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There has been much interest in characterizing maps between Banach algebras that
preserve a certain equation or family of elements. There is a rich history in such
problems that assume the map to be linear, so called linear preserver problems. More
recently, there has been an interest in not assuming the map is linear a priori and
instead to assume it preserves some equation involving the spectrum, a portion of the
spectrum, or the norm.

After a brief introduction to uniform algebras, we give a rigorous development of
the theory of boundaries. This includes a new alternative proof of the famous Shilov
Theorem. Also a generalization of Bishop’s Lemma is given and proved. Two spectral
preserver problems are introduced and solved for the class of uniform algebras. One
of these problems is given in terms of a portion of the spectrum called the peripheral
spectrum. The other is given by a norm condition.

The first spectral preserver problem concerns weakly-peripherally multiplicative maps
between uniform algebras. These are maps T': A — B such that o (T fTg)No (fg) # 0
for all f,g € A where o,(f) is the peripheral spectrum of f. It is proven that if T is a
weakly-peripherally multiplicative map (not necessarily linear) that preserves the family
of peak functions then it is an isometric algebra isomorphism.

The second of these preserver problems shows that if T : A — B is a map (not
necessarily linear) between uniform algebras such that ||TfTg+1|| = ||fg+ 1| for
all f,g € A then T is a weighted composition operator composed with a conjugation
operator. In particular, if 7(1) = 1 and 7T'(z) = ¢ then T also is an isometric algebra
isomorphism.
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Chapter 1

Overview

In this section we will outline the history and development of spectral preserver problems

and describe the contributions made to the theory by this work.!

1.1 Preserver Problems

A preserver problem, loosely speaking, is an attempt to categorize all maps between
objects of a category that preserve some property or class. Consider a map ¢ : G — G
between groups that preserves the product, i.e., p(gh) = ¢(g)p(h) for all g, h € G. Then,
by definition, ¢ is a group homomorphism. This is a rather trivial example because
the preservation of products is the defining characteristic of a group homomorphism.
However other examples are more surprising. Consider the following theorem of Mazur-

Ulam.

Theorem 1.1.1 (Mazur-Ulam Theorem). Let f : X — Y be a surjective, zero pre-

1For readers unfamiliar with the notation of uniform algebras, Chapter 2 contains the relevant
definitions.
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serving, distance preserving map between normed vector spaces over R, i.e., ||z —y| =
| f(x) — f(y)]| for allx,y € X and f(0) = 0. Then fis an isometric linear transforma-

tion.

As a consequence, f(x + ay) = f(x) + af(y) for all z,y € X and a in R. It is not
a priori clear that even f(x —y) = f(x) — f(y) since we only assume that these are
equal in norm. So the result is quite interesting. Note this result does not apply for

complex-valued spaces to get a C-linear map. Conjugation is a counter-example.

Banach spaces (i.e., complete normed vector spaces) are first and foremost vector spaces
and some of the theory is inherited from the general algebraic study of vector spaces.
Because of the additional norm condition, the important mappings between Banach
spaces are continuous, linear transformations. To establish that a given map is a con-
tinuous, linear transformation, one typically shows first that it is linear and then shows
that it is continuous using a norm condition. The Mazur-Ulam Theorem reverses the
usual order of things. We verify a norm condition first and conclude the map is lin-
ear. This serves as an analogy of the spectral preserver problems to be discussed here.
From a broad perspective we seek interesting analytic conditions that imply that a map

automatically has some algebraic property, often to be an isomorphism.

Linear Preserver Problems

A common type of preserver problem is a linear preserver problem. In this case the
maps are between algebras and the map is assumed to be linear . In classical linear
presever problems from matrix theory the given map is from M, (F) to itself or F where
M, (F) is the set of n by n matrices with entries in the field F. Analogous results are

explored for B(X), the set of bounded linear operators on the Banach space X.
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An example of using analytic conditions to get algebraic properties in the context of

Banach algebras is the famous Gleason-Kahane-Zelazko Theorem [18].

Theorem 1.1.2 (GKZ Theorem (1973)). Let A be a unital commutative Banach algebra
and B a uniform algebra. If T : A — B is a linear map with o(Tf) C o(f) for all
f € A then T is multiplicative, i.e., T(fg) = T(f)T(g) for all f,g € A.

This theorem assumes some algebraic properties to start with (linearity) and concludes
stronger algebraic properties (multiplicativity). The spectrum condition is considered to
be analytic in nature since the existence of (complete) norms on these spaces guarantee
some measure of invertibility that is inherent in the use of the spectrum, see Lemma 2.3.1
and Corollary 2.3.2. The Gleason-Kahane-Zelazko Theorem has inspired a great deal

of research in this area.

The technique used in the proof of the GKZ theorem is to first establish the result for
B = C and apply a result from complex analysis. A classical linear preserver problem

using a very different technique is given by the Banach-Stone Theorem.

Theorem 1.1.3 (Banach-Stone Theorem). Let X and Y be compact Hausdorff spaces
and T : C(X) — C(Y) be a linear, surjective isometry. Then there exists k € C(Y)

with |k| = 1 and a homeomorphism ¢ 1 Y — X such that

Tf=k-fou

for all f € C(X). In particular, T =T is an isometric algebra isomorphism.

If T(1) =1, then Tf = fou for all f € C(X). In particular, T(fg)(y) = (fg)(¥(y)) =

fWW) 9@ (y)) =Tf(y)Tg(y) forally € Y andso T(fg) =T fTgforall f,g € C(Y).

Thus T is multiplicative, i.e., T is an isometric algebra isomorphism. The solution to
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this problem is expressed in a very important form. A map between uniform algebras of
the form, T'f = f o1, for some homeomorphism 1, is called a composition operator. It
is automatically linear, multiplicative, and continuous. If T is of the form T'f = k- fo)
then we say it is a weighted composition operator. This result is the model for more

general spectral preserver problems.

The Banach-Stone Theorem result follows for continuous real-valued? or complex-valued
functions. In the real-valued case, note that it is unnecessary to assume that T is
linear. By the Mazur-Ulam theorem we need only assume 7' is a surjective isometry
(and T'(0) = 0). By putting the two theorems together we can eliminate the hypothesis

that T is linear.

Theorem 1.1.4. Let X and Y be compact Hausdorff spaces and T : Cr(X) — Cr(Y)

be a surjective map (not necessarily linear) such that T(1) =1, T(0) = 0 and

ITf =Tyl =11 -4l

for all f,g € Cr(X). Then there exists a homeomorphism ¢ : Y — X such that

Tf=for forall f € Cr(X). In particular, T is an isometric algebra isomorphism.

Spectral Preserver Problems

In the Gleason-Kahane-Zelazko Theorem, a condition involving the spectrum was used.
Recently there has been a departure from assuming that the given map is linear to
start with, and assuming only conditions involving the spectrum. We introduce the term

spectral preserver problem to describe preserver problems of this nature, especially when

2We will rarely have occasion to discuss real-valued functions. All function spaces should be assumed
to be complex-valued unless otherwise stated.
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the map is not assumed to be linear. In a uniform algebra, the norm is the maximum
modulus of the values in the spectrum so preserver problems expressed in terms of the

norm conditions can be considered to be spectral in nature.

An early result that does not assume linearity is due to Kowalski and Stodkowski [10].

Theorem 1.1.5 (Kowalski-Stodkowski (1980)). Let T : A — B be a surjective map

between uniform algebras such that
o(Tf-=Tg)=0(f—9)
forall f,g € A, then T is an isometric algebra isomorphism.

This result can be seen an analogy of Theorem 1.1.4 for complex-valued uniform alge-
bras. Other spectral preserver problems involving an additive condition can be seen in

116].

1.2 Multiplicative Spectral Preserver Problems

On might ask about problems involving a multiplicative spectral condition. In 2005 L.

Molnér published a paper [14] addressing this case.?

Theorem 1.2.1 (Molnar (2005)). Let X be a first countable compact Hausdorff space

and T : C(X) — C(X) be a surjective map (not necessarily linear) such that

o(TfTg) =0o(fg) (1.2.1)

3The paper also develops analogous, non-commutative results for B(X), bounded linear operators
on a Banach space with special results if X is a Hilbert space.
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forall f,g € A. Then there exists a k € B with x* = 1 and a homemorphism : X — X

such that
Tf=k-fou (1.2.2)

for all f € A. In particular, T = kT is an isometric algebra isomorphism.

The technique used was to directly establish the map 1) similar to the conclusion to
Theorem 1.1.4. The result was extended to uniform algebras by Rao and Roy [15].
They showed that if A is a uniform algebra on its maximal ideal space, M4, and
T : A — Ais a surjective map satisfying (1.2.1) then there exists a homeomorphism

: My — My and k € B such that T is as in (1.2.2).

Following this, Hatori, Miura, and Takagi [8] took 7T": A — B to be a mapping between
uniform algebras on compact Hausdorff spaces X and Y and replaced the multiplicatively
spectral preserving condition (1.2.1) with the weaker condition, multiplicatively range
preserving, Ran(T fTg) = Ran(fg). They also conclude that 7" must be a weighted
composition operator (when the functions are extended on their maximal ideal spaces).

Since Ran(f) C o(f) this result is clearly an improvement.

Then Luttman and Tonev also considered uniform algebras A and B but further re-
stricted the portion of the spectrum required to be preserved. The peripheral spectrum
of fis given by o (f) ={A € o(f) : |A\| = || f||}. The homeomorphism they produce is
between the Shilov boundaries A and 0B which can be considered to be a subset of

the carrier spaces X and Y resp. They proved to following theorem.

Theorem 1.2.2 (Luttman-Tonev (2007)). If T : A — B a surjective map (not neces-

sarily linear) between uniform algebras such that

or (T'fTg) = oz (fg) (1.2.3)
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for all f,g € A, then there exists a k € B with * = 1 and a homemorphism 1) : 0B —
0A such that

Tf=k-fou

on OB for all f € A. In particular, T = kT is an isometric algebra isomorphism.

One can see the hypotheses of the earlier result are obviously met by this theorem.

Thus the result of Luttman and Tonev extended (and included) all earlier results.

The hypothesis of the Theorem 1.2.2 would be further weakened in [11] by considering
a special class called peaking functions. A function f € A is called a peaking function
if o, (f) = {1}. The class of peaking function of A is denoted by F(A). Thus if T is
unital and o, (T'fTg) = o, (fg), then o, (T'f) = 0. (f), i.e., T(F(A)) = F(B). In [11]
we further improve the theorem by preserving this class, but requiring only that the

peripheral spectra meet. We call this condition weak peripheral multiplicativity.

Theorem (4.2.5). Let T: A — B be a mapping between uniform algebras. If T is
weakly peripherally-multiplicative and preserves the peaking functions (i.e., T (F(A)) =
F(B)) and o, (TfTqg) No,(fg) # O for all f,g € A, then T is an isometric algebra

isomorphism.

In fact this uses a similar composition operator technique. We produce a homeomor-
phism between the Choquet boundaries v : § B — dA such that Tf = f o on dB for
all f € A. Note the Choquet boundary 6 A may also be identified with a subset of the

carrier space of A as is with the case of the Shilov boundary of Theorem 1.2.2.

For the non-unital case we established the following.

Theorem (4.3.6). Let T': A — B be a weakly peripherally-multiplicative mapping, not

necessarily linear, between uniform algebras such that (a) F(B) C (T1)-T (F(A)), or,
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(b) (T1)-T(F(A)) C F(B) C (T1)-T(A). Then there exists a k € B with k> = 1 and

a homemorphism 1 : 0B — 0 A such that

Tf=kKk-fo1

on 0B for all f € A. In particular, T = kT is an isometric algebra isomorphism.

Note whenever 7' : A — B and satisfies (1.2.3) we have, {1} = o, (1h) = 0, (T'1Th)
for all h € F(A), ie., T1-T(F(A)) € F(B). Thus this theorem applies whenever
Theorem 1.2.2, does and this is the strongest known version of this type of spectral

preserver problem. Also an alternative proof of Shilov’s theorem is given in [11] and by

Theorem 3.2.17.

One improvement contained here is the introduction of multiplicatively isolating families
(m.i.f.) of functions. We prove F(A) is a m.if. of A asis A~'. We establish the

following.

Theorem (4.1.9). Let T : A — B be a mapping between uniform algebras. If there
exists a multiplicatively isolating set A such that T(A) is a multiplicatively isolating set

and

1T/ Tgll =119l

forall f € A and g € A, then there exists a homeomorphism v : 6B — A such that

Tf| = |f 0| on 0B,

In [11] this result is only shown for the case A = F(A) and T'(A) = F(B). In proving
the Hatori conjecture of Chapter 5, it is useful to have this stronger version since we

can immediately establish invertibles are preserved but not all peaking functions. In
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considering other cases in the future, one needs only show a m.i.f. is preserved to get

similar results.

1.3 Hatori’s Conjecture

In private communication in 2005, O. Hatori proposed the following conjecture. A

surjective map T : A — B between uniform algebras satisfying
ITfTg+ 1| =[fg+1] (H)

for all f,g € A is an isometric algebra isomorphism. It is “clearly” not true, since, if
T is either negation or conjugation of the function then (H), is satisfied, but negation
is not multiplicative and conjugation is not linear. The problem then becomes to char-
acterize such maps. If it is assumed that T is homogeneous, it was shown that T is
indeed an isometric isomorphism [11]. Further investigations led to results completely

characterizing such maps [12].

Theorem (5.1.4). Let T: A — B be a surjective map that satisfies |TfTg + 1| =
\fg + 1| for all f,g € A. Then there exist an idempotent e € B and an isometric

algebra isomorphism T: A — Be @ Be' such that

T(f) = T(1) (Tf +¢T()))
forall f € A, where ¢ =1 —e and (T1)* = 1.

The interpretation of this result is that 7" is an “almost” isomorphism. The map 7" can be

thought of an isomorphism composed with a map that negates the values of functions on
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a connectedness component of the carrier space and conjugates on another. (We also get
a result if we replace (H) with ||T'fTg + A|| = || fg + A|| for any fixed non-zero constant.)
This is an interesting form to result from a spectral preserver problem since it implies
T is, in general, neither linear nor multiplicative but clearly implies the algebras have
the same “structure”. We have demonstrated spectral preserver problems that show the
map 7T is a composition operator (when T'(1) = 1), a weighted composition operator,
and now a form that is a weighed composition operator composed with a conjugation

operator.

Publication

The major results of Chapter 4 were were presented at the Fifth International Con-
ference on Function Spaces in Edwardsville, IL in May 2006 and at a conference at
University Cork in Cork, Ireland in October 2006 and published in the Proceedings of
the American Mathematical Society in 2007. The results of Chapter 5 will appear in
the Central European Journal of Mathematics in 2008. All major results were presented

in the Analysis Seminar at University of Montana in April 2008.



Chapter 2

Basics of Uniform Algebras

2.1 Definitions and Examples

Definition 2.1.1. We say A is a Banach algebra if A is a Banach space over C with a

multiplication also making A into a ring such that

flag) =(af)g=afyg (2.1.1)

and [|fg[| < [If][llg]| for all f,g € A and o€ C.

