (4.13)

= {y} (4.14)

Therefore φ(ψ(y)) = y and similarly ψ(ψ(x)) = x, thus φ = ψ−1 and ψ is bijective. Hence ψ is

a homeomorphism as claimed.

Also Φ(∣fg∣)(y) = ∣fg(ψ(y))∣ = ∣f(ψ(y))∣∣g(ψ(y))∣ = (Φ(∣f ∣)Φ(∣g∣))(y) for all y ∈ p(B) so it is

multiplicative.

We now have all of the tools needed to prove the main result of this section, that a norm

multiplicative map T between dense subalgebras of function algebras is a composition operator
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in modulus.

Proof of Theorem 4.2.1. Let f, g ∈ A such that ∣Tf ∣ < ∣Tg∣ on Y . Then by the sup-norm

multiplicativity of T , for any h ∈ A we have ∣∣fh∣∣ = ∣∣TfTh∣∣ ≤ ∣∣TgTh∣∣ = ∣∣gh∣∣. Then for any p-

point x0, taking the infimum over all h ∈ Fx0 and applying Lemma 4.2.3 shows ∣f(x0)∣ ≤ ∣g(x0)∣.

Therefore ∣f ∣ ≤ ∣g∣ on p(A) =X.

Now take any k ∈ B and h ∈ T−1(k). By the norm multiplicativity of T and since ∣f ∣ ≤ ∣g∣,

we have ∣∣Tf ⋅ k∣∣ = ∣∣TfTh∣∣ = ∣∣fh∣∣ ≤ ∣∣gh∣∣ = ∣∣TgTh∣∣ = ∣∣Tg ⋅ k∣∣. Again, applying Lemma 4.2.3

implies ∣Tf ∣ ≤ ∣Tg∣ on p(B) = Y . Therefore ∣f ∣ ≤ ∣g∣ on X if and only if ∣Tf ∣ ≤ ∣Tg∣ on Y . Note

that if ∣f ∣ = ∣g∣ on X, then ∣Tf ∣ ≤ ∣Tg∣ on Y but also ∣∣f ∣∣ = ∣∣g∣∣ which implies ∣∣Tf ∣∣ = ∣∣Tg∣∣.

This shows that ∣Tf ∣ = ∣Tg∣ on Y . Conversely we also have ∣Tf ∣ = ∣Tg∣ on Y which implies

∣f ∣ = ∣g∣ on X. Therefore ∣f ∣ = ∣g∣ on X if and only if ∣Tf ∣ = ∣Tg∣ on Y .

Define the map Φ ∶ ∣A∣ → ∣B∣ by Φ(∣f ∣) = ∣Tf ∣. The computations above clearly show that Φ

is a well-defined, increasing bijection between ∣A∣ and ∣B∣. Therefore by Lemma 4.2.6, there

exists a homeomorphism ψ ∶ Y → X such that Φ(∣f ∣)(y) = ∣f(ψ(y))∣ for all y ∈ Y . Thus

∣Tf(y)∣ = ∣f(ψ(y))∣ for all y ∈ Y and we have shown that T is a ψ-composition operator on

p(B) in modulus.



Chapter 5

Almost Peripherally-Multiplicative

Operators between Function

Algebras

Since function algebras have algebraic and topological structures, one can impose various

conditions on maps T between function algebras A and B to be structure preserving maps.

In the spirit of the Mazur-Ulam theorem, this chapter introduces topological constraints on

the mappings T ∶ A→ B between function algebras from which it follows that T is a structure

preserving map . Specifically, we find spectral conditions which imply that T is a composition,

or weighted composition operator.

5.1 Terminology for Maps between Function Algebras

Definition 5.1.1. Let A,B be function algebras on locally compact spaces X,Y respectively,

and suppose T ∶ A→ B is a mapping.

60
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� If σπ(TfTg) = σπ(fg) for all f, g ∈ A, then T is said to be a peripherally-multiplicative

operator. [17]

� If σπ(TfTg) ⊂ σπ(fg) for all f, g ∈ A or σπ(fg) ⊂ σπ(TfTg) for all f, g ∈ A, then T is

said to be an almost peripherally-multiplicative operator.

� If σπ(TfTg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A, then T is said to be a weakly peripherally-

multiplicative operator. [14]

If T is a weighted composition operator,i.e. Tf = α(f ○ψ), such that α ∶ Y → {±1}, then T is a

peripherally-multiplicative map and thus a weakly peripherally-multiplicative map. Note that

a norm-multiplicative operator T only provides information on the moduli of the elements of

the algebra T is acting on, whereas the peripheral conditions above also provide rotational

information regarding the surjective map T .

If T is peripherally-multiplicative map between function algebras on metric spaces X,Y re-

spectively, then T is a weighted composition operators (see Corollary 6.2.5). In general it

is not known if weakly peripherally-multiplicative maps are composition operators, but for

composition operators, the following converse is always true.

Proposition 5.1.2. Suppose T ∶ A → B is a map between function algebras A,B on their

locally compact and Hausdorff maximal ideal spaces MA = X and MB = Y respectively. If

there exists a homeomorphism ψ ∶ Y → X such that Tf(y) = f(ψ(y)) for all y ∈ Y , then T

is a peripherally-multiplicative map. In particular, T is almost peripherally multiplicative and

weak peripherally-multiplicative.

Proof. For notational convenience, identify element f ∈ A with f̂ , the Gelfand representation

of f .

Suppose z ∈ σπ(Tf ⋅ Tg). Since σ(Tf ⋅ Tg) = T̂ f ⋅ Tg(MB) there exists y0 ∈ Y such that
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Tf(y0)Tg(y0) = z, where

∣(Tf ⋅ Tg)(y)∣ ≤ ∣z∣ (5.1)

for every y ∈ Y . Since T is a composition operator, it follows that

z = f(ψ(y0))g(ψ(y0)) = (f ⋅ g)ψ((y0)) ∈ f̂ ⋅ g(MA) = σ(fg), where

∣(f ⋅ g)(ψ(y))∣ ≤ ∣z∣ (5.2)

for every ψ(y) ∈X, thus every x ∈X since ψ surjective. Therefore z ∈ σπ(f ⋅ g).

On the other hand, if z ∈ σπ(f ⋅ g) then there is a x = ψ(y) ∈ X such that (f ⋅ g)(ψ(y)) = z

satisfying (5.2) and also (5.1). The inequalities also hold on X,Y since ψ−1 is surjective, which

implies z ∈ σπ(Tf ⋅ Tg). This shows that both inclusions hold.

Hence σπ(TfTg) = σπ(fg), i.e. T is peripherally multiplicative, which clearly implies that

σπ(TfTg) ⊂ σπ(fg) and σπ(TfTg) ∩ σπ(fg) ≠ ∅.

Example 5.1.1. Let A(D) be as defined in Example 3.1.1. Define a map T ∶ A(D) → A(D)

by

Tf =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1 ∶ on D1

−f2 ∶ on D2

Clearly T is surjective, and for any f, g ∈ A(D), TfTg∣D1 = f1g1 and TfTg∣D2 = f2g2. Therefore

σπ(TfTg) = σπ(fg) for all f, g ∈ A(D). Therefore T is a peripherally multiplicative map, thus

almost peripherally-multiplicative and weakly peripherally-multiplicative, which is a weighted

composition operator but not a composition operator.

Lemma 5.1.3. Let T ∶ A → B be an operator between two function algebras. If T is
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peripherally-multiplicative, almost peripherally-multiplicative, or weakly peripherally-multiplicative,

then T is norm-multiplicative.

The proof of the proposition follows from the observation that for any λ ∈ σπ(fg)∩σπ(TfTg),

we have ∣∣fg∣∣ = ∣λ∣ = ∣∣TfTg∣∣ from the definition of the peripheral spectrum.

For uniform algebras A ⊂ C(X) and B ⊂ C(Y ) on compact Hausdorff spaces X and Y

respectively, it has been shown in [17] that a necessary and sufficient condition for a surjective

unital operator T ∶A → B to be a composition operator on δB is for T to be peripherally-

multiplicative.

5.2 Almost Peripherally-Multiplicative Conditions

In [14], it is shown if T ∶A → B is an almost peripherally-multiplicative surjective mapping

between two uniform algebras such that

σπ(Tf) = σπ(f) (5.3)

for every f ∈ A, then T is a composition operator on δB.

The following two theorems show that almost peripherally-multiplicative maps between ar-

bitrary function algebras are weighted composition operators, without assuming condition

(5.3).

Theorem 5.2.1. (A) (J,T) [12] Let A ⊂ C(X) be a function algebra and B ⊂ C(Y ) a dense

subalgebra of a function algebra, not necessarily with units, such that p(B) = δB, and where

X and Y are locally compact Hausdorff spaces. If T ∶A→ B is a surjection such that

σπ(Tf ⋅ Tg) ⊂ σπ(fg) (5.4)
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for all f, g ∈ A, then there exists a homeomorphism ψ∶ δB → δA and a continuous function α

on δB with α2 = 1 such that

(Tf)(y) = α(y) f(ψ(y))

for every y ∈ δB.

