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Our next generation of industry—Industry 4.0—holds the promise of increased flexibility in manufacturing, 
along with mass customization, better quality, and improved productivity. It thus enables companies to cope 
with the challenges of producing increasingly individualized products with a short lead-time to market and 
higher quality. Intelligent manufacturing plays an important role in Industry 4.0. Typical resources are con-
verted into intelligent objects so that they are able to sense, act, and behave within a smart environment. 
In order to fully understand intelligent manufacturing in the context of Industry 4.0, this paper provides 
a comprehensive review of associated topics such as intelligent manufacturing, Internet of Things (IoT)- 
enabled manufacturing, and cloud manufacturing. Similarities and differences in these topics are highlighted  
based on our analysis. We also review key technologies such as the IoT, cyber-physical systems (CPSs), cloud 
computing, big data analytics (BDA), and information and communications technology (ICT) that are used 
to enable intelligent manufacturing. Next, we describe worldwide movements in intelligent manufacturing, 
including governmental strategic plans from different countries and strategic plans from major internation-
al companies in the European Union, United States, Japan, and China. Finally, we present current challenges 
and future research directions. The concepts discussed in this paper will spark new ideas in the effort to 
realize the much-anticipated Fourth Industrial Revolution.
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1. Introduction

Industry 4.0, a German strategic initiative, is aimed at creating in-
telligent factories where manufacturing technologies are upgraded  
and transformed by cyber-physical systems (CPSs), the Internet 
of Things (IoT), and cloud computing [1,2]. In the Industry 4.0 era, 
manufacturing systems are able to monitor physical processes, 
create a so-called “digital twin” (or “cyber twin”) of the physical 
world, and make smart decisions through real-time communication 
and cooperation with humans, machines, sensors, and so forth [3]. 
Industry 4.0 combines embedded production system technologies 
with intelligent production processes to pave the way for a new 
technological age that will fundamentally transform industry value 
chains, production value chains, and business models.

In the context of Industry 4.0, manufacturing systems are updated  

to an intelligent level. Intelligent manufacturing takes advantage of 
advanced information and manufacturing technologies to achieve 
flexible, smart, and reconfigurable manufacturing processes in order 
to address a dynamic and global market [4]. It enables all physical 
processes and information flows to be available when and where 
they are needed across holistic manufacturing supply chains, mul-
tiple industries, small and medium-sized enterprises (SMEs), and 
large companies [5,6]. Intelligent manufacturing requires certain 
underpinning technologies in order to enable devices or machines 
to vary their behaviors in response to different situations and re-
quirements based on past experiences and learning capacities [7]. 
These technologies enable direct communication with manufactur-
ing systems, thereby allowing problems to be solved and adaptive 
decisions to be made in a timely fashion. Some technologies also 
have artificial intelligence (AI), which allows manufacturing systems 
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to learn from experiences in order to ultimately realize a connected, 
intelligent, and ubiquitous industrial practice.

Similar concepts to intelligent manufacturing include cloud man-
ufacturing and IoT-enabled manufacturing. In order to fully under-
stand intelligent manufacturing in the context of Industry 4.0, this 
paper reviews 165 papers from the Scopus and Google Scholar data-
bases and clearly presents key concepts such as intelligent manufac-
turing, IoT-enabled manufacturing, and cloud manufacturing. Next, 
this paper discusses key technologies such as the IoT, CPSs, cloud 
computing, big data analytics (BDA), and information and commu-
nications technology (ICT) that are used to support intelligent man-
ufacturing. Worldwide movements in intelligent manufacturing are 
then discussed, including cases from government bodies and giant 
companies in the European Union, United States, Japan, and China. 
Finally, future perspectives are highlighted for the inspiration of in-
dustrial practitioners and academia.

Published data from 2005–2016 regarding intelligent manufac-
turing have been gathered from the Scopus database (Fig. 1), which 
shows a steady increase in papers on this topic. Fig. 1(a) shows the 
published documents on intelligent manufacturing from 2005 to 
2016. From 2005 to 2006, the number of articles increased sharp-
ly, from around 100 to 150; from 2007 to 2014, the number then 
increased at a stable rate. From 2014 to 2015, another significant 

increase occurred, with 225 documents being published in 2015. 
Fig. 1(b) shows the top sources publishing works related to intelli-
gent manufacturing. The top five serials are the International Journal 
of Advanced Manufacturing Technology (83), Computer Integrated 
Manufacturing Systems (69), Journal of Intelligent Manufacturing (49), 
International Journal of Production Research (46), and Expert Systems 
with Applications (33). Fig. 1(c) lists the top universities or research 
institutes publishing in this research area. The top five universities are 
Shanghai Jiao Tong University (42), Beihang University (31), Zhejiang 
University (29), Chongqing University (20), and Tsinghua University  
(20). Fig. 1(d) shows the top scholars publishing in this area, and  
Fig. 1(e) lists countries or regions that are active in this field, of which 
China, the United States, and the United Kingdom are the top three.  

These articles are sourced from the Scopus and Google Scholar 
databases with a focus on key concepts such as intelligent manu-
facturing, IoT-enabled manufacturing, and cloud manufacturing. 
By analyzing these key technologies and related worldwide move-
ments, future perspectives are highlighted.

2. Major concepts

The manufacturing industry is the basis of a nation’s economy and 
powerfully influences people’s livelihood. Emerging technologies  

Fig. 1. Statistics from Scopus database (search keywords: “intelligent manufacturing”; Date: 31 March 2017). (a) Published documents per year; (b) published documents by 
source; (c) published documents by affiliation; (d) published documents by author; (e) published documents by country/region.
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IoT-enabled manufacturing features real-time data collection and 
sharing among various manufacturing resources such as machines, 
workers, materials, and jobs [18]. The real-time data collection and 
sharing are based on key technologies such as radio frequency iden-
tification (RFID) and wireless communication standards. By using 
RFID technology, physical manufacturing flows such as the move-
ments of materials and associated information flows such as the 
visibility and traceability of various manufacturing operations can 
be seamlessly integrated [19,20]. RFID tags and readers are deployed 
to typical manufacturing sites such as shop floors, assembly lines, 
and warehouses, where smart objects are created by equipping 
manufacturing objects with RFID devices. This allows shop-floor dis-
turbances to be detected and fed back to the manufacturing system 
on a real-time basis [21], thereby improving the effectiveness and 
efficiency of manufacturing and production decision-making.

Several real-life cases of IoT-enabled manufacturing have been 
reported. To improve manufacturing flexibility, an RFID-enabled 
real-time production management system for a motorcycle assem-
bly line was introduced [22]. This manufacturing system is used in 
Loncin Motor Co., Ltd. to collect real-time production data from raw 
materials, work-in-progress (WIP) items, and staff so that items of 
interest are enhanced in terms of visibility, traceability, and track-
ability. A case study from an automotive part manufacturer, Huaiji 
Dengyun Auto-Parts (Holding) Co., Ltd., provides another example 
[23]. This SME engine valve manufacturer uses an RFID-enabled 
shop-floor manufacturing solution across whole operations. Based 
on RFID-enabled real-time data, an extension was made to in-
tegrate the manufacturing execution system and the enterprise  
resource-planning system. A case of implementing RFID-based real- 
time shop-floor material management for Guangdong Chigo Air 
Conditioning Co., Ltd. was reported in Ref. [24]. In this case, RFID 
technology provided automatic and accurate object data to enable 
real-time object visibility and traceability. More cases are available 
from the mold and die industry, automotive part and accessory 
manufacturing alliances, product life-cycle management, and aero-
space maintenance operations [25–28].

