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A B S T R A C T

In this work, the electrochemical transformation of 5-chloro-2-[(4-chloronaphthalen-1-yl)azo]thiazoles (A) into
the corresponding radical anion A·− and its subsequent reaction with diphenyldisulfide (PhSSPh) was studied. It
was found that the primarily generated azo anion radical A·− is able to initiate an electron transfer process which
converts the disulfide into its thiolate anion PhS−. This anion was subsequently able to substitute the Cl- and H-
groups by phenylmercapto moieties in the starting azo compound A. The structures of the phenylmercapto-
substituted azo compounds thus generated were confirmed by thin-layer chromatography and mass spectro-
metry using independently prepared compounds as references.

1. Introduction

Although the reductive splitting of disulfides into thiols has been
known for a long time and can be achieved by means of a large variety
of methods, e.g. electrochemically [1–4], by using alkali hydroxides
[5–7], alkali alkoxides [8–11], or silver salts [12–14], serious studies on
the mechanism of this reduction have been published only recently
[15]. The electrochemical reduction of disulfides RS-SR into thiols takes
place via intermediate radical anions RS-SR·− which dissociate subse-
quently into a thiolate anion RS− and a thiol radical RS·. This thiol
radical can immediately accept a further electron from the electrode,
giving rise to the formation of a second thiolate anion RS−. Hence, the
reductive transformation of disulfides into two thiolate anions is a two-
electron transfer process, each of which can be accompanied by a
protonation step as long as proton donors are present in the reaction
mixture. In this case, two thiols RSH are formed as reduction products
(Scheme 1).

The electrochemical reduction of disulfides mediated by radical an-
ions A·− generated from certain organic electron-accepting compounds
A, such as quinones or azo compounds, has recently been reported [16]
(Scheme 2). In addition, under these conditions, the disulfides were
transformed into the corresponding thiolates at a rate that depends on
the electronic nature of the radical anion mediators A·− used. For ex-
ample, the rate of disulfide splitting is relatively high when using, e.g.
tetrazene or 4-dimethylaminoazobenzene as a mediator, and lower when
certain quinones, such as anthra- or benzoquinone are used.

Although under the reported conditions a reaction of the thiolates
RS− with the starting mediator A seems possible, there is currently no
information on this type of reaction. Therefore, to obtain such in-
formation, we have studied the reaction of diphenyldisulfide (PhSSPh)
as a model organic disulfide with 1-chloro-4-(thiazol-2-ylazo)naphtha-
lenes 1 under reductive conditions produced electrochemically. The use
of these azo compounds in this study follows from our recent studies on
the reaction of certain organic thiols with the above-mentioned azo
compounds [17]. This reaction surprisingly gave rise to the formation
of a large variety of products 2, generated by replacing both the Cl- and
H-substituents of the thiazole, as well as the naphthalene moieties in
the starting azo compounds 1, by the thiols used, e.g. by thiophenol
(Scheme 3).

2. Experimental

Cyclic voltammograms were carried out in acetonitrile containing
0.1 M tetra-n-butylammonium hexafluorophosphate (n-Bu4NPF6) as the
supporting electrolyte, using a standard electrochemical cell with a
platinum wire as the working electrode, a platinum foil as the counter
electrode and a non-aqueous reference electrode (0.01 M Ag/Ag+ in
0.1 M n-Bu4NPF6). All electrochemical measurements were performed
under an inert (nitrogen) atmosphere. All potentials were measured
against the ferrocenium/ferrocene (Fc+/Fc) redox couple in the same
solvent. The half-wave potential of Fc+/Fc in acetonitrile solution
was + 0.38 V versus the standard calomel electrode (SCE).
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In situ ESR/UV–Vis-NIR spectroelectrochemical experiments were
performed in the optical ESR cavity (ER 4104OR, Bruker, Germany).
ESR spectra were recorded with an EMXmicro X-band CW spectrometer
(Bruker, Germany) at 100 kHz modulation. UV–Vis-NIR spectra were
measured with an Avantes spectrometer AvaSpec-2048x14-USB2 with a
CCD detector and AvaSpec-NIR256-2.2 with an InGaAs detector using
the AvaSpec software. Both the ESR spectrometer and the UV–Vis-NIR
spectrometer were linked to a HEKA potentiostat PG 390 (HEKA
Elektronik, Germany), which triggered both spectrometers. Triggering
was performed by the software package PotMaster v2x80. A flat cell
was used for the spectroelectrochemical experiments, with a laminated
gold-μ-mesh (Goodfellow) as the working electrode, a silver-chloride-
coated silver wire as the pseudo reference electrode, and a platinum
wire as the counter electrode. The ESR and UV–Vis-NIR spectra were
collected at a continuous potential scan rate. Each UV–Vis-NIR spec-
trum was collected relative to that of the uncharged compound at the
initial potential.

3. Results and discussion

3.1. (Spectro)-Electrochemical experiments

Fig. 1a demonstrates the cyclic voltammograms (CV) of compound
1b and PhSSPh (3) as single components measured in a standard

electrochemical cell. The CV of 1b exhibits a reversible one-electron
reduction process at a half-wave potential of − 1.06 V (vs. Fc+/Fc).
PhSSPh is reduced at a much lower potential compared to the azo
compound 1b (increase in the current is observed at ca. −2.0 V).

