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ARTICLE INFO ABSTRACT

Electrochemical processes enable a new generation of energy-efficient desalination technologies. While ion
electrosorption via capacitive deionization is only suitable for brackish water with low molar strength, the use of
Faradaic materials capable of reversible ion intercalation or conversion reactions allows energy-efficient removal
of ions from seawater. However, the limited charge transfer/storage capacity of Faradaic materials indicates an
upper limit for their desalination applications. Therefore, a new electrochemical concept must be explored to
exceed the current state-of-the-art results and to push the desalination capacity beyond 100-200 mgnaci/
Zelectrode- 1N this proof-of-concept work, we introduce the new concept of using metal-air battery technology for
desalination. We do so by presenting performance data for zinc-air desalination (ZAD) in 600 mM NaCl. The
ZAD cell provides a desalination capacity of 0.9-1.0 mgyaci/cm? (normalized to the membrane area; corre-
sponding to 1300 mgyac1/8zn) With a charge efficiency of 70% when charging/discharging the cell at 1 mA/cm?.
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The energy consumption of ZAD is 68-92 kJ/mol.

1. Introduction

Energy and water are two fundamental resources for our technolo-
gical society and industry. With growing environmental awareness and
continued consumption of resources alongside increased pollution,
there is a tremendous need for low-energy, high-performance technol-
ogies capable of producing fresh water, as alternatives to such methods
as reverse osmosis [1]. In contrast to pressure or filtration-based de-
salination and ion separation technologies, there is great promise in
electrochemical processes. In addition to the feature of ion separation
(accomplished with invested charge), electrochemical processes also
offer the dual-use benefit of intermittent energy storage, because most
of the invested charge is recovered during electrode regeneration [2].
Capacitive deionization (first-generation electrochemical desalination)
achieves energy-efficient salt removal by ion electrosorption with na-
noporous carbon electrodes; however, this mechanism limits effective
remediation to brackish water (<100 mM NaCl) with a desalination
capacity of about 20-30 mgnac1/8electrode [3,4]. Faradaic deionization
(FDIL, or second-generation electrochemical desalination), in contrast, al-
lows effective desalination also at higher molar strengths. The desali-
nation capacity has been reported to approach 200 mgyaci/8electrode fOT
intercalation materials (e.g., Nag 44MnO5, NASICON-type NaTiy(POy4)3,
MXene) [5-8], redox electrolytes (e.g., iodide or bromide based) [9,10],
or conversion materials (e.g., BiOCl, Ag/AgCl) [11,12]. However, to

achieve even higher desalination capacities, it is necessary to capitalize
on electrochemical processes and materials that offer a much higher
charge storage capacity than 200-300 mAh/g since salt removal di-
rectly correlates with this property [12].

The search for a third-generation electrochemical desalination tech-
nology has inspired us to adopt, for the first time, the concept used for
high charge storage in metal-air batteries. As an example of the pro-
mising use of metal-air battery technology for desalination, we in-
troduce zinc-air desalination (ZAD). The equipment consists of a Zn
anode, an anion exchange membrane, a cation exchange membrane,
and the air electrode. Instead of a rare and expensive catalyst material
(e.g., Pt, RuO,), we used MoS, as a catalyst for the cathode in ZAD. The
resulting desalination performance is far superior to any CDI or FDI
reported so far, and opens the way for a new class of electrochemical
desalination.

2. Experimental
2.1. Material synthesis and characterization

MoS, (20 um, Sigma Aldrich) was exfoliated using tip-sonication.
Briefly, 10 mg of MoS, and 50 mg of NaOH (98%, Sigma Aldrich) were

mixed with 200 mL N-methyl-2-pyrrolidone (NMP, Sigma Aldrich). The
solid-liquid mixture was then subjected to sonication for 7.5 h with an
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output power of 200 W and a frequency of 40 kHz. During the soni-
cation process, the suspension was kept in an ice-bath to compensate for
the heat generated by the high-frequency vibration of the sonication
process. After sonication, the resulting solution was centrifuged at
4000 rpm for 30 min. The supernatant was collected and then vacuum
filtered through a polymer membrane (0.1 um, Merck Millipore). After
washing the filtrate several times with ethanol and water, the resulting
powder was dried in a vacuum oven for 24 h and is termed “exfoliated
MoS,”.

