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Abstract

Shchepakin, Denis, Doctorate of Philosophy, Spring 2019 Mathematics

Applications of Asymptotic Methods: Analyzing Mathematical Models in Neuroscience
and Describing Fast Dynamics of a Trajectory in the Vicinity of a Chaotic Attractor.

Committee Chair: Leonid Kalachev, Ph.D.

The current dissertation focuses on two unrelated subjects: modeling in Neuroscience
applications and Chaos Theory.

Neurons are units of the nervous system that receive, conduct, and transmit information
to each other and target tissue via electrical signaling. One of the mechanisms of the
signal transduction is through signaling molecules called neurotransmitters. Glutamate
is the predominant excitatory neurotransmitter in the mammalian and human central
nervous system. However, the mechanism of regulation and sensation of the glutamate via
glutamate receptors and transporters is not completely understood.

We discuss currently existing models of glutamate receptors and transporters, and their
main problem: the overparameterization with respect to the existing experimental data.
Although this issue prevents statistical reliable parameter estimate, numerous authors still
attempt to use them for these means using incorrect methodology. We are able to reduce
the existing models under certain assumptions, that are achieved in experiments, designed
specifically for this purpose. This approach allows us to avoid the overparameterization
issue and for the first time obtained statistically reliable parameter estimates.

Chaotic systems do not allow for conventional methods of parameter estimation and
had been considered to be an ill–posed problem. Recently a novel promising methodology
was proposed. Here we discuss some further development of the technique that brings it
closer to practical use.
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1 Introduction

The current dissertation focuses on two unrelated subjects: modeling of glutamate recep-
tor and transporters as well as synaptic transmission and extension of a novel parameter
estimation approach in Chaos Theory. Additional background information and context are
given in the corresponding sections. Let us outline them.

In Section 2 we introduce some basic concepts from the Neuroscience field. Section
3 begins with background information about glutamate transporters, overview of the ex-
isting models of glutamate transporters, and issues related to estimating transporters’
turnover rates. The section continues with a derivation and application of a new model
that resolves mentioned issues. The real experimental data are used to obtain statisti-
cally reliable turnover rates estimates. The section is then continues the discussion of the
role of glutamate transporters in clearing synaptic cleft during synaptic transmission. The
3–dimensional diffusion model of a synapse is constructed using the turnover rates esti-
mates obtained on the previous step. The diffusion model is then analyzed in a context of
a synapse functioning. Section 4 focuses on glutamate receptors and discusses a specific
phenomenon called desensitization. The section goes through the difficulties of identifying
the nature of the phenomenon. A series of receptor’s models and experiments’ designs are
then constructed in conjunction in order to overcome the stated difficulties. The section
finishes with a proposed algorithm of experiments and fitting procedures that yields some
insight on the nature of receptor’s desensitization.

Section 5 presents a recently developed novel method of estimating parameters of
chaotic systems. A useful extension of the methodology is discussed.

Appendix A contains useful results from the literature that are used here. Appendix B
contains MATLAB code files.

The results from Sections 3 — 5 are published here:

1. Denis Shchepakin, Leonid Kalachev, and Michael Kavanaugh, Modeling of Excitatory
Amino Acid Transporters, Research Perspectives CRM Barcelona, Summer 2018, vol.
11, in Trends in Mathematics, Springer-Birkhäuser, Basel (in press).

2. Denis Shchepakin, Leonid Kalachev, and Michael Kavanaugh, Modeling of N–methyl–
D–aspartate receptors, Research Perspectives CRM Barcelona, Summer 2018, vol. 11,
in Trends in Mathematics,Springer-Birkhäuser, Basel (in press).

3. Denis Shchepakin, Leonid Kalachev, and Michael Kavanaugh, Modeling of excitatory
amino acid transporters and clearance of synaptic cleft on millisecond time scale,
Mathematical Modelling of Natural Phenomena (in press).

4. Sebastian Springer, Heikki Haario, Leonid Kalachev, Vladimir Shemyakin, Denis
Shchepakin, Robust Parameter Estimation of Chaotic System, Inverse Problems and
Imaging (in press).
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2 Neuroscience

Figure 1: Neuron and synapse structures (http:
//commons.wikimedia.org/wiki/File:Chemical_synapse_

schema_cropped.jpg)

Typical neuron consists
of a cell body and multi-
ple extensions called neu-
rites. There are two
types of neurites: den-
drites and axons. Den-
drites are small highly
branched processes, usu-
ally a fraction of a mil-
limeter in length, and
serve as neuron’s signal
receivers from other neu-
rons. There is typi-
cally a single axon in a
neuron, which is longer
than a dendrite (e.g.,
up to about 1 me-
ter in humans). An
axon transmits a signal
from a neuron to other
neurons or target tis-
sue. As a neuron re-
ceives a signal through
its dendrites, membrane-
embedded proteins, ion-
channels, activate and
change its cross-membrane
potential. If the accu-
mulated change reaches
a certain threshold, the
neuron will generate a
one-way electrochemical
pulse along the axon, called action potential, which transmits signal down the neural
circuit. When an action potential reaches the end of the axon, an axon terminal, the
signal must be transmitted through a junction, called a synapse, to the next cell. There
are two types of synapses: electrical and chemical. In this work we focus on chemical
synapses. A chemical synapse is a small gap between an axon terminal of a signaling
neuron, called pre-synaptic cell, and a dendrite of a receiving neuron or other target cell,
called post-synaptic cell. Upon receiving an action potential, the pre-synaptic cell releases
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special signaling molecules, called neurotransmitters, that are stored within the cell in the
synaptic vesicles. The neurotransmitter diffuses through the synaptic cleft and is sensed by
the post-synaptic cell via specialized receptors, which in turn change the post-synaptic cell
potential via various mechanisms; see Figure 1. Depending on the type of neurotransmitter
and the receptors, this change could be excitatory, i.e., bringing the potential of a cell closer
to the action potential threshold, or inhibitory, i.e., producing the opposite effect. After
a short amount of time (few milliseconds), the neurotransmitter leaves the synaptic cleft
through a process of degradation or physical uptake by other specialized proteins, called
transporters. This is necessary for information transfer efficacy. Moreover, prolonged expo-
sure of a post-synaptic cell to some neurotransmitter, e.g., glutamate, could lead to nerve
damage or death, the effect which is called excitotoxicity. Therefore, the termination of
the neurotransmitter signaling also plays a protective role. Here we focus on a particu-
lar signaling molecule, glutamate. It is the most abundant excitatory neurotransmitter in
mammalian central nervous system (CNS). The disruption of the glutamate regulation in
the brain could lead to such problems as amyotrophic lateral sclerosis, Alzheimer’s disease
and neuronal death [1, 2].
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3 Glutamate transporters