2.3. Cloud manufacturing

Cloud manufacturing refers to an advanced manufacturing model 
under the support of cloud computing, the IoT, virtualization, and 
service-oriented technologies, which transforms manufacturing 
resources into services that can be comprehensively shared and cir-
culated [29,30]. It covers the extended whole life cycle of a product, 
from its design, simulation, manufacturing, testing, and mainte-
nance, and is therefore usually regarded as a parallel, networked, 
and intelligent manufacturing system (the “manufacturing cloud”) 
where production resources and capacities can be intelligently man-
aged. Thus, on-demand use of manufacturing services can be pro-
vided from the manufacturing cloud for all types of end-users [31].

In cloud manufacturing, various production resources and capac-
ities can be intelligently sensed and connected into the cloud. IoT 
technologies such as RFID and barcodes can be used to automatically 
manage and control these resources so that they can be digitalized 
for sharing. Service-oriented technologies and cloud computing are 
the underpinning supports for this concept. As a result, manufactur-
ing resources and capacities can be virtualized, encapsulated, and 
circulated into various services that can be accessed, invoked, and 
implemented [32]. Such services can be categorized and aggregated, 
given predefined specific rules. There are many different kinds of 
manufacturing clouds that handle various manufacturing services 
[33]. Different users are able to search, access, and invoke the qual-
ified services through a virtual manufacturing environment or plat-
form.

Cloud deployment modes, manufacturing resources modeling, 

can have game-changing impacts on manufacturing models, ap-
proaches, concepts, and even businesses. This section reviews three 
major advanced manufacturing technologies: intelligent manufac-
turing, IoT-enabled manufacturing, and cloud manufacturing.

2.1. Intelligent manufacturing

Intelligent manufacturing (also known as smart manufacturing) 
is a broad concept of manufacturing with the purpose of optimizing 
production and product transactions by making full use of advanced 
information and manufacturing technologies [8]. It is regarded as a 
new manufacturing model based on intelligent science and technol-
ogy that greatly upgrades the design, production, management, and 
integration of the whole life cycle of a typical product. The entire 
product life cycle can be facilitated using various smart sensors, 
adaptive decision-making models, advanced materials, intelligent 
devices, and data analytics [9]. Production efficiency, product qual-
ity, and service level will be improved [10]. The competitiveness of 
a manufacturing firm can be enhanced with its ability to face the 
dynamics and fluctuations of the global market.

One form of realization of this concept is the intelligent manufac-
turing system (IMS), which is considered to be the next-generation 
manufacturing system that is obtained by adopting new models, 
new forms, and new methodologies to transform the traditional 
manufacturing system into a smart system. In the Industry 4.0 era, 
an IMS uses service-oriented architecture (SOA) via the Internet to 
provide collaborative, customizable, flexible, and reconfigurable 
services to end-users, thus enabling a highly integrated human- 
machine manufacturing system [11]. This high integration of human- 
machine cooperation aims to establish an ecosystem of the various 
manufacturing elements involved in IMS so that organizational, 
managerial, and technical levels can be seamlessly combined. An 
example of IMS is the Festo Didactic cyber-physical factory, which 
offers technical training and qualification to large vendors, univer-
sities, and schools as part of the German government’s Platform 
Industrie 4.0 strategic initiative [12].

AI plays an essential role in an IMS by providing typical features 
such as learning, reasoning, and acting. With the use of AI technol-
ogy, human involvement in an IMS can be minimized. For example, 
materials and production compositions can be arranged automat-
ically, and production processes and manufacturing operations 
can be monitored and controlled in real-time [13,14]. As Industry 
4.0 continues to gain recognition, autonomous sensing, intelligent 
interconnecting, intelligent learning analysis, and intelligent deci-
sion-making will ultimately be realized. For example, an intelligent 
scheduling system can enable jobs to be scheduled based on AI 
techniques and problem solvers, and can be offered to other users as 
services in an Internet-enabled platform [15].

2.2. IoT-enabled manufacturing

IoT-enabled manufacturing refers to an advanced principle 
in which typical production resources are converted into smart 
manufacturing objects (SMOs) that are able to sense, intercon-
nect, and interact with each other to automatically and adaptively 
carry out manufacturing logics [16]. Within IoT-enabled manu-
facturing environments, human-to-human, human-to-machine, 
and machine-to-machine connections are realized for intelligent 
perception [17]. Therefore, on-demand use and efficient sharing of 
resources can be enabled by the application of IoT technologies in 
manufacturing. The IoT is considered to be a modern manufacturing 
concept under Industry 4.0 and has adopted recent advances, such 
as cutting-edge information technology (IT) infrastructure for data 
acquisition and sharing, which greatly influence the performance of 
a manufacturing system.
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and requirements and services matching are key concerns in cloud 
manufacturing. Since a virtual manufacturing environment or solu-
tion should be established for services sharing, cloud deployment 
approaches such as public, private, community, and hybrid clouds 
are needed so that a uniform and ubiquitous access can be provided 
to end-users. For example, the hybrid cloud is a mixture of several 
clouds that offers multiple deployment modes along with advantages  
such as flexible deployment and easy access to cross-business ap-
plications [34]. Various manufacturing resources such as machines 
and assembly lines should also be modeled into services that can 
be distributed and shared. German associations such as the German 
Electrical and Electronic Manufacturers’ Association (ZVEI) have al-
ready developed an advanced approach; they have not only created 
a reference architecture on Industry 4.0 products and services (the 
Reference Architectural Model Industry (RAMI) model) [35], but also 
described a management or administration shell for several devices 
to allow consistent usage of data and resources [36]. However, such 
a development is challenging, since a vast number of physical man-
ufacturing objects of various types and heterogeneous formats may 
introduce unexpected modeling complexity [37]. Manufacturing  
requirements and services matching within cloud manufacturing 
are important. This matching not only includes an optimal solution 
for service providers and customers, but also consists of service 
planning, scheduling, and execution [38].

2.4. Comparisons

The three abovementioned concepts are significant in the context 
of Industry 4.0, since modern advanced manufacturing systems will 
have tremendous effects on our future lives. In order to fully under-
stand these concepts and identify their differences and similarities, 
Table 1 [11,33,39‒50] highlights a comparison from four perspec-
tives: major characteristics, supporting technologies, major research, 
and applications.

From Table 1, it can be observed that these concepts have been 
widely studied and implemented. They share some similarities, such 
as the aims of intelligent/smart decision-making in manufacturing 
systems and the optimization of various manufacturing resources 
[51]. Several technologies, such as the IoT, cloud computing, and 

BDA, are used within these three main concepts. Such technologies 
will be detailed in the next section. The research focuses of these 
concepts are different and are based on different ideas. For example, 
intelligent manufacturing concentrates on human-machine and 
machine-to-machine interactions, while IoT-enabled manufacturing 
highlights real-time data for production-decision models and SMO 
modeling. Cloud manufacturing focuses on the configuration and 
modeling of manufacturing services. From an application perspec-
tive, IoT-enabled manufacturing has been successfully implemented, 
with a large number of industrial cases being reported in the liter-
ature, supported by professional training and educational concepts. 
However, intelligent manufacturing and cloud manufacturing are 
still in the research or proof-of-concept stage, and have a limited 
number of real-life cases. The standardization concept is strongly 
presented by powerful associations such as ZVEI. The reported cases 
for intelligent manufacturing and cloud manufacturing are divided 
into two categories: illustrations of system architecture, and demon-
strations of rigged scenarios in a virtual manufacturing company; 
however, they may yet be far from real-life implementation.

