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Trillions of microbes have evolved with and continue to live on and within human beings. A variety of 
environmental factors can affect intestinal microbial imbalance, which has a close relationship with hu-
man health and disease. Here, we focus on the interactions between the human microbiota and the host 
in order to provide an overview of the microbial role in basic biological processes and in the develop-
ment and progression of major human diseases such as infectious diseases, liver diseases, gastrointesti-
nal cancers, metabolic diseases, respiratory diseases, mental or psychological diseases, and autoimmune 
diseases. We also review important advances in techniques associated with microbial research, such as 
DNA sequencing, metabonomics, and proteomics combined with computation-based bioinformatics. 
Current research on the human microbiota has become much more sophisticated and more comprehen-
sive. Therefore, we propose that research should focus on the host-microbe interaction and on cause- 
effect mechanisms, which could pave the way to an understanding of the role of gut microbiota in 
health and disease, and provide new therapeutic targets and treatment approaches in clinical practice.
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1. Introduction

More than 100 trillion symbiotic microorganisms live on and 
within human beings and play an important role in human health 
and disease. The human microbiota, especially the gut microbiota, 
has even been considered to be an “essential organ” [1], carrying 
approximately 150 times more genes than are found in the entire 
human genome [2]. Important advances have shown that the gut 
microbiota is involved in basic human biological processes, in-
cluding modulating the metabolic phenotype, regulating epitheli-
al development, and influencing innate immunity [3–6]. Chronic 
diseases such as obesity, inflammatory bowel disease (IBD), di-
abetes mellitus, metabolic syndrome, atherosclerosis, alcoholic 
liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cir-
rhosis, and hepatocellular carcinoma have been associated with 
the human microbiota [7,8] (Fig.1).

In recent decades, a tremendous amount of evidence has strong-
ly suggested a crucial role of the human microbiota in human  

health and disease [7,9–23] via several mechanisms. First, the 
microbiota has the potential to increase energy extraction from 
food [24], increase nutrient harvest [9,10], and alter appetite 
signaling [25,26]. The microbiota contains far more versatile 
metabolic genes than are found in the human genome, and pro-
vides humans with unique and specific enzymes and biochemical 
pathways [9]. In addition, a large proportion of the metabolic 
microbiotic processes that are beneficial to the host are involved 
in either nutrient acquisition or xenobiotic processing, including 
the metabolism of undigested carbohydrates and the biosynthe-
sis of vitamins [10]. Second, the human microbiota also provides 
a physical barrier, protecting its host against foreign pathogens 
through competitive exclusion and the production of antimicro-
bial substances [11–13]. Finally, the microbiota is essential in the 
development of the intestinal mucosa and immune system of the 
host [14,16]. For example, germ-free (GF) animals have abnor-
mal numbers of several immune cell types, deficits in local and 
systemic lymphoid structures, poorly formed spleens and lymph 
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nodes, and perturbed cytokine levels [16]. Studies on GF animals 
have suggested that the immune modulation functions of the 
microbiota are primarily involved in promoting the maturation of 
immune cells and the normal development of immune functions 
[14]. In addition, studies have revealed the central role of micro-
bial symbiosis in the development of many diseases [17], such as 
infection [18], liver diseases [19], gastrointestinal (GI) malignancy 
[20], metabolic disorders [7], respiratory diseases [21], mental or 
psychological diseases [22], and autoimmune diseases [23]. 

In this article, we provide an overview of the role of the human 
microbiota in health and disease, the advent of microbiome-wide 
association studies, and potential and important advances in the 
development of clinical applications to prevent and treat human 
disease.

2. The human microbiota in health

The human microbiota affects host physiology to a great ex-
tent. Trillions of microbes colonize the human body, including 
bacteria, archaea, viruses, and eukaryotic microbes. The body 
contains at least 1000 different species of known bacteria and 
carries 150 times more microbial genes than are found in the 
entire human genome [2]. Microbiotic composition and function 
differ according to different locations, ages, sexes, races, and diets 
of the host [27].

Commensal bacteria colonize the host shortly after birth. This 
simple community gradually develops into a highly diverse eco-
system during host growth [28]. Over time, host-bacterial asso-
ciations have developed into beneficial relationships. Symbiotic 
bacteria metabolize indigestible compounds, supply essential nu-
trients, defend against colonization by opportunistic pathogens, 
and contribute to the formation of intestinal architecture [29]. For 
example, the intestinal microbiota is involved in the digestion of 
certain foods that cannot be digested by the stomach and small 
intestine, and plays a key role in maintaining energy homeosta-
sis. These foods are primarily dietary fibers such as xyloglucans, 
which are commonly found in vegetables and can be digested by 
a specific species of Bacteroides [30]. Other non-digestible fibers, 
such as fructooligosaccharides and oligosaccharides, can be uti-
lized by beneficial microbes, such as Lactobacillus and Bifidobac-

terium [31]. Studies have clarified the role of the gut microbiota 
in lipid and protein homeostasis as well as in the microbial syn-
thesis of essential nutrient vitamins [32]. The normal gut micro-
biome produces 50–100 mmol·L-1 per day of short-chain fatty acids 
(SCFAs), such as acetic, propionic, and butyric acids, and serves as 
an energy source to the host intestinal epithelium [33]. These SC-
FAs can be quickly absorbed in the colon and serve many diverse 
roles in regulating gut motility, inflammation, glucose homeostasis, 
and energy harvesting [34,35]. Furthermore, the gut microbiota has 
been shown to deliver vitamins to the host, such as folates, vita-
min K, biotin, riboflavin (B2), cobalamin (B12), and possibly other B 
vitamins. A previous study demonstrated that B12 can be produced 
from delta-aminolevulinate (ALA) as a precursor [36].