We say A is unital if there exists an identity element, 14 € A such that 14 - f =
f-1la=fforall fe Aand ||[14]] =1. We say A is commutative if the multiplication

1s commutative.

It is customary to write both scalar action and multiplication as juxtaposition, relying on
context to distinguish between these when necessary. If A is a unital Banach algebra, we

may consider j : C — A by j(\) = A-14 (scalar action of A on the vector 1,4). Clearly j is

11



2.1. DEFINITIONS AND EXAMPLES 12
linear and multiplicative. Also, j is isometric since ||j(A)|| = [|[X- 14l = [A| ||1a]l = |2,
where we use the homogeneous property of the norm. Thus j embeds C into A, and we
may identify C with its image, i.e., we can assume C C A. With this perspective the
scalar a € C acting on the vector f € A is simply the product of a and f as elements of
A, and there is no need to distinguish between scalar action and multiplication. Thus,

in the unital case, (2.1.1) simply mandates this perspective.

Definition 2.1.2. Let A be a unital Banach algebra and f € A. The invertible elements
of A are the members of the set A~ = {f € A: fg =1 for some g € A}. The spectrum
of f is defined by, o(f) ={ € C: f -\ ¢ A}

Example 2.1.3. Clearly C itself is a unital commutative Banach algebra. The norm,

of course, is the modulus, i.e., ||z|| = |z| for every z € C.

Example 2.1.4. Let X be a Banach space. The set of bounded linear operators from X
to itself is denoted by B(X). This is well known to be a Banach space (with the operator
norm) and, in fact, is a Banach algebra with multiplication defined as composition. This
is an example of a non-commutative, unital Banach algebra. The identity element of
B(X) is idx, the identity operator on X. In fact B(C") can be thought of as the usual
ring of n x n matrices. With this perspective it is clear from the definition that the
spectrum is the set of eigenvalues. There are matrices over R with no eigenvalues, i.e.,
empty spectrum. This is undesirable which is why we consider Banach algebras over C

only.

Example 2.1.5. The Banach space of bounded sequences, [*°, can be given coordinate-
wise multiplication that makes it into a unital commutative Banach algebra. Clearly
e = (1,1,...) is the multiplicative identity of the algebra. The algebra of zero conver-
gent sequences ¢ is also a commutative Banach subalgebra of [°°, but it does not have

an identity and certainly does not contain e, the identity of [*°. Each element z € ¢
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has a spectrum defined for it as an element of [*°. However the spectrum of x as an
element of the (non-unital) Banach algebra ¢, is undefined. Even if A C B are both
unital Banach algebras, a given element of A need not have the same spectrum when

considered as an element of B.

Example 2.1.6. Let X be a compact Hausdorff space. Then the set of complex-valued,
continuous functions on X, denoted C'(X), with pointwise addition and multiplication
and endowed with the sup norm, is a commutative Banach algebra. Since continuous
functions on a compact set attain their maximum modulus at some point of the domain,
we have for any f,g € C(X), |f(z)g(z)| = ||fg| for some x € X. Thus ||fg] =
|f(x)g(z)| = |f(@)|lg(z)] < [|[fllllg]]. The identity is the constant function 1 and the
invertibles are precisely the functions which do not take the value zero. Thus A € o(f) if

and only f — A takes the value zero, i.e., f takes the value A\. Therefore o(f) = Ran(f).

Subalgebras of C'(X) form a very import class of Banach algebras.

Definition 2.1.7. Let X be a compact Hausdorff space. We say A is a uniform algebra
on X if

1. the elements of A are complex-valued continuous functions on X, i.e., A C C'(X),
2. the constant functions are contained in A,

3. the operations are pointwise addition and multiplication,

4. the set A is (topologically) closed in C'(X) with the sup norm, and

5. the functions of A separate the points of X, i.e., for every x # y € X there exists
f € A such that f(x) # f(y).

Clearly C'(X) itself is a uniform algebra with separation of points given by Urysohn’s

Lemma. Also since X is a compact Hausdorff space, the supremum is attained on some
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point z € X. Thus
|1l = ma| £ ()

for all f € A. This is also called the uniform norm, hence the term.

Within this class, one of the most important examples is the, so-called, disk algebra:

A(D) = {f € O(D) : f|p is analytic}.

Example 2.1.8. Clearly A(D) is a linearly and multiplicatively closed subset of con-
tinuous functions. To show it is topologically closed in the uniform norm we recall that
uniform limits of analytic functions are analytic. We claim the invertible functions are
simply functions that do not take the value zero on . If f is invertible in A(D) then
there exists g € A(D) such that fg = 1 then neither f nor g can take the value zero.
Conversely, if f is never zero we know g = 1 is a analytic function and f is invertible.

f
Thus, as in Example 2.1.6, o(f) = Ran(f).

2.2 Mappings Between Banach Algebras

Since Banach algebras are simultaneously vector spaces, rings, and metric spaces, the
natural mappings in each of these theories (linear transformations, ring homomor-
phisms, and isometries, respectively), are important mappings for the theory of Banach

algebras.

Definition 2.2.1. Let T': A — B be a mapping between Banach algebras.

1. fT(fg) =T fTg for all f,g € A, then we say T is multiplicative.

2. If T is multiplicative and a linear transformation we say 7T is an algebraic homo-

morphism.
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3. If T is a bijective, algebraic homomorphism that preserves the norm, we say it is
an isometric algebraic isomorphism and A and B are isometrically, algebraically

1somorphic.

4. Also, if A and B are both unital and T'(1) = 1 we say T is unital.

These terms are standard in functional analysis, although some care is needed. In math-
ematics, an isomorphism is usually defined so that isomorphic objects are equivalent
for the theory being developed. The unqualified term isomorphism is generally avoided
in the theory of Banach algebras (and Banach spaces) in favor of a more specific de-
scription in order to avoid confusion with (weaker) isomorphisms of vector spaces or

rings.

2.3 The Spectrum of an Element in an Algebra

In the specific examples examined so far, we characterized the spectrum of elements in

the algebra. Here we show that, for any commutative Banach algebra, the spectrum of

an element is a non-empty compact set.!

Lemma 2.3.1. Let B be a unital, commutative Banach algebra and f € B.

(a) If | fIl < 1 then (1 —f) € B! and (1 — f)! = if” (with the interpretation
P=1) -

. . Lo
(b) If X € C with |A| > || f|| we have (A — f) € B~ and (A — f)" = 70)\%1.
1

1A=

then ¢ € B™" and g~' =

() If f € B and g € B such that ||f — g| <

S -9
n=0

"Much of the development in this section may be done (with care) in the non-commutative case.
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< oo. Thus the sequence

Proof. If ||f|| < 1 then ZHf”H ZHan = ||f||

of partial sums is a Cauchy sequence 1n B, and since B is a Banach space, we have
o

Zf” € B. Hence,

n=0

— f) (Zf") => =y =1
n=0 n=0 n=1

which proves (a).

If [A| > || f]| then

< 1. By (a), 1 (1 - —) > ( ) which yields,

n=0

TL

1= )‘ f Z/\n+1’
n=0

proving (b).

I [|f = gll < =gy then 1= gl = I/ (f =)l < I l[Ilf — 9]l < 1. Thus by (a),

||f i
L=(1=(1=f1)> (1=f"9)" =F 9> F(f-9"
=ng—"—1(f—g>",

n=0

which completes the proof. O

Corollary 2.3.2. If B is a commutative Banach algebra, then B~ is an open subset

of B.

Proof. By Lemma 2.3.1(c), for each point f € B!, the open ball centered at f of radius

consists entirely of invertible elements. This proves B! is open in B. O]

L
[l
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Lemma 2.3.3. Let B be a unital, commutative Banach algebra. For every f € B, the

set o(f) is a non-empty compact subset of Dy = {A € C: |A| < |||}

Proof. Fix f € B. For any |A| > || f||, Lemma 2.3.1(a) gives, A — f is invertible.
Thus f — A, is invertible, i.e., A € C\o(f). The contrapositive of this result gives
o(f) C Dy ={r e C A < IS}

1
Let zp € C\o(f), and take z € C such that |2y — z|] < =2 If we define
— 20
1

h =2 — f and k = z — f, then h is invertible and ||h — k|| = |20 — 2] < =k
From Lemma 2.3.1(c), we have two conclusions. First & = z — f is invertible, as is
f— 2z ie, z € C\o(f). This demonstrates that for every point 2z, in C\o(f), the
open ball centered at z; of radius H(—lf)_ln is entirely contained in C\o(f). This
proves C\o(f) is open, hence o(f) iSZ(c]zlosed, and thus compact since we have already
established it is bounded. The second conclusion is a formula for (z — f )_1 that is valid

whenever |z — 2| < . Specifically

ot
IGzo = )|

==k => A (k)"

(20— £)" (20— 2)"

I
NE

n=0

—(f—20)" (2= z)" (2.3.1)

WE

i
o

This will be helpful in proving o(f) is non-empty.

Let r : C\o(f) — B be defined by 7(z) = (z — f)~". By (2.3.1), r(2) has a local power

series expansion centered at each zy € C\o(f) of the form

r(z) = i —(f—20) " (2 = )" for all z with |z — 2| < ;_1
= 1o =)
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Let ¢ € B* be a continuous linear functional and define r, : C\o(f) — C by r, = por.

The continuity and linearity of ¢ gives

= 1
ro(z) = - —20) ") (2 — 2)" for all z with |z — 2 —_—

Thus r, has a local power series expansion for each point zy € C\o(f) with positive
radius of convergence. Therefore r, is analytic on its domain. If we were to assume

o(f) =0, then r, would be entire.

Assume (for contradiction) that o(f) = 0, i.e., r, is entire. If z € C such that |z| > || f|

then by 2.3.1(b) we have,

)= = Y0 I = li ()

n=0

1 1
— _ el — 0 as |z| — oo. Thus

2l L= If /21 T2l = IIf]

r, is bounded and by Liouville’s Theorem, constant. By these limits this constant can

Thus |ry(2)] < llellllr(2)]] < [l

only be zero. Finally we have ¢ ((z — f)71> =0 for all p € B*. A standard result from
functional analysis implies that the only element which every linear functional takes to
zero is zero [2, 111.6.7]. Thus, (z — f)~' = 0, but this is a contradiction since 0 is not

invertible. Therefore, o(f) is not empty. O

2.4 Maximal Ideal Space

In the theory of Banach spaces, (bounded) linear functionals and codimension-1 sub-
spaces play a key role. In the theory of Banach algebras, that role is taken by multi-

plicative linear functionals and maximal ideals. Let B be a unital commutative Banach
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algebra. We denote the set of non-trivial, multiplicative linear functionals on B by M.

To establish the connection between multiplicative linear functionals and maximal ide-

als, we first recall a theorem of Gelfand and Mazur.

Theorem 2.4.1 (Gelfand-Mazur Theorem). Any Banach algebra that is a field is iso-

metrically isomorphic to C.

Proof. Suppose B\{0} = B™' and let f € B~'. By Theorem 2.3.3, there exists
A € o(f), ie, f— X is not invertible. Since we have assumed B is a field, the only
non-invertible element is zero and so f — A = 0, i.e, f = A. In other words, the standard
embedding j : C — B given by j(A) = A-1p is surjective. Thus j is an isometric algebra

isomorphism between C and B. O]

Lemma 2.4.2. Let B be a commutative Banach algebra. If ¢ : B — C s a non-trivial
multiplicative linear functional, then o(f) € o(f) for all f € B, ||¢|| =1 (i.e, ¢ is an

element of the unit sphere of the dual of B), and ker ¢ is a mazimal ideal.

Proof. Let ¢ be a multiplicative linear functional on B. Then ¢(1) = (1 -1) = ¢(1)?
implies p(1) = 0or 1. If (1) = 0 then o(f - 1) = o(f)p(l) = 0 for all f € B, i.e.,

¢ = 0. If ¢ is non-trivial, then p(1) = 1, and, by linearity, ¢(A) = A for all A € C.

If f€ B~ then 1 = ¢(f)p(f ). Thus ¢(f) # 0, i.e., ¢ does not take any invertible
element to zero. Let f € B and A ¢ o(f). Then f— X is invertible, and 0 # ¢(f —\) =
©(f) — A implies ¢(f) # A. The contrapositive of this gives us that ¢(f) € o(f). By
Lemma 2.3.3, o(f) € o(f) C Dy so [o(f)] < || f]l and |j¢|] < 1. Since (1) =1 = |1,

we obtain [|¢|| = 1.

Since ¢ a ring homomorphism, ker ¢ is an ideal and since ¢ € B*, the ideal has codi-

mension 1. Thus the only subspace of B containing ker ¢ is ker ¢ itself of B. Suppose
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M is an ideal containing ker . Since Mis a subspace of B either M = kerp or M = B

and this proves ker ¢ is a maximal ideal. O]

Lemma 2.4.3. Let B be a unital commutative Banach algebra. If M is a mazimal

ideal, there exists a unique multiplicative linear functional on B such that ker o = M.

Proof. As a proper ideal, M cannot contain invertible elements, i.e., M C B\B~* and
so its closure, which is clearly an ideal, must be proper since B\B™' is closed. By
maximality, M is equal to its closure, i.e., M is closed. Since M is closed, the quotient
B/M is a Banach space, and since M is a maximal ideal, B/M is a field. By the
Gelfand-Mazur Theorem, B/M is isometrically isomorphic to C. Thus the standard
embedding of C into B/M, j : C — B/M, is surjective. Let ¢ : B — B/M be the

'og: B — C. Then ¢ is a multiplicative linear functional,

quotient map and ¢ = 5~
since it is the composition of multiplicative linear maps, and ker p = kerq = M. For
uniqueness, let 1) be a multiplicative linear functional with kernel M. As the kernel of

a linear functional, M has codimension 1. Thus B = M @ C (as vector spaces). Every

f € B can be uniquely written as f = m + A with m € M and A € C and

O(f) =d(m+XA) =¢(m) + A=A =p(m)+ = o(m+A)=p(f),

ie., ¥ =. O

These two lemmas show that multiplicative linear functionals and maximal ideals are in
bijective correspondence. So, even though Mg is defined to be the set of multiplicative

linear functionals, it is customary to refer to Mpg as the maximal ideal space.

Lemma 2.4.4. Let B be a commutative, unital, Banach algebra. Then

o(f) =1{e(f) v € Mg}
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for all f € B.

Proof. In Lemma 2.4.2 it was shown that {¢(f) : ¢ € Mg} C o(f). If A € o(f) then
f-=A¢ B Let M = B(f—)) = {g9(f —)) : g € B}. Clearly M is an ideal,
and it is proper since 1 € M implies there exists a ¢ € B such that g(f — \) = 1
which contradicts f — A ¢ A™'. By commutative, unital ring theory, M is contained

in a maximal ideal. Let ¢ be the corresponding multiplicative linear functional whose

kernel contains f — A € M. So ¢(f — A) =0 and ¢(f) = \. O

By Lemma 2.4.2, Mp is a subset of the unit sphere of the dual space, B*. By the
Banach-Alaoglu Theorem [2, V 3.1], the unit sphere of B* is weak-* compact, so we
topologize Mp by giving it the inherited weak-* topology of the unit sphere in B*.

