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The purpose of this thesis is to find sufficient conditions under which a non-commutative
version of the polynomial ring in two variables exists. The non-commutative rings we construct
are non-commutative symmetric algebras over a two-sided vector space [VdB]. After reviewing
the definition of a two-sided vector space and giving some examples, we briefly recall the theory
of simple two-sided vector spaces [NP]. We then assume k is a field of characteristic zero and t
is transcendental over k and we find sufficient conditions under which a simple k-central two-
sided vector space V over k(t) has left and right dimension two. Given such a V , and letting
∗V and V ∗ denote left and right duals we find conditions under which (V i∗, V (i+1)∗, V (i+2)∗)
has a simultaneous basis for all i ∈ Z. This condition implies that the non-commutative
symmetric algebra over V can be constructed. We conclude by exhibiting a five-dimensional
family of simple k-central two-sided vector spaces over k(t) of left and right dimension 2 whose
non-commutative symmetric algebras exist.
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Chapter 1

Introduction

Let K be a perfect extension field of a field k.

The purpose of this thesis is to find sufficient conditions under which a non-commutative

version of the polynomial ring in two variables exists. The significance of our construction

of this non-commutative ring is that, in favorable circumstances, its corresponding division

ring of fractions will be the division ring of fractions of a “non-commutative ruled surface”

[VdB]. In addition, having a store of concrete examples of division rings of fractions of non-

commutative ruled surfaces will give us more information regarding various conjectures, e.g.,

the relationship between “Zhang”-dimension and GK transcendence degree [A, p. 8] and

Artin’s conjecture on the birational classification of non-commutative surfaces [A]. For a

survey of non-commutative curves and surfaces, including definitions of many of the above

terms, see [SV]. Although similar questions to those we study were pursued in [P], we focus

on the most complicated cases (not studied in [P]) and work in a more general context.

Recall that a commutative ruled surface over a (smooth projective) curve X (over k) is bi-

rational to Proj k(X)[x, y] where x and y are given degree 1, k(X) is the function field of X

and k(X)[x, y] denotes the commutative polynomial ring in two variables with coefficients in

1



CHAPTER 1. INTRODUCTION 2

k(X). It is reasonable, then, to expect the division ring of fractions of a non-commutative

ruled surface to be the degree 0 part of the division ring of fractions of a non-commutative

deformation of k(X)[x, y]. Van den Bergh proceeds using the following observation [VdB]:

since k(X)[x, y] = Sk(X)(V ), the symmetric algebra of a two-dimensional vector-space V over

k(X), one can obtain a non-commutative deformation of this ring by deforming V (instead

of deforming the relations of the polynomial ring) and taking a non-commutative symmetric

algebra of V . The appropriate deformation of V is a rank 2 two-sided vector space over k(X),

defined below:

Definition 1.1.1. • A two-sided vector space over K is a k-central K −K-bimodule.

It is simple if it is simple as a K ⊗k K-module.

• A two-sided vector space over K is rank n if it is an n-dimensional vector space for each

of the two K-actions induced by the canonical inclusions K ⊗k 1, 1 ⊗k K → K ⊗k K.

We refer to these actions as the left and right actions of K respectively.

• Let V be a two-sided vector space over K of rank n. A simultaneous basis for V is a

subset of V of size n which is a basis for V as a K-vector space via the left and right

actions of K.

Van den Bergh also defines the concept of left and right dual of V , denoted V −∗ and V ∗,

respectively [VdB] (we recall the definition in Section 3.5). These are typically not isomorphic

to each other. We denote the ith iteration of taking the left dual or the right dual by V −i∗

and V i∗, respectively.

The following definition is crucial to the construction of the non-commutative symmetric

algebra of a two-sided vector space:

Definition 1.1.2. Suppose that V , V −∗ and V ∗ are free rank n two-sided vector spaces. We

say that (V −∗, V, V ∗) has a simultaneous basis if there exists a simultaneous basis for V

whose corresponding left dual is a simultaneous basis for V −∗ and whose corresponding right
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dual is a simultaneous basis for V ∗.

Theorem 1.1.3. (Nyman [N2]) If (V −∗, V, V ∗) has a simultaneous basis then the functors

(−⊗K V −∗,−⊗K V,−⊗K V ∗)

from ModK to ModK form an adjoint triple, i.e.

(−⊗K V −∗,−⊗K V )

and

(−⊗K V,−⊗K V ∗)

are canonically adjoint pairs.

Definition 1.1.4. Suppose V is a two-sided vector space such that

(−⊗K V (i−2)∗,−⊗K V (i−1)∗ ,−⊗K V i∗)

is an adjoint triple for all i ∈ Z. The non-commutative symmetric algebra, Sn.c.K (V ), is

the Z-algebra ⊕i,j∈ZAij with Aij = 0 if i > j, Aii = K, Ai,i+1 := V i∗, and, for j > i+ 1,

Aij := V i∗ ⊗ · · · ⊗ V (j−1)∗/Rij

where ⊗ denotes the bimodule tensor product over K, Rij ⊂ Ai,i+1 ⊗ · · · ⊗ Aj−1,j is the

two-sided vector space

j−2∑
k=i

Ai,i+1 ⊗ · · · ⊗Ak−1,k ⊗Qk ⊗Ak+2,k+3 ⊗ · · · ⊗Aj−1,j ,

and Qi is the image of the map K → V i∗ ⊗ V (i+1)∗ induced by the unit of the adjoint pair

(−⊗K V i∗,−⊗K V (i+1)∗). For the definition of multiplication see Definition 3.5.2.
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In this thesis we find conditions on a simple two-sided vector space V of left-dimension 2 so

that Sn.c.K (V ) exists. By Theorem 1.1.3, Sn.c.K (V ) will exist so long as (V (i−2)∗, V (i−1)∗, V i∗)

has a simultaneous basis for all i ∈ Z, so we attack this question.

More specifically, we study the following

Question 1. Let V be a simple two-sided vector space over K with left-dimension 2.

(a) What conditions on V ensure that V is rank 2? If it is rank 2, when does it have a

simultaneous basis?

(b) Assume V is rank 2. What conditions on V ensure that V i∗ is rank 2 for all i? What

conditions on V ensure that (V (i−2)∗, V (i−1)∗, V i∗) has a simultaneous basis for all i ∈ Z?

The construction of a division ring of fractions of Sn.c.K (V ) (and the issue of when such a thing

exists) is beyond the scope of this thesis.

In [P], Patrick answers special cases of parts (a) and (b) of Question 1 when V is not simple. In

addition, Patrick makes, without proof, the following claim, pertinent to part (a) of Question

1: If V is rank n then the generic left basis for V is simultaneous [P]. This statement is more

subtle than it appears and requires careful proof (assuming it is true). To prove our result

Theorem 1.1.8, we work without this claim.

In case K/k is finite and V has left-dimension 2, (V (i−2)∗, V (i−1)∗, V i∗) form an adjoint triple

for all i ∈ Z so that one can construct Sn.c.K (V ) [N2]. When K is transcendental of degree

one over k and V is simple, parts (a) and (b) of Question 1 become much more subtle.

Our strategy for tackling this case is to use the following Theorem 1.1.5, which relates the

study of simple V to the study of certain field extensions. Before stating the theorem, we

introduce some notation. We write Emb(K) for the set of k-linear embeddings of K into K̄,

and G = Aut(K̄/K). Now, G acts on Emb(K) by left composition. Given λ ∈ Emb(K), we

denote the orbit of λ under this action by λG. We denote the set of finite orbits of Emb(K)
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under the action of G by Λ(K).

Theorem 1.1.5. (Nyman-Pappacena) [NP] There is a one-to-one correspondence between

isomorphism classes of simple left finite-dimensional two-sided vector spaces and Λ(K). More-

over, if V is a simple two-sided vector space corresponding to λG ∈ Λ(K), then dimK V = |λG|.

If M and N are subfields of L, let M ∨N denote their composite in L. One can show using

Theorem 1.1.5 that answering part (a) of Question 1 is equivalent to answering the following

question:

Question 2. Which k-linear embeddings λ : K → K have the property that

[K ∨ λ(K) : K] = 2 = [K ∨ λ(K) : λ(K)]?

Our main interest in this thesis is the case k = C and K = C(t) (where t is transcendental

over C), although all the proofs work, and are proven, if k is a field of characteristic zero, and

t is transcendental over k. Suppose λ : K → K is a k-linear embedding. In order for λ to

satisfy the first equality in Question 2, we must have λ(t) = α +
√
m where α,m ∈ C(t) but

√
m is not in C(t).

We investigate conditions for when the second equality in Question 2 is satisfied. We prove

the following in Theorem 3.3.1:

Theorem 1.1.6. Suppose [K ∨λ(K) : K] = 2, that [K : C(m)] = 2 and that α ∈ C(m). Then

[K ∨ λ(K) : λ(K)] = 2 if and only if α ∈ C.

Definition 1.1.7. Let i ∈ Z. We say (V (i−1)∗, V i∗, V (i+1)∗) has a simultaneous basis if there

is a simultaneous basis for ( ∗(V i∗), V i∗, V (i+1)∗) in case i ≥ 0 and for (V (i−1)∗, V i∗, (V i∗)∗) in

case i ≤ 0.

We then produce a five-parameter family of simple two-sided vector spaces of rank 2 over C(t)
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whose corresponding non-commutative symmetric algebras exist. Specifically, we prove the

following in Theorem 3.4.13:

Theorem 1.1.8. Let λ(t) = α +
√

at2+bt+c
dt2+et+f

such that α, a, b, c, d, e, f ∈ C, and a, d 6= 0,

ae = bd, af 6= cd, b2 6= 4ac, e2 6= 4df , then (V (i−2)∗, V (i−1)∗, V i∗) has a simultaneous basis for

all i ∈ Z. It follows that Sn.c.K (V ) exists for such V .