3. Key techniques

This section reviews some key technologies used in intelligent 
manufacturing, including the IoT, CPSs, cloud computing, BDA, and 
other ICTs.

3.1. The Internet of Things

The IoT refers to an inter-networking world in which various 
objects are embedded with electronic sensors, actuators, or other 
digital devices so that they can be networked and connected for 
the purpose of collecting and exchanging data [52]. In general, IoT 
is able to offer advanced connectivity of physical objects, systems, 
and services, enabling object-to-object communication and data 
sharing. In various industries, control and automation for lighting, 
heating, machining, robotic vacuums, and remote monitoring can 
be achieved by IoT. One key technology in IoT is automatic identifi-
cation (auto-ID) technology, which can be used to make smart ob-
jects. For example, as early as 1982, researchers at Carnegie Mellon  

Table 1
Comparisons of key concepts.

Concepts Major characteristics Supporting technologies Major research Applications Refs.

Intelligent manu-
facturing

•	AI-based	smart	decision- 
making
•	Advanced	automotive	pro-

duction
•	Adaptive	and	flexible	man-

ufacturing systems

•	Big	data	processing
•	Advanced	robotics
•	Industrial	 connectivity	

services
•	Last-generation	sensors

•	Advanced	manufacturing	
decision-making models
•	Human-machine	integration
•	AI-enabled	machine	learning
•	Machine-to-machine	connec	- 

tivity

•	A	smart	manufacturing	system	with	a	portrait	
of an ISO STEP tolerancing standard
•	A	product	 life-cycle	test	bed	enabling	intelli-

gent manufacturing
•	Agent-based	IMSs
•	Intelligent	manufacturing	planning	and	control	

systems

[11,39–42]

IoT-enabled manu-
facturing

•	Auto-ID	technology-based	 
smart manufacturing sys-
tem
•	Real-time	data	collection
•	Real-time	 visibility	 and	

traceability of production 
processes
•	Real-time	manufacturing	

decision-making

•	IoT
•	Wireless	production
•	BDA
•	Cloud	computing

•	Real-time	data-driven	deci-
sion-making models
•	Real-time	data	visualization
•	SMO	modeling
•	Models	of	SMO	behaviors

•	An	RFID-based	resources	management	system
•	An	IoT-enabled	smart	construction	production	

system
•	An	RFID-based	job	shop	WIP	inventories	man-

agement system
•	An	RFID-enabled	real-time	production	plan-

ning and scheduling system

[43–47]

Cloud manufactur-
ing

•	Manufacturing	service	dis-
tribution and sharing
•	Intelligent	capability	man-

agement
•	Manufacturing	cloud	ser-

vice management

•	Cloud	computing
•	IoT
•	Virtualization	method
•	Service-oriented	techno-

logy

•	Modeling	of	manufacturing	
resources and capabilities
•	Manufacturing	services	con-

figuration
•	Manufacturing	cloud	archi-

tecture

•	Data	visualization	 in	a	cloud	manufacturing	
shop floor
•	QoS-based	service	composition	selection	in	a	

cloud manufacturing system
•	Smart	cloud	manufacturing	using	the	IoT
•	A	 semantic	web-based	 framework	 in	 cloud	

manufacturing

[33,48–50]

Auto-ID:	automatic	identification;	STEP:	standard	for	the	exchange	of	product	model	data;	QoS:	quality	of	service.
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University applied an Internet-connected appliance to a modified 
Coke machine [53]. The IoT is now envisioned as a larger conver-
gence of cutting-edge technologies such as ubiquitous wireless 
standards, data analytics, and machine learning [54]. This implies 
that a large number of traditional areas will be affected by IoT tech-
nology, as it is being embedded into every aspect of our daily lives.

RFID technology provides one such example. It has been reported  
that nearly 20.8 billion devices will be connected and making full 
use of RFID by 2020 [55]. Such a shift will influence most of in-
dustry, and especially manufacturing sectors. RFID technology has 
been used for identifying various objects in warehouses, production 
shop floors, logistics companies, distribution centers, retailers, and 
disposal/recycle stages [56]. After identification, such objects have 
smart sensing abilities so that they can connect and interact with 
each other through specific forms of interconnectivity, which may 
create a huge amount of data from their movements or sensing 
behaviors. The interconnectivity between smart objects is prede-
fined; such objects are given specific applications or logics, such as 
manufacturing procedures, that they follow after being equipped 
with RFID readers and tags [57]. RFID facilities not only help end- 
users to fulfil their daily operations, but also capture data related to 
these operations so that production management is achieved on a 
real-time basis. IoT technologies have been widely used in industry. 
Table 2 [58–66] presents a list of typical applications of IoT.

Table 2 shows that IoT technology has been widely used in dif-
ferent fields such as smart cities, manufacturing, and healthcare. 

The aims differ for specific applications, so that improvements can be 
achieved. Developed countries such as France and developing coun-
tries such as China and India are working collaboratively to employ 
the IoT for specific projects. These collaborations not only enhance 
the development of IoT technologies, but also address global issues, 
since it is necessary for countries and districts to work collaboratively, 
especially when adopting a cutting-edge technology such as the IoT.

3.2. Cyber-physical system

A CPS is a mechanism through which physical objects and soft-
ware are closely intertwined, enabling different components to in-
teract with each other in a myriad of ways to exchange information 
[67,68]. A CPS involves a large number of trans-disciplinary method-
ologies such as cybernetics theory, mechanical engineering and me-
chatronics, design and process science, manufacturing systems, and 
computer science. One of the key technical methods is embedded 
systems, which enable a highly coordinated and combined relation-
ship between physical objects and their computational elements or 
services [69]. A CPS-enabled system, unlike a traditional embedded 
system, contains networked interactions that are designed and 
developed with physical input and output, along with their cyber- 
twined services such as control algorithms and computational ca-
pacities. Thus, a large number of sensors play important roles in a 
CPS. For example, multiple sensory devices are widely used in CPS to 
achieve different purposes, such as touch screens, light sensors, and 

Table 2
Typical applications of IoT.

Industries/companies Aims Improvements Future research Refs.

Smart community, Canada 
and China

	Neighborhood watch
	Pervasive healthcare

	Value-added services such as utility man-
agement and social networking
	Suspicious event detection in neighborhood 

watch

	Cooperative authentication
	Detecting unreliable nodes
	Target tracking and intrusion detec-

tion

[58]

A cloud implementation us-
ing Aneka, Australia

	Sharing data between application develop-
ers
	IoT application-specific framework

	A seamless independent IoT working archi-
tecture
	Open and dynamic resource provisioning

	Integrated IoT and cloud computing
	Big data for IoT applications

[59]

Healthcare and social appli-
cations, USA

	Improving the quality of human life
	Examining potential societal impacts

	Enabling ambient intelligence
	Ubiquitous communication
	Increased processing capabilities

	IoT theory for management and op-
erations
	IoT data complexity analysis
	IoT-enabled global business and 

commerce

[60]

Machine-to-machine meas-
urement, Ireland and France

	Easing the interpretation of sensor data
	Combining domains

	Cross-domain connection
	Improved performance
	Enhanced interpretation from users

	Domain knowledge extraction
	Interoperable ontologies and data-

sets

[61]

Smart cities, Padova, Italy 	Providing open access to selected subsets
	Building an urban IoT system

	Improved energy efficiency
	Reduced traffic congestion
	Smart lighting and parking

	Smart city data analysis
	Smart connectivity
	System extension

[62]