There are no reported extracellular enzymes that degrade glutamate, thus, the role of
glutamate transporters is of high importance. The glutamate transporters that mainly
accomplish this task are excitatory amino acid transporters (EAATs). To date, five major
subtypes have been identified (EAAT1—5) in mammalian CNS, that are all part of solute
carrier family 1 (SLC1) [3, 4]. EAATs are found on the membranes of the neurons and
astrocytes, a type of glial cells that play various roles in central nervous system, including
a maintenance of extracellular ion balance. Astrocytes envelop some of the synapses to
various degrees [5] and their transporters play a role in the clearance of a glutamate from
the synaptic cleft. EAAT3 are exclusively expressed on neurons’ dendrites and somas and
EAAT1 are found on astrocytes. EAAT2 are expressed on both astrocytes and synapses of
presynaptic cells [6, 7]. EAAT4 is found on the dendrites of the cerebellar Purkinje cells and
in some neurons of forebrain and EAAT5. EAAT4—5 are not very efficient transporters and
were suggested to play a role analogous to an inhibitory glutamate receptors [3]. Therefore,
here we focus on EAAT1—3.

Although our understanding of EAATs’ functioning is crucial for various reasons, e.g.,
modeling or drug developing, even their most basic characteristics are poorly estimated.
The reports of the transporters’ turnover rate, i.e., the average number of glutamate
molecules that can be transferred from the extracellular space across the membrane by
a single transporter per unit of time, ranges in the literature from a few molecules per sec-
ond on the lower end [8, 9] to the numbers that are several fold greater [10, 11]. Even the
largest estimated values are few orders of magnitude slower than the synaptic transmission
[21, 22]. Nevertheless, the glutamate transporters are reported to somehow influence the
dynamics of a much faster synaptic signaling [23, 24, 25, 26, 27].

Here we derive a model for a specific experiment design, which allows for a reliable
estimate of EAAT1—3 turnover rates. Next, we construct a 3—dimensional model of a
synapse and using the obtained turnover rates estimates simulate the synaptic transmission.
This allows us to get the insight on the nature of discrepancies in both EAATs turnover
rates and their ability to influence fast synaptic signaling.

3.1 Turnover rate of the glutamate transporters

3.1.1 Current models

We begin with the basic knowledge of how EAATs transport glutamate across the mem-
brane and discuss the corresponding widely-accepted straight-forward chemical kinetics
model and its limitation. EAATs transport glutamate molecules against their electro-
chemical gradient via the electrochemical gradients of other ions: with each molecule of
glutamate 3 Na+ and 1 H+ are co-transported, and 1 K+ is counter-transported [12, 13].
Therefore, the net charge of +2 moves into the cell with each full cycle of the transporter.
Electrophysiological experimental techniques allow to record this movement of charges in
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cells expressing the transporters and relate the data to glutamate uptake. The order of
ion binding to and unbinding from the transporter has been established and reflected in
the commonly accepted chemical kinetics model (see Figure 2) [14, 15]. Glutamate trans-
porters also play a role of a chloride channel [9, 16], i.e., Cl− can be transferred through
some of the states of the model resulting in an additional charge movement. The exact
states that can interact in such a way with chloride ions are not known. If we assume that
this is possible for all states, this will increase the number of states in the model to twice
as many.

ToK
r±1 To

r±2 ToNa
r±3 ToNa2

r±41 ToNa2G r±51

ToNa2GH
r±6 ToNa3GHr±42

ToNa2H
r±7

TiNa3GH
r±8TiNa2GH

r±9TiNa2G
r±10TiNa2

r±11TiNa
r±12Ti

r±13TiK

r±14 r±15

r±52

Figure 2: 15-state model for EAATs. To and Ti stand for transporter facing extracel-
lular and intracellular spaces, respectively; Na, K, H denote corresponding ions; G is
L–glutamate; r±i for all i are reaction rate constants. r+

i and r−i correspond to a clockwise
and counterclockwise directions, respectively.

The practical use of the described 15—state model (30—state with Cl− conduction) is
highly limited as the number of unknown parameters, i.e., reaction rates, is beyond that
which can be estimated from the experimental data, that is, the model is overparameterized
with respect to the existing data. One of the possible solutions to resolve the issue is
to reduce the model when some specific conditions can be maintained, i.e., a controlled
experiment. We consider a certain technique, called an excised patch clamp experiment.
Let us provide a short overview of the procedure. An investigator forms a tight seal between
a cell membrane expressing the transporters and a fine micropipette. The micropipette is
then withdrawn from the cell, which causes the cell membrane to bulge and eventually
rupture, resealing its small portion, the ”patch”, on the pipette. The obtained patch
retains the local structure of the cell membrane, including transmembrane proteins like ion
channels and transporters. Depending on the technique of pulling, the patch can face either
of two ways: the cytosolic (inner) surface of the patch faces the inside of the pipette (called
”outside—out patch”) or the outside of the pipette (called ”inside—out patch”). Content
of both solutions (inside and outside of the pipette) is controlled by the experimenter and
simulate intracellular and extracellular environment of the cell for the patch. The solution
in the bath, i.e., outside of the micropipette, can be rapidly switched by physically moving
the pipette or the bath. A piezo electric switch is often used for such purposes and it allows
for a solution change within a few milliseconds. The electrodes inside the pipette and in
the bath are then used to study the flow of ions across the membrane, i.e., patch, that
should emulate the flow of ions across the membrane of the whole cell but on a smaller
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scales, which allows for a tight control of the solution on both sides of the cell wall.
Let us discuss how this experimental approach can be used to reduce the chemical