For the spectroelectrochemical experiments, a solution with an
equimolar concentration of the azo compound 1b and 3 was used. The
ESR and optical spectra were recorded in situ during the cyclic vol-
tammetry measurements. The potential was switched to − 1.4 V only to
generate exclusively radical anions of 1b. In the course of these mea-
surements, an irreversible reduction peak was obtained in the CV and
the intensity of the ESR signal of the radical anions 1b·− was strongly
reduced (Fig. 1b,c). Moreover, the UV–Vis absorption bands of 1b·−,
seen in the spectroelectrochemical experiments without PhSSPh [18],
changed dramatically (Fig. 1d). With an excess of 3 in the solution of 1b
in acetonitrile, neither absorption bands nor the ESR signal of 1b·−

were detected (see Fig. S1 in the Supporting Information).

3.2. Analytical experiments

10 mL of an acetonitrile solution containing 6.16 mg of the azo
compound 1b and 4.36 mg of the diphenyldisulfide 3 was used for the
analytical experiments. After the electrolysis had been performed under
the conditions described above by applying a potential of −1.2 V (Fig.
S2), the reaction mixture was concentrated in vacuo and the oleic re-
sidue was filtered over silica and washed with toluene to remove the
ionic components used as electrolyte. The toluene in the solution was
then removed by evaporation and the residue (ca. 8 mg) was analyzed
by thin-layer chromatography (TLC) using silica as the stationary phase
and toluene as the mobile phase. The compounds 2b and 2c were found
to be the main products in a ratio of about 1:1, while the compounds 2a
and 2d were obtained as by-products in a relative amount of less than
10%, together with traces of 1a and 1b. The compounds 2a–2d used as
reference materials in the TLC analysis were synthesized via a base-
mediated reaction of the azo compound 1b with thiophenol, as reported
in [17].

The result of the TLC analysis is depicted in Fig. 2.
To confirm the results of this TLC analysis, mass spectra of the se-

parated compounds were recorded. The corresponding m/z values are
included in Fig. 2.

3.3. Discussion

The results described above demonstrate unambiguously the for-
mation of phenylmercapto-substitututed azo compounds in the course
of the electrolysis of the chloro-substituted azo compound in presence
of PhSSPh. From these results, the mechanism depicted in Scheme 4
can be deduced. In the first step, the starting azo compound 1b is re-
ductively transformed, due to its lower reduction potential compared
with PhSSPh (3), into the corresponding radical anion 1b·−. This spe-
cies is able to transfer its unpaired electron onto 3, giving rise to the
formation of a thiophenolate anion PhS− (4−) and a thiophenyl radical
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Scheme 2. Electrochemical reduction of disulfides mediated by radical anions.

Scheme 3. Products obtained by reaction of 1-chloro-4-(thiazol-2-ylazo)naphthalenes 1 with thiophenol.
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PhS· (4·) (route A). While the thiophenyl radical 4· can dimerise (with a
second thiophenyl radical) to form a PhSSPh species, the thiophenolate
anion 4− attacks the azo compound 1b and transforms this into the
corresponding Meisenheimer complex 5− from which a chloride elim-
ination occurs, yielding the substitution product 2a. This compound can
react with a further thiophenate anion 4− yielding either the compound

2b in the course of a normal nucleophilic substitution [19–25] or, al-
ternatively, the compound 2c in the course of a diphenyldisulfide-
mediated hydride transfer from the Meisenheimer complex 6− formed
as an intermediate [23].

Because the compound 2d, which contains no chloro-substituent at
its thiazole moiety, is also formed (in low amounts) in the electro-
chemical experiments, there must have been second reaction route B.
This involves the formation of dianion 1b2− by the acceptance of a
second electron either from the electrode or, more probably, from a
second radical anion 1b·− in the course of a radical disproportionation
reaction [26–30]. After protonation, this dianion 1b2− eliminates a
chloride ion with the formation of compound 1a with a 5H-thiazol-2-yl
moiety which can, as known [17], subsequently undergo a nucleophilic
substitution with the thiophenolate anion 4− [31], giving rise to the
formation of the phenylmercapto-substituted compound 2d.

4. Conclusions

As expected, the electrochemically generated radical anions 1b·− of
5-chloro-2-[(4-chloronaphthalen-1-yl)az]thiazole (1b) can act either as
an electron shuttle, transforming PhSSPh into the corresponding thio-
phenolate anions PhS− which initiates a nucleophilic substitution of the
Cl- and H-groups at the starting azo compound 1b, giving rise to the
formation of the phenylmercapto-substituted 1-(thiazol-2-yl)azo-
naphthalenes 2a–2c (route A) or, to a small extent, can dispropor-
tionate with the formation of the starting azo compound 1b and its
corresponding dianion 1b2− from which the compound 1a results after
protonation and subsequent chloride elimination (route B).
Subsequently, this compound with a 5H-thiazol-2-yl moiety reacts with
the thiophenolate anion PhS−, yielding the compound 2d.

All of the phenylmercapto-substituted azo compounds described
have been independently prepared, accordingly to [17], by reaction of
the azo compounds 1a and 1b with thiophenol in the presence of
triethylamine and characterized by means of mass spectrometry, 1H
NMR and UV–Vis spectrometry.

Fig. 1. (a) Cyclic voltammograms of compound 1b
and PhSSPh measured on a Pt electrode in acet-
onitrile containing 0.1 M n-Bu4NPF6 at a scan rate
0.1 V/s. (b) Cyclic voltammogram of compound 1b
in the absence (red line) and in the presence (black
line) of PhSSPh, measured in a spectro-
electrochemical cell. (c) Dependence of the intensity
of the ESR signal on the applied potential; (d) in situ
UV–Vis-NIR spectra measured during the reduction.

Fig. 2. TLC analysis of the electrolysis solution with independently prepared
compounds 2a–2d and their starting compounds 1a, 1b and 3.
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