We may also ask if the classification is complete in the following sense:

Suppose V is a simple two-sided vector-space over C(t) which has left dimension 2. If V

corresponds (via Theorem 1.1.5) to an embedding λ : C(t)→ C(t) with λ(t) = α +
√
m such

that
√
m is not in C(t), α ∈ C, and Sn.c.K (V ) exists, must V be in the family described in

Theorem 1.1.8?

Although we do not answer this question in this thesis, it provides direction for further study.



Chapter 2

Background on two-sided vector

spaces

2.1 Two-sided vector spaces

The goal of this thesis is to construct a non-commutative analog of the symmetric algebra of

a vector space. The role of the vector space will be played by a two-sided vector space. In

this chapter we give examples of two-sided vector spaces and review the structure of simple

two-sided vector spaces. The latter are especially relevant to us since in the next chapter we

will restrict our attention to the study of simple two-sided vector spaces.

We will follow the following conventions throughout the rest of the thesis:

1. k is of characteristic 0, and thus perfect.

2. K = k(t) where t is transcendental over k, thus K is also of characteristic 0 and perfect.

A two-sided vector space is an ordinary vector space with an additional scalar multiplication.

7



2.1. TWO-SIDED VECTOR SPACES 8

More formally:

Definition 2.1.1. A two-sided vector space V is a K-bimodule where the left and right

actions of K on V do not necessarily agree.

If we further fix a base field k ⊂ K then we arrive at:

Definition 2.1.2. A k-central two-sided vector space, V , over K is a K
⊗

kK-module.

This is the same as a k-central K −K bi-module. In the sequel, we will assume that every

two-sided vector space is k-central. We will often say “two-sided vector space” omitting the

“k-central” part. Given a two-sided vector space and a set of vectors {vi : i ∈ I}, we write

span{vi} to stand for the left span of the vi. Span{vi} is not usually a two-sided subspace of

V .

Let V be any two-sided vector space with finite left dimension, say n. Pick a left basis

{a1, . . . , an} of V , then as left K-modules V ∼= Kn. Any element α ∈ K determines an

endomorphism of KV via right multiplication, which we denote by φ(α), i.e, given α ∈ K

let φ(α)(v) := v · α for all α ∈ K and v ∈ KV . As φ gives an endomorphism of KV

it gives an endomorphism of Kn, thus corresponds to multiplication of row vector on the

right by a matrix. One can check that the assignment α → φ(α) defines a homomorphism

φ : K →Mn(K).

Definition 2.1.3. Let φ : K →Mn (K) be a nonzero k-algebra homomorphism. Then denote

by 1K
n
φ the following two-sided vector space: as a set it is Kn, with left action the usual one,

and right action is via φ; that is,

x · (v1, . . . , vn) = (xv1, . . . , xvn) , (v1, . . . , vn) · x = (v1, . . . , vn)φ (x) .

Definition 2.1.4. If V is a two-sided vector space and {bj : j ∈ J} ⊂ V is a basis for both

the left and right actions then we say that {bj : j ∈ J} is a simultaneous basis.
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Example 2.1.5. Consider C over C with the usual multiplication on the left and v ·c = σ (c) v

for all v, c ∈ C where σ is complex conjugation and the multiplication on the right hand side

is the usual complex multiplication. Then {1} is both a left and right basis.

Definition 2.1.6. When the left and right basis have the same cardinality we define that

cardinality to be the rank of the vector space.

Definition 2.1.7. A two-sided vector space is simple if it has no proper non-trivial subspaces.

The following example shows the contrast between the structure of, usual vector spaces and

two-sided vector spaces.

Example 2.1.8. Let k = C,K = C (t), where t /∈ C. Define a map φ : C(t)→M2 (C (t)) via

φ (x) =

 x d
dtx

0 x

. We claim φ is a homomorphism, the set {(1, 0), (0, 1)} is a simultaneous

basis, and the two-sided vector space 1C (t)2φ is not semi-simple. To prove the claim, let

a, b ∈ C (t) and c ∈ C. Then

φ (ca+ b) =

 ca+ b d
dt (ca+ b)

0 ca+ b

 =

 ca c ddt (a)

0 ca

+

 b d
dt (b)

0 b

 = cφ (a) + φ (b) ,

so φ is C−linear. Moreover,

φ(a)φ(b) =

 a d
dta

0 a


 b d

dtb

0 b

 =

 ab a ddtb+ b ddta

0 ab

 =

 ab d
dtab

0 ab

 = φ(ab),

so φ is a ring homomorphism. We now show that {(1, 0), (0, 1)} is a simultaneous basis.It

is clear that the set forms a left basis. For the right we first show that they are linearly

independent. Suppose there exists a, b ∈ C (t) such that

(1, 0) · a+ (0, 1) · b = (0, 0).
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Then

(1, 0)

 a d
dta

0 a

+ (0, 1)

 b d
dtb

0 b

 = (0, 0)

so

(a,
d

dt
a) + (0, b) = (0, 0).

Thus a = 0 = b and they are linearly independent. We now show that they span on the right.

Let (x, y) ∈ C (t)2. We want to know if there exists a, b ∈ C(t) such that

(1, 0) · a+ (0, 1) · b = (x, y) ,

i.e.,

(1, 0)

 a d
dta

0 a

+ (0, 1)

 b d
dtb

0 b

 = (x, y)

or

(a,
d

dt
a+ b) = (x, y) .

The latter is true for a = x and b = y − d
dtx. We conclude that {(1, 0), (0, 1)} forms a right

basis and thus is a simultaneous basis.

Now let’s see that 1C (t)2φ is not simple. We see that {(0, 1)} generates a proper two-sided

subspace since for a ∈ C (t) we have

a(0, 1) = (0, a) = (0, 1) · a .

Finally we show that 1C (t)2φ is not the direct sum of two subspaces of rank 1. If 1C (t)2φ is the

sum of two proper subspaces they are each of rank one. To see this note that the sum of the

left dimensions must be the sum of the right dimensions and both are two. As any non-trivial

subspace must have left dimension at least one, we see that the right dimension must also

be one. We next note that if L is any subspace of rank one it is generated by any non-zero
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vector. If (a, b) ∈ L and a 6= 0 then a−1(a, b) = (1, a−1b) ∈ L and thus generates L. So there

is a generator of the form (1, d) that generates L. We see that L contains both r(1, d) and

(1, d) · r = (r, rd+ d
dtr) for all r in C (t). Now set r = t and consider

(r, rd+
d

dt
r)− r(1, d) = (0, 1) ∈ L .

Thus the only rank one subspace of 1C (t)2φ is the one generated by {(0, 1)}.

A question that arises naturally is, “Are the left and right dimensions always the same?” We

now answer that.

If [K : k] is infinite, it is no longer true that the finiteness of dimKV implies the finiteness of

dimVK , as witnessed by the following example [NP, Example 2.2].

Example 2.1.9. Let K = k (x1, x2, . . .), where the xi are distinct indeterminants, and let

φ : K → K be the homomorphism defined by φ (xi) = xi+1. Let V = 1Kφ. Then the

dimension of KV is 1, while the dimension of VK is infinite. To see this note that K is

an infinite dimensional extension field of k(x2, x3, . . .) = φ(K). By taking direct sums of

V = 1Kφ we can get two-sided vector spaces of left-dimension n and infinite right dimension.

One could simply switch the actions to get an infinite left dimension and a right dimension of

n.

Here are some other natural questions regarding two-sided vector spaces:

1. Can we find two-sided vector spaces of left dimension m and right dimension n, for

positive integers m,n?

2. If V is a two-sided vector space of rank n when can we find a simultaneous basis?

3. For a fixed field K does a rank n two-sided vector space V always have a simultaneous

basis? If so, can we classify all simultaneous basis?



2.2. SIMPLE TWO-SIDED VECTOR SPACES 12

We will answer Question 1 at the end of this chapter and special cases of 2 and 3 in the next

chapter.

2.2 Simple two-sided vector spaces

In keeping with the notation of [NP, Theorem 3.2], we write Emb (K) for the set of k-

embeddings of K into K̄, and G = G (K) for the absolute Galois group Aut
(
K̄/K

)
, K̄/K

being Galois as K is perfect. If L is an intermediate field, then we write G (L) for Aut
(
K̄/L

)
.

G acts on Emb (K) by left composition. Given λ ∈ Emb (K), we denote the orbit of λ under

this action by λG, and we write K (λ) for the composite field K∨ im (λ) which has a two-sided

structure KK ∨ im (λ)λ(K) which we denote V (λ). The stabilizer of λ under this action is easy

to calculate: σλ = λ if and only if σ fixes Im(λ); since σ fixes K as well we have that the

stabilizer is G (K (λ)).

Lemma 2.2.1. [N2, Lemma 3.1] [K (λ) : K] is finite if and only if |λG| is finite, and in this

case |λG| = [K (λ) : K].

We will only be interested in those embeddings of λ with λG finite; we denote the set of

finite orbits of Emb(K) under the action of G by Λ (K). We denote the category of left finite-

dimensional two-sided vector spaces by Vect(K). The following theorem due to [NP, Theorem

3.2], allows us to study simple two-sided vector spaces using field theory.

Theorem 2.2.2. There is a one-to-one correspondence between isomorphism classes of sim-

ples in Vect(K) and Λ(K). Moreover, if V is a simple two-sided vector space corresponding

to λG ∈ Λ (K), then dimKV = |λG| and End(V ) ∼= K (λ).