kinetics model. Since one has the total control of the solutions that represent intracellular
and extracellular space in excised patch clamp experiments, the ion concentrations can be
adjusted in such a way that they accelerate the transitions of the model states in a clockwise
manner. The increase of sodium and hydrogen ions, and glutamate concentrations in the
solution representing extracellular space will accelerate their binding to the transporter; the
reduction of K+ concentration will facilitate its unbinding from the transporter (ToK → To
transition). The analogous approach can be taken for the solution representing intracellular
environment as well. This approach will saturate the transporter with its ligands and
increase the probability of transition in the clock-wise manner (see Figure 2 for visual
reference), making some of these transitions almost instantaneous, which will effectively
eliminate some of the model states. Under the described conditions the number of effective
states in the model decreases to four. After addition of four more states that are responsible
for conductance of chloride ions, the reduced model is obtained; see Figure 3. Let us
note that similar models have been proposed and studied before, see e.g., [9, 10, 17, 18].
Although these reduced models seem to retain many, if not all, of the qualitative features
of recorded currents, they still cannot be used for parameter estimation as they remain to
be overparameterized with respect to the experimental data. Thus, further reduction is
needed.

To
c±1

To
k±1

ToG
c±2

ToG

k±2

TiG

k±4

Ti
c±3

TiG
c±4

Ti

Gi

k+
3

Figure 3: The simplified 8-state model for the patch clamp experiment. The states with
bars are the corresponding conducting states, which allow the flow of chloride ions.

3.1.2 Model derivation

Now, let us discuss the possible further reduction of the 8–state model (Figure 3). Its
chemical kinetics scheme can be represented by a system of differential equations using
the rate law. For each state we define a corresponding variable, using the same notation,
which is a fraction of all transporters observed to be in this state (e.g., the variable To(t)
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is a fraction of all transporters in To state). The system has the following form:

dTo
dt

= c+
1 To − c

−
1 To − (k+

1 + k−4 )To + k−1 ToG+ k+
4 Ti,

dToG

dt
= −c+

2 ToG+ c−2 ToG− (k−1 + k+
2 )ToG+ k+

1 To + k−2 TiG,

dTiG

dt
= −c+

3 TiG+ c−3 TiG− (k−2 + k+
3 )TiG+ k+

2 ToG,

dTi
dt

= c+
4 Ti − c

−
4 Ti − k

+
4 Ti + k+

3 TiG+ k−4 To,

dTo
dt

= −c+
1 To + c−1 To,

dToG

dt
= c+

2 ToG− c
−
2 ToG,

dTiG

dt
= c+

3 TiG− c
−
3 TiG,

dTi
dt

= −c+
4 Ti + c−4 Ti.

(1)

We focus on the reduction for the outside—out patch experiment (so the 8–state model
derived under these conditions is valid), i.e., the bath solution represents the extracellular
environment. During the experiments we switch back and forth between two bath mixtures
with the same substances content except for glutamate: one solution contains a saturating
concentration of the neurotransmitter and another does not have any at all. Thus, each
switch of the solution makes an abrupt change in an ”extracellular” glutamate concen-
tration. When glutamate is not present in the bath, a transition of the transporter from
the To state to ToG is impossible, without directly affecting other transition. This can be
modeled by simply putting reaction rate k+

1 to zero. Because k+
1 value effectively switches

back and forth between zero and non-zero values every time we switch the bath solution,
we have split the modeling of the experiment into the corresponding stages. Naturally, we
will use the end state of the system from the previous stage as the initial conditions for
the system in the next stage.

As we mentioned, the use of model (1) for estimating model parameters is not a valid
approach due to overparameterization of the system with respect to the existing experi-
mental data (and, thus, the need for the reduction). According to [9], the transitions to
conducting states are much faster compared to the reactions which correspond to gluta-
mate transportation, i.e. c±i � k±j for all i, j. We can define a small parameter 0 < ε� 1
in the following way:

c±i =
c̃±i
ε
, c̃±i ∼ O(1), k±i ∼ O(1), i = 1, 2, 3, 4. (2)
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The boundary function method (Appendix A.1) allows for the reduction of system (1). We
represent all the variables as asymptotic series with respect to the small parameter ε. We
note that we will use slightly different notations for the regular functions to avoid double
subscripts:

To(t) = T
(0)
o (t) + Π0To(τ) + ε

(
T

(1)
o (t) + Π1To(τ)

)
+ · · · ,

ToG(t) = ToG
(0)(t) + Π0ToG(τ) + ε

(
ToG

(1)(t) + Π1ToG(τ)
)

+ · · · ,
TiG(t) = TiG

(0)(t) + Π0TiG(τ) + ε
(
TiG

(1)(t) + Π1TiG(τ)
)

+ · · · ,
...

Ti(t) = Ti
(0)

(t) + Π0Ti(τ) + ε
(
Ti

(1)
(t) + Π1Ti(τ)

)
+ · · · ,

(3)

where τ = t/ε is a rescaled (stretched) time variable. Let us remind that the terms in the
asymptotic series that depend on t are called the regular functions, and the terms that
depend on τ are called the boundary functions. Next, we substitute (2) and (3) into the
system (1). The resulting system is quite big, so we demonstrate only one equation of the
resulting system as an example to give the idea of how the methodology works, with all
other equations being similar. For example, the first equation of the system (1) becomes:

dT
(0)
o

dt
+

1

ε

dΠ0To
dτ

+ ε
dT

(1)
o

dt
+
dΠ0To
dτ

+ · · ·

=
c̃+

1

ε

(
To

(0)
(t) + Π0To(τ) + εTo

(1)
(t) + εΠ1To(τ) + · · ·

)
− c̃
−
1

ε

(
T (0)
o (t) + Π0To(τ) + εT (1)

o (t) + εΠ1To(τ) + · · ·
)

−(k+
1 + k−4 )

(
T (0)
o (t) + Π0To(τ) + εT (1)

o (t) + εΠ1To(τ) + · · ·
)

+k−1

(
ToG

(0)(t) + Π0ToG(τ) + εToG
(1)(t) + εΠ1ToG(τ) + · · ·

)
+k+

4

(
T

(0)
i (t) + Π0Ti(τ) + εT

(1)
i (t) + εΠ1Ti(τ) + · · ·

)
.

