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Abstract

We present a new technique, based on semivariogram methodology, for ob-
taining point estimates for use in prior modeling for solving Bayesian inverse
problems. This method requires a connection between Gaussian processes with
covariance operators defined by the Matérn covariance function and Gaussian
processes with precision (inverse-covariance) operators defined by the Green’s
functions of a class of elliptic stochastic partial differential equations (SPDEs).
We present a detailed mathematical description of this connection. We will
show that there is an equivalence between these two Gaussian processes when
the domain is infinite – for us, R2 – which breaks down when the domain
is finite due to the effect of boundary conditions on Green’s functions of
PDEs. We show how this connection can be re-established using extended
domains. We then introduce the semivariogram method for estimating the
Matérn covariance parameters, which specify the Gaussian prior needed for
stabilizing the inverse problem. Results are extended from the isotropic case
to the anisotropic case where the correlation length in one direction is larger
than another. The situation where the correlation length is spatially depen-
dent rather than constant will also be considered. Finally, we compare and
contrast the semivariogram method with a fully-Bayesian approach of finding
estimates for and quantifying uncertainty in the hyperparameters. We imple-
ment each method in two-dimensional image inpainting test cases to show that
it works on practical examples. The MATLAB code for all of these methods
can be found here: https://github.com/rbrown53/DissertationCodes.

https://github.com/rbrown53/DissertationCodes
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Dr. Emily Stone, Dr. Javier Pérez Álvaro, and Dr. Jesse Johnson for your
willingness to serve on the committee and for the feedback you provided
on the dissertation.

• Thank you to Dr. Jon Graham for introducing me to spatial statistics
in general and semivariogram methods in particular and for the role
you played in writing and assessing my preliminary and comprehensive
exams. Spatial Statistics was the only statistics course I took at UMT,
but it was one of the most important I have ever taken.

• Thank you to Dr. Fred Peck for the role you played in preparing me to be
a better instructor and for serving as a teaching mentor for me the last
four years. Teaching College Mathematics was one of the most influential
classes I took in graduate school and I will be a better educator because
of you.

• Thank you to Dr. Emily Stone for serving as department chair through-
out my tenure at the University of Montana and for continually taking
into account my teaching preferences when assigning classes to TAs.

• Thank you to Dr. Kelly McKinnie and Dr. Cory Palmer for serving as
the associate chairs of the graduate program during my time at UMT.
You were both very helpful in making sure I was on track to graduate.

• Thank you to Lauren Fern, Cindy Leary, Dr. Kelly McKinnie and Dr. Karel
Stroethoff for serving as course coordinators for courses I taught during
my time at UMT. It was always a pleasure to work, teach and meet
regularly with each of you.

iii



• Thank you to Linda Azure, Barbara Ensor, Michelle Selander, Indy
Singh, Zsuzsa Weinhandl, and Maria Yost for serving the Mathemati-
cal Sciences Department in each of your positions throughout the years.
The department could not have functioned without each of you.

• Thank you to my fellow graduate students. You made my time here
immensely enjoyable with various activities that included fun conversa-
tions, homework sessions, lively debates, video game nights, table tennis
matches, shared meals, and Bible studies.

• Thank you to all mathematics and statistics faculty for being so ap-
proachable and warm to every graduate student while always being will-
ing to share your time and expertise.

• Thank you to the Bryan, Myers, and Hartse families for donating to allow
for financial support for summer research and various other scholarships
and awards. Having this funding available makes it possible for graduate
students to complete their degrees on time.

• Finally, thank you so very much to my parents, David and Michelle.
You have been my biggest supporters throughout my entire life and have
valued my education while pushing me to be a better student and person
from the beginning. I know I would not be where I am today without
you.

iv



Contents

List of Figures viii

List of Tables xv

1 Introduction 1

1.1 The Matrix A and Boundary Conditions . . . . . . . . . . . . 3

1.2 Bayesian Inverse Problems . . . . . . . . . . . . . . . . . . . . 8

1.3 The Matérn Class of Covariance Matrices and Whittle-Matérn

Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Theoretical Results 17

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Gaussian Fields . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 White Noise . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Green’s Functions . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Fourier Transform . . . . . . . . . . . . . . . . . . . . . 21

2.2 Isotropic Matérn Connection . . . . . . . . . . . . . . . . . . . 24

2.3 Anisotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Anisotropic SPDE . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Anisotropic Matérn Connection . . . . . . . . . . . . . 33

v



3 Numerical Methods 37

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Kronecker Product . . . . . . . . . . . . . . . . . . . . 38

3.1.2 vec(·) and diag(·) Functions . . . . . . . . . . . . . . . 38

3.1.3 Discrete Fourier Transform . . . . . . . . . . . . . . . . 39

3.1.4 Conjugate Gradient . . . . . . . . . . . . . . . . . . . . 42

3.2 Discretizing the SPDE . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Prior Precision Matrices . . . . . . . . . . . . . . . . . 55

3.3 The Effect of a Finite Domain and Boundary Conditions . . . 56

3.4 Computing MAP Estimators for Whittle-Matérn Priors . . . . 60

4 Semivariogram Methods 67

4.1 Isotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.2 Numerical Experiments . . . . . . . . . . . . . . . . . . 72

4.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Anisotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Numerical Experiments . . . . . . . . . . . . . . . . . . 81

4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Extensions 85

5.1 Regional Anisotropy . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Preliminary – Cholesky Factorization . . . . . . . . . . 85

5.1.2 Regional Precision Matrix . . . . . . . . . . . . . . . . 87

5.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . 90

5.1.4 Preconditioner . . . . . . . . . . . . . . . . . . . . . . . 91

vi



5.1.5 Region Selection . . . . . . . . . . . . . . . . . . . . . 92

5.1.6 Prior Weights . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.7 Numerical Experiments . . . . . . . . . . . . . . . . . . 95

5.1.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . 98

5.2.1 MCMC Diagnostics . . . . . . . . . . . . . . . . . . . . 102

5.2.2 MCMC Results . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusion 112

6.1 MATLAB Code . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 115

vii



List of Figures

1.1 Least squares solution. On the left is a blurry image of Main

Hall. On the right is the least-squares solution for the deblurring

inverse problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Boundary artifacts. When boundary conditions are inappropri-

ate, the reconstruction may contain unrealistic artifacts near

the borders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Behavior of the Matérn covariance function. The smoothness

parameter, ν, primarily affects the covariance at small distances

whereas the range parameter, `, mainly affects the decay rate of

the covariance. The horizontal line corresponds to a covariance

value of 0.05 and the practical range is the distance at which

the covariance intersects this line. . . . . . . . . . . . . . . . . 12

viii



1.4 Convergence to the Gaussian covariance. On the left, we show

that the norm difference between the Matérn and the Gaussian

covariance function converges to zero as ν increases, plotted on

the log scale. On the right, we plot the Exponential and Gaus-

sian covariance functions along with the Matérn covariance for

various values of ν with a fixed practical range of 1 to further

illustrate that the Matérn covariance is equal to the Exponen-

tial covariance when ν = 1/2 and converges to the Gaussian

covariance as ν →∞. . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Isotropic field. The correlation between any two points depends

only on the distance between those points and is independent

of direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Anisotropic field. The correlation length differs depending on

direction. The correlation length is largest in the 45◦ direction

and shortest in the −45◦ direction. . . . . . . . . . . . . . . . 30

3.1 Conjugate gradient methods. The image on the left tracks the

convergence of the CG algorithm and the image on the right

shows PCG. Both methods converged in two iterations. . . . . 49

3.2 Isotropic correlation maps. Plots of the Matérn correlation map

(left), the empirical correlation map with n = 50 computed

on the domain Ω = [0, 1] × [0, 1] (middle), and the empirical

correlation map computed on the domain Ω = [−0.5, 1.5] ×

[−0.5, 1.5] (right), computed from random draws from the prior

(3.17) in 2D with ν = 1 and ` = 1/4. . . . . . . . . . . . . . . 57

ix



3.3 Anisotropic correlation maps. Plots of the anisotropic Matérn

correlation map (left), the empirical correlation map with n =

50 computed on the domain Ω = [0, 1] × [0, 1] (middle), and

the empirical correlation map computed on the domain Ω =

[−0.5, 1.5] × [−0.5, 1.5] (right), computed from random draws

from the prior (3.15) in 2D with ν = 1, `1 = 1/4, `2 = 1/8, and

θ = 45◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Effect of the masking matrix. On the top left is the array Ax

that is of size n×n, on the top right is MAx in array form that

is m×m, and on the bottom is a representation of the matrix

M when n = 16 and m = 8. . . . . . . . . . . . . . . . . . . . 61

3.5 Extended domain images. On the left is an array B that is of

size m×m and on the right is the zero-padded B̃ that is of size

n× n on the extended domain. . . . . . . . . . . . . . . . . . 63

3.6 Ma array. A standard example when using DFTs and extend-

ing the computational domain that shows the central m × m

elements of Ma being equal to one and all the rest being equal

to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Example reconstruction. Xα is the n× n reconstruction on the

extended domain and the central m × m elements of Xα give

the reconstruction on the original domain. . . . . . . . . . . . 66

x



4.1 Semivariogram. A randomly generated spatial field is shown on

the left and the empirical semivariogram, along with the Matérn

model fit, is given on the right. The fitted hyperparameters are

ν = 2 and ` = 0.019, which corresponds to a practical range of

0.102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Full 256×256 image of Main Hall at the University of Montana

with 128× 128 subimage. . . . . . . . . . . . . . . . . . . . . 73

4.3 Inpainting setup. On the left is B, the blurred, masked, and

noisy data, in array form. On the right is the Ma array. All

array values of Ma outside of the central m × m region and

those that correspond to the missing elements in B are zero.

All other values are equal to one. . . . . . . . . . . . . . . . . 74

4.4 Two-dimensional image deblurring test case solutions. On the

left is a plot of the Tikhonov solution and on the right is a plot

of the solution obtained using the Whittle-Matérn prior with

ν = 1 and ` = 0.0339, 0.0292 and 0.0530 for red, green and blue

intensities, respectively. . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Transforming field from anisotropic to isotropic. The top-left

image shows the original field that is anisotropic, the bottom-

left image shows the rotated field so the direction of maximum

anisotropy is aligned with the x-axis, and on the right is the

rotated and scaled field that is isotropic. . . . . . . . . . . . . 78

xi



4.6 Directional semivariograms for fields in Figure 4.5. The 12 di-

rectional semivariograms for the original, anisotropic field are

shown on the left. For each of the 12 plots, semivariance value is

plotted against lag distance. The direction of maximum correla-

tion is determined to be 45◦ with a ratio of 3 since the distance

required to pass γcrit = 0.9 was largest in that direction and

that distance is 3 times greater than the distance needed in the

−45◦ direction. The 12 directional semivariograms for the ro-

tated and scaled field are shown on the right with a ratio of 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Inpainting example. The original image showing the rock layers

of the Wave in northern Arizona is given on the left. The true

image used in the inpainting example is given in the middle.

The masked image is given on the right. . . . . . . . . . . . . 82

4.8 Inpainting solutions. The true image (left) is given along with

the the isotropic solution (middle) and the anisotropic solution

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Regional field. On the left side of the image, the field is isotropic

and on the right side it is anisotropic. . . . . . . . . . . . . . . 86

5.2 CG Iteration History. The CG iteration history is shown for

no preconditioner, the level 2 block circulant preconditioner,

and the average precision preconditioner. The average precision

preconditioner has the fastest convergence rate. . . . . . . . . 92

xii



5.3 Making arrays. The image on the left shows a regional field

with regions selected by the user. The first region has the red

overlay and the second region is the remainder of the image.

The image in the middle is the masking array for region one

and shown on the right is the masking array for region two. . . 93

5.4 Prior weights. The image on the left shows a sample from the

prior with unequal variances in the two regions. The image on

the right shows a sample from the prior when weighting the

regional precision matrices such that the variances in the two

regions are approximately equal. . . . . . . . . . . . . . . . . . 94

5.5 Inpainting solutions. The true image (top-left) is given along

with the masked image (top-right), the isotropic solution (center-

left) the anisotropic solution (center-right), and the regional so-

lution (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 MCMC chain examples. Chain 1 on top has a low acceptance

rate. Chain 2 in the middle is dependent on many previous

iterations. Chain 3 on the bottom exhibits good behavior. . . 103

5.7 MCMC ACF examples. The ACFs for the top, middle, and

bottom chains in Figure 5.6 are given on the left, middle, and

right, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 104

xiii



5.8 2-D MCMC results. The upper-left shows the λ, δ, α = δ/λ,

and ` sampling chains for the red intensity. The upper-right

shows the λ, δ, α = δ/λ, and ` histograms for the red intensity.

The middle-left shows the autocorrelation functions for λ, δ,

α = δ/λ, and `. The middle-right shows the difference between

the 97.5th and 2.5th percentiles for each pixel in the image. The

bottom-left image shows pair-wise scatter plots. The MCMC

solution taken as the mean of the sampling chain of x is on the

bottom right. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 2-D deblurring images. The upper-left plot shows the true Im-

age; the upper-right shows the masked image; the lower-left

image shows the MCMC sample mean reconstruction fixing ν;

and the lower-right image shows the MAP reconstruction using

variograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xiv



List of Tables

4.1 Statistics for inpainting MAP estimates. . . . . . . . . . . . . 84

5.1 Statistics for regional inpainting MAP estimates. . . . . . . . . 97

5.2 MCMC results – Red color band. . . . . . . . . . . . . . . . . 107

5.3 MCMC 95% credible intervals. . . . . . . . . . . . . . . . . . . 107

5.4 Statistics for MCMC and MAP estimates. . . . . . . . . . . . 109

xv



Chapter 1

Introduction

Inverse problems are ubiquitous in science and engineering. They are charac-

terized by the estimation of parameters in a mathematical model from mea-

surements and by a high-dimensional parameter space that typically results

from discretizing a function defined on a computational domain. Inverse prob-

lems are so named as a contrast to what is known as the forward problem. For

a forward map A and model parameters x, both given, a forward problem

would seek to find b in the setting

b = Ax+ ε,

where ε is the measurement or model error. The forward problem is well-

posed, which means it has a stable solution with respect to perturbation, and

typically has a unique solution. For an inverse problem, the goal would be to

infer the model parameters x when given the forward map A and the output

b.

For typical inverse problems, the process of estimating model parameters

1
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Figure 1.1: Least squares solution. On the left is a blurry image of Main Hall.

On the right is the least-squares solution for the deblurring inverse problem.

from measurements is ill-posed, which means small changes in b result in large

relative changes in the parameter estimates. In general, inverse problems are

ill-posed because the solution does not depend continuously on the observa-

tions as a result of the form of the forward map [Bardsley, 2018]. Due to

ill-posedness, the least-squares and maximum likelihood solutions to an in-

verse problem generally give a very poor result. This is illustrated in Figure

1.1. On the left we have a blurry image of Main Hall on the University of Mon-

tana campus. For a deblurring problem, the forward map A is a discretized

convolution, which will be described in detail below, and the least-squares

solution is given by

xLS = (ATA)−1ATb.

The least-squares solution is shown on the right of Figure 1.1. It is clear that

this reconstruction, which is supposed to deblur the picture, is no good.

The illustration of ill-posedness above motivates the use of regularization
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in the deterministic setting and the choice of a prior probability density in the

Bayesian setting. In this thesis, we consider linear models of the form

b = Ax+ ε, ε ∼ N (0, λ−1IM), (1.1)

where b ∈ RM is the vector of measurements, A ∈ RM×N is the forward model

matrix, x ∈ RN is the vector of unknown parameters, and ε ∼ N (0, λ−1IM)

is the observation noise that follows a zero-mean Gaussian distribution with

covariance matrix λ−1IM , with IM denoting the M ×M identity. In typical

inverse problems, Ax is the discretization of a continuous forward model Ax,

where A is a linear operator and x is a function. The components of the vector

x satisfy xi = x(ui), where ui ∈ Rd is the location of the ith element of the

numerical grid.

1.1 The Matrix A and Boundary Conditions

Modeling A correctly is crucial to obtaining a good solution to an inverse

problem. The form of A depends on what type of inverse problem is being

solved. In many applications, including the deblurring example we used above,

A takes the form of a convolution and so, in one dimension, the physical model

is

b(u) =
∫ ∞
−∞

A(u− u′)x(u′)du′.

The domain of b, A, and x are usually determined by the measurement device

or, for an image, by the field of view. Here we assume A is measured on the

interval [−1, 1] and, for simplicity, assume b and x are both measured on the

interval Ω = [0, 1]. The interval Ω is known as the computational domain.
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This means the model can be re-expressed as

b(u) =
∫ 2

−1
A(u− u′)x(u′)du′, 0 ≤ u ≤ 1.

To obtain a useable matrix to represent A, we need to discretize the integral.

Midpoint quadrature can be used with step size h = 1/n to perform the

discretization in A and x. In general, we allow for a step size of 1/m for

discretizing b, but to simplify notation, we let m = n here so b will also have

a discretization step size of h = 1/n. Letting ui = (i− 1/2)h, u′j = (j − 1/2)h

and defining ai−j := A(ui − u′j) = A((i− j)h), bi := b(ui) and xj := x(u′j) for

i = 1, . . . , n and j = −n+ 1, . . . , 2n, we have

bi = h
i+n−1∑
j=i−n+1

ai−jxj, i = 1, . . . , n.

In matrix-vector notation, this has the form



b1

b2

...

bn


= h


an−1 . . . a0 . . . a−n+1

. . . . . . . . . . . . . . .

an−1 . . . a0 . . . a−n+1





x−n+2

...

x1

...

xn
...

x2n−1



. (1.2)

Notice that the matrix A is toeplitz, which means it has constant diagonals,

and that ai−j = 0 for |i − j| ≥ n. The values of the matrix A are chosen

depending on the inverse problem at hand. For deblurring problems, the ai−j
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values are taken from a kernel, one of which is the Gaussian kernel. Using the

Gaussian kernel, we have

hai−j = hA((i− j)h) = h√
2πγ2 exp

(
−((i− j)h)2

2γ2

)
, 1 ≤ i, j ≤ n,

where γ2 is the variance of the blurring kernel that corresponds to the amount

of blurring in the image. The blurrier the image, the larger γ2 should be.

Clearly the system (1.2) depends on (x−n+2, . . . , x0) and (xn+1, . . . , x2n−1),

all of which are outside the computational domain. For example, x0 = x (−h/2)

and −h/2 is outside of Ω = [0, 1]. However, the elements of b that are near

the boundary of the domain, i.e. close to zero or one, still rely on these

elements of x. Thus, it is common to impose boundary conditions so that

(1.2) is a square, n × n linear system. There are several types of boundary

conditions, the most common of which are the Dirichlet (also called zero),

periodic, and Neumann boundary conditions. In this thesis, we focus only

on the zero and periodic boundary conditions. With zero boundary con-

ditions, we assume (x−n+2, . . . , x0) = (xn+1, . . . , x2n−1) = 0 and with pe-

riodic boundary conditions, we assume (x−n+2, . . . , x0) = (x2, . . . , xn) and

(xn+1, . . . , x2n−1) = (x1, . . . , xn−1). Hence, for an array X, the one-dimensional

representations of the zero and periodic boundary conditions are illustrated, re-

spectively, by the following extensions of an array X [Hansen et al., 2006, Bard-

sley and Luttman, 2015]:

0 X 0 and X X X .

When zero boundary conditions are applied in the one-dimensional case,
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(1.2) reduces to


b1

...

bn

 = h


a0 . . . a−n+1

... . . . ...

an−1 . . . a0




x1

...

xn

 ,

and when using periodic boundary conditions, (1.2) can be written



b1

b2

...

bn−1

bn


= h



a0 (an−1 + a−1) . . . (a2 + a−n+2) (a1 + a−n+1)

(a1 + a−n+1) a0 (an−1 + a−1) (a2 + a−n+2)
... (a1 + a−n+1) a0

. . . ...

