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Khormali, Omid, M.Sc., Spring 2019 Data Science

High Dimensional Outlier Detection

Chairperson: Dr. Brian Steele

In statistics and data science, outliers are data points that differ greatly from other observa-

tions in a data set. They are important attributes of the data because they can dramatically

influence patterns and relationships manifested by non-outliers. It is therefore very impor-

tant to detect and adequately deal with outliers. Recently, a novel algorithm, the ROMA

algorithm, has been proposed [11]. In this paper, we propose a modification of the ROMA

algorithm that reduces its computational complexity from O(n2m) to O((n/(2m− o(1)))2m)

where n is the number of data points and m is the dimension of the space. And as a

consequence, if log(n) < 2m, then the improved complexity is O((n/ log(n))2m).
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1 Introduction

A data point that is significantly different from the remaining data is an outlier. Identifying

an observation as an outlier often depends on non-apparent assumptions regarding the data

structure and the applied detection method [1]. Hawkins defined an outlier as an observa-

tion which deviates so much from the other observations as to arouse suspicions that it was

generated by a different mechanism than the rest of the observations [14]. Barnet and Lewis

indicate that an outlying observation, or outlier, is one that appears to deviate markedly

from other members of the sample in which it occurs [3]. Similarly, Johnson defines an

outlier as an observation that appears to be inconsistent with the remainder of data [4].

Outliers can cause a serious loss of informationin statistical analyses, but also may contain a

useful information about unusual characteristic of the data. Thus, identification of outliers

may provide useful insights, and so outlier detection has emerged as a important research

area in data mining. In [1], a variety of methods for outlier detection are discussed and

loosely categorized as univariate, multivariate, parametric, and non-parametric procedures.

Also, it is mentioned that outlier detection methods are often based or involve on distance

measures, cluster, and ideas from analysis methods. The distance-based methods are usually

based on local distance measures and are approprite for large data sets [5, 6, 7]. Another

class of outlier detection methods is founded on clustering techniques, where a cluster of

a few observations can be identified as a cluster of outliers [8, 9]. Another related class

of methods consists of detection techniques for spatial outliers. These methods search for

extreme observations relative to neighboring observations. Such outliers intotal, may not

otherwise be significantly different from the rest of the data set [8, 10]. It should be noted

that other categorizations of outlier detection methods have been introduced recently and a

large number of algorithms exist.

Recently, in [11], a new method of outlier detection based on the angles between observa-

tions points (viewed as vectors) was introduced. They presented a two-step algorithm to

determining structured and unstructured outliers. The main feature of the algorithm is that

it does not have any dependencies on the unknown parameters. The algorithm requires only

a threshold determined by number of data points and the dimension of the the observa-

tion vectors its computation. The technique proposed for removing structured outliers is

also parameter-free. Once all the outliers have been identified and removed, the remaining

observation vectors are used to obtain a low rank representation via a singular value de-

composition of the data. In this paper, we will improve on this algorithm with respect to

computational complexity.
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2 Notations and the Algorithm

Suppose that we are given n observation vectors belonging to m dimensional space Rm. The

observation vectors are collected in a set X = {y1, . . . , yn} where yi ∈ Rm for 1 ≤ i ≤ n.

In this paper, we work with `2-normed, namely xi = yi
||yi||2 , where ||.||2 denotes the `2 norm.

Let XN = {x1, . . . , xn} denote the `2-normed data set.

Let E[Y ] denote the expectation of a random vector Y , var(Y ) denote the variance, and

σY denote the standard deviation of observation vector Y. Let N (µ, σ2) denote a normal

distribution with mean µ and variance σ2 and FN (.) denote the standard normal cumulative

distribution function:

FN (y) =
1√
2π

∫ y

−∞
e−

x2

2 dx.

In addition, w.p. indicates with probability and bxc denotes the largest integer smaller than

or equal to x ∈ R. Let Γ(.) denote the gamma function and O(.) denotes the big O notation

for complexity, and abs(x) denote the absolute value of x.