This is called the Gelfand topology on Mp.

Lemma 2.4.5. The mazimal ideal space, Mg, is compact in the Gelfand topology.

Proof. Tt suffices to show that Mg is closed in the unit sphere of B* with the weak-
* topology. In this topology a net {@,}aer converges to ¢, ¢, — ¢, if and only if
©al(f) — ©(f) (in C) for all f € B. Let ¢, be a net in Mp with limit ¢ in the unit
sphere of B*. Then ¢ is a non-trivial linear functional, and we just need to show it is

multiplicative. Thus for every f,g € B,

2()el9) = (lma(f) (limalg)) = lim ea(F)pale) = limpa(fg) = 9(f0).

due to the continuity of multiplication in C. Thus in the weak-* topology, Mg is closed

subset of the unit ball of B*. O]

Example 2.4.6. Let X be a compact Hausdorff topological space and consider the
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commutative, unital, Banach algebra C(X). For every z € X let ¢, : C(X) — C be

given by ¢,(f) = f(x). Clearly this is a multiplicative linear functional so ¢, € Mp.

In fact, as we show below, every multiplicative functional on C'(X) is of this type. First,

however, we need the following lemma.

Lemma 2.4.7. Let X be a compact Hausdorff space. If I is a proper ideal of C(X),

then the elements of I have a common zero.

Proof. We will prove the contrapositive. Let I be an ideal of C'(X) with no common

zero. Then {X\f'(0) : f € I} is an open cover of X. Since X is compact, it has a

finite subcover, i.e., there exists f1, ..., f, € I with no common zero. Since [ is an ideal
n

and fi,..., f, € C(X) then g = Zf,ﬁ = Z |f;]?> € I. Since the f;’s have no common
i=1 i=1
zero, g never takes the value zero and is thus invertible, and I = C'(X). O

Lemma 2.4.8. Let X be a compact Hausdorff space. The assignment x — @, is a

homeomorphism from X onto Mc(x).

Proof. For any two distinct points z,y € X there exists a continuous (real-valued)
function f € C(X) such that f(x) = 0 and f(y) = 1 by the well-known Urysohn’s
Lemma (|4, Thm 5.3]). Thus we have ¢, # ¢, for x # y, and the assignment is
injective. To show the assignment is onto, let ¢ be an arbitrary element of M¢(x),
and so M = ker p is a maximal ideal of C(X). By the previous lemma, the functions
in M have at least one common zero, say at . Thus M C ker ¢, so by maximality

ker ¢ = M = ker ¢,. The uniqueness in Lemma 2.4.3 implies p = ¢,.

For continuity we need to show that the assignment preserves convergence of nets, i.e.,
To — x in X implies ¢, — ¢, in M¢(x). Let 2, — z be a convergent net in X. For

every [ € C(X), ¢z (f) = f(za) and f is continuous so f(z,) — f(z) = ¢(x). Thus
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0ao (f) = @a(f) for every f € C(X) which gives ., — ¢, in M¢(x). Finally, we have
a continuous bijective map from a compact space to a Hausdorff space and thus the

map is a homeomorphism. O

2.5 The Gelfand Transform

The connection between C'(X) and its maximal ideal space can be applied in general to

get a much better understanding of the class of unital, commutative, Banach algebras.

Definition 2.5.1. Let f be an element of a unital, commutative, Banach algebra B.
Define the Gelfand transform of f, f : Mz — C, by f(¢) = o(f). Let B={f: f € B}
and A : B — B C C(Mp) be the mapping f — f.

Note the Gelfand topology (i.e., relative weak-* topology) given to Mp insures that

each f is continuous.

Theorem 2.5.2. Let B be a commutative, unital, Banach algebra. Then the Gelfand
transform A : B — C(Mgpg) is an algebraic homomorphism which does not increase
the norm (i.e., ||| < 1). Moreover, B separates the points in Mg and contains the

constant functions.

Proof. Let f,g € B, then for all ¢ € Mg, fg(¢) = o(fg) = o(Helg) = fl)a(e)

which shows A is multiplicative. Linearity is similar. In the notation of the Gelfand
transform, Theorem 2.4.4 becomes f(Mp) = o(f) C Dy . Thus 171l = max{|f ()] :
o € Mg} < ||f|l. If ¢1 # @2 then there is some f € B where they differ so f(¢1) =

1(f) # @2(f) = f(2). Finally, 1) = (1) = 1 for all ¢ € Mp, and, by linearity, A

takes constants to the corresponding constant functions. O]
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The Gelfand transform maps any unital, commutative, Banach algebra to a subalgebra
of continuous functions on a compact Hausdorff space. Thus, we can gain a lot of
understanding of the more general class by examining the, more concrete, class of
subalgebras of C'(X) where X is a compact Hausdorff space. Uniform algebra theory is
equivalent to the study of unital, commutative Banach algebras for which the Gelfand
transform is an isometry. In general, A need not even be injective. In the most extreme

case, it is possible that B =C as the following example shows.

Example 2.5.3. Consider the unital, commutative Banach algebra C", equipped with
coordinate-wise operations and the sup norm. Let s : C" — C" be the right shift
operator given by

s(z1,29, oy 2n) = (0,21, .00y 2n1).

This is clearly a linear operator with operator norm 1. Thus s € B(C"). Let A be

the algebra generated by s” = ide» and s in B(C™) which has the basis, s%,..., s"".

Similarly, let A be the algebra generated by s which has the basis s',...,s""!. Any
n—1

a € Ap has the form a = Z ams™ for some choice of «,,’s in C. Since s™ = 0 for all

m=1
m > n, then
2

n—1 " n?-n
a’ = (Z amsm> = Bms™ =0,

m=1 m=n
for some f3,,’s in C. In other words, each element of Ay is nilpotent. Let ¢ be any
multiplicative linear functional on A, then ¢(a)" = ¢(a") = ¢(0) = 0 implies p(a) =0
for all a € Ay. Thus every multiplicative linear functional is zero on all of Ay. Since a
multiplicative linear functional must prelserve the identity, the only multiplicative linear
functional on A is the one given by Z ms™ ¥ ag. Thus the kernel of the Gelfand

m=0

transform of A is Ay,? which is a codimension 1 subspace, and A=C.

2The algebra Ay is an example of a radical algebra.
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Of course, if A is injective,® then Bis algebraically isomorphic to B, though possibly
not isometrically. In particular, B need not be closed in the uniform norm. In that
case, the Gelfand transform is still quite useful. We consider two norms on B: the norm
from B induced by A (||b]|; := [|b]]) and the uniform norm that B has as a subalgebra of
C(Mp). We can then use the uniform norm (which, by the theorem, is dominated by
the inherited one) and we may consider B as a dense subalgebra of the uniform algebra

obtained by closing B in the uniform norm.

In the case that the Gelfand transform is not only injective but also isometric, then Bis
a uniform algebra. On the other hand, if B is a uniform algebra on X, then each point
evaluation is a multiplicative linear functional and thus in Mpg. In fact, X embeds
topologically into M g. The interpretation for this is that Mg is the largest topological
space containing X such that all the functions in B can be continuously extended from
X to Mp. The Gelfand transform of each function in B is that extension. This is
remarkable since usually one asks if extensions of functions exist in a specifically given
topological space, Y containing X. With the Gelfand transform, one need not guess

the space Y on which to seek extentions.

One can interpret the Gelfand transform as dividing the study of commutative, unital
Banach algebras into two classes: algebras for which the Gelfand transform is trivial
(B = C) and algebras for which the Gelfand transform is injective. A refinement of the
latter case, is the class for which the Gelfand transform is not only injective but also
isometric. This is the class (up to isomorphism) of uniform algebras which is the class

we will consider in the sequel.

3If the Gelfand transform is injective the algebra is semisimple.



Chapter 3

Boundaries of Uniform Algebras

3.1 Boundaries and the Peripheral Spectrum

It is well known that analytic functions on the unit disk ID take their maximum modulus
on T, which is the topological boundary of ID. This phenomenon can be extended for

commutative Banach algebras in general.

Definition 3.1.1. Let B be a unital, commutative Banach algebra. A subset E of Mp

is a called a boundary if max{|f(¢)| : ¢ € E} = || || for every f € B.

Clearly Mp itself is a boundary for B. If A is a uniform algebra on X, then X is
a boundary, identified with its embedding in M 4. In this way we will also consider
subsets E of X satisfying max{|f(x)| : x € E} = ||f|| to be boundaries. If we wish
to consider properties that require the Gelfand transform of the algebra on the entire
maximal ideal space, we simply take the hypothesis that “A is a uniform algebra on
M " as in the following lemma. This can always be done formally via the Gelfand

transform which is an isometric algebra isomorphism.

26
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Lemma 3.1.2. Let A be a uniform algebra on M and E C M4 be a boundary for A.
Then the restriction map r: A — Alg ={f|lp: f € A} C C(E) given by r(f) = f|g is

an isometric algebra isomorphism.

This result follows simply by making a few observations. The map is clearly linear
and multiplicative. By the definition of boundary, it is norm-preserving and thus an
isometric embedding, i.e., injective. It is surjective by definition, and that is all that is
required to show. However, we also know the restrictions of constants are constant and
E separates points. So, although E need not be closed, if it is, then A|g is a uniform

algebra on F.

A key consequence of this result is that if f|g = g|g then f = g. This follows from the
injectivity in the lemma above but can also be seen directly from the definition of a
boundary. If f|g = g|g then (f — g) |z = 0 thus the maximum modulus of f — g on E
is zero, so the maximum modulus on all of X (i.e., the norm) is zero. Thus ||f — g|]| =0

implies f = g.

Let A be a uniform algebra on X, and define Ran(f) = f(X). Recall that the point
evaluations are multiplicative linear functionals, so Ran(f) = f(X) C f(M4) = o(f)
by Lemma 2.4.4. However this containment may be strict. Consider A(D), which is a

uniform algebra on D. By the previous lemma, A(D)|r = A(D) is a uniform algebra on

T. If f € A(D)|r is the function given by f(z) = 2z then Ran(f) = T but o(f) = D. It is
convenient to have Ran(f) = o(f), that way all values of the spectrum may be realized
by evaluating the function, which can simplify proofs. (This is another case where we
add the assumption that A is a uniform algebra on M4.) We can get an analogous

property by considering a portion of the spectrum.

Definition 3.1.3 (|11, 13]). Let A be a uniform algebra on X. For every f € A let
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o (f)={X € a(f): |\ =|fII}- This set is called the peripheral spectrum [5, 13] of
f. We introduce the notation, M (f) = {x € X : |f(2)| = ||fI|} = f (0« (f)) which we
call the mazimizing set of f. Let Ran,(f) = {f(z) : 2 € M(f)} = f(M(f)) denote the

peripheral range.

Note the spectrum and the peripheral spectrum are invariant under an isometric alge-
braic isomorphisms. However, M (f) is tied to a specific representation of the algebra.
For example if A(D) is the disk algebra, which is isometrically isomorphic to A(D)|r,
then M(1mp)) = D and yet M (1amy,) = T. It appears the same issue could occur with
the peripheral range. However, we will provide an alternative characterization of the
peripheral spectrum, which will show this is not the case. To assist with this we give

the following lemma.

Lemma 3.1.4. Let g € C(X) for X compact Hausdorff and let € > 0. Then for all

x € X we have the following dichotomy,

lg(z) + €| = [|g]| + € if and only if g(x) = ||g]|

lg(z) + €| < |lgl| + € if and only if g(x) # ||g]| -

Proof. Suppose |g(x) + €| = ||g|| + €, then

lgll +e=1g9(z) + ¢ < |g(x)| +e < g +e,
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and there is equality throughout. In particular, ||g|| = |g(x)|. Using this we have,

9(@)[* + 2|g(@)| + € = |g(x) + e[ = (lg]| + )
= llg(@)II* + 2[lg(x)|| + €
= lg(x) + €* = (9(x) + ) <@+ e)
= l9(@)]* + () + g(2) + €

= |g(x)|2 +2Reg(x) + €

which implies ||g|| = |g(z)] = Reg(x) = g(z). The converse is clear. Thus we
have established the first assertion and its contrapositive which is |g(z) + €| # ||g] +
e if and only if g(x) # ||g||. However for all = we have, |g(z) + €| < |lg+€|| < ||g]| + €,

so |g(x) + €| # ||g]| + € if and only if |g(z) + €] < ||g]| + €. O

Lemma 3.1.5. Let A be a uniform algebra on My and let E C M4 be a boundary of

A. For any f € A the following are equivalent:
(Cl) o€ On (f))

(6) l[af + 1l = IfII* +1 and |a| = || f],
() l[af + 1] = IfI° +1 and o] = || /]

(d) there exists x € E such that x € M(f) and f(z) = a.

Proof. Let a € o,(f). Since the functions of A are defined on their maximal ideal space
Lemma 2.4.4 applies to give an x € My such that f(z) = « and |a| = ||f||. Lemma

3.1.4 gives |[@f + 1| = ||@f]| + 1 = || f||> + 1 justifying (b).

The fact that (b) implies (c) is trivial. We now show show (c¢) implies (d). If o = 0 the

justification is trivial so assume « # 0. By definition of boundary there exists x € E
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such that [@f(z) + 1| = [[af + 1||. We have,
[@fl+1=F1"+1 < afe) + 1] = [af (@) + 1| < [af()] + 1 < [[af ()] +1

and we have equality throughout. By Lemma 3.1.4, we have af(z) = |[af| = |a| |« =
a@a, which implies f(x) = a since a # 0. Clearly |f(z)| = |a| = || f]|, i-e., z € M(f).

Finally we show (d) implies (a). If f(z) = a and x € M(f), then a € o(f) and

la| = || f|l. These are the necessary conditions for o € o (f). O

Corollary 3.1.6. If A is a uniform algebra on X and E C X is a boundary then for
all f € A we have Ran,(f) = o, (f) = f(M(f) N E).

This result is an immediate consequence of (a) = (b) with both E and X considered
as boundaries of M 4. In other words, this says that every point in the peripheral
spectrum can be assumed to be a maximum modulus value taken by the function on X

or any other boundary.

3.2 Peaking Functions and the Choquet Boundary

In this section we are seeking a “small” boundary for a given uniform algebra. If X
is metrizable, it can be shown that A does have a smallest boundary, which is auto-
matically closed. However, for general compact Hausdorff spaces there is no smallest
boundary, although there is a smallest closed boundary, called the Shilov boundary.
One of the purposes of this chapter is to give an alternative proof of this well-known
result. We first develop another well-known boundary, called the Choquet boundary,

that is not in general closed, but is contained in every closed boundary.
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For the remainder of the section let A be a fixed uniform algebra on X = M 4.