(an−2 + a−2) . . . . . . (an−1 + a−1)

(an−1 + a−1) (an−2 + a−2) . . . (a1 + a−n+1) a0





x1

x2

...

xn−1

xn


.

The matrix A in this case is circulant, an important property that will be

defined in Chapter 3 and will play an important role later.

As is shown in [Bardsley, 2018], these results can be generalized to two

dimensions, in which case Ω = [0, 1]× [0, 1] and the linear system will take the

form

bik = h
i+n−1∑
j=i−n+1

k+n−1∑
l=k−n+1

ai−jal−kxjl, i, k = 1, . . . , n.

The two-dimensional representations of the zero and periodic boundary con-

ditions are given by

0 0 0
0 X 0
0 0 0

and
X X X
X X X
X X X

.

We let m = n in this illustration, but in general A ∈ Rm×n in one dimension

and A ∈ Rm2×n2 in two dimensions. Thus, using the notation from (1.1),
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Figure 1.2: Boundary artifacts. When boundary conditions are inappropriate,

the reconstruction may contain unrealistic artifacts near the borders.

N = n and M = m when working in one dimension, while N = n2 and

M = m2 in a two-dimensional environment.

Care must be taken when selecting boundary conditions because those that

do not accurately represent the true unknown outside of the computational

domain may lead to a reconstruction of x that contains unrealistic boundary

artifacts. An example of this is seen in Figure 1.2. In this example, periodic

boundary conditions were used that led to some of the blue sky in the top-left

corner of the image being replaced with green grass from the bottom left. One

way to combat this to to extend the computational domain. A more thorough

discussion on domain extension will be presented in Chapter 3.

Once the form of A has been determined, boundary conditions have been

applied, and we have an expression for the matrix A, the conditional proba-

bility density function of the random vector b in (1.1) is

p(b|x, λ) ∝ exp
(
−λ2‖Ax− b‖

2
)
, (1.3)
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where ∝ denotes proportionality and ‖·‖ denotes the `2-norm. The maximizer

of p(b|x, λ) with respect to x is known as the maximum likelihood estimator.

The maximum likelihood estimator in this context is equivalent to the least-

squares solution, which means it is also unstable with respect to errors in b

due to ill-posedness. Therefore, we need a way to stabilize the inverse problem

reconstruction.

1.2 Bayesian Inverse Problems

There are various methods that can be used to stabilize the solutions of inverse

problems, but they all involve some form of regularization. In this thesis, we

take the Bayesian approach [Kaipio and Somersalo, 2005], which requires the

definition of a prior probability density function on x.

Bayesian methods, at their core, are derived from conditional probability.

It is well known that the conditional probability of an event A given an event

B, denoted P (A|B), can be written as

P (A|B) = P (A ∩B)
P (B) , P (B) 6= 0.

Then by that same property, P (A ∩ B) = P (B|A)P (A). Additionally, when

the sample space, S, can be partitioned such that S = ∑k
j=1Aj, with each

Ai mutually exclusive, i.e., Ai ∩ Aj = ∅ (the empty set), and P (Aj) 6= 0 for

j = 1, . . . , k, then

P (B) =
k∑
j=1

P (Aj ∩B) =
k∑
j=1

P (B|Aj)P (Aj).



Chapter 1. Introduction 9

Therefore,

P (Ai|B) = P (Ai ∩B)
P (B)

= P (B|Ai)P (Ai)∑k
j=1 P (B|Aj)P (Aj)

,

again assuming that P (B) 6= 0. This is an expression of Bayes’ Theorem in the

discrete case. We can use an analogous expression in the multi-dimensional,

continuous random variable case to obtain an expression for p(x|b):

p(x|b) = p(b|x)p(x)∫
p(b|t)p(t)dt ∝ p(b|x)p(x).

In this expression, p(x|b) is known as the posterior distribution, p(b|x) is the

likelihood, and p(x) is the prior. The prior will often be conditioned on other

unknowns called hyperparameters, e.g. p(x|δ), where δ is a hyperparameter.

In this thesis, we make the assumption that the prior is Gaussian of the

form x ∼ N (0, (δP)−1), which has probability density function

p(x|δ) ∝ exp
(
−δ2x

TPx
)
, (1.4)

where P is the precision (inverse-covariance) matrix. Now that we have defined

the prior (1.4) and the likelihood (1.3), using Bayes’ law, we multiply them

together to obtain the posterior density function

p(x|b, λ, δ) ∝ p(b|x, λ)p(x|δ)

∝ exp
(
−λ2‖Ax− b‖

2 − δ

2x
TPx

)
, (1.5)
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whose maximizer is known as the maximum a posteriori (MAP) estimator.

The MAP estimator can be equivalently expressed as

xα = arg min
x

{
λ

2‖Ax− b‖
2 + δ

2x
TPx

}

= (λATA + δP)−1λATb

= (ATA + αP)−1ATb,

for α = δ/λ. Thus, the regularization term is αP and α is referred to as the

regularization parameter. Our primary focus in this thesis is to provide for-

mulations and parameter selection techniques for prior precision matrices that

have an intuitive interpretation and can be used to regularize, and therefore

solve, a wide variety of problems.

1.3 The Matérn Class of Covariance Matrices

and Whittle-Matérn Priors

It remains to define the prior covariance matrix C = P−1. The Matérn class of

covariance matrices has garnered much praise [Stein, 2012] for its flexibility in

capturing many covariance structures and its allowance of direct control over

the degree of correlation in the vector x [Guttorp and Gneiting, 2006]. The

Matérn covariance matrix is defined by the Matérn covariance function, which

was first formulated by Matérn in 1947 [Matérn, 2013],

C(r) = σ2 (r/`)νKν(r/`)
2ν−1Γ(ν) , (1.6)
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where r is the separation distance; Kν(·) is the modified Bessel function of the

second kind of order ν [Andrews, 1992]; Γ(·) is the gamma function; ` > 0

is the range parameter; ν > 0 is the smoothness parameter; and σ2 is the

marginal variance. Omitting σ2 gives the Matérn correlation function. In

the isotropic case, when the covariance depends only on the distance between

elements, given the covariance parameters σ2, ν, and `, one can obtain the

covariance matrix C of a vector x = (x1, . . . , xN)T with spatial positions

{uT1 , . . . ,uTN} ⊂ Rd by letting

[C]ij = Cov(xi, xj) = C(‖ui − uj‖),

where C is defined by (1.6).

The parameters of the Matérn covariance function are not as straightfor-

ward to interpret as the parameters of some other covariance functions. When

ν is small (ν → 0+), the spatial process is said to be rough, and when it is large

(ν → ∞), the process is smooth [Guttorp and Gneiting, 2006, Minasny and

McBratney, 2005]. Figure 1.3 shows how the covariance function behaves with

different values of ` and ν: on the left, ` = σ2 = 1 and ν varies, while on the

right ν = σ2 = 1 and ` varies. Note that as ν increases, the behavior at small

lags changes, leading to more correlation at smaller distances and a larger

practical range, which is defined to be the distance at which the correlation is

equal to 0.05; in Figure 1.3, this is the distance at which the covariance func-

tion intersects the horizontal line. Meanwhile, as ` decreases, the decay rate

of the covariance increases considerably, which decreases the practical range.

Although ` is known as the range parameter, the parameter ν also affects the

practical range. In [Lindgren et al., 2011], a range approximation ρ = `
√

8ν is
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Figure 1.3: Behavior of the Matérn covariance function. The smoothness pa-

rameter, ν, primarily affects the covariance at small distances whereas the

range parameter, `, mainly affects the decay rate of the covariance. The hor-

izontal line corresponds to a covariance value of 0.05 and the practical range

is the distance at which the covariance intersects this line.

used where C(ρ) ≈ 0.10.

When ν = p + 1/2 for p ∈ N, the Matérn covariance function simplifies

into some very familiar forms. We will illustrate this simplification here for

ν = 1/2. First, there are several different representations of Kν one can use,

including ones involving integrals and infinite series. One such representation

is the following integral form:

Kν(r/`) = Γ(ν + 1/2)(2r/`)ν√
π

∫ ∞
0

cos(t)dt
(t2 + (r/`)2)ν+1/2 .

Thus, the Matérn covariance when ν = 1/2 is

C1/2(r) = σ2 1
21/2−1Γ(1/2) (r/`)1/2K1/2 (r/`)

= σ2 1
2−1/2Γ(1/2) (r/`)1/2 Γ(1)(2r/`)1/2

√
π

∫ ∞
0

cos(t)dt
t2 + (r/`)2
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Using contour integration [Bak et al., 2010], one can show
∫ ∞

0

cos(t)dt
t2 + (r/`)2 =

πe−r/`

2r/` and so,

C1/2(r) = σ2 1
2−1/2Γ(1/2) (r/`)1/2 Γ(1)(2r/`)1/2

√
π

πe−r/`

2r/`

= σ2
√

2√
π

(r/`)1/2 Γ(1)(2r/`)1/2
√
π

πe−r/`

2r/`

= σ2 2r/`
π

πe−r/`

2r/`

= σ2e−r/`

= σ2e−3r/ρ,

which is the Exponential covariance function with range parameter ρ = 3`.

In general, for ν = p+ 1/2 [Gneiting et al., 2010],

Cp+1/2(r) = σ2e−r/`
p∑
j=0

(p+ j)!
(2p)!

(
p

j

)
(2r/`)p−j.

So when ν = 3/2, C3/2(r) = σ2(1 + r/`)e−r/`, which is the second-order au-

toregressive function, and when ν = 5/2, C5/2(r) = σ2(1 + r/`+ 1
3r

2/`2)e−r/`,

which is the third-order autoregressive function.

The Matérn covariance function is also related to the Gaussian covariance

function, which is sometimes referred to as the squared exponential distribu-

tion. It can be shown [Schabenberger and Gotway, 2017] that as ν →∞,

Cν(r)→ σ2 exp
{
− r2

4ν`2

}
= σ2 exp

−3
(
r

ρ

)2


which is the Gaussian model with range parameter ρ = 2`
√

3ν. We verify this
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convergence numerically on the left in Figure 1.4 using ` = σ2 = 1. On the

vertical axis, we have the norm of the difference between the two covariance

function for 100 equally-spaced distances (r values) between 0 and 6, plotted

on the log scale. That is,

∥∥∥∥∥ 1
2ν−1Γ(ν) (r)ν Kν (r)− exp

{
−r

2

4ν

}∥∥∥∥∥
2
, r = (0, 0.06, 0.12, . . . , 5.94, 6).

On the horizontal axis we have different values of the smoothness parameter ν

between 1 and 100. 100 is the largest considered ν value because many com-

puters cannot evaluate the Matérn covariance for ν much larger than 100. We

can see on the left side of Figure 1.4 that the norm difference is converging to
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Figure 1.4: Convergence to the Gaussian covariance. On the left, we show that

the norm difference between the Matérn and the Gaussian covariance function

converges to zero as ν increases, plotted on the log scale. On the right, we

plot the Exponential and Gaussian covariance functions along with the Matérn

covariance for various values of ν with a fixed practical range of 1 to further

illustrate that the Matérn covariance is equal to the Exponential covariance

when ν = 1/2 and converges to the Gaussian covariance as ν →∞.
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zero, which numerically verifies the fact that the Gaussian covariance function

is the limiting covariance model as ν →∞.

The right side of Figure 1.4 now adds the Gaussian and Exponential co-

variance functions to a plot of Matérn covariance functions with different ν

values. All ` values are adjusted so the practical range of each curve is equal

to one. When ν = 100, the Matérn covariance is virtually indistinguishable

from the Gaussian covariance and when ν = 1/2, the Matérn and Exponential

covariance functions are identical.

Despite the benefits of using the Matérn class of covariance matrices, its

use can be problematic for inverse problems because computing the precision

matrix P, which is what appears in the posterior (1.5), requires inverting a

dense N × N matrix. Using the fast Fourier transform (FFT) [Wood and

Chan, 1994, Dietrich and Newsam, 1997, Bardsley, 2018] to operate with P

and C more efficiently is recommended if x is defined on a regular grid and

periodic boundary conditions are assumed. In other cases, it is useful that

the Matérn covariance function has a direct connection to a class of elliptic

SPDEs [Lindgren et al., 2011] whose numerical discretization yields sparse pre-

cision matrices, P, that are computationally feasible to work with even when

N is large. Connections of this type were first shown to exist by Whittle in

[Whittle, 1954], where he showed the connection held for a special case of the

Matérn covariance class. Hence, priors that depend on this connection are

often referred to as Whittle-Matérn priors. The connection between the gen-

eral Matérn covariance function and SPDEs has been used in a wide range of

applications for defining computationally feasible priors for high-dimensional

problems [Roininen et al., 2016, Roininen et al., 2014, Monterrubio-Gómez

et al., 2018]. Moreover, work has been done in establishing convergence theo-
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rems for, and lattice approximations of, these Whittle-Matérn priors [Roininen

et al., 2013].

The remainder of the dissertation is organized as follows. In Chapter 2, we

describe in detail the connection between zero-mean Gaussian processes with

the isotropic Matérn covariance operator and those that arise as solutions of

a class of elliptic SPDEs. This is then extended to the anisotropic case. In

Chapter 3, we give an in-depth look at discretizing the SPDE for use as a sparse

precision matrix as well as the effect that discretizing and imposing boundary

conditions has on the covariance operator. In Chapter 4, we show how to

estimate the parameters in the Whittle-Matérn prior using the semivariogram

method, and then we show how to use this approach to define the prior when

solving a Bayesian inverse problem. Numerical examples are used to show

this method works well. Chapter 5 contains two extensions. First, we extend

these ideas to consider images with regions that require different covariance

structures. We then compare and contrast using the fully-Bayesian method to

achieve point estimates and uncertainty quantification in our estimates. We

end with conclusions in Chapter 6.



Chapter 2

Theoretical Results

This chapter aims to provide detailed descriptions and proofs of the theory

necessary for the semivariogram method to be valid. We begin with stochastic

partial differential equations. A stochastic partial differential equation (SPDE)

is a PDE that includes a random force term or coefficient. In this chapter, we

will show that the isotropic Whittle-Matérn class of priors can be specified as

the solution of the SPDE

(1− `2∆)β/2x(u) =W(u), u ∈ Rd, β = ν + d/2, `, ν > 0, (2.1)

where ∆ = ∑d
i=1

∂2

du2
i

is the Laplacian operator in d dimensions and W is

spatial Gaussian white noise with unit variance, which we define below. Al-

though this connection has been shown to exist [Whittle, 1954, Lindgren et al.,

2011, Roininen et al., 2014], here we provide a detailed derivation and original

proof of this result. This derivation is based on the Green’s function of the dif-

ferential operator. For other linear operators with sufficient smoothness, e.g.,

the one in the Stokes equations and the one in the standard heat equation,

17
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the corresponding SPDEs can be used to define different Gaussian processes

[Lord et al., 2014]. The method we employ here provides a potential way to

derive the covariance functions of the Gaussian processes induced by other

linear SPDEs as well.

2.1 Preliminaries

Before deriving the solution of (2.1), we need some preliminary definitions.

2.1.1 Gaussian Fields

A stochastic process {x(u),u ∈ Ω}, with Ω ⊂ Rd, is a Gaussian field [Rue

and Held, 2005] if for any k ≥ 1 and any locations u1, . . . ,uk ∈ Ω, the vector

[x(u1), . . . , x(uk)]T is a normally distributed random vector with mean

µ =
[
E[x(u1)], . . . , E[x(uk)]

]T
,

where E[ · ] denotes expected value, and covariance matrix

[C]ij = Cov(x(ui), x(uj))

= E[(x(ui)− E[x(ui)])(x(uj)− E[x(uj)])], for 1 ≤ i, j ≤ k.

The covariance function is defined C(ui,uj) := Cov(x(ui), x(uj)). It is neces-

sary that the covariance function is positive definite, i.e., for any {u1, . . . ,uk},

with k ≥ 1, the covariance matrix C defined above is positive definite. The

Gaussian field is called stationary if the mean is constant and the covariance

function satisfies C(u,v) = C(u− v) and isotropic if C(u,v) = C(‖u− v‖).



Chapter 2. Theoretical Results 19

Figure 2.1: Isotropic field. The correlation between any two points depends

only on the distance between those points and is independent of direction.

An example of an isotropic field is given in Figure 2.1.

2.1.2 White Noise

The term white noise [Lord et al., 2014, Walsh, 1986] comes from light. White

light is a homogeneous mix of wavelengths, as opposed to colored light, which

is a heterogeneous mix of wavelengths. In a similar way, white noise contains

a homogeneous mix of all the different basis functions. The mixing of these

basis functions is determined by a random process. When this random process

is Gaussian, we have Gaussian white noise. Basis functions of a function

space have the property that any continuous function in that function space

can be represented as a linear combination of the basis functions. Consider

a domain Ω and let {φj : j = 1, 2, . . . } be an orthonormal basis of L2(Ω)

where L2(Ω) = {f : Ω→ R |
∫

Ω |f(x)|2dx <∞}. Then Gaussian white noise
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is defined by

W(u) =
∞∑
j=1

ξjφj(u), ξj
iid∼ N (0, η2), (2.2)

where u refers to spatial location. With this definition, it is clear that Gaussian

white noise has mean zero: E[W(u)] = ∑∞
j=1E [ξj]φj(u) = 0. Moreover, one

can show that Cov (W(u),W(v)) = η2δf (u−v), where δf (·) is the Dirac delta

function [Hassani, 2000], also known as the delta distribution. We include the

subscript f to differentiate the delta function from the δ hyperparameter used

elsewhere in this thesis. A well-known and very important property of the

Dirac delta function is that it satisfies the sifting property:

f(u) =
∫
Rd
δf (u− v)f(v)dv,

which is so named due to the fact that applying the delta function to the

function f(v) in the integral sifts out a single value of f(v) [Bracewell, 1986].

2.1.3 Green’s Functions

We now consider differential equations of the form Lx(u) = f(u), u ∈ Rd,

where L is a linear, differential operator. A Green’s function [Gockenbach,

2005, Stakgold and Holst, 2011], g, of L is any solution of Lg(u,v) = δf (u−v).

The Green’s function can be used to solve Lx(u) = f(u), as we show here.

Let L : V → V be a linear mapping. Using the weak form of the PDE, we

have 〈Lx, h〉 = 〈f, h〉 ∀h ∈ V , where 〈·, ·〉 denotes an inner product. Since this

holds for all functions h ∈ V , it holds for our specific Green’s function, g. So,

〈Lx, g〉 = 〈f, g〉. This implies 〈x, L∗g〉 = 〈f, g〉 where L∗ is the adjoint of L

[D’Angelo, 2013]. Our specific operator is self-adjoint, which means L = L∗,
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and so L∗g = Lg = δf since g is a Green’s function. Thus, we have

〈Lx, g〉 = 〈f, g〉

=⇒ 〈x, L∗g〉 = 〈f, g〉

=⇒ 〈x, Lg〉 = 〈f, g〉

=⇒ 〈x, δf〉 = 〈f, g〉.