Let Sm−1 denote the unit hypersphere in Rm; i.e. Sm−1 = {x|x ∈ Rm, ||x||2 = 1}. Note that

XN ∈ Sm−1 for XN as defined above.

Let I denote the index set of inliers and O denote the index set of outliers, for a given XN .

Then

I = {i|xi ∈ XN is an inlier}

and

O = {i|xi ∈ XN is an outlier}.

Hence the set XN can be partitioned as XN = XI ∪XO, where XI are the set of inlier points

and XO are the set of outlier points. The parameter γ is the ratio of number of outliers to the

total number of data points, and it is unknown. Let nI = |I| = (1−γ)n and nO = |O| = γn

where |.| denotes the cardinality of a set.

In the following we mention essential definitions and an assumption from [11].

Definition 2.1. Let θij denote the principal angle between two data points xi and xj , i.e.,

θij = cos−1(xTi xj),
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and θij ∈ [0, π].

Definition 2.2. The acute angle between two data points xi and xj denoted by φij is

φij = cos−1(|xTi xj|) =

{
θij if θij ≤ π

2

π − θij if θij >
π
2

,

and φij ∈ [0, π
2
].

Definition 2.3. For all i ∈ {1, . . . , n}, the minimum angle subtended by data point xi is

ai = min
j=1,2,...,n,j 6=i

φij.

Definition 2.4. The number of acute angles formed by an observation vector xi larger angel

than the threshold ζ is

naζi = |{φij|φij > ζ, j = 1, 2, . . . , n}|.

Definition 2.5 (Outlier Identification Property, OIP (α)). An algorithm for outlier removal

is said to have Outlier Identification Property OIP (α), when the outlier index set estimate

of the algorithm contains all the true outlier indices i.e. O ⊆ Ô, where Ô is the estimated

index set for outliers, with a probability at least 1− α.

Definition 2.6 (Exact recovery Property, ERP (α)). An algorithm for outlier removal is

said to have Exact Recovery Property, ERP (α) when it recovers all the inlier points or

I = Î, where Î is the estimated index set for inliers, with a probability at least 1 = α.

Note that ERP (α) is a stronger condition than OIP (α) because if an algorithm has ERP (α),

then it also has OIP (α). And in this case, O = Ô with a probability at least 1− α.

Assumption 1. The subspace U is chosen uniformly at random from the set of all r dimen-

sional subspaces and the normalized inlier points are sampled uniformly at random from the

intersection of U and Sm−1. The normalized outlier points are sampled uniformly at random

from Sm−1.

Assumption 2. The normalized structured outlier set is a subset of points sampled from

points distributed uniformly on Sm−1 such that the maximum principal angle in the outlier

set is bounded between [θOmin, θ
O
max] where θOmax <

π
2
. It can be defined as

XO =
{
x1, x2, · · · , xnO |xi ∈ Sm−1∀i, θij ∈ [θOmin, θ

O
max]∀i, j ∈ O, i 6= j

}
.

As in [11] is mentioned, for unstructured outliers, the outlier angles are distributed around
π
2

and lie between [0, π], but here a structure causes the angles to be lie in the interval

3



[θOmin, θ
O
max] with the mean angle being less than π

2
. The outlier generating mechanism may

be anything that can generate such an outlier set. As the outliers become more clustered

θOmax reduces and θOmin → 0.

In [12], it is proved that two high dimensional points are almost always orthogonal to each

other. And this is what the authors used in [11] motivate in their algorithm and it works

on the principle (by Assumption 1) that outlier points subtend larger angles (close to π
2

)

inliers, but inlier points, since they lie in a smaller dimensional subspace, subtend smaller

angles with other inlier points and hence would have a smaller score ai as compared to an

outlier.

The algorithm in [11] is

Step 1: The Removal of Outlier using Minimum Angle (ROMA) algorithm

Input: The set observation vectors X = {y1, . . . , yn} where yi ∈ Rm for 1 ≤ i ≤ n

Procedure:

1. Construct m× n matrix XN , with columns xi = mi
||mi||2

2. Calculate φij for i, j = 1, 2, . . . , n

3. Determine the threshold, ζ = π
2
− Cn√

m−2 , where Cn = F−1N (1− 1
2n2(n−1)).

