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In 1959 Paul Erdős (Graph theory and probability, Canad. J. Math. 11 (1959), 34–38) famously
proved, nonconstructively, that there exist graphs that have both arbitrarily large girth and
arbitrarily large chromatic number. This result, along with its proof, has had a number of
descendants (D. Bokal, G. Fijavž, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic
number of a digraph, J. Graph Theory 46 (2004), 227–240; B. Bollobás and N. Sauer, Uniquely
colourable graphs with large girth, Canad. J. Math. 28 (1976), 1340–1344; J. Nešetřil and X.
Zhu, On sparse graphs with given colorings and homomorphisms, J. Combin. Theory Ser. B
90 (2004), 161–172; X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory
23 (1996), 33–41) that have extended and generalized the result while strengthening the
techniques used to achieve it. We follow the lead of Xuding Zhu (op. cit.) who proved
that, for a suitable graph H, there exist graphs of arbitrarily large girth that are uniquely
H-colorable. We establish an analogue of Zhu’s results in a digraph setting.

Let C and D be digraphs. A mapping f : V (D)→ V (C) is a C-coloring if for every arc uv of
D, either f(u)f(v) is an arc of C or f(u) = f(v), and the preimage of every vertex of C induces
an acyclic subdigraph in D. We say that D is C-colorable if it admits a C-coloring and that
D is uniquely C-colorable if it is surjectively C-colorable and any two C-colorings of D differ
by an automorphism of C. We prove that if D is a digraph that is not C-colorable, then there
exist graphs of arbitrarily large girth that are D-colorable but not C-colorable. Moreover, for
every digraph D that is uniquely D-colorable, there exists a uniquely D-colorable digraph of
arbitrarily large girth.
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Chapter 1

Introduction

In 1959 Paul Erdős [8] famously proved that there exist graphs that have both arbitrarily large

girth and arbitrarily large chromatic number. This somewhat paradoxical result is interesting

not only because it settled a question in Ramsey theory (cf. [9]), but also because Erdős’

proof was an early example of a nonconstructive technique that came to be known as the

probabilistic method. In Chapter 2, we discuss this result in detail, as well as two of its

descendants, by Bollobás and Sauer [3] and by Zhu [22].

For readers unfamiliar with the basic definitions of graph theory, Chapter 2 also contains

the relevant notation and terminology. However, we assume throughout a familiarity with

basic probability theory. In particular, we make repeated use of the following result, known

as Markov’s Inequality.

Theorem 1.1. If X is a nonnegative random variable with finite mean, then for any real

number t > 0, we have Pr(X ≥ t) ≤ E[X]/t.

The reader unfamiliar with these concepts is encouraged to consult an introductory text on

probability theory, e.g. [10, 11].
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CHAPTER 1. INTRODUCTION 2

The purpose of this dissertation is to extend the results of [3, 8, 22] to directed graphs

(digraphs). In order to do this we need digraph analogues of the graph notions ‘girth’ and

‘coloring’. The prerequisite digraph definitions are developed in Chapter 3. The reader should

note that there are multiple digraph analogues of graph coloring extant in the literature, and

the definition we use is the one presented in [2, 18]. The digraph extensions of the results

covered in Chapter 2 are stated in the final section of Chapter 3. The proofs of these extensions,

which are the main contribution of this work, are presented in Chapter 4. Since these proofs are

being published as part of a joint work [12], we shall attempt to be explicit about attributions

throughout this dissertation. We close in Chapter 5 with a concrete application of one of

our main results, Theorem 3.3, and an indication of where our investigations may lead in the

future.



Chapter 2

Notation, terminology, and

precursors

In this chapter, we present some of the basic definitions and results concerning graph theory,

and specifically graph coloring, that will be useful throughout this dissertation. In our notation

and definitions for undirected graphs, we will attempt to stay consistent with [4].

2.1 Basic definitions

In this work, we consider only finite and simple graphs, i.e. those with no multiple edges or

loops. A graph G is defined to be a finite set V (G) of vertices and a finite set E(G), disjoint

from V (G), of edges. Each edge is uniquely associated with exactly two distinct vertices and

any two such vertices can be associated with at most one edge; we say that these vertices are

incident to the edge. Two vertices that are both incident to the same edge are said to be

adjacent.

3
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K4

Figure 2.1: K4, the complete graph on 4 vertices

The graph with r vertices, every two of which are adjacent, is called the complete graph on

r vertices and denoted by Kr. For example, the complete graph K4 on four vertices is shown

in Figure 2.1.

If X is a subset of the vertex set of G, we define the subgraph G[X] induced by X to be the

graph with vertex set X and with edge set those edges of G both incident vertices of which

are contained in X. If a subset X ⊆ V (G) induces a graph with no edges, we say that X is a

stable set in G.

A cycle on three or more vertices is a graph whose vertices can be arranged in a cyclic

sequence in such a way that two vertices are adjacent if they are consecutive in the sequence

and are nonadjacent otherwise. The cycle on r vertices is denoted by Cr.

Usually when we refer to a cycle in a graph, we mean a subgraph that is a cycle. The girth

of a graph G is the length of a shortest cycle in G. The graph in Figure 2.2 has girth 4. If a

graph has no cycles we say that it is acyclic and that it has infinite girth.

An r-vertex-coloring of a graph G, or simply an r-coloring, is a function σ : V (G) →

{1, 2, . . . , r}. We say that an r-coloring σ is proper if no two adjacent vertices are assigned

the same color under σ. A graph is said to be r-colorable if it admits a proper r-coloring. In

Figure 2.3 we give an example of a (proper) 3-coloring of a graph.
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G

Figure 2.2: A girth 4 graph

Equivalently, an r-coloring can be seen as a partition {V1, V2, . . . , Vr} of the vertex set V (G),

where, for each i ∈ {1, 2, . . . , r}, the part Vi is the set of vertices assigned color i. In this

formulation, the Vi are called color classes of the coloring, and the coloring is proper if each

Vi is a stable set. In Figure 2.3 the partition {{x1, x3, x4, x5, x8}, {x2, x6, x7, x10}, {x9}} is

an r-coloring (equivalent to the previous one described).

The chromatic number χ(G) of a graph G is the smallest number r of colors such that G

admits a proper r-coloring. The graph in Figure 2.3 is 3-colorable (as shown), but it is not

2-colorable since it contains cycles of odd length; therefore, its chromatic number is 3. A

graph with chromatic number r is said to be r-chromatic.

2.2 Large girth, large chromatic number

Do there exist graphs with arbitrarily large chromatic number? A natural example of an r-

chromatic graph is Kr. Since every two vertices are adjacent, in a proper coloring each vertex

must be its own color class. Notice that Kr has as many edges as are possible in a simple

graph. When one attempts to construct a graph with a large chromatic number, one natural

thing to do is to include ‘many’ edges. In fact, the easiest way to ensure that a graph on n
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G
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��

x2 x3

x4 x5

x6 x7

x8 x9
x10

x1

Figure 2.3: A proper 3-coloring of G

vertices is r-chromatic is to make sure it contains Kr as a subgraph.

On the other hand, if one were to attempt to construct a graph with large girth, one natural

thing to do would be to include ‘few’ edges. One example of a girth g graph is Cg, the cycle

on g vertices. This graph has girth g and only g edges. In a given graph G, if any g vertices

of G induce a subgraph with at least g edges (and there are
(
g
2

)
potential edges in such an

induced subgraph), it is impossible for the graph to have girth greater than g.

Intuitively, it may seem like the two properties —large girth and large chromatic number—

work against each other. When we want large chromatic number, we want ‘lots’ of edges;

when we want large girth, we want ‘few’ edges. Is it possible to find a graph with large girth

and large chromatic number? Or does having large chromatic number preclude the possibility

of having large girth (and vice versa)?

It is certainly difficult to construct a graph with large girth and large chromatic number. In

fact, even constructing a graph that has large chromatic number but no triangles (3-cycles)

is nontrivial. Tutte, writing under a pseudonym, first found such a construction [5, 6]; this

result was rediscovered several times, nominally by Mycielski [20]. He created a construction

(now referred to as the Mycielskian) that produces triangle-free graphs of arbitrarily large
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MMM1 2 3

Figure 2.4: The first three Mycielski graphs

chromatic number; see Figure 2.4, where χ(Mi) = i + 1 for i = 1, 2, 3. Kelly and Kelly [15]

managed to show that graphs of arbitrarily large chromatic number and girth 6 exist (they

also rediscovered Tutte’s result).

Trying to find a construction that gives graphs of arbitrarily large girth and arbitrarily large

chromatic number proved to be quite difficult. Since this dissertation deals with nonconstruc-

tive arguments, we will not discuss this further except to note that a constructive approach

[17] eventually succeeded, but this constructive argument was not nearly as elegant as the

nonconstructive one discovered by Paul Erdős [8].

Theorem 2.1 (Erdős, 1959). For any integers g,r, there exists a graph of girth at least g and

chromatic number at least r.