Therefore, using the sifting property of the Dirac delta function, the solution

of the equation Lx(u) = f(u) can be written as

x(u) =
∫
Rd
g(u,v)f(v)dv (2.3)

in the L2 inner product.

2.1.4 Fourier Transform

We define the d-dimensional Fourier transform [Sneddon, 1995, Kwaśnicki,

2017] as

f̂(ω) =
∫
Rd
f(u)e−iω·udu

with inverse Fourier transform

f(u) = 1
(2π)d

∫
Rd
f̂(ω)eiω·udω,

where ω ∈ Cd are the coordinates in the Fourier-transformed space; the hat

(f̂) notation denotes the Fourier transform of a function f ; and ω · u denotes
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the dot product between ω and u. We also use F{·}(ω) to denote the Fourier

transform such that ̂f(u) = F{f(u)}(ω) = f̂(ω).

Now, we consider applying the Laplacian operator in d dimensions: ∆ =

∇2 = ∑d
i=1

∂2

∂u2
i
. We will apply ∆ to eiω·u = ei(ω1u1+···+ωdud):

∇ei(ω1u1+···+ωdud) =
[
iω1e

i(ω1u1+···+ωdud) . . . iωde
i(ω1u1+···+ωdud)

]T
,

and so

∆ei(ω1u1+···+ωdud) = ∇ · ∇ei(ω1u1+···+ωdud)

= ∇ ·
[
iω1e

i(ω1u1+···+ωdud) . . . iωde
i(ω1u1+···+ωdud)

]T
= i2ω2

1e
i(ω1u1+···+ωdud) + · · ·+ i2ω2

de
i(ω1u1+···+ωdud)

= −ω2
1e
i(ω1u1+···+ωdud) + · · ·+−ω2

de
i(ω1u1+···+i2ωdud)

= −(ω2
1 + · · ·+ ω2

d)ei(ω1u1+···+ωdud)

= −‖ω‖2ei(ω1u1+···+ωdud)

= −‖ω‖2eiω·u.

When taking the Fourier transform of the Laplacian applied to a function, we

have

∆f(u) = ∆
(

1
(2π)d

∫
Rd
f̂(ω)eiω·udω

)
.

Since ∆ is a linear operator and is acting only on u, we can move it inside the

integral:

∆f(u) = ∆
(

1
(2π)d

∫
Rd
f̂(ω)eiω·udω

)



Chapter 2. Theoretical Results 23

= 1
(2π)d

∫
Rd
f̂(ω)∆eiω·udω

= 1
(2π)d

∫
Rd
f̂(ω)(−‖ω‖2)eiω·udω

= 1
(2π)d

∫
Rd

(−‖ω‖2)f̂(ω)eiω·udω.

Thus, ∆̂f(u) = (−‖ω‖2)f̂(ω) in the sense of distributions.

We can iterate on this to obtain

∆nf(u) = 1
(2π)d

∫
Rd

(−‖ω‖2)nf̂(ω)eiω·udω, n = 0, 1, 2 . . .

and so ∆̂nf(u) = (−‖ω‖2)nf̂(ω), which can be generalized as a pseudo-

differential operator for non-integer n. Now using symbols, we can define

an operator, L, by the symbol (1 + `2‖ω‖2)β. This symbol corresponds to

L = (1 − `2∆)β and so the Fourier transform of (1 − `2∆)βf(u) is said to be

(1 + `2‖ω‖2)β f̂(u).

It will also be important to know the Fourier transform of the Dirac delta

function, δf (·).

δ̂f (ω) =
∫
Rd
δf (u)e−iω·udu

= e−i0·u (using the sifting property)

= 1.

Thus, the Fourier transform of the Dirac delta function is the constant 1 in

the sense of distributions.
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2.2 Isotropic Matérn Connection

In this section, we will prove the following theorem concerning the solution of

the SPDE (2.1).

Theorem 2.2.1. The solution x(u) of (2.1) is a Gaussian field with mean

zero and Matérn covariance function defined by (1.6).

Proof. To begin, we note that the Green’s function for (2.1) is the solution of

(1− `2∆)β/2g(u,v) = δf (v − u). (2.4)

Using (2.3), the solution to (2.1) is given by

x(u) =
∫
Rd
g(u,v)W(v)dv, (2.5)

making x(u) a Gaussian field since it is a linear transformation of Gaussian

white noise.

We now compute the mean and covariance of the Gaussian field, x(u),

defined by (2.5). Since the Green’s function is a strictly-positive, symmetric,

and rapidly decaying function, we can apply Fubini’s theorem [Saks, 1937] to

obtain the mean of x(u):

E[x(u)] = E
[∫

Rd
g(u,v)W(v)dv

]
=
∫
Rd
g(u,v)E [W(v)] dv = 0.

Since x(u) has mean zero, the covariance is given by

Cov(x(u), x(u′)) = E[x(u)x(u′)]

= E
[∫

Rd
g(u,v)W(v)dv

∫
Rd
g(u′,v′)W(v′)dv′

]
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=
∫
Rd

(∫
Rd
E[W(v)W(v′)]g(u,v)dv

)
g(u′,v′)dv′

=
∫
Rd

(∫
Rd
δf (v − v′)g(u,v)dv

)
g(u′,v′)dv′

=
∫
Rd
g(u,v′)g(u′,v′)dv′.

If we define C(u,u′) := Cov
(
x(u), x(u′)

)
, the previous result implies that if

L = (1− `2∆)β/2, then for our linear L acting only on u′,

LC(u,u′) = L
∫
Rd
g(u,v′)g(u′,v′)dv′

=
∫
Rd

[
Lg(u′,v′)

]
g(u,v′)dv′

=
∫
Rd
δf (u′ − v′)g(u,v′)dv′

= g(u,u′). (2.6)

To derive the Green’s function g in (2.6), we first define g(u) := g(u,0).

Then (2.4) implies

(1− `2∆)β/2g(u) = δf (u). (2.7)

To proceed, we must take the Fourier transform of both sides of (2.7). Using

the results obtained in Section 2.1.4, this yields

(1 + `2‖ω‖2)β/2ĝ(ω) = 1.

Thus, the Fourier transform of the Green’s function is

ĝ(ω) = (1 + `2‖ω‖2)−β/2. (2.8)

Next, we assume stationarity so that the covariance only depends on the
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relative locations of the points, i.e., r := u − v. Then E[x(u)x(v)] =

E[x(r)x(0)] = C(r,0) := C(r) and (2.6) can be expressed LC(r) = g(r).

If we take the Fourier transform of both sides of this equation, and appeal to

(2.8), we obtain

F{(1− `2∆)β/2C(r)}(ω) = F{g(r)}(ω)

=⇒ (1 + `2‖ω‖2)β/2Ĉ(ω) = (1 + `2‖ω‖2)−β/2.

Thus

Ĉ(ω) = (1 + `2‖ω‖2)−β,

and we can write

C(r) = 1
(2π)d

∫
Rd
Ĉ(ω)eiω·rdω

= 1
(2π)d

∫
Rd

(1 + `2‖ω‖2)−βeiω·rdω.

For d = 1, we have

C(r) = 1
2π

∫
R
(1 + `2ω2)−βeiωrdω

= 1
2π

∫
R
(1 + `2ω2)−β (cos(ωr) + i sin(ωr)) dω

= 1
2π

∫
R
(1 + `2ω2)−β cos(ωr)dω + i

2π

∫
R
(1 + `2ω2)−β sin(ωr)dω.

Notice now that (1 + `2ω2)−β is an even function of ω and sin(ωr) is an odd

function. Thus,
∫
R(1 + `2ω2)−β sin(ωr)dω = 0. Therefore,

C(r) = 1
2π

∫
R
(1 + `2ω2)−β cos(ωr)dω
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= 2
2π

∫ ∞
0

(1 + `2ω2)−β cos(ωr)dω (since the integrand is even)

= 1
π

√
π

2

∫ ∞
0

(1 + `2ω2)−β
√

2
π

cos(ωr)√
ωr

√
ωrdω

= 1√
2π

∫ ∞
0

(1 + `2ω2)−βJ−1/2(ωr)
√
ωrdω

= 1
(2π) d2 r d−1

2

∫ ∞
0

ω
d−1

2 (1 + `2ω2)−βJ d−2
2

(ωr)(ωr)1/2dω,

where Jν(·) is the Bessel function of the first kind of order ν [Andrews, 1992].

It is known that an expression for J−1/2(t) is
√

2
π

cos(t)√
t

.

For d = 2, we have

C(r) = 1
(2π)2

∫
R2

(1 + `2‖ω‖2)−βeiω·rdω.

Since the Laplacian, ∆, is invariant under rotations and translations and we

are assuming isotropy in the covariance, we have radial symmetry. Thus, we

can let ω = ‖ω‖ =
√
ω2

1 + ω2
2 and r = ‖r‖ =

√
r2

1 + r2
2. We will also use the

fact that ω · r = ‖ω‖‖r‖ cos(θ − φ) = ωr cos(θ − φ) for (r1, r2) = (r, φ) and

(ω1, ω2) = (ω, θ). Then

1
(2π)2

∫
R2

(1 + `2‖ω‖2)−βeiω·rdω

= 1
(2π)2

∫ 2π

0

∫ ∞
0

(1 + `2ω2)−βeiωr cos(θ−φ)ωdωdθ

= 1
(2π)2

∫ ∞
0

(1 + `2ω2)−β
(∫ 2π

0
eiωr cos(θ−φ)dθ

)
ωdω.

Additionally, since eiωr cos(θ−φ) has period 2π,
∫ 2π

0 eiωr cos(θ−φ)dθ =
∫ 2π

0 eiωr cos(θ)dθ,

which is a representation of 2πJ0(ωr), where J0(·) is the Bessel function of the
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first kind of order 0. Therefore,

C(r) = 1
(2π)2

∫ ∞
0

(1 + `2ω2)−β2πJ0(ωr)ωdω

= 1
2π

∫ ∞
0

(1 + `2ω2)−βJ0(ωr)ωdω

= 1
(2π) d2 r d−1

2

∫ ∞
0

ω
d−1

2 (1 + `2ω2)−βJ d−2
2

(ωr)(ωr)1/2dω

= 1
(2π) d2 r d−1

2 `2β

∫ ∞
0

ω
d−1

2 (`−2 + ω2)−βJ d−2
2

(ωr)(ωr)1/2dω.

This is very similar to the Hankel transform [Piessens, 2000]. Therefore, when

d = 1 or 2 we have a generalized representation of the covariance. Although

not shown here, the Hankel transform can be used to show this representation

of the covariance holds for d > 2 as well when assuming stationarity and

isotropy in the field.

Using the integral identity [Bateman, 1954, Eq. 20, p. 24, vol. II] with

x = ω, y = r, α = `−1, ν = d−2
2 , and µ = β − 1, we obtain

C(r) =
`β−

d
2 rβ−

d
2K d

2−β
(r/`)

`2β(2π) d2 2β−1Γ(β)

where Kν(·) is the modified Bessel function of the second kind of order ν and

Γ(·) is the gamma function. Now let ν = β − d
2 . This integral converges when

`, d, ν > 0. Additionally, since Kν = K−ν , we have,

C(r) = `νrνK−ν(r/`)
`2ν+dπ

d
2 2ν+d−1Γ(ν + d

2)
= (r/`)νKν(r/`)
`dπ

d
2 2ν+d−1Γ(ν + d

2)

= Γ(ν)
`dΓ(ν + d

2)
(r/`)νKν(r/`)
π
d
2 2ν−12dΓ(ν)

= Γ(ν)
`d(4π) d2 Γ(ν + d

2)
(r/`)νKν(r/`)

2ν−1Γ(ν) .
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Letting σ2 = Γ(ν)
`d(4π)

d
2 Γ(ν+ d

2 )
, C(r) can be equivalently expressed

C(r) = σ2 (r/`)νKν(r/`)
2ν−1Γ(ν) , (2.9)

which is exactly the Matérn covariance function (1.6). �

2.3 Anisotropic Case

The solution to (2.1) is an isotropic Gaussian field, which means the correlation

length is the same in every direction. This isotropy assumption is often not

satisfied and so it will be useful to have an alternate SPDE formulation for

the case when correlation lengths differ with direction. Specifically, we will

focus on modeling geometric anisotropy, which means that the correlation

length changes with direction in a smooth fashion between an axis of maximum

correlation and an axis of minimum correlation [Cressie, 2015]. There are other

types of anisotropy, e.g. zonal anisotropy, but in this dissertation we will

only consider geometric anisotropy. Hence, any mention of anisotropy going

forward will refer to geometric anisotropy. The groundwork for constructing

priors that can model anisotropy has been laid in works such as [Roininen

et al., 2014, Lindgren et al., 2011, Hale, 2013]. An example of an anisotropic

field is given in Figure 2.2 where it is clear that the correlation persists the

longest in the 45◦ direction.

2.3.1 Anisotropic SPDE

We will derive an anisotropic SPDE based on the isotropic SPDE (2.1). We

will only consider the two-dimensional case, but results can be extended to



Chapter 2. Theoretical Results 30

Figure 2.2: Anisotropic field. The correlation length differs depending on

direction. The correlation length is largest in the 45◦ direction and shortest in

the −45◦ direction.

d > 1 dimensions. In two dimensions, for a Gaussian field with correlation

length `1 in the direction of the angle θ, where −π/2 < θ ≤ π/2 is mea-

sured counter-clockwise from the x-axis, and correlation length `2 in the direc-

tion perpendicular to θ, we can make the following change of variables from

isotropic to anisotropic coordinates:

w =

 cos θ −`2/`1 sin θ

sin θ `2/`1 cos θ


u1

u2

 (2.10)

and thus

w1(u1, u2) = cos θu1 − `2/`1 sin θu2

w2(u1, u2) = sin θu1 + `2/`1 cos θu2.

We will apply the change of variables (2.10) to both sides of (2.1) to obtain
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the analogous anisotropic SPDE. The Laplacian on the left-hand side can be

altered using the chain rule:

∂

∂u1
= ∂

∂w1

∂w1

∂u1
+ ∂

∂w2

∂w2

∂u1
and

∂

∂u2
= ∂

∂w1

∂w1

∂u2
+ ∂

∂w2

∂w2

∂u2
,

which means

∂2

∂u2
1

=
(
∂2

∂w2
1

∂w1

∂u1
+ ∂2

∂w1∂w2

∂w2

∂u1

)
∂w1

∂u1
+
(

∂2

∂w1∂w2

∂w1

∂u1
+ ∂2

∂w2
2

∂w2

∂u1

)
∂w2

∂u1

= cos2 θ
∂2

∂w2
1

+ 2 sin θ cos θ ∂2

∂w1∂w2
+ sin2 θ

∂2

∂w2
2

and

∂2

∂u2
2

=
(
∂2

∂w2
1

∂w1

∂u2
+ ∂2

∂w2∂w1

∂w2

∂u2

)
∂w1

∂u2
+
(

∂2

∂w1∂w2

∂w1

∂u2
+ ∂2

∂w2
2

∂w2

∂u2

)
∂w2

∂u2

= (`2/`1)2 sin2 θ
∂2

∂w2
1
− 2(`2/`1)2 sin θ cos θ ∂2

∂w1∂w2
+ (`2/`1)2 cos2 θ

∂2

∂w2
2
.

Thus,

∆ = ∂2

∂u2
1

+ ∂2

∂u2
2

=
(
(`2/`1)2 sin2 θ + cos2 θ

) ∂2

∂w2
1

+
(
(`2/`1)2 cos2 θ + sin2 θ

) ∂2

∂w2
2

− 2
(
(`2/`1)2 sin θ cos θ − sin θ cos θ

) ∂2

∂w1∂w2
.

The right hand side of (2.1) is updated by changing the coordinates of the
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white noise. The inverse transformation of (2.10) is

u =

 cos θ sin θ

−τ sin θ τ cos θ


w1

w2

 := f(w), (2.11)

where τ = `1/`2. Now, we define the transformed white noise basis functions

as

φ̃j(w) = ψj(f(w))| det(Jf (w))|1/2 = ψj(f(w))(`1/`2)1/2,

where det(Jf (w)) denotes the determinant of the Jacobian of the transforma-

tion f(w), which is (`1/`2)1/2 in our case. This will preserve the orthonormal

properties of the basis functions. Then, appealing to (2.2),

W(w) =
∞∑
j=1

ξjφ̃j(w), ξj
iid∼ N (0, η2)

=
∞∑
j=1

ξjφj(u)(`1/`2)1/2 = (`1/`2)1/2W(u),

which means W(u) = (`2/`1)1/2W(w).

So, taking ` = `1 and making the appropriate substitutions, (2.1) is con-

verted to the anisotropic SPDE:

1−
[
(a2
θ + b2

θ)
∂2

∂w2
1

+ (c2
θ + d2

θ)
∂2

∂w2
2

− 2(aθcθ − bθdθ)
∂2

∂w1∂w2

]β/2x(w) = (`2/`1)1/2W(w)
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where aθ = `2 sin θ, bθ = `1 cos θ, cθ = `2 cos θ, and dθ = `1 sin θ. For

R =

 `1 cos θ `1 sin θ

−`2 sin θ `2 cos θ

 ,

the above SPDE can be written

(
1−∇ ·RTR∇

)β/2
x(w) = (`2/`1)1/2W(w). (2.12)

Notice that if `1 = `2, this SPDE is equivalent to (2.1) with ` = `1.

2.3.2 Anisotropic Matérn Connection

Like in the isotropic case, we are interested in the properties of the solution

of (2.12), especially its covariance function. First, we define the anisotropic

Matérn covariance function [Haskard, 2007] as

C(rw) = σ2 (rw/ζ)νKν(rw/ζ)
2ν−1Γ(ν) , (2.13)

with

ζ = `1√
cos2(ψ − θ) + (`1/`2)2 sin2(ψ − θ)

,

where rw = ‖wi −wj‖ is the distance between the anisotropic coordinates, ζ

is the new range parameter in the direction of ψ, `1 is the correlation length in

the direction of θ and `2 is the correlation length in the direction perpendicular

to θ. Notice that the smoothness parameter, ν, is unaffected.

The remainder of this subsection contains results used to prove the follow-

ing theorem, which, to our knowledge, is novel.
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Theorem 2.3.1. The solution x(w) of (2.12) is a Gaussian field with mean

zero and anisotropic Matérn covariance function defined by (2.13).

Proof. First, we derive the Green’s function for (2.12), which is the solution

of (
1−∇ ·RTR∇

)β/2
g(w,v) = δf (v −w). (2.14)

Using (2.3), the solution to (2.12) is given by

x(w) = (`2/`1)1/2
∫
R2
g(w,v)W(v)dv, (2.15)

which makes x(w) a Gaussian field since it is a linear transformation of Gaus-

sian white noise. Be aware that we are still assuming stationarity in our field.

To derive the Green’s function g in (2.15), we first define g(w) := g(w,0).

Then (2.14) implies

(
1−∇ ·RTR∇

)β/2
g(w) = δf (w). (2.16)

We would like to change from the anisotropic coordinates w to anisotropic

coordinates u in (2.16) so we can use the results from Section 2.2. We again

use (2.11) for the coordinate change and, in a similar fashion as was done

earlier, we apply the chain rule to replace ∂2/∂w2
1, ∂2/∂w2

2, and ∂2/(∂w1∂w2)

in
(
1−∇ ·RTR∇

)β/2
with partial derivatives in terms of u. When making

this change, the coefficients of ∂2/∂u2
1, ∂2/∂u2

2, and ∂2/(∂u1∂u2) are `2
1, `2

1,

and 0, respectively and so we have (1 − ∇ · RTR∇)g(w) = (1 − `2
1∆)g(u).