Definition 3.2.1. A non-empty set £ C X is called an m-set if it is the (arbitrary)

intersection of maximizing sets, i.e., F = ﬂ M(f) # 0 for some subset Ap C A.
fEAE
For an m-set F, let &g = {E' C E: FE' is an m-set} be the the family of all m-sets

contained in . Note that inclusion in a partial order on £ and the set of all m-sets is

simply Ex.

Lemma 3.2.2. For each m-set E, the family Eg contains minimal elements.

Proof. We will apply Zorn’s lemma. Let C is a chain of £g. Clearly ﬂ E' is a lower-
E'eC

bound for the chain and an m-set in &g, provided it is non-empty. Since X is compact

and m-sets are closed, the finite intersection property applies. Thus it suffices to show

that a finite chain has non-empty intersection. If £y C Fy C ... C E, is a finite chain,
n

then clearly ) # F; = ﬂ E;. Therefore, by Zorn’s lemma, £x has minimal elements. [

i=1
Lemma 3.2.3. Let 0A = U {E : E is minimal in Ex}. The set A is a boundary for

A and each m-set meets dA.

Proof. First we show that each m-set meets 0A. Let £ C X be an m-set and Ejy be
a minimal element of £z. Suppose F' € Ex such that F' C Ey, then F € £ and, by
minimality of Fy in &g, F = FEy. Thus Ej is also minimal in £x and Fy C 0A. Thus
) # Ey C AN E. Finally, for any f € A, M(f) is an m-set so M(f) NJA # (), which
shows 0 A is a boundary for A. m

We call the minimal elements in £x minimal m-sets. When dealing with m-sets, it is
useful to note that if a finite number of non-zero functions share a common maximizer,
then the maximizing set of their product is the intersection of their maximizing sets.

This is made precise by the following lemma.



3.2. PEAKING FUNCTIONS AND THE CHOQUET BOUNDARY 32

Lemma 3.2.4. Let {f;};_, C A\{0}. The following are equivalent:

(a) the functions have a common maximizer, i.e.,

(b) the norm of the product is the product of the norms, i.e.,

I1

=1

n
= 11IIfill, and
i=1

(¢) the maximizers of the product are the common maximizers,

M (H fl-) = (M)
i=1 i=1
Proof. By induction it suffices to show this for n = 2.

To prove (a) implies (b) assume f, g € A such that M(f)NM(g) # 0. Then there exists

z e M(f)nM(g) and [[f[lg]] = | /(=) g(x)| < [[fgll < I f[[llg]l and so | fgll = [I£] lg]

To show (b) implies (c), suppose [|fgl| = | £]| 9]l and let & € M(fg). Thus |f(x)g(x)] =

191 = 11 gl Since 7 # 0 we have L < 1 50 g = L1 O] o

Il (VA —
|g(x)| which implies x € M(g) and = € M(f) similarly. Thus 0 # M(fg) C M(f) N

M(g). It x € M(f) N M(g) then [f(z)g(x)| = [f]l lgll = | fgll and = € M(fg) which

proves (b). Since clearly (c¢) implies (a) the proof is complete. O

Definition 3.2.5. Let A be a uniform algebra. A function h € A is called a peaking
function if o, (h) = {1}. Let F(A) be the family of all peaking functions of A, namely,
F(A)={h € A: 0, (h) = {1}}. For the case special case of h € F(A), the maximizing
set M (h) is called the peak set of h, and it is customary to denote it instead by P(f).

For any £ C X define Fr(A) = {he F(A): E C P(h)}, and for any = € X define
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F2(A) = Fr3(A). The non-empty intersection of peak sets is called a p-set which is

clearly an m-set.

This next lemma directly establishes the existence and, indeed, the prevalence of peaking

functions.

Lemma 3.2.6. Let A be a uniform algebra.

(a) For every f € A\{0}, X\ € o, (f), and € > 0 the function h = f{);j_ isa peaking
€
function of A with peak set f~H(\) and o-(fh) = {\}.
(b) A=C-F(A)+C, i.e., the linear span of F(A) is A.
(c) For each fized r € (0,1) then C(F(A) —r) = A.
Proof. Clearly if f(x) = A then h(z) = 1. Note
o = | F@A e N P2
1+e€ 1+e 1+e 1+e€ 1+e€ 1+e€
Cl4e l4e
: : o flx)/A flx)/A I
By L 14 lity holds if only if ——— = = €. =
y Lemma 3.1.4, equality holds if only i T e e 1+€,1e,f(x)

in which case, not only is |h(x)| = 1 but h(z) = 1. Thus h € F(A) and P(h) = f~*(\).
The assertion in (b) comes by solving, f = (A4 Ae) h — e, then (c) follows by f =
(A =+ Xe) (h — 1;4_6) for e = % Since M(h) = P(h) = f_l()\) C M(f), the func-
tions i and f share a common maximizer. Thus o, (fh) = { f(z) cx € P(h)NnM(f)

{11, O

Parts (b) and (c) of the lemma show that the set of peaking functions in a uniform

algebra is a very large class.
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Lemma 3.2.7. Fvery minimal m-set is a p-set.

Proof. Let E be a minimal m-set and x € E. By definition £ = ﬂ M(f) for some

feAE
family S C A. Without loss of generality we may assume f # 0 for all f € S. Since

f(x) € 0. (f), Lemma 3.2.6(a) implies that there exists some h; € F(A) such that

P(hy) = f ' (f(z)) € M(f). Thus z € P(h;) and

ve (P M(f)=E

fes fes

which implies equality since E is minimal. O

Lemma 3.2.8. Let E be a p-set. For every open set U containing E there exists

h € Fg(A) such that P(h) C U.

Proof. By definition of p-set, there is some set S C Fg(A) such that E = ﬂ P(f).
fes

Thus EC () P(f) C () P(f) = E which gives
feFE(4) fes

U x\P(f)=X\E.
fEFE(A)
Since £ C U, we have {X\P(f) : f € Fg(A)} U{U} is an open cover of X (compact).
Thus there exists, fi,..., f, € Fr(A) such that UX\P(fl) Ul =X, ie, ﬂP(fz) N

i=1 =1

(X\U) =0. Let h = Hf" By Lemma 3.2.4, M (h) = ﬂP(f,), so clearly h € Fg(A).
‘ i=1

Thus P(h) N (X\U) = 0, i.e., P(h) C U. 0

The following is a generalization of a important result called Bishop’s Lemma.

Lemma 3.2.9 (Bishop’s Lemma for p-sets [11]). Let A be a uniform algebra on X and
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E be a p-set of A. If f € C(X) is such that f|g £ 0, then there is a peaking function

h € Fg(A) such that fh takes its mazimum modulus on E.

Proof. Without loss of generality, assume that the maximum modulus of f on E is 1.

F or each n € N define the open set

1
Un:{xEX: |f(x)|<1+2n+1},

and observe that U; D Uy D ... D E. For each fixed n € N, Lemma 3.2.8 gives that
there exists k € Fg(A) such that P(k) C U,, . For each x € X\U, then |k(x)| < 1 and

since X\U,, is compact the maximum modulus on X\U, is strictly less than 1. For a

1
large enough power m € N, |£™| < 217 on X\U,. Define h,, = k™.
= h, . . .
Now define h = E on- It is clear that the series is absolutely convergent (since

n=1
|hn|l = 1) and ||h|| < 1. In fact |h(z)| = 1 if and only if |h,(x)| = 1 = h,(z) for all n,
which implies € E, thus h(z) = 1. Since |h(z)| = 1 implies h(z) = 1, it follows that
h € Fg(A). Clearly || fh| > 1, since meaéc\f(az)\ =1land h =1 on E. We claim that

I fgll <1. Allow Uy = X and fix x € X. There are two cases to consider.

Case 1: x € Uy_1\Uy for some N > 1. Then x € Ul,Ug,.. ,Uyv_1and z € X\U,

for all n > N. Thus |f(x )|<1+2N,|h( z)| < 2||f|| foralln>N and
N—1 00 N-1 00
|fon ()] |on ()] 1 1/2
h < < — =
Ml e R e S
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for all

Case 2: z € ﬂ Up. Then z € U, for all n. Hence |f(z)] <1+ it
n=1
n, so |f(z)] < 1 and therefore, |f(xz)h(z)| < 1, since, as a peaking function,

|h(z)| < 1. O

The original Bishop’s Lemma can be obtained as a corollary of Lemma 3.2.9.

Lemma 3.2.10 (Bishop’s Lemma [1]). Let E be a peak set of a uniform algebra A and
let f € A be such that f|g # 0. Then there is a peaking function h € Fg(A) such that

fh takes its maximum modulus only within E = P(h) .

Proof. According to Bishop’s Lemma for p-sets, there exists k € Fg(A) such fk takes
its maximum modulus on FE, i.e., M(fk) N E # (. By definition of peak sets, there
exists some k' € F(A) such that P(k) = E. Thus fk and k£’ have a common maximizer

and M(fkk') = M(fk) N P(k') C E. The lemma is satisfied by h = kk'. O

Lemma 3.2.11. Forall f € A and all z € A such that f(z) # 0 there exists h € F,(A)
such that o (fh) = {f(z)}.

Proof. Let E be the minimal p-set containing z. Bishop’s Lemma for p-sets asserts
that there exists k& € Fg(A) such that fk takes its maximum modulus on E, i.e.,
M(fk)NE # 0. By minimality £ C M(fk) and f(z) € o, (fk). By Lemma 3.2.6(a)
there exists k' € F(A) with P(k') = (fk)"'(f(z)) such that o, (fkk') = {f(z)}. Thus
k' € F.(A), since f(z) = f(z)k(x) and h = kE' is as desired. O

Lemma 3.2.12. Minimal m-sets are singletons. FEquivalently, x € 6A if and only if

{z} is a p-set.

Proof. Let E be a minimal m-set and =,y € E. If we show f(z) = f(y) for all f € A,

then, by the “separation of points” condition required in the definition of a uniform
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algebra, x = y and F is a singleton. Note by Lemma 3.2.7 E is a p-set.

Let f € A. If both f(x) and f(y) are zero then there is nothing to show. Without loss
of generality, assume f(z) # 0. By 3.2.11 there exists h € F,(A) such that o, (fh) =
{f(x)}. So P(h) N E # () and, by minimality, £ C P(h). Similarly, E C M(fh). Thus
y € M(fh) N P(h), which gives, f(y) = f(y)h(y) € o (fh) = {f(x)} which completes

the proof. O

The following corollary is a restatement of Lemma 3.2.8 combined this result.

Corollary 3.2.13. For every x € §A and every open neighborhood U of x there exists
h € F.(A) such that P(h) C U.

Definition 3.2.14. A point x € M, is a p-point [3] if for every open neighborhood U
of x there exists h € F,(A) such that P(h) C U. The Choquet boundary is the set of

all p-points.

Corollary 3.2.13 and the previous results of this section provide an alternative proof of

the existence of the Choquet boundary expressed in the following theorem.

Theorem 3.2.15 (Choquet Boundary Theorem for Uniform Algebras). If A is a uni-

form algebra then the set of all p-points is a boundary of A.

Lemma 3.2.16. The boundary A is contained in any closed boundary E C My of A.

Proof. Let E C My be a closed boundary of A. Suppose that 0A\E # () and let
x € JA\E C X\E. Then X\FE is an open neighborhood of x in X and, by Corollary
3.2.13, there exists h € F,(A) such that P(h) C X\E. Thus |h(x)] < 1 = ||h] on E,
which contradicts the assumption that E is a boundary. Consequently, A\ F = (), thus

0A C E. Therefore, §A is contained in every closed boundary. O
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Theorem 3.2.17 (Shilov’s Theorem). The intersection of all closed boundaries of a

unital commutative Banach is a closed boundary.

Proof. Let OA be the intersection of all closed boundaries. By the previous lemma, § A
is contained in every closed boundary, so §A C A C §A. Since A contains a boundary
it is itself a boundary and, as the intersection of closed sets, it is closed. Thus 0A = 6A

is a boundary. ]

Theorem 3.2.17 implies there exists a smallest closed boundary 0A = §A. This result
is well known and 0A is the famous Shilov boundary. The standard proof found of its
existence in [17, Thm 1.5.2] is much shorter but uses the Gelfand topology which is
not elementary. Our proof of Theorem 3.2.17 is longer, but more constructive. Also we
simultaneously prove the existence of the Choquet boundary, which is useful when we

cannot use the Shilov boundary, e.g. [11].

3.3 Multiplicatively Isolating Families in a Uniform

Algebra

Recall a subset of X is a p-set if it is an (arbitrary, non-empty) intersection of peak
sets and x is a p-point if {z} is a p-set. The Choquet boundary, §A, the is set of all

p-points.

We define a general class of functions that have properties similar to the set of peaking

functions, F(A).

Definition 3.3.1. Let A be a subset of a uniform algebra A and for each x € JA let

A, ={f € A\{0} : z € M(f)}. We say A is a multiplicatively isolating family (m.i.f)
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of A if

(1) each A, is multiplicatively closed and

(1) for every open neighborhood U of x there is f € A, such that M(f) C U.

The set of peaking functions, F(A), is itself a multiplicatively isolating family. Clearly
if two functions peak on x € JA then so does their product, which is then a peaking
function, so (7) is satisfied. Condition (ii) is satisfied by Corollary 3.2.13. The en-
tire algebra, A, is multiplicatively isolating since it is closed under multiplication and

F(A) C A provides the functions whose existence is required by (ii).

Lemma 3.3.2. If A is a m.i.f. of A then A,, C A,, implies x1 = x.

Proof. We prove the contrapositive. If z; # x5 then there exists an open neighborhood
U of x; that excludes z5. By condition (ii) of the definition there exists f € A,, such
that M(f) C U. Thus f ¢ A,,, i.e., Ay, € As,. O

The importance of multiplicatively isolating families is illustrated by the following

lemma.

Lemma 3.3.3. Let A be a multiplicatively isolating family of A. Then for every f € A

and x € 0A,
¢ IRl

heAx ||h||

= |f(@)]. (3.3.1)

Proof. For all h € A, \{0}, |h(x)| = ||h]| so |7kl > f@)llh@)] |f(z)] and this gives

[Rll = [Al]
inf H”fh”H |f(x)|. To show the opposite inequality, for each ¢ > 0 we will produce
€A,
h € A, such that |||‘|fh”H < |f(z)| + €. Note if f = 0 there is nothing to show. Let X be

the carrier space of the uniform algebra, and define U = {y € X : |f(y)| < |f(x)| + €}.
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Clearly U is an open neighborhood of x € §A, and there exists k € A, such that

M(k) c U. If U = X, there is nothing to show, otherwise let § = max |k(y)|. Since

yeX\U
X\U is compact, the maximum is justified. Since X\U is disjoint from M(k), o < ||k,
J o
e., w < 1. Thus, for a sufficiently high power n, Tel < |f(]]|6;|“+ ‘. By taking

h =k" € A, this inequality becomes

h(y)l _ |f(@)[ +e

max < s

vex\u Rl il

MM ()]
7] nal

< |f(y)| < |f(z)| + €, which completes the proof. O

and so for all y € X\U we have

[/ @W)lIAy)]
I15]

(|f(@)] +€) < |f(z)| + e For

y € U, we have

For each f € A, consider the series e/ = Z Note Z M = el <« 50 which
=0

shows the series is convergent in A. The set er ={el: fc A} is called the exponent

A

of the algebra. Since e/@e @ = 1 for all z € X, we see e’ consists of invertible

elements.