Equating coefficients of like powers of ε, separately for regular and boundary layer
functions, we obtain the reduced model problems for different terms of the asymptotic
expansion (3). For regular functions in the leading order approximation, we obtain the
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following system:

To
(0)

=
c̃−1

c̃+
1

T
(0)
o =

c−1
c+

1

T
(0)
o ,

ToG
(0)

=
c+

2

c−2
ToG

(0),

TiG
(0)

=
c+

3

c−3
TiG

(0),

Ti
(0)

=
c−4
c+

4

T
(0)
i ,

dT
(0)
o

dt
=

c+
1

c+
1 + c−1

(
−(k+

1 + k−4 )T
(0)
o + k−1 ToG

(0) + k+
4 T

(0)
i

)
,

dToG
(0)

dt
=

c−2
c+

2 + c−2

(
−(k−1 + k+

2 )ToG
(0) + k+

1 T
(0)
o + k−2 TiG

(0)
)
,

dTiG
(0)

dt
=

c−3
c+

3 + c−3

(
−(k−2 + k+

3 )TiG
(0) + k+

2 ToG
(0)
)
,

dT
(0)
i

dt
=

c+
4

c+
4 + c−4

(
−k+

4 T
(0)
i + k+

3 TiG
(0) + k−4 T

(0)
o

)
.

(4)

Let us introduce the following notations:

m+
1 =

c+
1 k

+
1

c+
1 + c−1

, m−1 =
c−2 k

−
1

c+
2 + c−2

,

m+
2 =

c−2 k
+
2

c+
2 + c−2

, m−2 =
c−3 k

−
2

c+
3 + c−3

,

m+
3 =

c−3 k
+
3

c+
3 + c−3

,

m+
4 =

c+
4 k

+
4

c+
4 + c−4

, m−4 =
c+

1 k
−
4

c+
1 + c−1

,

and

x =
c+

1 + c−1
c+

1

T
(0)
o , y =

c+
2 + c−2
c−2

ToG
(0),

z =
c+

3 + c−3
c−3

TiG
(0), w =

c+
4 + c−4
c+

4

T
(0)
i .
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Then, by solving the following system

dx

dt
= −m+

1 x+m−1 y +m+
4 w −m

−
4 x,

dy

dt
= m+

1 x−m
−
1 y −m

+
2 y +m−2 z,

dz

dt
= m+

2 y −m
−
2 z −m

+
3 z,

dw

dt
= m+

3 z −m
+
4 w +m−4 x,

(5)

we can find the regular functions in the leading order approximation:

To(t) =
c+

1

c+
1 + c−1

x(t) +O(ε), To(t) =
c−1

c+
1 + c−1

x(t) +O(ε),

ToG(t) =
c−2

c−2 + c+
2

y(t) +O(ε), ToG(t) =
c+

2

c−2 + c+
2

y(t) +O(ε),

TiG(t) =
c−3

c−3 + c+
3

z(t) +O(ε), TiG(t) =
c+

3

c−3 + c+
3

z(t) +O(ε),

Ti(t) =
c+

4

c+
4 + c−4

w(t) +O(ε), Ti(t) =
c−4

c+
4 + c−4

w(t) +O(ε).

(6)

For the boundary functions in the leading order approximation, we obtain the following
system:

dΠ0To
dτ

= c̃+
1 Π0To − c̃−1 Π0To,

dΠ0ToG

dτ
= −c̃+

2 Π0ToG+ c̃−2 Π0ToG,

dΠ0TiG

dτ
= −c̃+

3 Π0TiG+ c̃−3 Π0TiG,

dΠ0Ti
dτ

= c̃+
4 Π0Ti − c̃−4 Π0Ti,

dΠ0To
dτ

= −c̃+
1 Π0To + c̃−1 Π0To,

dΠ0ToG

dτ
= c̃+

2 Π0ToG− c̃−2 Π0ToG,

dΠ0TiG

dτ
= c̃+

3 Π0TiG− c̃−3 Π0TiG,

dΠ0Ti
dτ

= −c̃+
4 Π0Ti + c̃−4 Π0Ti.

10



Let us notice that the sum of derivatives of boundary functions of a conducting and a
corresponding non-conducting states is zero for every state. Therefore, the sum of boundary
functions of a conducting and a corresponding non-conducting state is always a constant.
Since all the boundary functions must tend to 0 as τ goes to infinity, all these constants
must equal to zero. We have

Π0To(τ) = Π0To(0)e
−
(
c̃+1 +c̃−1

)
τ
,

Π0ToG(τ) = Π0ToG(0)e
−
(
c̃+2 +c̃−2

)
τ
,

Π0TiG(τ) = Π0TiG(0)e
−
(
c̃+3 +c̃−3

)
τ
,

Π0Ti(τ) = Π0Ti(0)e
−
(
c̃+4 +c̃−4

)
τ
,

Π0To(τ) = −Π0To(0)e
−
(
c̃+1 +c̃−1

)
τ
,

Π0ToG(τ) = −Π0ToG(0)e
−
(
c̃+2 +c̃−2

)
τ
,

Π0TiG(τ) = −Π0TiG(0)e
−
(
c̃+3 +c̃−3

)
τ
,

Π0Ti(τ) = −Π0Ti(0)e
−
(
c̃+4 +c̃−4

)
τ
.

(7)

Let us now consider the initial conditions for the states To and To, and their leading
order approximations:

T
(0)
o (0) + Π0To(0) = To(0),

To
(0)

(0) + Π0To(0) = To(0).

Using the first equation of (4) and Π0To = −Π0To from (7), we get

T
(0)
o (0) + Π0To(0) = To(0),

c−1
c+

1

T
(0)
o (0)−Π0To(0) = To(0).

We can sum the equations and get an initial conditions for the function x(t) of system (5).
Repeating the same procedure for the functions y(t), z(t), and w(t), we obtain:

x(0) = To(0) + To(0),

y(0) = ToG(0) + ToG(0),

z(0) = TiG(0) + TiG(0),

w(0) = Ti(0) + Ti(0).

As mentioned earlier, all the experiments start without glutamate in the bath. Thus, the
initial conditions before the first switch correspond to the steady–state of the system (1)
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in the absence of glutamate (k+
1 = 0). In terms of the new notations they become

x(0) =
m+

4

m+
4 +m−4

,

y(0) = 0,
z(0) = 0,

w(0) =
m−4

m−4 +m+
4

.