4. Calculate ai for i = 1, 2, . . . , n.

5. Calculate the outlier index set as Ô = {i|ai > ζ}, and inlier index set as Î = {i|ai ≤ ζ}.

Output: Î, Ô

The second step of the algorithm is based on Assumption 2, and it is

Step 2: ROMA with number of angles greater than a threshold ζ

Procedure:

1. Calculate naζi , ∀i ∈ Î.

2. Set i∗ = argmin
i,j∈Î,i 6=j

φij.

3. Set o∗ = argmax
j∈Î

φi∗j.

4. Set Ôop{i ∈ Î|abs(naζi − na
ζ
i∗) > abs(naζi − na

ζ
o∗)}.
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5. Set Îop = {i ∈ Î|abs(naζi − na
ζ
i∗) ≤ abs(naζi − na

ζ
o∗)}.

Output: Îop, Ôop

The algorithm in [11] focused on removing the set of outliers from the data set or finding O
without the knowledge of both the parameters γ and r.

In [11], the theoretical analysis of the algorithm and its guarantee to capture the outliers are

stated under Assumptions 1 and 2. In the following we mention some those results and we

refer the reader to [11] for additional results.

Lemma 2.7 ([12]). Let x1, x2, · · · ∈ Sm−1 be random points independently chosen with uni-

form distribution in Sm−1, and let θij be defined in Definition 2.1. Then, the pdf of θij is

given by:

h(θ) =
1√
π

Γ(m
2

)

Γ(m−1
2

)
(sin(θ))m−2,

for θ ∈ [0, π].

Remark 2.8 ([12]). h(θ) can be approximated by the pdf of normal distribution with mean
π
2

and variance 1
m−2 for higher dimensions, say, for m ≥ 5. In fact θij converges weakly in

distribution to N (π
2
, 1
m−2) as m→∞.

Lemma 2.9 ([11]). Let U ∼ N (µ, σ2) be a random variable V defined by

V =

{
U for U ≤ µ

2µ− U for U > µ
.

The expectation and variance of V are given by E(V ) = µ−
√

2
π
σ and var(V ) = σ2(1− 2

π
).

Also V > µ− cσ w.p. 2FN (c)− 1.

Corollary 2.10 ([11]). Because of the density of θij and its normal distribution approxima-

tion, when xi, xj are two points chosen uniformly at random from Sm−1, we have E(φij) ≈
π
2
−
√

2
π(m−2) , var(φij) ≈

1− 2
π

m−2 , and φij >
π
2
− c√

m−2 with probability 2FN (c)− 1.
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Theorem 2.11 ([11]). The algorithm that classifies xi as an outlier when ai > ζ, identifies

all the outliers with probability at least 1− 1
n

gives that ζ = π
2
− Cn√

m−2 , where Cn = F−1N (1−
1

2n2(n−1)).

The ROMA algorithm is a simple to implement algorithm and the main complexity lies in

computing all the angles. This requires computation of n(n−1)
2

angles as the inner product

of two m dimensional vectors and hence the complexity is O(n2m). In the next section we

reduce the complexity of this algorithm.

3 Reducing the complexity

As it is shown in last section, the primary computational effort of the ROMA algorithm lies

in computing the angles. Our idea for improving the complexity is to partition the data set

and running the ROMA algorithm in each subset.

We assume that n >> 2m, and that α > 0 satisfies 1
α
> 2m+1. Note that we can con-

sider αn as a small possible number of observation vectors that we desire to run the ROMA

algorithm on them. Our partition is constructed by slicing the m-dimensional space accord-

ing to quadrants. The axes of a m-dimensional Cartesian system divide the m-dimensional

space into 2m infinite regions, called quadrants Qi where 1 ≤ i ≤ 2m, each bounded by

m half-axes. The quadrant of a observational vector can be identified according to the

signs of coordinates of the vector, in the following way; we define a sign function S : Rm →
B = {(s1, . . . , sm)|si ∈ {−1,+1}} such that S(xi) = (sgn(x1i), sgn(x2i), . . . , sgn(xmi)) where

xi = (x1i, . . . , xmi), 1 ≤ i ≤ n, and sgn(y) = −1 if y < 0, and + 1, if y ≥ 0. Since each

binary vector in {−1,+1}m represent a quadrant, the quadrant of observation vectors xi are

identified by S(xi). In the following, we propose the partition algorithm.