Lemma 3.3.4. The set A= e N F(A) is a multiplicatively isolating family.

Proof. Let © € §A and f,g € A,, ie., f,g € e*NF(A) and = € P(f) N P(g). Since
both f and g are in F(A) with a common maximizer, x, their product is in F(A) with
maximizer z, i.e., fg € F,(A). There exists f’,g' € A such that f = ef "and g = €9

Thus fg = e/ € e and condition (i) of Definition 3.3.1 is satisfied.

Let © € A and U be an open neighborhood of z. Then there exists k € F(A) such
that P(k) C U. Let h = ¢*71. If z € P(k) then h(z) = #@~1 =0 = 1. If 2 ¢ P(k),
then |k(x)| < 1 and Rek(x) < 1 which gives Rek(z) — 1 < 0. Thus e®*@~1 < 1 and
h(z)| = ["P71| = ReF@=1 < 1. Thus h € e* N F(A) and P(h) = P(k) C U so
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condition (77) of Definition 3.3.1 is satisfied. O

Example 3.3.5. Let A be a uniform algebra then the following sets are multiplicatively

isolating,

(a) F(A)

Let A be any of the above sets. In all of the cases, A, is closed under products and thus
condition (i) of the definition is satisfied. Condition (i7) requires for each z € A and
each open neighborhood there exists h € A, such that M(f) C U. Since F(A)Ne® C A
in all the above cases, the existence required is met by an f € F(A) N e” by Lemma

3.3.4.
The following lemma is a stronger version of Bishop’s Lemma.

Lemma 3.3.6. If E C X is a peak set, and f € A is such that f|g # 0, then there
exists h € F(A) N et such that fh attains its mazimum modulus exclusively on E. In

particular, h is invertible.

Proof. We will use the following inequality, easily verified with Rolle’s Theorem.
etV <g, Vre27h1), Vn>2 (3.3.2)

Let E be a peak set and f € A such that f|gp # 0. By Lemma 3.2.10 there exists

h € F(A) such that P(h) = E and fh takes its maximum modulus only on E. Choose
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_ Ifhll
I

en(Beh@)—1) < Reh@)=1 < 1 gince Reh(z) — 1 < 0. Also

1

n > 2 such that <e_§> and define k = """~V Firstly, for all z € X, |k(z)| =

1=lk(z)] < n(Reh(z)—1)=0 <= Reh(z) =1 < h(z) =1,

and thus 1 = |k(z)| implies k(x) = 1. Therefore k € F(A) and P(k) = P(h) = E.
Also for any x € X with ||fh| = |f(x)h(z)|, we have x € P(h) = P(k), which implies
[fRll = 1f (@)h(x)] = | f(x)k(z)] < [[fE].

Finally we show that fk attains its maximum modulus exclusively on E. Let z € X
such that © ¢ P(k). Then ¢ P(h) and —1 < Reh(z) < 1

1

Case 1 5 < < Reh(z) < 1. Then |k(z)| = "Br@-D < Reh(x) < |h(z)], by (3.3.2), so
|f(@)k(x)] < |f(@)h(x)] < Rl < [IfE] -

Case 2: Reh(x) < % Then Reh(z) — 1 < —% and |k(z)| = (eReh(Z)_l)n < (e_%>n <
(I~ LBy ent < 11

G |f(@)k(e)] < [If1157 7 = |lfrll < || fEI-

Since |f(x)k(z)| < ||fk|| for all x ¢ P(k) = E, fk attains its maximum modulus

exclusively on FE. O]



Chapter 4

Weakly Peripherally-Multiplicative

Mappings Between Uniform Algebras

4.1 Norm Multiplicative Mappings

In this chapter we show a given mapping between uniform algebras is an isometric
algebra isomorphism if it satisfies rather general conditions. Suppose A is a uniform
algebra on the compact Hausdorff space X, and there exists a homeomorphism v :
Y - X. Let T: A— C(Y) be given by T'f = f o). Since f and 1) are continuous,
so is T'f. It is easy to show this map is linear, multiplicative, injective and continuous.
For example, T(f +g) = (f +g) ot = fot +gow = T(f) + T(g), shows T is
additive and mainly consists of applying definitions. Maps defined in this way are
called composition operators. So, if T is a composition operator, then 7" is an isometric
algebraic isomorphism. However this condition is not necessary. Thus we have the

following lemma.

43
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Lemma 4.1.1. Let ¢ : Y — X be a homeomorphism between topological spaces. Let
A be a Banach algebra of continuous functions on X with pointwise operations and
uniform norm then T : A — C(Y') given by T(f) = f o1 is an isometric algebra

isomorphism to its image.

Consider a uniform algebra A; let A be its Gelfand transform and A|g be the restric-
tion of the Gelfand transforms to a boundary E. Clearly the restriction map is an
algebraic homomorphism, and, since E is a boundary, it is isometric. This implies the
restriction is injective and thus an isometric algebraic isomorphism between Banach
algebras. If E is closed, for example £ = 0A, then the restriction map is an isometric
algebraic isomorphism between uniform algebras. However in general 0A will not be
homeomorphic to M. In particular, 9A(D) = T and Myp) = D which are clearly
not homeomorphic. This demonstrates that isomorphic uniform algebras can exist on
non-homeomorphic carrier spaces. They will, however, have homeomorphic maximal
ideal spaces. If A and B are uniform algebras on their maximal ideal spaces X = M4
and Y = Mp correspondingly, then an isometric algebraic isomorphism 7: A — B
induces a homeomorphism ¢: Mp — My such that (Tf)(y) = f(¢(y)) for all f € A
and y € Y. Additionally the Shilov and Choquet boundaries will be homeomorphic by
restricting ¥. We will seek to find conditions under which a given map 7': A — B is a
composition operator of the form 7T'(f) = f o1 for some homeomorphism ¢ : 6B — 0 A.
Then the linearity and multiplicativity come immediately. The first step in this task is

to show that |T'(f)| = |f o 9| as in the following theorem.

Theorem 4.1.2. Let A and B be multiplicatively isolating subsets of uniform algebras

A and B respectively. If T : A — B is a surjective mapping such that

ITfTyl = Il /gl (4.1.1)
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for all f,g € A then there exists a homeomorphism ¢ : 6B — dA such that

[ Tf] = |f o[ on dB.

In the following lemmas we assume that hypotheses of Theorem 4.1.2 hold.

Lemma 4.1.3. For all f € A, |[Tf|| = || f||.

Proof. By (4.1.1), |ITf|* = |Tf2|| = ITSTAl = IF 1 = |72 = 111 O
Lemma 4.1.4. The inequality d;h |||g:| holds on 6A if and only if the inequality
g
Tfl _ 1Tgl
< holds on 0B.
ITF1 = 179l
Proof. For the forward direction assume % < % on 6A. Let y € 0B, k € B, and
g

h € A with T'(h) = k. Since the maximum modulus must be taken on a boundary,
Tf- Tg-

Ifhl _ ot okl gl g Tk Ty ]

I = Tial (XA —l IR A= 11T gl

(4.1.1) and norm equality from Lemma 4.1.3. Taking the infimum over all k£ € B, and

Tf I _ Tyl

171 = [Tyl

T TfTh

‘f| 79 on 6B. Let x € 6A, h € A,. Then 7 |<

TgTh %’Tlff! g THTh h h 171
TTh) ITSTRI _ IToTh] Rl ok

1Ty 1rr = ATl IRIHLAE = WAL gl
(4.1.1) and norm equality from Lemma 4.1.3. Taking the infimum over all h € A,, we

@) o)
S el -

Lemma 4.1.5. There exists a unique bijection v : 0B — 0 A such that

on dA implies using condition

applying Lemma 3.3.3, we have

For the converse, assume

on dB implies using condition

have

A¢(y) = Tﬁl(By)

for ally € 6B.
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Proof. Fix y € B and define,

fer—1(By)

First we show that F} is nonempty. By the finite intersection property, it suffices to

show ﬂ M(fy) # 0 for fr € T-*(B,), since X is compact. Let f €T * (H Tfk>,

k=1

ie, Tf= HTfk. Note
k=1

Tf(y)| < |ITf]| = <H||Tfk|| <H|Tfk )| =ITf()|

so ||[Tf] = H IIT fx|| and hence
k=1

Tf] _ et [T fe(y) H T fi|
ITfl - Tl 1||Tfk:|| TSl

7l _ |Thd

ITfI— (1T fill

“f” If ” n 0A, by Lemma 4.1.4. By Lemma 3.2.3, M(f) N dA # () and
k

for v € M(f)N0A we have 1 = @)l < 2] < 1. Consequently, z € M ( J ) =
1171 [ fll |1 fll
M(fy) for any k, implying = € ﬂ M (fr). By Lemma 3.2.3 there exists € 0AN F,.
k=1
Thus z € ﬂ M(f), i.e., all the functions in T7'(B,) maximize on z. Thus we
fET=(By)
have shown

Since each factor is clearly less than or equal to one, forallk=1...n

Vy € 0B, 3z € 0A such that T7'(B,) C A,. (4.1.2)

We now repeat the procedure above to produce a y € 0B associated with each given
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z € 0A. Fix x € A and define

Similarly we show that FE, is nonempty by establishing ﬂ M(T(fr)) # 0 for fr € A,.

k=1
Let f = ka Note |f(z)] < [[f]l < HkaH = H|fk )| = 1f@)] so [Ifll = TT Il
k=1 k=1
and hence
1f1 H Sl
IF1 s 1T Al

Since each factor is clearly less than or equal to one, % < % forall kK =1...n.

TS| |7/l
Thus < < 1 on 6B, by Lemma 4.1.4. By Lemma 3.2.3, there exists

ITfl = Tl — T TR

Y k\Y . .
y € M(Tf)NdB. For such y we have 1 = < < 1 implies x €
~ Tl S T4

T'fx

M A M(T fy) for any k, so y € ﬂ M (T fy) as desired. By Lemma 3.2.3,
K k=1
there exists y € BN E,. Thus y & ﬂ M(g), i.e., all the functions in T'(A,)
geT(AL)
maximize on y. Thus we have shown
Vo € §A,3y € 6B such that T(A,) C B,. (4.1.3)

Equation (4.1.2) implies there exists ¢ : §B — A such that such that T~'(B,) C Ay,
We now show this function is unique and the containment is actually equality. Fix

y € 6B. Suppose x1, x5 € A such that

T'(B,) C A,, and T"(B,) C A, (4.1.4)
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as in (4.1.2). Since T' is surjective, this implies B, C T'(A,,) and B, C T(A,,). By
(4.1.3) there exists y1,y2 € 0B such that T(A,,) C By, for i = 1,2. Thus B, C B,,
and by Lemma 3.3.2, y = y; = yo. Thus we have A,, C T 'T(A,,) C T *(B,,) =
T7'(B,) C A, by (4.1.4). Thus z; = x5 by Lemma 3.3.2 and T~ '(B,) = A,,. This
shows 1) : §B — §A is the unique map such that 7' (B,) = Ay, Lastly we show ¢
is onto. By (4.1.3) for each x € 0A there exists y such that T'(A,) C B,. This gives
A, CT'T(A,) c T7Y(B,). We also have T~'(B,) = Ay(,) and so A, C Ay, which

gives x = ¢ (y) by Lemma 3.3.2. O

Lemma 4.1.6. For all f € A and y € 6B,

TN = 1F @)l

Proof. By Lemmas 3.3.3 and 4.1.5 we get
T = inf ||Tf-k||= inf TfTh
Tf(y)l kle%y ITf K heTlPl(By) |TfTh|

= dnt |TATh| = nt |lf

Ay y)

= [f (@)l O

To establish that ¢ is a homeomorphism, we will consider a particular topological basis

for the Choquet boundary.

Lemma 4.1.7. The family of sets B = {|f|7' ((6,0)) : § > 0, f € A\{0}} is a basis

for the topology of 6A.

Proof. Clearly every element in B is open in X. Let x € A and U be an open
neighborhood of z in X (and thus U NJA is an arbitrary neighborhood of x in §A.) We
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now show that every such neighborhood contains a neighborhood of z in 8. Since A is a
multiplicatively isolating family of A, there exists an h € A, \{0} such that M(h) C U.
If U = X, then |h|7*((0,00)) C U. Otherwise X\U is a non-empty compact set and
so is |h|(X\U), which is disjoint from the compact set |h|(M(h)). Thus there exists a
d such that max |h|(X\U) < § < ||h]|. If |h(y)| > d then y ¢ X\U, ie., y € U. Thus
|h|71((6,00) C U and B is a basis for the topology of JA. O

Lemma 4.1.8. The bijection ¢ from Lemma 4.1.5 is a homeomorphism.

Proof. First we show continuity of 1. Let B4 be the basis as in Lemma 4.1.7 for J A.
We need only show ¢ (U) is open for U € B 4. So for some § > 0, U = | f|~*((, 00))
and y € ¥ (| f| 71 ((6,00)) if and only if § < |f(x(y))| if and only if § < |T f(y)|. Thus

N U) = [TF7H((8, 00)).

For the continuity of 9", let B be the basis as in Lemma 4.1.7 for 6B. We need
only show 1 (U) is open for U € Bp. So for some § > 0, U = |T'f|*((6,00)) and
r € Y(|TFI7H((0,00)) if and only if 6 < |Tf(v"*(z))| if and only if 6 < |f(x)|, which
yields ¥(U) = [T f]7((d, 00)). O

We have now proven Theorem 4.1.2, stated at the beginning of the section.

Theorem (4.1.2). Let A and B be multiplicatively isolating subsets of uniform algebras

A and B, respectively. If T : A — B is a surjective mapping such that

1T/ Tgll =119l

for all f,g € A then there exists a homeomorphism 1 : 6B — §A such that

Tf| = |f 0| on 0B,
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The following theorem follows immediately from Theorem 4.1.2.

Theorem 4.1.9. Let T : A — B be a mapping between uniform algebras. If there exist

a multiplicatively isolating set A such that T'(B) is a multiplicatively isolating set and

175 Tgll = [lfgll

forall f € A and g € A then there exists a homeomorphism ¢ : 6B — §A such that
Tf] = |f o[ ondB.

Proof. Let B = T(A). The restriction 7|4 satisfies Theorem 4.1.2 so we get ¢ and
|Tf| = |f o for all f € A. However Lemmas 4.1.5 and 3.3.3 give for all f € A,

Tf(y)| = inf |Tf k|l= inf ||TfT
TH)l = nf 1T -kl =, _jof TSR]

= inf ||[TfTh|l = inf h
)|| fTh]| heAm)”f |

hEAd,(y

= [f (@)l O

The result obtained in [11, Theorem 1| is a particular case of Theorem 4.1.2 with
A = F(A). From the examples of multiplicatively isolating families given in Example

3.3.5 we have the following corollaries.