In addition, gut-colonizing bacteria stimulate the normal de-
velopment of the humoral and cellular mucosal immune systems 
[37]. The signals and metabolites of microorganisms can be sensed 
by the hematopoietic and non-hematopoietic cells of the innate 
immune system and translated into physiological responses [38].  
Studies comparing normal mice with GF mice have found that GF 
mice show extensive defects in the development of gut-associated 
lymphoid tissue and antibody production [29,39]. A report has 
also demonstrated that the gut microbiota generates a tolerogenic 
response that acts on gut dendritic cells and inhibits the type 17 
T-helper cell (Th17) anti-inflammatory pathway [40]. However, not 
all microbiota lead to health benefits. Some induce inflammation 
under certain conditions. 

3. The human microbiota in disease

3.1. The human microbiota and infectious diseases

Infection is one of the most common diseases caused by dys-
biosis of the microbiota. Importantly, infectious disease and its 
treatment have a profound impact on the human microbiota, 
which in turn determines the outcome of the infectious disease in 
the human host (Fig. 2). Offending pathogens colonize the intesti-
nal mucosa, thus resulting in the induction of a strong inflamma-
tory response, followed by the translocation of the intestinal bac-
teria [41,42]. Numerous studies have demonstrated the intimate 
relationship between infection and dysbiosis of the microbiota, 
and have shown that infection is associated not only with the 
microbiome, but also with viruses [43,44]. For example, the intes-
tinal microbiota of patients with Clostridium difficile (C. difficile) 
infection (CDI) is significantly altered [45,46]. Disturbance of the 
microbiota is also associated with the progression of human im-
munodeficiency virus (HIV) [44,47], hepatitis B virus (HBV) [48], 
and other diseases [49,50].

3.1.1. Infection with Clostridium difficile
The pathological overgrowth of C. difficile is usually related to 

antibiotic-associated diarrhea, which is one of the most frequent 
complications following antibiotic administration and which is 
now a growing public health threat [45]. C. difficile is an anaero-
bic, gram-positive, spore-forming bacillus that is a component of 
the human gut microbiota. Antibiotics disturb intestinal mucosa 
homeostasis, thus decreasing resistance against toxin-producing 
C. difficile and promoting the progression of CDI [45]. Gu et al. [45] 
found that fecal bacterial diversity is reduced and the microbial 
composition dramatically shifts in patients following antibiotic ad-
ministration, whether or not CDI is present. A decrease in putative 
butyrate-producing anaerobic bacteria and an increase in endo-
toxin-producing opportunistic pathogens and lactate-producing  
phylotypes have been detected in patients following antibiotic  
administration, whether or not CDI is present [45]. Putative  
butyrate-producing anaerobic bacteria are significantly depleted 

Fig. 1. Human microbial symbiosis has a close relationship with diseases of differ-
ent systems. 
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effective highly active anti-retroviral therapy (HAART), the diver-
sity and composition of the fecal microbiota are not completely 
restored, and the dysbiosis remains [47]. South African teenage 
girls and young women have extremely high rates of HIV infec-
tion, a phenomenon that has been considered to be associated 
with biological factors. Recently, one study found that the vaginal 
microbiome might affect the risk of HIV infection. A bacterium in 
the vagina named Prevotella bivia has been identified as causing 
inflammation. A microbicidal gel is available that decomposes the 
anti-HIV drug tenofovir, thus leading to tenofovir treatment fail-
ure [44]. Through close examination of the vaginal microbiome, 
Cohen [44] recently found an unusual bacterium named Gard-
nerella in the vagina; this finding potentially explains the high 
infection rates in South African women and strongly suggests that 
the vaginal microbiome affects HIV risk. Cohen [44] found that 
Gardnerella “gobbles up” tenofovir, thus rapidly decreasing the 
levels of the drug and leading to tenofovir treatment failure.

3.2. The human microbiota and liver diseases

Growing evidence demonstrates the close interaction of the 
GI tract (GIT) and the liver, as well as the chronic exposure of the 
liver to gut-derived factors including bacteria and bacterial com-
ponents, thus fostering the use of the term “gut-liver axis” [51]. 
The intestinal microbiota produces ethanol, ammonia, and acet-
aldehyde; these products may influence liver function through 
endotoxin release or liver metabolism [52].

Alterations in the intestinal microbiota play an important role 
in inducing and promoting liver damage progression as well as 
in direct injury resulting from different causal agents (e.g., viral, 
toxic, and metabolic agents) [53] through mechanisms such as 
the activation of Kupffer cells by bacterial endotoxins. The gut 
microbiota participates in the pathogenesis of liver cirrhosis 
complications, such as infections, spontaneous bacterial peri-
tonitis, hepatic encephalopathy, and renal failure. Patients with 
liver cirrhosis have an altered bacterial composition in their gut; 
patients in Child-Pugh classes B/C have a higher prevalence of 
bacterial overgrowth than those in class A [54,55]. Fecal microbi-
al communities are distinct in patients with cirrhosis compared 
with healthy individuals. By bacterial 16S rRNA gene sequencing, 
microbial diversity, and especially Bacteroidetes species, is shown 
to be reduced in cirrhotic patients, while the number of species 
of Proteobacteria and Fusobacteria are increased [56]. In line with 
the previous study, Bacteroides has also been found to decrease at 

in patients with antibiotic treatment when compared with healthy 
controls. The above changes in microbial communities may in-
crease susceptibility to C. difficile colonization. Ling et al. [46] found 
that different toxigenic C. difficile strains have different effects on 
fecal microbiota in children. C. difficile strains that are both toxin 
A-positive and toxin B-positive reduce fecal bacteria diversity to a 
greater degree than strains that are only toxin B-positive.

3.1.2. Infection with Helicobacter pylori
Helicobacter pylori (H. pylori) is a pathogen that induces pep-

tic disease. It was recently found to be related to the progress of 
periodontitis [49]. Hu et al. [49] investigated the correlation of  
H. pylori infection with periodontal parameters, periodontal path-
ogens, and inflammation. Their study showed that the frequen-
cies of Porphyromonas gingivalis, Prevotella intermedia, Fusobacte-
rium nucleatum, and Treponema denticola are significantly higher 
in patients infected with H. pylori than in those without infection, 
whereas the frequency of Aggregatibacter actinomycetemcomitans 
is lower. The results indicate that patients with H. pylori show sig-
nificantly higher probing depth and attachment loss, and that H. 
pylori might promote the growth of some periodontal pathogens 
and aggravate the progress of chronic periodontitis [49]. 