Some years before Theorem 2.1 appeared, Erdős [7] had used the probabilistic method to

find a lower bound on the diagonal Ramsey numbers. The model used in that proof created a

probability space of all graphs on n vertices where each graph was weighted equally. (This was

a natural thing to do in that proof and it is a disguised counting argument). In the present

setting it turns out to be more convenient to weight the graphs unequally.
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The following proof is a modified version of the proof in Alon and Spencer’s book [1].

Proof of Theorem 2.1. We will eventually fix a positive integer n large enough to support our

estimates. Fix ε < 1/g and p := nε−1. Let G be the probability space of all graphs on n

vertices, where each edge exists with probability p, independently of all other edges.

We first want to show that in a randomly selected graph G ∈ G, the probability of there

being a ‘small’ number of short cycles is high. For the prescribed g (which we may assume is

at least 3) let X be the number of cycles of length at most g. For each i with 3 ≤ i ≤ g, there

are n(n− 1)(n− 2) · · · (n− i+ 1)/(2i) possible cycles of length i, each of which is present in

G with probability pi. So the expected number of cycles of length at most g satisfies

E[X] =

g∑
i=3

n(n− 1)(n− 2) · · · (n− i+ 1)

2i
pi

≤
g∑
i=3

ni

2i
(nεi−i)

< nεg.

By Markov’s Inequality (Theorem 1.1 with t = n/2), Pr(X ≥ n/2) ≤ E[X]/(n/2) < 2nεg−1.

Since εg < 1, Pr(X ≥ n/2) approaches zero as n→∞. We assume that n is large enough so

that Pr(X ≥ n/2) < 1/2. Consequently Pr(X < n/2) > 1/2.

We also need to argue that having a large chromatic number has high probability. But

instead of obtaining a lower bound on the chromatic number χ(G), we will obtain an upper

bound on the stability number α(G) (the size of a largest stable set). The reason this is

helpful is that the stability number is an upper bound on the size of every color class, and

so the product of the stability number and the chromatic number is an upper bound on the

number of vertices; i.e.,

χ(G)α(G) ≥ n. (2.1)

Therefore, an upper bound on α(G) will give a lower bound on χ(G).
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Set x = d(3/p) log ne+ 1. We will estimate the probability that the stability number of G is

at least x. Clearly there are
(
n
x

)
ways to select a subset of x vertices from n. The probability

that any particular x-set is stable is (1− p)(
x
2), the probability that none of the possible edges

exist. And so we have that

Pr(α(G) ≥ x) ≤
(
n

x

)
(1− p)(

x
2) < nxe−px(x−1)/2 = (ne−p(x−1)/2)x.

We selected x so that this last upper bound is (super-)exponentially decreasing with n.

Therefore we can pick n large enough to make this upper bound less than 1/2 and so α(G) ≤

x < (4/p) log n with probability greater than 1/2. (Using the probabilistic method is a

balancing act between tightness and clean bounds. In the end, we only care what is happening

asymptotically; so while the ‘+1’ was convenient so far, we have absorbed it with a larger

coefficient as this will be more convenient starting here.)

In this probability space, the probability that a randomly selected graph has fewer than n/2

cycles shorter than g (short cycles) is greater than 1/2, and the probability that a randomly

selected graph has stability number at most (4/p) log n is also greater than 1/2. Therefore,

there must be at least one graph on n vertices with both properties. We select such a graph

G and delete one vertex from each short cycle to obtain a graph G∗ with at least n/2 vertices.

The graph G∗ has girth at least g and α(G∗) ≤ α(G) (clearly the deletion of vertices does not

increase the size of a largest stable set).

We now use (2.1) on G∗ to achieve a lower bound on χ(G∗). The chromatic number of G∗

satisfies

χ(G∗) ≥ n/2

α(G∗)
>

n/2

4n1−ε log n
=

nε

8 log n
.

The lower bound on χ(G∗) is an unbounded function that increases with n and thus we may

choose n large enough so that nε/(8 log n) ≥ r.
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This proof was not just important in that it settled a difficult question. It was also important

as an early example of what came to be known as the probabilistic method.

The idea behind the use of probability in this proof is fairly simple; we are trying to prove

that there exist graphs that have both large girth and large chromatic number. Once we

construct a probability space on graphs with n vertices in which a randomly selected graph

has large girth with high probability (greater than 1/2) and has large chromatic number with

high probability (greater than 1/2), we may conclude that there exists a graph that has both

properties simultaneously. (Of course this is an oversimplification; what was actually found

was a graph from which we could break all the short cycles while keeping a large chromatic

number.)

Arguments of this type are nonconstructive because we do not actually find such a graph;

we simply prove that one exists. Using Markov’s Inequality on integer-valued functions is

usually called the First Moment Method; see, e.g., [19, Chapter 3]. Generally, a combinatorial

argument lurks within a First Moment Method proof. In Erdős’ proof, we’re in essence

estimating how many graphs have both properties and weighting our counts using the language

of probability theory.

Although conversion to combinatorial arguments may be possible with First Moment Method

proofs, when the second moment is introduced (using variance to establish concentration), such

counting parallels are more difficult to find. It is seen then that the tools of probability theory

are essential in these proofs and not merely a convenient way to keep track of a counting

argument. Most of the arguments in this dissertation use the First Moment Method, but the

second moment is needed for part of the proof of Theorem 3.3.
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K4

Figure 2.5: This graph is uniquely 4-colorable.

2.3 Unique colorability

Notice that the 3-coloring in Figure 2.3 is not the only possible 3-coloring of that graph. For

example, if we assign the colors as in Figure 2.3, then the color classes are {x1, x3, x4, x5, x8},

{x2, x6, x7, x10}, {x9}; another proper 3-coloring would be the partition

{{x4, x5, x8}, {x2, x6, x7, x10}, {x1, x3, x9}}, which is clearly distinct from the first coloring.

This contrasts with the situation when we properly 4-color K4; any such coloring, e.g. Fig-

ure 2.5, yields essentially the same 4-coloring (the coloring may be nominally different, but

the color classes will give the same partition of V (K4)). A graph is uniquely r-colorable if it

is r-colorable and any proper r-coloring yields the same color classes.

Now it is natural to ask if we can strengthen Theorem 2.1; that is, for any given integer

r ≥ 1, does there exist a graph of arbitrarily large girth that is uniquely r-colorable? This

question was answered affirmatively by Bollobás and Sauer in 1976 [3].

Theorem 2.2 (B. Bollobás and N. Sauer, 1976). For any integers g, r there exists a graph

of girth at least g that is uniquely r-colorable.

Notice that a uniquely r-colorable graph G has χ(G) = r; otherwise, if χ(G) < r, then a

χ(G)-coloring σ1 and a surjective r-coloring σ2 would give rise to distinct partitions of V (G)

into color classes of σ1 and σ2, contradicting the unique r-colorability of G. Thus, Theorem 2.2
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Figure 2.6: A graph homomorphism to K3

implies Theorem 2.1. Not only is Theorem 2.2 a generalization and strengthening of Erdős’

result, but also its proof is a refinement of Erdős’ proof. Though the proof uses the probabilistic

method, the probability space Bollobás and Sauer employ is slightly different. The model we

presented for the proof of Erdős’ result (Theorem 2.1) took any possible edge between any

two of n vertices with probability p. In order to force probable unique colorability, Bollobás

and Sauer started with r stable sets of n vertices, effectively predetermining an r-coloring.

Because the n-sets are stable, graphs in the new model are r-colorable. The idea then was to

add edges between the stable sets so that no other r-coloring is possible, but not so many edges

that a cycle of length less than g appears. Actually, like Erdős, Bollobás and Sauer examined

the probability that there are few short cycles and the probability that the graph is uniquely

r-colorable after the deletion of a small set of edges (our presented proof of Theorem 2.1

deleted vertices, although Erdős himself also deleted edges).

So the essential change was predetermining the color classes (and there were a couple of

new computational tricks). It is perhaps surprising that these refinements produced such a

stronger result.
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G

H

G
*

(large girth)

Figure 2.7: Diagram of Theorem 2.3

2.4 Graph homomorphisms

The category theorist views most of mathematics as the study of sets with structure together

with structure-preserving morphisms (see, e.g., [16]). While the level of abstraction of cate-

gory theory is not necessary for this dissertation, it is nonetheless useful to think of a graph

homomorphism, qualitatively, as a map between graphs that preserves the ‘graph structure’.

A homomorphism from a graph G to a graph H is a map φ : V (G) → V (H) such that

if uv ∈ E(G) then φ(u)φ(v) ∈ E(H) (cf. [13]). Qualitatively, this means vertices must be

mapped to vertices and the map preserves adjacency. If such a map from G to H exists, we

say that G is H-colorable. The motivation for this terminology follows in the next paragraph.

Notice that in Figure 2.6 the preimages of the vertices define a partition of the vertex set into

stable sets. In fact a graph G is r-colorable if and only if there exists a homomorphism from G

to Kr. We can see this by explicitly constructing the coloring given such a homomorphism, or

likewise explicitly constructing the homomorphism given a coloring. Given a homomorphism

to Kr, we simply take the preimage of each vertex as a color class. Conversely, given an

r-coloring of G, simply assign each vertex in Kr a color and map that color class there; since

no two vertices of a color class are adjacent and the vertices of Kr are pairwise adjacent, this

results in a homomorphism. Thus G is r-colorable if and only if G is Kr-colorable. We have



2.4. GRAPH HOMOMORPHISMS 14

G*

K

K

r

(large girth)

r(  −1)

Figure 2.8: Theorem 2.3 implies Theorem 2.1.

overloaded the term ‘colorable’ to take either a positive integer or a graph as a prefix, but it

is always clear from context what we mean.