Corollary 4.1.10. Let T : A — B be a mapping between uniform algebras satisfying
T(A™')=B" and

75Tyl = [l fgll
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forall f € A and g € A™'. Then there exists a homeomorphism 1) : B — §A such that
Tf|=[f ol ondB.

Corollary 4.1.11. Let T : A — B be a surjective mapping between uniform algebras

such that

1T/ Tgll = 179l

for all f,g € A. Then there exists a homeomorphism 1 : 6B — 0A such that

Tf| = |f 09| on 6B.

In [9] O. Hatori asks if the preservation of peaking functions hypothesis of Theorem 4.1.9
(as was published in [11]) may be replaced by surjectivity. Corollary 4.1.11 answers this

in the affirmative.

4.2 Unital Weakly Peripherally-Multiplicative Map-
pings

Theorem 4.1.2 shows that under its assumptions 7" resembles an algebra isomorphism.
The following examples show, however, that the conditions of Theorem 4.1.2 are nec-

essary but not sufficient for 7" to be an algebra isomorphism.

Example 4.2.1.

(a) Let A be a uniform algebra, B = A and let T: A — B be the conjugation mapping
Tf="F.
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(b) If A= B = C ({x0}), then any f € A is of the form re. Let T: A — A be defined
as T(re') = re?.

The set of peaking functions of A is a multiplicatively isolating family of A, and, in both

cases, T (F(A)) = F(B) and T is unital. Also, T" is norm-multiplicative since, in case

0,

. In both cases

7’26’92 ‘

(a), || fgll = || fg|l and in case (b), |rle2wlr262i92| =11y = |r1e
T is multiplicative. However in the first case T(\f) = T(A\)T(f) = AT(f), which is not
equal to AT(f) in general. In the second case T(\f) = T(N)T(f) = NT(f), which is
not equal AT'(f) in general. Thus 7" is not homogeneous and so 7" is not an isomorphism,
though it satisfies the conditions of Theorem 4.1.2. These examples demonstrate that
even unital mappings that preserve the peaking functions and are norm-multiplicative
need not be algebra isomorphisms. We now consider strengthening the hypothesis of
Theorem 4.1.2 so that we may conclude T is an isometric algebra isomorphism. In [13] it
is shown that it suffices to assume 7T is surjective and the peripheral spectra of elements
fg and T fTgq are equal, i.e., o, (T fTq) = 0. (fg) for all f,g € A. Such mappings are

called peripherally multiplicative. Strengthening the result of [13], we consider mappings

T: A — B between uniform algebras that satisfy the condition

ox (TfTg) Nox(fg) # 0 (WPM)

for all f,g € A. Such mappings we call weakly peripherally-multiplicative mappings.

Lemma 4.2.2 ([11]). Let T: A — B be a weakly peripherally-multiplicative mapping

between two uniform algebras. Then

(a) T is norm-multiplicative

(b) o (T1Tf)Nog (f) # D for every f € A
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(¢) 1€ ox ((Th)?) for every h € F(A); in particular, 1 € o, ((T1)?)

(d) 1 € o, (T1Th) for every h € F(A).

If, in addition, T is unital, then

(€) o (Tf)Nor(f)#0 for every f € A
(f) 1 € 0. (Th) for every h € F(A).
(9) 1€ 0, (h) for every h € T~ (F(B)).

(h) If Tf e F(B), then1 € o, (f).

Proof. (a) follows immediately from the weakly peripherally-multiplicative property
(WPM), since || = || f]| for every A € o, (f); (b), (¢) and (d) follow by substituting
h=1, f=gand f =1in (WPM) correspondingly. The remaining statements are

straightforward. O]

However the following example shows that the weakly peripherally-multiplicative con-

dition is not strong for 7' to be an isometric algebra isomorphism.

Example 4.2.3. Let X be a compact Hausdorff space. Consider two disjoint copies,
X1, Xy of X. Let A = C(X), B=C(X;UXy), and define T: A — B by T(0) =
0, (Tf)lx, = f, (Tf)lx. = f2/IfIl. f#0.

Here T is unital, o, (f) C o, (Tf), and o, (fg) C o, (T fTg). Therefore, T is weakly
peripherally-multiplicative, without being peripherally multiplicative, i.e., the sets o (T'fTg)
and o (fg) do not necessarily coincide. For example these sets are different for f = 1
and ¢ = —1. Thus the weakly peripherally-multiplicative condition alone does not

suffice. Note that T in this example fails to preserve a multiplicatively isolating set
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of elements. In particular, T fails to perserve the (multiplicatively isolating) family of
peaking functions. Thus we will consider mappings that preserve the peaking functions,
1.e.,

F(B)=T(F(A)). (PPF)

Lemma 4.2.4. IfT : A — B is norm multiplicative mapping and preserves the peaking

functions then it is unital.

Proof. By Theorem 4.1.2, |T'1| = [1o®| =1 on 0B, but T'1 is a peaking function, which
implies 71 =1 on 0A and so T'1 = 1. O]

Condition (PPF) implies, in particular, that o, (T'h) = o, (h) for all h € F(A), i.e., that
T preserves the peripheral spectrum of peaking functions. Note that all unital mappings
considered in [5, 6, 7, 13, 14, 15| automatically preserve the peaking functions and are
weakly peripherally-multiplicative. The next theorem shows, any such mapping is an

algebra isomorphism.

Theorem 4.2.5 ([11]). Let T: A — B be a mapping between uniform algebras. If T
is weakly peripherally-multiplicative and preserves the peaking functions,' then T is an

isometric algebra isomorphism.

Proof. Since weakly peripherally-multiplicative mappings are norm-multiplicative and
the set peaking functions of A (resp. B) are a multiplicatively isolating family of A
(resp. B), Theorem 4.1.2 implies that the mapping ¢: B — JA is a homeomorphism,

and

Tf(y)| = f((y))] (4.2.1)

for all y € 6B and f € A. We now show that (T'f)(y) = f(¢¥(y)).

!Note that we do not assume 7 is surjective.
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Take f € Aand y € §B. Equation (4.2.1) implies f(¢(y)) = 0if and only if (T'f)(y) = 0,
so we may assume that f(¢(y)) # 0. Let U be an open neighborhood of y. Bishop’s
Lemma 3.2.10 implies that there exists a Th € F(B) such that T fTh assumes its maxi-
mum modulus only within P(Th) C U. By Lemma 3.2.6 (a), if A € o, (T fTh)No, (fh),
then (fh)~ ({A\}) and (TfTh) ™" ({\}) are peak sets of A and B correspondingly. Hence,
by Lemma 3.2.3 these sets meet the Choquet boundaries A and B correspondingly.

Therefore we can choose elements ¥y, yo € 6 B such that

A=Tf(y1) - Th(yr) = f(¥(y2)) - h(¥b(y2))- (4.2.2)

Applying (4.2.1) we obtain

ITFThI = X = Tf(yr) - Thy)l = [ (y2)) - M (y2))| = [Tf (y2) - Th(ya)|-

The assumption on Th implies T fTh takes is maximum modulus only on P(Th). Thus
both points y; and yo belong to P(Th) C U, and therefore, ¢¥(y1),¥(y2) € P(h),
by (4.2.1). Hence Th(y;) = 1 = h(¢(y1)) which applied to (4.2.2), yields T'f(y1) =
f(¥(y2)). Since for any neighborhood of y there exist two such points, the continuity
of T'f and f o implies T'f(y) = f(¥(y)), as intended.

Finally note that since dA and 6B are boundaries for A and B resp., the restrictions
ra: A — Alsa and rp: B — B|sp are isometric algebra isomorphisms by Lemma 3.1.2.

Define a mapping T': Alsa — Blsg by T(flsa) = (T'f)|ss. Clearly, T =rgoT or;" so
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that the following diagram commutes:

N

Alss —— Blsp

We have just shown that ff = fo1. By Lemma 4.1.1, T is an injective isometric
algebra homomorphism. Therefore, T = r35' o Tory is an injective isometric algebra
homomorphism. Recall F(B) C T(A) and, by Lemma 3.2.6, the linear span of F(B)
is B. Thus T is also surjective and now we may conclude it is an isometric algebra

isomorphism from A onto B. n

Actually one can see from the proof that Theorem 4.2.5 is true if the condition o, (T'fT'g)N
or (fg) # 0 holds for all f € A and for peaking functions g € F(A) only.

Clearly if T is surjective and preserves the peripheral spectra of algebra elements, i.e.,
o:(Tf) = o.(f), then it preserves the families of peaking functions. In particular, we

have the following corollary.

Corollary 4.2.6. Let A and B be uniform algebras. If T: A — B is a surjective

mapping such that

(1) ox(Tf) = ox(f) for every f € A and

(it) ox (TfTg) C ox (fg), or o= (T'fTg) D 0ox (fg) for all f,g € A,

then T is an isometric algebra isomorphism.

In [13], maps T' : A — B such that o, (T fTqg) = o, (fg) are called peripherally-

multiplicative. If T is unital then o, (T'f) = 0, (T1Tf) = 0. (1- f) = o, (f), ie.,, T
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preserves the peripheral spectra of algebra elements. Hence we get the main result of

[13] as a corollary.

Corollary 4.2.7 ([13, Theorem 1|). Let A and B be uniform algebras. If T: A — B

s a surjective mapping such that

(1) T is unital and

(13) T is peripherally multiplicative, i.e., o, (T fTg) = 0. (fg), f,g € A,

then T is an isometric algebra isomorphism.

The preservation of peaking functions property

F(B) =T (F(A)) (PPF)

is clearly equivalent to the inclusions F(B) C T (F(A)) and T (F(A)) C F(B). In
fact as the next lemma shows, in the case when F(B) C T(A) either of these condi-
tions is sufficient for a weakly peripherally-multiplicative mapping to preserve peaking

functions, which leads to a stronger version of Theorem 4.2.5.

Lemma 4.2.8 ([11]). Let T: A — B be a weakly peripherally-multiplicative mapping

between two uniform algebras. If

(a) F(B) C T (F(A)), or,

(b) T(F(A)) € F(B) C T(A),

then F(B) =T (F(A)), i.e., T preserves the peaking functions.
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Proof. (a) Let f € F(A) and A € o (Tf). Thus (Tf)"'()) is a peak set by Lemma
3.2.6 (a). Bishop’s Lemma implies that there exists & € Frp-100)(B) such that (T'f)-k
takes its maximum modulus only on (T'f)"'(\), i.e., or (Tf)-k) = {\}. Since T
preserves the norms, ||(T'f)-k|| = |A\| = |T'f]| = || f|| = 1. By the hypothesis there exists
h € F(A) such that Th = k. Norm-multiplicativity then implies ||fh|| = ||T'fTh| = 1.
Since the product of peaking functions is a peaking function if and only if its norm is
1, we conclude that fh is a peaking function of A. Thus O # o, (T fTh) No, (fh) =
{A} N {1} implies A = 1, and so o,(Tf) = {1}. Therefore T'f is a peaking function and
consequently, 7' (F(A)) C F(B). O

Proof (b). If k € F(B), then by the hypotheses there is f € A such that Tf =k €
F(B). Let A € 0(f). Thus f~*()\) is a peak set by Lemma 3.2.6 (a). Bishop’s Lemma
implies that there exists h € Fy-1(5)(A) such that fh takes its maximum modulus only
on S (N), ke, ox(fh) = {A}. Similarly |TSTh| = [[£h]) = £l = [T = 1 implies
that T fTh is a peaking function since, by hypothesis, Th € F(B), i.e., o, (T fTh) =
{1}. So 0 # 0. (TfTh)No,(fh) = {1} N{A} gives A = 1 and so o,(f) = {\}.
Therefore f is peaking function and consequently, F(B) C T (F(A)). O

Theorem 4.2.5 implies the following

Corollary 4.2.9 ([11]). If T: A — B is a weakly peripherally multiplicative mapping,

not necessarily linear nor continuous, between uniform algebras such that
(a) F(B) CT(F(A)), or,
(b) T(F(A)) € F(B) CT(A),

then T is an isometric algebra isomorphism. Thus T is automatically continuous, linear

and multiplicative.
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4.3 Non-Unital Weakly Peripherally-Multiplicative

Mappings

In general, neither weakly peripherally-multiplicative, nor norm-multiplicative map-

pings need to be unital.

Example 4.3.1. Let A be a uniform algebra and T: A — A.

(a) If T is the identity, then Ran(7'1) = {1}.
(b) If T is the negative of the identity, then Ran(7'1) = {—1}.

(¢) If A= C({x1,22}) and T'(z1, 22) = (21, —22) then Ran(7'1) = {£1}.

In all cases T is weakly peripherally-multiplicative; in (a) and (b) it is surjective, while in

(b) and (c) it is not unital. Observe that in (b) and (¢) T is not an algebra isomorphism.

As mentioned before, weakly peripherally-multiplicative mappings that do not preserve
the peaking functions might fail to be algebra isomorphisms. As established in this
section, though, a large class of such mappings are closely related in certain sense to
algebra isomorphisms. Recall that the peripheral spectrum of any peaking function
h € F(A) is a singleton, namely o, (h) = {1}. If T denotes the unit circle in the
complex plane C, then T - F(A) is the set of all functions f € A with ||f|| = 1 and

singleton spectra.

Proposition 4.3.2 ([11]). Let T: A — B be a weakly peripherally-multiplicative map-

ping between uniform algebras. If

(a) F(B) CcT(T-F(A)), or,

(b) T(F(A) CcT-F(B)CT(A),
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then either T' or its negative is an isometric algebra isomorphism, and is, therefore, a

bounded linear operator.

Proof (a). According to Lemma 4.2.2 (a), T' is norm-multiplicative, and by Lemma 4.1.3
it is norm preserving. By (a), for any k € F(B) there is f € A with T'f = k and o, (f)
a singleton. In particular, there is e € A such that o, (e) is a singleton and Te = 1.
Since o, (62) No, ((Te)z) =0, (62) N {1} # 0, we see that o, (62) = {1}. There are

two possibilities for o, (e): either o, (¢) = {1} or o, (e) = {—1}.

Suppose o, (e) = {1}. The set A =T - F(A) is a multiplicatively isolating family and,
by Lemma 3.3.3,

lehll oo llehll o IL-TA]

le(x)] =

 heT-F(4) |h||  rerFa) ||B|  neTFa) || Th|

b

for all x € §A. Since o, (e) = {1}, e =1 and T is unital. By Lemma 4.2.2(g), if f €
F(A), then 1 € o, (f). Consequently, o, (f) = {1}, since o, (f) is a singleton. Hence,

f € F(A), and therefore F(B) C T (F(A)). By Corollary 4.2.9, T" is an isomorphism.

If o, (e) = {—1}, then the above argument applies to the mapping 7" f = T'(—f), which
is weakly-peripherally multiplicative, and so 7" is an isomorphism. In particular, 7" is

linear so 7" = —T and T is the negative of an isomorphism.

(b) As in part (a), T is norm-multiplicative and norm preserving. According to (b),
o (Th) is a singleton for all h € F(A). So o, (1*)No, ((T1)?) # 0 implies o ((T1)*) =
{1}. There are two possibilities for o, (T'1): either o, (T'1) = {1} or o, (T'1) = {—1}.