3.1.3. Bacterial vaginosis
Another important infection called bacterial vaginosis (BV) is 

associated with numerous adverse health outcomes including 
pre-term birth and the acquisition of sexually transmitted infec-
tions. BV is regarded as an ecological disorder of the vaginal mi-
crobiota. Using culture-independent polymerase chain reaction  
(PCR) denaturing gradient gel electrophoresis (DGGE) and bar-
coded 454 pyrosequencing methods, Ling et al. [50] observed a 
profound shift in the absolute and relative abundances of bacte-
rial species present in the vagina. In a comparison of populations 
associated with healthy and diseased conditions, three phyla and 
eight genera were clearly and strongly associated with BV. These 
genera may be used as targets for clinical BV diagnosis by means 
of molecular approaches [50].

3.1.4. Infection with HIV
At present, HIV continues to be a major global public health 

issue. The gut microbiomes in patients with HIV are significantly 
disturbed, and there are significant increases in the Firmicutes/
Bacteroidetes ratio of patients infected with HIV-1 [47]. Although 
the viral loads of HIV-1 are reduced after a short-term course of 

Fig. 2. Infectious diseases have a profound impact on the human microbiota. The wide use of antibiotics, immunosuppressive drugs, and other new treatment technologies 
for infectious diseases such as frequently emerging infectious diseases, HIV infection, and CDI has a profound impact on the human microbiota, which in turn determines 
the outcome of the infectious disease in the human host.
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the genus level, according to a metagenomics technique. In this 
study, a gene catalog of the gut microbiomes of Chinese patients 
with liver cirrhosis was constructed for the first time. Further-
more, Veillonella, Streptococcus, and Clostridium were found to be 
enriched in patients with liver cirrhosis [57]. On the basis of our 
previous findings, we further detected dysbiosis of the duodenal 
mucosal microbiota in liver cirrhosis patients. In this research, 
we found that cirrhotic patients were colonized by a remarkably 
different duodenal mucosal microbiota in comparison with the 
controls. Twelve operational taxonomic units (OTUs) were iden-
tified as the key microbes contributing to the differentiation be-
tween the cirrhosis and control duodenal microbiota. Regarding 
the etiology of cirrhosis, two OTUs were found to discriminate 
between types of liver cirrhosis, with different etiology results for 
HBV-related cirrhosis and primary biliary cirrhosis (PBC). These 
findings indicated that duodenum dysbiosis might be related to 
alterations in the oral microbiota and to changes in the duodenal 
microenvironment [58]. The oral microbiota is one of the most 
important microbial communities in the human body. This study 
was also the first to show that the diversity and composition of 
the oral microbiota in patients with liver cirrhosis are signifi-
cantly different from those of healthy controls and from those of 
patients with HBV-related chronic diseases. Harmful bacteria may 
be derived from the oral cavity. In addition, patients with chronic 
liver disease show oral diseases [43].

Acute-on-chronic liver failure (ACLF) syndrome is character-
ized by the acute decompensation of cirrhosis, with high 28-d 
mortality. Based on the final clinical outcome at 90 d, we were 
the first to identify gut dysbiosis in ACLF patients, and to demon-
strate its predictive value for mortality. We found a marked dif-
ference between the gut microbiota of the ACLF group and that of 
the control group. Our study indicated that there are correlations 
between specific bacterial families and inflammatory cytokines 
in ACLF patients. We have demonstrated that the relative abun-
dance of Pasteurellaceae and the model of end-stage liver disease 
(MELD) score are independent factors that predict the mortality 
rate, thus indicating that gut dysbiosis is associated with the 
mortality of patients with ACLF [59]. 

Although the exact reason for these changes in liver cirrho-
sis remains unclear, these changes are certainly associated with 
reduced intestinal motility and pancreatobiliary secretions, an 
impaired intestinal barrier, and decreased gastric acidity. In ad-
dition, 80% of hepatocellular carcinoma (HCC) develops in a mi-
croenvironment of chronic injury, inflammation, or fibrosis [60]. 
Changes in the composition of the gut microbiota promote HCC 
by contributing to hepatic inflammation through increased intes-
tinal permeability and the activation of Toll-like receptors [60]. 

The incidence and prevalence of primary sclerosing cholangitis 
(PSC), PBC, and autoimmune hepatitis increases every year [61]. 
Autoimmune liver diseases are presumed to involve environmen-
tal factors in individuals with genetic susceptibility; however, the 
gut flora is relevant to pathogenesis. Recently, a study showed 
that patients with PSC-IBD have distinct gut microbiota and a 
significant increase in the abundance of Escherichia, Lachnos-
piraceae, and Megasphaera, along with a near-absence of Bacte-
roides, as compared with IBD patients and control patients [62]. 
Another study found patients with PBC-altered gut bacterial taxa 
that exhibited potential interactions through their associations 
with altered metabolism, immunity, and liver-function indicators 
[63]. There is evidence that bacterial antigens translocate across 
a leaky and inflamed gut wall into the portal and biliary system; 
thus, they may induce an abnormal immune response and initiate 
autoimmune liver disease [64]. 