Now that we have a generalization of coloring, it’s natural to ask if Erdős’ result, Theo-

rem 2.1, generalizes in this direction. This question was settled by Zhu [22] in 1996.

Theorem 2.3 (X. Zhu, 1996). If G and H are graphs such that G is not H-colorable, then

for any positive integer g, there exists a graph G∗ of girth at least g that is G-colorable but

not H-colorable.

Figure 2.7 illustrates Theorem 2.3. To see that Theorem 2.3 implies Theorem 2.1, consider

Figure 2.8. Since Kr is not K(r−1)-colorable, these graphs satisfy the hypotheses of Theo-

rem 2.3; therefore, for any positive integer g, there exists a graph G∗ of girth at least g that

is Kr-colorable but not K(r−1)-colorable. Since the latter conditions imply that χ(G∗) = r,

the graph G∗ witnesses the conclusion of Theorem 2.1. Theorem 2.3 is, of course, more gen-

eral than Theorem 2.1, as G and H are not restricted to being complete graphs under the

hypotheses of Theorem 2.3.

A natural question now is whether Bollobás and Sauer’s result, Theorem 2.2, generalizes to

graph homomorphisms. First we need a notion of unique colorability for homomorphisms. We

say that G is uniquely H-colorable if it is surjectively H-colorable and any two H-colorings
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G G* fh

Figure 2.9: G must be a core.

of G differ by an automorphism of H (i.e. for any two H-colorings φ1, φ2 of G, there exists

an automorphism σ of H such that φ2 = σ ◦ φ1). Being uniquely Kr-colorable coincides with

being uniquely r-colorable.

That there exist uniquely Kr-colorable graphs (cf. Theorem 2.2) depends on a property

enjoyed by complete graphs that is a necessary condition on a general graph G for the existence

of uniquely G-colorable graphs. A graph G is a core if the only homomorphisms from G to

itself are automorphisms. It is easy to check that Kr is a core for every integer r ≥ 1; any

non-automorphism homomorphism from Kr to itself must map at least two vertices to a

single vertex, which is impossible since any two vertices are adjacent in Kr. To see that G

being a core is necessary for the existence of uniquely G-colorable graphs, consider Figure 2.9.

If there is some non-bijective homomorphism f : V (G) → V (G), then any homomorphism

h : V (G∗) → V (G) from a graph G∗ to G gives rise to another (f ◦ h) that does not differ

from h by an automorphism (because f is not an automorphism).

We conclude that if a graph G is not a core then it is not possible to find uniquely G-

colorable graphs. Therefore G being a core is necessary, but is G being a core enough to

ensure the existence of uniquely G-colorable graphs? Surprisingly, this necessary condition

is also sufficient to ensure the existence of uniquely G-colorable graphs, even ones with large

girth.

Theorem 2.4 (X. Zhu, 1996). If a graph G is a core, then for any positive integer g, there

exists a graph G∗ of girth at least g that is uniquely G-colorable.

Since complete graphs are cores, Theorem 2.4 implies Theorem 2.2. Since G is not restricted
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to complete graphs, Theorem 2.4 implies more. In [22], Zhu uses Theorem 2.4 to show that

there exist graphs with arbitrarily large girth and with any prescribed circular chromatic

number (see [23] for a survey on the circular chromatic number).

Again, we are not interested in these results simply because they generalize Erdős’ Theo-

rem 2.1 and Bollobás and Sauer’s Theorem 2.2. Their methods of proof — stepwise refinements

of the earlier techniques — attract attention by themselves through their noticeable increase

in strength. Each step offered its share of nontrivial insights and is rightfully viewed as a

new and significant contribution to mathematics. But it would not be correct to view the

successive results in a vacuum, as they are more clearly understood when viewed as an histor-

ical progression. The results of this dissertation add another step to this progression. Since

we extend these results to directed graphs with certain homomorphisms, the next chapter

introduces the necessary concepts, while the succeeding one presents the new contributions.



Chapter 3

Directed graphs and acyclic

colorings

The main purpose of this dissertation is to generalize the results covered in the preceding

section to directed graphs (digraphs). In order to discuss the new results we will need some

basic digraph definitions as well as a notion of digraph coloring. We will then show that our

notion of coloring digraphs is a generalization of coloring undirected graphs.
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D

Figure 3.1: A digraph
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K4

Figure 3.2: K4, the complete digraph on 4 vertices

3.1 Digraph definitions

Similar to our graph definition, we consider only finite and simple digraphs, i.e. with no

multiple arcs or loops. A digraph D is defined to be a finite set V (D) of vertices and a finite

set E(D), disjoint from V (D), of ordered pairs of distinct vertices called arcs, each particular

ordered pair occurring at most once; these vertices are said to be incident to the arc. Note

that uv and vu are different arcs, so both may be present. We represent the arc graphically

as an arrow; for example, see Figure 3.1. We say that vertices u and v of a digraph D are

adjacent whenever either uv or vu (or both) is an arc of D.

Many graphical notions have digraph analogues. Two such concepts are ‘complete graph’

and ‘cycle’. A complete digraph Kr has r vertices and every ordered pair of two distinct vertices

as an arc. (We are overloading this symbol, but it will be clear from context whether we mean

the complete graph or the complete digraph.) Figure 3.2 depicts the complete digraph K4.

A cycle on two or more vertices is a simple digraph whose vertices can be arranged in a

cyclic sequence in such a way that there is an arc from u to v if and only if u directly precedes

v in the sequence. The digraph that is a cycle on r vertices is denoted Cr. (Again, it will be

clear from context whether we mean the directed or undirected cycle.)

As in the graph case, usually when we refer to a ‘cycle’ in a digraph, we mean the subdigraph
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Figure 3.3: An acyclic digraph

that is the specific cycle. An acyclic digraph is a digraph containing no cycles; Figure 3.3

depicts such a digraph. The girth of a digraph is the length of its shortest cycle. For example,

the girth of the digraph in Figure 3.1 is two. The girth of an acyclic digraph is, by convention,

infinite.

Now that we have a notion of digraph girth, we will move on to generalize the idea of vertex

coloring to digraphs.

3.2 Acyclic colorings

There are a number of ways to generalize vertex colorings to digraphs. One natural one

partitions the vertex set into stable sets as we did with graphs, calling each block of the

partition a color class. This approach has proved fruitful in studying the subdigraphs of a

given digraph; see, e.g., [4, Section 14.1]. The generalization we consider in this dissertation

follows [2, 18] and has other interesting consequences for digraphs.

If D is a digraph and S ⊆ V (D), then the subdigraph D[S] of D induced by S has vertex

set S and arc set the subset of all e ∈ E(D) such that S contains both incident vertices of e.

We define an acyclic r-coloring of D to be a partition of V (D) into r sets (that we will call

color classes) each of which induces an acyclic subdigraph of D. The acyclic chromatic number

χ(D) of D is the smallest number r of colors such that D admits an acyclic r-coloring. The
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D

Figure 3.4: An acyclic 2-coloring

digraph in Figure 3.4 is acyclically 2-colorable (as shown), but it is not acyclically 1-colorable

since it contains cycles; therefore, its acyclic chromatic number is 2. When only digraphs are

being discussed, we will again drop the ‘acyclic’ modifier and simply say r-colorable (when

χ(D) ≤ r) and r-chromatic (when χ(D) = r).

3.3 Acyclic homomorphisms

We will generalize acyclic colorings of digraphs to acyclic homomorphisms of digraphs similarly

to the way we generalized colorings of graphs to homomorphisms of graphs. Roughly speaking,

an acyclic homomorphism is a map from the vertex set of one digraph to another that preserves

the digraph structure and preserves the acyclic structure; that is, cycles are not mapped to

vertices. More formally, an acyclic homomorphism of a digraph D into a digraph C is a

function φ : V (D)→ V (C) such that:

(i) for every vertex v ∈ V (C), the subdigraph of D induced by φ−1(v) is acyclic;

(ii) for every arc uv ∈ E(D), either φ(u) = φ(v), or φ(u)φ(v) is an arc of C.
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Figure 3.5: An acyclic homomorphism from D to K2

Notice that in Figure 3.5 the preimages of the vertices of Kr define a partition of the vertex

set of D into color classes. In fact, a digraph D is r-colorable if and only if there exists

an acyclic homomorphism from D to Kr. We can see this by explicitly constructing the

coloring given such an acyclic homomorphism, or likewise explicitly constructing the acyclic

homomorphism given a coloring. Given an acyclic homomorphism from D to Kr, we simply

take the preimage of each vertex as a color class. The requirement (i) guarantees that this

yields an r-coloring of D. Conversely, given an r-coloring of D, simply assign each vertex

in Kr a color and map that color class there; since color classes do not induce cycles, this

results in an acyclic homomorphism from D to Kr. And so D is r-colorable if and only if it

is Kr-colorable.