Step 1: Partition-ROMA algorithm

Input: The set observation vectors X = {y1, . . . , yn} where yi ∈ Rm for 1 ≤ i ≤ n

Procedure:

1. Define XN , with xi = yi
||yi||2 .

2. Center observation vectors at origin by computing Xc = {xi − µ|xi ∈ XN} (or Xc =

{xi − med|xi ∈ XN}) where µ is the m-dimensional mean vector and med is the

6



m-dimensional median vector.

3. Find Indi = {j| the quadrant Qi containing xj}.

4. Find the subsets of XN due to Indi, i.e. XN,i = {xj|xj ∈ XN , j ∈ Indi} for 1 ≤ i ≤ 2m

and 1 ≤ j ≤ n.

5. Run the ROMA algorithm on each set of observation vectors XN,i and record the ourlier

as O1,Qi for 1 ≤ i ≤ 2m, the set of outliers contained in quadrant Qi.

6. Rotate the quadrants by 45 degree and repeat steps 4 and 5

7. Run again the ROMA algorithm on the data points of new XN,i and record the outliers

as O2,Qi for 1 ≤ i ≤ 2m

Output: ∪2mi=1(O1,Qi ∩ O2,Qi)

In the following we mention to some theoretical results about the algorithm.

For 1 ≤ i ≤ n and 1 ≤ j ≤ 2m, define

uij =

{
1 if xi in Qj

0 Otherwise
.

Suppose xi is randomly selected from XN implies that uij ∼ Bernolli(p) where p = 1
2m

because there are 2m quadrants.

Now suppose Uj =
n∑
i=1

uij counts the number of points in quadrant Qj. Then, Uj ∼

Binom(n, p).

Theorem 3.1 ([13]). Let X ∼ Binom(n, p) be a binomial random variable with parameters

p and n. For K ≥ np, the following inequality holds:

Pr(X ≤ K) > 1− e−nD(p,k/n)

max{2,
√

4πnD(p,k/n)}

where D(p, c) = c · ln(c/p) + (1− c) · ln((1− c)/(1− p)).

For using the probability bound in Theorem 3.1, note that e−nD(p,c) = ( c
p
)−nc( 1−c

1−p)−n(1−c).

7



Theorem 3.2. For a ε > 0 and large enough n, the number of centered observation vectors

in Xc in each quadrant is at most n
2m−ε .

Proof. We show Pr(Uj <
n

2m−ε) ≈ 1 for large enough n. By Theorem 3.1, we have

Pr(Uj <
n

2m − ε
) > 1− e−nD(1/2m,1/(2m−ε))

max{2,
√

4πnD(1/2m, 1/(2m − ε))}
=

1−
( 2m

2m−ε)
− n

2m−ε ( (2m−ε−1)2m
(2m−1)(2m−ε))

−n(1− 1
2m−ε )

max{2,
√

4πnD(1/2m, 1/(2m − ε))}
≈ 1

for large enough n. Then the desired result holds.

In the following we state the Chernoff-Hoeffding Theorem.

Theorem 3.3 ([14]). Let X1, · · · , Xn be independent binary random variables and let a1, · · · , an
be coefficients in [0, 1]. Let X =

∑
i aiXi. Then

1. For any µ ≥ E[X] and any δ > 0, Pr[X > (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
.

2. For any µ ≤ E[X] and any δ > 0, Pr[X < (1− δ)µ] ≤ e−µδ
2/2.

By using Theorem 3.3, we have the following result.

Theorem 3.4. For a α > 0, 1
α
> 2m+1 and large enough n, the number of observation

vectors in Xc in each quadrant is at least αn.