Proof. First we show that (Tf)(y)2 = f(ψ(y))2 for every f ∈ A and y ∈ δB. Let f ∈ A and

y0 ∈ δB. Equality (5.4) and the observation in Lemma 5.1.3 implies that ∥Tf ⋅ Tg∥ = ∥fg∥

for every f, g ∈ A. Let ψ∶ δB → δA be the homeomorphism from Theorem 4.2.1, such that

∣(Tf)(y)∣ = ∣f(ψ(y))∣ for all y ∈ δB. Clearly (Tf)(y0) = f(ψ(y0)) whenever f(ψ(y0)) = 0.

Suppose f(ψ(y0)) ≠ 0. If V ⊂ δB is an arbitrary open neighborhood of y0 in δA, then, clearly,

U = ψ(V ) is an open neighborhood of ψ(y0). By Lemma 3.3.10 there exists a peaking function

h ∈ Pψ(y0)(A) with σπ(fh) = {f(ψ(y0))} such that E(fh) = E(h) ⊂ U . Denote k = Th. Note

that σπ(Tf ⋅ k) = {f(ψ(y0))} since, by (5.4), σπ(Tf ⋅ k) ⊂ σπ(fh) = {f(ψ(y0))}. Therefore,

there is a point y1 ∈ δB so that (Tf ⋅k)(y1) = f(ψ(y0)), i.e. (Tf)(y1)k(y1) = f(ψ(y0)). Since

T is a composition operator in modulus,

∣fh(ψ(y1))∣ = ∣f(ψ(y1))∣∣h(ψ(y1))∣ = ∣(Tf)(y1)∣∣(Th)(y1)∣ = ∣f(ψ(y0))∣ (5.5)

and σπ(fh) = {f(ψ(y0)}, we deduce that the function fh attains the maximum of its modulus

at ψ(y1). Hence ψ(y1) ∈ E(fh) = E(h) ⊂ U , which implies ψ(y1) ∈ U , and therefore, y1 ∈

ψ−1(U) = V . Thus

(Tf)(y1)2 k(y1)2 = f(ψ(y0))2. (5.6)

for some Th = k ∈ B. Then (5.4) implies that σπ(k2) = σπ((Th)2) ⊂ σπ(h2) = {1}, and

therefore, σπ(k2) = {1}. Also, ∣k2(y1)∣ = ∣Th2(y1)∣ = ∣h(ψ(y1))2∣ = 1 since y1 ∈ E(h). It follows

that k2(y1) = 1, and therefore (5.6) becomes

(Tf)(y1)2 = f(ψ(y0))2. (5.7)
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Since V was an arbitrary neighborhood of y0, the continuity of Tf, f,ψ imply that (5.7) in

fact becomes (Tf)(y0)2 = f(ψ(y0))2 as desired.

Thus there exists a number αf(y0) = ±1, possibly depending on f , such that

(Tf)(y0) = αf(y0)f(ψ(y0)). (5.8)

We claim that the number αf(y0) does not depend on f ∈ A. First we show that αh(y0)

has the same value for all peaking functions h in Pψ(y0)(A). Indeed, if h1, h2 ∈ Pψ(y0)(A),

then, by (5.4), σπ(Th1 ⋅ Th2) ⊂ σπ(h1h2) = {1}, and therefore, σπ(Th1 ⋅ Th2) = {1}. Since

∣(Th1)(y0) (Th2)(y0)∣ = ∣h1(ψ(y0))∣∣h2(ψ(y0))∣ = 1, the function Th1 ⋅ Th2 attains its max-

imum modulus at y0. Hence (Th1)(y0) (Th2)(y0) ∈ σπ(Th1 ⋅ Th2) = {1}, and therefore,

(Th1)(y0) (Th2)(y0) = 1. Consequently, the numbers αhi(y0) = αhi(y0)hi(ψ(y0)) = (Thi)(y0), i =

1,2, have the same sign, thus αh1(y0) = αh2(y0).

By Lemma 3.3.10 there is an h ∈ Pψ(y0)(A) such that σπ(fh) = {f(ψ(y0))}. Since, by (5.4),

σπ(Tf ⋅Th) ⊂ σπ(fh) = {f(ψ(y0))}, we have σπ(Tf ⋅Th) = {f(ψ(y0)}. Hence ∣(Tf)(y0) (Th)(y0)∣ =

∣(Tf)(y0)∣∣(Th)(y0)∣ = ∣f(ψ(y0))∣∣h(ψ(y0))∣ = ∣f(ψ(y0))∣. Consequently, the function Tf ⋅ Th

attains the maximum of its modulus at y0, so we must have (Tf)(y0) (Th)(y0) ∈ σπ(Tf ⋅Th) =

{f(ψ(y0))}, thus (Tf)(y0) (Th)(y0) = f(ψ(y0)). Therefore,

αf(y0)αh(y0) =
(Tf)(y0)
f(ψ(y0))

(Th)(y0)
h(ψ(y0))

= 1

h(ψ(y0))
= 1.

Hence αf(y0) = αh(y0), thus the number αf(y0) has the same value for all f ∈ A with

f(ψ(y0)) ≠ 0. Consequently, the function α(y) = αf(y), y ∈ δB, f ∈ A, f(ψ(y)) ≠ 0, is well

defined, and α2 = α2
h = 1. Finally we observe (5.8) becomes (Tf)(y0) = α(y0) f(ψ(y0)), as

desired.

To show that α is continuous at any y ∈ δB, let f ∈ A with f(ψ(y)) ≠ 0 and let V ⊂ δB be a

neighborhood of y such that f ○ψ ≠ 0 on V . Since Tf, f and ψ are continuous on V , so is the
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function α = Tf/(f ○ ψ). In particular, α is continuous at y ∈ V .

The theorem holds under the symmetric almost peripherally-multiplicative condition. The

proof is analogous to that of Theorem 5.2.1(A).

Theorem. 5.2.1 (B) (J,T) Let A ⊂ C(X) be a dense subalgebra of a function algebra with

δA = p(A), and B ⊂ C(Y ) be a function algebra, not necessarily with units, where X and Y

are locally compact Hausdorff spaces. If T ∶A→ B is a surjection such that

σπ(fg) ⊂ σπ(Tf ⋅ Tg) (5.9)

for all f, g ∈ A, then there exists a homeomorphism ψ∶ δB → δA and a continuous function α

on δB with α2 = 1 such that

(Tf)(y) = α(y) f(ψ(y))

for every y ∈ δB.

Proof. As before we show first that (Tf)(y)2 = f(ψ(y))2 for every f ∈ A and y ∈ δB. Let f ∈ A

and y0 ∈ δB. The equality (5.9) implies that ∥Tf ⋅Tg∥ = ∥fg∥ for every f, g ∈ A, and therefore,

Theorem 4.2.1 applies. Let ψ∶ δB → δA be the homeomorphism from Theorem 4.2.1, such

that ∣(Tf)(y)∣ = ∣f(ψ(y))∣ for all y ∈ δB and f ∈ A. Clearly (Tf)(y0) = f(ψ(y0)) whenever

(Tf)(y0) = 0.

Suppose (Tf)(y0) ≠ 0 and let V ⊂ δB be an open neighborhood of y0. By Lemma 3.3.10

there exists a peaking function k ∈ Py0(B) such that σπ(Tf ⋅k) = {(Tf)(y0)} and E(Tf ⋅k) =

E(k) ⊂ V . Hence for every h ∈ T −1(k) we have σπ(fh) ⊂ σπ(Tf ⋅ k) = {(Tf)(y0)}, i.e.

σπ(fh) = {(Tf)(y0)}. Therefore, there is a point x1 ∈ δA so that (fh)(x1) = (Tf ⋅ k)(y0) =

(Tf)(y0). The surjectivity of ψ implies that there is an y1 ∈ δB so that x1 = ψ(y1). Hence
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f(ψ(y1))h(ψ(y1)) = (Tf)(y0), and squaring both sides yields

(f(ψ(y1)))2 (h(ψ(y1)))2 = ((Tf)(y0))2. (5.10)

Since σπ(fh) = {(Tf)(y0)} and

∣Tf ⋅ k(y1)∣ = ∣(Tf)(y1)∣∣k(y1)∣ = ∣f(ψ(y1))∣∣h(ψ(y1))∣ = ∣(Tf)(y0)∣

by (4.2), the function Tf ⋅ k attains the maximum of its modulus at y1. Consequently, y1 ∈

E(Tf ⋅ k) = E(k) ⊂ V . Then ∣h(ψ(y1))2∣ = ∣k(y1)2∣ = 1 so ψ(y1) ∈ E(h2). Also the condition

(5.9) implies that σπ(h2) ⊂ σπ(k2) = {1}. Therefore h(ψ(y1))2 = 1 and (5.10) becomes

f(ψ(y1))2 = (Tf)(y0)2 (5.11)

Since V is an arbitrary neighborhood of y0, the continuity of f,ψ and h imply f(ψ(y0))2 =

(Tf)(y0)2 as claimed.