3.4 A generalization of graph coloring

This section explains how acyclic digraph coloring and acyclic homomorphisms are general-

izations of graph coloring and graph homomorphisms.

A digraph D is said to be symmetric when, for every pair vertices u, v ∈ V (D), uv ∈ E(D)

if and only if vu ∈ E(D). Note that in a symmetric digraph, every arc is part of a two-cycle.

Consequently, in a symmetric digraph, the only subsets of vertices that induce an acyclic
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G DG

Figure 3.6: An illustration of a cryptomorphism

subdigraph are stable sets.

There is an ontological concept in mathematics called the ‘cryptomorphism’. The idea is

that when two different mathematical structures are ‘essentially’ the same, there is a cryp-

tomorphism between them. What this means is that every part of the first structure has a

natural analogue in the second, and one can use the cryptomorphism to translate ideas back

and forth between the two structures since they are essentially the same in some (rigorous)

transcendental sense.

We now describe the cryptomorphism between graphs and symmetric digraphs. Given a

graph G, we construct a digraph DG as follows: set V (DG) = V (G); then for every edge

uv ∈ E(G) we include the arcs uv and vu in E(DG). That is, we take every undirected edge

in G and replace it with a directed 2-cycle in DG. Obviously this cryptomorphism is invertible,

and for any symmetric digraph D we can construct the cryptomorphically equivalent graph

G with DG = D. For example, see Figure 3.6.

Using this construction and cryptomorphism we can see that a coloring of G is an acyclic

coloring of DG and vice versa. Consider a coloring σ of G. Since every color class determines

a stable set, this set is acyclic in DG and so σ is an acyclic coloring of DG. Consider an acyclic

coloring ψ of DG. Since every color class is a set that induces an acyclic subdigraph of DG,
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*

D

D

C
(large girth)

Figure 3.7: Diagram of Theorem 3.2

and any two adjacent vertices in DG would induce a two-cycle, we have that each color class

of ψ is a stable set of DG and therefore ψ is also a coloring of G. Using this construction, we

can likewise see that a graph G is H-colorable if and only if DG is DH -colorable (the reasoning

is analogous to that just presented for r-coloring).

3.5 New results

Now that we have a generalization of coloring for digraphs, the natural question to ask is

whether Erdős’ result (Theorem 2.1) generalizes to the new concept; that is to say, does there

exist a digraph with arbitrarily large girth and arbitrarily large acyclic chromatic number?

This was answered in the affirmative by Bokal et al. in [2, Theorem 4.1] using a probabilistic

argument similar to the proof of Theorem 2.1.

Theorem 3.1 (D. Bokal, G. Fijavž, M. Juvan, P.M. Kayll and B. Mohar, 2004). For any

integers g,r, there exists a digraph of girth at least g and acyclic chromatic number at least r.

One of the main achievements of this dissertation is proving the analogue of Zhu’s Theo-

rem 2.3 for digraphs with acyclic homomorphisms.

Theorem 3.2. If D and C are digraphs such that D is not C-colorable, then for any positive

integer g, there exists a digraph D∗ of girth at least g that is D-colorable but not C-colorable.
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*

K

K

r

(large girth)

r(  −1)

D

Figure 3.8: Large girth, large acyclic chromatic number

Figure 3.7 illustrates Theorem 3.2. To see that Theorem 3.2 implies [2, Theorem 4.1]

consider Figure 3.8. Since Kr is not K(r−1)-colorable, these graphs satisfy the hypotheses of

Theorem 3.2; therefore, for any positive integer g, there exists a digraph D∗ of girth at least

g that is Kr-colorable but not K(r−1)-colorable. This is equivalent to saying that there exists

a digraph with girth at least g and with acyclic chromatic number exactly r. Theorem 3.2 of

course is more general than [2, Theorem 4.1], as D and C are not restricted to being complete

graphs under its hypotheses.

A natural question now is whether Bollobás and Sauer’s result, Theorem 2.2, has a digraph

analogue. First, we need a notion of unique colorability for acyclic homomorphisms. We say

that D is uniquely C-colorable if it is surjectively C-colorable and any two C-colorings of D

differ by an automorphism of C (i.e. for any two C-colorings φ1, φ2 of C, there exists an

automorphism σ of C such that φ2 = σ ◦ φ1).

As with graphs, there is an obvious necessary condition on a general digraph D for the

existence of uniquely D-colorable digraphs. A digraph D is a core if the only acyclic homo-

morphisms from D to itself are automorphisms. It is easy to check that the digraph Kr is a

core for every integer r ≥ 1; any non-bijective acyclic homomorphism from Kr to itself must

map at least two vertices to a single vertex, which is impossible since any two vertices induce

a two-cycle in Kr. To see that D being a core is necessary for the existence of uniquely D-
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* f
h

D D
Figure 3.9: D must be a core.

colorable digraphs, consider Figure 3.9. If there is some non-bijective acyclic homomorphism

f : V (D) → V (D), then every homomorphism h : V (D∗) → V (D) from a digraph D∗ to D

gives rise to another (f ◦h) that does not differ from h by an automorphism (because f is not

an automorphism).

We conclude that if D is not a core, then it is not possible to find uniquely D-colorable

digraphs. Therefore G being a core is necessary, but is D being a core enough to ensure the

existence of uniquely D-colorable digraphs? As in the graph case, this necessary condition is

also sufficient to ensure the existence of uniquely D-colorable digraphs, even ones with large

girth.

Theorem 3.3. For any core D and any positive integer g, there is a digraph D∗ of girth at

least g that is uniquely D-colorable.

Since Kr is a core, Theorem 3.3 implies that there exists a digraph of girth at least g that

is uniquely r-colorable (an analogue of Bollobás and Sauer’s Theorem 2.2 for digraphs with

acyclic colorings). Theorem 3.3 is more general than this analogue because D is not restricted

to complete graphs.

Now that we have introduced all the prerequisite material, we will prove Theorem 3.2 and

Theorem 3.3 in the next chapter.



Chapter 4

D-coloring digraphs

Here we present the main results of this dissertation, namely the proofs of Theorem 3.2 (in

Section 4.1) and Theorem 3.3 (in Section 4.3). Both proofs are probabilistic and follow the

main ideas of Zhu’s Theorems 2.3 and 2.4, which themselves trace back to the proof of Bollobás

and Sauer’s Theorem 2.2 and ultimately to Erdős’ Theorem 2.1. However, just as all of these

earlier refinements required new inspiration, new insights and approaches are again needed to

move to the digraph and acyclic homomorphism setting.

4.1 Proof of Theorem 3.2

This section and Section 4.3 have heavy overlap with the joint work [12]. Where appropriate,

we indicate the passages contributed by collaborators.

We begin by setting up a suitable random digraph model. Suppose that V (D) = {1, 2, . . . , k}

and that q = |E(D)|. Let n be a (large) positive integer, and let Dn be the digraph obtained

from D as follows: replace every vertex i with a (temporarily) stable set Vi of n ordered

26
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vertices v1, v2, ..., vn, and replace each arc ij of D by the set of all possible n2 arcs from Vi to

Vj ; additionally, add each arc vrvs such that vr, vs ∈ Vi and r < s. Clearly, |V (Dn)| = kn and

|E(Dn)| = qn2 + k
(
n
2

)
.

Now fix a positive ε < 1/(4g). Our random digraph model D = D(Dn, p) consists of those

spanning subdigraphs of Dn in which the arcs of Dn are chosen randomly and independently

with probability p = nε−1.

As usual in nonconstructive probabilistic proofs of results of this nature (cf. [3, 21,22]), the

idea is to show that most digraphs in D have only a few short cycles, and for most digraphs

H ∈ D, the subdigraph of H obtained by removing an arbitrary yet small set of arcs is not

C-colorable. Choosing an H ∈ D with both these properties, we can force the girth to be

large by deleting an arc from each short cycle. Since the set A0 of deleted arcs is small, the

resulting digraph H −A0 satisfies the desired conclusion of Theorem 3.2.

To make this description more precise, let D1 denote the set of digraphs in D containing at

most dngεe cycles of length less than g, and let D2 be the set of digraphs H ∈ D that have the

property that H − A0 is not C-colorable for any set A0 of at most dngεe arcs. We will show

that

|D1| >
(

1− n−ε/2
)
|D| (4.1)

and

|D2| >
(
1− e−n

)
|D| . (4.2)

Since (4.1) and (4.2) imply that D1 ∩D2 6= ∅ (for sufficiently large n), there exists a digraph

H ∈ D1 ∩ D2. Now H ∈ D1 implies that there is a set A0 of at most dngεe arcs whose

removal leaves a digraph D∗ :=H − A0 of girth at least g, while H ∈ D2 means that D∗ is

not C-colorable. Thus, it remains to establish (4.1) and (4.2).
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Proof of (4.1). The expected number N` of cycles of length ` in a digraph H ∈ D is at most

(
kn

`

)
(`− 1)! p` (4.3)

since there are
(
kn
`

)
(`− 1)! ways of choosing a cyclic sequence of ` vertices as a candidate for

a cycle, and such an `-cycle occurs in D with probability either 0 or p`. It is easy to see that

the product of the first two factors in (4.3) is smaller than (kn)`/`. Therefore, if n is large

enough, then
g−1∑
`=2

N` ≤
g−1∑
`=2

(knε)`

`
< kg−1n(g−1)ε < n−ε/2ngε.