Proof. We show Pr(Uj < αn) ≈ 0. By Theorem 3.3 part 2 and taking all ai = 1, we have

Pr(Uj < αn) = Pr(Uj < (1− δ)µ) ≤ e−µδ
2/2

where µ = E[Uj] = n
2m

, and δ = 1− α2m. Note that since 1
α
> 2m+1, 1

2
< δ < 1. Then

e−µδ
2/2 < e−

n
2m×8 .

For sufficiently large n, Pr(Uj < αn) ≈ 0 and the desired result is obtained.

Therefore we can find the complexity our algorithm.

Corollary 3.5. Under the assumptions stated above, the computational complexity of Partition-

ROMA algorithm is O(( n
2m−o(1))

2m).
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Proof. By Theorem 3.2 and Theorem 3.4, αn ≤ |XN,i| ≤ n
2m−ε . Clearly the complexity is

O(( n
2m−o(1))

2m).

Observation 3.6. Corollary 3.5 implies that if log(n) < 2m, then the computational com-

plexity of Partition-ROMA algorithm is O(( n
log(n)

)2m).

In the Partition-ROMA algorithm, the rotation of quadrants are discussed. The rotation

can be done by using the unit standard bases of Rm and the usual rotation techniques. To

elucidate, suppose that the axes are represented with the unit standard basis of the space,

i.e. B = {e1, e2, . . . , em} where that ith entry of ei is 1 and the other entries are 0.

So we rotate the ei’s by 45 degree by the rotation matrix R, we use either

1. If m is even:

R =



cos(45) sin(45) 0 0 . . . 0 0

− sin(45) cos(45) 0 0 . . . 0 0

0 0 cos(45) sin(45) 0 . . . 0

0 0 − sin(45) cos(45) 0 . . . 0
...

...
...

...
...

...
...

0 0 0 0 . . . cos(45) sin(45)

0 0 0 0 . . . −sin(45) cos(45)


2. If m is odd:

R =



cos2(45) sin(45) 0 0 . . . 0 0 cos(45) sin(45)

− cos(45) sin(45) cos(45) 0 0 . . . 0 0 − sin2(45)

0 0 cos(45) sin(45) 0 . . . 0 0

0 0 − sin(45) cos(45) 0 . . . 0 0
...

...
...

...
...

...
...

...

0 0 0 . . . 0 cos(45) sin(45) 0

0 0 0 . . . 0 −sin(45) cos(45) 0

− sin(45) 0 0 . . . 0 0 0 cos(45)



We show that the Partition-ROMA algorithm can detect the inlier data points with probabil-

ity 1−β. Then this gives us the guarantee for detecting the outliers by the Partition-ROMA

algorithm.

9



Lemma 3.7 ([11]). Under Assumption 1, Pr(Î = I) ≥ 1−nIPr(ai,i∈I > ζ). Hence ROMA

has the property of ERP (nIPr(ai,i∈I > ζ)).

Theorem 3.8. For uniformly distributed data, Pr(Î = I) ≥ 1− β, where

β =
∑2m

j=1 nIPr(ai,i∈I > ζ). Hence, partition-ROMA has the property of ERP (β).

Proof. Suppose n is the number of data points and m is the dimension of the space. We

have

Pr(Î = I) = Pr(∪2mj=1(Îj = Ij)) =
2m∑
j=1

Pr(Îj = Ij).

Suppose si are the number of data points in the ith quadrant. Then by Lemma 3.7, we have

2m∑
j=1

Pr(Îj = Ij) ≥
2m∑
j=1

(
si
n
− nIPr(ai,i∈I > ζ)) = 1−

2m∑
j=1

nIPr(ai,i∈I > ζ)

Then the desired result holds by taking β =
∑2m

j=1 nIPr(ai,i∈I > ζ).

4 Numerical example

We generate the data randomly with multivariate normal distribution and test outlier de-

tection of the ROMA and our Partition-ROMA algorithm.