Consequently, there is a number αf(y0) = ±1, possibly dependent on f , such that

(Tf)(y0) = αf(y0) f(ψ(y0)). (5.12)

We claim that αf(y0) does not depend on f ∈ A. First we show that αh(y0) has the

same value for any h ∈ T −1(k) such that k ∈ Py0(B). If k1, k2 ∈ Py0(B) and hi ∈ T−1(ki),

i = 1,2, then σπ(h1h2) ⊂ σπ(Th1 ⋅ Th2) = σπ(k1k2) = {1}, thus σπ(h1h2) = {1}. Since

∣h1(ψ(y0))∣∣h2(ψ(y0))∣ = ∣(Th1)(y0) (Th2)(y0)∣ = 1 it follows that h1(ψ(y0))h2(ψ(y0)) ∈ σπ(h1h2) =

{1}, hence h1(ψ(y0))h2(ψ(y0)) = 1. By (5.12), αhi(y0)hi(ψ(y0)) = (Thi)(y0) = ki(y0) = 1.

Consequently, the numbers αhi(y0) = 1/hi(ψ(y0)), i = 1,2, have the same sign and therefore,

αh1(y) = αh2(y0).
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Now let f ∈ A be arbitrary. According to Lemma 3.3.10 there exists a k ∈ Py0(B) such that

σπ(Tf ⋅ k) = {Tf(y0)}. Let h ∈ T−1(k). Equality (5.9) implies that σπ(fh) ⊂ σπ(Tf ⋅ k) =

{(Tf)(y0)}, hence σπ(fh) = {(Tf)(y0)}. Therefore,

∣f(ψ(y0))h(ψ(y0))∣ = ∣f(ψ(y0))∣∣h(ψ(y0))∣ = ∣(Tf)(y0) (Th)(y0)∣ = ∣(Tf)(y0)∣.

It follows that the function fh attains the maximum of its modulus at ψ(y), so we must have

f(ψ(y0))h(ψ(y0)) ∈ σπ(fh), thus, f(ψ(y0))h(ψ(y0)) = (Tf)(y0). Therefore,

αf(y0)αh(y0) =
(Tf)(y0)
f(ψ(y0))

(Th)(y0)
h(ψ(y0))

= (Th)(y0) = k(y0) = 1.

Hence αf(y0) = αh(y0), thus the number αf(y0) has the same value for all f ∈ A with

(Tf)(y0) ≠ 0.

Consequently, the function α(y) = αf(y), y ∈ δB, f ∈ A, (Tf)(y) ≠ 0, is well defined. Now

(5.12) becomes (Tf)(y0) = α(y0) f(ψ(y0)). The proof completes as in Theorem 5.2.1(A).

If both A and B are function algebras, the previous two theorems can be combined as follows.

Theorem 5.2.2. Let X and Y be a locally compact Hausdorff spaces and A ⊂ C(X) and

B ⊂ C(Y ) be function algebras, not necessarily with unit, such that X = ∂A and Y = ∂B. If

T ∶A→ B is an almost peripheral-multiplicative surjection, i.e.

(a) σπ(Tf ⋅ Tg) ⊂ σπ(fg) for all f, g ∈ A, or,

(b) σπ(fg) ⊂ σπ(Tf ⋅ Tg) for all f, g ∈ A,

then T is a weighted composition operator on δB. That is, there is a homeomorphism ψ∶ δB →
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δA and a function α on δB with α2 = 1 so that

(Tf)(y) = α(y) f(ψ(y))

for all f ∈ A and y ∈ δB. In particular, T /α is linear and multiplicative operator, i.e. an

algebra isomorphism.

If the map T ∶ A → B in Theorem 5.2.1 is bijective, where both A ⊂ C(X) and B ⊂ C(Y )

are function algebras, then one can consider the surjective map T−1 ∶ B → A which has the

property that σπ(fg) ⊂ σπ(Tf Tg) for all f, g ∈ B. Thus Theorem 5.2.1(B) applies to T−1,

and we see that in this case Theorem 5.2.1(B) follows from Theorem 5.2.1(A).

Since α ∶ δB → C is continuous such that α2 = 1, we see that α naturally separates δB into

the open and closed components S1 = α−1(1) and S−1 = α−1(−1) of δB. Therefore the map T

takes the form Tf(y) = f(ψ(y)) on S1 and Tf(y) = −f(ψ(y)) on S−1.

Recall Example 5.1.1, where T ∶ A(D)→ A(D) defined by

Tf =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1 ∶ on D1

−f2 ∶ on D2

is a peripherally-multiplicative map between the algebra of functions A(D). Here we see that

δB = T1 ∐ T2 where δB separates into the open and closed components S1 = α−1(1) = T1 and

S−1 = α−1(−1) = T2.

The following corollary illustrates a sufficient condition for T ∶ A → B to be a composition

operator.

Corollary 5.2.3. Let X and Y be a locally compact Hausdorff spaces and A ⊂ C(X) and

B ⊂ C(Y ) be function algebras, not necessarily with unit, such that X = ∂A and Y = ∂B. If

T ∶A → B is an almost peripheral-multiplicative surjection, and d(σπ(f), σπ(Tf)) < 2 for all
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f ∈ A, then T is a composition operator.

Proof. From Theorem 5.2.2, there exists a homeomorphism ψ ∶ δB → δA and α ∶ δB → C with

α2 = 1 such that Tf(y) = α(y)f(ψ(y)) for every f ∈ A and y ∈ δB. It suffices to show that

α = 1 on δB.

Case 1: σπ(TfTg) ⊂ σπ(fg) for all f, g ∈ A

Let f ∈ A and fix y0 ∈ δB. Let h ∈ Pψ(y0)(A) and let k ∈ T (h). Then σπ(h) = {1} and

d(σπ(h), σπ(k)) < 2 imply that

∣k(y) − 1∣ < 2 (5.13)

for all y ∈ E(k). However, the almost weak peripheral-multiplicativity of T implies

σπ(k2) = σπ(Th2) ⊂ σπ(h2) = {1}.

Therefore σπ(k) = {±1} and together with (5.13) implies σπ(k) = {1}. But ∣k(y0)∣ = ∣Th(y0)∣ =

∣h(ψ(y0))∣ = 1 which implies y0 ∈ E(k) and thus k(y0) = 1. Therefore

1 = k(y0) = Th(y0) = α(y0)h(ψ(y0)) = α(y0)

and since y0 was arbitrary in δB we may conclude that α = 1 on δB, thus Tf(y) = f(ψ(y))

for all f ∈ A and y ∈ δB.

Case 2: σπ(fg) ⊂ σπ(TfTg) for all f, g ∈ A

Let f ∈ A and fix y0 ∈ δB. Let k ∈ Py0(B) and let h ∈ A such that Th = k. Then σπ(k) = {1}

and d(σπ(h), σπ(k)) < 2 imply that

∣h(x) − 1∣ < 2 (5.14)
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for all x ∈ E(h). However, the almost weak peripheral-multiplicativity of T implies

σπ(h2) ⊂ σπ(Th2) = σπ(k2) = {1}.

Therefore σπ(h) = {±1} and together with (5.14) implies σπ(h) = {1}. But ∣h(ψ(y0))∣ =

∣Th(y0)∣ = ∣k(y0)∣ = 1 which implies ψ(y0) ∈ E(h) and thus h(ψ(y0)) = 1. Therefore 1 =

h(ψ(y0)), thus

1 = k(y0) = Th(y0) = α(y0)h(ψ(y0)) = α(y0)

and again since y0 was arbitrary in δB we may conclude that α = 1 on δB, thus Tf(y) =

f(ψ(y)) for all f ∈ A and y ∈ δB.



Chapter 6

Weakly Peripherally-Multiplicative

Mappings between Function

Algebras

In this chapter we investigate the sufficient conditions for weakly peripherally-multiplicative

mappings between function algebras to be weighted composition operators. In the case of

uniform algebras, it has been shown that if, in addition to the weak peripheral-multiplicativity,

T preserves the peripheral spectra of all algebra elements, then T is necessarily a composition

operator [14, Proposition 2]. Namely

Proposition 6.0.4 ([14]). If a weakly peripherally-multiplicative surjective map T ∶ A → B

between uniform algebras preserves the peripheral spectra of algebra elements, i.e.

σπ(Tf) = σπ(f) (6.1)

for all f ∈ A, then it is a composition operator on δB, i.e. an isometric algebra isomorphism.

72
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6.1 Basic Results

The following two theorems expand this result to function algebras and weaken condition

(6.1).

Theorem 6.1.1. (A)(J,T) Let X be a locally compact Hausdorff space where A ⊂ C(X) is

a dense subalgebra of a function algebra, not necessarily with unit, such that X = ∂A and

p(A) = δA. If T ∶A→ B is a surjection onto a function algebra B ⊂ C(Y ) such that

σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A (6.2)

and

σπ(f) ⊂ σπ(Tf) for all f ∈ A, (6.3)

then T is a bijective ψ-composition operator on δB with respect to a homeomorphism ψ∶ δB →

δA. That is,

(Tf)(y) = f(ψ(y))

for all f ∈ A and y ∈ δB. In particular, A is necessarily a function algebra and T is an algebra

isomorphism.