NAFLD is a multifactorial disorder comprising a group of dis-
eases. Genetic, epigenetic, and environmental factors interact with  

one another during the development of these diseases. Nonalco-
holic steatohepatitis (NASH) is a hepatic feature of metabolic syn-
drome. Obesity and insulin resistance are often factors promoting 
NASH. The accumulation of triglycerides in hepatocytes is the 
most commonly observed phenotype in NAFLD [65]. Alterations 
in the gut microbiota are considered to be a key factor contribut-
ing to NAFLD, and the interplay of metabolic syndrome, diabetes, 
and liver disease in NAFLD patients influences the microbiota in 
complementary ways [66]. Because the body mass index (BMI) 
may be a major determinant of compositional changes in micro-
bial communities [7], Wang et al. [8] directly assessed the fecal 
microbial composition and its correlation with liver biochemistry 
in non-obese adult patients with NAFLD. In a human study of 
gut dysbiosis across the spectrum of NAFLD lesions, comprising 
57 patients with biopsy-proven NAFLD, significant fibrosis was 
found to be associated with large amounts of Bacteroides and Ru-
minococcus and decreased levels of Prevotella. Along with metab-
olite information from patients, a microbiota analysis is useful for 
predicting NAFLD classes and severity. For example, Bacteroides 
abundance is independently associated with NASH severity, and 
Ruminococcus abundance is associated with significant fibrosis 
[67]. 

Thus, liver disease is usually accompanied by an increase in 
Enterobacteriaceae and a decrease in Bifidobacterium. Gut dysbio-
sis can lead to endotoxemia in patients through bacterial translo-
cation (BT). Endotoxemia may induce immune dysfunction, thus 
leading to further liver cell necrosis and liver failure. Therefore, 
we propose the development of new probiotics specifically for 
the prevention and treatment of the progression of liver diseases 
(Fig. 3).

3.3. The human microbiota associated with gastrointestinal 
malignancy

GI malignancy is a leading cause of human morbidity and 
mortality worldwide. Aside from widely accepted genetic fac-
tors, non-genetic factors for cancer risk, especially the residential 
microbes in the GIT, exert a broad impact on the development of 
cancers that arise within the GIT. Recent advances in microbial 
research on GI malignancies, such as gastric cancer, colorectal 
cancer, and esophageal cancer, provide new insight into the role 
of the human microbiota in tumorigenesis.

3.3.1. Gastric cancer
H. pylori-associated chronic inflammation is considered to be the  

strongest risk factor for gastric cancer. Each year, approximately 
660 000 new cases of gastric cancer are caused by H. pylori in-
fection, which results in the loss of acid-producing parietal cells, 
thus leading to the development of gastric atrophy, metaplasia, 
dysplasia, and, finally, carcinoma formation [68]. It is interest-
ing that the elimination of H. pylori before the onset of chronic 
atrophic gastritis may protect against gastric cancer [69]. As a 
distinct causative factor for gastric cancer, H. pylori has been clas-
sified as a class I carcinogen by the World Health Organization 
(WHO). However, only 1%–2% of people with an H. pylori infection 
develop stomach cancer [70]. The carcinogenic risk may be relat-
ed to the genetic diversity of the H. pylori strain, variations in host 
responses, and specific host-microbe interactions [71]. Impor-
tantly, the phylogenetic origin of H. pylori is a good predictor of 
the risk for gastric cancer [72].

The two best-studied H. pylori determinants, cytotoxin-associated  
antigen A (CagA) and vacuolating cytotoxin (VacA), have been 
shown to be associated with a higher risk of cancer [73]. It 
has been reported that VacA promotes the apoptosis of gastric  
epithelial cells, in a specific host response to H. pylori that may be 
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responsible for gastric carcinogenesis by interfering with mito-
chondrial function [74]. In addition, VacA suppresses the host im-
mune response by inducing dendritic cells to express and release 
the anti-inflammatory cytokines interleukin (IL)-10 and IL-18. 
This compromised immune response promotes H. pylori evasion 
and enhances tumor survival [75]. Unlike the VacA gene, the cag 
pathogenicity island (PAI), which is present in some strains of H. 
pylori, is associated with a significantly increased risk of devel-
oping adenocarcinoma of the stomach [76]. Genes within the cag 
PAI encode proteins that form a bacterial type IV secretion system 
(T4SS). T4SS exports CagA and peptidoglycan from adherent H. 
pylori into host cells, thus activating the PI3K pathway, stimu-
lating cell migration, and contributing to carcinogenesis [77]. 
After tyrosine phosphorylation, CagA interacts with and activates 
several host cell proteins, thereby leading to morphological alter-
ations, including cell scattering and elongation [78]. Beyond H. 
pylori, Lertpiriyapong et al. [79] noted that the synergetic coloni-
zation of altered Schaedler’s flora (ASF) causes more pronounced 
gastric pathology in insulin-gastrin (INS-GAS) mice, including gas-
tric corpus inflammation, epithelial hyperplasia, and dysplasia. 

3.3.2. Colorectal cancer
The interaction of the gut microbiome with the development 

of colon cancer has recently become a major focus of research. 
Microbial dysbiosis has been implicated in the etiology of 
colorectal adenomas and colorectal cancer (CRC). A pathological 
imbalance in the microbial community has been observed in 
subjects with adenomas compared with normal controls [80,81]. 
Despite the varied results among different studies, the microbiota 
in cases of adenomas or CRC is characterized by a high proportion 
of potential pathogens, such as Pseudomonas, Helicobacter, and 
Acinetobacter, and by a lower richness of beneficial bacteria, such 
as butyrate-producing bacteria [80]. Zackular et al. [82] observed 
that the gut flora from tumor-bearing mice promotes inflamma-
tion and tumorigenesis in recipient animals, thus directly contrib-
uting to CRC. This study has provided mechanistic insight into the 
relationship between the gut microbiome and CRC development. 
However, it is still unclear from human studies whether the al-
teration in the microbial community is a cause or consequence of 
adenomas and CRC.