Suppose o, (T'1) = {1}. The set B = T-F(B) is a multiplicatively isolating family and,
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by Lemma 3.3.3,

[T . [1- Al
T1 = n = inf =1,
IT10)] her-Y(T-F(B)) ||Thl| heT-1(T-F(B)) || h]
for all y € B. Since o, (T1) = {1}, T1 = 1 and T is unital. Lemma 4.2.2 (f) implies
that 1 € o, (Th) for any h € F(A). Consequently, o, (Th) = {1}, since o, (Th) is a
singleton. Hence, Th € F(B), and therefore T (F(A)) C F(B). By Corollary 4.2.9, T

is an isomorphism.

If —=T1 € F(B), then the above argument applies to =7, so it is an isomorphism. [

If T is a weakly peripherally-multiplicative mapping, then 1 € o, (T'1Th) for any h €
F(A), by Lemma 4.2.2(d). If, moreover, o, (T1Th) = {1}, then T1Th € F(B) and
consequently,

(T1) - T (F(A)) c F(B). (4.3.1)

Example 4.2.3 shows that the above condition is not sufficient to characterize weakly
peripherally-multiplicative mappings. However, as the next theorem shows, the stronger
condition

(T1)-T(F(A)) = F(B) (4.3.2)

is sufficient for this. Note that the mappings considered in |6, 13, 15, 17| automatically

satisfy this condition.

Theorem 4.3.3 ([11]). If a mapping T: A — B, not necessarily linear, between two

uniform algebras satisfies the conditions

(1) F(B)=(T1)-T(F(A)) and

(13) T is weakly peripherally-multiplicative,
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then T is the product of a function in B with values in the set {1} and an algebra
isomorphism from A onto B. More precisely, there exists an isometric algebra isomor-

phism T: A— B, such that for any f € A

Tf=(T1) Tf, (4.3.3)

and therefore T is automatically a bounded linear operator.

Proof. The mapping T = (T'1)-T satisfies the hypothesis of Theorem 4.2.5 and therefore
is an isometric algebra isomorphism. Thus 1 = T(1) = T1-T1 = (T1)?, (T1)~" = T1,

and the values of T'1 are in the set {-1}. This completes the proof since T' = (T1)-T. O

Actually Theorem 4.3.3 holds if the weak peripheral multiplicativity of T is replaced by
the condition o (T fTh)No, (fh) # 0 for all f € A and for peaking functions h € F(A)
only. Observe that if a unital mapping satisfies condition (4.3.2), then it preserves the

peaking functions.

In the context of Theorem 4.3.3, we obtain the following:

Corollary 4.3.4 ([11]). Let A and B be uniform algebras on their mazimal ideal spaces
X andY correspondingly. If a mappingT: A — B satisfies the assumptions of Theorem

4.8.3, then there exists a homeomorphism ¢ :Y — X such that

(TH)y) = &ly) - fF¥(Y)) (4.3.4)
for all f € A, where k =T1 € B and Ran(k) C {£1}.

Corollary 4.3.4 implies that T is a weighted composition operator on A. Clearly, iso-

morphisms are weighted composition operators with trivial weight.
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Example 4.3.5. Let X = X; U X5, X; & X, be the compact Hausdorff space from
Example 4.2.3, A = C(X), and B = C(X; U X5). The mapping T: A — B defined by
(TH)lx, = f, (Tf)|x, = —f, is linear, but not of the type (4.3.3). Clearly, o, (T1) =
{£1}, 0 (f) C o, (Tf), and therefore, T' is weakly peripherally-multiplicative. Here T’
violates condition (¢) of Theorem 4.3.3. In particular F(B) ¢ T'(A).

As in the unital case, condition () in Theorem 4.3.3 can be relaxed. Indeed the proof

follows the same line except that it is based on Corollary 4.2.9 instead of Theorem 4.2.5.

Corollary 4.3.6 ([11]). Let T: A — B be a weakly peripherally-multiplicative map-
ping between uniform algebras such that (a) F(B) C (T1) - T (F(A)), or, (b) (T1)-
T (F(A)) Cc F(B) C (T1)-T(A). Then T is as in Theorem 4.3.3.

Peripherally-multiplicative mappings, mentioned earlier, are introduced in [13]. By

definition, these mappings require

ox (fg) = 0. (TfTg)

to hold for all f,g € A. Peripherally-multiplicative mappings are automatically weakly
peripherally-multiplicative. It is easy to show that surjective and peripherally-multi-
plicative mappings meet the assumptions of Corollary 4.3.6. Indeed, the second inclu-
sion in (b) is satisfied by the surjectivity of T', so it is enough to check only the first
inclusion in (b). If h € F(A), then T1Th € F(B) since o, (T'1Th) = o, (1 - h) = {1},
by the peripheral multiplicativity. Hence (T'1) - T (F(A)) C F(B). Corollary 4.3.6 now

implies the following main result of Luttman and Tonev in [13]:

Corollary 4.3.7. Let A and B be uniform algebras. If the mapping T: A — B, not
necessarily linear, is surjective and peripherally-multiplicative, then T is as in Theorem

4.8.3.



Chapter 5

Norm Conditions for Isomorphism -

The Hatori Conjecture

5.1 Introduction

In 2005 O. Hatori proposed (in private communication) the following conjecture: Con-

sider a surjective map T : A — B between uniform algebras satisfying
ITfTg+1l| = [Ifg+ 1]|, for all f,g € A. (H)

Then T is an isometric algebra isomorphism. The conjecture is false as shown by the

examples in the following two lemmas.

Lemma 5.1.1. Let & € C(Y) such that k* = 1. Define a map ¥ : C(Y) — C(Y)
by Vf = kf € C(Y). Then W is an isometric C-linear bijection with ¥~ = ¥ and

satisfies |V fWg+ 1| = ||fg + 1| for all f,g € C(Y).

64
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Proof. Note k* = 1. So ¥? = idc(yy which implies W is a bijection with U~ = U, For
all f,g e C(Y)and XA € C we find ¥(f + \g) = k(f+Ag) = kf + Akg = ¥ f + A\Vg and
U is C linear. Since k* = 1,|x| = 1 and |V f| = |xf| = |f|. So ¥ preserves the modulus

of functions and thus the norm proving ¥ is an isometry. Also ¥ fWg = (kf) (kg) = fg
so ¥ satisfies (H). O

The map V¥ is multiplicative if and only if x = 1 (i.e., ¥ is the identity map) since
U1Vl = k* = 1 and ¥1 = k and these are equal only if kK = 1. If Y is connected then
k must be constant in which case W is either the identity map or the negation map.
If Y is disconnected more complicated examples. Suppose Y is the disjoint union of
two compact subspaces, say Y; and Y3. Then k defined by x|y, = 1 and &|y, = —1 is
continuous and x? = 1. In this example ¥ is neither the identity map nor the negation

map.

Lemma 5.1.2. Let e € C(Y) be an idempotent, i.e., ¢* = e and let ¢ =1 — e. Define
amap ® : OY) — CY) by f = ef +€f € C(Y). Then ® is an multiplicative,
isometric, R-linear bijection with ® ' = ® and satisfies |V fWg+ 1| = ||fg + 1|| for
all f,g € C(Y).

Proof. Note e¢' = e(1 —€) = e —e? = 0 and (¢/)° = € — ¢'e = ¢/. Thus ¢ is also
idempotent, and ee’ = 0. As idempotents, e and ¢’ and only take the values 0 or 1. In

particular, they are real-valued. Thus

Pod(f)=e(ef+ef)+e(ef +ef)=ef+ef+eef+ (e’)2?

=ef +ef=(ete)f =1
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which proves @ is a bijection with ® ' = ®. If f, g € C(Y) and r € R, then
O(f+rg)=e(f+rg)+e(f+rg)=ef +reg+e'f+re'g=2f +rdg
proves R-linearity. Note

Ofdg = (ef +¢f)(eg+€g) = e*fg+ee' fG+eefg+ () fg=
fg one (1)

fg on e (0)= ()7 (1)

=efg+efg=(fg) =

for all f,g € C(Y). Thus ® is multiplicative and |®f® + 1| = |fg + 1| on e *(1) and
|®f®+ 1| = |fg+ 1| =|fg+1] on e '(0). Since the uniform norm is the maximum
modulus, (H) holds. Similarly |®f] = |f] on e”'(1) and [®f| = |f| = [f] on e~'(0).

Thus ¥ preserves the modulus and thus the norm and is an isometry. O]

Note that in general ®(1) = 1. The map ® is C-linear if and only if e = 1 (i.e., ®
is the identity map) since ®(i) = (2e — 1)i and i®(1) = ¢ and these are equal if and
only if e = 1. If Y is connected then e is constant and thus @ is either the identity
map (if e = 1) or the conjugation operator (if e = 0). If Y is the disjoint union of two
compact subspaces Y7 and Ys. Then e defined by e|y;, = 1 and e|y, = 0 is continuous
and e is idempotent and the corresponding map ® is neither the identity map nor the

conjugation map. In any case ® fixes real-valued functions.

Another interesting fact is that maps satisfying (H) compose to a map satisfying (H).

Lemma 5.1.3. If T : A — B and S : B — C are maps between uniform algebras
satisfy (H) then so does SoT : A — C.
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Proof. Let f,g € A. Then ||S(Tf)S(Tg)+ 1| =|TfTg+ 1| = ||fg+ 1| O

In [11] it was shown that surjective maps satisfying condition (H) are isometric algebra
isomorphisms provided that they are assumed to be homogeneous which, of course, ¥
and ® are not in general. However in [12] we showed that surjective maps satisfying
(H) have the form W o ® o T where T is an isometric algebra isomorphism. Specifically

we have the following theorem.

Theorem 5.1.4 (|12, Theorem 2.9|). Let T: A — B be a surjective map that satisfies
\TfTg+ 1| =||fg+1]|| for all f,g € A. Then there exist an idempotent e € B and an

isometric algebra isomorphism T: A — Be & Be' such that
Tf = (T1) (eTf + e’T_f)
forall f € A, where ¢ =1 —e and (T1)* = 1.

The rest of this chapter is devoted to the proof of Theorem 5.1.4 also contained in [12].

5.2 Preliminary Results
The following result applies in any uniform algebra. However the hypothesis is quite
relevant to condition (H).

Lemma 5.2.1. Let A be a uniform algebra and f € A. Then ||f||+1=||f + 1| if and
only if || f|| € ox (f)-
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Proof. For any complex number \ € C, the following statements will be justified.

A+12 = |M*+2ReA+1 (5.2.1)

A=A = [A+1=N\+1 (5.2.2)
Equation (5.2.1) is verified by,

A1 =AM+ D) (AN+1) = AP+ A+ XA+ 1= A" +2Re) + 1,

A = Re \.

since

Clearly A = |)| if and only if X is a non-negative real number, so |\ + 1| = A+1 = |A|+1.
For the other direction we square both sides to get |A + 1| = |A]* + 2 |\| + 1. Applying
(5.2.1) we get |A]2+2Re A+ 1 = |A|* + 2 |A| + 1 which simplifies to Re A = |)|. Clearly
this gives A = |A| and (5.2.2) is justified.

For the main part, if || f|| +1 = || f 4+ 1|| then there exists x € 0A such that |f(x) + 1] =
|f 4+ 1||. Thus

f@+1<[fI[+1 =+ 1 =1f(z) +1] < |f(=)| + 1,

and we have equality throughout. Thus |f(z)| = ||f||, and |f(x)|+1 = |f(x) + 1|. From

(5.2.2) we have f(z) = |f(z)|, yielding f(z) = [[f||. Thus [|f[| = f(x) € ox (f).

Conversely, if ||f|| € ox (f) then there exists some x such that f(z) = ||f||. Thus
Ifl+1=Ifll+ 1 = |f(@)+ 1| < |If + 1| < |If||+1 and we have equality throughout,

justifying || f + 1|| = || fIl + 1. O

For the remainder of this section will assume T : A — B is a surjective map between
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uniform algebras satisfying (H).
Lemma 5.2.2. The map T is bijective and T~' : B — A satisfies (H).

Proof. Suppose T'f =Tg for f,g € A. Then ||fk+ 1| = ||TfTk+1|| = ||T9Tk + 1| =

|lgk + 1|| for all k£ € A. We now show that f = g using,

Ifk+1|| = |lgk+1|| forallk € A

For all k € A and n € N we have
1 1 1 1
ka+ —H — L mmy 1 =Ll by + 1) = ng —H
n n n n

Taking the limit as n — oo, yields || fk|| = || gk||-

For any x € JA such that f(x) # 0 then g(x) # 0 and we may apply Lemma 3.2.11
to get a peaking function h € F,(A) such that o, (gh) = {g(z)}. Let k = f(z)"'h so

o (gk) = {g(2)f(x)~"} and [|gk|| = |g(z)f ()" = 1 since | f| = |g| on §A. Thus

2= |f(2)f(2)" h(z) + 1] = | f(2)k(z) + 1]

<|Ifk+ 1 < llgh + 1| < [lgkll +1 =2,

and we have equality throughout. In particular, ||gk + 1| = ||gk|| + 1 and by Lemma
5.2.1, 1 = ||gk|| € ox(gk) = {g(2)f(x)""}, ie., f(z) = g(z). Thus f = g on §4, so

f =g and T is injective.

Since T is surjective and injective, there exists a well-defined, bijective map T7': B —
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A. Forall f,g e B,

Ifg+ 1l =T (T7(H) T (T7(g)) + 1| = 1T (NHT (g) + 1l

and so T~ satisfies (H). O

Lemma 5.2.3. The map T preserves invertibility, i.e., f € A™' if and only if Tf €

B™'. In particular

()™ ==T (7).

Proof. Let f € A~'. Then 0= ||f (—f~") +1|| = ||TfT (—f") + 1||. Thus
TfT (—f~') = —1, which implies that T f is invertible and which proves T(A™") C B~
This result applies also to 7' so T~'(B™') C A™" and thus T(A™") = B~ O

Recall, a mapping T is called norm-multiplicative if it satisfies ||fg|| = ||T'fTg|| for all
f,g € A. Following an argument similar to that of Honma [9, Lemma 3.3|, we next
show that T satisfies the norm-multiplicative property when at least one of factors is

invertible.

Lemma 5.2.4. For all f € A and g€ A~ |[TfTq|l = ||fgll-

Proof. For all f,g € A,

Ifall =llfg+1=1] <|fg+1|+1=|TfTg+ 1| +1

<|\|TfTq| +2.

Since T~ ! also satifies (H), we also have ||[TfTg|| < ||fgll + 2.