Proof. Let y0 ∈ p(B) = δB. Condition (6.2) implies that ∥Tf ⋅ Tg∥ = ∥fg∥ for every f, g ∈ A.

Let ψ∶ δB → δA be the homeomorphism from Theorem 4.2.1, such that ∣(Tf)(y)∣ = ∣f(ψ(y))∣

for all y ∈ δB and f ∈ A. Clearly (Tf)(y0) = f(ψ(y0)) whenever (Tf)(y0) = 0.

Let (Tf)(y0) ≠ 0 and let V ⊂ δB be an open neighborhood of y0.

According to Lemma 3.3.10, there exists a peaking function k ∈ Py0(B) such that σπ(Tf ⋅k) =

{(Tf)(y0)} and E(Tf ⋅ k) = E(k) ⊂ V . Note that if h ∈ T−1(k) then (Tf)(y0) ∈ σπ(fh) since,

by (a), σπ(Tf ⋅ k) ∩ σπ(fh) ≠ ∅. Therefore, there is a point x1 ∈ δA so that (Tf ⋅ k)(y0) =
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(fh)(x1). Since ψ is surjective, there is an y1 ∈ δB so that x1 = ψ(y1). Hence

(Tf)(y0) = (Tf)(y0)k(y0) = f(ψ(y1))h(ψ(y1)). (6.4)

Since T is a composition operator in modulus,

∣(Tf)(y0)∣ = ∣(Tf)(y0)∣∣k(y0)∣ = ∣f(ψ(y1))∣∣h(ψ(y1))∣ = ∣(Tf)(y1)∣∣k(y1)∣ = ∣Tf ⋅ k(y1)∣.

Hence y1 ∈ E(Tf ⋅ k) = E(k) ⊂ V . Therefore, ∣h(ψ(y1))∣ = ∣k(y1)∣ = 1. Condition (a) implies

that σπ(h) ⊂ σπ(k) = {1}, thus h(ψ(y1)) ∈ σπ(h), hence h(ψ(y1)) = 1. Now the equality (6.4)

becomes (Tf)(y0) = f(ψ(y1)). Since V was an arbitrary neighborhood of y0, the continuity

of f and ψ yield (Tf)(y0) = f(ψ(y0)) as desired.

Theorem. 6.0.5 (B)(J,T) Let X be a locally compact Hausdorff space where A ⊂ C(X) is a

function algebra, not necessarily with unit such that X = ∂A, and B is a dense subalgebra of

a function algebra B ⊂ C(Y ) such that p(B) = δ(B). If T ∶A→ B is a surjection such that

σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A (6.5)

and

σπ(Tf) ⊂ σπ(f) for all f ∈ A, (6.6)

then T is a bijective ψ-composition operator on δB with respect to a homeomorphism ψ∶ δB →

δA. That is,

(Tf)(y) = f(ψ(y))

for all f ∈ A and y ∈ δB. In particular, B is necessarily a function algebra and T is an algebra

isomorphism.

Proof. Let y0 ∈ p(B) = δB. Condition (6.2) implies that ∥Tf ⋅ Tg∥ = ∥fg∥ for every f, g ∈ A.

Let ψ∶ δB → δA be the homeomorphism from Theorem 4.2.1, such that ∣(Tf)(y)∣ = ∣f(ψ(y))∣
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for all y ∈ δB and f ∈ A. Clearly (Tf)(y0) = f(ψ(y0)) whenever (Tf)(y0) = 0.

Let (Tf)(y0) ≠ 0 and let V ⊂ δB be an open neighborhood of y0.

From (6.6), note that ψ(U) is an open neighborhood of ψ(y0) in δA. Again by Lemma 3.3.10

there exists a peaking function h ∈ Pψ(y0)(A) such that σπ(fh) = {f(ψ(y0))} and E(f ⋅ h) =

E(h) ⊂ U . If Th = k, then f(ψ(y0)) ∈ σπ(Tf ⋅ k) since, by (6.5), σπ(Tf ⋅ k) ∩ σπ(fh) ≠ ∅.

Therefore, there is a point y1 ∈ p(B) so that (Tf ⋅ k)(y1) = f(ψ(y0)). Hence

f(ψ(y0)) = f(ψ(y0))h(ψ(y0)) = (Tf)(y1)k(y1). (6.7)

Again using that T is a composition operator in modulus we have,

∣f(ψ(y0))∣ = ∣(Tf)(y1)∣∣k(y1)∣ = ∣f(ψ(y1))∣∣(Th)(y1)∣ = ∣f(ψ(y1))∣∣h(ψ(y1))∣. (6.8)

Hence ψ(y1) ∈ E(f ⋅ h) = E(h) ⊂ U . Thus ∣h(ψ(y1))∣ = ∣(Th)(y1)∣ = ∣k(y1)∣ = 1. Since, by

condition (6.5), σπ(k) ⊂ σπ(h) = {1}, we deduce that k(y1) ∈ σπ(k) = {1}, hence k(y1) = 1.

Then the equality (6.7) becomes f(ψ(y0)) = (Tf)(y1). Since V was an arbitrary neighborhood

of y0, the continuity of Tf yields (Tf)(y0) = f(ψ(y0)) as claimed.

As mentioned after Theorem 5.2.1(A) and 5.2.1(B), if T is a bijection, Theorem 6.0.5(B)

follows directly from Theorem 6.1.1(A).

In [9, Theorem 8] it is shown that the secondary conditions above for weak peripherally-

multiplicative maps between uniform algebras can be replaced with a single condition, that T

is continuous at the unity element. Namely,

Proposition 6.1.2. [9] Let T ∶ A→ B be a surjective map between uniform algebras A,B on

compact Hausdorff spaces X and Y . If T is a weakly peripherally-multiplicative map that is

continuous at 1, then T (1) is a signum function, i.e. T (1) = ±1, and f ↦ T (1)T (f) is an
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isometric algebra isomorphism of A onto B.

Theorem 6.1.4 below generalizes this result showing that it is not necessary for T to be

continuous at the unity element, but that it must have a limit at a point a ∈ A with a2 = 1.

Lemma 6.1.3. Suppose X is a compact Hausdorff space and A ⊂ C(X) is a uniform algebra.

If {fn}n is a sequence of functions in A such that λ ∈ σπ(fn) for every n and fn → f uniformly

to f ∈ A, then λ ∈ σπ(f).

Proof. Note that ∣∣fn∣∣ = ∣λ∣ for all n and by the reverse triangle inequality, ∣ ∣∣f ∣∣ − ∣∣fn∣∣ ∣ ≤

∣∣f − fn∣∣→ 0 uniformly as n→∞. Thus

∣∣f ∣∣ = lim
n→∞

∣∣fn∣∣ = lim
n→∞

∣λ∣ = ∣λ∣.

Let ε > 0. Then there exists N ∈ N such that ∣f(x) − fn(x)∣ < ε for every x ∈ X and n ≥ N .

Also, since λ ∈ σπ(fn) for every n, there exists xN ∈ X such that fN(xN) = λ. Therefore

∣f(xN) − λ∣ = ∣f(xN) − fN(xN)∣ < ε. Consequently, there is a sequence {xN}N ⊂ X such that

∣f(xN) − λ∣→ 0 as N →∞.

Since X is compact, there exists a convergent subsequence (subnet) {xNk}k such that xNk → x0

as k → ∞ for some x0 ∈ X. By the continuity of f , we have that f(xNk) → λ and f(xNk) →

f(x0) simultaneously as k → ∞. Since the limits are unique, it follows that f(x0) = λ.

Therefore we have shown λ ∈ σπ(f).

Theorem 6.1.4. [12](J,T) Let A and B be uniform algebras on compact Hausdorff spaces X

and Y . If T ∶A→ B is a surjective map such that

(i) σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A and

(ii) There exist an a ∈ A with a2 = 1 such that T has a limit, say b, at a,



6.1. BASIC RESULTS 77

then b2 = 1 and (Tf)(y) = b(y)a(ψ(y)) f(ψ(y)) for every f ∈ A and y ∈ δB, i.e. the map

f ↦ bT (af) is an isometric algebra isomorphism.

Proof. First note that for any {an} ⊂ A such that an → a, we necessarily have lim
n→∞

Tan = b in

B since B is a uniform algebra and therefore complete.

Condition (i) implies that ∥Tf ⋅ Tg∥ = ∥fg∥ for all f, g ∈ A. In particular, ∥(Tf)2∥ = ∥f2∥ and

therefore, ∥Tf∥ = ∥f∥ for every f ∈ A.

We claim that σπ(f) ⊂ σπ(bT (af)) for every f ∈ A. Let f ∈ A and λ ∈ σπ(f). If λ = 0, then

∥f∥ = 0 and so f = 0, thus af = 0 and hence ∥T (af)∥ = 0. Consequently, bT (af) = 0 and,

therefore, λ ∈ σπ(bT (af)).

If λ ≠ 0, then f−1(λ) is a peak set in X, so there exists a peaking function h ∈ P(A) such that

E(h) = f−1(λ). Define hn = a
n + h
n + 1

.