Additionally, we can change variables in the Delta function on the right side

of (2.16) by multiplying by the determinant of the Jacobian of (2.11): `1/`2.
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Thus, the change of variables transforms (2.16) into the equation

(
1− `2

1∆
)β/2

g(u) = (`1/`2)δf (u), (2.17)

which is equivalent to (2.7) up to a constant. Hence, we can apply the results

of Section 2.2. Namely, after changing variables, the solution of (2.12) is a

Gaussian field with mean zero and the isotropic Matérn covariance function

defined by (1.6). Notice that the constant that multiplies the Delta function

on the right-hand side of (2.17) and the constant that multiplies the integral

in (2.15) will cancel when going through the process of deriving the covariance

function since the constant in (2.15) gets squared.

We must now make one final change of variables back to w from u so

our covariance function will be in terms of the anisotropic coordinates rather

than the isotropic ones. Since the input to the Matérn correlation function

must be a distance between isotropic spatial locations, we need to represent

an isotropic distance, ru, in terms of the anisotropic coordinates. Consider

r := wi −wj. Then, defining rw := ‖r‖ = ‖wi −wj‖,

ru := ‖ui − uj‖ =

∥∥∥∥∥∥∥∥
 cos θ sin θ

−τ sin θ τ cos θ

 (wi −wj)

∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
 cos θ sin θ

−τ sin θ τ cos θ

 r
∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥
 cos θ sin θ

−τ sin θ τ cos θ


 r1

r2


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
 r1 cos θ + r2 sin θ

−r1τ sin θ + r2τ cos θ


∥∥∥∥∥∥∥∥ .

Now we convert to polar coordinates with r1 = rw cosψ and r2 = rw sinψ.
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Then

ru =

∥∥∥∥∥∥∥∥
 rw cosψ cos θ + rw sinψ sin θ

−rwτ cosψ sin θ + rwτ sinψ cos θ


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
 rw cos(ψ − θ)

rwτ sin(ψ − θ)


∥∥∥∥∥∥∥∥

= rw
[
cos2(ψ − θ) + τ 2 sin2(ψ − θ)

]1/2
.

Therefore, we need to adjust the distance between the vectors wi and wj by

[cos2(ψ − θ) + τ 2 sin2(ψ − θ)]1/2 in order to get the distances to plug into the

isotropic Matérn correlation function. Thus, the isotropic Matérn covariance

function has been generalized to the anisotropic case using the same change

of variables as in (2.10). Adjusting the anisotropic distances is equivalent to

defining the anisotropic Matérn covariance function as we have in (2.13). �



Chapter 3

Numerical Methods

In this chapter, we will go into detail about how to discretize the SPDEs from

Chapter 2 to form prior precision matrices that can be used to solve inverse

problems. We also discuss the effect restricting to a finite domain has on the

covariance of the solutions to the SPDEs and what must be done in order to

combat this potential issue.

3.1 Preliminaries

Before proceeding, we need some additional preliminary explanations of some

numerical techniques we use in this chapter and beyond.

37
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3.1.1 Kronecker Product

The Kronecker product for matrices C ∈ Rm×n and D ∈ Rr×s, is defined by

C⊗D =



c11D c12D . . . c1nD

c21D c22D . . . c2nD
... ... . . . ...

cm1D cm2D . . . cmnD


mr×ns

with cij = [C]ij [Van Loan, 2000]. For example, for the 2 × 2 matrix of all

ones, J2,

J2 ⊗ I2 =



1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


and I2 ⊗ J2 =



1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


.

3.1.2 vec(·) and diag(·) Functions

For an n× n matrix

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

... ... . . . ...

an1 an2 . . . ann


,

the function vec(A) converts the matrix A to a vector by stacking its columns

as follows: vec(A) = (a11, a21, . . . , an1, a12, . . . , a1n, . . . , ann)T . A useful prop-

erty related to the vec(·) function and Kronecker products is [Bardsley, 2018]:

vec(DXCT ) = (C⊗D)vec(X). (3.1)
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The diag(·) function takes a vector of length n and creates a diagonal n×n

matrix with the diagonal elements given by the elements of the vector. For

example, if we have a vector x = (x1, x2, . . . , xn)T , then

diag(x) =



x1 0 . . . 0

0 x2 . . . 0
... ... . . . ...

0 0 . . . xn


.

3.1.3 Discrete Fourier Transform

If we are working on a regular grid in one dimension and periodic boundary

conditions are assumed, then the forward map A in (1.1) and the precision

matrix P are both circulant. An n× n circulant matrix has the form

A =



a0 an−1 . . . a2 a1

a1 a0 an−1 a2

... a1 a0
. . . ...

an−2
. . . . . . an−1

an−1 an−2 . . . a1 a0


,

so that the entire matrix is defined by its first column, which we will denote

as as. Notice that circulant matrices are also Toeplitz since their diagonals

are constant.

The advantage of working with circulant matrices is in the fact that they

can be diagonalized using the discrete Fourier transform (DFT) [Bardsley,

2018]. The diagonalization using the DFT can be accomplished in the following
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way. First, the DFT matrix has the form

[F]ij = 1√
n
ω(i−1)(j−1)/n, 1 ≤ i, j ≤ n,

where ω = exp(2π
√
−1/n). Some properties of the DFT matrix F include the

fact that F is symmetric, i.e. FT = F, and the inverse DFT matrix F−1 = F∗,

where ‘∗’ denotes the conjugate transpose. It can be shown that

A = F∗diag(
√
nFas)F

and the eigenvalues of A are equal to âs :=
√
nFas. Therefore, we can com-

pute matrix inverses and multiplication quickly by taking A−1 = F∗diag(1/âs)F,

where the division is component-wise, and an expression like
(
ATA + αP

)−1
ATb

can be computed using

(
ATA + αP

)−1
ATb = F∗diag

(
conj(âs)
|âs|2 + αp̂s

)
Fb,

where conj(·) denotes the component-wise complex conjugate, | · |2 denotes the

component-wise squared-modulus, p̂s are the eigenvalues of P (assuming P is

circulant), and division is again component-wise.

Two-Dimensional DFT

In two dimensions, we lose the overall circulant structure of the matrix A. The

matrix instead becomes block circulant with circulant blocks (BCCB), which
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has the following form:

A =



A0 An−1 . . . A2 A1

A1 A0 An−1 A2

... A1 A0
. . . ...

An−2
. . . . . . An−1

An−1 An−2 . . . A1 A0


.

Here each Ai for 0 ≤ i ≤ n − 1 is circulant and of size n × n, which means

A is n2 × n2. We can obtain as in this case by assigning the first column of

Aj−1 as the jth column of as for j = 1, 2, . . . , n. Thus, in the two-dimensional

case, as is an n × n array instead of an n × 1 vector. Additionally, the DFT

matrix in two dimensions, which we denoted by F in one dimension, is defined

as F2D = F ⊗ F (and so F∗2D = F∗ ⊗ F∗), where ⊗ denotes the Kronecker

product.

In two dimensions, the eigenvalues of the BCCB matrix A are âs = nFasF

and the diagonalization of A can be written as

A = F∗2Ddiag (vec(âs)) F2D.

This again can lead to quick computations. In practice, these computations

are typically done on arrays instead of vectors. For example, if x = vec(X) and

b = vec(B), then Ax = vec
(
F∗(âs�[FXF])F∗

)
, where � denotes component-

wise multiplication, and

(
ATA + αP

)−1
ATb = vec

(
F∗
(

conj(âs)
|âs|2 + αp̂s

� [FBF]
)

F∗
)
,



Chapter 3. Numerical Methods 42

where p̂s are the eigenvalues of the BCCB matrix P. Notice that we can use

(3.1) to write F2Dx = (F⊗F)x = vec(FXF) and F∗2Dx = vec(F∗XF∗). There-

fore, when performing computations on arrays, FXF and F∗XF∗ compute the

two-dimensional DFT and inverse DFT, respectively.

To more efficiently perform the multiplication by F and F∗, many modern

computer programs, such as MATLAB, use an algorithm known as the fast

Fourier transform (FFT), which computes Fx in O(n log n) operations. In

MATLAB, for an n× 1 vector v and an n× n matrix W, the following code

can be used:

fft(v) =
√
nFv

ifft(v) = 1√
n

F∗v

fft2(W) = nFWF

ifft2(W) = 1
n

F∗WF∗.

This is useful since it eliminates the need to create and store F and F∗.

3.1.4 Conjugate Gradient

The conjugate gradient (CG) and preconditioned conjugate gradient (PCG)

methods are algorithms for finding numerical solutions for systems of linear

equations like those in the form

Ax = b, (3.2)
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where A and b are known and we are interested in finding the solution x.

There are some restrictions on A in that it must be symmetric (i.e. AT = A)

and positive definite (i.e. xTAx > 0 for all nonzero x ∈ Rn). A matrix

with both of these properties is known as symmetric positive definite (SPD).

If these are satisfied, CG is one of the most useful numerical techniques for

solving large linear systems of equations [Nocedal and Wright, 2006].

The Method

We will first explain the CG method before discussing the PCG method. The

key to CG is the fact that solving the expression (3.2) is equivalent to the

following minimization problem:

arg min
x
J(x) := 1

2x
TAx− bTx,

since both give the same solution, which we will denote x∗. Using vector

derivatives, the gradient of J is equal to

∇J(x) = Ax− b := r(x),

which is also known as the residual of the linear system. The only use of r in

this section will refer to the residual as opposed to a vector of distances, as it

is elsewhere in the thesis. Since CG is an iterative method, when x = xk, the

kth iteration of x, the kth iteration of the residual is given by

rk = Axk − b. (3.3)
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Therefore, the direction of steepest descent of the function J(x) at iteration

k is −∇J(x) = −rk.

Now, the conjugacy in the name of the CG method comes from the fact

that it uses the property that two vectors, u and v, are called conjugate with

respect to a SPD matrix A if uTAv = 0 for u 6= v. Take a set of nonzero,

conjugate vectors {p1, . . . ,pn}. Since they are conjugate, it is simple to show

they are also linearly independent, and hence, form a basis in Rn. This means

the solution can be written as a linear combination of these vectors,

x∗ = x0 +
n∑
i=1

αipi.

Therefore, if we let

xk+1 = xk + αkpk, (3.4)

where the subscript denotes iteration number. We will obtain the solution x∗

in at most n iterations since it is certain that xn = x∗. Ideally, we will choose

these pk vectors in such a way that we can approximate x∗ in fewer than n

iterations, which is necessary for large n.

We need an expression for αk and pk. To determine the αk values, we will

minimize J(xk+1) with respect to αk:

J(xk+1) = J(xk + αkpk) = 1
2(xk + αkpk)TA(xk + αkpk)− bT (xk + αkpk)

= 1
2x

T
kAxk + αkx

T
kApk + 1

2α
2
kp

T
kApk − bTxk − αkbTpk,

and so

d

dαk
J(xk+1) = 0 =⇒ xTkApk + αkp

T
kApk − bTpk = 0.
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Solving this for αk gives

αk = bTpk − xTkApk
pTkApk

= (bT − xTkA)pk
pTkApk

= − rTk pk
pTkApk

. (3.5)

Since pk can be thought of as the step direction, and we showed −rk is the

steepest descent direction, we will update the pk by using the residuals and

the previous p vector:

pk+1 = −rk+1 + βkpk. (3.6)

The choice of βk will be discussed below and rk+1 is updated by using (3.3)

and (3.4). Specifically,

rk+1 = Axk+1 − b by (3.3)

= A(xk + αkpk)− b by (3.4)

= Axk − b+ αkApk

= rk + αkApk. (3.7)

βk must be chosen so that the conjugacy of the pi vectors with respect to A

is retained, i.e. pTkApk+1 = 0. Left-multiplying (3.6) by pTkA yields

pTkApk+1 = pTkA(−rk+1 + βkpk) = 0

=⇒ −pTkArk+1 + βkp
T
kApk = 0.



Chapter 3. Numerical Methods 46

Solving this for βk gives us

βk = pTkArk+1

pTkApk
.

To slightly increase the efficiency of this algorithm, we will now make a

few adjustments. Firstly, it is possible to show that rTi rj = 0 for i 6= j and

rTi pj = 0 for i > j. Using this fact and (3.6), we can change the expression

for αk in (3.5) to be

αk = − rTk pk
pTkApk

= −r
T
k (−rk + βkpk−1)

pTkApk
= rTk rk − βkrTk pk−1

pTkApk
= rTk rk
pTkApk

.

Now, using the orthogonality of the ri vectors and the fact in (3.7) that

rk+1 = rk − αkApk and thus Apk = (rk − rk+1)/αk, βk can be written

βk = pTkArk+1

pTkApk
= (rk − rk+1)Trk+1/αk

pTk (rk − rk+1)/αk
= rTk rk+1 − rTk+1rk+1

(−rk + βk−1pk−1)T (rk − rk+1)

= rTk+1rk+1

rkrk
.

Now that we have more economical representations of αk and βk, we can write

the CG algorithm in full as Algorithm 1.

Algorithm 1 Conjugate Gradient Method
0. Set k = 0, r0 = Ax0 − b, and p0 = −r;

1. Set αk = rTk rk
pTkApk

;
2. Set xk+1 = xk + αkpk;
3. Set rk+1 = rk + αkApk;

4. Set βk = rTk+1rk+1

rTk rk
;

5. Set pk+1 = −rk+1 + βkpk;
6. Return to step 1 and repeat until rk+1 is sufficiently small.
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We have stated that it will take at most n iterations for CG to reach the

solution, x∗. While that is true, it often reaches an acceptable solution much

more quickly. For instance, if A has r distinct eigenvectors, the CG algorithm

will obtain the solution in at most r iterations. Additionally, there are two

error bounds that can be useful in assessing convergence [Nocedal and Wright,

2006]. If we denote the eigenvalues of A as λ1 ≤ λ2 ≤ · · · ≤ λn, then the

following two bounds hold:

(1) (xk+1 − x∗)TA(xk+1 − x∗) ≤
(
λn−k − λ1

λn−k + λ1

)2

(x0 − x∗)TA(x0 − x∗)

(2) (xk+1 − x∗)TA(xk+1 − x∗) ≤

√
λn/λ1 − 1√
λn/λ1 + 1

k (x0 − x∗)TA(x0 − x∗).

Therefore, it is clear that the speed of the CG convergence is dependent on

the eigenvalues of A.

Preconditioning

Since the eigenvalues of A are important in the convergence speed of the CG

algorithm, we can increase the convergence rate by using a preconditioner

matrix, G = EET , so that the CG depends on the eigenvalues of E−TAE−1

instead of A. Using a preconditioner will yield the preconditioned conjugate

gradient (PCG) method. The best preconditioner is one in which E−TAE−1 ≈

I, the identity matrix, and G is efficient to invert. Using a preconditioner is

equivalent to making the change of variables y = Ex and then solving the

linear system

(E−TAE−1)y = E−Tb,
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Algorithm 2 Preconditioned Conjugate Gradient Method
0. Set k = 0, r0 = Ax0 − b, z0 = G−1r0, and p0 = −z0;

1. Set αk = rTk rk
pTkApk

;
2. Set xk+1 = xk + αkpk;
3. Set rk+1 = rk + αkApk;
4. Set zk+1 = G−1rk+1;

5. Set βk = zTk+1rk+1

zTk rk
;

6. Set pk+1 = −zk+1 + βkpk;
7. Return to step 1 and repeat until rk+1 is sufficiently small.

which is equivalent to (3.2). The resulting PCG algorithm is given as Algo-

rithm 2.

Note that E is not used in the implementation of PCG; G is the only

new matrix needed. Although each iteration of PCG is more costly than each

iteration of CG, the total number of iterations needed for PCG is significantly

lower with a good choice of a preconditioner. PCG is the method we will use

in this thesis to solve for our MAP estimator.

An illustration of the CG and PCG methods is presented in Figure 3.1. The

left side shows the way xk converges to the solution in a small-scale example

when using CG. For this example,

A =

3.5 −1

−1 1.5

 and b =

2.75

2.25

 , which means x∗ =

1.5

2.5

 .

Beginning with x0 = (0, 0)T , the first iteration of CG yields x1 = (1.60, 1.30)T

and the second iteration x2 = x∗ arrives at the true solution, as it should since

n = 2. The advantage PCG has over CG is illustrated on the right side of
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Figure 3.1: Conjugate gradient methods. The image on the left tracks the

convergence of the CG algorithm and the image on the right shows PCG.

Both methods converged in two iterations.

Figure 3.1. We now use the preconditioner

G =

3.5 0

0 1.5



that has just the diagonal entries of A and is therefore easier to invert. This

time, x1 = (1.37, 2.61)T , which is substantially closer to x∗ than x1 was in the

CG case and x2 = x∗ = (1.5, 2.5)T . For this example, both the CG and PCG

converged to the true solution in two iterations, but it is clear that PCG has

the potential to converge in fewer iterations for a problem with much larger n.

3.2 Discretizing the SPDE

In order to use the SPDE (2.1) or (2.12) to define the prior precision P, it

must be discretized so it is in the form of a matrix. To discretize the SPDEs,
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we use the finite-difference method [Bardsley, 2018]. To illustrate how the

discretization is performed, first consider the two-dimensional case when ν = 1

so that (2.1) reduces to

(
1− `2

[
∂2

∂u2
1

+ ∂2

∂u2
2

])
x(u) =W(u), u = (u1, u2)T ∈ R2, ` > 0.

for isotropic fields and (2.12) reduces to

(
1−

[
(a2
θ + b2

θ)
∂2

∂w2
1

+ (c2
θ + d2

θ)
∂2

∂w2
2
− 2(aθcθ − bθdθ) ∂2

∂w1∂w2

])
x(w) = (`2/`1)1/2W(w)

for anisotropic ones.

In two dimensions, x(u) = x(u1, u2) or x(w) = x(w1, w2) is a function of

two variables. To ease notation, we let s refer to the first spatial coordinate

(u1 in the isotropic case or w1 in the anisotropic case) and t will refer to the

second spatial coordinate. Let h = 1/n be the step-size of the discretization,

let si = (i− 1/2)h for i = 1, . . . , n, and let tj = (j − 1/2)h for j = 1, . . . , n. In

general, the Taylor series for a function f(x) expanded about a is

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)(x− a)2

2 +O(x3).

To discretize ∂2

∂s2x(si, tj), we will first fix ti and expand x(si + h, ti) about

si. This gives

x(si + h, tj) = x(si, tj) + ∂

∂s
x(si, tj)(si + h− si) +

∂2

∂s2 (si, tj)(h)2

2 +O(h3)

= x(si, tj) + ∂

∂s
x(si, tj)(h) +

∂2

∂s2x(si, tj)(h)2

2 +O(h3)
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and then, solving for − ∂2

∂s2x(si, tj), we have

− ∂2

∂s2x(si, tj) =
−2x(si+1, tj) + 2x(si, tj) + 2 ∂

∂s
x(si, tj)(h) +O(h3)

h2 . (3.8)

Now expanding x(si − h, tj) about si gives:

x(si − h, tj) = x(si, tj) + ∂

∂s
x(si, tj)(si − h− si) +

∂2

∂s2 (si, tj)(−h)2

2 +O(h3)

= x(si, tj) + ∂

∂s
x(si, tj)(−h) +

∂2

∂s2x(si, tj)(−h)2

2 +O(h3),

and so

− ∂2

∂s2x(si, tj) =
−2x(si−1, tj) + 2x(si, tj)− 2 ∂

∂s
x(si, tj)(h) +O(h3)

h2 . (3.9)

Now adding the expansions (3.8) and (3.9) and solving for − ∂2

∂s2x(si, tj), we

have

− ∂2

∂s2x(si, tj) = −x(si−1, tj) + 2x(si, tj)− x(si+1, tj)
h2 + E (3.10)

with E of order h2 since the terms of order h3 cancel in the numerator. By

the same process, we can write

− ∂2

∂t2
x(si, tj) = −x(si, tj−1) + 2x(si, tj)− x(si, tj+1)

h2 + E. (3.11)

Thus, the Laplacian can be discretized in the two-dimensional case by writing

−∆x(si, tj) =
(
− ∂2

∂s2 −−
∂2

∂t2

)
x(si, tj)

≈ −x(si−1, tj) + 2x(si, tj)− x(si+1, tj)
h2
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+ −x(si, tj−1) + 2x(si, tj)− x(si, tj+1)
h2

= −x(si−1, tj)− x(si, tj−1) + 4x(si, tj)− x(si+1, tj)− x(si, tj+1)
h2 .