In addition, the contribution of specific bacterial species to 
cancer risk remains to be fully established. Fusobacterium nuclea-

tum, a periodontal pathogen, has been suggested to be overabun-
dant during disease progression from adenomas to cancer [83]. A 
significant increase in Bacteroides massiliensis, Bacteroides ovatus, 
Bacteroides vulgatus, and Escherichia coli (E. coli) has also been ob-
served from advanced adenoma to carcinoma [84]. The potential 
mechanism underlying this development includes the promotion 
of inflammation and the induction of tumorigenesis [85,86].  
Kostic et al. [86] observed that Fusobacterium nucleatum modu-
lates the tumor-immune microenvironment by promoting the 
myeloid infiltration of intestinal tumors in an adenomatous poly-
posis coli (APC) multiple intestinal neoplasia (Min) mouse model 
of CRC and increasing the expression of pro-inflammatory genes 
such as PTGS2 (COX2), SCYB1(IL8), IL6, TNF (TNFα), and MMP3. In 
addition, many studies have elucidated a link between bacterial 
antigens, virulence factors, and colon malignancy. Enterotoxigenic 
Bacteroides fragilis (ETBF) produces a toxin known as fragilysin (B. 
fragilis toxin, BFT), which activates the Wnt/β-catenin signaling 
pathway and NF-κB; consequently, it increases cell proliferation 
and induces the production of inflammatory mediators [87–89]. 
The role of ETBF in colorectal carcinogenesis was further illustrat-
ed by Wu et al. [90], who showed that mice colonized with ETBF 
exhibit a marked increase in colon adenomas and tumors as com-
pared with normal controls. Enterococcus faecalis and E. coli may 
induce DNA damage by promoting the release of extracellular 
superoxide in host cells and encoding the enzymatic machinery 
that generates colibactin via the polyketide synthase (PKS) geno-
toxic island [91,92]. Although these observations show an etiolog-
ical contribution by intestinal microbiota in colorectal neoplasia, 
additional investigations are needed to determine their potential 
as CRC biomarkers, or their utility as diagnostic and therapeutic 
targets.

Moreover, many bacteria-derived metabolites have been im-
plicated in the suppression of colon cancer development; these 
include SCFAs, which are produced through the microbial fermen-
tation of complex polysaccharides, including acetate, propionate, 
and butyrate, which serve as energy sources for colonic epithelial 
cells. Butyrate, which is primarily produced by species within the 
Lachnospiraceae and Ruminococcaceae, has been shown to be 
protective against colonic neoplasia. A high fiber intake reported-
ly leads to a reduction in the risk of developing colon malignancy 
because of the production of butyrate [93,94].  In an in vitro study 
of cancer lines, butyrate was found to exert a tumor-suppressing 

Fig. 3. Our hypothetical pathway for the role of gut microbiota dysbiosis in liver diseases. Evidence shows that chronic liver disease is usually accompanied by intestinal 
dysbiosis, which is characterized by the increase of Enterobacteriaceae and the decrease of Bifidobacterium; this can lead to BT, then to endotoxemia and even spontaneous 
bacterial peritonitis (SBP), and finally to progression of the liver disease. Importantly, the maintenance of the normal microbial community by means of probiotics/prebiotics  
could greatly improve the prevention and treatment effect of liver disease.
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effect by inducing apoptosis, inhibiting proliferation, causing 
epigenetic changes in gene expression, and modulating inflam-
matory responses and cytokine levels [95]. Therefore, modulation 
of the gut microbiome through dietary control or antibiotic treat-
ment may offer great therapeutic potential. The manipulation 
of gut microbiota to favor and enhance the production of SCFAs 
through the use of prebiotic or non-digestible food ingredients 
may be a promising approach to program host metabolism, and 
may consequently influence cancer risk.

3.3.3. Esophageal cancer
Recent studies confirm that chronic inflammation at the end 

of the esophagus that is caused by gastroesophageal reflux is 
closely related to esophageal adenocarcinoma (EA). The overall 
pathophysiology of this development process can be described as 
“gastroesophageal reflux disease–Barrett’s esophagus–esophageal 
adenocarcinoma” (GERD–BE–EA) [96–98].  Regional differences 
in its incidence appear to be correlated with economic develop-
ment. Therefore, researchers have suggested that the morbidity 
from EA may be related to the use of antibiotics worldwide. 
Long-term changes in esophageal microecology after frequent 
antibiotic exposure may lead to a higher incidence of GERD, thus 
resulting in an increasing morbidity from EA [99]. A large num-
ber of descriptive studies have reported observing esophageal 
microecological changes in patients with GERD [100]. However, 
the local microbiome does not distinguish between squamous 
cell carcinoma and adenocarcinoma [101]. In addition, the role 
of H. pylori in the pathogenesis of GERD and EA remains unclear 
and controversial. H. pylori was first identified by the WHO as a 
carcinogen associated with gastric cancer in the 1990s, and erad-
ication treatments against this bacterium are widely performed. 
In addition, researchers have found that, with the decline in H. 
pylori infection, GERD incidence has increased [102]. A series of 
case-control studies also suggested that H. pylori may play a pro-
tective role in the development of GERD and associated EA. How-
ever, the eradication of H. pylori treatment does not worsen GERD 
or increase new GERD [103].

3.4. The human microbiota and metabolic disorders

The composition of the gut microbiota is influenced by the use 
of antibiotics and by the lifestyle of the human host, including 
exercise, diet, and hygiene preferences. In turn, the dysbiosis of 
intestinal flora affects the production of immune mediators and 
induces both chronic inflammation and metabolic dysfunction 
[104]. Obesity and its associated metabolic complications, such as 
type 2 diabetes (T2D) and cardiovascular disease, have become a 
global epidemic health problem and are considered to be the con-
sequences of a complex multidirectional interaction among host 
genetics, diet, environment, and the gut microbiota [105].