For x ∈ X such that ahn(x) = 1, we have
n + h(x)
n + 1

= 1 since a2 = 1, which clearly implies

h(x) = 1. Otherwise ∣ahn(x)∣ < 1, which implies ∣n + h(x)
n + 1

∣ < 1 and consequently ∣h(x)∣ < 1.

Therefore E(ahn) = E(h) and ahn ∈ P(A) for every n. Therefore (ahn)−1(1) = h−1(1) =

f−1(λ) and σπ(ahn) = {1} for every n. Consider the function ahnf ∈ A, and observe that

a(x)hn(x)f(x) = f(x) for x ∈ E(h) = f−1(λ) and ∣a(x)hn(x)f(x)∣ < ∣f(x)∣ for x ∉ E(h), thus

σπ(ahnf) = {λ} for every n.

Condition (i) implies that λ ∈ σπ(Thn ⋅ T (af)) for every n. Clearly the function
n + h
n + 1

converges uniformly to h, and thus hn converges uniformly to a. Then Thn → b by (ii) and

Lemma 6.1.3 implies that λ ∈ σπ(bT (af)). Consequently,

σπ(f) ⊂ σπ(bT (af)) (6.9)

as claimed.
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We claim that b2 = 1. Since ∣∣Tf ⋅ Tg∣∣ = ∣∣fg∣∣, Theorem 4.2.1 implies that there exists a

homeomorphism ψ ∶ δB → δA such that ∣Tf(y)∣ = ∣f(ψ(y))∣ for every f ∈ A and y ∈ δB.

Suppose {an}n ⊂ A be any sequence in A converging to a and fix y ∈ δB. Then Tan → b and

therefore ∣Tan(y)∣→ ∣b(y)∣ as n→∞. On the other hand, ∣Tan(y)∣ = ∣an(ψ(y))∣→ ∣a(ψ(y))∣ = 1

as n→∞. Therefore ∣b(y)∣ = 1 for all y ∈ δB.

Fix y0 ∈ δB and let K = b−1(b(y0)). Since ∣b(y0)∣ = 1, b(y0) ∈ σπ(b) and therefore K is a peak

set in Y . Therefore, there exists a peaking function k ∈ P(B) with E(k) = K. Let h ∈ A

be such that T (ah) = k. According to (6.9), σπ(h) ⊂ σπ(bT (ah)) = σπ(bk). Since k ∈ P(B)

with E(k) = K, we see that b(y)k(y) = b(y0) for all y ∈ E(k), and ∣b(y)k(y)∣ < ∣b(y0)∣ for

all y ∉ E(k). Therefore σπ(h) ⊂ σπ(bk) = {b(y0)} which implies σπ(h) = {b(y0)}. Thus

σπ(h2) = {b(y0)2}, so by (i), {b(y)2} ∈ σπ(T (ah)2) = σπ(k2) = {1} since k ∈ P(B). Since y0

was arbitrary in δB, we have shown that b(y)2 = 1 for every y ∈ δB, thus b(y) = ±1.

Finally, define the map Φ ∶ A → B by Φ(f) = bT (af). First we show that Φ is surjective. Let

g ∈ B. Since T is surjective, there exists f ∈ A such that T (f) = bg. Then if f ′ = af ∈ A, we

have Φ(af ′) = bT (af ′) = bT (f) = b2g = g. Therefore Φ is surjective.

Also for f, g ∈ A,

Φ(f)Φ(g) = bT (af) ⋅ bT (ag) = T (af)T (ag)

and af ⋅ ag = a2fg = fg. Therefore σπ(Φ(f) ⋅ Φ(g)) = σπ(T (af) ⋅ T (ag) which by (i) has

a nonempty intersection with σπ(af ⋅ ag) = σπ(fg). Therefore Φ is weakly peripherally-

multiplicative. Furthermore, σπ(f) ⊂ σπ(Φ(f)) by (6.9). Therefore Theorem 6.1.1 applies

to the map Φ, and the map f z→ Φ(f) = bT (af) is a ψ-composition operator on δB and

thus an isometric algebra isomorphism. Hence b(y) (T (af)(y) = f(ψ(y)), and therefore,

T (f)(y) = b(y)a(ψ(y)) f(ψ(y)) for all y ∈ δB and f ∈ A.

Another important property of maps between function algebras is the preservation of the
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peaking functions. In [14], the authors discuss various conditions for a weakly peripherally-

multiplicative map between uniform algebras to preserve the peaking functions. That is, if

T ∶ A→ B for uniform algebras A,B, consider the condition

T (P(A)) = P(B). (6.10)

In the case that the map T is weakly peripherally-multiplicative, one can show that P(B) ⊂

T (P(A)) or T (P(A)) ⊂ P(B) ⊂ T (A) both imply (6.10).

Proposition 6.1.5. [14] A mapping T ∶ A → B between uniform algebras is an isometric

algebra isomorphism if and only if it is weakly peripherally-multiplicative and preserves the

peaking functions.

In other words, for uniform algebras equation (6.10) and weak peripheral-multiplicativity

imply that T is a composition operator, and thus an algebra isomorphism. The following two

theorems were proved for uniform algebras in [14], where the arguments relied heavily on the

existence of unity element. Here we provide a proof for function algebras possibly without

unit.

Theorem 6.1.6. (A) Let A be a dense subalgebra of a function algebra such that p(A) = δA

and B a function algebras on locally compact Hausdorff spaces X and Y respectively. Suppose

that T ∶ A→ B is a surjective mapping, σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A, and

P(B) ⊂ T [T ⋅P(A)]. (6.11)

Then there exists a homeomorphism ψ ∶ δB → δA and a continuous function α on δB with

α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))

for every y ∈ δB.
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Proof. First it will be shown that there exists a homeomorphism ψ ∶ δB → δA such that

Tf(y0)2 = f(ψ(y0))2 for every f ∈ A and y0 ∈ δB.

Let y0 ∈ p(B) = δB. The weak peripheral multiplicativity implies that ∥Tf ⋅ Tg∥ = ∥fg∥ for

every f, g ∈ A. Let ψ∶ δB → δA be the homeomorphism established in Theorem 4.2.1, such

that ∣(Tf)(y)∣ = ∣f(ψ(y))∣ for all y ∈ δB and f ∈ A. Clearly (Tf)(y0) = f(ψ(y0)) whenever

(Tf)(y0) = 0.

Let (Tf)(y0) ≠ 0 and let V ⊂ δB be an open neighborhood of y0. Also let ψ(y0) = x0 ∈

δA. According to Bishop’s Lemma, there exists a peaking function k ∈ Py0(B) such that

σπ(Tf ⋅ k) = {(Tf)(y0)} and E(Tf ⋅ k) = E(k) ⊂ V . Since P(B) ⊂ T [T ⋅P(A)], choose h ∈ A

such that Th = k and h = eiθh′ where h′ ∈ P(A), and in fact h′ ∈ Px0(A). In particular

σπ(h) = {eiθ}, a singleton.

Then (Tf)(y0) ∈ σπ(fh) since, σπ(Tf ⋅ k) ∩ σπ(fh) ≠ ∅. Therefore, there is a point x1 ∈ δA

so that (Tf ⋅ k)(y0) = (fh)(x1). Since ψ is surjective, there is an y1 ∈ δB so that x1 = ψ(y1).

Hence

(Tf)(y0) = (Tf)(y0)k(y0) = f(ψ(y1))h(ψ(y1)). (6.12)

Since T is a weighted composition operator in modulus, ∣(Tf)(y0)∣ = ∣(Tf)(y0)∣∣k(y0)∣ =

∣f(ψ(y1))∣∣h(ψ(y1))∣ = ∣(Tf)(y1)∣∣k(y1)∣ = ∣Tf ⋅ k(y1)∣. Hence y1 ∈ E(Tf ⋅ k) = E(k) ⊂ V . Also,

∣h(ψ(y1))∣ = ∣k(y1)∣ = 1 and thus ψ(y1) ∈ E(h).

Also clearly ∣h(ψ(y0))∣ = ∣Th(y0)∣ = ∣k(y0)∣ = 1 so we also have ψ(y0) ∈ E(h). Thus ψ(y0), ψ(y1) ∈

E(h) and therefore h(ψ(y0)), h(ψ(y1)) ∈ σπ(h) which is a singleton, thus

h(ψ(y0)) = h(ψ(y1)) (6.13)

Also since σπ(h2) ∩ σπ(k2) ≠ ∅ and σπ(k2) = 1, we see that 1 ⊂ σπ(h2), and the assumption
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that h = eiθh′ for some h′ ∈ P(A) implies that σπ(h2) is a singleton. Thus

h(x)2 = 1 (6.14)

for all x ∈ E(h) and it follows that h(ψ(y1))2 = h(ψ(y0))2 = 1.

Then squaring (6.12) gives Tf(y0)2 = f(ψ(y1))2, which by the continuity of Tf, f,ψ im-

plies that Tf(y0)2 = f(ψ(y0))2. Consequently, there exists a number αf(y0) = ±1, possibly

depending on f , such that

(Tf)(y0) = αf(y0)f(ψ(y0)). (6.15)

We claim that the number αf(y0) does not depend on f ∈ A.