Now (4.1) follows easily from Markov’s Inequality (Theorem 1.1 with t = ngε).

Proof of (4.2). We shall argue that |D r D2| < e−n|D|. If H ∈ D r D2, then there is a set

A0 of at most dngεe arcs of H so that H −A0 admits an acyclic homomorphism h to C (i.e.,

H − A0 is C-colorable). Let k′ = |V (C)|. By the pigeonhole principle, for each i ∈ V (D),

there exists a vertex xi ∈ V (C) such that |Vi ∩ h−1(xi)| ≥ n/k′. Define φ : V (D)→ V (C) by

setting φ(i) = xi. Since n/k′ � ngε (this means that (n/k′)/ngε → ∞ as n → ∞), the set

Vi ∩ h−1(xi) contains a subset Wi of cardinality w := dn/(2k′)e such that no arc in A0 has an

end vertex in Wi.

Since D is not C-colorable, the function φ is not an acyclic homomorphism. Therefore,

either there is an arc ij ∈ E(D) such that φ(i) 6= φ(j) and φ(i)φ(j) is not an arc of C, or

there is a vertex v ∈ V (C) such that the subdigraph of D induced on φ−1(v) contains a cycle.

We first consider the case when ij is an arc of D such that φ(i) 6= φ(j) and φ(i)φ(j) is not

an arc of C. Since h is an acyclic homomorphism, there are no arcs from Wi to Wj in H−A0.

By the definition of Wi and Wj , neither are there such arcs in H.

Let us now estimate the expected number M of pairs of sets A ⊆ Vi, B ⊆ Vj , with |A| =

|B| = w, such that ij ∈ E(D) and such that there is no arc from A to B in H ∈ D (we call
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such a pair A,B a bad pair). By the linearity of expectation, we have

M = q

(
n

w

)2

(1− p)w2
< q
(nw
w!

)2
(1− p)w2

=
q(n2(1− p)w)w

(w!)2
. (4.4)

Since w grows no more (or less) than linearly with n, for sufficiently large n we have

n2(1− p)w < e−2k′ and
q

(w!)2
<

1

2
.

Therefore, Markov’s Inequality (Theorem 1.1 with t = 1) and (4.4) yield

Pr(∃ a bad pair) <
e−n

2
. (4.5)

Suppose now that there is a vertex v ∈ V (C) such that D contains a cycle Q whose vertices

are all in φ−1(v). Suppose that Q = i1i2 · · · it. Observe that 2 ≤ t ≤ k. Since φ(Q) = {v}, we

conclude that h(Wi1) = h(Wi2) = · · · = h(Wit) = {v}. Since h is an acyclic homomorphism,

the subdigraph of H induced on Wi1 ∪Wi2 ∪ · · · ∪Wit is acyclic.

Let us consider all sequences of sets Uj1 , Uj2 , . . . , Uj` such that, for r = 1, 2, . . . , `, we have

Ujr ⊆ Vjr and |Ujr | = w, and the vertex sequence j1j2 · · · j` is a cycle in D. Let U(`) the

subdigraph of H induced on Uj1 ∪ Uj2 ∪ · · · ∪ Uj` , and let P` := Pr(U(`) is acyclic). We call

this sequence of sets bad if U(`) is acyclic. Since the expected number N of bad sequences is

the sum of the corresponding expectations over all possible cycle lengths, we have

N ≤
k∑
`=2

(
k

`

)
(`− 1)!

(
n

w

)`
P`. (4.6)

In order to bound N , we first bound the probabilities P`.

Lemma 4.1. For every integer ` ∈ {2, 3, . . . , k}, P` ≤ e−n
1+ε/(10(k′)2).

The following observation will be used in the proof of Lemma 4.1
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Lemma 4.2. A digraph D is acyclic if and only if every induced subdigraph contains a vertex

of outdegree 0.

Proof. If D is acyclic, then every induced subdigraph of D must be acyclic and therefore must

contain a vertex of outdegree 0. If D is not acyclic, then it must contain a cycle, the vertex

set of which induces a subdigraph containing no vertex of outdegree 0.

Proof of Lemma 4.1. Let E0 be certain (Pr(E0) = 1), and let Ej be the event that all induced

subdigraphs of U(`) with more than `w−j vertices have a vertex of outdegree 0 (the outdegree

in the induced subdigraph). Lemma 4.2 shows that

P` = Pr(

`w⋂
j=0

Ej) =

`w−1∏
j=0

Pr(Ej+1|Ej) ≤
w−1∏
j=0

Pr(Ej+1|Ej). (4.7)

We will call a set S ⊆ V (U(`)) an acyclic-sink set if the induced subdigraph U(`)[S] is acyclic

and there are no arcs in U(`) from S to V (U(`))r S (so S acts as a sink in U(`)).

Claim 1: The union of two acyclic-sink sets in U(`) is an acyclic-sink set in U(`).

Proof of claim. Let A and B be two acyclic-sink sets in a digraph U(`). Since A and B

are both sinks in U(`), their union A ∪ B is a sink since there are no arcs from A ∪ B to

V (U(`))r (A ∪B). Consider the three sets ArB, B rA, and A ∩B; each is a subset of an

acyclic-sink set so each induces an acyclic digraph. Since A is a sink in U(`), there can be no

arcs from A ∩B to B r A. Likewise B is a sink in U(`), so there can be no arcs from A ∩B

to ArB. Therefore, A∪B induces an acyclic digraph and is consequently an acyclic-sink set

in U(`).

Claim 2: There exists an acyclic-sink set S ⊆ V (U(`)) of cardinality j if and only if Ej

occurs.
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Proof of claim. If there exists an acyclic-sink set of cardinality j, then a subdigraph of U(`)

with more than `w − j vertices must have a nonempty intersection with it. Any subdigraph

that has nonempty intersection with an acyclic-sink set induces a subdigraph containing a

vertex of outdegree zero.

If there is no acyclic-sink set of cardinality j, then the largest acyclic-sink set is an S′ ⊆

V (U(`)) such that |S′| < j. Then U(`) − S′ is a subdigraph of U(`) with cardinality greater

than `w − j and with no vertices of outdegree 0 (otherwise we could have added them to S′

and had a larger acyclic-sink set).

Claim 3: If U(`) has an acyclic-sink set of cardinality j, then it has an acyclic-sink set of

cardinality j − 1.

Proof of claim. Suppose that S is an acyclic-sink set in U(`) of cardinality j. Then the

subdigraph U(`)[S] is acyclic, so there must be a vertex v with indegree 0 in U(`)[S]. Consider

the set S r {v}; this induces an acyclic subdigraph of U(`) because it is a subdigraph of an

acyclic digraph. There were no arcs from S to V (U(`)) r S, and there are no arcs from

S r {v} to v, so S r {v} is a sink in U(`). Therefore, there exists an acyclic-sink set in U(`)

of cardinality j − 1.

We now fix j in order to estimate Pr(Ej+1|Ej). Let I =
{

1, 2, . . . ,
(
`w
j

)}
and let

{
Si
}
i∈I

be the j-subsets of the `w vertices of U(`) (in some fixed order). Let Bi be the event that

Si is an acyclic-sink set in U(`). By Claim 1, if more than one Bi occurs, there must be an

acyclic-sink set of cardinality at least j + 1, and so by Claim 3, there exists one of cardinality

exactly j + 1. Therefore by Claim 2,

Pr

(
Ej+1|

⋂
i∈Y

Bi

)
= 1 whenever Y ⊆ I and |Y | ≥ 2. (4.8)

Now additionally fix a Bi, and we will estimate Pr(Ej+1|Bi). Let F be the event that U(`)−Si



4.1. PROOF OF THEOREM 3.2 32

contains a vertex of outdegree 0. Then

Pr(Ej+1|Bi) = Pr(Ej+1|F ∩Bi) Pr(F |Bi) + Pr(Ej+1|FC ∩Bi) Pr(FC |Bi). (4.9)

The event Ej+1 occurs when all subsets of V (U(`)) of cardinality greater than `w − (j + 1)

induce a subdigraph in U(`) that has a vertex of outdegree 0. Clearly U(`)−Si has cardinality

`w − j, while FC is the event that this set induces a subdigraph with no vertex of outdegree

zero. Thus Pr(Ej+1|FC ∩ Bi) = 0. All sets of cardinality exceeding `w − (j + 1) that are

distinct from V (U(`)) r Si have a nonempty intersection with Si, which (given Bi) is an

acyclic-sink set in U(`). Therefore, subdigraphs of U(`) induced on these sets have a vertex

of outdegree 0, so that Pr(Ej+1|Bi ∩ F ) = 1. Using these observations, (4.9) reduces to

Pr(Ej+1|Bi) = Pr(F |Bi). The event F is independent of the event Bi since the vertices in Si

do not affect the outdegree of vertices in the subdigraph induced by V (U(`))rSi. Therefore,

Pr(Ej+1|Bi) = Pr(F ).