Example 2.2.3. Let us return to the question: Can we find two-sided vector spaces of left

dimension m and right dimension n, for arbitrary positive integers m,n? We note that it is

sufficient to find a two-sided vector space of left dimension one and right dimension n, for
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arbitrary n and to find a two-sided vector space of left dimension m and right dimension one,

for arbitrary m. To see this we analyze three cases:

1. n = m: Form the direct sum of n copies of a rank 1 two-sided vector space.

2. n < m: Form the direct sum n− 1 copies of a rank 1 two-sided vector space with a left

dimension m− n+ 1, right dimension 1 two-sided vector space.

3. n > m: Form m − 1 copies of a rank 1 two-sided vector space with a left dimension 1,

right dimension n−m+ 1 two-sided vector space.

Now we show that we can find a two-sided vector space of left dimension one and right

dimension n, and a two-sided vector space of left dimension m and right dimension one.

Consider the following chain of fields: C (tn) ⊂ C (t) ⊂ C
(
t

1
m

)
. Let λ1 : C (t) → C (t) be

defined by λ1 (t) = tn. Since [C (t) : C (t)] = 1 and [C (t) : C (tn)] = n, V (λ1) = C(t) has

left dimension one and right dimension n. Let λ2 : C (t) → C
(
t

1
m

)
via λ2 (t) = t

1
m . Since

[C
(
t

1
m

)
: C (t)] = m and [C

(
t

1
m

)
: C

(
t

1
m

)
] = 1, V (λ2) has left dimension m and right

dimension one. Hence we can construct two-sided vector spaces of left dimension m and right

dimension n for arbitrary positive integers m and n.



Chapter 3

Results

3.1 Rational two-sided vectors spaces of rank two, Part I

Let k be an arbitrary field of characteristic zero, and let K = k(t) be a function field in one

variable.

Definition 3.1.1. By a rational two-sided vector space of rank two, we mean a k-central

two-sided vector space V over k(t) with simultaneous basis.

Let K̄ be a fixed algebraic closure of K. Our goal in the next few sections is to study simple

rational two-sided vector spaces, and in particular to characterize those V that have rank 2.

By the following lemma such V correspond to k-linear field embeddings λ : k(t) → K̄ such

that

[K(λ(t)) : K] = 2 = [K(λ(t)) : k(λ(t))] ,

i.e.,

[k(t, λ(t)) : k(t)] = 2 = [k(t, λ(t)) : k(λ(t))]

14
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Recall that by Lemma 2.2.1 and Theorem 2.2.2, the left dimension of V is 2 if and only if

[K(λ(t)) : K] = 2.

Lemma 3.1.2. If λ ∈ Emb(K) with | λG |= 2 then K(λ) = K(
√
m) for some m ∈ K by

Lemma 2.2.1. Using {1,
√
m} as a K-basis for K(

√
m), we write λ(x) = λ1(x) + λ2(x)

√
m

with λi(x) ∈ K. Define φ : K →M2(K) as follows:

φ(x) =

 λ1(x) mλ2(x)

λ2(x) λ1(x)



Then V := 1K
2
φ is the simple two-sided K-vector space corresponding to λ in Theorem 2.2.2.

Moreover, V ∼= 1K(
√
m)λ. Consequently the right dimension of V is

[k(t,
√
m) : k(λ(t))].

Proof. We first show that φ : K → M2(K) is a k-linear ring homomorphism. Let a ∈ k,

b, c ∈ K.

φ is clearly k-linear additive as λ1, λ2 are k-linear. To see that φ is multiplicative we follow

the proof of [NP, Proposition 3.5]. First we calculate an eigenvalue, r, of φ: Calculating

the determinant of φ − rI yields (λ1(x) − r)2 −mλ2(x)2. Setting this equal to zero leads to

r = λ(x) as an eigenvalue of φ, with corresponding eigenvector v = (1,
√
m).

Consider {σ1, σ2} where σ1 is the identity and σ2 is conjugation. Note that the automorphisms

σi of K̄ extend componentwise to automorphisms of K̄2 and M2(K̄). Moreover, σi(φ(x)) =

φ(x) since the entries of φ(x) lie in K. Then {σ1(v), σ2(v)} is a basis for K̄2, and for all

x, y ∈ K, we have:

σi(v)φ(x)φ(y) = σiλ(x)σi(v)φ(y) = σiλ(x)σiλ(y)σi(v) = σiλ(xy)σi(v) = σi(v)φ(xy).
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This shows that φ(x)φ(y) and φ(xy) act as the same linear transformation on each σi(v).

As the σi(v) form a basis for K̄2, we have φ(x)φ(y) = φ(xy) for all x, y ∈ K. Thus φ is

multiplicative, and thus a k-linear ring homomorphism.

Since v = (1,
√
m) is for all x ∈ K, an eigenvector of φ(x) with eigenvalue λ(x), the proof of

[NP, Proposition 3.5] shows that V := 1K
2
φ is the simple two-sided vector space corresponding

to λ.

To complete the proof of the lemma, we show that ϕ : 1K
2
φ
∼= 1V (

√
m)λ.

Define ϕ : 1K
2
φ → 1K(

√
m)λ by ϕ((a, b)) = b+ a

√
m.

We show that ϕ is surjective: Let c+ d
√
m ∈ 1K(

√
m)λ. Then ϕ((d, c)) = c+ d

√
m.

We now show that ϕ is injective: If ϕ((a, b)) = ϕ((c, d)) then b + a
√
m = d + c

√
m so

a = c, b = d.

We now show that ϕ is additive:

ϕ((a, b) + (c, d)) = b+ d+ (a+ c)
√
m = (b+ a

√
m) + (d+ c

√
m) = ϕ((a, b)) + ϕ((c, d)).

We now show that ϕ is left K-linear: Let x ∈ K. Then

ϕ(x · (a, b)) = ϕ((xa, xb)) = xb+ xa
√
m = x · (b+ a

√
m) = x · ϕ((a, b)).
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Finally we show that ϕ is right K-linear: Let x ∈ K. Then

ϕ((a, b) · x) = ϕ((a, b)φ(x)) = ϕ

(a, b)

 λ1(x) mλ2(x)

λ2(x) λ1(x)




= ϕ((aλ1 + bλ2, amλ2 + bλ1)) = (amλ2 + bλ1) + (aλ1 + bλ2)
√
m

= (b+ a
√
m)(λ1 + λ2

√
m) = ϕ((a, b))(λ1 + λ2

√
m) = ϕ((a, b))λ(x)

= ϕ((a, b)) · x .

Remark 3.1.3. Note that if instead we define φ(x) :=

 λ1(x) λ2(x)

mλ2(x) λ1(x)

 we get φK
2
1
∼=

λK(
√
m)1.

Now we assume [K(λ(t)) : K] = 2. Then λ(t) satisfies a monic polynomial of degree 2 in K[x].

As we are in characteristic zero, we can complete the square, and can write

λ(t) = α+
√
m,

where α,m ∈ k(t) but
√
m /∈ k(t). We are now interested in conditions on m and α which

assure that [k(t,
√
m), k(α+

√
m)] = 2.

For future reference, we state a well-known result, whose proof can be found, e.g., in [M, p.

8].

Lemma 3.1.4. Let k be a field and k (t) be the field of rational functions in t over k. Then

if u ∈ k (t) \ k where u = f
g with f, g ∈ k[t] and gcd(f, g) = 1 then [k (t) : k (u)] = max {r, s}

where the degree of f and g respectively are r and s.

Lemma 3.1.5. k (t) ∩ k (
√
m) = k (m).

Proof. Clearly k(m) ⊂ k(t) ∩ k(
√
m) ⊂ k(

√
m). Since

√
m /∈ k(t), k(t) ∩ k(

√
m) ( k(

√
m).

Since [k(
√
m) : k(m)] = 2, we obtain k (t) ∩ k (

√
m) = k (m).
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As α ∈ k(t), Lemma 3.1.5 implies α ∈ k(
√
m) if and only if α ∈ k(m).

3.2 Rational two-sided vectors spaces of rank two, Part II

We now study three special cases:

1. m ∈ k.

2. k(m) = k(t).

3. α ∈ k.

Case 1. Assume first that α /∈ k. In this case, we have the following diagram of field

extensions:

k(t,
√
m)

2
ssssssssss

v

k(t)

u

k(α,
√
m)

d

ssssssssss
e

k(α) k(α+
√
m)

Note that d, e ≤ 2 as the larger field is generated over the smaller fields by adjoining
√
m.

Now k(t) is isomorphic to k(α+
√
m) (via λ). Hence k is algebraically closed in k(α+

√
m).

But k is clearly not algebraically closed in k(α,
√
m). Hence e = 2. As

√
m /∈ k(t), d = 2.

Consequently, u = v. Then

[k(t,
√
m) : k(α+

√
m)] = 2

if and only if u = v = 1 if and only if k(t) = k(α) if and only if (by Lemma 3.1.4)

α = at+b
ct+d with a, b, c, d ∈ k and ad− bc 6= 0.

This proves the following theorem in the case α /∈ k.
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Theorem 3.2.1. If m ∈ k then [k(t,
√
m) : k(α +

√
m)] = 2 if and only if α = at+b

ct+d with

a, b, c, d ∈ k and ad− bc 6= 0.

Proof. It remains to deal with the case α ∈ k. But in this case [k(t,
√
m) : k(α+

√
m)] =∞.