First we show that αh(y0) has the same value for functions h ∈ T−1(k) where k ∈ Py0(B).

Indeed, if k1, k2 ∈ Py0(B) with Thi = ki for i = 1,2, then σπ(k1k2) = {1}. Then by the weak

peripheral-multiplicativity of T we have

{1} ∩ σπ(h1h2) ≠ ∅, (6.16)

and therefore, 1 ∈ σπ(h1 ⋅ h2).

Now by the condition P(B) ⊂ T [T ⋅ P(A)], there exists h1 = eiθ1h′1 and h2 = eiθ2h′2 for some

peaking functions h′1, h
′
2 ∈ Px0(A), so we see that in fact σπ(h1h2) = {eθ1+θ2}, a singleton.

Take the modulus yields

1 = ∣k1(y0)k2(y0)∣ = ∣h1(ψ(y0))h2(ψ(y0))∣ = ∣h1h2(ψ(y0))∣ (6.17)

which implies ψ(y0) ∈ E(h1h2), thus h1h2(ψ(y0)) = 1.
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Now, Thi(y0) = ki(y0) = αhi(y0)hi(ψ(y0)), and multiplying for i = 1,2 gives

1 = αh1(y0)αh2(y0)

and consequently, the numbers αhi(y0) have the same sign. Define αhi(y0) = α(y0).

Again consider the peaking function k ∈ Py0 chosen in the first part of the proof. Then we

have seen that

Tf(y0) = αf(y0)f(ψ(y0)). (6.18)

Then h ∈ P(A) such that Th = k with ψ(y1) ∈ E(h) for some y1 ∈ V . By (6.18) we have

Th(y1) = αh(y1)h(ψ(y1)) which becomes k(y1) = αh(y1)h(ψ(y0)) since h(ψ(y0)) = h(ψ(y1)).

But we have already seen that y1 ∈ E(k) which implies k(y1) = 1. Thus

αh(y1) = h(ψ(y1)) = h(ψ(y0)) = αh(y0) (6.19)

So, in fact α(y0) = α(y1).

Combining equations (6.18) and (6.12) shows that

αf(y0)f(ψ(y0)) = α(y0)f(ψ(y1))

and since V was an arbitrary neighborhood of y0 with y1 ∈ V , the continuity of f,ψ implies

that

αf(y0)f(ψ(y0)) = α(y0)f(ψ(y0))

thus αf(y0) = α(y0). Therefore Tf(y0) = α(y0)f(ψ(y0)) as desired.

The arguments above also show that α is constant in a neighborhood of y0, thus is continuous.
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The next theorem provides the same conclusion as above, but (6.11) is replaced with a slightly

different condition.

Theorem. 6.1.6 (B) Let A be a function algebra and B a dense subalgebra of a function al-

gebra such that p(B) = δB on locally compact Hausdorff spaces X and Y respectively. Suppose

that T ∶ A→ B is a surjective mapping, σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A, and

T [P(A)] ⊂ T ⋅P(B). (6.20)

Then there exists a homeomorphism ψ∶ δB → δA and a continuous function α on δB with

α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))

for every y ∈ δB.

Proof. Again it will be shown first that there exists a homeomorphism ψ ∶ δB → δA such that

Tf(y0)2 = f(ψ(y0))2 for every f ∈ A and y0 ∈ δB.

As in the previous proof, let y0 ∈ p(B) = δB. The weak peripheral multiplicativity implies

that ∥Tf ⋅Tg∥ = ∥fg∥ for every f, g ∈ A. Let ψ∶ δB → δA be the homeomorphism established in

4.2.1, such that ∣(Tf)(y)∣ = ∣f(ψ(y))∣ for all y ∈ δB and f ∈ A. Clearly (Tf)(y0) = f(ψ(y0))

whenever (Tf)(y0) = 0.

Here let (f(ψ(y0)) ≠ 0 and let V ⊂ δB be an open neighborhood of y0. Then ψ(V ) = U is

an open neighborhood of ψ(y0) = x0. According to Bishop’s Lemma, there exists a peaking

function h ∈ Px0(A) such that σπ(f ⋅ h) = {f(ψ(y0))} and E(f ⋅ h) = E(h) ⊂ U . By (6.20),

we may choose Th = k such that k = eiθk′ where k′ ∈ P(B). Then f(ψ(y0)) ∈ σπ(Tf ⋅ k)

by the condition σπ(Tf ⋅ k) ∩ σπ(fh) ≠ ∅. Consequently, there is a point y1 ∈ δB so that
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f(ψ(y0)) = (Tf ⋅ k)(y1). Hence

f(ψ(y0)) = f(ψ(y0))h(ψ(y0)) = Tf(y1)k(y1). (6.21)

Taking the modulus of (6.21) and using that T is a composition operator in modulus yields,

∣f(ψ(y0))∣ = ∣f(ψ(y0))h(ψ(y0))∣ = ∣Tf(y1)k(y1)∣ = ∣f(ψ(y1))∣∣h(ψ(y1))∣ = ∣fh(ψ(y1))∣. (6.22)

Hence ψ(y1) ∈ E(fh) = E(h) ⊂ U , and it follows that y1 ⊂ V . Therefore, 1 = ∣h(ψ(y1))∣ =

∣k(y1)∣ which shows that y1 ∈ E(k) and ψ(y1) ∈ E(h).

Note that 1 = ∣h(ψ(y0))∣ = ∣Th(y0)∣ = ∣k(y0)∣ so we also have y0 ∈ E(k). Thus y0, y1 ∈ E(k)

and therefore k(y0), k(y1) ∈ σπ(k) which is a singleton by 6.20, thus

k(y0) = k(y1) (6.23)

Since σπ(k) is a singleton and σπ(h) = {1}, the weak peripheral multiplicativity of T implies

that

σπ(k2) ∩ {1} = ∅

and it follows that k(y1) = ±1. Therefore Tf(y0)2 = f(ψ(y1))2 and since Tf, f,ψ are contin-

uous, we have Tf(y0)2 = f(ψ(y0))2 as desired.

Consequently, there exists a number αf(y0) = ±1, possibly depending on f , such that

(Tf)(y0) = αf(y0)f(ψ(y0)). (6.24)

As in the previous theorem, we claim that αf(y0) does not depend on f ∈ A.

First we show that αh(y0) has the same value for all functions h ∈ Pψ(y0)(A). Indeed, if
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h1, h2 ∈ Pψ(y0)(A) with Thi = ki for i = 1,2, then σπ(k1 ⋅ k2) ∩ σπ(h1h2) ≠ ∅, and therefore,

1 ∈ σπ(k1 ⋅ k2).

By the assumption (6.20), k1 = eiθ1k′1 and k2 = eiθ2k′2 for some peaking functions k′1, k
′
2 ∈ P(B).

But for i = 1,2, the previous shows ki(y0)2 = hi(ψ(y0))2 = 1 for each ψ(y0) ∈ E(h), so in

fact, ki = ±k′i. Therefore σπ(k1k2) = {±1}, a singleton. Also for each ψ(y0) ∈ E(h1h2),

∣h1(ψ(y0))h2(ψ(y0))∣ = ∣k1(y0)k2(y0)∣ = 1 which implies y0 ∈ E(k1k2). Thus k1(ψ(y0))k2(ψ(y0)) =

1.

Now, Thi(y0) = ki(y0) = αhi(y0)hi(ψ(y0)), and multiplying for i = 1,2 gives

k1(y0)k2(y0) = αh1(y0)αh2(y0)h1(ψ(y0))h2(ψ(y0))

which implies

k1(y0)k2(y0) = 1 = αh1(y0)αh2(y0)

and consequently, the numbers αhi(y0) have the same sign. Since α does not depend on the

functions h ∈ P(A), we may define αh(y0) = α(y0).

Consider the peaking function h ∈ Pψ(y0) chosen in the first part of the proof. Then we have

seen that

Tf(y0) = αf(y0)f(ψ(y0)). (6.25)

Then k ∈ P(B) such that Th = k with y1 ∈ E(k) for some y1 ∈ V . By (6.25) we have

Th(y1) = αh(y1)h(ψ(y1)) which becomes k(y0) = αh(y1)h(ψ(y1)) since k(y0) = k(y1). But

we have already seen that ψ(y1) ∈ E(h) which implies h(ψ(y1)) = 1. Thus

αh(y1) = k(y1) = k(y0) = αh(y0) (6.26)
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So, in fact α(y0) = α(y1).

Combining equations (6.25) and (6.21) shows that

αf(y0)f(ψ(y0)) = α(y1)f(ψ(y1)) = α(y0)f(ψ(y1))

and since V was an arbitrary neighborhood of y0 with y1 ∈ V , the continuity of f,ψ implies

that

αf(y0)f(ψ(y0)) = α(y0)f(ψ(y0))

thus αf(y0) = α(y0). Therefore Tf(y0) = α(y0)f(ψ(y0)) as desired.

The continuity of α follows as in the previous theorem.

The following two corollaries are immediate.