3.4.1. Obesity
An increasing number of in vivo and human studies have in-

dicated that interactions between the gut microbiota and host 
genotype or dietary changes may be crucial factors that contrib-
ute to obesity and related metabolic disorders [106,107]. Ridaura 
et al. [108] demonstrated that the microbiota from lean or obese 
co-twins induces similar adiposity and metabolic phenotypes in 
mice. Moreover, the lean co-twin’s microbiota can prevent adi-
posity gain in obese-recipient mice, if the mice are fed with an 
appropriate diet [108]. Several studies on the gut microbiota in-
dicated that diet modulates the composition and function of mi-
crobes in humans [109] and rodents [110]. For example, a mouse 
study revealed that mice that were fed with lard for 11 weeks 
exhibited increased Toll-like receptor activation and white adi-

pose tissue inflammation, along with reduced insulin sensitivity, 
compared with mice that were fed with fish oil [110]. However, 
phenotypic differences between the dietary groups can be partly 
attributed to differences in microbiota composition. Increasing 
evidence shows that the gut microbiota is an important mod-
ulator of the interaction between diet and the development of 
metabolic diseases [111]. Furthermore, recent studies have shown 
that the gut microbiota influences the circadian clock and under-
goes circadian oscillations [112]. Disruption of the host circadian 
clock induces dysbiosis, which is associated with host metabolic 
disorders [113]. Obesity, which is associated with gut microbiota 
dysbiosis and altered metabolic pathways, induces impaired gut 
epithelial barrier function and has significant influences on phys-
iological processes [114], such as gut and immune homeostasis 
[115], energy metabolism [116], acetate [25] and bile acid metab-
olism [117], and intestinal hormone release [118].

3.4.2. Type 2 diabetes
T2D is a prevalent metabolic disease worldwide; the link be-

tween the gut microbiome composition and the development of 
T2D is gradually being uncovered [119–121]. Growing numbers 
of studies indicate that an altered gut microbiome characterized 
by lower diversity and resilience is associated with diabetes. The 
mechanisms that cause the disease may be related to the trans-
location of microbiota from the gut to the tissues, thus inducing 
inflammation [122]. Pedersen et al. [123] recently demonstrated 
that the human gut microbiome may affect the serum metab-
olome and induce insulin resistance through species such as 
Prevotella copri and Bacteroides vulgates. Metformin is one of the 
most widely used antidiabetic drugs and is thought to confound 
the results of metagenomics data analysis [121]. The gut microbi-
ota may directly affect T2D through its effect on the metabolism 
of amino acids; thus, future antidiabetic treatment strategies may 
target bacterial strains that cause imbalances in amino acid me-
tabolism [121,124]. Therefore, obesity and its associated metabolic  
complications may be a result of complex gene-environment 
interactions. Microbiome interventions aimed at restoring the 
homeostasis of the gut microbiome have recently emerged, such 
as the ingestion of specific fibers or therapeutic microbes. These 
are promising strategies to reduce insulin resistance and related 
metabolic diseases.

3.5. The human microbiota and other diseases

Growing evidence indicates that alterations in the microbiota 
are implicated in the pathogenesis of a number of other dis-
eases, such as severe asthma, food allergies, autism, and major 
depressive disorder (MDD) [125–130], all of which have recently 
received considerable scientific interest. Interestingly, these dis-
eases may not involve direct interactions with the microbiota. 
However, the regulating function of the microbiota, such as the 
microbiota-gut-brain axis, may participate in the specific path-
ways of the diseases. The complex microbiota-host interactions 
are dynamic, involving a variety of mechanisms that include im-
mune, hormonal, and neural pathways. Therefore, changes in the 
microbiota may result in the dysregulation of host homeostasis 
and in an increased susceptibility to these diseases. On the basis 
of these well-established connections between disease and the 
disruption of homeostatic interactions in the host, microbiota- 
targeted therapies may alter the community composition, and 
microbiota restoration might be used for treating these diseases.

3.5.1. The microbiota and allergic diseases
An early-life, antibiotic-driven low diversity in gut microbiota 

enhances susceptibility to allergic asthma [131], and thus may 
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also affect asthma development in childhood after long-term 
follow-up. Of course, the mode, place of delivery, and infant feed-
ing also affect the GI microbiota composition and subsequently 
influence the risk of atopic manifestations [132]. Bunyavanich 
et al. [128] found that infants with a gut microbiota enriched in 
Clostridia and Firmicutes at a host age of 3–6 months are associ-
ated with the resolution of cow’s milk allergy (CMA) by the age 
of 8 years. Because the intestinal microbiota of an infant evolves 
rapidly in the first year, the early-life gut microbiota composition 
may be one of the determinants for CMA outcomes in childhood. 
The gut microbiota interacts with the immune system intimately, 
providing signals to promote the maturation of regulatory anti-
gen-presenting cells and regulatory T cells (Tregs), which play a 
crucial role in the development of immunological tolerance. The 
specific members of the microbiota, such as Clostridium species, 
interact with Treg and regulate immunoglobulin E (IgE) levels 
[133]. Saarinen et al. [127] showed that the clinical course and 
prognosis of CMA are highly dependent on the milk-specific IgE 
status. A previous study also found that specific microbiotic sig-
natures, such as that of Clostridium sensu stricto, can distinguish 
infants with IgE-mediated food allergies from those with non-IgE- 
mediated ones, and that Clostridium sensu stricto is positively cor-
related with specific IgE level in serum [126].

3.5.2. The microbiota and psychiatric diseases
Psychiatric diseases have posed a severe threat to human health  

throughout history [134]. They are caused by a combination of bi-
ological, psychological, and environmental factors [135–137]. The 
existence of a gut-brain axis has been acknowledged for decades. 
The gut-brain axis plays a key role in maintaining normal brain 
and GI function. More recently, the gut microbiota has emerged 
as a critical regulator of this axis. The concept of this axis has 
been extended to the “microbiota-gut-brain axis,” and is now 
seen to involve a number of systems, including the endocrine sys-
tem, neural system, metabolic system, and immune system, all of 
which are engaged in constant interaction [138]. Gut microbiota 
dysbiosis may increase the translocation of gut bacteria across the 
intestinal wall and into the mesenteric lymphoid tissue, thereby 
provoking an immune response that can lead to the release of 
inflammatory cytokines and the activation of the vagus nerve and 
spinal afferent neurons [139,140]. Autism spectrum disorder (ASD) 
has been reported as correlated with an altered gut microbiota, 
and low relative abundances of the mucolytic bacteria Akkerman-
sia muciniphila and Bifidobacterium spp. have been found in the 
feces of children with autism [125]. Our previous study found an 
altered fecal microbiotic composition in patients with MDD. Most 
notably, the MDD groups had increased levels of Enterobacte-
riaceae and Alistipes, but reduced levels of Faecalibacterium [130]. 
These studies suggest the role of the gut microbiota in autism and 
MDD as a part of the gut-brain axis; this suggested role should 
form a basis for further investigation of the combined effects of 
microbial, genetic, and hormonal changes in the development 
and clinical manifestation of autism and MDD.