Now we estimate the probability of F . The probability that any particular vertex of U(`)−Si

has outdegree 0 in the induced subdigraph is bounded from above by (1−p)(w−j). Since these

outdegree computations are independent for each vertex, the probability that all vertices have

outdegree greater than 0 is bounded from below by (1− (1− p)(w−j))(`w−j), so that

Pr(Ej+1|Bi) = Pr(F ) ≤ 1− ((1− (1− p)(w−j))(`w−j))

< (`w − j)(1− p)(w−j) =: pj . (4.10)

We also need to estimate Pr(Ej+1|Ej). By Claim 2, Ej occurs if and only if
⋃
i∈I Bi occurs.
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Thus we may rewrite Pr(Ej+1|Ej) using inclusion-exclusion:

Pr(Ej+1|Ej) = Pr
(
Ej+1

∣∣⋃
i∈I

Bi

)

=
Pr
(
Ej+1 ∩

(⋃
i∈I Bi

))
Pr
(⋃

i∈I Bi
)

=
Pr
(⋃

i∈I(Ej+1 ∩Bi)
)

Pr
(⋃

i∈I Bi
)

=
∑

∅6=Y⊆I
(−1)|Y |+1

Pr
(
Ej+1 ∩

(⋂
y∈Y By

))
Pr
(⋃

i∈I Bi
)

=
∑

∅6=Y⊆I
(−1)|Y |+1

Pr
(
Ej+1 ∩

(⋂
y∈Y By

))
Pr
(⋂

y∈Y By
) Pr

(⋂
y∈Y By

)
Pr
(⋃

i∈I Bi
)

=
∑

∅6=Y⊆I
(−1)|Y |+1 Pr

(
Ej+1

∣∣ ⋂
y∈Y

By

)
Pr
( ⋂
y∈Y

By
∣∣⋃
i∈I

Bi

)
=

∑
y∈I

Pr(Ej+1|By) Pr
(
By
∣∣⋃
i∈I

Bi

)
+
∑
Y⊆I
|Y |≥2

(−1)|Y |+1 Pr
(
Ej+1

∣∣ ⋂
y∈Y

By

)
Pr
( ⋂
y∈Y

By
∣∣⋃
i∈I

Bi

)
.

Using (4.8) and (4.10) in the last expression for Pr(Ej+1|Ej) gives

Pr(Ej+1|Ej) ≤ pj
∑
y∈I

Pr

(
By|

⋃
i∈I

Bi

)
+
∑
Y⊆I
|Y |≥2

(−1)|Y |+1 Pr

⋂
y∈Y

By|
⋃
i∈I

Bi



= pj
∑
y∈I

Pr

(
By|

⋃
i∈I

Bi

)
+

Pr

(⋃
i∈I

Bi|
⋃
i∈I

Bi

)
−
∑
y∈I

Pr

(
By|

⋃
i∈I

Bi

)

= pj
∑
y∈I

Pr

(
By|

⋃
i∈I

Bi

)
+

1−
∑
y∈I

Pr

(
By|

⋃
i∈I

Bi

) .
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Since
∑

y∈I Pr(By|
⋃
i∈I Bi) ≥ 1 and pj − 1 < 0 we have

Pr(Ej+1|Ej) ≤ 1 +
∑
y∈I

Pr

(
By|

⋃
i∈I

Bi

)
(pj − 1) < pj .

Applying this last estimate to (4.7) yields

P` ≤
w−1∏
j=0

pj =
w−1∏
j=0

(`w − j)(1− p)(w−j)

< (`w)w(1− p)w(w+1)/2

≤ (`w)w(1− p)w2/2

≤ (`w)we−pw
2/2

≤
(
`we−pw/2

)w
≤

(
`we−n

ε/(4k′)
)w

(4.11)

≤
(
e−n

ε/(5k′)
)w

(4.12)

≤ e−n
1+ε/(10(k′)2). (4.13)

In passing from (4.11) to (4.13), the reader may find it helpful to recall that n = |Vi| (for

1 ≤ i ≤ k), k′ = |V (C)|, ` is between 2 and k, w = dn/(2k′)e, and p = nε−1, and that these

estimates are valid for fixed k′ and sufficiently large n.

We return to our estimation of the expected number N of bad sequences in (4.6), repeated

here for convenience:

N ≤
k∑
`=2

(
k

`

)
(`− 1)!

(
n

w

)`
P`.

Using Lemma 4.1 to bound the factors P` in this sum shows that for n large enough,

N ≤
k∑
`=2

(
k

`

)
(`− 1)!

(
n

w

)`
e−n

1+ε/(10(k′)2) <
k∑
`=2

e−n

2k
<

e−n

2
. (4.14)
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From (4.14) and Markov’s Inequality (Theorem 1.1 with t = 1), we conclude that

Pr(∃ a bad sequence) <
e−n

2
. (4.15)

Since φ fails to be an acyclic homomorphism exactly when there exists a bad pair or there

exists a bad sequence, (4.5) and (4.15) now show that

|D rD2| ≤ (Pr(∃ bad pair) + Pr(∃ bad sequence)) |D| < e−n |D| ,

which yields (4.2), and hence completes the proof of Theorem 3.2.

4.2 The Janson Inequalities

In the next section we will need to use the Janson Inequalities, first proved in 1990 [14].

For completeness, in this section we include a brief summary of their presentation in [1,

Section 8.1]. For more details we direct the reader to [1], from which we borrow extensively

throughout this section.

Frequently we would like to bound the probability that none of a set of ‘bad’ events Bi,

i ∈ I occur. For example, in the preceding section we needed to bound the probability that a

certain type of subset of vertices of our random model induced an acyclic digraph. If the bad

events are mutually independent, then

Pr(
⋂
i∈I

BC
i ) =

∏
i∈I

Pr(BC
i ).

The Janson Inequalities are used when the Bi are ‘mostly’ independent. That is to say that

‘rarely’ is there a dependence between two particular Bi’s, and any such dependence is ‘small’.

We can then estimate the (small) difference between Pr(∩i∈IBC
i ) and Πi∈I Pr(BC

i ).
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Let Ω be a finite universal set and let R be a random subset of Ω given by Pr(r ∈ R) = pr

(for some probabilities pr), these events mutually independent over r ∈ Ω. Let I be a finite

index set, and, for i ∈ I, let Ai be a subset of Ω. Let Bi be the event Ai ⊆ R. (That is, each

point r ∈ Ω ‘flips a coin’ to determine if it is in R; then Bi is the event that the coins for all

r ∈ Ai came up ‘heads’.) Let Xi be the indicator random variable for Bi and X =
∑

i∈I Xi

the number of Ai ⊆ R. The events ∩i∈IBC
i and {X = 0} are then identical. For i, j ∈ I

we write i ∼ j if i 6= j and Ai ∩ Aj 6= ∅. Note that when i 6= j and i � j then Bi, Bj are

independent events since they involve separate coin flips. Furthermore, if i /∈ J ⊆ I and i � j

for all j ∈ J , then Bi is mutually independent of {Bj |j ∈ J} because the coin flips on Ai and

on ∪j∈JAj are independent. We define

∆ :=
∑
i∼j

Pr(Bi ∩Bj).

Here the sum is over ordered pairs so that ∆/2 gives the corresponding sum over unordered

pairs. We set

µ = E[X] =
∑
i∈I

Pr (Bi).

We’re now ready to state the limited form of the Janson Inequality that we need for the

proof of Theorem 3.3.

Theorem 4.3. If Bi, i ∈ I, ∆ and µ are as above, then

Pr(
⋂
i∈I

BC
i ) ≤ e−µ+∆/2.

Note that when ∆ ≥ 2µ, the upper bound of Theorem 4.3 becomes useless because it exceeds

1. Even for ∆ slightly less, it is improved by the following result, a simplified version of the

so-called Extended Janson Inequality.

Theorem 4.4. Under the assumptions of Theorem 4.3 and further assumption that ∆ ≥ µ,
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we have

Pr(
⋂
i∈I

BC
i ) ≤ e−µ2/(2∆).

4.3 Proof of Theorem 3.3

To obtain the conclusion of Theorem 3.3 (unique D-colorability), we shall need to refine the

deletion method employed in the proof of Theorem 3.2. We preserve the earlier notation. Let

D3 be the set of digraphs H ∈ D1, in which any two cycles of length less than g are disjoint.

Let D4 denote the set of those H ∈ D with the property that H −A1 is uniquely D-colorable

for any set A1 of at most dngεe independent arcs. (Here, we call a set S ⊆ E(H) independent

if no two arcs in S have a vertex in common.) Now we will show that

|D3| >
(

1− n−ε/3
)
|D| (4.16)

and

|D4| >
(

1− e−nε/6
)
|D| . (4.17)

Since (4.16) and (4.17) imply that D3∩D4 6= ∅ (for large enough n), we can choose a digraph

H ∈ D3 ∩ D4. As H ∈ D3 ⊆ D1, we can delete a set A1 of at most dngεe independent arcs

from H so that D∗ :=H − A1 has girth at least g, and H ∈ D4 ensures that D∗ is uniquely

D-colorable. Hence, to complete the proof of Theorem 3.3, it suffices to establish (4.16) and

(4.17).