We considered m = 6 and n = 1000, and generated 950 many 6-dimensional observation

vectors from the N (µ = 20, σ2 = (0.1)2) (by np.random.normal(location = 20, scale =

0.1, size = 6) ), and 50 many 6-dimensional observation vectors from theN (µ = 0, σ2 = (5)2)

(by np.random.normal(0, 5, 6)) in Python. In addition, the 50 observation vectors that cre-

ated from the N (µ = 0, σ2 = (5)2) were considered as outliers. We simulated 10 times and

the results are tabled below:

Algorithms # Out. # Out. # Out. # Out. # Out. # Out. # Out. # Out. # Out. # Out.

ROMA 12 6 3 10 11 5 7 8 6 4

Partition-

ROMA

9 5 26 22 33 27 12 28 11 26

Note that all estimated outliers by both algorithms in simulations are in the outlier set of

50 observation vectors from np.random.normal(0, 5, 6).
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Figure 1: The blue color graph is related to ROMA algorithm , and red color graph is for

the Partition-ROMA algorithm.

5 Conclusion

The proposed algorithm, Partition-ROMA algorithm, can improve the complexity of ROMA-

algorithm from O(n2m) to O((n/(2m − o(1)))2m) where n is the number of data points

and m is the dimension of the space. And, as a consequence, if log(n) < 2m, then the

improved complexity is O((n/ log(n))2m). Since Partition-ROMA algorithm is based on

ROMA-algorithm, its performance is depends of the performance of ROMA-algorithm which

was analyzed both theoretically and numerically in [11].

11



References

[1] I. Ben-Gal,Outlier detection, In: Maimon O. and Rockach L. (Eds.) Data Mining and

Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers,

Kluwer Academic Publishers, 2005.

[2] D. Hawkins, Identification of Outliers, Chapman and Hall, 1980.

[3] V. Barnett and T. Lewis, Outliers in Statistical Data, John Wiley, 1994.

[4] R. Johnson, Applied Multivariate Statistical Analysis, Prentice Hall, 1992.

[5] E. Knorr and R. Ng, A unified approach for mining outliers, In Proceedings Knowledge

Discovery KDD, 219-222, 1997.

[6] E. Knorr and R. Ng, Algorithms for mining distance-based outliers in large datasets, In

Proc. 24th Int. Conf. Very Large Data Bases (VLDB), 392-403, 24-27, 1998.

[7] S.D. Bay and M. Schwabacher, Mining distance-based outliers in near linear time with

randomization and a simple pruning rule, In Proc. of the ninth ACM-SIGKDD Confer-

ence on Knowledge Discovery and Data Mining, Washing-ton, DC, USA, 2003.

[8] R. Ng and J. Han, Efficient and Effective Clustering Methods for Spatial Data Mining,

In Proceedings of Very Large Data Bases Conference, 144-155, 1994.

[9] E. Acuna and C. A. Rodriguez, Meta analysis study of outlier detection methods in

classification, Technical paper, Department of Mathematics, University of Puerto Rico

at Mayaguez, In proceedings IPSI 2004, Venice, 2004.

[10] S. Shekhar, C. T. Lu and P. Zhang, Detecting Graph-Based Spatial Outlier, Intelligent

Data Analysis: An International Journal, 6(5), (2002), 451–468.

[11] V. Menon and S. Kalyani, Structured and Unstructured Outlier Identification for Robust

PCA: A Non iterative, Parameter free Algorithm, arXiv:1809.04445v1

[12] T. Cai, J. Fan, and T. Jiang, Distributions of angles in random packing on spheres, J.

Mach. Learning Res., 14(1), (2013), 1837-1864.

[13] M. Short, Improved Inequalities for the Poisson and Binomial Distribution and Up-

per Tail Quantile Functions, ISRN Probability and Statistics, Volume 2013, Article ID

412958, 6 pages.

[14] W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal

of the American Statistical Association, 58(301), (1963), 13-30.

12


	University of Montana
	ScholarWorks at University of Montana
	2019

	High Dimensional Outlier Detection
	Omid Khormali
	Let us know how access to this document benefits you.
	Recommended Citation


	tmp.1560782959.pdf.FycGb