And for a, b, c, d ∈ k with ad− bc 6= 0, at+b
ct+d /∈ k, α 6= at+b

ct+d .

Case 2. In this case m /∈ k and α ∈ k(t) = k(m) ⊂ k(
√
m). In addition we assume that

[k(t,
√
m) : k(α +

√
m)] = 2. Under all these assumptions, we have the following diagram of

field extensions:

k(t,
√
m) = k(

√
m)

2
llllllllllllll

2
UUUUUUUUUUUUUUUU

k(t) = k(m) k(α+
√
m)

Consider u =
√
m as a new indeterminate over k. Since k(m) = k(u2) and since α ∈ k(m),

there are polynomials f(x), g(x) ∈ k[x] such that gcdk[x](f(x), g(x)) = 1 and α = f(u2)
g(u2)

. Now

α+
√
m =

f(u2)
g(u2)

+ u =
f(u2) + ug(u2)

g(u2)

Also as gcdk[x](f(x), g(x)) = 1 there exists v(x), w(x) ∈ k[x] such that 1 = v(x)f(x) +

w(x)g(x). Substituting in u2 yields, 1 = v(u2)f(u2) +w(u2)g(u2) which holds in k[u]. If d(u)

is the gcd of f(u2), g(u2) in k[u] then d(u) divides 1. As d(u) is monic, d(u) = 1, so that

gcdk[u](f(u2), g(u2)) = 1. Hence, if degx and degu denote the degree with respect to x and u,

respectively, we have

2 =[k(t,
√
m) : k(α+

√
m)] = [k(

√
m) : k(α+

√
m)]

=max(degu(f(u2) + ug(u2)), degug(u2))

=max(2degx(f(x)), 2degx(g(x)) + 1) .
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The third equality holds by Lemma 3.1.4. As 2degx(g(x))+1 is odd we must have degx(f(x)) =

1 and thus degx(g(x)) = 0. Hence α = am+ b with a, b ∈ k and a 6= 0.

Conversely, if m and α are of this form and k(m) = k(t), then k(m) = k(α) and k(t,
√
m) =

k(
√
m). Again we let u =

√
m, so that α = au2+b. We are interested in [k(u) : k(au2+b+u)],

which is two by Lemma 3.1.4, thus [k(t,
√
m) : k(α+

√
m)] = 2.

This proves the following:

Theorem 3.2.2. If k(m) = k(t), then [k(t,
√
m) : k(α+

√
m)] = 2 if and only if α = am+ b

with a, b ∈ k, a 6= 0.

Case 3. If α ∈ k then k(α +
√
m) = k(

√
m). Hence [k(t,

√
m) : k(α +

√
m)] = 2 if and

only if [k(t,
√
m) : k(

√
m)] = 2 if and only if [k(t) : k(m)] = 2. The last equivalence follows

immediately from the diagram:

k(t,
√
m)

2
ttttttttt

k(t) k(
√
m)

2
ttttttttt

k(m)

Using Lemma 3.1.4, we deduce the following result.

Theorem 3.2.3. Let α ∈ k. Then [k(t,
√
m) : k(α +

√
m)] = 2 if and only if m = f

g with

f, g ∈ k[t], gcd(f, g) = 1, and max(deg(f), deg(g)) = 2.
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3.3 Rational two-sided vectors spaces of rank two, Part III

Our goal is to find conditions on α and m to ensure that

[k(t,
√
m) : k(α+

√
m)] = 2 .

In light of Theorem 3.2.1 and Theorem 3.2.2, we may assume m /∈ k and k(m) ( k(t). In this

section, we additionally assume α ∈ k(
√
m), so k(α+

√
m) ⊂ k(

√
m).

Assume for the moment that [k(t,
√
m) : k(α +

√
m)] = 2. We get the following diagram of

field extensions:

k(t,
√
m)

2
ttttttttt

e

2

==
==

==
==

==
==

==
==

==

k(t)

d

k(
√
m)

2
ttttttttt

NNNNNNNNNNN

k(m) k(α+
√
m)

Clearly d = e ≤ 2, and d 6= 1, so d = e = 2. That is

[k(t) : k(m)] = 2

i.e., m = f
g where f, g ∈ k[t], and gcd(f, g) = 1, and max(deg(f), deg(g)) = 2, see Lemma

3.1.4. Since under the assumptions of this section [k(t,
√
m) : k(α +

√
m)] = 2 implies

[k(t) : k(m)] = 2, it makes sense to assume the latter.

Theorem 3.3.1. Assume α ∈ k(
√
m) and [k(t) : k(m)] = 2. Then [k (t,

√
m) : k (α+

√
m)] =

2 if and only if α ∈ k.

Note that by Lemma 3.1.5, α ∈ k(
√
m) is equivalent to α ∈ k(m). After the proof of the

theorem, we will present an example which shows that if α /∈ k(
√
m), [k(t,

√
m) : k(α+

√
m)]
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need not be 2, even if [k(t) : k(m)] = 2.

Proof. If α ∈ k we have the result by the discussion before Theorem 3.2.3.

We now prove the other direction. We work under the following assumptions:

α ∈ k(
√
m), [k(t) : k(m)] = 2 = [k(t,

√
m) : k(α+

√
m)] .

From Lemma 3.1.5 we get that α ∈ k (m). Note also that as α ∈ k(
√
m) we have k (α+

√
m) ⊂

k (
√
m):

k(t,
√
m)

2

k(
√
m)

k(α+
√
m)

Since [k (t,
√
m) : k (

√
m)] = 2 (see above) we get k (

√
m) = k (α+

√
m).

Now let u =
√
m, then α ∈ k

(
u2
)

and k (α+ u) = k (u). We write α = f(u2)
g(u2)

with

f(u2), g(u2) ∈ k[u2] and (f(u2), g(u2))k[u2] = 1. As (f(u2), g(u2))k[u2] = 1, there exist

w(u2), z(u2) ∈ k[u2] such that f(u2)w(u2) + g(u2)z(u2) = 1, note that this holds in k[u]

also. Let d(u) = (f(u2), g(u2))k[u]. As d(u) divides both f(u2), g(u2) then d(u) divides 1. As

d(u) is monic, d(u) = 1. Since k(u) = k(α+ u), we can write

u =
h (α+ u)
l (α+ u)

=
h

(
f(u2)+ug(u2)

g(u2)

)
l
(
f(u2)+ug(u2)

g(u2)

)
where h (x) = anx

n + an−1x
n−1 + . . . + a0 and l (x) = bnx

n + bn−1x
n−1 + . . . + b0; ai, bj ∈ k

and allowing coefficients to be zero but not both an, bn zero. Now substituting and cross
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multiplying we get:

u

(
bn

(
f(u2) + ug(u2)

g(u2)

)n
+ bn−1

(
f(u2) + ug(u2)

g(u2)

)n−1

+ . . .+ b0

)

= an

(
f(u2) + ug(u2)

g(u2)

)n
+ an−1

(
f(u2) + ug(u2)

g(u2)

)n−1

+ . . .+ a0 .

Next we multiply both sides by g
(
u2
)n we get:

(2) u
(
bn
(
f
(
u2
)

+ ug
(
u2
))n + bn−1

(
f
(
u2
)

+ ug
(
u2
))n−1

g
(
u2
)

+ . . .+ b0g
(
u2
)n)

= an
(
f
(
u2
)

+ ug
(
u2
))n + an−1

(
f
(
u2
)

+ ug
(
u2
))n−1

g
(
u2
)

+ . . .+ a0g
(
u2
)n

.

First note that f
(
u2
)

has all even exponents and that ug
(
u2
)

has all odd exponents and a 0

constant term. If bn 6= 0 then the degree of the LHS of (2) is greater than the degree of the

RHS of (2), a contradiction. Thus bn = 0 and an 6= 0. As bn = 0, g
(
u2
)

divides the LHS of

(2) and thus the RHS of (2). Each summand of the RHS of (2) has a power of g
(
u2
)

in it

except anf
(
u2
)n and therefore g

(
u2
)
∈ k. Let the degree of f be r. If f

(
u2
)

is not in k then

the LHS of (2) has at most degree 2r (n− 1) + 1 = 2rn − 2r + 1 while the RHS of (2) has

degree 2rn, a contradiction. Thus we get that α ∈ k.

Theorem 3.3.1 shows that many rational rank-two simple two-sided vector spaces are of the

form with α ∈ k.

Example 3.3.2. Let α = t and m = t2 + 1. We now show that k(α+
√
m) = k(t,

√
m).

As t +
√
t2 + 1 ∈ k(t +

√
t2 + 1), (t +

√
t2 + 1)2 = 2t2 + 2t

√
t2 + 1 + 1 ∈ k(t +

√
t2 + 1). As

1 ∈ k, 2t2 +2t
√
t2 + 1 ∈ k(t+

√
t2 + 1) but then t2 +t

√
t2 + 1 = t(t+

√
t2 + 1) ∈ k(t+

√
t2 + 1)

which leads to t ∈ k(t +
√
t2 + 1) implying

√
t2 + 1 ∈ k(t +

√
t2 + 1) and thus k(α +

√
m) =

k(t,
√
m).

A natural question that we hope to answer in the future is: “Do all rational rank-two simple
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two-sided vector spaces have α ∈ k, provided [k(t) : k(m)] = 2?”

3.4 Simultaneous Bases

In this section we first ask when two-sided vector spaces of rank 2 have simultaneous bases

under the conditions:

[k(t,
√
m) : k(α+

√
m)] = 2 ,

m /∈ k and k(m) ( k(t). Additionally we assume α ∈ k(
√
m), so k(α +

√
m) ⊂ k(

√
m).