IoT Gateway system, China 	Helping telecom operators transmit data
	Controlling functions for sensor network

	Improved functions such as data display, 
topology, etc.
	Enhanced data transmission

	Advanced IoT Gateway functions
	Security management

[63]

IoT application framework, 
India and France

	Developing an IoT application framework
	Implementing the methodology to support 

stakeholders’ actions

	Improved productivity of stakeholders
	Improved collaborative work

	Mapping algorithm cognizant of het-
erogeneity
	Developing concise notion for Srijan 

development language
	Testing support for IoT application 

development

[64]

IoT-enabled energy manage-
ment, Italy and Spain

	Illustrating energy management at pro-
duction level
	Proposing IoT-based energy management 

in production
	Providing a framework to support the inte-

gration of energy data

	Integrated energy data management
	Improved energy efficiency
	Enhanced energy data analysis

	Conventional hypothesis testing
	System extension

[65]

IoT-enabled real-time infor-
mation capturing and inte-
gration framework, China

	Providing a new paradigm of IoT to manu-
facturing
	Designing a real-time manufacturing in-

formation integration service

	Real-time information capturing
	Improved logistics

	Optimal production using captured 
data
	Prediction model of production ex-

ceptions

[66]
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force sensors. Nevertheless, integrating several different subsystems 
is time-consuming and costly, and the whole system must be kept 
operational and functional. The heterogeneity and complexity of CPS 
applications result in several challenges in developing and designing 
high-confidence, secure, and certifiable systems and control meth-
odologies [70].

Many industries have initiated projects in the CPS domain. For 
example, Festo Motion Terminal is a standardized platform that 
makes full use of an intelligent fusion of mechanics, electronics, em-
bedded sensors and control, and software/applications [71]. Digital 
pneumatics allows self-adopting and self-adjusting subsystems [72]. 
Typical CPS applications have been reported in the form of using 
sensor-based communication-enabled autonomous systems. A vast 
number of wireless sensor networks can supervise environmental 
aspects so that the information from the environment can be cen-
trally controlled and managed for decision-making [73]. Application 
of CPSs can be found in diverse fields. Table 3 [71,72,74‒82] provides 
a list of typical applications of CPS.

Table 3 shows that CPSs are a research area of keen interest to 
both academia and industry. Different countries have invested in 
developing CPSs as a promising concept for maintaining compet-
itiveness in the global economy. Multidisciplinary collaboration 
between engineers, industrial experts, and computer scientists has 
accelerated the advancement in designing and developing CPSs by 
identifying requirements, opportunities, and challenges in various 
sectors. As shown in Table 3, these advances have had significant 
effects on many fields, including medicine and healthcare, biology, 
civil structures, autonomous vehicles, intelligent manufacturing, 
and power distribution.

3.3. Cloud computing

Cloud computing is a general term that refers to delivering com-
putational services through visualized and scalable resources over 

the Internet [30,83]. The scalability of resources makes cloud com-
puting interesting for business owners, as it allows organizations 
to start small and invest in more resources only if there are rises 
in further service demand [84]. Based on recommendations from 
the National Institute of Standards and Technology (NIST), an ideal  
cloud should have five characteristics: on-demand self-service, 
broad network access, resource pooling, rapid elasticity, and meas-
ured service. This cloud model is composed of four deployment 
models—public, private, community, and hybrid—and three delivery 
models—“software as a service,” “platform as a service,” and “in-
frastructure as a service” [85]. Organizations of all types and sizes 
are adopting cloud computing to increase their capacity with a 
minimum budget and without investing in licensing new software, 
incorporating new infrastructure, or training new personnel [86].

Despite the significant benefits of cloud computing, critical chal-
lenges affect the reliability of this ongoing concept [87]. Researchers 
and service providers have conducted numerous studies to identify 
and classify issues related to cloud computing. Based on the litera-
ture, the most significant concern about cloud computing is related 
to privacy subjects and security [88–90]. Other challenges such as 
data management and resource allocation [91,92], load balancing 
[93,94], scalability and availability [95], migration to clouds and 
compatibility [96,97], and interoperability and communication be-
tween clouds [98,99] reduce the reliability and efficiency of cloud-
based systems. These challenges and their most appropriate solu-
tions are addressed in Ref. [100].

With current advances in ICT, cloud computing can be considered 
as “the fifth utility,” along with water, electricity, gas, and telephone 
[101]. Because of its relative innovation and exploding development 
in recent years, a great deal of research has been conducted on cloud 
computing [102]. Table 4 [103‒111] lists some typical applications of  
cloud computing.

As shown in Table 4, applications of cloud computing, from ed-
ucation and healthcare to manufacturing and transportation, have 

Table 3
Typical applications of CPS.

Industries/companies Aims Improvements Future research Refs.

Power systems, USA and Can-
ada

	CPS test bed implemented in RTDS 
and OPNET

	Providing a realistic cyber-physical 
testing environment in real time

	Studying CPS vulnerabilities in vari-
ous power system models

[74]

Children keeper service, Korea 	Proposing a key design method for 
CPSs

	Designing CPSs with high-quality 
more feasibly and practically

	Data-driven CPS decision-making 
mod els

[75]

Water distribution networks, 
USA

	Integrated simulation method for  
reflecting the operation and inter-
action of CP networks

	Facilitating modeling CPSs 	Extending the models and tech-
niques for other CPS domains

[76]

Civil structure, USA 	Developing and assessing CPSs for 
real-time hybrid structural testing

	Illustrating the feasibility of virtual-
izing CPS components

	Improving hydraulic actuator models
	Quantifying	further	scalability	of	the	

proposed approach

[77]

Fire handling. China 	Developing a simulation model for 
emergency handling problems

	Obtaining optimal sensing and robot 
scheduling policies

	Increasing computational time for 
more complicated scenarios

[78]

Autonomous vehicles, USA 
and Germany

	Proposing a parallel programming 
model for CPSs

	Guaranteeing timeliness for complex 
real-time tasks

	Addressing the dynamic nature of 
CPSs in the proposed model

[79]

Intelligent manufacturing, 
Sweden and USA

	Associating a CPS with holons, 
agents, and function blocks
	Using CPS to digitalize pneumatics 

with applications

	Ease of system implementation in 
dec entralized or cloud environment
	Maximized flexibility and advanced 

condition monitoring
	Self-adjusting and self-adopting sub-

system

	Practical in dynamic manufacturing 
with uncertainty
	Time-sensitive networking for syn-

chronized motion control
	Distributed decision-making and-

self-organization between (sub)sys-
tems

[71,72,80]

Healthcare, Brazil 	Model-based architecture for val-
idating medical CPSs

	Providing enough information to per-
form medical tests

	Proposing architecture for other med-
ical device models

[81]

Communication, China 	Analyzing the features of machine- 
to-machine, wireless sensor net-
works, CPS, and the IoT
	Reviewing home machine-to- 

machine networks

	Outlining the challenges related to 
CPS design

	Future design of CPSs [82]

RTDS: real-time digital simulator; CP: cyber-physical. 
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been widely reported. With the right middleware, a cloud comput-
ing system can perform all the applications that a normal computer 
can run. Everything from generic word processing software to cus-
tomized business programs designed and developed for an organi-
zation can potentially perform on a cloud system. Cloud computing 
has been credited with increasing competitiveness through greater 
flexibility, cost reduction, elasticity, and optimal resource utilization.