Notice that (3.10) and (3.11) each give rise to n2 equations. To define

the n × n array X correctly, we must let [X]ji = x(si, tn+1−j) = xi(n+1−j) for

i, j = 1, . . . , n. The indices are reversed since they refer to spatial location and

all entries in first column, for example, have the same s coordinate. Thus, X

has the form

X =



x(s1, tn) x(s2, tn) . . . x(sn, tn)
... ... ... ...

x(s1, t2) x(s2, t2) . . . x(sn, t2)

x(s1, t1) x(s2, t1) . . . x(sn, t1)


=



x1n x2n . . . xnn
... ... ... ...

x12 x22 . . . xn2

x11 x21 . . . xn1


.

For the n× n matrix L, which is equal to

L0 =



2 −1 0 . . . 0

−1 2 −1 . . . ...

0 . . . . . . . . . 0
... . . . −1 2 −1

0 . . . 0 −1 2


or Lp =



2 −1 0 . . . −1

−1 2 −1 . . . ...

0 . . . . . . . . . 0
... . . . −1 2 −1

−1 . . . 0 −1 2



for zero or periodic boundary conditions, respectively, the n2 equations defined

by (3.10) can be written

[ 1
h2 XL

]
ji

= −x(si−1, tj) + 2x(si, tj)− x(si+1, tj)
h2 ≈ − ∂2

∂s2x(si, tj)
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and the equations defined by (3.11) can be expressed

[ 1
h2 LX

]
ji

= −x(si, tj−1) + 2x(si, tj)− x(si, tj+1)
h2 ≈ − ∂2

∂t2
x(si, tj).

This means the finite difference approximation of
(
− ∂2

∂s2 − ∂2

∂t2

)
x(s, t) is given

by (1/h2)vec(XL + LX), which can be equivalently expressed as (1/h2)(L ⊗

I + I ⊗ L)x where x = vec(X) = (x1n, x1(n−1), . . . , x11, x2n, . . . , xn1)T using

(3.1) and the fact that L is symmetric. Therefore,

−∆x(u) =
(
− ∂2

∂u2
1
− ∂2

∂u2
2

)
x(u) ≈ (1/h2)(L⊗ I + I⊗ L)x.

We now must discretize the ∂2

∂w1∂w2
operator in the anisotropic SPDE. A

similar process involving the Taylor series for functions of two variables and

expanding x(si+h, tj+h), x(si−h, tj+h), x(si+h, tj−h), and x(si−h, tj−h)

about the point (si, tj) will yield

∂2

∂s∂t
x(si, tj) ≈

x(si−1, tj−1)− x(si−1, tj+1)− x(si+1, tj−1) + x(si+1, tj+1)
4h2 ,

(3.12)

which also defines n2 equations. For the matrix K, which is equal to

K0 =



0 1 0 . . . 0

−1 0 1 . . . 0

0 −1 0 . . . ...
... . . . . . . . . . 1

0 0 . . . −1 0


or Kp =



0 1 0 . . . −1

−1 0 1 . . . 0

0 −1 0 . . . ...
... . . . . . . . . . 1

1 0 . . . −1 0


,

for zero or periodic boundary conditions, respectively, the n2 equations defined
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by (3.12) can be expressed

[ 1
4h2 KXK

]
ji
≈ ∂2

∂s∂t
x(si, tj).

Writing this in vector notation, vec(KXK) = (KT ⊗K)x = −(K⊗K)x.

Finally, it is well known that the discretization of Gaussian white noise

with unit variance, as we have on the right-hand side of our SPDEs, yields

a Gaussian random variable with mean zero and identity covariance matrix.

That is, the discretization of W(s, t) is ξ ∼ N (0, IN) for N = n2.

Generalizing all of the discretizations presented above and defining L2D :=

L⊗ I + I⊗ L, the discretization of the isotropic SPDE given by (2.1) is

(IN + (`/h)2L2D)(ν+d/2)/2x = δ−1/2ξ, ξ ∼ N (0, IN) (3.13)

and the discretization of the anisotropic SPDE (2.12) is

[
I+ 1

h2 (a2
θ + b2

θ)(L⊗ I) + 1
h2 (c2

θ + d2
θ)(I⊗ L)

− 2
4h2 (aθcθ − bθdθ)(K⊗K)

](ν+d/2)/2
x = δ−1/2ξ, ξ ∼ N (0, IN).

In both cases, δ is the scaling parameter for the prior.

When discretizing the SPDEs, there is a scaling factor needed that guaran-

tees that the variance scales systematically with respect to the change of the

length-scaling parameters, ` or `1 and `2. The exact form of this scaling factor

is unimportant for our purposes since we are ultimately only interested in a

regularization parameter, α, as will be seen in Section 3.4. To keep notation

simpler, we use δ as a placeholder for this term. This is also the reason we
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are interested in whether the Matérn correlation rather than the covariance

is preserved when restricting our Gaussian field to a finite domain, as we will

discuss in Section 3.3.

3.2.1 Prior Precision Matrices

Now that we have the SPDE discretizations, we can solve each for the unknown

x to get the priors we need to compute the Bayesian inverse problem solution.

In the isotropic case,

x = δ−1/2(IN + (`/h)2L2D)−(ν+d/2)/2ξ, ξ ∼ N (0, IN)

and thus

x|δ, ` ∼ N
(
0, δ−1(I + (`/h)2L2D)−ν−d/2

)
,

or equivalently,

p(x|δ, ν, `) ∝ exp
(
−δ2x

TPν,`x

)
(3.14)

with Pν,` = (I + (`/h)2L2D)ν+d/2. In the anisotropic case,

p(x|δ, ν, `1, `2, θ) ∝ exp
(
−δ2x

TPν,`1,`2,θx

)
(3.15)

where

Pν,`1,`2,θ =
[
I+ 1

h2 (a2
θ + b2

θ)(L⊗ I) + 1
h2 (c2

θ + d2
θ)(I⊗ L)

− 2
4h2 (aθcθ − bθdθ)(K⊗K)

]ν+d/2
. (3.16)
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In either of these expressions for P (Pν,` or Pν,`1,`2,θ), if ν + d/2 is a non-

integer, a fractional power of P must be computed, which is possible, gen-

erally speaking, if we have a diagonalization of P in hand, but the resulting

precision matrix is typically full and dense. Such a diagonalization is typically

computable in one-dimensional examples, even with dense matrices. In two

dimensions, however, an efficient diagonalization is possible only if periodic

boundary conditions are assumed. We will restrict the exponent ν+d/2 to be

an integer in this thesis to preserve the sparsity in the precision matrix, which

will be especially useful in Chapter 5.

3.3 The Effect of a Finite Domain and Bound-

ary Conditions

The proof of Theorem 2.2.1 assumed that the domain was all of Rd, i.e. Ω =

Rd. When solving inverse problems, however, as we mentioned before, x(u)

is restricted to a finite domain Ω ⊂ Rd. In such cases, boundary conditions

that modify the Green’s function must be assumed, and thus the equivalence

between the Gaussian fields defined by the SPDE (2.1) and those defined by

the Matérn covariance function may not hold.

To see this, consider the case where d = 2 and Ω = [0, 1] × [0, 1] with

Dirichlet (zero) boundary conditions, x(0, t) = x(1, t) = x(s, 0) = x(s, 1) = 0,

where 0 ≤ s, t ≤ 1. Additionally, to simplify the process, we assume ν = 1 so

that the exponent of the differential operator is equal to one. In this case, the

discretization of (2.1), given by (3.13), simplifies to

(IN + (`/h)2L2D)x = δ−1/2ξ, ξ ∼ N (0, IN)
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Figure 3.2: Isotropic correlation maps. Plots of the Matérn correlation map

(left), the empirical correlation map with n = 50 computed on the domain

Ω = [0, 1] × [0, 1] (middle), and the empirical correlation map computed on

the domain Ω = [−0.5, 1.5]× [−0.5, 1.5] (right), computed from random draws

from the prior (3.17) in 2D with ν = 1 and ` = 1/4.

and so the probability density for x is given by

p(x|δ, `) ∝ exp
(
−δ2x

T (I + (`/h)2L2D)2x

)
. (3.17)

We now let n = 50, so N = 502 = 2500, and generate 50 000 samples from

(3.17) for each of N xi values, calculate the empirical correlation between

the samples, and compare this with the theoretical correlation defined by the

Matérn covariance function. We do this for ` = 1/4 and plot the results in the

middle of Figure 3.2, together with the Matérn correlation map on the left.

It is clear that there is a disconnection between the empirical correlation and

the Matérn correlation.

It is crucial that the connection between the Gaussian fields defined by

the SPDE and those defined by the Matérn covariance function holds because

then the parameters in the SPDE can be estimated using the semivariogram

method described in Chapter 4. Fortunately, we can restore this connection
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by extending the computational domain. In two dimensions, we define Ω =

[1−a, a]× [1−a, a], for a > 1, e.g., if a = 1.5 then Ω = [−0.5, 1.5]× [−0.5, 1.5].

We then generate realizations for ((2a − 1)n)2 = (2n)2 = 10 000 xi values

on the extended domain and compute the empirical correlation only for the

xi values that correspond to the original domain, Ω = [0, 1] × [0, 1]. The

results are plotted on the right side of Figure 3.2, where it is clear that the

empirical correlation map is nearly indistinguishable from those obtained using

the Matérn correlation function.

To determine the a value that extends the domain far enough to restore

the Matérn/SPDE connection, but not so far as to introduce unnecessary

computational cost, we look to the Matérn correlation function itself. We

want to extend the domain far enough so that all x values in [0, 1] × [0, 1]

have a sufficiently low correlation with the x values at the end of the extended

domain. The criterion we used to determine if the connection was restored

was based on relative error: ‖ρ − ρa‖F/‖ρ‖F < 0.05, where ρ is the true

Matérn correlation matrix, ρa is the approximate correlation matrix obtained

by discretizing the SPDE, and ‖ · ‖F denotes the Frobenius norm.

In tests, it was found that we should always extend the domain at least

slightly. If we let rc be the distance for which the Matérn correlation is ap-

proximately equal to c, then our tests showed that setting a = 1+r0.30 restores

the connection to the Matérn covariance for ν ≥ 1/2 when using zero bound-

ary conditions and setting a = 1 + r0.20 restores the connection to the Matérn

covariance for ν ≥ 1/2 when periodic boundary conditions are used. For ν = 1

and ` = 1/4, a should be set to 1.5 in the Dirichlet boundary condition case,

which gives a relative error in the difference of the correlation matrices of

0.0375, and it should be set to 1.6 when using periodic boundary conditions.
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We note that since ` is directly related to the degree of correlation in the prior,

the extension necessary to preserve the connection rises sharply as ` increases.

It is rare in practice, however, to have ` ≥ 1/4 when ν ≥ 1 since that implies

the correlation persists across the entire region. Thus, it is uncommon to have

to extend beyond a domain of [−0.5, 1.5]× [−0.5, 1.5].

For the above discussion, we focused on zero boundary conditions. Similar

results hold if periodic boundary conditions are assumed, in which case L, and

thus L2D, can be diagonalized by the DFT, assuming x is defined on a regular

grid. The DFT-based diagonalization of L2D can be exploited to greatly reduce

computational cost, thus when extending the domain in two dimensions, it is

advantageous to use periodic boundary conditions and the extended domain

Ω = [−0.5, 1.5]× [−0.5, 1.5] so that L2D defined on Ω can be diagonalized by

the DFT. A more thorough description of the effects of boundary artifacts

with different boundary conditions can be found in [Khristenko et al., 2019].

The same results hold when dealing with anisotropy. Now we generate sam-

ples from (3.15), compute the correlation, and compare it to the anisotropic

Matérn correlation (2.13). Figure 3.3 shows the disconnection on the do-

main Ω = [0, 1] × [0, 1] and the reconnection when extending the domain to

Ω = [−0.5, 1.5] × [−0.5, 1.5]. The a values of a = 1 + r0.30 when using zero

boundary conditions or a = 1 + r0.20 when using periodic boundary conditions

are calculated using the isotropic Matérn correlation function with ` = `1.
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Figure 3.3: Anisotropic correlation maps. Plots of the anisotropic Matérn

correlation map (left), the empirical correlation map with n = 50 computed

on the domain Ω = [0, 1] × [0, 1] (middle), and the empirical correlation map

computed on the domain Ω = [−0.5, 1.5]× [−0.5, 1.5] (right), computed from

random draws from the prior (3.15) in 2D with ν = 1, `1 = 1/4, `2 = 1/8, and

θ = 45◦.

3.4 Computing MAP Estimators for Whittle-

Matérn Priors

Typically, the sizes of the matrices and vectors we work with are as follows:

A ∈ RM×N , P ∈ RN×N , x ∈ RN , and b ∈ RM with M = m and N = n in

one dimension and M = m2 and N = n2 for arrays X ∈ Rn×n and B ∈ Rm×m

where x = vec(X) and b = vec(B) in two dimensions. When extending the

computational domain, however, these sizes will change slightly. We define the

size of the extended domain as an n×n square and we now introduce a matrix

M that will restrict Ax to its central m ×m elements. Thus, the setup will

be

b = MAx+ ε, (3.18)
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Figure 3.4: Effect of the masking matrix. On the top left is the array Ax that

is of size n× n, on the top right is MAx in array form that is m×m, and on

the bottom is a representation of the matrix M when n = 16 and m = 8.

for M ∈ RM×N , A ∈ RN×N , x ∈ RN , and b, ε ∈ RM (so X ∈ Rn×n and

B ∈ Rm×m).

Figure 3.4 shows on the top left a representation of Ax reshaped into an

n×n array. On the top right is MAx as an m×m array. Multiplying Ax by

M removed all elements outside of the central box. On the bottom is a look

at the components of the matrix M in a smaller case when n = 16 and m = 8.

In general, when extending in such a way that n = 2m, which will be the case

when Ω = [0, 1]× [0, 1] and Ω = [−0.5, 1.5]× [−0.5, 1.5], M has the following

form:
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m groups 2m groups m groups

M =



0m . . . 0m Im 0m 0m 0m 0m . . . 0m 0m . . . 0m

0m . . . 0m 0m 0m Im 0m 0m . . . 0m 0m . . . 0m

0m . . . 0m 0m 0m 0m 0m Im . . . 0m 0m . . . 0m
... · · · ... ... . . . . . . . . . ... ... · · · ...

0m . . . 0m 0m 0m 0m 0m 0m . . . Im 0m . . . 0m


,

where 0m is an m×m matrix of all zeros. Therefore, M is of size m2× 4m2 =

m2 × n2 = M ×N .

Now we can obtain our MAP estimate by computing

xα = arg min
x

{
λ

2‖MAx− b‖2 + δ

2x
TPx

}

= arg min
x

{1
2‖MAx− b‖2 + α

2x
TPx

}
=
(
ATMTMA + αP

)−1
ATMTb, (3.19)

where α = δ/λ and P = Pν,` = (I + (`/h)2L2D)ν+d/2 when we have isotropy or

P = Pν,`1,`2,θ as in (3.16) if we are dealing with anisotropy. Note that xα ∈ RN

is defined on the extended domain Ω, so we will need to multiply xα by M to

extract the values that correspond to the central m × m elements to obtain

the solution on the original domain Ω. The extracting matrix M from (3.18)

and (3.19) is not circulant, so while we can multiply ATMTb and compute

(ATMTMA + αP)v for a vector v ∈ RN using DFTs, we cannot use DFTs

to obtain or multiply by
(
ATMTMA + αP

)−1
. Thus, we will use PCG to

iteratively solve
(
ATMTMA + αP

)
xα = ATMTb for xα with preconditioner

G = ATA + αP, which is circulant when periodic boundary conditions are
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Figure 3.5: Extended domain images. On the left is an array B that is of

size m×m and on the right is the zero-padded B̃ that is of size n× n on the

extended domain.

used. Assuming we know the hyperparameters in P, α can be estimated

using one of many regularization parameter selection methods (see, e.g.,[Vogel,

2002, Hansen, 2005, Bardsley, 2018]). One such method is generalized cross

validation (GCV):

α = arg min
η>0



∥∥∥∥∥MA
(
ATMTMA + ηP

)−1
ATMTb− b

∥∥∥∥∥
2

tr
(

I−MA
(
ATMTMA + ηP

)−1
ATMT

)

. (3.20)

PCG will also have to be used when finding α.

When implementing the calculation of the MAP estimator using arrays and

DFTs, we first zero-pad the array B so it is of size n × n. The zero-padded

array will be denoted B̃. An example of this is illustrated in Figure 3.5 for

m = 128 and n = 256. On the left, B is presented as an m×m array and on

the right is the zero-padded B̃ as an n × n array. Next we define the array
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Figure 3.6: Ma array. A standard example when using DFTs and extending

the computational domain that shows the central m×m elements of Ma being

equal to one and all the rest being equal to zero.

Ma as an n×n square with all the array values being equal to zero outside of

the central m×m region. The array values in the central m×m region of Ma

are dependent on the values of B. If we let Mm×m
a denote the central m×m

region of Ma, then

[Mm×m
a ]ij =


1 if [B]ij is not missing

0 if [B]ij is missing

for i, j = 1, . . . ,m. An example of Ma is given in Figure 3.6, where the central

m×m region of Ma are all ones, as will be the case when there are no missing

values in B.

Now our solution on the extended domain will be computed as an array, not

a vector, which we denote Xα. Then, we can take the central m ×m region

of Xα as our reconstruction. To compute Xα, we use PCG with APCG =

ATMTMA + αP and bPCG = ATMTb, where APCG and bPCG correspond to
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the A and b in Algorithm 2. We can compute bPCG using DFTs with

bPCG = ATMTb = vec
(
F∗
(
conj(âs)� [FB̃F]

)
F∗
)
,

and in order to multiply APCG by some vector v of conformable size, as will

need to be done for each iteration of PCG, we use the following:

APCGv =
(
ATMTMA + αP

)
v

= vec
(
F∗
(

conj(âs)�
[
F
(
Ma � [F∗(âs � [FVF])F∗]

)
F
]

+ α(p̂s � [FVF])
)
F∗
)
,

where âs and p̂s are n×n matrices of the eigenvalues of A and P, respectively,

and v = vec(V). Using MATLAB, APCGv and bPCG can be computed by

typing

vec
(
ifft2(conj(ahat).*fft2(Marray.*ifft2(ahat.*fft2(V))))

+alpha*ifft2(phat.*fft2(V))
)

and vec
(
ifft2(conj(ahat).*fft2(b pad)

)
, respectively. Also, since G =

ATA + αP is circulant, G−1v can be easily computed with

G−1v =
(
ATA + αP

)−1
v = vec

(
F∗
(

FVF
|âs|2 + αp̂s

)
F∗
)
,

where division is component wise.