Theorem 3.4.1 answers that question.

Recall from Lemma 3.1.2 that 1k(t,
√
m)λ is a simple two-sided vector space of rank two over

k(t). We now study when this has a simultaneous basis.

Theorem 3.4.1. If β 6= 0, then the set {γ, β} is a simultaneous basis for k (t,
√
m) over k (t)

if and only if γ
β /∈ k (t) ∪ k (α+

√
m).

Proof. Here k(t,
√
m) can be either 1k(t,

√
m))λ or λk(t,

√
m)1. We prove the theorem for the

case 1k(t,
√
m))λ. The proof for λk(t,

√
m)1 is nearly identical. Let {γ, β} be a simultaneous

basis for, k (t,
√
m) over k (t). If γ

β ∈ k (t) then γ = βθ for some θ ∈ k (t). This yields a

contradiction in {γ, β} being a left basis. Similarly if γ
β ∈ k (α+

√
m) then γ = βr with

r ∈ k (α+
√
m). This yields a contradiction that {γ, β} is a right basis.

For the other direction suppose γ
β /∈ k (t) ∪ k (α+

√
m). It is sufficient to show that γ, β

are linearly independent on the left and right. Suppose that there exist non-zero a, b ∈ k (t)

such that aγ + bβ = 0. Then we obtain γ
β ∈ k (t) a contradiction. Similarly for the right,

if there exist non-zero a, b ∈ k (t) such that γa + βb = 0, i.e. γλ (a) + βλ (b) = 0 yielding

γ
β ∈ k (α+

√
m), a contradiction.

Definition 3.4.2. [VdB] [N2] Let V be a two-sided vector space. The right dual of V ,
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denoted by V ∗, is the set HomK(VK ,K) with action (a · φ · b)(x) = aφ(bx) for all φ ∈

HomK(VK ,K) and a, b ∈ K. The left dual of V , denoted ∗V , is the set HomK(KV,K) with

action (a · φ · b)(x) = bφ(xa) for all φ ∈ HomK(KV,K) and a, b ∈ K.

Note that V ∗ and ∗V are a k-central K − K−bimodules since V is. We remind the reader

that we denote the ith iteration of taking the left dual or the right dual by V −i∗ and V i∗,

respectively. In particular ∗V = V −∗.

Example 3.4.3. Let K be a field of characteristic zero, let σ be an automorphism of K, and

let V = 1Kσ. Then V ∗ ∼= 1Kσ−1 and ∗V ∼= 1Kσ−1 .

Proof. We first note that {1} is both a left and right basis of V .

We first show that V ∗ ∼= 1Kσ−1 . Let φ ∈ V ∗ = HomK(KK ,K), and a ∈ K. As φ is K−

linear on the right we have φ(1a) = φ(1)a and therefore φ is determined by where it sends 1.

We claim that V ∗ ∼= 1Kσ−1 . To this end we define τ : HomK(KK ,K)→ 1Kσ−1 by,

τ(φ) = φ(1).

We first show that τ is bijective:

τ is injective: Let φ, δ ∈ HomK(KK ,K), if τ(φ) = τ(δ) then φ(1) = δ(1) and therefore φ = δ,

which shows that τ is injective.

τ is surjective: Let v, a ∈ K, and define φv(a) = v · a.

We now show that φv ∈ HomK(KK ,K).

φv is linear: If v1, v2 ∈ KK , then φv(v1 + v2) = v · (v1 + v2) = v · v1 + v · v2 = φv(v1) + φv(v2).

φv is right K−linear: If x, a ∈ K then φv(xa) = v · xa = φv(x)a.
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Note that φv(1) = v so that τ(φv) = v making τ surjective.

We now show that τ is linear: Let φ1, φ2 ∈ HomK(KK ,K) then,

τ(φ1 + φ2) = (φ1 + φ2)(1) = φ1(1) + φ2(1) = τ(φ1) + τ(φ2) .

Finally let φ ∈ HomK(KK ,K). Then

τ(a · φ · b) = (a · φ · b)(1) = a · φ(b1) = a · φ(1 · σ−1(b)) = a · φ(1)σ−1(b) = a · τ(φ) · b.

Now we show that ∗V ∼= 1Kσ−1 . As the proof is similar to the above we give an outline of

it. Let φ ∈ ∗V . Define τ : ∗V → σK1 by

τ(φ) = φ(1).

As above, one checks that φ is bijective and respects addition. Finally,

τ(a · φ · b) = (a · φ · b)(1) = bφ(1a) = bφ(σ(a) · 1) = bφ(1)σ(a) = a · τ(φ) · b.

Now we show that α : σK1 → 1Kσ−1 defined by

α(x) = σ−1(x)

is an isomorphism of two-sided vector spaces. As σ is an automorphism of K, so is α. Now

let a, b, x ∈ σK1, then

α(a · x · b) = α(σ(a)xb) = α(σ(a))α(x)α(b) = aα(x)σ−1(b) = a · α(x) · b .

Definition 3.4.4. Let V be a simple two-sided vector space. By a simultaneous basis for
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(∗V, V, V ∗) we mean there is a simultaneous basis for V , such that the canonical dual bases of

∗V and V ∗ are simultaneous bases.

Definition 3.4.5. Let i ∈ Z. We say (V (i−1)∗, V i∗, V (i+1)∗) has a simultaneous basis if there

is a simultaneous basis for ( ∗(V i∗), V i∗, V (i+1)∗) in case i ≥ 0 and for (V (i−1)∗, V i∗, (V i∗)∗) in

case i ≤ 0.

The following proposition from [N2, p. 9] tells us when certain pairs of functors are adjoint

and this will let us construct, in Section 3.5, the non-commutative analog of the symmetric

algebra of a vector space.

We call the reader’s attention to Theorem 1.1.3 due to [N2]:

Theorem 3.4.6. If (V −∗, V, V ∗) has a simultaneous basis then the functors

(−⊗K V −∗,−⊗K V,−⊗K V ∗)

from ModK to ModK form an adjoint triple.

Due to this theorem, if we can find simultaneous bases for (V i∗, V (i+1)∗, V (i+2)∗), for all i ∈ Z,

then

(−⊗K V (i)∗,−⊗K V (i+1)∗ ,−⊗K V (i+2)∗)

is an adjoint triple for all i ∈ Z, so that one can construct Sn.c.K (V ).

We let λ : K → K be a k-linear embedding and we let V (λ) denote the two-sided vector space

idK ∨λ(K)λ. Let λ : K → K denote an extension of λ and let µ denote the restriction of λ−1

to K.

Lemma 3.4.7. If V (λ) and V (µ) have rank 2 then

λ : µµ(K) ∨Kid → idK ∨ λ(K)λ = V (λ)
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is an isomorphism of two-sided vector spaces.

Proof. Note that λ̄(λ̄−1(K)) = K and λ̄(K) = λ(K) and therefore id λ̄ equals K∨ λ̄(K). Note

that λ̄ is clearly injective, surjective and k-linear. We now show that λ̄ is compatible with the

left and right action respectively. Let a ∈ λ̄−1(K) ∨K, b ∈ K. For the right action:

λ̄(a · b) = λ̄(a)λ̄(b) = λ̄(a) · b .

For the left action:

λ̄(b · a) = λ̄(λ̄−1(b)a) = λ̄(λ̄−1(b))λ̄(a) = bλ̄(a) = b · λ̄(a) ,

thus proving the claim.

For the next theorem we make the following hypothesis:
√
m /∈ K, [K : k(m)] = 2, and

λ(t) = α+
√
m. We also assume µ(t) = β +

√
n where β ∈ k, n ∈ K,

√
n not in K and V (µ)

has rank 2.

Theorem 3.4.8. Let V = V (λ). Then ∗V ∼= V ∗ ∼= V (µ).

Proof. Part I. We show V ∗ ∼= V (µ) in the following three steps: Step 1: Let τ : K(
√
n) →

K(
√
n) be conjugation. Consider µ as a map from V to K(µ). We prove µ+τµ, 1√

n
(µ−τµ) ∈

V ∗. We first show that the images of these two maps are in K.

We use that fact that V (λ) = 1K ∨ λ(K)λ = 1K(
√
m)λ.

Since [K(
√
n) : K] = 2, in order to show µ+ τµ, 1√

n
(µ− τµ) are functions from V (λ) to K, it

suffices to show they send K to K and λ(K) to K and are right K-linear. We define functions

µ1, µ2 : K → K by µ(a) = µ1(a) + µ2(a)
√
n.
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If a ∈ K then:

(µ+ τµ)(a) =µ1(a) +
√
nµ2(a) + τµ1(a) + τ

√
nµ2(a) = 2µ1(a) ∈ K

1√
n

(µ− τµ)(a) =
1√
n

(
µ1(a) +

√
nµ2(a)− τµ1(a)−

√
nτµ2(a)

)
= 2µ2(a) ∈ K

(µ+ τµ)(λ(a)) =µλ(a) + τµλ(a) = 2a

1√
n

(µ− τµ)(λ(a)) =
1√
n

(µλ(a)− τµλ(a)) = 0

so µ+ τµ, 1√
n

(µ− τµ) are functions from V → K. Next we show that µ+ τµ, 1√
n

(µ− τµ) are

compatible with right multiplication by b ∈ K. It is sufficient to check this on K and λ(K)

as they generate IdK ∨ λ(K)λ. Let a ∈ K.