4. Advancements in microbiota technology

Over the past few decades, human microbiome research has 
been revolutionized by high-throughput sequencing technology. 
High-throughput sequencing provides an opportunity for studies 
to focus on complex microbial systems without the need to clone 
individual genes. Initially, microbiota studies focused on compo-
sitional studies (i.e., answering the question: what is there?) and 
functional studies (i.e., what are they doing?). With the develop-
ment of sequencing technology and bioinformatics analysis, it has 
become increasingly interesting to study the activity of microbes 

within microbial communities. It is widely accepted that the mi-
crobes with the highest abundance are not always the most active 
ones. RNA sequencing (RNAseq) permits the analysis of gene ex-
pression, adding valuable expression data to compositional data 
sets. Gosalbes et al. [141] performed the first metatranscriptomic 
analysis of the healthy human gut microbiota in 2011. The anal-
ysis of 16S transcripts showed the phylogenetic structure of the 
active microbial community. Lachnospiraceae, Ruminococcaceae, 
Bacteroidaceae, Prevotellaceae, and Rickenellaceae were the pre-
dominant families detected in the active microbiota. The primary 
functional roles of the gut microbiota were found to be carbohy-
drate metabolism, energy production, and the synthesis of cellu-
lar components. A systematic comparison of the gut metagenome 
and metatranscriptome revealed that a substantial fraction (41%) 
of microbial transcripts was not differentially regulated relative to 
their genomic abundances. The metatranscriptional profiles were 
significantly more individualized than the DNA-level functional 
profiles but were less variable in their microbial composition 
[142]. A transcriptome analysis of bacteriophage communities 
in the periodontal microbiota was recently performed using 
RNAseq. Oral phages were found to be more highly expressed in 
individuals with relative periodontal health [143].

To achieve precise microbiome-based medicine in the future, 
it is necessary to understand which individual microorganisms 
mediate vital microbiome-host interaction(s) under health or 
disease conditions. Most gut microbes are currently uncultivable. 
Even with the use of recent technologies, such as gnotobiotic 
mice and anaerobic culturing techniques, it is possible to culture 
only approximately half of the bacterial species identified by 16S 
rDNA high-throughput sequencing [144]. In addition, species- 
level identification may not reflect the real situation because 
most of the functional diversity can be reflected only at the strain 
level. Therefore, it will be crucial to develop technologies to iden-
tify and isolate these microorganisms and/or microbial consortia.

Compared with traditional microbiology approaches, the use 
of anaerobic conditions and gnotobiotic animals largely facilitates 
the cultivation of difficult-to-grow microbes. Numerous previously  
uncultivable microbes can now be cultured in a laboratory set-
ting [145]. A chip-based isolation device (the iChip) was recently 
developed and was specifically designed to identify uncultivable 
microbes within complex microbial ecosystems [146]. The iChip 
is composed of hundreds of miniature diffusion chambers, each 
of which is inoculated with a single environmental cell. The ca-
pacity for microbial recovery using the iChip is many times high-
er than that of standard cultivation, and the resulting species are 
of significant phylogenetic novelty [146]. A new device for in situ 
cultivation (the I-tip) was subsequently developed. The principal 
of the I-tip is similar to that of the iChip; however, the I-tip traps 
individual microbes within a gel, thus allowing for the passage of 
metabolites and nutrients. The in situ isolation of microbes from 
invertebrate organisms using the I-tip has recovered isolates from 
34 novel microbial species [147].

Simulating GIT conditions can greatly facilitate in vitro cultiva-
tion. The Simulator of the Human Intestinal Microbial Ecosystem 
(SHIME) has succeeded in establishing stable, reactor-grown GIT 
microbial communities. More importantly, this system is able 
to precisely simulate different regions of the human GIT, thus 
allowing the diversity of the community to be studied in vitro 
in a different niche. The power of SHIME has been estimated 
by numerous studies [148–150]. For example, it has been found 
that different regions of SHIME are colonized by different unique 
microbial communities when cultured with microbes. The distri-
bution is highly similar to that of the living host, such as the prev-
alence of Bacterioides/Prevotella spp. and Lactobacillus spp. in the 
colon [148].
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Identifying single cells that produce metabolites of interest 
within complex microbial ecosystems is very important for un-
derstanding microbiome-host interactions. With this purpose, a 
flexible high-throughput approach using a combination of micro-
fluidics and fluorescence-activated cell sorting has recently been 
developed [151]. This system has successfully identified xylose- 
overconsuming Saccharomyces cerevisiae and L-lactate-producing  
E. coli cells from a population. This system also allows for the 
screening of mutants in known pathways.

The use of traditional animal models in microbiome studies 
continues to provide insight into host-microbiota interactions. 
However, animal models often do not predict the results obtained 
in humans, thus posing a particular problem when considering 
challenges relating to the oral absorption of drugs and nutrients. 
Here, we introduce two methods of in vitro simulation based on 
stem cells: the gut-on-a-chip system and colonic stem cell con-
struction. The gut-on-a-chip system takes advantage of biomaterial 
engineering and provides an optional approach to study the com-
plex interactions occurring within the gut microbiome. This system 
is an in vitro living cell-based model of the intestine that mimics 
the properties of the human gut along with crucial microbial sym-
bionts. Biomimetic human gut-on-a-chip micro-devices are usually 
composed of microfluidic channels and a porous flexible mem-
brane that are coated with an extracellular matrix and lined with 
human intestinal epithelial cells [152]; such devices mimic the 
complex structure and physiology of a living intestine. Microfluidic 
devices can also be used to study microbe-microbe interactions, 
such as chemotaxis/chemical attraction and quorum sensing [153]; 
such interactions have been shown to be more effectively studied 
using microfluidic devices than using traditional capillary-based 
assays [154]. In addition, given the recapitulation of many complex 
functions of the normal human intestine, it may also become an 
essential platform for drug screening and toxicology testing.