An example of a reconstruction of Xα is shown in Figure 3.7. Xα is the n×n

reconstruction on the extended domain and the solution on the original domain

is obtained by taking the central m×m elements of Xα, which corresponds to

the part of the image that is inside the rectangle. Notice that another benefit
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Figure 3.7: Example reconstruction. Xα is the n × n reconstruction on the

extended domain and the central m×m elements of Xα give the reconstruction

on the original domain.

of extending the domain is that any boundary artifacts that may have been

present are moved outside of the central region so they do not tarnish the

reconstruction.

Although we can now obtain the solution to the inverse problem when

we know P, the hyperparameters of P still need to be set. In practice, ν

is often fixed [Khaledi and Rivaz, 2009, Roininen et al., 2016] and the other

hyperparameters – ` in the isotropic case or `1, `2, and θ in the anisotropic

case – are either estimated manually or by using the fully-Bayesian approach,

which involves Markov chain Monte Carlo (MCMC) [Robert and Casella, 2013]

sampling. For the sake of comparison, we take the fully-Bayesian approach in

Section 5.2, but it requires setting up hyperprior distributions and can be time

consuming, subjective, and unintuitive. Estimating these hyperparameters is

the primary focus of this work and a new method to do so is presented in

Chapter 4.



Chapter 4

Semivariogram Methods

In the inverse problem formulation in this dissertation, the components of the

vector x correspond to values of an unknown function x at numerical mesh

points within a spatial region Ω. This motivates using methods from spa-

tial statistics to estimate the Whittle-Matérn prior hyperparameters – ν and

` in the isotropic case or ν, `1, `2, and θ in the anisotropic case. One such

method uses a variogram, and a corresponding semivariogram [Schabenberger

and Gotway, 2017], which requires the assumption of intrinsic stationarity,

i.e., that the elements of x have constant mean and the variance of the differ-

ence between the elements is constant throughout the region. This is a weaker

assumption than is required by many other parameter estimation tools, which

is one of the reasons variograms have become popular in spatial statistical

applications [Cressie, 2015], and it is the reason we use semivariograms here.

Although the use of semivariograms for estimating parameters to determine

a covariance structure is commonly used in spatial statistics, this is, to our

knowledge, the first time these tools have been used to estimate prior hyper-

parameters for use in inverse problems.

67
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4.1 Isotropic Case

The semivariogram is defined by γ(r) = 1
2Var[Z(ui) − Z(uj)], where r =

ui − uj and {Z(u) : u ∈ Ω ⊂ Rd} is a spatial process. Due to our sta-

tionarity assumption, the variance is constant throughout the region and so

Var[Z(ui)] = Var[Z(uj)] = σ2, which we use to derive the following alternative

expression for γ(r):

γ(r) = 1
2

(
Var[Z(ui)] + Var[Z(uj)]− 2Cov[Z(ui), Z(uj)]

)
= σ2 − Cov[Z(ui), Z(uj)].

Thus, the semivariogram simplifies to the difference between the variance in

the region and the covariance between two points with a difference r. The var-

iogram is formally defined as 2γ(r), hence the terms variogram and semivari-

ogram are often used interchangeably. To remain consistent, we will continue

to refer to γ(r) as a semivariogram throughout the dissertation.

We now need a way to estimate the semivariogram from given data. For

this, we use what is known as the sample, or empirical, semivariogram. As-

suming that Z(u) is isotropic, so that r = ‖r‖ = ‖ui−uj‖, then the empirical

semivariogram can be expressed

γ̂(r) = 1
2n(r)

∑
(i,j)|‖ui−uj‖=r

[z(ui)− z(uj)]2, (4.1)

where z(u) is a realization of Z(u), and n(r) is the number of points that are

separated by a distance r. The γ̂(r) values are often referred to as the semi-

variance values. In a typical semivariogram, the semivariance values increase
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as r increases since points tend to be less similar the further apart they are,

which increases the variance of their differences.

Although the empirical semivariogram is useful in obtaining semivariance

values from data, it is not ideal for modeling data for a few reasons: 1) the

empirical semivariogram only gives estimates at particular lag distances, as

opposed to being a continuous function of distance that we will need; 2) the

resulting covariance matrix may not be positive definite, which is a require-

ment for all covariance matrices; and 3) the sample semivariogram values will

not necessarily increase smoothly with distance due to random noise in our

data. Due to these limitations of the empirical semivariogram, it is typical

to fit a semivariogram model to the empirical semivariogram. Since our prior

distribution for x has a Matérn covariance, we will use the theoretical Matérn

semivariogram model [Matérn, 2013, Stein, 2012] given by

γ(r,θ) =


0 if r = 0

a0 + (σ2 − a0)
[
1− 1

2ν−1Γ(ν)(r/`)
νKν(r/`)

]
if r > 0

where a0 ≥ 0 is the nugget, σ2 ≥ a0 is the sill, and θ = (a0, σ
2, ν, `). The

nugget is the term given to the semivariance value at a distance just greater

than zero and the sill is the total variance contribution or the semivariance

value where the model levels out. The sill, σ2, is also the variance parameter

in the Matérn covariance function (1.6). We can estimate a0, σ2, ν, and ` by

fitting semivariogram models to the empirical semivariogram.

There are a number of ways to fit the semivariogram model to the empirical

semivariogram. We use weighted least squares, as is commonly done [Cressie,
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2015], choosing the θ that minimizes

W (θ) =
∑
r

n(r)
2[γ(r,θ)]2 [γ̂(r)− γ(r,θ)]2.

To minimize W (θ), we adapt the MATLAB codes from [Schwanghart, a,

Schwanghart, b]. More specifically, we adapt [Schwanghart, a] for computing

the empirical semivariance γ̂(r) and we adapt [Schwanghart, b] for minimizing

W (θ). Although it is possible to optimize both ν and ` continuously, we will

require ν + d/2 to be an integer. Weighted least squares, in general, performs

well when finding optimal estimates for a0, σ
2, and ` for given empirical semi-

variogram values when ν is fixed, but not when ν is also free to vary (most

software requires a fixed ν value). To combat this issue, and to ensure ν+d/2

is an integer, we cycle through various fixed values of ν to obtain estimates for

the other parameters and their weighted least squares value. We then choose

the θ with the smallest W (θ).

For an illustration, we generated a random field, shown on the left side of

Figure 4.1, and fit a semivariogram to the field. The optimized parameters of

the model are ν = 2 and ` = 0.019, which corresponds to a practical range

of 0.102. Thus, the values of the field are nearly independent a tenth of the

way across the region. The sill and nugget are estimated to be σ2 = 1.003 and

a0 = 0.206, respectively. A plot of the resulting fitted Matérn semivariogram

model is given on the right side of Figure 4.1.

The values of ν and ` from θ = (a0, σ
2, ν, `) obtained by fitting the Matérn

semivariogram model to a spatial field, as described in the previous paragraphs,

can be used to define the Whittle-Matérn prior (3.14). The sill, σ2, and the

nugget, a0, are not especially useful outside of fitting the semivariogram model
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Figure 4.1: Semivariogram. A randomly generated spatial field is shown on

the left and the empirical semivariogram, along with the Matérn model fit, is

given on the right. The fitted hyperparameters are ν = 2 and ` = 0.019, which

corresponds to a practical range of 0.102.

because they do not correspond to any hyperparameter in (3.14). They are

helpful only in determining the best estimates for ν and `. Any contribution

these parameters may have made to the prior distribution will be accounted for

in the regularization parameter, α. Therefore, after fitting the semivariogram

models, σ2 and a0 are discarded.

4.1.1 Algorithm

With estimates for ν and ` in hand, the MAP estimator, xα, can then be

computed as in Section 3.4, from which we can recompute θ by fitting the

Matérn semivariogram model to the empirical semivariogram values of xα.

Repeating this process iteratively yields the following algorithm:
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Algorithm: The Semivariogram Method for MAP Estimation with Whittle-

Matérn Prior:

0. Estimate θ = (a0, σ
2, ν, `) by fitting a Matérn semivariogram model to

b.

1. Define the prior (3.14) using ν and `, compute α using (3.20), and com-

pute xα using (3.19).

2. Update θ = (a0, σ
2, ν, `) by fitting a Matérn semivariogram model to xα.

3. Return to step 1 and repeat until ν and ` stabilize.

Recall that b is a vector of measurements, which will usually be noisy or

have some missing values, and each element of b has a corresponding spatial

position. Since ν is being optimized discretely to ensure that β = ν+d/2 is an

integer, convergence will be met when νj − νj−1 = 0 where νj is the ν value fit

in the jth iteration. Then ` is said to have converged when |`j−`j−1|/`j−1 < ε

with ε determined by the user. In this thesis, we will consider ` to have

converged when the relative difference is less than 0.01, which usually takes

fewer than three iterations to achieve.

4.1.2 Numerical Experiments

We now implement the semivariogram method on a two-dimensional deblur-

ring and inpainting example. Recall that the connection between the Matérn

covariance and the Whittle-Matérn prior depends on a stationarity assump-

tion, which the following example may not exhibit. For simplicity, we will still

assume stationarity and acknowledge that future work should be done in the

case when no stationarity is present. Additionally, the numerical examples
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given in this thesis all use color images. In our analysis, we will assume in-

dependence in the color bands and obtain priors and reconstructions for each

one individually.

Results

In this example, we assume periodic boundary conditions on the extended do-

main, but due to the restriction from the extended domain Ω to Ω, as was

mentioned in Section 3.4, circulant structure is lost in the forward model ma-

trix, and hence, linear system solves must be done using an iterative method.

As is done in [Bardsley, 2018, Section 3.1.3], we use preconditioned conjugate

gradient (PCG) iteration, both for computing α and for computing xα. We at-

tempt to deblur and demask a 128×128 image of Main Hall on the University

of Montana (UM) campus. To do this, we begin with a 256×256 image, given

in Figure 4.2, and then restrict to the center 128 × 128 image. This smaller

image in the middle will be thought of as being on a domain Ω = [0, 1]× [0, 1]

Figure 4.2: Full 256 × 256 image of Main Hall at the University of Montana

with 128× 128 subimage.
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Figure 4.3: Inpainting setup. On the left is B, the blurred, masked, and noisy

data, in array form. On the right is the Ma array. All array values of Ma

outside of the central m×m region and those that correspond to the missing

elements in B are zero. All other values are equal to one.

and the larger, full image will then be defined on Ω = [−0.5, 1.5]× [−0.5, 1.5].

To obtain B, and the corresponding b = vec(B), we first perform a slight

blurring operation on the full 256×256 true image plotted in Figure 4.2. Since

this is a color image, the blurring process is done individually for the red,

green, and blue intensity arrays. We then restrict to the central 128 × 128

pixels (with boundaries marked in Figure 4.2) and randomly remove 40% of

the pixels to obtain the masked and moderately blurry image on the left in

Figure 4.3. The array Ma that we need when computing the solution is given

on the right in Figure 4.3. In addition to the zeros for all array values outside

of the central 128 × 128 region, all elements inside the central region that

correspond to the missing values in B will be zeros as well. The other values

of Ma are all equal to one.

We seek an estimate of x in the central subregion. Semivariograms with

25 approximately equally spaced grid points in 0 < r <
√

2/10 are used. We
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chose
√

2/10 as a cutoff because it balances the need to capture the covariance

structure at short distances, which are well-known to be the most important

[Cressie, 2015], with those at longer distances. When fitting semivariograms

to the masked image, the removed entries will not be considered or else the

correlation would be strongly influenced by those entries.

The semivariogram method is used to obtain ν = 1 for each color band,

` = 0.0339, 0.0292 and 0.0530 for the red, green, and blue intensities, respec-

tively, and α = 2.24× 10−6, 3.84× 10−6 and 1.27× 10−7. For reference, when

fitting semivariograms to the true image, the values for ` are 0.0380, 0.0324,

and 0.0559 for the red, green, and blue color bands, respectively. Conver-

gence was met in two iterations for each color intensity. We also computed

the Tikhonov solution, as defined in [Bardsley, 2018, Section 3.1.3], for which

the prior covariance is equal to a scalar multiple of the identity matrix (i.e.

P = IN). The Tikhonov α values for all three color bands were around 0.0004.

Note that for both of these reconstructions, the regularization parameter, α,

was optimized using the highest correlation between the solution and the true

image rather than chosen by GCV to ensure that any differences in the solu-

tions is due to the method and not a poorly-chosen regularization parameter.

The two solutions are plotted in Figure 4.4. It is clear that the solution that

used the Whittle-Matérn prior is the superior reconstruction. The correlation

between xα and x, the true image, is 0.982. While the Tikhonov solution is

able to remove the blur, it performs inpainting poorly since each pixel value

is assumed independent of one another due to the identity covariance matrix.
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Figure 4.4: Two-dimensional image deblurring test case solutions. On the left

is a plot of the Tikhonov solution and on the right is a plot of the solution

obtained using the Whittle-Matérn prior with ν = 1 and ` = 0.0339, 0.0292

and 0.0530 for red, green and blue intensities, respectively.

4.1.3 Discussion

Compared to other hyperparameter selection methods, the semivariogram

method produces competitive solutions and clearer interpretations of the hy-

perparameters ν and `, and it can inform how far to extend the domain to

maintain a connection with the Matérn covariance. A shortcoming of the

semivariogram method as described in this section, however, is the fact that

it requires the field or image to be isotropic. In the next section, we extend

these results to anisotropic fields.

4.2 Anisotropic Case

When fitting semivariograms to a spatial field, intrinsic stationarity and isotropy

are assumed. In our case, we are still assuming intrinsic stationarity, but our
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field is anisotropic. Thus, a change must be made to our field before fitting a

semivariogram to obtain an estimate for `1 and `2. We again use the change

of variables (2.11), the inverse of the change used in (2.10). Using the same

argument that was used when transforming the Green’s function PDE from

anisotropic coordinates in (2.16) to isotropic coordinates in (2.17), it is not

difficult to show that (2.12) is transformed to

(1− `2
1∆)(ν+d/2)/2x(u) =W(u),

which is equivalent to (2.1) with ` = `1.

We can apply this same change of variables (2.11) to any two-dimensional

spatial field that exhibits geometric anisotropy to achieve isotropy. For exam-

ple, if we begin with a spatial field that exhibits its larger correlation length

in the 45◦ direction with τ = `1/`2 = 3, the change of variables will rotate

the field so the direction of maximum correlation length is in the 0◦ direction

and will then stretch the field along the new y-axis to remove the geometric

anisotropy and create a new, isotropic field. This is shown in Figure 4.5. Once

the spatial field has been adjusted in this way, a semivariogram can be fit to

the transformed field as in the usual, isotropic case.

In order to adjust the spatial field to satisfy the isotropy assumptions in

the way described above, we must ascertain θ, the direction of maximum cor-

relation length measured from the x-axis, and τ , the ratio of the correlation

length in the direction of θ to the correlation length in the direction orthogonal

to θ. Both of these parameters can be estimated using directional empirical

semivariograms. Directional semivariograms are fit in a similar way as the

semivariograms in (4.1), which are also referred to as omnidirectional semivar-
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Rotated Field

Rotated and Scaled Field

Figure 4.5: Transforming field from anisotropic to isotropic. The top-left

image shows the original field that is anisotropic, the bottom-left image shows

the rotated field so the direction of maximum anisotropy is aligned with the

x-axis, and on the right is the rotated and scaled field that is isotropic.

iograms, but instead of taking all points separated by a distance r, we restrict

the pairs of points to a certain angle, ψ. If we think of wi and wj as vectors,

then ψ is equivalent to the angle betweenwi−wj and the x-axis. For example,

if ψ = 0, we restrict to all pairs of locations wi and wj on the same horizon-

tal line, i.e., with the same y-coordinate. Formally, the empirical directional

semivariogram can be defined as

γ̂ψ(r) = 1
2n(r, ψ)

∑
(i,j)|‖wi−wj‖=r ,φij=ψ

[z(wi)− z(wj)]2, (4.2)

where φij denotes the angle between wi−wj and the x-axis, and n(r, ψ) is the

number of points that are separated by a distance r with angle of separation

equal to ψ. It is common to calculate a directional semivariogram for −90◦ <

ψ ≤ 90◦ in steps of either 15◦ or 30◦. We take a step size of 15◦ here, which
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will result in 12 directional semivariograms.

Once the directional semivariograms have been calculated for each of the

12 different ψ angles, we fit a common scatterplot smoother, the loess curve

[Jacoby, 2000], to the semivariogram values in each direction to achieve contin-

uous curves. Then, to determine the ratio of correlation lengths, we can select

a constant γcrit value between the nugget and sill and observe the distance

required for the loess curve to surpass the height of γcrit. The direction of

maximum correlation, θ, will require a larger distance to reach γcrit than other

directions since the variance of the differences between values in that direction

is expected to be smaller. The anisotropy ratio, τ , can then be computed as

the ratio between the distance in the direction of θ and the distance in the

direction perpendicular to θ.

This process is illustrated in Figure 4.6. The directional semivariograms

for the original, anisotropic field from Figure 4.5 are shown on the left. We can

see that the correlation length is largest in the 45◦ direction since the distance

of 0.1684 that it takes for the curve to pass γcrit = 0.9 is the largest of any

direction. The range distance in the −45◦ direction is 0.0561 and so the ratio

of those ranges is τ = 0.1684/0.0561 = 3.

We can then rotate the field clockwise by 45◦ and stretch it in the direction

of the new y-axis by a factor of τ = 3 to achieve an isotropic field, as was done

in Figure 4.5. The directional semivariograms for the new rotated and scaled

field, which is isotropic, are shown on the right in Figure 4.6. It now takes a

distance of 0.1684 for the semivariance values to pass γcrit for each ψ angle,

which means the ratio has been reduced to one, as it should be for an isotropic

field. It is not always the case that we can reduce the ratio of these range

values down to one, but we can reduce it enough for the field to be considered
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Figure 4.6: Directional semivariograms for fields in Figure 4.5. The 12 direc-

tional semivariograms for the original, anisotropic field are shown on the left.

For each of the 12 plots, semivariance value is plotted against lag distance.

The direction of maximum correlation is determined to be 45◦ with a ratio of

3 since the distance required to pass γcrit = 0.9 was largest in that direction

and that distance is 3 times greater than the distance needed in the −45◦

direction. The 12 directional semivariograms for the rotated and scaled field

are shown on the right with a ratio of 1.

approximately isotropic.

In practice, more than one γcrit value is used. We used 10 different γcrit

values that varied between 48% below the smallest maximum γψ(r) value for

the 12 ψ directions to 6% above the smallest maximum γψ(r) value. For each

of the 10 γcrit values, we found the distance at which the loess curve surpassed

γcrit and then took the median of those 10 distances to use for the range.

4.2.1 Algorithm

Once we have obtained θ and τ and have changed the coordinates of the field,

we can fit an isotropic omnidirectional semivariogram to estimate ν and `1.
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Then we let `2 = `1/τ . All hyperparameters for use in (3.15) will have been

estimated and we can update these estimates iteratively.

Algorithm: The Semivariogram Method for MAP Estimation with Anisotropic

Whittle-Matérn Prior:

0. Set xα = b.

1. Estimate θ and τ by computing directional semivariograms for xα.

2. Transform the anisotropic spatial field coordinates, w, to isotropic spa-

tial field coordinates, u, using (2.11).