Corollary 6.1.7. Let A and B be function algebras on locally compact Hausdorff spaces X

and Y . Suppose that T ∶A → B is a surjective mapping, σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all

f, g ∈ A, and

T−1[P(B)] ⊂ P(A). (6.27)

Then there exists a homeomorphism ψ ∶ δB → δA such that (Tf)(y) = f(ψ(y)) for every

y ∈ δB.

Corollary 6.1.8. Let A and B be function algebras on locally compact Hausdorff spaces X

and Y . Suppose that T ∶A → B is a surjective mapping, σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅ for all

f, g ∈ A, and

T [P(A)] ⊂ P(B). (6.28)

Then there exists a homeomorphism ψ ∶ δB → δA such that (Tf)(y) = f(ψ(y)) for every

y ∈ δB.
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Theorem 6.1.6 (B) yields a corollary that shows yet another condition, when accompanied by

weak peripheral-multiplicativity, implies that T is a weighted composition operator.

Corollary 6.1.9. Let A and B be function algebras on locally compact Hausdorff spaces X

and Y . Suppose that T ∶A→ B is a surjective mapping such that

σπ(Tf ⋅ Tg) ∩ σπ(fg) ≠ ∅

for all f, g ∈ A and σπ(Tf) is a singleton whenever σπ(f) is a singleton.

Then there exists a homeomorphism ψ ∶ δB → δA and a continuous function α on δB with

α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))

for every y ∈ δB.

Proof. Let h ∈ P(A) and Th = k. Then σπ(h) = {1} is a singleton, and therefore σπ(Th) =

σπ(k) is a singleton by assumption. But the weak perhipheral-multiplicativity implies that T

preserves the norm, so σπ(k) = {eiθ} for some θ ∈ [0,2π). Therefore k′ = e−iθk ∈ P(B) and we

see that Th = eiθk′ ∈ T ⋅P(B). Therefore T [P(A)] ⊂ T ⋅P(B) and the conclusion follows from

Theorem 6.1.6 (B).

Corollary 6.1.10. Let A and B be function algebras on locally compact Hausdorff spaces X

and Y with the hypotheses of the Theorem 6.1.6 (B). In addition, suppose that d(σπ(f), σπ(Tf)) <

2 for all f ∈ A. Then there exists a homeomorphism ψ ∶ δB → δA,

(Tf)(y) = f(ψ(y))

for every y ∈ δB. In other words, the weight function α ∶ δB → {1,−1} is identically 1 which

implies that T is a composition operator, thus an isometric algebraic isomorphism.
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Proof. From Theorem 6.1.6, there exists a homeomorphism ψ ∶ δB → δA and α ∶ δB → C with

α2 = 1 such that Tf(y) = α(y)f(ψ(y)) for every f ∈ A and y ∈ δB. It suffices to show that

α = 1 on δB.

Let f ∈ A and fix y0 ∈ δB. Let k ∈ Py0(B) and choose h ∈ T−1(k) as in the proof Theorem

6.1.6 (B). Then σπ(k) = {1} and d(σπ(h), σπ(k)) < 2 imply that

∣h(x) − 1∣ < 2 (6.29)

for all x ∈ E(h). However, the weak peripheral-multiplicativity of T implies

σπ(k2) ∩ σπ(h2) ≠ ∅

so σπ(h2) = {1}. Therefore σπ(h) = {±1} and together with (6.29) implies σπ(h) = {1}. Then

1 = k(y0) = Th(y0) = α(y0)h(ψ(y0)) (6.30)

and ∣h(ψ(y0))∣ = ∣Th(y0)∣ = ∣k(y0)∣ = 1 which implies ψ(y0) ∈ E(h) and thus h(ψ(y0)) ∈

σπ(h) = {1}. Therefore (6.30) reduces to α(y0) = 1 and we may conclude α = 1 on δB as

desired.

6.2 Function Algebras with Sufficiently Many Peak Functions

There is more we can say regarding weakly peripherally-multiplicative maps when there are

sufficiently many peak functions h, i.e. peaking functions h such that E(h) is a singleton.

Example 6.2.1. Consider the function algebra C(X), the continuous complex valued func-

tions on a metric space X. Fix x0 ∈ X and a positive real constant ` > 0. Consider the
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following real-valued function

f(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ∶ ` ≤ d(x0, x)
`−d(x0,x)

` ∶ ` > d(x0, x)

Here f is a peaking function such that E(f) = {x0}, i.e. f is a peak function, and clearly one

can construct such a function for every x0 ∈X. Therefore every point in X is a peak point.

Lemma 6.2.1. Suppose T ∶ A→ B for function algebras A and B on locally compact Hausdorff

spaces X = ∂A and Y = ∂B respectively. Also suppose that T is a composition operator in

modulus. That is, there exists a homemorphism ψ ∶ δ(B)→ δ(A) such that ∣Tf(y)∣ = ∣f(ψ(y))∣

for every f ∈ A and y ∈ Y . Then for every f, g ∈ A, E(fg) is a singleton implies that E(Tf Tg)

is a singleton.

Proof. Let E(fg) = {x0}, where x0 ∈ δA, and let (fg)(x0) = z0. Then ∣(fg)(x)∣ < ∣z0∣ for

all x ≠ x0 and hence σπ(fg) = {z0}. If x = ψ(y) and x0 = ψ(y0), where y, y0 ∈ δB and

ψ∶ δB → δA is the assumed homemorphism, then we have ∣(Tf Tg)(y0)∣ = ∣(fg)(x0)∣ = ∣z0∣ and

∣(Tf Tg)(y)∣ = ∣(fg)(x)∣ < ∣z0∣ whenever y ≠ y0. Therefore, E(Tf Tg) = {y0}, i.e. E(Tf Tg) is

a singleton.

Theorem 6.2.2. Let X,Y be locally compact Hausdorff spaces and let A ⊂ C(X),B ⊂ C(Y ) be

dense subalgebras of function algebras, not necessarily with unit, with X = ∂A, δA = p(A),Y =

∂B and δB = p(B). Let for every f ∈ A and any x ∈ δA there is a peak function h ∈ Px(A) so

that σπ(fh) = {f(x)}. If T ∶A→ B is a surjection such that

σπ(Tf Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A, (6.31)

then T is a weighted composition operator, namely, there exists a homeomorphism ψ∶ δB → δA

and a continuous function α on δB with α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))



6.2. FUNCTION ALGEBRAS WITH SUFFICIENTLY MANY PEAK FUNCTIONS 90

for every f ∈ A and y ∈ δB.

Proof. Let y0 ∈ δB. The weak peripheral-multiplicativity implies that ∥Tf Tg∥ = ∥fg∥ for

every f, g ∈ A. Let ψ∶ δB → δA be the homeomorphism from Theorem 4.2.1 for which

∣(Tf)(y)∣ = ∣f(ψ(y))∣ for all y ∈ δB and f ∈ A. In particular, if (Tf)(y0) = 0 then f(ψ(y0)) = 0.

Let (Tf)(y0) ≠ 0. The equality ∣(Tf)(y)∣ = ∣f(ψ(y))∣ implies

(Tf)(y0) = α(f, y0) f(ψ(y0)) (6.32)

for some complex number α(f, y0) with ∣α(f, y0)∣ = 1.

For any peak function h ∈ Pψ(y0)(A) we have

(Th)2(y0) = α2(h, y0)h2(ψ(y0)) = α2(h, y0).

Since E(h2) is a singleton by hypothesis, so is E((Th)2) and also σπ((Th)2), by Lemma

6.2.1. We have {1} ∩ σπ((Th)2) = σπ(h2) ∩ σπ((Th)2) ≠ ∅, hence σπ((Th)2) = {1}. As a

consequence, (Th)2(y0) = 1 since ∣(Th)2(y0)∣ = ∣h2(ψ(y0))∣ = 1. Therefore

α2(h, y0) = α2(h, y0)})h2(ψ(y0)) = ((Th)2)(y0) = 1.

Let h1, h2 ∈ Pψ(y0)(A). Since E(h1h2) is a singleton, so is E(Th1 Th2) and also σπ(Th1 Th2),

by Lemma 6.2.1. Consequently, σπ(Th1 Th2) = {1} since {1} ∩ σπ(Th1Th2) = σπ(h1h2) ∩

σπ(Th1Th2) ≠ ∅. Moreover, (Th1Th2)(y0) = 1 since ∣(Th1Th2)(y0)∣ = ∣(h1h2(ψ(y0))∣ = 1.

Therefore, α(h1, y0)α(h2, y0) = {(Th1 Th2)(y0)} = 1. Consequently, α(h1, y0) = 1/α(h2, y0) =

α(h2, y0). Therefore, the number α(h, y0) is one and the same for any h ∈ Pψ(y0)(A).

Define the function α∶ δB → ±1 by α(y) = α(h, y), where y ∈ δB and h is any function in

Pψ(y)(A). Clearly, α2 = 1.
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If f ∈ A then, by the hypotheses, there is an h ∈ Pψ(y0)(A) such that σπ(fh) = {f(ψ(y0))}.