3.4. Big data analytics

With an aggressive push toward the Internet and IoT technol-
ogies, data is becoming more and more accessible and ubiquitous 
in many industries, resulting in the issue of big data [112]. Big data 
typically stems from various channels, including sensors, devices, 
video/audio, networks, log files, transactional applications, the web, 
and social media feeds [113]. Under these circumstances, a “big 
data environment” has gradually taken shape in the manufacturing 
sector. Although the advancement of the IoT (e.g., smart sensors) 
has streamlined the collection of data, the question remains of 
whether this data can be processed properly in order to provide the 
right information for the right purpose at the right time [114]. In a 
big data environment, the datasets are much larger and may be too 
complex for conventional data analytic software [115]. Therefore, for 
organizations and manufacturers with an abundance of operational 
and shop-floor data, advanced analytics techniques are critical for 
uncovering hidden patterns, unknown correlations, market trends, 
customer preferences, and other useful business information.

Research in academia and industry shows that retailers can 
achieve up to a 15%–20% increase in return on investment by intro-
ducing BDA technologies [116]. In most industries, putting customer 
relationship management (CRM) data into analytics is considered to 
be an effective way to enhance customer engagement and satisfac-
tion [117]. For example, an automobile company can launch a “face-
lift car” that will satisfy customers more than before, by mining 
history orders and user feedback [118]. Moreover, a deeper analysis 
of various data from machines and processes can realize the pro-
ductivity and competitiveness of companies [119]. For example, in 
the production flow of biopharmaceutical production, hundreds of 
variables must be monitored to guarantee the accuracy, quality, and 
yield. By processing big data, a manufacturer can discover critical 

parameters that have the greatest impact on quality or yield vari-
ation [120]. To investigate the application of BDA in various indus-
tries, Table 5 [112,118,120‒124] lists typical application cases.

Now that BDA technologies have matured for a few years, Table 5 
shows that pioneers such as the Internet giants (e.g., Google) or 
giant retailers (e.g., Tesco) are not the only ones to have benefited 
from BDA. An increasing number of manufacturing firms (e.g., Gen-
eral Electric (GE)) are also committed to optimizing production or 
maintenance processes in a big data environment. The majority of 
the applications listed here are related to manufacturing businesses, 
although there are far more cases in various industries. For man-
ufacturers that are keen to apply BDA and obtain significant value 
from it, numerous applications from e-commerce companies and fi-
nancial investment institutes can be provided as starting references.

3.5. Information and communications technology

ICT refers to an extended IT that highlights unified communica-
tions and the integration of telecommunications, as well as other 
technologies that are able to store, transmit, and manipulate data or 
information [125]. ICT covers a wide range of computer science and 
signal-processing techniques such as wireless systems, enterprise 
middleware, and audio-visual systems. It focuses on information 
transferring through various electronic media such as wired or wire-
less communication standards, and is crucial in intelligent manufac-
turing, where production operations and decision-making heavily 
rely on the data. ICT has been found to have a distinct impact on 
firm organization, such that better ICT for plant managers and work-
ers is associated with more autonomy and a wider span of control 
[126]. For example, ICT is regarded as one of the successful factors 
in Europe’s manufacturing competence, since it helps companies to 
improve their business agility, flexibility, and productivity.

For an SME, ICT has been proved to be essential for competitive-
ness, since it enables quick responses to a dynamic market. The use 
of ICT facilitates the handling of information resources and results 
in cost reduction and the increase of client compliance [127]. In 
the modern manufacturing era, billions of digital devices have ac-
cess to Internet-based networks. This rapid growth has caused ICT 
to become a keystone of manufacturing systems, where the rapid 
and adaptive design, production, and delivery of highly customized 

Table 4
Typical applications of cloud computing.

Industries/organizations Aims Improvements Future research Refs.

Business, France 	Proposing a method for cloud 
business applications

	Reducing the technical knowledge for 
provisioning cloud applications

	Integrating a discovery approach and semantic 
matching in the components discovery phase
	Adding a negotiator module

[103]

National Natural Science 
Foundation, China

	Presenting a hybrid information 
fusion approach

	Achieving multilayer information fusion
	Identifying global sensitivities of input 

factors under uncertainty

	More comprehensive information fusion ap-
proach

[104]

Business and healthcare, 
UK

	Developing cloud computing in 
the life sciences

	Introducing cloud models to life-science 
business

	Identifying major issues [105]

IT and business, UK 	Highlighting aspects and unique-
ness of cloud computing

	Examining the true benefits and costs of 
cloud computing

	Application extension in other industries [106]

Manufacturing, Iran 	Proposing a service-oriented 
approach

	Adopting a layered platform (LAMMOD) 
for distributed manufacturing agents

	Upgrading the XMLAYMOD layers’ procedures 
and structures

[107]

Education, India 	Outlining the benefits of using 
cloud computing for students

	Providing opportunities for students to 
test, learn, experiment, and innovate 

	More cloud-based education applications [108]

ICT, China 	Proposing a forensic method for 
efficient file extraction

	Efficient location of large files stored 
across data nodes

	Researching the parallel extraction method for a 
Hadoop distributed file system
	Researching the analysis method on EditLogs

[109]

ISO-New England, USA 	Developing cloud-based power 
system simulation platform

	Security schemes
	Cost savings

	Real-life applications of this system [110]

Transportation, China 	Formulating a new entropy- 
cloud approach

	Solving the railway container station 
reselection problem

	Study, design, and plan for the transferring net-
work

[111]
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products are enabled by support from digital and virtual production, 
modeling, simulation, and presentation tools [128].

ICT applications have been widely reported in a large number 
of areas such as education, tourism, manufacturing, social science 
implementations, telecommunications, healthcare, telemedicine, 
and clinical applications. Table 6 [129‒137] presents several typical 
applications of ICT.

It can be seen from Table 6 that ICT applications in various in-
dustries have a longer history than other technologies such as BDA. 
This is because ICT is an extension of computer technologies that 
have been in use for several decades. Current applications of ICT 
mainly focus on integration with other technologies such as cloud 
computing and the IoT, so that the existing information systems in 
industry can be combined with cutting-edge technologies. Using ICT 
has resulted in significant improvements in a large number of real-life 
cases. Thus, companies in industry are seeking various ICT-based 
solutions to address their current issues. Under Industry 4.0, it can be 
foreseen that ICT will be further relied on to integrate emerging tech-
nologies in order to address future challenges in various industries.

4. International efforts

This section provides an overview of the major ongoing intelli-
gent manufacturing plans and projects around the world in the con-
text of Industry 4.0.

4.1. The European Union

In 2013, Germany launched its Industry 4.0 plan, the name of 

which refers to the Fourth Industrial Revolution in which manu-
facturing industries occupied by intelligent machines and products 
create intelligent systems and networks that are able to communi-
cate with each other autonomously [138]. Germany is focusing on 
research into the underlying technologies for manufacturers, such 
as intelligent sensing, wireless sensor networks, and CPSs. For ex-
ample, Siemens’ digital cloud service platform, Sinalytics [139], can 
provide secure communication and the integration and analysis of 
large amounts of machine-generated data, thereby improving mon-
itoring and optimization capabilities for various facilities (e.g., gas 
turbines and medical systems) through data analysis and feedback.