3. Estimate θ = (a0, σ
2, ν, `1) by fitting an isotropic Matérn semivariogram

model to the transformed field. Then compute `2 = `1/τ .

4. Define the prior precision matrix, P = Pν,`1,`2,θ, by (3.16) using ν, `1, `2,

and θ; compute α using (3.20); and compute xα using (3.19).

5. Return to step 1 and repeat until θ, τ , ν, `1, and `2 stabilize.

The convergence criteria for these hyperparameters are as follows: θj − θj−1 =

0, νj − νj−1 = 0, |`j1 − `j−1
1 |/`

j−1
1 < 0.01, and |`j2 − `j−1

2 |/`
j−1
2 < 0.01 where

θj, νj, `
j
1 and `j2 denotes the jth iteration of the respective hyperparameter.

4.2.2 Numerical Experiments

We will illustrate the semivariogram method in the anisotropic case with a

two-dimensional inpainting example. The original image, given on the left in

Figure 4.7, shows a rock formation in Northern Arizona known as the Wave

[Gb11111, ] where the layers of sandstone strata are clearly visible. We selected

a subsection in the lower-middle of the image, shown in the middle of Figure
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Figure 4.7: Inpainting example. The original image showing the rock layers of

the Wave in northern Arizona is given on the left. The true image used in the

inpainting example is given in the middle. The masked image is given on the

right.

4.7, to illustrate our method. This will be the true image. We then added

some noise and masked 60% of the image. This is shown on the right in Figure

4.7.

Like we saw in Section 4.1.2, the prior will play a large role in the inpaint-

ing process since much of the image is missing. We will directly compare the

solution using the anisotropic Whittle-Matérn prior to the solution using the

isotropic Whittle-Matérn prior, both of which will have hyperparameters de-

termined using semivariograms. Like before, the regularization parameter, α,

will be optimized using the highest correlation between the solution and the

true image.

After calculating the directional semivariograms for the image, the direc-

tion of maximum correlation was determined to be −75◦ for each color in-

tensity. For the blue color-band, the correlation length in that direction was

`1 = 0.1517 and the correlation in the 15◦ direction was `2 = 0.0101, which

gives a ratio of τ = 15. ν was determined to be 1, all of these hyperparameters
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Figure 4.8: Inpainting solutions. The true image (left) is given along with the

the isotropic solution (middle) and the anisotropic solution (right).

converged in at most four iterations for each color, and the initial θ estimate of

−75◦ given in the first iteration remained unchanged throughout the process.

When fitting an omnidirectional semivariogram to the masked image for the

isotropic case, ν = 1 and ` = 0.0141.

The reconstructions are given in Figure 4.8. With the isotropic solution,

the masking is removed, but since the prior assigns a very small correlation

between each pixel, the reconstruction is noticeably spotty. The anisotropic

solution, however, does a good job of removing the masking completely. The

reconstruction is a bit smoother than the true image, but the original sandstone

layers can be seen nicely.

Some statistics of the reconstructions are given in Table 4.1. Although

the isotropic solution is still relatively competitive, the anisotropic prior gives

the reconstruction that most closely aligns with the true image. The isotropic

solution has a mean absolute error (MAE) more than 57% larger and a mean

squared error (MSE) more than 180% higher than those respective measures

in the anisotropic case.



Chapter 4. Semivariogram Methods 84

Table 4.1: Statistics for inpainting MAP estimates.

True Image Isotropic Covariance Anisotropic Covariance
x̄ 0.530 0.530 0.530
s 0.207 0.202 0.206

Min 0.000 −0.053 −0.065
Q1 0.357 0.364 0.360

Median 0.522 0.520 0.520
Q3 0.678 0.676 0.678

Max 1.000 1.112 1.093
ρxα,xtrue 0.944 0.981

Residual MAE 0.045 0.029
Residual MSE 0.005 0.002

4.2.3 Discussion

Although the reconstruction with the anisotropic prior covariance matrix is

better here, there are still some improvements that can be made. This example

had a constant angle of maximum correlation length throughout the image and

the ratio between maximum and minimum correlation was rather high, that

is, greater than five. If either of these features fail to hold, the anisotropic

prior often produces a reconstruction that performs slightly worse or offers no

benefit over using an isotropic prior. We focus on the case when the angle of

maximum anisotropy is not constant in the next chapter.



Chapter 5

Extensions

5.1 Regional Anisotropy

We have a way to define priors for isotropic and anisotropic spatial fields as long

as that covariance structure is consistent for the entire field. In the case where

the correlation length or angle of maximum anisotropy change throughout the

image, we will want to model each of these regions with a different prior. An

example of such a field is given in Figure 5.1. On the left side of the image,

the field is isotropic and on the right side it is anisotropic.

5.1.1 Preliminary – Cholesky Factorization

The implementation of the method for dealing with regional anisotropy in-

volves the Cholesky factorization or decomposition. The Cholesky factoriza-

tion provides a way to obtain a unique “square root” of a Hermitian (A∗ = A),

positive-definite matrix A in the sense that it gives a viable, cost effective way

of computing Rc where A = RT
c Rc [Watkins, 2004]. With this representation

of the Cholesky factorization, Rc is upper triangular (and thus RT
c is lower

85
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Figure 5.1: Regional field. On the left side of the image, the field is isotropic

and on the right side it is anisotropic.

triangular). This decomposition also allows us to solve systems of equations

Ax = b for x very quickly. Since A = RT
c Rc, we can write RT

c Rcx = b.

Letting y = Rcx, we have RT
c y = b, which can be solved for y using for-

ward substitution and then Rcx = y can be solved for x using backward

substitution.

To obtain the algorithm for finding all entries of Rc, first we let

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

... ... . . . ...

an1 an2 . . . ann


and Rc =



r11 r12 . . . r1n

0 r22 . . . r2n

... ... . . . ...

0 0 . . . rnn


.

Then we can obtain the diagonal entries of Rc using

rii =

√√√√aii − i−1∑
k=1

r2
ki
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and the other entries of Rc can be obtained using

rij = r−1
ii

(
aij −

i−1∑
k=1

rkirkj

)
, j = i+ 1, . . . , n.

5.1.2 Regional Precision Matrix

Suppose we have nr different regions in our image, each of which has a different

covariance structure. We define Di, i = 1, . . . , nr, as a masking matrix such

that the only non-zero elements of Dix are those in region i. We will not

allow for overlapping regions so that ∑nr
i=1 Dnr = I, the identity matrix. Now,

to establish a prior for x in this regional case, we take Cov(x) = Cov(D1x+

· · · + Dnrx) = Cov(D1x) + · · · + Cov(Dnrx), since each region is assumed

independent due to not having any elements of x in common. Define the best

Whittle-Matérn covariance structure, as chosen by a semivariogram, for region

i as Ci with corresponding precision matrix Pi = C−1
i . Then Cov(Dix) :=

DiCiDi. Thus, the prior for x in this regional case has pdf

p(x|δ) ∝ exp
(
−δ2x

T (D1C1D1 + · · ·+ DnrCnrDnr)−1x

)
, (5.1)

which means our precision matrix is given by

P = (D1C1D1 + · · ·+ DnrCnrDnr)−1.

Note that (5.1) reduces to (1.4) with P = P1 when nr = 1. In general, the

Ci matrices and P are dense, so actually constructing this precision matrix

is infeasible for large problems. Additionally, DFTs cannot be used since

D1C1D1 + · · · + DnrCnrDnr is not circulant even if each Ci is. Thus, we
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seek an alternative expression such that matrix-vector multiplication Pv is

achievable for a vector v ∈ RN .

Without loss of generality, let nr = 2. Define

C1 =

 C1A C1B

C1C C1D

 = P−1
1 =

 P1A P1B

P1C P1D


−1

and

C2 =

 C2A C2B

C2C C2D

 = P−1
2 =

 P2A P2B

P2C P2D


−1

.

Also assume that the regions are defined in a way that divides the region

vertically (an assumption we will drop later) so that

C = Cov(x) = Cov(D1x+ D2x) = Cov(D1x) + Cov(D2x) =

 C1A 0

0 C2D

 ,

which means our precision matrix is

P = C−1 =

 C−1
1A 0

0 C−1
2D

 .

Using the block matrix inversion identity, it can be shown that C−1
1A =

P1A − P1BP
−1
1DP1C and C−1

2D = P2D − P2CP
−1
2A P2B and thus

P = C−1 =

 C−1
1A 0

0 C−1
2D

 =

 P1A − P1BP
−1
1DP1C 0

0 P2D − P2CP
−1
2A P2B

 ,
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which can be equivalently written as

P = D1P1D1 −D1P1(D2P1D2)†P1D1 + D2P2D2 −D2P2(D1P2D1)†P2D2.

In the expression above, ‘†’ denotes the Moore-Penrose inverse, which is also

referred to as the generalized inverse or the pseudoinverse, of a matrix [Ben-

Israel and Greville, 2003]. In general, for nr ≥ 2,

P = C−1 = (D1C1D1 + D2C2D2 + · · ·+ DnrCnrDnr)−1

=
nr∑
i=1

(
DiPiDi −DiPi

[
(IN −Di)Pi(IN −Di)

]†
PiDi

)
, (5.2)

which, since each Pi is sparse, involves only sparse matrices.

In the case where the masking matrices Di, i = 1, . . . , nr, do not split up the

image vertically, we can reorder to achieve a block-diagonal covariance matrix.

Let Ĩ be the permutation matrix that corresponds to a reordering of x such

that D̃i = ĨDiĨT divides Ĩx vertically (the minimum degree ordering [Tinney

and Walker, 1967] will do this). Note that it is a property of permutation

matrices that Ĩ−1 = ĨT . Now, for any matrix A, define Ã := ĨAĨT . Then

P̃ = ĨPĨT = C̃−1 = (D̃1C̃1D̃1 + · · · + D̃nrC̃nrD̃nr)−1. Since this is block-

diagonal, we can use the result from above, with P̃i = C̃−1
i , to say

P̃ =
nr∑
i=1

(
D̃iP̃iD̃i − D̃iP̃i

(
(IN − D̃i)P̃i(IN − D̃i)

)†
P̃iD̃i

)
.

So, then writing P̃ = ĨPĨT , we have

ĨPĨT =
nr∑
i=1

(
D̃iP̃iD̃i − D̃iP̃i

(
(IN − D̃i)P̃i(IN − D̃i)

)†
P̃iD̃i

)
,



Chapter 5. Extensions 90

which implies

P = ĨT
(
nr∑
i=1

(
D̃iP̃iD̃i − D̃iP̃i

(
(IN − D̃i)P̃i(IN − D̃i)

)†
P̃iD̃i

))
Ĩ

=
nr∑
i=1

(
ĨT D̃iP̃iD̃iĨ− ĨT D̃iP̃i

(
(IN − D̃i)P̃i(IN − D̃i)

)†
P̃iD̃iĨ

)

=
nr∑
i=1

(
ĨT ĨDiĨT ĨPiĨT ĨDiĨT Ĩ− ĨT ĨDiĨT ĨPiĨT

×
(

(IN − ĨDiĨT )ĨPiĨT (IN − ĨDiĨT )
)†

ĨPiĨT ĨDiĨT Ĩ
)

=
nr∑
i=1

(
DiPiDi −DiPi

(
(IN −Di)Pi(IN −Di)

)†
PiDi

)
since ĨT Ĩ = IN ,

which is the same expression for P as in the block-diagonal case. Thus, for

any masking matrices D1, . . . ,Dnr , so long as ∑nr
i=1 Di = IN , this expression

for P holds.

5.1.3 Implementation

Since we have an expression for P, we can now discuss how to perform matrix-

vector multiplication Pv for some vector v. This will be needed to perform an

iterative inverse method such as preconditioned conjugate gradient to obtain

the MAP estimator. Since each Di and Pi is sparse, each matrix vector multi-

plication in (5.2) is efficient except the ones involving pseudoinverses. We can,

however, take advantage of the lower-rank structure of
[
(IN−Di)Pi(IN−Di)

]†
,

which has rank N − ri where ri the rank of Di. Let Pi,nz be the square matrix

that consists of all rows and columns of (IN −Di)Pi(IN −Di) that have any

nonzero elements. That is, keep row and column j of (IN −Di)Pi(IN −Di) if

[IN −Di]j,j = 1. Then let Ri = chol(Pi,nz) such that Pi,nz = RT
i Ri where chol

denotes the Cholesky factorization and Ri is upper triangular. The Cholesky
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decomposition is known to be efficient for sparse, symmetric, positive definite

matrices such as Pi,nz [Watkins, 2004]. Then we can perform the multiplication

of DiPi[(IN −Di)Pi(IN −Di)]†PiDiv in the following way:

1. Multiply yi = Pi(Div).

2. Extract the N−ri elements of yi that correspond to the nonzero diagonal

elements of IN −Di: yi(ind).

3. Define a variable zi as an N × 1 vector of zeros.

4. Multiply by
(

(IN−Di)Pi(IN−Di)
)†

by taking zi(ind) = Ri\(RT
i \yi(ind)).

5. Complete the multiplication ti = Di(Pizi).

6. Repeat for 1 ≤ i ≤ nr.

Then Pv =
nr∑
i=1

(
Diyi − ti

)
.

Step 4 is the most costly since it requires both a forward and a backward

substitution. This can be performed more efficiently for large regions since

the rank of (IN − Di)Pi(IN − Di) is inversely related to the size of region

i. Sparse reorderings, such as the symmetric approximate minimum degree

permutation that can be computed using the symamd function in MATLAB,

can also be used so Ri has fewer nonzero entries. The multiplication of Pv

must be performed for each iteration of PCG, but each Ri can be stored ahead

of time so the Cholesky decompositions need only be performed once.

5.1.4 Preconditioner

To speed up the CG convergence, we use the preconditioner ATA + α

nr

nr∑
i=1

Pi,

which uses the average of the precision matrices for the nr regions and is
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Figure 5.2: CG Iteration History. The CG iteration history is shown for no

preconditioner, the level 2 block circulant preconditioner, and the average

precision preconditioner. The average precision preconditioner has the fastest

convergence rate.

circulant when using periodic boundary conditions, so DFTs can be used. We

also tried using the block circulant preconditioner suggested in [Chan and

Olkin, 1994], referred to as the Level 2 Block Circulant Preconditioner in

[Vogel, 2002], instead of the average of the precision matrices, but performance

was slightly worse and it required constructing a new preconditioner. The

iteration history results for the two preconditioners, as well as when using no

preconditioner, are shown in Figure 5.2. The total number of iterations was

approximately 21% lower when using the average precision preconditioner over

not using a preconditioner, which decreased computation time by about 15%.

5.1.5 Region Selection

Selecting the various regions throughout the image or field is the next point

of discussion. For this thesis, a program was written that takes user-defined
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Figure 5.3: Making arrays. The image on the left shows a regional field with

regions selected by the user. The first region has the red overlay and the

second region is the remainder of the image. The image in the middle is the

masking array for region one and shown on the right is the masking array for

region two.

regions and creates the masking arrays. With the cursor, the user can draw

the borders of each region. For the field shown in Figure 5.1, the user-defined

regions are shown on the left in Figure 5.3. The first region is under the red

overlay and the second region is the remainder of the image. The two masking

arrays are given in the middle and on the right of Figure 5.3. The matrices D1

and D2 that restrict only to the elements in region one and two, respectively,

can then be obtained by allowing

[Di]jj =


1 if element j is in region i

0 if element j is not in region i

for i = 1, . . . , nr and j = 1, . . . , N .
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Figure 5.4: Prior weights. The image on the left shows a sample from the

prior with unequal variances in the two regions. The image on the right shows

a sample from the prior when weighting the regional precision matrices such

that the variances in the two regions are approximately equal.

5.1.6 Prior Weights

An issue that can arise when defining the prior as we do in this section with

P =
nr∑
i=1

(
DiPiDi −DiPi

[
(IN −Di)Pi(IN −Di)

]†
PiDi

)
is the fact that the

magnitude of the values in P1, . . . ,Pnr depend on ν and ` when the region is

isotropic or on ν, `1, `2, and θ when the region is anisotropic. Therefore, using

a single regularization parameter across each region can assign too much or too

little weight to the prior of a region if the variance contribution of each region

is substantially different. An example is shown in Figure 5.4. On the left we

have a sample from the prior with unequal variances. The total variance of the

region on the left is 0.0444 while the variance on the right is approximately

only 10% of that value at 0.0044.

To rectify this problem, we will assign weights to the precision matrices

in such a way that the variance of all values in each region is approximately

equal to one. This is done by taking samples from each region independently,
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calculating the variance of each region for those samples, and assigning weights

as follows:

wi = s2
i∑nr

j=1 s
2
j

, i = 1, . . . , nr,

where s2
i is the empirical variance calculated with all values from region i.

Then we will multiply each of the regional precision matrices Pi by wi so our

precision matrix becomes

P =
nr∑
i=1

(
Di(wiPi)Di −Di(wiPi)

[
(IN −Di)(wiPi)(IN −Di)

]†
(wiPi)Di

)

=
nr∑
i=1

wi

(
DiPiDi −DiPi

[
(IN −Di)Pi(IN −Di)

]†
PiDi

)
.

Alternatively, one can simply let Pi = wiPi once the weights have been

established. A sample from the prior using these weights is shown on the

right in Figure 5.4. The weight for the region on the left is approximately

0.0444/(0.0444 + 0.0044) = 0.9103 and the weight for the region on the right

is 0.0044/(0.0444 + 0.0044) = 0.0897. Using these weights to generate a new

sample led to variances of 1.01 and 0.93 for the left and right region, respec-

tively.

5.1.7 Numerical Experiments

We now consider an example where the angle of maximum anisotropy changes

throughout the image. We take the central portion of the Wave image from

Figure 4.7 and again mask it so that 60% of the image is blank. Then we

attempt to inpaint the image using an isotropic prior, an anisotropic prior,

and a regional anisotropic prior. The results are shown in Figure 5.5. The

top-right image shows the masked picture as well as how the regions were
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Figure 5.5: Inpainting solutions. The true image (top-left) is given along

with the masked image (top-right), the isotropic solution (center-left) the

anisotropic solution (center-right), and the regional solution (bottom).
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Table 5.1: Statistics for regional inpainting MAP estimates.

True Image Isotropic Covar. Anisotropic Covar. Regional Covar.
x̄ 0.567 0.565 0.566 0.566
s 0.207 0.200 0.202 0.206

Min 0.000 −0.014 −0.082 −0.035
Q1 0.400 0.402 0.402 0.398

Median 0.565 0.564 0.564 0.562
Q3 0.722 0.717 0.718 0.720

Max 1.000 1.085 1.077 1.160
ρxα,xtrue 0.954 0.954 0.969

Residual MAE 0.042 0.041 0.035
Residual MSE 0.004 0.004 0.003

chosen. The first region is shown with the red overlay while the second region

is the remainder of the image. Semivariograms were fit to both regions and

the top region was given a prior with an angle of maximum anisotropy of −30◦

while θ = −75◦ for the bottom region. In the anisotropic solution given in the

bottom-middle of the figure, θ = −75◦ throughout the image. Qualitatively,

the regional solution in the bottom-right of the figure looks best.

Turning to Table 5.1, we can see the statistics comparing the different

reconstructions. The isotropic and anisotropic solutions were similar in terms

of the correlation and mean errors, but the regional solution is better in each

of those categories and is similar in the others.