Since E(fh) is a singleton, so is E(Tf Th) and also σπ(Tf Tg), by Lemma 6.2.1. We have

σπ(Tf Th) = {f(ψ(y0)} since {f(ψ(y0)} ∩ σπ(Tf Th) = σπ(fh) ∩ σπ(Tf Th) ≠ ∅. Hence

σπ(Tf Th) = {f(ψ(y0)} and (Tf Th)(y0) = f(ψ(y0)) since ∣(Tf Th)(y0)∣ = ∣(fh)(ψ(y0))∣ =

∣(f(ψ(y0))∣. According to (6.32),

{α(f, y0) f(ψ(y0))α(y0)} = {α(f, y0) f(ψ(y0))α(y0)h(ψ(y0)} = {(Tf Th)(y0)} = {f(ψ(y0))}.

Consequently, α(f, y0) = 1/α(y0) = α(y0). Now equality (6.32) becomes (Tf)(y0) = α(y0)f(ψ(y0)),

as desired.

Lemma 6.2.1 also shows that if E(fg) is a singleton, then so is E(Tf Tg) which implies that

σπ(Tf Tg) is also a singleton.

Corollary 6.2.3. Let X and Y be locally compact Hausdorff spaces and let A ⊂ C(X) and

B ⊂ C(Y ) be dense subalgebras of function algebras, not necessarily with unit, with p(A) = δA

and p(B) = δB. If T ∶A → B is a surjection such that σπ(Tf Tg) is a singleton for every

f, g ∈ A for which σπ(fg) a singleton, and if

σπ(Tf Tg) ∩ σπ(fg) ≠ ∅

for all f, g ∈ A, then there exists a homeomorphism ψ∶ δB → δA and a continuous function α

on δB with α2 = 1 such that

(Tf)(y) = α(y)f(ψ(y))

for every f ∈ A and y ∈ δB.

Proof. Let y0 ∈ δB. Again the weak peripheral-multiplicativity implies that ∥Tf Tg∥ = ∥fg∥

for every f, g ∈ A. Let ψ∶ δB → δA be the homeomorphism such that ∣(Tf)(y)∣ = ∣f(ψ(y))∣ for

all y ∈ δB and f ∈ A. In particular, if (Tf)(y0) = 0 then f(ψ(y0)) = 0.
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Let (Tf)(y0) ≠ 0. The equality ∣(Tf)(y)∣ = ∣f(ψ(y))∣ implies

(Tf)(y0) = α(f, y0) f(ψ(y0)) (6.33)

for some complex number α(f, y0) with ∣α(f, y0)∣ = 1.

For any h ∈ Pψ(y0)(A) we have

(Th)2(y0) = α2(h, y0)h2(ψ(y0)) = α2(h, y0).

Since σπ(h2) is a singleton, so is ps((Th)2) by assumption. We have {1} ∩ σπ((Th)2) =

σπ(h2) ∩ σπ((Th)2) ≠ ∅, hence σπ((Th)2) = {1}. As a consequence, (Th)2(y0) = 1 since

∣(Th)2(y0)∣ = ∣h2(ψ(y0))∣ = 1. Therefore

α2(h, y0) = α2(h, y0)})h2(ψ(y0)) = ((Th)2)(y0) = 1.

Let h1, h2 ∈ Pψ(y0)(A). Since σπ(h1h2) is a singleton, so is σπ(Th1Th2) by assumption. Conse-

quently, σπ(Th1 Th2) = {1} since {1}∩σπ(Th1Th2) = σπ(h1h2)∩σπ(Th1Th2) ≠ ∅. Moreover,

(Th1Th2)(y0) = 1 since ∣(Th1Th2)(y0)∣ = ∣(h1h2(ψ(y0))∣ = 1. Therefore, α(h1, y0)α(h2, y0) =

{(Th1 Th2)(y0)} = 1. Consequently, α(h1, y0) = 1/α(h2, y0) = α(h2, y0). Therefore, the num-

ber α(h, y0) is one and the same for any h ∈ Pψ(y0)(A).

Define the function α∶ δB → ±1 by α(y) = α(h, y), where y ∈ δB and h is any function in

Pψ(y)(A). Clearly, α2 = 1.

If f ∈ A then, by the hypotheses, there is an h ∈ Pψ(y0)(A) such that σπ(fh) = {f(ψ(y0))}.

Again since σπ(fg) is a singleton, so is σπ(TfTg) by assumption. We have σπ(Tf Th) =

{f(ψ(y0)} since {f(ψ(y0)} ∩ σπ(Tf Th) = σπ(fh) ∩ σπ(Tf Th) ≠ ∅. Hence σπ(Tf Th) =

{f(ψ(y0)} and (Tf Th)(y0) = f(ψ(y0)) since ∣(Tf Th)(y0)∣ = ∣(fh)(ψ(y0))∣ = ∣(f(ψ(y0))∣.

According to (6.33), {α(f, y0) f(ψ(y0))α(y0)} = {α(f, y0) f(ψ(y0))α(y0)h(ψ(y0)} = {(Tf Th)(y0)} =
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{f(ψ(y0))}. Consequently, α(f, y0) = 1/α(y0) = α(y0). Now equality (6.33) becomes (Tf)(y0) =

α(y0)f(ψ(y0)), as desired.

Proposition 6.2.4. Let A be a function algebra on a metric space X. Then for every f ∈ A

and x0 ∈ δA such that f(x0) ≠ 0, there exists a peak function h ∈ Px0(A) such that σπ(fh) =

{f(x0)} and E(h) = {x0}.

Proof. Fix f ∈ A and x0 ∈ δ(A) such that f(x0) ≠ 0. Also let Un = {x ∈ X ∶ d(x,x0) < 1/n}

for each n ∈ N. By Theorem 3.3.10 there exists hn ∈ Px0(A) such that E(hn) ⊂ Un and

σπ(fhn) = {f(x0)} for every n. Consider the function

h =
∞
∑
n=1

hn
2n
.

in A. Clearly h(x0) = 1 and ∣h(x)∣ < 1 for any x ∉ Un for some n. Therefore h is a peak function

such that E(h) = {x0}, and fh(x0) = f(x0) where ∣fh(x)∣ = ∣f(x)∣ ∣h(x)∣ < ∣f(x)∣ = ∣∣f ∣∣ = ∣∣fh∣∣

for every x ∈ E(fh) with x ≠ x0. Thus σπ(fh) = {f(x0)}, which shows that h is the desired

function.

Corollary 6.2.5. Let A be a function algebra and B be a dense subalgebra of function algebra

on metric spaces X and Y respectively such that p(B) = δB. If T ∶A→ B is a surjection such

that

σπ(Tf Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A,

then there exists a homeomorphism ψ∶ δB → δA and a continuous function α on δB with α2 = 1

such that

(Tf)(y) = α(y)f(ψ(y))

for every f ∈ A and y ∈ δB.

Indeed, since A is a function algebra, Theorem 6.2.4 shows that for each f ∈ A and x ∈ δA such

that f(x) ≠ 0, there is a peak function h ∈ Px(A) so that E(h) = {x} and σπ(fh) = {f(x)}.
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Since T is also a surjective weakly peripherally-multiplicative map, the result follows from

Theorem 6.2.2.

In particular, Corollary 6.2.5 holds for algebras of type C0(X) on metric and, more general,

on first countable spaces X, since in this case δ(C0(X)) = p(C0(X)).



Chapter 7

Further Questions

Several theorems from the previous chapters consider secondary conditions for weakly-peripherally

multiplicative maps between function algebras. In Chapter 6, the following corollary was

proved for metric spaces X and Y .

Corollary 7.0.6. Let A be a function algebra and B be a dense subalgebra of function algebra

on metric spaces X and Y respectively such that p(B) = δB. If T ∶A→ B is a surjection such

that

σπ(Tf Tg) ∩ σπ(fg) ≠ ∅ for all f, g ∈ A,

then there exists a homeomorphism ψ∶ δB → δA and a continuous function α on δB with α2 = 1

such that

(Tf)(y) = α(y)f(ψ(y))

for every f ∈ A and y ∈ δB.

An open question is whether a similar theorem holds for function algebras A and B over general

locally compact Hausdorff spaces X and Y . This question also applies to maps between semi-

simple commutative Banach algebras.
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Again consider a weakly peripheral-multiplicativity on map T ∶A → B between function al-

gebras A and B. If d is the standard Euclidean metric in C, then the weak peripheral-

multiplicativity implies that d(σπ(TfTg), σπ(fg)) = 0 for all f, g ∈ A.

It is interesting to consider what conclusions may be reached if we instead investigate the

assumption d(σπ(TfTg), σπ(fg)) < ε∣∣f ∣∣ ∣∣g∣∣ for all f, g ∈ A for some fixed ε > 0. This condition

together with the secondary conditions of chapter 5 and 6 may provide more general sufficient

conditions for the map T to be a composition operator, or possibly a almost composition

operator. A map is said to be an almost composition operator on Y if there is an ε ≥ 0 such

that ∣Tf(y) − f(ψ(y))∣ ≤ ε∣f(ψ(y))∣ for every f ∈ A for some homeomorphism ψ ∶ δB → δA.
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