Under Industry 4.0, IMSs are able to generate massive amounts of 
data in real time. Such data are essential to the realization of intel-
ligent analysis and decision-making in order to transform a produc-
tion mode into intelligent manufacturing, cloud-based collaborative 
manufacturing, and customization production. The aim of Industry 
4.0 is to achieve the “smart/intelligent factory” by making full use 
of CPS technologies and principles. For example, manufacturing 
machines will have real-time sensing capabilities by the integration 
of different sensors with precise process control. A series of technol-
ogies, such as the IoT or cloud computing, are used for production 
management. These technologies constitute a service cloud and 
provide physical equipment with information perception, network 
communication, precise control, and remote coordination capabili-
ties [140]. Strong standardization efforts in all these activities are a 
core of the German initiative, which include the efforts of ZVEI on 
the RAMI 4.0 model, or the “administration shell” on devices [35,36].

In the wake of Germany’s Industry 4.0 initiative, the European 
Union launched its biggest ever research and innovation program, 

Table 5
Typical applications of BDA.

Industries/companies Aims Improvements Future research Refs.

Google, USA 	Ref ining i ts  core  search and 
ad-serving algorithms

	Searching patterns and recommended  
sea rches based on what others  have 
searched, external events, and etc.

	Studying the algorithm [121]

Retailers, UK and USA 	Tesco: precise promotions and 
strategic segmentation of custom-
ers
	Amazon: accurate recommenda-

tions for customers
	Wal-Mart: supply-chain optimiza-

tion

	Mining customer data from loyalty program
	Recommendation engine based on collabo-

rative filtering
	Enabling vendor-managed inventory based 

on big data

	Reducing potential risks of sharing data
	Avoiding using sensitive personal informa-

tion
	Protecting IT infrastructure from cyber at-

tacks

[112]

Biopharmaceutical indus-
try, USA

	Reducing process flaws
	Eliminating yield variation

	Making targeted process changes according 
to statistical analysis
	Increasing its vaccine yield by more than 

50%

	Making a long-term investment in systems 
to collect more data
	More advanced analytics

[120]

Remote monitoring ap-
plication for heavy-duty 
equipment vehicle, USA

	Assessing and predicting the 
health of the diesel engine compo-
nent

	Utilizing classification model to detect anal-
ogous engine behavior
	Fuzzy logic-based algorithm for remaining 

life prediction

	Predictive manufacturing process
	More comprehensive big data environment

[122]

Tata Motor, India 	Driving quality and reducing cost 
in manufacturing process
	Increasing customer satisfaction 

level

	Utilizes process excellence and Six Sigma 
principles
	Analytics of CRM system data

	Combination of optimization, emotion, and 
empathic use of data

[118]

Premier Healthcare Alli-
ance (vendor: IBM), USA

	Improving patient outcomes
	Reducing expenditure

	Collecting data from different departmental 
systems and sending to central data ware-
house
	Generating reports to help users recognize 

emerging healthcare issues by data process-
ing

	Developing efficient unstructured data ana-
lytical algorithms and applications

[123]

General Electric (Global 
Software and Analytics 
Center), USA

	Boosting industrial product sales
	Reducing after-sale maintenance 

cost

	Optimizing the service contracts and main-
tenance intervals for industrial products

	Integration with data processing in produc-
tion process

[121]

Aerospace industry, USA 	Predicting number of returns in 
the future
	Minimizing product escapes

	Combining large datasets (manufacturing 
and repair) together
	Using predictive algorithm to analyze data 

in aerospace test environments

	Automated process of datasets combination [124]
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Horizon 2020 [141], with nearly €80 billion of funding available over 
seven years (2014–2020). Under Horizon 2020, the new contractual 
public-private partnership (PPP) on Factories of the Future (FoF) will 
build on the successes of the European Union’s 7th Framework Pro-
gram for Research and Technological Development (FP7 2007–2013) 
FoF PPP. The FoF multi-annual roadmap for the years from 2014 
to 2020 sets a vision and outlines routes toward high added-value 
manufacturing technologies for the factories of the future, which 
will be clean, high performing, environmentally friendly, and so-
cially sustainable. These priorities have been agreed upon within 
the wide community of stakeholders across Europe, after extensive 
public consultation.

4.2. The United States

In 2012, GE introduced the concept of the Industrial Internet of 
Things (IIoT), suggesting that intelligent machines, advanced analyt-
ics, and connected people are the key elements of future manufac-
turing in order to enable smarter decision-making by humans and 
machines. The three major components of the Industrial Internet are 
intelligent equipment, intelligent systems, and intelligent decision- 
making [142]. The most prominent organization identified with 
the IIoT is the Industrial Internet Consortium (IIC) [143], which was 
formed in 2014 with the support of GE, AT&T, Cisco, Intel, and IBM. 
The IIC aims to provide resources, ideas, pilot projects, and activities 
about IIoT technologies—and about the security of these technologies.

The IIoT is a circulation of data, hardware, software, and intelli-
gence that enables their interaction by storing, analyzing, and visu-
alizing data acquired through intelligent machines and networks for 

final intelligent decision-making [144]. The maximal potential of the 
Industrial Internet will be realized through the holistic integration 
of its three components: intelligent equipment, intelligent systems, 
and intelligent decision-making. With a network of machines, ma-
terials, workers, and systems, the IIoT will ultimately achieve the 
smart factory in Industry 4.0.

The emphasis in the United States is predominantly on the IT 
aspects of the top layer, such as cloud computing, big data, and vir-
tual reality (VR) [145]. Predix, an IIoT platform (i.e., a cloud-based 
platform-as-a-service platform) [146], was developed by GE. It is 
claimed to enable industrial-scale analytics for asset performance 
management and operations optimization by providing a standard 
way to connect machines, data, and people. Built on Cloud Foundry 
open-source technology, Predix provides a microservices-based 
delivery model with a distributed architecture (cloud and on- 
machine) [147]. It includes four core parts: the security monitoring 
of networked assets; industrial data management; industrial data 
analysis; and cloud applications and mobility. These parts connect 
all types of industrial devices and suppliers to the cloud, thereby 
providing asset performance management and operations optimiza-
tion services [148].

4.3. Japan

In 2015, Japan commenced its Industrial Value Chain Initiative 
(IVI) [149], which corresponds to Germany’s Industry 4.0 initiative, 
in order to connect businesses via the Internet. Thirty Japanese 
companies, including Mitsubishi Electric, Fujitsu, Nissan Motor, and 
Panasonic, form part of the initiative. The IVI is a forum to design a 

Table 6
Typical applications of ICT.

Industries/companies Aims Improvements Future research Refs.

Nigerian national policy ana-
lysis, Nigeria

	Examining the ICT impacts on educa-
tion
	Determining suitable policy for ICT 

potential in the Nigerian education 
system

	Integration in teaching and learning
	Improving teachers’ professional devel-

opment

	Maximizing ICT potential
	Proper ICT implementation and 

monitoring

[129]

Foresight processes, Delphi, 
Germany

	Identifying the channels for ICT in 
foresight
	Determining the focus on foresight 

processes using ICT

	More precise strategic decision-making
	Increasing product variety in ICT-based 

foresight tools

	Insights concerning specific tools
	Expanding the scope

[130]

Job satisfaction evaluation, 
USA

	Examining the association between 
ICT factors and job satisfaction
	Examining technology orientation 

impacts

	Improving sales and job satisfaction
	Integrating ICT tools in daily profession-

al activities

	ICT-enabled training
	Educational influence of ICT

[131]

Tourism, Hong Kong, China 	Establishing the process of ICT in 
tourism

	Improving hospitality in tourism
	Improving tourism services

	Industry applications
	Incorporating ICT into business 

missions

[132]

Water and soil monitoring, 
Taiwan, China

	Using ICT to efficiently improve mon-
itoring systems
	Classifying the focal area into differ-

ent agricultural environmental risk 
zones

	Improving environmental assessments 
and environmental management deci-
sions
	Increasing awareness of ecosystem ser-

vices

	Collecting data analytics
	Increasing the potential of envi-

ronmental monitoring coverage

[133]