(µ+ τµ)(a · b) =(µ+ τµ)(aλ(b)) = µ(a)b+ τµ(a)b = (µ(a) + τµ(a))b

1√
n

(µ− τµ)(a · b) =
1√
n

(µ− τµ)(aλ(b)) =
1√
n

(µ(a)b− τµ(a)τ(b)) =
(

1√
n

(µ(a)− τµ(a))
)
b

(µ+ τµ)(λ(a) · b) =(µ+ τµ)(λ(ab)) = 2ab = (µ+ τµ)(λ(a))b.

Finally
1√
n

(µ− τµ)(λ(a) · b) = 0 =
(

1√
n

(µ− τµ)(λ(a))
)
b

whence we proved µ+ τµ, 1√
n

(µ− τµ) ∈ V ∗.

Step 2: We prove {µ+ τµ, 1√
n

(µ− τµ)} is left linearly independent. Therefore, since V ∗ has

left-dimension 2, we have V ∗ equals the left span of {µ+ τµ, 1√
n

(µ− τµ)}.

Suppose not. Then µ + τµ = b√
n

(µ − τµ) for some b ∈ K \ {0}. Let a ∈ k. Then 2µ1(a) =

b · 2µ2(a), i.e. µ1(a) = bµ2(a) for all a ∈ k. But µ1 = id on k, µ2 = 0 on k, a contradiction.

Step 3: We show that with respect to the left basis µ+ τµ, 1√
n

(µ− τµ), V ∗ has right-action
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matrix given by µ1 nµ2

µ2 µ1


where µ = µ1 +

√
nµ2.

We compute the right structure of the right subspace of V (λ)∗ spanned by µ+τµ, 1√
n

(µ−τµ).

First, let a, b ∈ K. We compute:

((µ+ τµ) · b)(a) =(µ+ τµ)(ba) = 2µ1(ba) = 2(µ1(b)µ1(a) + nµ2(b)µ2(a))

=µ1(b)(µ+ τµ)(a) + nµ2(b)
1√
n

(µ− τµ)(a)

Similarly:

((µ+ τµ) · b)(λ(a)) =(µ+ τµ)(bλ(a)) = µ(b)a+ τµ(b)a = a(µ(b) + τµ(b))

=2µ1(b) · a = 2µ1(b)
1
2

(µ+ τµ)(λ(a))

=µ1(b) ((µ+ τµ)(λ(a))) + nµ2(b)
(

1√
n

(µ− τµ)(λ(a))
)

Next, we compute:

(
1√
n

(µ− τµ) · b)(a) =
1√
n

(µ− τµ)(ba) = 2µ2(ba) = 2µ1(b)µ2(a) + 2µ1(a)µ2(b)

=µ1(b)
1√
n

(µ− τµ)(a) + µ2(b)(µ+ τµ)(a).
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Finally:

(
1√
n

(µ− τµ) · b
)

(λ(a)) =
1√
n

(µ− τµ)(bλ(a))

=
1√
n

(µ(b)µλ(a)− τµ(b)τµ(λ(a)))

=
1√
n

(a(µ(b)− τµ(b))) = a · 2µ2(b)

=µ2(b)(µ+ τµ)(λ(a)) + µ1(b)
1√
n

(µ− τµ)(λ(a)).

Next let v1 = µ+ τµ, v2 = 1√
n

(µ− τµ). We proved:

v1 · b =µ1(b)v1 + nµ2(b)v2

v2 · b =µ2(b)v1 + µ1(b)v2

That is, with respect to the left basis v1, v2, the right action by b is given by

(α, β) · b = (α, β)

 µ1(b) nµ2(b)

µ2(b) µ1(b)



It follows from Lemma 3.1.2 that V ∗ ∼= V (µ) as desired. This concludes Part I.

Part II: We complete the proof by showing ∗V ∼= V (µ). First let W := µK(µ)1 = µµ(K)∨K1.

By Lemma 3.4.7, W ∼= V (λ). Hence it suffices to show ∗W ∼= V (µ). We proceed in three

steps.

Step 1: Let σ : K(
√
m) → K(

√
m) denote conjugation. Consider λ as a map from W to

K(λ). We prove λ+ σλ, 1√
m

(λ− σλ) are in ∗W . We first show that the images of these two

maps are in K.
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We use that fact that W = K∨µ(K) = K(
√
n). Since [K(

√
n) : K] = 2, in order to show that

λ+σλ, 1√
m

(λ−σλ) are functions from W to K, it suffices to show they send K to K and µ(K)

to K and are left K-linear. We define functions λ1, λ2 : K → K by λ(a) = λ1(a) + λ2(a)
√
m.

If a ∈ K then:

(λ+ σλ)(a) =λ1(a) +
√
mλ2(a) + σλ1(a) + σ(

√
m)λ2(a) = 2λ1(a) ∈ K

1√
m

(λ− σλ)(a) =
1√
m

(λ1(a) +
√
mλ2(a)− λ1(a) +

√
mλ2(a)) = 2λ2(a) ∈ K

(λ+ σλ)(µ(a)) =λµ(a) + σλµ = 2a

1√
m

(λ− σλ)(µ(a)) =
1√
m

(λµ(a)− σλµ(a)) = 0.

So we can think of λ + σλ and 1√
m

(λ − σλ) as maps from W → K. Next, we show that

λ+σλ, 1√
m

(λ−σλ) are compatible with left multiplication by b ∈ K. It is sufficient to check

this on K and µ(K) as they generate µµ(K) ∨KId. Let a, b ∈ K.

(λ+ σλ)(b · a) =(λ+ σλ)(µ(b)a) = bλ(a) + b(σλ(a)) = b(λ+ σλ)(a)

1√
m

(λ− σλ)(b · a) =
1√
m

(λ(µ(b)a)− σλ(µ(b)a))

=
1√
m

(bλ(a)− bσλ(a)) = b
1√
m

(λ− σλ)(a)

(λ+ σλ)(b · µ(a)) =(λ+ σλ)(µ(ba)) = 2ba = b(2a) = b(λ+ σλ)(µ(a))

1√
m

(λ− σλ)(b · µ(a)) =0 = b · 1√
m

(λ− σλ)(µ(a)).

Therefore λ+ σλ, 1√
m

(λ− σλ) ∈ ∗W .

Step 2: We prove {λ+ σλ, 1√
m

(λ− σλ)} are right linear independent in ∗W . Therefore, since

∗W has right-dimension 2, we have ∗W equals the right span of {λ+ σλ, 1√
m

(λ− σλ)}.

Suppose not. Then λ+σλ = b√
m

(λ−σλ) for some b ∈ K\{0}. Let a ∈ K. Then λ1(a) = bλ2(a)

for all a ∈ K. But λ1 = id on k, λ2 = 0 on k, a contradiction.
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Step 3: Next, we compute the left structure of the left subspace of ∗W spanned by λ +

σλ, 1√
m

(λ− σλ):

Let a, b ∈ K.

(b · (λ+ σλ))(a) =(λ+ σλ)(a · b) = (λ+ σλ)(ab) = 2λ1(ab)

=2(λ1(a)λ1(b) +mλ2(a)λ2(b))

=(λ+ σλ)(a)λ1(b) +
1√
m

(λ− σλ)(a)mλ2(b).

Similarly,

(b · (λ+ σλ))(µ(a)) =(λ+ σλ)(µ(a)b) = aλ(b) + aσλ(b)

=a(λ(b) + σλ(b)) = a2λ1(b)

=λ1(b)(λ+ σλ)(µ(a)) +mλ2(b)(
1√
m

(λ− σλ))(µ(a)).

Next, we compute:

b · ( 1√
m

(λ− σλ))(a) =
1√
m

(λ− σλ)(ab) = 2λ2(ab)

=2λ1(a)λ2(b) + 2λ1(b)λ2(a)

=λ2(b)(λ+ σλ)(a) + λ1(b)
1√
m

(λ− σλ)(a).

Finally,

(b · 1√
m

(λ− σλ))(µ(a)) =
1√
m

(λ− σλ)(µ(a)b) =
1√
m

(aλ(b)− aσλ(b))

=a
1√
m

(λ(b)− σλ(b)) = a2λ2(b)

=λ2(b)(λ+ σλ)(µ(a)) + λ1(a)
1√
m

(λ− σλ)(µ(a)).



3.4. SIMULTANEOUS BASES 34

Let v1 = λ+σλ and let v2 = 1√
m

(λ−σλ). Write λ = λ1 +
√
mλ2. Then for b ∈ K we proved:

b · v1 = λ1(b)v1 +mλ2(b)v2

and

b · v2 = λ2(b)v1 + λ2(b)v2.

That is, with respect to the right basis v1, v2, the left action by b is given by

b ·

 α

β

 =

 λ1(b) λ2(b)

mλ2(b) λ1(b)


 α

β


From Remark 3.1.3, ∗W ∼= λλ(K) ∨Kid. From Lemma 3.4.7,

µ : λλ(K) ∨Kid → idK ∨ µ(K)µ = V (µ)

is an isomorphism and Part II follows.

We continue with the hypotheses of the previous theorem: α ∈ k,
√
m not inK, [K : k(m)] = 2,

and λ(t) = α +
√
m. We also assume α ∈ k, µ(t) = β +

√
n where β ∈ k, n ∈ K,

√
n not in

K and V (µ) has rank 2.

Theorem 3.4.9. (∗V, V, V ∗) has a simultaneous basis.

Proof. We use the notation from the proof of Theorem 3.4.8. We first prove that V and V ∗

have a simultaneous basis. By Theorem 3.4.1, (λ(t), t) is a simultaneous basis for V . We claim

that the functions γ1 and γ2 defined by

γ1 =
1
2t

(µ+ τµ)− β

t

1
2
√
n

(µ− τµ)
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and

γ2 =
1

2
√
n

(µ− τµ)

are in V ∗, are right dual to (λ(t), t) and are a simultaneous basis for V ∗. To prove they are

a simultaneous basis, we use Part I, Step 3 to get an isomorphism V ∗ → V (µ). Then we see

what the images of γ1 and γ2 are in V (µ) and use Theorem 3.4.1 to check that they are indeed

simultaneous.