Proof of (4.16). For integers `1, `2 < g, we follow [22] and call a digraph an (`1, `2)-double

cycle if it consists of a directed cycle C`1 of length `1 and a directed path of length `2 joining

two (not necessarily distinct) vertices of C`1 ; such a digraph contains `1 + `2 − 1 vertices and

`1 + `2 arcs. Let D′ denote the set of digraphs in D containing an (`1, `2)-double cycle for
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some `1, `2 < g. Notice that D1 rD3 ⊆ D′, whence

|D1 rD3| ≤
∣∣D′∣∣ , (4.18)

so we can obtain a lower estimate for |D3| by estimating |D′|.

For fixed `1, `2 < g, the expected number N(`1, `2) of (`1, `2)-double cycles in a digraph

H ∈ D is less than

`1(kn)`1(kn)`2−1p`1+`2 ,

since there are fewer than `1(kn)`1(kn)`2−1 ways of choosing such a double cycle Y with

V (Y ) ⊆ V , and each such Y exists with probability 0 or p`1+`2 . Since p = nε−1 we have

N(`1, `2) < `1k
`1+`2nε(`1+`2)n−1.

Since ε(`1 + `2) ≤ 2gε < 1/2, for large enough n we have

∑
2≤`1<g
1≤`2<g

N(`1, `2) < n−1/2.

Markov’s Inequality (Theorem 1.1 with t = 1) now shows that

∣∣D′∣∣ < n−1/2 |D| ,

so from (4.18) we obtain

|D3| > |D1| − n−1/2 |D| ,

and (4.1) gives (4.16).

Proof of (4.17). We will argue that |D rD4| < e−n
ε/6|D|. If H ∈ D rD4, then there is a set

A1 of at most dngεe independent arcs of H so that H−A1 admits an acyclic homomorphism h

to D that is not the composition σ ◦ c of the natural homomorphism c : H −A1 → D (sending
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Vi to i) with an automorphism σ of D. As in the proof of (4.2), we can define a function

φ : V (D)→ V (D) such that
∣∣Vi ∩ h−1(φ(i))

∣∣ ≥ n/k for each i ∈ V (D).

Let us first suppose that φ is not an automorphism of D. By hypothesis, D is a core, so any

acyclic homomorphism of D to itself must be an automorphism. It follows that φ is not an

acyclic homomorphism. Therefore, there is an arc ij ∈ E(D) such that φ(i)φ(j) 6∈ E(D), or

there is a vertex i ∈ V (D) such that φ−1(i) is not acyclic. Notice that the current arrangement

is analogous to the one in the second paragraph in the proof of (4.2). Repeating the earlier

argument, with D in the place of C and k in the role of k′, we find that most H ∈ D do not

fall into the present case. More precisely, we reach the following conclusion:

At least (1− e−n)|D| digraphs H ∈ D have the property that for any set A1 of at most dngεe

arcs (independent or otherwise), the digraph H −A1 cannot be D-colored so that φ is not an

automorphism of D.

Thus, in this case, |D rD4| < e−n|D| < e−n
ε/6|D|, and (4.17) is proved.

From now on, we treat the case when φ is an automorphism of D. Without loss of generality,

we may assume that φ is the identity, i.e., that

∣∣Vi ∩ h−1(i)
∣∣ ≥ n/k for each i ∈ V (D). (4.19)

We may assume further that

∣∣Vj ∩ h−1(i)
∣∣ < n/k for all j 6= i. (4.20)

(Otherwise, we can redefine φ(i) to be equal to j and fall into the case where φ is not an

automorphism.)

Since h is not the composition σ ◦ c of the natural homomorphism c : H −A1 → D (sending
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Vi to i) with an automorphism σ of D, there must be a pair {i, j} of distinct vertices of D

such that Vj ∩h−1(i) 6= ∅. Let {i0, j0} be such a pair that maximizes |Vj0 ∩h−1(i0)|. Consider

the map φ′ : V (D)→ V (D) such that

φ′(x) :=

 x(= φ(x)) if x 6= j0

i0 if x = j0.

Clearly φ′ is not a bijection, and since D is a core, it cannot be an acyclic homomorphism.

There are two possibilities.

Case 1: Both j0i0 and i0j0 are arcs of D (so φ′−1(i0) is not acyclic).

Case 2: There exists v ∈ V (D) such that vj0 is an arc of D but vi0 is not, or j0v is an arc of

D but i0v is not.

We will show that in either case, |D rD4| < e−n
ε/6|D|.

Case 1: Our choice of {i0, j0} ensures that h−1(i0) ∩ Vj0 6= ∅. Let x ∈ h−1(i0) ∩ Vj0 , and

consider the (nonrandom) subdigraph D̂n of Dn induced by {x} ∪ (h−1(i0) ∩ Vi0). As Vi0

induces no cycles, all cycles of D̂n must include x, and since the arcs of A1 are independent,

at most one such arc is incident with x. Furthermore, the constraint on the size of A1 and

our choice of ε (smaller than 1/(4g)) give

|A1| ≤ dngεe < dn1/4e � n

k
.

Because |h−1(i0) ∩ Vi0 | ≥ n/k (cf. (4.19)), there must be a subset U ⊆ h−1(i0) ∩ Vi0 of

cardinality bn/2kc such that the (random) subdigraph induced by {x} ∪ U contains no arcs

of A1 and moreover is acyclic (since h−1(i0) is acyclic). To show that this is unlikely, we first

estimate the expected number M of ways to select a vertex x ∈ Vj0 and a subset U ⊆ Vi0 of
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cardinality bn/2kc so that the subdigraph Hx,U of H that they induce is acyclic and no arc

of A1 is incident with a vertex in U . If Px,U denotes the probability that Hx,U is acyclic, then

M ≤ n
(

n

bn/2kc

)
Px,U < nnPx,U . (4.21)

In order to estimate Px,U , we employ the Janson Inequalities (cf. Section 4.2). The idea

to invoke these inequalities here was originally contributed by Ararat Harutyunyan (cf. [12]).

Thus, the first draft of this page and the next two (up to Case 2) was written by him.

Denote by Ω the set of all potential arcs in the subdigraph D′x,U of Dn induced by {x} ∪U ;

each arc in Ω appears in Hx,U with probability p. Let ` > (2 + ε)/ε be a fixed integer. We

index those cycles of D′x,U (with the positive integers) that are of length ` + 1 in D′x,U . For

j ≥ 1, let Sj be the arc-set of the jth such cycle and Bj be the event that the arcs in Sj all

appear (i.e. the cycle determined by Sj is present in Hx,U ). Let X count the Bj that occur;

since Pr(X = 0) is an upper bound for Px,U , we can bound Px,U by bounding Pr(X = 0), and

estimating the latter quantity is exactly the purpose of the Janson Inequalities.

In the Janson paradigm, the value of ∆ is given by

∆ =
∑
Si∼Sj

Pr(Bi ∩Bj),

where Si ∼ Sj if the two cycles determined by Si and Sj have at least one arc in common. Since

there are at most
(bn/2kc

`

)
< n` cycles Sj , if we fix an Si to maximize

∑
j:Sj∼Si

Pr(Bi ∩ Bj),

then

∆ ≤ n`
∑

j:Sj∼Si

Pr(Bi ∩Bj). (4.22)

Now we sum over the number r of common arcs an Sj can have with Si; this fixes at least
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r + 1 vertices of Sj . Thus,

∑
j:Sj∼Si

Pr(Bi ∩Bj) ≤
∑̀
r=1

(
`+ 1

r

)⌊ n
2k

⌋`−r−1
p2(`+1)−r.

Using the crude upper estimates
(
`+1
r

)
< 2`+1 and bn/2kc < n, and replacing p with nε−1, we

obtain

∑
j:Sj∼Si

Pr(Bi ∩Bj) < 2`+1
∑̀
r=1

(np)`−r−1p`+3 < 2`+1`(np)`−2p`+3 = 2`+1`n2ε`+ε−`−3.

This and (4.22) now give

∆ ≤ 2`+1`n2ε`+ε−3. (4.23)

We also need to find a lower bound for µ := E[X]. Since the arcs of D′x,U within U are

acyclically oriented, each choice of ` vertices within U determines exactly one potential (`+1)-

cycle (viz., through x). It follows that

µ =

(
bn/2kc

`

)
p`+1 >

(
bn/2kc

`

)`
p`+1 >

nε`+ε−1

(4k`)`
. (4.24)

We have two subcases.

Subcase 1(i): ∆ ≥ µ.

Here, we have the hypotheses of the Extended Janson Inequality (Theorem 4.4), which, along

with (4.23) and (4.24) gives

Pr(X = 0) ≤ e−µ
2/(2∆) < e−n

1+ε/(`2`+2(4k`)2`) =: e−βn
1+ε
,

where β is the (positive) constant (not depending on n) absorbing the denominator in the

preceding exponent.
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Subcase 1(ii): ∆ < µ.