Nursing education, Australia 	Examining e-learning with ICT
	Finding the impact of ICT changes on 

nursing education

	Improving learning efficiency
	Increasing motivation for learning

	Learning-quality evaluation
	Preregistration nursing curricula

[134]

Women’s primary health-
care, Brazil

	Analyzing the ICT incorporation in pri-
mary care
	Identifying different aspects associat-

ed with better quality in the care

	Improving women’s healthcare
	Improving ICT resources utilization

	Incorporation and the quality of 
primary healthcare
	Policies implementation

[135]

Emergency medical services, 
China

	Storing and interpreting data
	Building an ICT system for emergency 

medical services

	Improving emergency medical rescuing 
processes
	Increasing data access

	Applying standard data models
	Short value chain

[136]

ICT-enabled manufacturing 
landscape, Germany

	Examining industry decision-making 
using ICT

	Improving decision-making efficiency
	Improving product quality
	Decreasing time-to-market

	Allocating production capacity 
within a value chain
	Establishing a heterogeneous tool 

environment

[137]
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new society by combining manufacturing and information technol-
ogies and to create a space in which enterprises can collaborate. In 
order to bring linked factories and connected manufacturing into 
reality, representatives of IVI member companies bring current 
situations in real industrial scenes into discussion in order to iden-
tify issues and determine ideal situations to be pursued [150]. The 
forum actively discusses how human-centric manufacturing will 
change with the IoT. The IVI puts aside the competitive advantages 
of individual firms and aims at building a mutually connected sys-
tem architecture based on scenarios in which companies naturally 
collaborate. It is based on two principles: connected manufactur-
ing and the loosely defined standard. The former aims to purge 
overburden, waste, and unevenness through digitally connected 
companies and factories, and to create smart value chains that are 
based on both automation and human ability. The latter promotes 
an adaptable model rather than a rigid one. It adopts a pragmatic  
reality-based approach, and starts from the state of the art today to 
develop the next level of manufacturing, thus increasing the value 
of each enterprise by means of cyber-physical production systems 
[151].

4.4. China

In 2015, China’s State Council unveiled a 10-year plan to upgrade 
the nation’s manufacturing capacity to allow it to catch up with pro-
duction powerhouses such as Germany and the United States. The 
Ministry of Industry and Information Technology (MIIT) in China  
led the creation of the Made in China 2025 initiative [143]. This 
initiative aims to ① increase innovative capability in national man-
ufacturing, ② promote a deep fusion of information and industrial-
ization, ③ strengthen the basic industrial capacity, ④ boost Chinese 
quality brand-building, ⑤ promote environmentally friendly man-
ufacturing, ⑥ enable breakthroughs in key sectors, ⑦ press further 
restructuring of the manufacturing industry, ⑧ advance service- 
oriented manufacturing and manufacturing-related service indus-
tries, and ⑨ increase international involvement in manufacturing. 
To support the manufacturing transformation, the Chinese govern-
ment has also proposed the following strategic plans: Guidance of 
the State Council on Promoting Internet+ Action, Guidance of the 
State Council on Deepening the Integration of Manufacturing and 
the Internet, and the 13th Five-Year Plan on the National Program 
for Science and Technology Innovation [6].

Cloud manufacturing, as a first attempt at a new form of intelli-
gent manufacturing, was first proposed in China [25]. Its achieve-
ments have been widely referred to and applied in many academic 
works [144]. Moreover, in certain specific areas of intelligent manu-
facturing, such as high-end computerized numerical control (CNC) 
machine tools, industrial robots, intelligent instruments, and addi-
tive manufacturing, China has made significant contributions and 
has established an initial intelligent manufacturing standard system 
[145]. Through the development of the intelligent manufacturing 
industry in China, the network infrastructure has reached a higher 
level and breakthroughs have been achieved in high-performance 
computing, networking communication equipment, intelligent ter-
minals, and software, forming a series of mobile Internet, big data, 
and cloud computing leading enterprises that support the develop-
ment of intelligent manufacturing [145].

5. Future perspectives

Future research perspectives for intelligent manufacturing in the 
Industry 4.0 era are believed to be in the following areas: a generic 
framework for intelligent manufacturing, data-driven intelligent 
manufacturing models, IMSs, human-machine collaboration, and 
the application of intelligent manufacturing.

5.1. A generic framework for intelligent manufacturing

Given the deep integration of Industry 4.0, a generic framework 
for intelligent manufacturing is important, since manufacturing 
science and technology, ICT, and sensor technology will be highly in-
tegrated in the future. This generic framework will cover large areas 
that will be used in different enterprises so that the implementation 
of intelligent manufacturing can be guided and standardized. Typi-
cal technologies such as advanced sensors, wireless communication 
standards, big data processing models and algorithms, and applica-
tions will be placed within this framework. Thus, an intelligent hier-
archical architecture will be worked out as a basis for Industry 4.0. 
One such area is the smart grid, which is designed as an ecosystem 
in which different elements can be extensively combined in order to 
work in a highly effective manner [152].

In order to fully implement intelligent manufacturing, platform 
technologies such as networks and the IoT, virtualization and service 
technology, and smart objects/assets technology should be focused 
on, since increasing amounts of customized requirements from cus-
tomers will increase the cost of manufacturing. Platform technology 
is able to reduce cost by making full use of flexible and reconfigur-
able manufacturing systems through intelligent design, production, 
logistics, and supply-chain management. Multiplex platform tech-
nology, especially for design and development, will provide a novel 
solution to address the issue of highly customized products [153]. 
A more open innovative framework is required to integrate collab-
orative efforts in manufacturing for additional downstream and 
upstream activities. Thus, service-oriented concepts for intelligent 
manufacturing will be key components in Industry 4.0.

Fig. 2 presents a framework of the Industry 4.0 IMS, in which 
research topics are categorized into smart design, smart machines, 
smart monitoring, smart control, and smart scheduling.
•	Smart	design. With the rapid development of new technolo-

gies such as VR and augmented reality (AR), traditional design 
will be upgraded and will enter into a “smart era.” Design soft-
ware such as computer-aided design (CAD) and computer-aided 
manufacturing (CAM) is able to interact with physical smart 
prototype systems in real time, enabled by three-dimensional 
(3D) printing integrated with CPSs and AR.
•	Smart	machines.	 In Industry 4.0, smart machines can be 

achieved with the help of smart robots and various other types 
of smart objects that are capable of real-time sensing and of 
interacting with each other. For example, CPS-enabled smart 
machine tools are able to capture real-time data and send them 
to a cloud-based central system so that machine tools and their 
twinned services can be synchronized to provide smart manu-
facturing solutions.
•	Smart	monitoring. Monitoring is an important aspect for the 

operations, maintenance, and optimal scheduling of Industry 4.0 
manufacturing systems. The widespread deployment of various 
types of sensors makes it possible to achieve smart monitoring. 
For example, data and information on various manufacturing 
factors such as temperature, electricity consumption, and vibra-
tions and speed can be obtained in real time.
•	Smart	control. In Industry 4.0, high-resolution, adaptive pro-

duction control (i.e., smart control) can be achieved by develop-
ing cyber-physical production-control systems. Smart control 
is mainly executed in order to physically manage various smart 
machines or tools through a cloud-enabled platform. End-users 
are able to switch off a machine or robot via their smart phones.
•	Smart	scheduling. The smart scheduling layer mainly includes 

advanced models and algorithms to draw on the data captured 
by sensors. Data-driven techniques and advanced decision ar-
chitecture can be used for smart scheduling. For example, in 
order to achieve real-time, reliable scheduling and execution, 
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distributed smart models using a hierarchical interactive archi-
tecture can be used.