(8)

Moreover, let us notice, while in this steady–state, i.e., at the start of all experiments, the
following relations are true for the original states:

To =
c−1
c+

1

To,

ToG =
c+

2

c−2
ToG,

TiG =
c+

3

c−3
TiG,

Ti =
c−4
c+

4

Ti.

This could be easily seen if one considers last four equations of the system (1) and sets
derivatives to zeros. Next, from the first four equations of the system (4) we notice that
the regular functions of the leading order approximation have exactly the same relationship
at any given time, including at the start of an experiment. From (3) it follows that the
boundary functions of the leading order approximation must have the same relations as
well:

Π0To =
c−1
c+

1

Π0To,

Π0ToG =
c+

2

c−2
Π0ToG,

Π0TiG =
c+

3

c−3
Π0TiG,

Π0Ti =
c−4
c+

4

Π0Ti.

We have already discussed that the sum of boundary functions of a conducting and a
corresponding non-conducting state is always zero, which one can also see from (7). To
satisfy both conditions the boundary functions of the leading order approximation must be
equal to zero. Every time the switch of the bath solution happens, the boundary functions

12



may potentially appear. However, similar logic forces zero boundary functions every time.
Right before the switch, the system is approximated by a leading order approximation with
zero boundary functions and, according to first four equations of the system (4), obeys the
same relations. At the moment of the switch, the end state of the system becomes the
initial conditions for the new system, which is the same system (4) with switched value
of k+

1 and, therefore, must follow the same relations. As before, the boundary conditions
must satisfy these relations and (7), which is possible only when they are equal to zero.
Therefore, relations (6) describe leading order approximations (both regular and boundary
functions) and we only need to solve system (5) to find them.

Let us note that the sum of the variables entering system (5) is constant and it equals
to the sum of all the variables in system (1), which is 1. Moreover, the sum of all right
hand sides is zero, which means that it is possible to immediately draw a chemical kinetics
scheme that corresponds to the system (5) in the same manner as the scheme depicted in
Figure 3 relates to (1); see Figure 4.

x
m±1 y

m±2

z

m±4

w

Gi

m+
3

Figure 4: The chemical kinetics scheme that corresponds to the reduced model (5).

The electrophysiology technique allows us to record the current that corresponds to the
flow of ions. Therefore, we cannot observe any of the variables of the system (5) directly
but rather some sort of their combination. Let us derive the formula for the current
recorded during the experiment. The total recorded current is a sum of the stoichiometric
current (coupled flux of glutamate molecules and ions across the membrane), the conductive
current due to the flow of chloride ions, and some constant leak current [9, 17]. The
previously described flow of ions suggests the movement of +3 charge inside the cell with
the ToG→ TiG transition (3Na+ and H−) and the movement of +1 charge outside of the
cell (i.e., move of −1 charge inside the cell) with the Ti → To transition (K+). However,
the voltage—dependence of the transport suggests that the transporter also mediates a
capacitive charge transfer, i.e., it has negative one charge on its own. Thus, the charge of
+2 moves during the transition from state ToG to TiG with all other transitions having no
immediate effect on the transportation current. The chloride-related current is proportional
to the fractions of transporters observed in the conductive states (To, ToG, TiG, and Ti).
The resulting formula for the total current is:

I = −A · To −B · ToG− C · TiG−D · Ti − E
(
k+

2 ToG− k
−
2 TiG

)
+ Ileak.
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Using (6), we can write the leading order approximation for the current I0 that depends on
x, y, z, and w. Since the system is in the steady–state before the glutamate is introduced
for the first time, i.e., in the state (8), we can subtract the steady–state current in the
above formula in order to identify the leading order approximation of the constant value
of Ileak. In order to further reduce the number of parameters, we can express any one of
the four variables in terms of the others since x(t) + y(t) + z(t) + w(t) = 1 for any given
instant of time t. We obtain the following formula:

I0(t) = −A · x(t)− B · y(t)−D · w(t) +
Am+

4 +Dm−4
m+

4 +m−4
+O(ε), (9)

where

A =
c−1 A

c+
1 + c−1

+
c+

3 C − c
−
3 k
−
2 E

c−3 + c+
3

,

B =
c+

2 B + c−2 k
+
2 E

c−2 + c+
2

+
c+

3 C − c
−
3 k
−
2 E

c−3 + c+
3

,

D =
c−4 D

c+
4 + c−4

+
c+

3 C − c
−
3 k
−
2 E

c−3 + c+
3

.

Finally, the turnover rate of a particular transporter is equal to the influx of the glu-
tamate molecules through the transportation cycle in the steady–state. Note, that al-
though the transporter’ states can reach steady–state in the presence of glutamate, this is
a dynamic equilibrium and the glutamate uptake persists, i.e., glutamate is continuously
accumulated inside the pipette. That means that dGi

dt is not zero in a steady–state, but
reaches some constant value that we denote as Ξ. It is also worth mentioning that the
continuous accumulation of glutamate will lead to the change of kinetics and other changes
in the real cell, but, as we stated earlier, the duration of the experiment and the amount of
particles transferred during the experiment are too low for such thing to happen and have
any detrimental effect on the patch. The turnover rate can is given by

Ξ = lim
t→∞

dGi
dt

= lim
t→∞

k+
3 TiG(t) = k+

3 lim
t→∞

TiG(t) =

k+
3

c+4 +c−4
c+4

k+3
k+4

+
c+3 +c−3
c−3

+
c+2 +c−2
c−2

k+3 +k−2
k+2

+
(
c+1 +c−1
c+1

+
c+4 +c−4
c+4

k−4
k+4

)
k+2 k

+
3 +k−1 k

+
3 +k−1 k

−
2

k+1 k
+
2

,

where lim
t→∞

TiG(t) means the value of TiG(t) at steady–state of system (1).
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Corresponding leading order approximation has the form:

Ξ0 =
m+

2 m
+
3 m

+
4

m+
2 (m+

3 +m+
4 ) +m+

4 (m−2 +m+
3 ) +

m+
4 +m−4
m+

1

(m−1 m
−
2 +m−1 m

+
3 +m+

2 m
+
3 )

, (10)

which can be found by approximating TiG(t) using (6). Note that the approximation is
written in terms of the parameters of the system (5) and none of the original parameters
of the system (1) enter the equation (10).