Foranyn € N, f € A, and g € A~! we have,
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nllfgl =1f- (ng)ll < TfT(ng)l + 2
= ||TfTg(Tg)"'T(ng)| +2
<|TfTgll |(Tg)"'T(ng)|| + 2
< TfTgll||-T(~g~")T(ng)|| +2 (5.2.3)
<|TfTgll (||-g~"ngl| +2) +2
=|TfTygl (n+2)+2,

n+2

n
shows that ||fg|| < ||TfTg|, by letting n — oo. Since T~' also satisfies (H) we

where line (5.2.3) is obtined by Lemma 5.2.3. Thus || fg| < [|TfTy]|

2

+ — which
n

may apply this result to get, ||TfTg| < HT’l(Tf)T’l(Tg)H = ||fg]| Thus ||fg|] =

ITfTy]. N

With this result we now have the necessary conditions for the map ¢ : § B — 0 A to exist
as in Theorem 4.1.9. The multiplicatively isolating sets used to satisfy the hypothesis
will be A™! and T(A™') = B~ (Lemma 3.3.5).

Corollary 5.2.5. There exists a homeomorphism v : 0B — 0 A such that
[ Tfl=1[fov] ondB

for all f € A. Consequently [ fgll = T Tyl , |[fII = TSIl

Lemma 5.2.6. For all o, € C, ReTaT( < Reaf

Proof. First we justify,
|Ta| = |af (5.2.4)
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for « € C. By Corollary 5.2.5, T preserves the norm. Thus (5.2.4) follows for o« = 0,
since T0 = 0. For the case a € C\ {0}, then « is invertible and |a™ | = |a|™, so using

Lemma 5.2.3 we have,
(Ta) | < (Ta)7| = [|[-T(=a || = | =7 = o]

Thus |o| < |Ta| < ||Ta| = ||, proving (5.2.4).

Now for all o, 8 € C, [TaTB+1|* < [|[TaTB+1|* = |aB+1|*. Applying equation (5.2.1)
to both sides we get |Tal?|T3]> +2ReTaTB +1 < |a|?|8])* +2Reaf + 1. Simplifying

this with (5.2.1) completes the proof. ]

Lemma 5.2.7. The map T satisfies (Ti)*> = T(—i)> = T(1)T(~1) = —1, T(—i) = —T%,

and (T1)* = 1.
Proof. From (H) we have 0 = ||i-i+ 1| = ||TiTi + 1| so (T4)* = —1. Similarly,
0=|—i-—i+1]| = |T(=)T(=3)+ 1| and 0 = ||1- =1+ 1|| = [|T(1)T(=1) + 1| give

T(—i)? = —-1=T(1)T(-1).

1 — T()T(—i)

Let E —
¢ 2

. Note

|T(6)T (i) + 1]
2
lli - —i+1]|

I=E+1] =
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Let e = T HT()E), i.e., Te = T(4)E = T(—i)E. Thus

lie + 1| = |T(i))Te+ 1| = |T()’E+ 1| = ||-E + 1| = 1, and

|—ie +1]| = |T(=i)Te+ 1|| = |T(=i)*E +1|| = |[-E + 1| = L.
Applying equation (5.2.1) we have

lie|* + Reie + 1 = |ie + 1| < |lie + 1|| = 1, and

| —ie|> = Reie +1=|—ie+ 1| < || —ie+ 1| =1

which, when added and simplified, gives 2|e|> < 0. Thus 0 = |le| = ||T(:)E|, ie.,

1 —=T©G)T(—1)
2

So using formula for the inverse in Lemma 5.2.3, T(—i) = (T4i)"' = ~T(—i"') = —Ti.

E = 0 since T'(i) is invertible. Finally 0 = E = implies T'(4)T(—i) = 1.

Finally we must justify (71)> = 1. Since |T'1| = |1]| by (5.2.4) it suffices to show
Im71 =0. By Lemma 5.2.6 ReTiT1 < Rei-1 =0 and —ReTiT1 = ReT(—1)T1 <
Re —i-1 = 0, using also T'(—i) = —T'(3). Thus 0 = Re T4T'1. Since (T%)* = —1, T'i takes
purely imaginary values and so i7" is an invertible function taking purely real values.

So 0 = iTiReTiT1 = Rei(Ti)*T1 = Re —iT1 =ImT1. O

5.3 Special Case: T Preserves 1 and i

In this section, in addition to assuming T : A — B is surjective and satisfies (H), we

will assume T1 =1 and 7% = 1.

Lemma 5.3.1. The map T preserves all constants, i.e., Tao = « for all a € C.

Proof. In Lemma 5.2.7 we established T'(1)7(—1) = —1 and T'(—i) = —T'%i. Thus the
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assumption that 71 = 1 and T = ¢ produces T'(—1) = —1 and T'(—i) = —i. Applying
Lemma 5.2.6 successively with § = 1 and —1, yields ReTa = ReTaT1 < Rea and
—ReTa = ReTaT(—1) < —Rea. Thus ReTa = Rea. Now apply Lemma 5.2.6
with § =i and —i to get, ReiTa = ReTiTa < Reia and — ReiTa = ReT(—i)Ta <
— Reta. Thus ReiT'a = Reia. Note that ReiA = —Im A for any A € C. So ImTa =

Ima and Ta = «. O

Lemma 5.3.2. The map T preserves the peripheral spectrum, i.e., o (f) = o (Tf)
forall f € A.

Proof. Since T preserves the norm (Corollary 5.2.5) T0 = 0 and the peripheral spectrum
is preserved for f = 0. For the case that f # 0, let « € o, (f) so Ha‘lfH =1¢€

ox (a7 f). Lemma 5.2.1 asserts ||o~" f|| € ox (™" f) if and only if
| fl|+1=|la f+1]. (5.3.1)
Note 1 = ||a " f|| = [|T (a™") T f|| and from condition (H) we have,
lof 1} = |17 (@) 7f + 1}

Substituting these into (5.3.1) we have ||T (o) Tf|| +1 = ||T (a™") Tf + 1||. Using
Lemma 5.2.1 again we obtain, 1 = [T (o™ ") Tf|| € o, (T (a™") Tf) = ox (a™'TYf)
since 7' preserves constants. Thus o € o, (Tf), i.e., o5 (f) C o (Tf) for all f € A.
Since this result also applies to 77", we have o, (T'f) C o, (T"Y(T'f)) = o« (f), and

thus o, (f) = o (T'f). O

These results lead to the following theorem, which is a special case of |7, Corollary 7.5],

provided here with an alternate proof.



5.3. SPECIAL CASE: T PRESERVES 1 AND [ 75
Theorem 5.3.3 ([12]). If T: A — B is a surjective map between uniform algebras that
satisfies (H) and preserves 1 and i, i.e T1 = 1 and Ti = i, then T is an isometric

algebra isomorphism.

Proof. By Corollary 5.2.5 for all f € A we have |Tf| = |f o] on 6B. We will show

that T" is an isometric algebra isomorphism by proving it is a composition operator, i.e.,

Tf=foy (5.3.2)

on 0B for all f € A.

Fix f € Aand y € 6B. If Tf(y) = 0 then |f(¢(y))| = 0 and (5.3.2) is satisfied for
that case. For T'f(y) # 0 then f(¢(y)) # 0. By 3.2.11 there exist k € F,(B) such that
ox (Tf - k) = {Tf(y)}. Abbreviate f(4(y))~" by A and observe [A| = |f (¥(y))| " =
Tf(y)|~". Thus o (T - M) = {NTF(5)} and [T - Nl = |NTf(g)] = 1. Let h =
T~! (\k). By Lemma 5.3.2, T preserves the peripheral spectrum so o, (Th) = o (\k) =
{A}, since k is a peaking function. Also note |h(¢(y)| = |Th(y)| = |M\k(y)| = |X- 1],
since k was chosen in F,(B). Since |h(1)(y))| = |A| = ||h||, then h(¢(y)) € 0. (h) = {\},
ie., h(1(y)) = A = f(¥(y))~'. Putting these facts together we have,

2= [f(W)f (W) + 1] = f((y)h(¥(y)) + 1]
< fh 1) = [ TFTh+ 1) < |TFTh] +1=2

so we have equality throughout. In particular, ||T'fTh + 1|| = || T fTh||+1 so by Lemma
521 1=||TfTh| € o (TfTh) = {Tf(y)f(¥(y) "}, ie, Tf(y) = f(¥(y)) and 5.3.2

is justified. As in the proof of Theorem 4.2.5 this proves that T is an injective isometric

algebra homomorphism. Since T" was assumed from the beginning to be surjective it
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actually an isomorphism. O]

5.4 Proof of Theorem Theorem 5.1.4

We return to analyzing 7" without assuming it preserves 1 and ¢ to get our main result.
This is done by using the counterexamples ¥ and ® from Lemmas 5.1.1 and 5.1.2 to

“correct” T" so that preserves both 1 and .

Theorem (5.1.4). Let T: A — B be a surjective map that satisfies | T(f)T(g) + 1| =
\fg + 1| for all f,g € A. Then there exist an idempotent e € B and an isometric

algebra isomorphism T: A — Be @ Be' such that
Tf = (T1) (eTf +€Tf) (5.4.1)
for all f € A, where ¢’ =1 —e.

Proof. Note that €’ is also idempotent and ee’ = e¢(1 — €) = e — e* = 0. This property
allows B to be written as the internal direct sum (as rings) of the ideals Be and Be'.

Also Be @ Be' € C(Y) is clearly a uniform algebra on Y.

For e satisfying (5.4.1) we note Ti = (T'1)(ie—ie’) = i(T'1)(e—e’) = (2e—1). Multiplying

both sides by —i(7'1) and applying (71)? = 1, we obtain —i(7'1)(T%) = 2e — 1, i.e.,
1 —1T1T%
e=——.
2

1—T1T%
Now let e = % Note

o 1—=2iT1Ti+*(T1)*(Ti)> 1—-2T1Ti—1-1-—-1 2 —2iT1T
N 4 N 4 - 4

e =e,



5.4. PROOF OF THEOREM THEOREM 5.1.4 7

using (T1)*> = 1 and (T%)* = —1, from Lemma 5.2.7. Let ® : B — Be @& Be' be
given by ®f = ef + €f € Be ® Be/, as in Lemma 5.1.2. Note ®e = e* +¢e'e = ¢
and ®¢’ = ee’ + (¢')* = ¢. To show ® is surjective we take and arbitrary element
h € Be @ Be', which necessarily has the form h = ef + €'g for f,¢g € B. Thus

ef +¢€'g € B, and, since ® is additive and multiplicative,

Dlef +€'g) =Pedf + P'®g=c(ef +€'f) +¢ (eg + €9)

=ef+0-f+0-g+eg=h.

Let U : B — B be given by ¥(f) =T1-f € B asin 5.1.1 for k = T'1. Clearly ¥ is

bijective since ¥ = W1,

Let T=®o0WoT:A— Be® Be'. By Lemma 5.1.3, T satisfies (H) and is surjective,
since it is the composition of surjective maps. By Lemma 5.2.7 and the fact that ®
fixes real-valued constants, 71 = ®(¥(T1)) = ®(T1-T1) = &1 = 1. From (Ti)? = —1

and (T1)*> =1 we get Ti = —T'(i) and T1 = T'1. Thus

Ti = &(U(Ti)) = ®(T1T4) = eT1Ti + ¢ T1Ti = eT1Ti — ¢'T1Ti
=T1Ti(e — ) =T1Ti(e — (1 —¢€)) = T1Ti (2¢ — 1)

T1Ti(1 —iT1Ti — 1) = —i(T1)*(Ti)> = —i - 1- -1 =4,

recalling ¢’ = 1 — e.

Thus, by Lemma 5.3.3, T is an isometric algebra isomorphism onto Be @ Be'. Recall
U '=Vandd'=d,s0T=0"1od o T = Vo ®oT which is explicitly given in
(5.4.1). m
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5.5 A Generalization of Theorem 5.1.4

We can generalize the condition (H) to get a deeper result as given bellow.

Theorem 5.5.1. Let A € C\ {0} be fized. If T : A — B is a surjective map satisfying
ITfTg+ M = [lfg+All (Hx)

for all f,g € A, then there exist an idempotent e € B, a function k € B with k* = 1,

and an isometric algebra isomorphism T: A — Be & Be' such that

Tf=k <eTf—|—fye’T_f)

A

forall f € A, wheree' =1—c¢ a”dWZW-

Proof. Choose a such that o = A, and define T'(f) = o~ 'T(a.f). Since « is invertible,

T’ is surjective, and
_ 1 1
1T fT'g+1|| = [la™*T(af )T (ag)+1[| = WHT(OJ)T(O@)H\H = WHQQng\H = [|fg+1],

proves T" satisfies (H). By Theorem 5.1.4 there exist an idempotent e € B and an
isometric algebra isomorphism 7: A — Be @ Be' such that T'f = & (eT f+ e’T_f>,

where k = T'1 = a 'Ta. Using the fact that T is an isomorphism we get

Tf=aol'(a'f)=ak (eT(oflf) + e’T(a—lf)>

=K <6Tf + oﬂ’lelf_f) =K (€T~f + VG/TTf>
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since

S (5.5.1)

212
=
o
N
>
|
-2

O

Curiously this formula holds even though 7" was defined by an arbitrary choice of one
of two solutions to o> = X. The appearance of « is suppressed, but, in fact, k = o ' Ta.
The other option is —a. From the formula given for 7', it is clear that T is an R-linear
isometry. This addresses the mystery, since we may use this to show (—a) 'T(—a) =
a 'Ta. Also using this formula, we may give sufficient conditions for T' to be an

isomorphism or the conjugate of an isomorphism.

Corollary 5.5.2. Let A and B be uniform algebras, A € C\ {0}, and T: A — B a
surjective map such that

ITfTg + Al = [1fg + Al

forall f,g € A. Then T s an isometric algebra isomorphism if and only if T1 =1 and
Tiv = 1. Similarly, T is a conjugate-isomorphism if and only if T1 =1 and Ti = —1.

The equivalence if vacuous unless A € R.

Proof. Theorem 5.5.1 implies T'(1) —iT'(i) = r(e+~e') —ir(ie —yie') = 2ke, in general.
Thus, since k% = 1,

- K=e (5.5.2)

for any map T satisfying (H, ).

If T1 = 1 and T% = 4, then (5.5.2) gives k = e. Since k can only take the values +1
and e can only take the values 0 and 1, kK = e = 1, which forces ¢/ = 0 and T = T.

Conversely if T' is an isometric isomorphism 71 =1 and 7% = 1.

If T1 =1 and T% = —i then (5.5.2) gives 0 = ¢, forcing ¢’ =1 and T = Ii’}/?. Applying
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T1 = 1 forces yx = 1, i.e.,, v = k. Under these conditions clearly 7" is a conjugate

isomorphism.

For T to be a conjugate isomorphism then necessarily 71 = 1 and 7% =1, i.e., 0 = e.
This only occurs if ¢ = 1, since & is invertible. Thus ¢’ = 1 and T(f) = /ﬂﬁ, but
T(1) = 1 additionally requires that ky = 1 so T(f) = m Thus 7" is a conjugate
isomorphism. However if T is a conjugate isomorphism then (H,) gives 2|Re | =
X+ A = IT(N)T1+ M| =[[]A-1+ Al = 2|A| implies A € R. So it is impossible for T

to be a conjugate isomorphism unless the A in the original condition happens to be a

real number. O
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