X-ray diffraction (XRD) was conducted with a D8 Discover dif-
fractometer (Bruker AXS) with a copper source (Cu-K,, 40 kV, 40 mA),
a Gobel mirror, and a 1 mm point focus. A two-dimensional VANTEC-
500 detector covered an angular range of 20° 26 with frames recorded
at 20°, 40°, and 80° 20 using a measurement time of 1000 s per frame.

2.2. Electrochemical characterization

Two of the key factors in evaluating the performance of ZAD are the
oxygen reduction reaction (ORR) and oxygen evolution reaction (OER).
To do this, we conducted OER and ORR using a rotating-disk glassy
carbon electrode (RDE). The RDE electrode was modified by drop-
casting a catalyst slurry consisting of 80 mass% of catalyst materials, 10
mass% of carbon black (C65, Imerys Graphite& Carbon), 10 mass% of
polyvinylidene fluoride (PVDF, Alfa Aesar), with NMP as the solvent.
For comparison, we used RuO» (>99.9%, ThermoFisher) as the control
standard catalyst. Before the experiment, 0.1 M NaOH was purged with
O, for 20 min. A Pt coil and Ag/AgCl were used as the counter and
reference electrode, respectively. To study the ORR, linear sweep vol-
tammetry (LSV) was applied using a scan rate of 50 mV/s and a cut-off
potential between —0.6 V and 0 V vs. Ag/AgCl. The Koutechy-Levich
(K-L) equation was used to estimate the number of electrons transferred
during ORR [13]. LSV was also applied to study the OER, using a sweep
rate of 50 mV/s and a cut-off potential between 0.1 V and 1.6 V vs. Ag/
AgCl.

2.3. Desalination performance

The ZAD cell consists of a Zn disk (@ = 2.6 cm, 0.125 mm in
thickness, 99.95% purity, GoodFellow), an anion exchange membrane
(AEM, @ = 3 cm, FAS-PET-130, Fumatech), a separator, a cation ex-
change membrane (CEM, @=3 cm, FKS-PET-130, Fumatech), and a
cathode catalyst (@ = 2.6 cm). For the cathode and gas diffusion layer,
we used a free-standing electrode fabricated from exfoliated MoS, and
10 mass% carbon nanotubes (CNTs, Nanocyl NC7000), similarly to our
previous work on FDI [14]. The cell components were carefully placed
in a multi-channel capacitive deionization (MCDI) cell. 1 M ZnCl, was
confined between the Zn disk and the AEM, then 0.1 M NaOH was
confined between the cathode and the CEM. The solution to be desa-
linated, 600 mM NaCl, was continuously fed (15 mL/min) into the
middle channel of the cell. During operation, humid oxygen gas was
continuously blown into the cathode side to supply enough O, for ORR
during discharging. Chronopotentiometry with a current of 1 mA/cm?®
and a cut-cell voltage of 0-3 V was applied to charge and discharge the
ZAD. Each charge and discharge step lasted 30 min. We followed our
previous work [15] in the calculations of desalination capacity, charge
capacity, and charge efficiency.

3. Results and discussion
3.1. Structural characterization
XRD patterns of the bulk and exfoliated MoS, are shown in Fig. 1,

where the pattern of bulk MoS, is assigned to the 2H (hexagonal) phase
of MoS, (PDF: 77-1716). The shifting of the (0 0 2) plane reflection is
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Fig. 1. X-ray diffractogram of bulk MoS, and exfoliated MoS,.

due to the exfoliation process. We also show the chosen focus area
between 12° and 17° 20 in Fig. 1 (inset). While bulk MoS, displays the
(0 0 2) plane reflection at 14.5° 26, the corresponding reflection of
exfoliated MoS, can be seen at 14.4 °20, with a lower intensity com-
pared to that of the bulk MoS.