3.1.3 Experiment and model implementation

The described experiments were performed. We injected stage V–VI Xenopus oocytes with
mRNA encoding one of EAAT1—3 (the experiments were repeated for each transporter
subtype). We waited for 2–5 days to allow oocytes to express the transporters and excised
outside-out patches. In the outside-out patches experiments, the solution inside the pipette
represents cell’s cytosol. The solution we made contained 110mM KCl, 3mM MgCl2,
5mMNa−HEPES, and 10mM EGTA. The bath solutions, which correspond to extra-
cellular space, contained 110mM NaCl, 3mM MgCl2, 5mM Na −HEPES, and either
10mM or no glutamate. We adjusted all solutions to Ph 7.5 with Tris—base (a common
buffer solution used in biochemistry). Both bath mixtures flowed through a theta tube
that was mounted on and controlled by a piezo electric switch. We voltage clamped the
cells at −60mV , which is close to a natural resting potential of neurons and astrocytes. For
more details of the voltage clamp technique see [9]. As described, each experiment started
with the patch exposed to a bath solution with no glutamate and was allowed to stabilize
and reach current steady–state. After that we did a short rapid 50ms step into a solution
with glutamate before switching back to the no—glutamate mixture. Then we waited for
a varied controlled amount of time (5, 10, 15, 20, 30, 40, 50, 60, 80, 100, 150, 200, 250,
and 300 ms) and applied a second 30ms step into the glutamate containing solution. Note
that the only differences between the experimental trials was a delay after the first pulse.
See Figure 5 for the representative data.
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Figure 5: The currents recorded during the voltage clamp experiments in patches expressing
EAAT1. The time courses of glutamate application are depicted as step functions above
the actual data. Each application of the glutamate caused a spike of a negative (inward)
current that relaxed to a new steady–state. After the termination of the glutamate pulse,
the system tended to its original steady–state. The delays between the pulses depicted
here are 200, 80, 40, and 10 ms.

The data for each transporter were fitted to model (5), (8), and (9) using the delayed
rejection adaptive Metropolis Markov chain Monte Carlo (DRAM MCMC) method [19].
The fitting was done in MATLAB R2018a using MCMC toolbox [20] (see the code in
Appendix B.1). The fitted model solutions practically coincide with the experimental
data for all cases, see Figure 6. The algorithm yielded empirical confidence regions for
the parameters; the resulting MCMC chains were used for turnover rate estimates and
inferences using the formula (10); see Figures 7 — 9 for confidence regions.
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Figure 6: The currents recorded during the voltage clamp experiments in excised outside-
out patches were fitted to the model. First column depicts all the data for the corresponding
transporter combined (top to bottom: EAAT1, EAAT2, EAAT3). All recorded pairs of
pulses like the ones in Figure 5 were overlapped and the first pulses being almost identical.
With the first pulse being fixed, it is easy to see the change in the dynamics of the second
pulses, e.g., note how the peaks of the second pulses deteriorate but recover as the delay
between the pulses increases. The second column shows the same data (now in gray) fitted
using the model (black curves).



Figure 7: 95% and 99% confidence regions (inner and outer contours, respectively) for the
model of EAAT1 yielded by the MCMC method. The curves along the axes represent
projection of the data on the corresponding axis. The last picture shows the distribu-
tion of EAAT1 turnover rate with the median value of 15.45s−1, 99% confidence interval:
[15.31, 15.57].

Figure 8: Similar results are shown for EAAT2. The median turnover rate value is 23.96s−1,
99% confidence interval: [11.94, 39.55].
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Figure 9: Similar results are shown for EAAT3. The estimated EAAT3 turnover rate of
1.98s−1, 99% confidence interval: [1.57, 2.36], was unexpectedly small compared to hun-
dreds of molecules per second reported in other literature.

The estimated value for EAAT1 turnover rate found here (15.45s−1, 99% confidence
interval [15.31, 15.57]) is in agreement with previous studies: 16 molecules per second in
EAAT1 [9]. The estimate for EAAT2 turnover rate (23.96s−1, 99% confidence interval
[11.94, 39.55]) is close to some previous studies, e.g., 14.6 molecules per second in [8],
while it is lower than ∼ 100 per second reported in [11]. The turnover rate of EAAT3
was reported to be much higher: about 100 molecules per second [10], compared to our
estimate (1.98s−1, 99% confidence interval [1.57, 2.36]).
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3.2 Regulation of glutamate concentration in synaptic transmission

3.2.1 Prolongation of synaptic transmission

The EAAT turnover rates estimates obtained in Section 3.1 are close to the ones in the
existing literature. They are significantly slower than the estimated millisecond presence
of glutamate in the synaptic cleft during the transmission [21, 22]. It follows that they
should not play a significant role during the signaling itself but rather help to clear the
synaptic cleft on a slower time scale. However, experiments in hippocampal slices show
that when the transporters are blocked with DL-threo-benzyloxyaspartic acid (TBOA), a
competitive EAAT antagonist, this seems to prolong glutamate receptor activation during
synaptic transmission [23, 24, 25, 26, 27]. These fast changes would require much higher
EAATs expression in the synaptic cleft than reported [6]. It is worth noting that all these
experiments were performed in a whole cell or multiple cell recording settings, i.e. the
data was acquired from accumulated effect of activity of many synapses. It is possible
that the apparent prolongation is due to some other effects. For example, the application
of blockers raises ambient glutamate level which activates extrasynaptic receptors [28].
These receptors could play a significant role in apparent synaptic prolongation. In order to
understand the relative contribution of transport and diffusion to dynamics of glutamate
we create a spatial model of a single synapse and simulate a synaptic transmission.