Now we have the hypotheses of the Janson Inequality (Theorem 4.3), which, with the help of

(4.24) gives

Pr(X = 0) ≤ e−µ+∆/2 < e−µ/2 < e−n
ε`+ε−1/(2(4k`)`).

Recalling our choice of ` > (2 + ε)/ε, we see that

Pr(X = 0) < e−n
1+2ε/(2(4k`)`) < e−n

1+ε
.

In either subcase, we have that Px,U ≤ Pr(X = 0) < e−βn
1+ε

(since β < 1), and returning

to (4.21), we have

M < nnPx,U < nne−βn
1+ε

=
(
ne−βn

ε
)n

< e−βn
1+ε/2.

By Markov’s Inequality (Theorem 1.1 with t = 1), the probability that there exists such an

{x}∪U (that induces an acyclic subdigraph) is less than e−βn
1+ε/2 < e−n

ε/6, and so in Case 1,

|D rD4| < e−n
ε/6|D|, as desired.

Case 2: By the hypothesis of this case, there is a vertex v such that either vj0 ∈ E(D) and

vi0 6∈ E(D), or j0v ∈ E(D) and i0v 6∈ E(D). We will consider the first of these; the second

one yields to similar reasoning. Let us recall that we chose a pair {i0, j0} of distinct vertices

of D so as to maximize b := |Vj0 ∩ h−1(i0)| 6= 0.

Claim: Every vertex z ∈ V (D)r {i0} satisfies
∣∣Vz ∩ h−1(z)

∣∣ ≥ n− (k − 1)b.

Proof of claim. Otherwise, some z 6= i0 satisfies
∣∣Vz ∩ h−1(z)

∣∣ < n−(k−1)b. By the pigeonhole

principle, there is some u 6= z such that
∣∣Vz ∩ h−1(u)

∣∣ > b, but this contradicts our choice of

{i0, j0}.
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Using the claim, we see that there are sets Uv ⊆ Vv ∩ h−1(v) and Uj0 = Vj0 ∩ h−1(i0)

with |Uv| = n − (k − 1)b and |Uj0 | = b. Since h : H − A1 → D is an acyclic homomorphism

and vi0 6∈ E(D), there are at most min{b, dngεe} independent arcs from a vertex in Uv to

one in Uj0 . We now estimate the expected number L(b) of pairs U ′v ⊆ Vv, U
′
j0
⊆ Vj0 with

|U ′v| = n− (k − 1)b = n− (k − 1)|U ′j0 |, and at most min{b, dngεe} arcs from U ′v to U ′j0 .

For b < n/k (cf. (4.20)) and s ≤ min{b, dngεe}, denote by L(b, s) the expected number of

pairs U ′v ⊆ Vv, U
′
j0
⊆ Vj0 , |U ′v| = n− (k − 1)b = n− (k − 1)|U ′j0 |, and exactly s arcs joining a

vertex in U ′v to one in U ′j0 . Then

L(b, s) <

(
n

n− (k − 1)b

)(
n

b

)(
(n− (k − 1)b)b

s

)
ps(1− p)(n−(k−1)b)b−s

< n(k−1)bnb(nb)sns(ε−1)e−bn
ε+nε−1((k−1)b2+s)

< bsnεsnkbe−(bnε)/2

= bsnεs(nke−n
ε/2)b

< bsnεse−(bnε)/3

< e−n
ε/4.

Letting L(b) =
∑

s≤min{b,dngεe} L(b, s) < dngεee−nε/4 < e−n
ε/5, we find that

∑
1≤b<n/k

L(b) < (n/k)e−n
ε/5 < e−n

ε/6.

This completes the discussion for the case when vj0 ∈ E(D) and vi0 6∈ E(D); an identical

argument gives the same upper bound in the case when j0v ∈ E(D) and i0v 6∈ E(D). Thus

in Case 2 we also arrive at |D rD4| < e−n
ε/6|D|.

Combining the estimates obtained above and applying Markov’s Inequality (Theorem 1.1

with t = 1) finally yields (4.17) and therefore completes the proof of Theorem 3.3.



Chapter 5

An application and future work

5.1 An application of Theorem 3.3

Different types of digraph coloring such as ordinary coloring, acyclic coloring, and circular

coloring can often be described in terms of homomorphisms into certain codomains. For

example, we showed in Section 3.3 that the existence of an acyclic r-coloring of a digraph D

is equivalent to the existence of an acyclic homomorphism from D into Kr. Since each Kr is a

core, Theorem 3.3 implies the existence of uniquely r-colorable digraphs with arbitrarily large

girth. In this section, we briefly describe another type of digraph coloring, circular coloring,

that also admits a homomorphic description. Here, the codomains are frequently cores, so we

can again apply Theorem 3.3.

The circular chromatic number of a graph is a much-studied graph invariant; see [23] for

a survey of the research on the circular chromatic number as of 2001. Here we describe the

circular chromatic number of a digraph as introduced in [2]. This definition generalizes the

circular chromatic number for undirected graphs.
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For q ∈ Q+, let Sq denote the circle of perimeter q (centered, say, at the origin of R2). We

define a circular q-coloring of D to be a map φ : V (D)→ Sq such that for every xy ∈ E(D),

with φ(x) 6= φ(y), the distance dS(φ(x), φ(y)) from φ(x) to φ(y) in the clockwise direction

around Sq is at least 1, and for every p ∈ Sq, the preimage φ−1(p) induces an acyclic subdigraph

of D. It is shown in [2, 18] that there is a rational number q ∈ Q such that D has a circular

k/d-coloring if and only if k/d ≥ q. This value q is denoted by χc(D) and called the circular

chromatic number of D.

In order to implement the results of this dissertation (specifically Theorem 3.3), we will need

an equivalent definition of the circular chromatic number in terms of acyclic homomorphisms.

Let d ≥ 1 and k ≥ d be integers. Let C(k, d) be the digraph with vertex set Zk = {0, 1, . . . , k−

1} and arcs

E(C(k, d)) = {ij | j − i ∈ {d, d+ 1, . . . , k − 1}},

where the subtraction is considered in the cyclic group Zk of integers modulo k. An acyclic

homomorphism of a digraph D into C(k, d) is called a (k, d)-coloring of D. In [2], it is shown

that a digraph D has circular chromatic number at most k/d if and only if there exists a

(k, d)-coloring.

In [2] it was proved that χc assumes all rational values at least one, but the digraphs

witnessing this result do not generally have large girth. We observe that if k and d are

relatively prime, then C(k, d) is a core (for proof, see [12]), and so we may apply Theorem 3.3

to obtain the following result.

Theorem 5.1. If k and d are relatively prime integers with 1 ≤ d ≤ k, then for every positive

integer g, there exists a uniquely C(k, d)-colorable digraph of girth at least g (and with circular

chromatic number equal to k/d).
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5.2 Future work

Much of our work here was inspired originally by Zhu’s results in [22]. In a later paper [21],

Nešetřil and Zhu offer a simultaneous generalization of Theorems 2.3 and 2.4. Before we state

this result we need an additional definition.

If G is a graph, then a graph H is said to be G-pointed if for any two homomorphisms

φ, φ′ : G → H that satisfy φ(x) = φ′(x) for all x 6= x0 (for a fixed vertex x0 ∈ V (G)) the

relation φ(x0) = φ′(x0) also holds.

Theorem 5.2 (Nešetřil and Zhu, 2004 [21]). For every graph G and every choice of positive

integers k and g there exists a graph G∗ together with a surjective homomorphism c : G∗ → G

with the following properties:

(i) The girth of G∗ is at least g.

(ii) For every graph H with at most k vertices, there exists a homomorphism

φ : G∗ → H if and only if there exists a homomorphism f : G→ H.

(iii) For every G-pointed graph H with at most k vertices and for every homomorphism

φ : G∗ → H there exists a unique homomorphism f : G→ H such that φ = f ◦ c.

To see that Theorem 5.2 implies Theorem 2.3, consider a graph G that is not H-colorable.

Let k be the maximum of |V (G)| and |V (H)|. Then conclusions (i) and (ii) of Theorem 5.2

imply that there is a graph G∗ with girth at least g that is G-colorable but not H-colorable.

This is the conclusion of Theorem 2.3.

We observe that if G is a core, then any graph homomorphism from G to G must be an

automorphism, and so if any two such homomorphisms agree on all but one vertex, they must

also agree on that vertex. Therefore G is G-pointed. We take k = |V (G)| and then conclusions
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(i) and (iii) of Theorem 5.2 imply that there exists a graph witnessing the conclusion of

Theorem 2.4.

There is clearly an analogous concept of ‘pointed’ for digraphs with acyclic homomorphisms,

and so the statement of Theorem 5.2 has a natural analogue in that setting. We pose the

question of whether the analogue holds in the digraph setting. An affirmative answer would

imply the main results of this dissertation (Theorem 3.2 and 3.3). Investigating this question

will be a subject of our future research.
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