3.2. Electrochemical characterization

The properties of the exfoliated MoS, as an electrochemical catalyst
were compared with those of bulk MoS, and commercially available
RuO,. Fig. 2A shows the ORR activity of the modified RDE electrode.
The half-wave potentials for exfoliated MoS, and bulk MoS, were ob-
served to be higher than that of RuO,, suggesting that MoS, exhibits
better ORR catalytic activity. The ORR Tafel plot (Fig. 2B) clearly shows
the effect of the exfoliation process on the charge transfer abilities of
MoS,, in that the exfoliated MoS, exhibits the fastest charge transfer. At
different rotation rates of the modified RDE electrode, the diffusion-
limited current increases, indicating the shortening of the O, diffusion
path. The K-L (Koutecky-Levich) plots in Fig. 2C show that the reaction
follows first-order kinetics via the concentration of dissolved oxygen.
Thus, exfoliated MoS, shows a 4-electron transfer pathway for the ORR
while the electron transfer figures for bulk MoS, and RuO, are 2.5 and
2.9, respectively (Fig. 2D).

The OER activity is shown in Fig. 2E-F. RuO, is known to be one of
the best OER catalysts and has an onset potential of 0.45 V vs. Ag/AgCl
while exfoliated MoS, and bulk MoS, exhibit onset potentials of ca.
0.5 V and 0.8 V vs. Ag/AgCl. The OER kinetics in exfoliated MoS, are
faster at low overpotentials, resulting in a lower potential at the specific
current of 10 mA/cm?. Exfoliated MoS, has a lower Tafel slope than
bulk MoS, (Fig. 2F). Based on the electrochemical performances, we
can see that exfoliated MoS, is suitable for the cathode in ZAD as it is
much cheaper than RuO, or a noble catalyst such as Pt. It can be esti-
mated that, using an exfoliated MoS, cathode in ZAD, the maximum
cell voltage is up to 1.6 V, depending on the charging and discharging
current.

To test the electrochemical performance of exfoliated MoS,, we
assembled a zinc-air battery (ZAB; Fig. 3A). At a very low charge/
discharge specific current of 0.1 mA/cm? (normalized by the membrane
area), ZAB shows a cell voltage of 1.3 V with a specific capacity of 800
mAh/gz, (Fig. 3B) and an areal capacity of 0.8 mAh/cm? To demon-
strate its cyclic stability, the ZAB was charged and discharged at 1 mA/
cm? with a limited charge/discharge-time of 10 min. Over the course of
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Fig. 2. Catalytic performance of exfoliated MoS,, bulk MoS,, and RuO,: (A) ORR polarization curve; (B) ORR Tafel plot; (C) K-L plot; (D) the number of electrons
transferred during ORR; (E) OER; and (F) OER Tafel plot. All experiments were conducted in O,-saturated, aqueous 0.1 M NaOH.

25 cycles, the cell voltage is stable at 2.2 V, while the first cycle displays
a cell voltage of 0.8 V (Fig. 3C). The specific capacity can be maintained
at 150 mAh/gz, for 25 cycles (Fig. 3D). It is likely that ZnO formation
on the side of the anode causes the increase in the cell voltage [16].