3.2.2 Model derivation

We construct a 3—dimensional diffusion model of the synapse. Let us represent a synaptic
cleft as a circular cylinder, with bases being pre— and postsynaptic cell surfaces, and let
us describe the glutamate dynamics using a diffusion model. During a synaptic trans-
mission upon arrival of an action potential to the axon terminal of the presynaptic cell,
the intracellular vesicles containing glutamate merge with the membrane of the cell and
release glutamate into the synaptic cleft. The release is mediated by a specialized region
on a presynaptic cell, called the active zone (AZ). The neurotransmitter diffuses across the
synaptic cleft and reaches receptors on the postsynaptic cell, located in the region called
the postsynaptic density (PSD). We model AZ and PSD using circular shapes with their
centers coinciding with the corresponding cylinder base centers. About 50% of the synapses
in rat hippocampus region CA1 are enveloped by astrocytes and they are surrounded only
partially [5]. The synapse’s ensheathment by the astrocyte limits the escape of a gluta-
mate from the synaptic cleft via free diffusion. In our model the astrocyte partially covers
the sides of the cylinder. Some of EAATs are expressed in a synaptic cleft, while others
are found on astrocytes: EAAT3 are exclusively expressed on neurons’ in dendrites and
somas and EAAT1 are found on astrocytes. EAAT2 are expressed on both astrocytes and
synapses of presynaptic cells, although EAAT2’s expression in synapses is about 10 times
lower [6, 7]. We assume that the distribution of EAATs is uniform where they are present.
In terms of our model, the presence of EAATs will determine the boundary conditions of
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the region. We note once again that this model describes a single synapse, so we assume
that the vesicular glutamate is the only source of the glutamate (this is not always the
case in reality, e.g., when glutamate diffuses away from a synapse it can reach neighboring
synapses and activate them indirectly; this phenomenon called a spillover). See Figure 10
for a visual representation of the described model.

Figure 10: A cartoon representation of the synapse. The presynapic cell contains vesicles
(green) with glutamate. Upon the arrival of the action potential they merge with the
membrane of the presynaptic cell (yellow) at the active zone (inner circle). This causes
the glutamate to diffuse into the synaptic cleft and eventually reach the receptors of the
postsynaptic cell (blue). The receptors are located in the postsynaptic density (inner circle)
of the postsynaptic cell. Astrocyte (brown) envelops the cleft to some degree that varies
from synapse to synapse. EAAT1—2 transporters are located on the astrocyte facing the
synapse. EAAT2 also found in the cleft on the presynaptic cell outside of the active zone
with expression ∼ 10 times lower compared to the one in astrocytes. EAAT3 are expressed
on the postsynaptic cell outside of the postsynaptic density.
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Let us write a diffusion equation in cylindrical coordinates:

∂u

∂t
= D

(
1

r

∂

∂r

[
r
∂u

∂r

]
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2

)
, t ≥ 0, 0 < r ≤ R,

0 ≤ θ < 2π, 0 ≤ z ≤ L,
(11)

where u(t, r, θ, z) is a concentration of glutamate at a time t, at a radial distance r, angular
coordinate θ and height z; D = 0.4µm2ms−1 is the diffusion coefficient of glutamate in a
synaptic cleft, which is about half of that in a free medium [29, 30, 31]; R = 150nm is the
radius of a synaptic cleft [5, 30]; L = 20nm is the width of a synaptic cleft [30]. Due to
the fact that an astrocyte does not cover the synapse symmetrically, we cannot reduce the
dimensions of the system. That makes the equation (11) being undefined when r = 0 as
we cannot simply use the L’Hôpital’s rule here. At r = 0, the equation can be rewritten in
Cartesian coordinates:

∂uC
∂t

= D

(
∂2uC
∂x2

+
∂2uC
∂y2

+
∂2uC
∂z2

)
, t ≥ 0, r = 0,

0 ≤ θ < 2π, 0 ≤ z ≤ L,
(12)

where uC is just the same function u in the Cartesian coordinates.
We performed the EAATs’ dynamics modeling in Section 3.1. And although it is

straightforward to implement the corresponding chemical—kinetics systems into the dif-
fusion equation (Appendix A.2), we cannot do this here directly. We can use neither of
the models depicted in the Figures 2, 3 because, as we mentioned previously, the estimates
of their parameters are unreliable. We also cannot use the model we derived (Figure 4)
because it assumes the constant saturating concentration of the glutamate whenever it is
present. It is widely accepted that EAATs follow a Michaelis—Menten kinetics with known
parameters [6, 32]. Thus, for each transporter the rate of the uptake of the glutamate is
described by

V
[Glu]

[Glu] +Km
,

where V and Km are a maximal turnover rate and a known Michaelis—Menten constant
for a particular type (1—3) of the transporter, respectively; [Glu] is a concentration of the
glutamate in the thin layer near a cell surface containing transporters. Since we reliably
estimated the maximal turnover rates of the transporters in Section 3.1, we can use the
Michaelis—Menten approximation of the transporter’s dynamic in the boundary conditions
for our diffusion model. We define V1, V2, V3 as turnover rates of EAAT1—3 found in
Section 3.1, respectively. We also define N1, N2, N ′2 N3 as surface densities of EAAT1
on an astrocyte, EAAT2 on an astrocyte, EAAT2 on a presynaptic neuron, EAAT3 on a

postsynaptic neuron, respectively. And K
(1)
m , K

(2)
m , K

(3)
m are EAAT1—3 Michaelis—Menten

constants, respectively. If there were no tonic glutamate present in the extracellular space,
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then the boundary conditions would be:

D
∂u

∂z

∣∣∣∣
z=0

=


0, 0 ≤ r ≤ ra, ∀θ,

N ′2V2
u(t, r, θ, 0)

K
(2)
m + u(t, r, θ, 0)

, ra < r ≤ R, ∀θ,

−D ∂u

∂z

∣∣∣∣
z=L

=


0, 0 ≤ r ≤ rd, ∀θ,

N3V3
u(t, r, θ, L)

K
(3)
m + u(t, r, θ, L)

, rd < r ≤ R, ∀θ.

We note that the parameter that corresponds to the width of the layer where glutamate
interacts with transporters (ω in Appendix A.2) disappears as volume densities of trans-
porters become surface densities. The ambient glutamate level at the steady–state is
u∞ = 25nM [28, 33, 34, 35, 36], and we want fluxes to be zero when u = u∞. Thus,
the boundary conditions must be slightly modified to force this requirement:

D
∂u

∂z

∣∣∣∣
z=0

=



0, 0 ≤ r ≤ ra, ∀θ,

N ′2V2

(
u(t, r, θ, 0)

K
(2)
m + u(t, r, θ, 0)

ra < r ≤ R, ∀θ,

− u∞

K
(2)
m + u∞

)
,

−D ∂u

∂z

∣∣∣∣
z=L

=



0, 0 ≤ r ≤ rd, ∀θ,

N3V3

(
u(t, r, θ, L)

K
(3)
m + u(t, r, θ, L)

rd < r ≤ R, ∀θ.