First we claim that the set {t, λ(t)} is a simultaneous basis for K(λ)/K. By Theorem 3.4.1 it

is sufficient to show that λ(t)
t /∈ k(t) ∪ k(α+

√
m).

1. If λ(t)
t ∈ k(t) then λ(t) = α+

√
m ∈ k(t) which leads to

√
m ∈ k(t) a contradiction.

2. If λ(t)
t ∈ k(α+

√
m) then 1

t ∈ k(α+
√
m) leading to t ∈ k(λ(t)) a contradiction.

Therefore {t, λ(t)} is a simultaneous basis for K(λ)/K.

Define δ1 := 1
2t(µ+ τµ) = µ1

t and δ2 := 1
2
√
n

(µ− τµ) = µ2. Then δ1(λ(t)) = 1, δ1(t) = β
t and

δ2(λ(t)) = 0, δ2(t) = 1. Now define, γ1 := δ1 − β
t δ2 and γ2 := δ2.

From Part I, Step 1 we have {γ1, γ2} ⊂ V ∗. We now check that {γ1, γ2} is a simultaneous

basis for V ∗ by using Theorem 3.4.1.

As γ1(λ(t)) = 1, γ1(t) = 0 and γ2(λ(t)) = 0, γ2(t) = 1 thus {γ1, γ2} are right dual to {λ(t), t}.

Recall that for φ =

 µ1 nµ2

µ2 µ1

 we showed in the proof of Theorem 3.4.8, Part I, Step 3,

that V ∗ is isomorphic to 1K
2
φ, and that

v1 =µ+ τµ→ (1, 0)

v2 =
1√
n

(µ− τµ)→ (0, 1)
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By Lemma 3.1.2, 1K
2
φ is isomorphic to V (µ) = 1K(µ(t))µ, via

(a, b)→ b+ a
√
n .

The composition is an isomorphism V ∗ → V (µ) such that

v1 →
√
n, v2 → 1 .

Since

γ2 = δ2 =
1
2
v2

and

γ1 = δ1 −
β

t
δ2 =

1
2t
v1 −

β

2t
v2 ,

we see that

γ1 → γ̃1 :=
1
2t
√
n− β

2t
= − 1

2t
(β −

√
n)

γ2 → γ̃2 :=
1
2

Hence
γ̃1

γ̃2
= −

(
β −
√
n

t

)
.

If β−
√
n

t ∈ k(t) ∪ k(β +
√
n) then we are in one of the following cases:

1. β−
√
n

t ∈ k(t), but this leads to
√
n ∈ k(t) a contradiction.

2. β−
√
n

t ∈ k(β +
√
n) = k(

√
n) then β−

√
n

t (β +
√
n) = β2−n

t ∈ k(
√
n) implying t ∈ k(

√
n),

a contradiction.

Thus the set {γ1, γ2} is a simultaneous basis for V ∗.
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Now we claim that the set {t, µ(t)} is a simultaneous basis for K(µ) = µK(µ)1 = W (from

Step II) over K. By Theorem 3.4.1 it is sufficient to show that µ(t)
t /∈ k(t) ∪ k(α+

√
n).

1. If µ(t)
t ∈ k(t) then µ(t) = α+

√
n ∈ k(t) which leads to

√
n ∈ k(t) a contradiction.

2. If µ(t)
t ∈ k(α+

√
n) then 1

t ∈ k(α+
√
n) leading to t ∈ k(α+

√
n) a contradiction.

Therefore {t, µ(t)} is a simultaneous basis for K(µ)/K.

Define:

1. δ1 := 1
2t(λ+ σλ) = λ1

t

2. δ2 := 1
2
√
m

(λ− σλ) = λ2

1. δ1(µ(t)) = 1, δ1(t) = α
t

2. δ2(µ(t)) = 0, δ2(t) = 1

Now define the following:

1. η1 := δ1 − α
t δ2

2. η2 := δ2

From Part II, Step 1 we have {η1, η2} ⊂ ∗W . We now check that {η1, η2} is a simultaneous

basis for ∗W .

Now η1(µ(t)) = 1, η1(t) = 0 and η2(µ(t)) = 0, η2(t) = 1. Hence {η1, η2} are left dual to

{µ(t), t}.
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We now show that {η1, η2} are a simultaneous basis for ∗W by using Theorem 3.4.1. Recall

that for φ =

 λ1 λ2

mλ2 λ1

 we showed in the proof of Theorem 3.4.8, Part II, Step 3, that

∗W is isomorphic to φK
2
1 , and that

v1 =λ+ σλ→

 1

0


v2 =

1√
m

(λ− σλ)→

 0

1


By remark after Lemma 3.1.2, φK

2
1 is isomorphic to λK(λ(t))1, via

 a

b

→ b+ a
√
m.

The composition is an isomorphism ∗W → λK(λ(t))1 such that

v1 →
√
m, v2 → 1 .

Since

η2 = δ2 =
1
2
v2

and

η1 = δ1 −
α

t
δ2 =

1
2t
v1 −

α

2t
v2 ,

we see that

η1 → η̃1 :=
1
2t
√
m− α

2t
= − 1

2t
(α−

√
m)

η2 → η̃2 :=
1
2



3.4. SIMULTANEOUS BASES 39

Hence
η̃1

η̃2
= −

(
α−
√
m

t

)
.

If α−
√
m

t ∈ k(t) ∪ k(α+
√
m) then we are in one of the following cases:

1. α−
√
m

t ∈ k(t), but this leads to
√
m ∈ k(t) a contradiction.

2. α−
√
m

t ∈ k(α +
√
m) = k(

√
m) leading to α2−m

t ∈ k(
√
m) yielding t ∈ k(

√
m) a contra-

diction.

Thus the set {η1, η2} is a simultaneous basis for ∗W ∼= λK(λ(t))1 by above. By Lemma 3.4.7,

we have the isomorphism

µ = λ̄−1 : V = 1K(λ)λ → µK(µ)1 = W .

We now define

∗µ : ∗W → ∗V

by ∗µ(φ) = φ ◦ µ. As {η1, η2} is a simultaneous basis for ∗W and ∗µ is an isomorphism the

set { ∗µ(η1), ∗µ(η2)} is a simultaneous basis for ∗V . We now claim that { ∗µ(η1), ∗µ(η2)} is

dual to {t, λ(t)}:

(η1 ◦ µ)(t) =η1(µ(t)) = 1

(η1 ◦ µ)(λ(t)) =η1(t) = 0

(η2 ◦ µ)(t) =η2(µ(t)) = 0

(η2 ◦ µ)(λ(t)) =η2(t) = 1

We continue with the hypotheses of the previous theorem for the next two corollaries: α ∈
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k,
√
m /∈ K, [K : k(m)] = 2, and λ(t) = α+

√
m. We also assume µ(t) = β+

√
n where β ∈ k,

n ∈ K,
√
n not in K and V (µ) has rank 2.

Corollary 3.4.10. If W ∼= V = V (λ) then (∗W,W,W ∗) has a simultaneous basis.

Proof. Let φ : V → W be a two-sided K-vector space isomorphism. We note that if W ∼= V

then ∗W ∼= ∗V and W ∗ ∼= V ∗, we prove the latter and the first follows by a similar argument.

Define τ : V ∗ →W ∗ by τ(σ) = σ ◦φ−1, which is clearly in W ∗ as φ−1 is an isomorphism from

W to V .

τ is injective: If σ1 ◦ φ−1 = σ2 ◦ φ−1 then σ1 = σ2 as φ is an isomorphism.

τ is surjective: Let γ ∈W ∗. Then γ ◦ φ ∈ V ∗, and τ(γ ◦ φ) = γ.

τ is clearly additive so finally we note that τ(a · σ · b)(x) = aσ(bφ−1(x)) = aσ(φ−1(bx)) =

(a · τ(σ) · b)(x), thus τ is linear.

Also if (λ(t), t) is a simultaneous basis for V then (φ(λ(t)), φ(t)) is a simultaneous basis for

W . This implies that {τ(γi)}, γi as defined in Theorem 3.4.9, are right dual to {φ(λ(t)), φ(t)}

and are a simultaneous basis for W ∗. Similarly if ψ : ∗V → ∗W is the two-sided vector space

isomorphism defined by ψ(σ) = σ ◦ φ−1, then ψ maps the dual basis of {λ(t), t} in ∗V to a

simultaneous basis for ∗W that is dual to {φ(λ(t)), φ(t)}.

Corollary 3.4.11. Let V = V (λ). For all i ∈ Z, (V i∗, V (i+1)∗, V (i+2)∗) has a simultaneous

basis.

Proof. For all i ∈ Z, V i∗, (V i∗)∗, and ∗(V i∗) are isomorphic to V (µ) or V (λ), and so the

hypotheses of Theorem 3.4.9 are satisfied for W = V (i+1)∗.

Theorem 3.4.12. Let m =
(
at2+bt+c
dt2+et+f

) 1
2 with a, b, c, d, e, f,∈ k, a, d not both zero, and ae =

bd, af 6= cd, b2 6= 4ac, e2 6= 4df . Then [k(t) : k(m)] = 2 and
√
m /∈ k(t).
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Proof. If m ∈ k, then a = dm, c = fm, so af = (dm)f = d(fm) = cd, a contradiction. Hence

m /∈ k.