Colonic stem cell construction is a recently developed in vitro  
system that is used to grow 3D organoid colonic epithelium 
structures that are guided by microstructures without the utiliza-
tion of microfluidics technology [155]. Within a Matrigel overlay, 
spherical 3D structures grown from colonic stem cells or intesti-
nal stem cells are collected from an array containing individually 
grown structures. These membrane-free 3D stem-cell-derived 
organoids, which contain various differentiated cell types, form a 
barrier similar to that of intestinal or colonic epithelia [156,157]. 
These organoids have recently been used to demonstrate that the 
Salmonella enterica serovar Typhimurium can successfully invade 
the epithelial cell layer [157], and that C. difficile can disrupt the 
epithelial barrier function [158]. This technology also provides 
more novel and valuable methods for higher throughput micro-
biome studies than existing models, although this technique is 
still in its infancy.

5. Application of the human microbiota

The human microbiome can be considered as an important 
origin of resources for genetic diversity, a modifier of disease, an 
essential component of immunity, and a functional entity that 
influences metabolism and modulates drug interactions. On one 
hand, there are many potential probiotics or beneficial bacteria 
that may prevent or treat certain diseases, although most of them 
cannot be cultivated at present [159]. For example, some of these 
gut microbes belong to genera that contain many probiotics such 
as Lactobacillus and Bifidobacterium. Some are novel potentially 
beneficial bacteria, such as Faecalibacterium prausnitzii for treat-
ing IBD and irritable bowel syndrome (IBS), and Akkermansia 
muciniphila for improving metabolic health [160]. On the other 
hand, as our second genome, the human microbiome must pro-

duce a large number of metabolites. Some isolated metabolites 
have important potential applications, although it still remains a 
great challenge to isolate and identify all the metabolites of the 
human microbiome. For example, Chu et al. [161] discovered me-
thicillin-resistant Staphylococcus aureus-active antibiotics by using 
primary sequencing from the human microbiome.

With the increased understanding of the relationship between 
the human microbiome and a variety of diseases, the use of these 
findings to predict or diagnose diseases has attracted a great deal 
of attention [162]. Enrichments of some microbes are noted as 
potential biomarkers in some research; however, these altera-
tions are often observed in other research as well, and cannot be 
distinguished among different diseases. In contrast, clinical mod-
els based on tens of genes within a metagenome analysis perform 
better in diagnostics and predicting diseases. In addition, we 
found that the Bifidobacterium/Enterobacteriaceae (B/E) ratio indi-
cates the microbial colonization resistance of the bowel, and that 
this ratio is considered to be an indicator of human microbiome  
heath. The B/E ratio is higher than 1 in people with healthy mi-
crobiomes, whereas it is far below 1 in patients with cirrhosis and 
patients with the avian influenza H7N9 infections [163,164].

The prevention and treatment of diseases by targeting the 
microbiome have been widely investigated, and some therapies 
have been successfully applied in the clinic. The administration of 
probiotics is reported to help restore the health of H7N9 patients 
more quickly [164]. Fecal microbiome transplantation has exhib-
ited better clinical efficacy than antibiotics in the treatment of C. 
difficile infections [165]. Substantial progress has also been made 
in the treatment of liver diseases by modulating the gut micro-
biome. A clinical trial showed that probiotic VSL#3 reduces liver 
disease severity and hospitalization in patients with cirrhosis 
[166]; the administration of Lactobacillus salivarius LI01 or Pedi-
ococcus pentosaceus LI05 improves the acute liver injury induced 
by D-galactosamine in rats [167]. Furthermore, the regulation of 
the human microbiome plays important roles in the treatment 
of GI diseases, such as infectious diarrhea, antibiotic-associated 
diarrhea, inflammatory bowel disease, and necrotizing enter-
ocolitis. For example, the oral administration of a mixture of 
17 Clostridia strains from the human microbiota to adult mice 
was found to attenuate disease in models of colitis and allergic 
diarrhea [168]. Modulation of the gut microbiome may also con-
tribute to the treatment of cancer. Iida et al. [169] reported that 
optimal responses to cancer therapy require an intact commensal 
microbiota that mediates the therapy effects by modulating mye-
loid-derived cell functions in the tumor microenvironment. Viaud 
et al. [170] reported that the gut microbiota helps to shape the 
anticancer immune response of cyclophosphamide. In addition, 
many clinical studies have shown that probiotics and their prod-
ucts have outstanding effects on the treatment of allergic diseas-
es, especially those in infants [171]. 

6. Future perspectives

The human microbiota plays an important role in the well- 
being of the human host, and participates actively in the develop-
ment of a wide variety of diseases. Given the extensive influence 
of microorganisms throughout the human body, we propose that 
research on host-microbiota interactions should go beyond a char-
acterization of the community composition and an investigation 
of the community members’ associations. From the structure to 
the function of the microbiota, future research should move mi-
crobiome investigations toward providing explanations of causal-
ity. With new techniques for microbiota function prediction, new  
microbiota interaction models, and novel analytical and simulation 
approaches, future advances will help to clarify the interactions 
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between the microbiota and human development, and the po-
tential roles of those microbiota involved in the mechanisms of 
various diseases, such as liver diseases, bacterial infection, cancer, 
psychiatric diseases, and metabolic diseases. The crucial roles of 
the human microbiota should be investigated at a much deeper 
level, and microbiome-based diagnosis and treatment strategies 
will be used for future personalized medicine work.
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