5.1.8 Discussion

The regional covariance solution performed better in this example, but it does

have some shortcomings. Firstly, it is best used when the distinction between

regions is high. This is because the transition between regions when using

this prior is abrupt, rather than smooth. Smoothing the transition between

regions is something we leave to future work. Additionally, since multiplying

P by a vector requires inverting a matrix, this method can be slow when that
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matrix is large, which corresponds to a small region. Therefore, we suggest

using small regions only when necessary. Alternatively, it is possible to solve a

different inverse problem for each region independently and then combine the

results. This will allow DFTs to be used since the precision matrix for each

inverse problem will be in the form of (3.16).

5.2 Markov Chain Monte Carlo Methods

In the previous examples, we calculated point estimates of ν and ` in the

isotropic case or ν, `1, `2, and θ in the anisotropic case using semivariograms

and suggested estimating α = δ/λ using a regularization method such as GCV.

Although these estimates are useful by themselves, an alternative approach

that allows for the quantification of uncertainty in these parameter estimates

is occasionally desirable.

We will focus here on the isotropic case. Sampling λ, δ, ν, and ` simul-

taneously with a fully-Bayesian approach can be done using the Metropolis

algorithm or, as is suggested in [Agarwal and Gelfand, 2005], via slice sam-

pling. The problem is that these variables, especially ν and `, are so highly

correlated that the sampling can be wildly inefficient [Shaby and Wells, 2010]

without careful selection of the prior distributions and considerable adjusting

of the proposal distributions [Khaledi and Rivaz, 2009]. In our tests, the es-

sential sample size (ESS) [Bardsley, 2018] was more than 100 times smaller

than the number of samples generated.

Due to the inefficiency of sampling from this posterior, we will fix ν, as

is commonly done [Khaledi and Rivaz, 2009, Roininen et al., 2016], setting it

equal to the estimated value determined by the semivariogram method. We
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now focus on quantifying the uncertainty in θ = (λ, δ, `). To this end, we

employ Markov chain Monte Carlo (MCMC) methods to obtain samples from

p(x,θ|b).

First, we write down the full likelihood function and prior for x:

p(b|x, λ) = λM/2

(2π)M/2N1/2
exp

(
−λ2‖MAx− b‖2

)
,

where M is the rank of M and

p(x|δ, ν, `) = δN/2 det(Pν,`)1/2

(2π)N/2 exp
(
−δ2x

TPν,`x

)
,

where Pν,` = (I+(`/h)2L)ν+d/2. Now we assume λ and δ are random variables

with Gamma-distributed hyperpriors, as in [Bardsley, 2018]:

p(λ) ∝ λαλ−1 exp(−βλλ)

p(δ) ∝ δαδ−1 exp(−βδδ),

where αλ = αδ = 1 and βλ = βδ = 10−4. Setting the hyperparameters as we

did will lead to the priors being fairly uninformative. That is, the priors will

not influence the samples nearly as much as the data will. Gamma hyperpriors

lead to Gamma conditional posterior densities for λ and δ (a property known

as conjugacy), which can be sampled from directly. Since no such conjugacy

exists for `, we assign it a uniform hyperprior, ` ∼ U(0, `max), where `max is a

selected upper bound for `. We assign the uniform hyperprior in an effort to

be as data-driven as possible. By Bayes’ law, the posterior density function is
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given by

p(x,λ, δ, `|b, ν) ∝ p(b|x, λ)p(x|δ, ν, `)p(λ)p(δ)p(`)

∝ λM/2+αλ−1δN/2+αδ−1det (Pν,`)1/2

× exp
(
−λ2‖MAx− b‖2 − δ

2x
TPν,`x− βλλ− βδδ

)
, 0 < ` < `max.

Collecting all of the terms of p(x, λ, δ, `|b, ν) that depend on λ and holding

all other variables constant yields

p(λ|b,x, δ, ν, `) ∝ λM/2+αλ−1 exp
(
−λ

[1
2‖MAx− b‖2 + βλ

])
,

which is a Gamma distribution with shape parameter M + αλ and rate pa-

rameter 1
2‖MAx− b‖2 + βλ. Doing the same for δ gives us

p(δ|b,x, λ, ν, `) ∝ δN/2+αδ−1 exp
(
−δ

[1
2x

TPν,`x+ βδ

])
,

which is another a Gamma distribution. Therefore, the conditional probability

distributions for λ and δ are given by

λ|b,x, δ, ν, ` ∼ Γ
(
M/2 + αλ,

1
2‖MAx− b‖2 + βλ

)
,

δ|b,x, λ, ν, ` ∼ Γ
(
N/2 + αδ,

1
2x

TPν,`x+ βδ

)
,

and it can be shown that the conditional probability distribution for x is

x|b, λ, δ, ν, ` ∼ N
( (

λATMTMA + δPν,`

)−1
λATMTb,

(
λATMTMA + δPν,`

)−1
)
.
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When collecting terms for `, we obtain

p(`|x, λ, δ, ν, b) ∝ det (Pν,`)1/2 exp
(
−δ2x

TPν,`x

)
, 0 < ` < `max,

which is not a known probability distribution.

Since no conjugacy exists for `, we will use the Metropolis-Hastings (MH)

algorithm to sample from p(`|x, λ, δ, ν, b). MH is an iterative method in which

each sample is dependent on the last. To implement MH, we randomly gen-

erate a proposed sample, `∗, from a proposal density, q. To keep all `∗ values

positive, we use a log-normal proposal density, i.e.,

q(`|`k) ∝
1
`

exp
(
− 1

2ρ2 (ln `− ln `k)2
)
, (5.3)

where ρ2 is chosen offline to keep the acceptance rate at an acceptable level,

which is often said to be between 0.2 and 0.5 [Gelman et al., 1996]. A proposed

sample `∗ ∼ q(`|`k) is then accepted with probability

β(`∗, `k) = min
{

1, p(`
∗|xk, λk+1, δk+1, ν, b)q(`k|`∗)

p(`k|xk, λk+1, δk+1, ν, b)q(`∗|`k)

}

= min

1,
`∗det (Pν,`∗)1/2 exp

(
− δ

2(xk)TPν,`∗x
k
)

`kdet (Pν,`k)
1/2 exp

(
− δk+1

2 (xk)TPν,`kx
k
)
 .

That is, we set `k+1 = `∗ with probability β(`∗, `k), and otherwise we set

`k+1 = `k. To obtain samples of x, λ, δ, and `, we use the following Metropolis-

within-Gibbs sampler [Metropolis et al., 1953, Tierney, 1994]. Note that we

denote a sample of x as xk rather than xk to differentiate it from an iteration

of the CG or PCG methods.



Chapter 5. Extensions 102

The Metropolis-within-Gibbs Sampler for Posterior Sampling

0. Initialize λ0, δ0, and `0 and set k = 0;

1. Compute a sample

xk ∼ N
((
λkATMTMA + δkPν,`k

)−1
λkATMTb,

(
λkATMTMA + δkPν,`k

)−1
)
.

2. Compute samples

λk+1 ∼ Γ
(
M/2 + αλ,

1
2‖MAxk − b‖2 + βλ

)
;

δk+1 ∼ Γ
(
N/2 + αδ,

1
2(xk)TPν,`x

k + βδ

)
.

3. Apply the Metropolis-Hastings algorithm to compute a sample

`k+1 ∼ p(`|xk, λk+1, δk+1, ν, b).

4. Set k = k + 1 and return to Step 1.

The λ and δ samples can be directly computed in both one and two dimensions,

but we need to apply PCG to obtain a sample of x in two-dimensional cases

[Bardsley and Luttman, 2015].

5.2.1 MCMC Diagnostics

Sampling Chains

The primary diagnostic tool for evaluating MCMC sampling is observing the

sampling chains. Ideally, each sample in the chain will be independent from all
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Figure 5.6: MCMC chain examples. Chain 1 on top has a low acceptance rate.

Chain 2 in the middle is dependent on many previous iterations. Chain 3 on

the bottom exhibits good behavior.

others. Since the posterior distributions rely on the previous iteration, that is

not going to be the case, but we would like to minimize the number of previous

iterations on which the current one depends. A good-looking sampling chain

is one that essentially looks like noise, with no discernible patterns or paths.

Figure 5.6 shows three different types of sampling chains. The chain on top

is one that has a low acceptance rate, and therefore remains at specific values

for many iterations. The chain in the middle is moving, but is correlated with

many previous iterations. The chain on the bottom exhibits good behavior

and is dependent on very few previous iterations.

Autocorrelation Functions

The autocorrelation function (ACF) gives an idea of how correlated a chain is

with itself at various lags [Venables and Ripley, 2001]. For a sampling chain
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Figure 5.7: MCMC ACF examples. The ACFs for the top, middle, and bottom

chains in Figure 5.6 are given on the left, middle, and right, respectively.

{yk}Kk=1, one can calculate the ACF using

ρ̂(j) = C(j)/C(0), where C(j) = 1
K

K−j∑
k=1

(yk − ȳ)(yk+|j| − ȳ),

and K is the number of MCMC samples in the chain. Note that we divide by

K and not K−j in C(j) in order to keep the C(j) covariance sequence positive

definite. The ACFs for the top, middle, and bottom chains in Figure 5.6 are

given in Figure 5.7 on the left, middle, and right, respectively. The ACFs

show that Chain 1 is autocorrelated out to a lag of around 2,000, Chain 2 is

autocorrelated to a lag of approximately 270, and Chain 3 is only dependent

on the last iteration.

Integrated Autocorrelation Time

The integrated autocorrelation time (IACT) estimates the number of iterations

needed, on average, for an independent sample to be drawn [Fang et al., 2017].

This is denoted by τint(y). There are various ways to calculate this statistic.

We use Sokal’s adaptive truncated periodogram estimator presented in [Sokal,
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1997]. The calculation is given by

τ̂int = 1 + 2
K∑
j=1

K

K − j
ρ̂(j),

where K is taken to be the smallest integer such that such that K ≥ 3τ̂int.

Since the value of K depends on τ̂int, it is usually necessary to compute this

statistics multiple times for various K values before obtaining one that fits the

required criteria.

Since τ̂int gives the estimated number of iterations needed to obtain an inde-

pendent sample, one can calculate the essential sample size (ESS) by dividing

the number of iterations in the chain by τ̂int:

KESS = K/τ̂int.

This measure gives a good idea of the number of independent samples in the

chain. The IACTs for the chains in Figure 5.6 are 1,144, 154.4, and 1.065 for

the top, middle, and bottom chains, respectively. That corresponds to an ESS

of 7.87, 58.3, and 8,451 in a chain length of 9,000. Notice that the IACT does

not calculate the lag distance needed for the autocorrelation to be equal to

zero. Some autocorrelation is acceptable even in samples that are said to be

independent.

Geweke Test

The final MCMC diagnositc we will discuss is the Geweke Test for equality

in means that can be used to identify if the sampling chain is in equilibrium



Chapter 5. Extensions 106

[Geweke, 1992]. The Geweke test performs the following hypothesis test:

H0 : µa = µb

Ha : µa 6= µb,

where µa is the true mean of the first a% of the sampling chain and µb is the

mean of the last b% of the chain. We use a = 10 and b = 50 so that we test if

the mean of the first 10% of the sampling chain is equal to the last 50%. Then

the test statistic

RGeweke = ȳa − ȳb√
Ŝa
Ka

+ Ŝb
Kb

can be used, where ȳa is the sample mean, Ka is the sample size, and Ŝa is

consistent spectral density estimates for the variance of the first a% of the

sampling chain; and ȳb is the sample mean, Kb is the sample size, and Ŝb

is consistent spectral density estimates for the variance of the last b% of the

sampling chain. The spectral density estimates for the variances are used

since the sample variances are not independent. These estimates will not be

discussed here but can be found in [Geweke, 1992]. When the number of

samples in the chain is large, this test can be approximated using the Central

Limit Theorem. That is, RGeweke
dist→ N (0, 1) as K → ∞. A large p-value

(greater than 0.95) indicates strong evidence in favor of the null hypothesis

that µa = µb and, therefore, that the chain is stable.

5.2.2 MCMC Results

We implement the MCMC procedure described above for the two-dimensional

example from Section 4.1.2. For the log-normal proposal (5.3), we use the
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Table 5.2: MCMC results – Red color band.

Hyper-Parameter Mean 95% Credible Interval ESS Geweke p-value
λ 1,122 (1,020, 1,229) 152 0.98
δ 0.0202 (0.014, 0.027) 524 0.99

α = δ/λ 1.80× 10−5 (1.28, 2.39)× 10−5 800 0.99
` 0.0228 (0.021, 0.025) 313 0.99

variance ρ2 = 0.025, which gave an acceptance rate of approximately 0.40 for

`. We compute 10,000 samples and discard the first 1,000 as burn-in. The

results for the red intensities are given in Figure 5.8 and in Table 5.2. We

omit the MCMC chains for the green and blue intensities, but the results

are similar except for the fact that the IACTs are larger for the blue color

band. The high p-values for the Geweke tests indicate that the chains are

well mixed and have reach stability. Although the IACT values are high, the

chains and histograms otherwise look good as does the reconstruction given in

the bottom-right of Figure 5.8. The middle-right image shows the difference

between the 97.5th and 2.5th percentile for every pixel. The pixels with larger

uncertainty correspond to the ones that were missing in the masked image.

The 95% credible intervals for λ, δ, α, and ` are given for each of the color

arrays in Table 5.3. The α values for the red and green intensities are nearly

identical, while the α values for the blue color band are a bit larger. The α

values of 2.24 × 10−6, 3.84 × 10−6 and 1.27 × 10−7 that we obtained using

Table 5.3: MCMC 95% credible intervals.

Hyper-Parameter Red Intensity Green Intensity Blue Intensity
λ (1,020, 1,229) (1,071, 1,278) (2,202, 2,960)
δ (0.014, 0.027) (0.015, 0.029) (0.072, 0.119)

α = δ/λ (×10−5) (1.28, 2.39) (1.29, 2.47) (2.84, 4.73)
` (0.021, 0.025) ( 0.022, 0.026) (0.015. 0.017)
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Figure 5.8: 2-D MCMC results. The upper-left shows the λ, δ, α = δ/λ,

and ` sampling chains for the red intensity. The upper-right shows the λ, δ,

α = δ/λ, and ` histograms for the red intensity. The middle-left shows the

autocorrelation functions for λ, δ, α = δ/λ, and `. The middle-right shows the

difference between the 97.5th and 2.5th percentiles for each pixel in the image.

The bottom-left image shows pair-wise scatter plots. The MCMC solution

taken as the mean of the sampling chain of x is on the bottom right.
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Table 5.4: Statistics for MCMC and MAP estimates.

True Image MCMC Whittle-Matérn Covariance
x̄ 0.418 0.418 0.418
s 0.216 0.211 0.213

Min 0.000 −0.057 −0.062
Q1 0.243 0.246 0.245

Median 0.455 0.454 0.452
Q3 0.545 0.545 0.546

Max 1.000 1.014 1.027
ρxestimate,xtrue 0.981 0.982

Residual MAE 0.029 0.029
Residual MSE 0.002 0.002

the best correlation criteria from Section 4.1.2 fall below of the intervals for

all three color bands, which contributed to a slightly smoother image in the

MCMC solution.

Figure 5.9 contains additional images to make a direct visual comparison

between the true image, the masked image, and the reconstructions from the

different methods. Although the solutions look similar, the semivariogram im-

age is slightly sharper, while the MCMC image is smoother, which especially

looks a bit better in the grassy regions. Table 5.4 contains a numerical com-

parison between the two solutions. These measures indicate that while the two

methods give different reconstructions, they are very similar and both appear

to be good.

5.2.3 Discussion

Although the MCMC method provided a good solution and gave uncertainty

quantification for the model parameters, the semivariogram technique still

produced a competitive solution and has some practical advantages: the semi-
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Figure 5.9: 2-D deblurring images. The upper-left plot shows the true Im-

age; the upper-right shows the masked image; the lower-left image shows the

MCMC sample mean reconstruction fixing ν; and the lower-right image shows

the MAP reconstruction using variograms.
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variogram procedure provides clearer interpretations of the parameters ν and

`; it gives an objective, intuitive way to select ν for use in the MCMC; and

it can inform how far to extend the domain to maintain a connection with

the Matérn covariance. Additionally, the computation time is only a frac-

tion of what is needed to compute an adequate number of MCMC samples.

In our implementation of the example above, the semivariogram method was

approximately 80 times faster than the MCMC approach.

Extending the MCMC methods to the anisotropic case can be accom-

plished in one of two ways. First, one can assign hyperprior distributions

to `1, `2, and θ and then use the prior (3.15) and Bayes’ law to achieve a new

Metropolis-within-Gibbs sampler. With that many hyperparameters, however,

convergence may be difficult to achieve. Alternatively, it may be possible to

transform the image to an isotropic one before applying MCMC methods using

(2.10) and then transform back using (2.11) once the sampling is complete.

When doing this, however, DFTs may not be able to be used to obtain a sam-

ple of xk since the image may no longer be on a grid. Applying MCMC to the

anisotropic case is something we leave to future work.
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Conclusion

In this thesis, we introduced a method for selecting hyperparameters for use

in the prior distribution of x based on semivariogram modeling. We think of

the noisy data as a spatial field and fit semivariograms to the noisy data and

then iteratively to the MAP estimates to obtain point estimates for the prior

hyperparameters. This method relies on the fact that the solution of the SPDE

(2.1) is a Gaussian process with zero mean and Matérn covariance operator,

which we have shown in detail. However, this connection requires an infinite

domain. For a finite domain, which is typically required for computations, the

connection is broken, i.e., the SPDE solution is a zero mean Gaussian process

without a Matérn covariance operator. Fortunately, the connection can be

restored by extending the finite computational domain. We showed how to

systematically choose the extended domain using the Matérn parameters.

We generalized the isotropic results to the anisotropic case and showed the

semivariogram method can be applied as well by using directional semivari-

ograms and the anisotropic SPDE (2.12). An inpainting example comparing

reconstructions using isotropic and anisotropic priors was presented. We also
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extended the results to an even more general case when the image has regions

with differing correlation lengths or angles of maximum correlation, which re-

quires a sparse precision matrix that can be obtained via a discretized SPDE

for each region. One more example was shown that yielded good solutions.

Additionally, we compared the results of the semivariogram method to the

fully-Bayesian method using MCMC. The solutions were similar and while

uncertainty quantification is lost, the semivariogram method has the benefits

of giving point estimates with a more intuitive interpretation while providing

an objective way to choose an extension of the computational domain that is

adequate for restoring the SPDE/Matérn connection.

Future work related to this topic could focus on incorporating MCMC

methods to the anisotropic case to quantify uncertainty in the hyperparame-

ter estimates. Also, work to smooth out the transition between regions in the

regional case could be done to increase its usefulness for practical problems.

This may be accomplished by dropping the assumption of independence be-

tween regions as well as allowing for regions to overlap. Another topic of study

is to investigate whether it is possible to use semivariograms to estimate the

regularization parameter so that reliance on a regularization parameter selec-

tion technique like GCV is not required. Finally, applying spatial statistical

methods for estimating hyperparameters when the assumption of stationarity

in the field is dropped can be investigated.

6.1 MATLAB Code

All of the methods discussed in this dissertation where coded in MATLAB

[MAT, 2019]. We used MATLAB R2019a, but most of the code will work
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in older versions. For the function that will not work in an earlier version,

an alternate is provided. All code can be accessed at the following URL:

https://github.com/rbrown53/DissertationCodes.

https://github.com/rbrown53/DissertationCodes
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