If gcd(at2 + bt + c, dt2 + et + f) 6= 1, then these two polynomials have a common root u in

some extension field of k. So

au2 + bu+ c = 0 = du2 + eu+ f .

Hence

adu2 + bdu+ cd = 0 = adu2 + aeu+ af .

Since bd = ae, it follows that af = cd, a contradiction. Since a or d is nonzero, it follows that

[k(t) : k(m)] = 2 .

Now suppose
√
m ∈ k(t). Then there exist polynomials p, q ∈ k[t] such that m = p2

q2
. We may

assume gcd(p, q) = 1. Now

(∗) p2(dt2 + et+ f) = q2(at2 + bt+ c) .

Since gcd(p, q) = 1,

p2|at2 + bt+ c, q2|dt2 + et+ f .

Hence degp, q ≤ 1.

Suppose a = 0. Then d 6= 0, so the LHS of (∗) has even degree. Hence the RHS of (∗) has

even degree, implying b = 0. Hence

b2 = 0 = 4ac ,

a contradiction. Thus a 6= 0. Similarly, if d = 0 then e = 0, so that e2 = 0 = 4df , a
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contradiction. Consequently both a 6= 0 and d 6= 0.

It now follows from (∗) that degp =degq. If degp =degq = 0, then m = p2

q2
∈ k, a contradiction.

Hence degp =degq = 1. Now at2 + bt + c = u1p
2, for some u1 ∈ k. If t + x (x ∈ k) is the

monic polynomial associated to p, then

at2 + bt+ c = u2(t+ x)2 ,

for some u2 ∈ k. Clearly u2 = a. We obtain

at2 + bt+ c = at2 + 2axt+ ax2 .

Hence b = 2ax, c = ax2, and b2 = 4a(ax2) = 4ac, a contradiction. This final contradiction

concludes the proof.

Theorem 3.4.13. Let k be a field of characteristic 0 and let t be transcendental over k. Let

λ(t) = α +
√
m where α, a, b, c, d, e, f ∈ k, and m = at2+bt+c

dt2+et+f
such that a, d not both zero and

ae = bd, af 6= cd, b2 6= 4ac, e2 6= 4df . Then
√
m /∈ k(t), [k(t) : k(m)] = 2, and λ corresponds to

a simple two-sided vector space of rank two. Extend λ to K̄ and call this extension λ̄ : K̄ → K̄.

Define γ = λ̄−1|k(t). Then γ corresponds to a simple two-sided vector space of rank 2 such

that γ(t) = β +
√
n, where β ∈ k, n ∈ k(t),

√
n /∈ k(t).

Proof. By Theorem 3.4.12 [k(t) : k(m)] = 2 and
√
m /∈ k(t).

Since λ(t) = α+
(
at2+bt+c
dt2+et+f

) 1
2 we obtain

(d(t− α)2 − a)γ2(t) + (e(t− α)2 − b)γ(t) + f(t− α)2 − c = 0.

Suppose d(t − α)2 − a = 0. If d = 0, then a = 0, so that ae = bd = 0, a contradiction. So

d 6= 0, and (t − α)2 = a
d which leads to t2 − 2tα + α2 − a

d = 0 implying [k(t) : k] ≤ 2 a
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contradiction to t being transcendental over k.

Solving (d(t− α)2 − a)γ2(t) + (e(t− α)2 − b)γ(t) + f(t− α)2 − c = 0 for γ(t) yields:

γ(t) = −1
2
e(t− α)2 − b
d(t− α)2 − a

±
(

(e(t− α)2 − b)2 − 4(f(t− α)2 − c)(d(t− α)2 − a)
4(d(t− α)2 − a)2

) 1
2

.

It suffices to show e(t−α)2−b
d(t−α)2−a ∈ k, (e(t−α)2−b)2−4(f(t−α)2−c)(d(t−α)2−a)

4(d(t−α)2−a)2 = g(t)
h(t) where the maximum

degree of g, h is 2 and at least one of them is of degree 2, and finally that γ(t) /∈ k(t).

If γ(t) ∈ k(t), then λ is defined at γ(t), and λ(γ(t)) = t. Then t ∈ λ(k(t)) = k(λ(t)), so that

k(t, λ(t)) is not a quadratic extension of k(λ(t)). Hence γ(t) /∈ k(t).

Recall that we assume ae = bd and af 6= cd.

Case 1. a = 0. Then d 6= 0 so b = 0. We obtain e(t−α)2−b
d(t−α)2−a = e

d ∈ k which implies e = ds with

s ∈ k. Also

(e(t− α)2 − b)2 − 4(f(t− α)2 − c)(d(t− α)2 − a)
4(d(t− α)2 − a)2

=
s2d(t− α)2 − 4(f(t− α)2 − c)

4d(t− α)2
.

If

(s2d(t− α)2 − 4(f(t− α)2 − c), 4(d(t− α)2)) 6= 1

then (t− α)2 ∈ k a contradiction, so that the above conditions are met.

Case 2. a 6= 0. Then e = bd
a . So e(t−α)2−b

d(t−α)2−a = b
a ∈ k and

(e(t− α)2 − b)2 − 4(f(t− α)2 − c)(d(t− α)2 − a)
4(d(t− α)2 − a)2

=
(( ba)2d(t− α)2 − a)− 4(f(t− α)2 − c)

4(d(t− α)2 − a)
.

We note either the numerator or the denominator has degree 2. If d 6= 0, it is clear. If d = 0,

then f 6= 0, else af = cd a contradiction.
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If

((
b

a
)2(d(t− α)2 − a)− 4(f(t− α)2 − c), 4(d(t− α)2 − a)) 6= 1

then f(t−α)2− c and d(t−α)2− a have a common root u in some extension field of k. Then

f(u− α)2 = c, d(u− α)2 = a

implying

af = cd

a contradiction. Thus (( ba)2(d(t− α)2 − a)− 4(f(t− α)2 − c), 4(d(t− α)2 − a)) = 1.

3.5 Non-commutative symmetric algebras

Recall that if V is a vector space over K of dimension two, K[x, y] = SymK(V ), where K[x, y]

is a Z-graded ring with degx =degy = 1. Now we consider an analog for the non-commutative

case. The notion of a Z-algebra will be necessary for our construction. This is not to be

confused with a ring R which is graded by Z.

Definition 3.5.1. [PP, p. 96] A Z−algebra A over K is a collection of K −K−bimodules

Aij with i, j ∈ Z such that Aii = K,Aij = 0 for i > j, equipped with associative product

maps Aij
⊗

K Ajk → Aik.

Now we use this concept to construct Sn.c.K (V ).

Definition 3.5.2. Let V be a finite rank, two-sided vector space with simultaneous bases over

K, such that (V (i−1)∗, V i∗, V (i+1)∗) are adjoint triples for all i ∈ N. The non-commutative

symmetric algebra generated by V , denoted Sn.c.K (V ) is the Z−algebra
⊕

i,j∈ZAij with

components:
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1. Aii = K

2. Ai,i+1 = V i∗

3. For j > i+ 1, Aij = Ai,i+1
⊗
. . .
⊗
Aj−1,j/Rij where Rij ⊂ Ai,i+1

⊗
. . .
⊗
Aj−1,j is the

two-sided vector space
∑j−2

k=i Ai,i+1
⊗
. . .
⊗
Ak−1,k

⊗
Qk
⊗
Ak+2,k+3

⊗
. . .
⊗
Aj−1,j . Here

Qi is the image of the inclusion K → V i∗⊗V (i+1)∗ induced by the unit of the adjoint

pair (−
⊗
V i∗,−

⊗
V (i+1)∗).

4. Aij = 0 if i > j Multiplication is defined as follows for i < j < k:(we define all other

multiplications to be 0)

Aij
⊗

Ajk =
Ai,i+1

⊗
. . .
⊗
Aj−1,j

Rij

⊗ Aj,j+1
⊗
. . .
⊗
Ak−1,k

Rjk
∼=−→

Ai,i+1
⊗
. . .
⊗
Ak−1,k

Rij
⊗
Aj,j+1

⊗
. . .
⊗
Ak−1,k +Ai,i+1

⊗
. . .
⊗
Aj−1,j

⊗
Rjk

−→
Ai,i+1

⊗
. . .
⊗
Ak−1,k

Rik
= Aik.

The isomorphism is shown in [N1, Corollary 3.18,p. 41].

Theorem 3.5.3. Let k be a field of characteristic 0 and let t be transcendental over k. Let

λ(t) = α +
√
m where α, a, b, c, d, e, f ∈ k, and m = at2+bt+c

dt2+et+f
such that a, d not both zero and

ae = bd, af 6= cd, b2 6= 4ac, e2 6= 4df . Then λ and µ correspond to simple two-sided vector

spaces of rank two over k(t), and Sn.c.K (V (λ)) exists.

Proof. Theorem 3.4.12 implies
√
m /∈ k(t) and [k(t) : k(m)] = 2. Then Theorem 3.3.1

implies λ corresponds to a simple two-sided vector space, V of rank two. As ae = bd, af 6=

cd, b2 6= 4ac, e2 6= 4df Theorem 3.4.13 tells us that µ corresponds to a simple two-sided vector

space, W , of rank two. As λ and µ have satisfied the hypothesis of Theorem 3.4.13, thus

V ∗ ∼= ∗V ∼= V (µ). Hence by Corollary 3.4.11, (V i∗, V (i+1)∗, V (i+2)∗) has a simultaneous basis

for all i ∈ Z. The result follows now from a result of Nyman (Theorem 1.1.3).
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