3.3. Desalination performance
After the desalination cell had been assembled (Fig. 4A), the desa-

lination performance was tested using a feed salt concentration of
600 mM NaCl. At a current density of 1 mA/cm?, the ZAD cell exhibits

inverted desalination: ions are released during charging and desalina-
tion during discharging (Fig. 4B). As the cell is charged, the cell voltage
is slowly increased due to the production of oxygen gas at the cathode
while Zn?* is deposited at the anode (Fig. 4A). As a result, Na* and C1~
are ejected across the CEM and AEM, respectively. During discharge,
the MoS, cathode undergoes ORR with a 4-electron transfer producing
OH~ while anode Zn is stripped out. Consequently, Na* and Cl~ from
the feed stream are removed (desalination). The charge/discharge ca-
pacity of ZAD is about 880 mAh/gz, (Fig. 4C), and this value corre-
sponds to an areal capacity of 0.65 mAh/cm?. For 20 cycles, the ZAD
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Fig. 3. Zinc-air battery performance: (A) illustration of ZAB cell configuration; (B) charge capacity of the ZAB cell at an areal current of 0.1 mA/cm?; (C) cell

voltage—capacity plot at an areal current of 1 mA/cm?; (D) cyclic stability of ZAB.

cell provides a very high desalination capacity of 0.9-1.0 mgyac/cm?
(corresponding to a gravimetric desalination capacity of 1300 mg/gz,,)
with a charge efficiency of 70% (Fig. 4E). The ZAD performance nor-
malized to the area of the ion-exchange membrane is remarkably high
compared to membrane-enhanced CDI (MCDI; ca. 0.1 mgyaci/cm?) or
Ag/AgCl conversion-type FDI (ca. 0.2 mgyac/cm?), as shown in Fig. 4D
[12,17]. To lower the ion concentration from 600 mM to 5 mM in a
volume of 1 L in a single-pass, one-cycle operation, our ZAD unit would
require an equivalent mass of 27 g of Zn; for comparison, one would
need about 1.7 kg of nanoporous carbon (assuming a desalination ca-
pacity of 20 mgyaci/8carbon) for a typical CDI cell.

The ZAD cell delivers a discharge of 2.2 mWh (564 Wh/kgz,) with a
round-trip energy efficiency of ca. 30%. These values correspond to an
energy consumption of 25-35 kT (Fig. 4F), which is equal to 68-92 kJ/
mol. With a salt reduction of 0.03%, the energy per processed water is
0.008 Wh/L. 0.03% may seem a small value; however, the cell we used
to process the saline medium was small, and we refer here to single-pass
values for one cycle. As seen in Table 1, the energy consumption of ZAD
is relatively low compared to a previous study using ion-insertion
Faradaic materials, redox electrolyte, conversion material, and mem-
brane CDI (0.2 Wh/L) [18].

In addition to MoS, (this work), the selection and design of cathode
materials (e.g., metal oxides, layered metal hydroxides, and heteroatom
doped carbon) [19] can potentially have a positive impact on battery
performance as well as desalination performance. For example, by
growing WS, directly onto CNTs, the interconnected interface between

WS, and the CNTs results in efficient electrocatalytic performance for
both OER and ORR [20]. The OER Tafel slope is 62 mV/dec at a po-
tential of 0.78 V vs. Ag/AgCl. WS,-CNT also delivers about a 4-electron
transfer for ORR with a half-wave potential of —0.17 V vs. Ag/AgCl.
This suggests that WS,-CNT allow the ZAD to be charged at a much
lower cell voltage, which results in lower energy consumption.

4. Conclusions

We introduce a new technology for high-performance electro-
chemical desalination using metal-air battery technology: zinc-air de-
salination (ZAD) using MoS, as a catalyst for OER and ORR at the
cathode. Our system shows promising electrochemical performance,
which translates into highly promising electrochemical desalination
performance. The latter significantly exceeds that of present-day CDI or
FDI. We see ZAD as a first contribution towards the establishment of
metal-air desalination (MAD) technology.
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Fig. 4. Zinc-air desalination in 600 mM NaCl: (A) Illustration of ZAD cell configuration; (B) concentration change during charge and discharge of ZAD; (C)
electrochemical performance (capacity vs. voltage profile); (D) area-normalized desalination capacity; (E) mass-normalized desalination capacity; (F) desalination-
related energy consumption per mol of NaCl removed.
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