5.2. Data-driven intelligent manufacturing models

With the large increase of digital devices carrying RFID and/or 
smart sensors in manufacturing, enormous amounts of data will be 
generated. Such data carry rich information or knowledge that can 
be used for different decision-making situations [154]. Therefore, 
the effective usage of data not only involves improving manufactur-
ing efficiency, but also drives greater agility and deeper integration 
with other parties such as logistics and supply-chain management 
entities. For example, the chip maker Intel used a data-analyzing ap-
proach on its data from manufacturing equipment to predict quality 
issues. This usage greatly cut down on the number of quality tests 
and improved the production speed. The data-based model uses 
5 TB of machine data per hour to work out the quality predictions.

Dynamics in a production system will significantly influence 
quality and efficiency. Data-driven models are able to make full use 
of historic or real-time data for system diagnosis or prognosis, based 
on information or knowledge integration, data mining, and data an-
alytics [155,156]. For example, a two-stage maintenance framework 
using a data-driven approach was utilized for degradation predic-
tion in the semiconductor manufacturing industries [157]. It is clear 
that in the future, data-based or knowledge-driven models and ser-
vices will be largely adopted for intelligent manufacturing. One key 
research area is the integration of cloud services with knowledge 
management in a platform that is able to provide enterprise services 
such as intelligent design and manufacturing, production modeling 
and simulation, and logistics and supply-chain management. This 
platform will accumulate a vast amount of production data from 
various manufacturing objects equipped with smart sensors or dig-
ital devices, in order to combine human, machine, material, job, and 
manufacturing logics. An intelligent workshop operation center over 
the cloud may use self-learning models to build more advanced or 

intelligent models and algorithms for advanced decision-making in 
manufacturing systems.

5.3. Intelligent manufacturing systems

The design and development of IMSs require more and more col-
laboration across the whole range of enterprises and industry. Col-
laborative manufacturing models or mechanisms such as a cloud-
based manufacturing resources/objects management system will 
centrally control the large variety of production objects so that IMSs 
are able to work properly and effectively [158]. In the context of In-
dustry 4.0, IMSs are the basis for any enterprise that plans to deploy 
advanced technologies to create more value-adding processes and 
services, as has been shown with the digitalization of pneumatics 
[71,72]. A key research area in the future involves decentralized 
control service, from whence each intelligent component in the 
system can make self-adaptive decisions. For example, intelligent 
components operating in each stage of an assembly line can seam-
lessly cooperate with moving pieces and other lines to maintain the 
synchronized production rhythm.

Autonomous intelligent manufacturing units are very important 
for IMSs. They are based on more advanced embedded chips or sen-
sors that can automatically recognize components, monitor online 
facilities, and move workpieces. Manufacturing executions based 
on this system will be more efficient with the help of advanced au-
tonomous unmanned devices such as automated guided vehicles 
(AGVs). Key research in the future may focus on the enabling tech-
nologies for IMSs, such as AR and VR, for a safer production plant 
[159]. Advanced manufacturing processes and services will be easily 
integrated into IMSs, so an open platform will be beneficial for man-
ufacturing companies, and particularly for SMEs.

5.4. Human-machine collaboration

Under Industry 4.0, humans and machines will work collaboratively  

Fig. 2. A framework of the Industry 4.0 IMS.



627R.Y. Zhong et al. / Engineering 3 (2017) 616–630

by using cognitive technologies in industrial environments. Intel-
ligent machines will be able to help humans to fulfil most of their 
work using speech recognition, computer vision, machine learn-
ing, and advanced synchronization models [160]. Thus, advanced 
learning models for machines such as robots are important so that 
humans and machines develop skills that complement each other 
under any working conditions. One future research direction is an 
approach for “human-in-the-loop” machine learning, which enables 
humans to interact efficiently and effectively with decision-making 
models. Thus, data-enabled machine learning mechanisms may 
provide pathways by using human domain expertise or knowledge 
to better understand the collaboration. For example, traditional ma-
chine learning systems or algorithms can be interjected with human 
knowledge so that a real-world sensing system can help improve 
human-machine interactions and communications. For example, 
Festo’s Bionic Learning Network found many applications, such as 
a learning gripper that used AI for self-learning algorithms [161] 
and the BionicANT project that used multi-agent systems to enable 
robots to act in a self-organizing manner and solve a given task as a 
team [162].

Machine intelligence plays an important role in supporting human- 
machine collaboration, since machines will be providing assistance 
with every job, every role, and anything that is done in manufactur-
ing sites where dynamic situations are present [163]. Safety issues 
may be a crucial research topic, as machines equipped with intelli-
gent control systems begin to behave and act as humans in real-life 
manufacturing sites such as workshops. Such machines can easily 
communicate with workers through self-learning and evolutionary 
procedures. For example, intelligent human-machine integration for 
automating design can be realized from ontology-based knowledge 
management with local-to-global ontology transitions and the epis-
temology-based upward-spiral cognitive process of coupled design 
ideation [164]. Therefore, intelligent human-machine interactions 
can be implemented within a complex manufacturing environment 
in order to ultimately achieve manufacturing intelligence in the  
future.

5.5. Application of intelligent manufacturing

Intelligent manufacturing applications for entire enterprises or 
industries are significant in Industry 4.0, in which real-life companies 
can benefit from cutting-edge technologies. An agent-based frame-
work for IMSs will be a suitable solution to the problem of production 
planning and scheduling, since manufacturing enterprises may in-
volve many varied elements such as manufacturing process planning 
and scheduling, workshop monitoring and control, and warehouse 
management. Agent-based implementation is able to define work-
flows and follow manufacturing logics so that the decision-making 
related to these elements can be effectively facilitated [41]. Taking au-
tomation in manufacturing systems as an example, multi-agent tech-
nologies can be used to parallel-control robots that are enabled by an 
agent-based architecture with distributed agents, in order to ease the 
implementation of intelligent manufacturing [165].

Another future implementation of intelligent manufacturing is 
cloud-based solutions; these use cloud computing and SOA to share 
or circulate manufacturing resources. Several different cloud plat-
forms will be established to make full use of IMSs so that manufac-
turing capabilities and resources can provide on-demand services 
to end-users. Key future research involves manufacturing resources 
modeling during the Industry 4.0 era, since typical resources with 
advanced sensors are equipped with intelligence and can react, 
sense, and even “think,” given different manufacturing requirements 
or situations. The question of how to convert such resources into 
services and place them in a cloud-based platform is a challenging 
one.

6.	Final	remarks

As increasing attention is given to Industry 4.0, intelligent man-
ufacturing is becoming more and more important in the advance-
ment of modern industry and economy. Intelligent manufacturing 
is considered to be a key future perspective in both research and ap-
plication, as it provides added value to various products and systems 
by applying cutting-edge technologies to traditional products in 
manufacturing and services. Product service systems will continue 
to replace traditional product types. Key concepts, major technolo-
gies, and world-wide applications are covered in this paper. Future 
research and applications are highlighted after a systematic review.

It is our hope that this paper can inform and inspire researchers 
and industrial practitioners to contribute in advancing the man-
ufacturing industry forward. We also hope that the concepts dis-
cussed in this paper will spark new ideas in the effort to realize the 
much-anticipated Fourth Industrial Revolution.
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