− u∞

K
(3)
m + u∞

)
,

(13)

The last boundary condition is:

−D ∂u

∂r

∣∣∣∣
r=R

=

2∑
n=1

NnVn

(
u(t, R, θ, z)

K
(n)
m + u(t, R, θ, z)

− u∞

K
(n)
m + u∞

)
,

0 ≤ z ≤ L, 0 ≤ θ < 2πρ,

(14)

which is formulated for the proportion of synapse covered by astrocyte, defined by the
parameter 0 ≤ ρ ≤ 1, and

u(t, R, θ, z) = u∞, 2πρ ≤ θ < 2π. (15)
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Here ra = 100nm is the radius of an active zone [37]; rd = 100nm is the radius of a
postsynaptic density [5, 30]; N1 = 2300µm−2, N ′2 = 750µm−2, N2 = 7500µm−2, and N3 =
90µm−2 are the densities of EAAT1, EAAT2 on axon terminals, EAAT2 on astrocytes,
EAAT3, respectively [6, 7]; V1 = 1.545 × 10−2ms−1, V2 = 2.396 × 10−2ms−1, and V1 =
0.198×10−2ms−1 are the EAAT1—3 turnover rates, respectively. Glutamate uptake by the

transporters is described by Michaelis-Menten kinetics with K
(1)
m = 20µM , K

(2)
m = 18µM ,

and K
(3)
m = 28µM constants for EAAT1—3, respectively [6, 32].

We model the synaptic transmission starting with the moment when glutamate is re-
leased from the presynaptic cell. Not every action potential in a presynaptic cell causes
the release of even a single vesicle [5, 38], which contain about 3000 molecules [30, 39]. To
conservatively estimate the clearance of a synaptic cleft from the glutamate, we assume
that exactly one vesicle is released for each stimulation from the center of the active zone.
For the sake of simplicity we assume that the vesicle is released from the center of AZ, i.e.,
the initial conditions could be modeled as

u(0, r, θ, z) = 3000 · δ(r cos θ) · δ(r sin θ) · δ(z) + w(r, θ, z), (16)

where δ(·) is the Dirac delta function and w is a state of the system before the pulse. We
start with w(r, θ, z) ≡ u∞ and if we want to simulate several stimulation in a row, then
w(r, θ, z) is going to be equal to the end state of the model just before the consecutive new
release of the glutamate.

We are interested in the dynamics of glutamate concentration on the surface of the
PSD of the postsynaptic cell, i.e, in the average glutamate concentrations on the surface
of the postsynaptic density ”PSD” according to the diffusion model.

3.2.3 Model discretization

We will numerically solve the diffusion equation (11)—(12) with nonlinear boundary con-
ditions (13)—(15) and initial conditions (16) by applying a finite difference discretization
method (Appendix A.3) to the spatial variables r, θ, z (or x, y, z for (12)), which yields
a system of ordinary differential equations. This allows us to use a built—in MATLAB
solver for ODEs with an adaptive time step. The latter is desirable since the experimental
data clearly show relatively fast and slow dynamics.

Let us introduce the following grids:

ri = i ·∆r, ∆r =
R

I
, i = 0, . . . , I,

θj = j ·∆θ, ∆θ =
2π

J + 1
, j = 0, . . . , J,

z = k ·∆z, ∆z =
L

K
, j = 0, . . . ,K.
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and ui,j,k(t) = u(t, ri, θj , zk). Moreover, we make the grid for θ in such a way that there
are indices j0, j1, j2, and j3 that θj0 = 0, θj1 = π/2, θj2 = π, and θj3 = 3π/2 (it is obvious
that j0 = 0 always). Then we can use (11) to write the corresponding equation for ui,j,k
in case i > 0:

1

D

dui,j,k
dt

=
1

∆r · i
ui+1,j,k − ui−1,j,k

2∆r
+
ui+1,j,k − 2ui,j,k + ui−1,j,k

∆r2

+
1

(∆r · i)2

ui,j+1,k − 2ui,j,k + ui,j−1,k

∆θ
+
ui,j,k+1 − 2ui,j,k + ui,j,k−1

∆z2
.

(17)

Let us note that the values of ui,j,k are not technically defined outside of the region bound-
aries, e.g., uI+1,j,k (which is used in equation for uI,j,k), but they can be found from the
boundary conditions. We also have a special case when r = 0. First of all, u0,j,k are the
same for all j’s and any fixed k. Second, in this case we must use (12) rather than (11).
We write (using the same notations):

1

D

du0,j,k

dt
=
u1,j0,k − 2u0,j,k + u1,j2,k

∆r2
+
u1,j1,k − 2u0,j,k + u1,j3,k

∆r2

+
u0,j,k+1 − 2u0,j,k + u0,j,k−1

∆z2
.

(18)

Since θ is an angular coordinate, we have

ui,J+1,k = ui,0,k, ui,−1,k = ui,J,k, ∀i, k. (19)

From (13) we can find ui,j,−1 and ui,j,K+1. Let us use the first equation of (13):

D
ui,j,1 − ui,j,−1

2∆z
=



0, 0 ≤ i ≤
[ ra

∆r

]
, ∀j,

N ′2V2

(
ui,j,0

K
(2)
m + ui,j,0 [ ra

∆r

]
< i ≤ I, ∀j.

− u∞

K
(2)
m + u∞

)
,

where [·] is the operation of rounding to the nearest integer. So,

ui,j,−1 =



ui,j,1, 0 ≤ i ≤
[ ra

∆r

]
, ∀j,

ui,j,1 −
2∆zN ′2V2

D

(
ui,j,0

K
(2)
m + ui,j,0 [ ra

∆r

]
< i ≤ I, ∀j.

− u∞

K
(2)
m + u∞

)
,

(20)
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Analogously

ui,j,K+1 =



ui,j,K−1, 0 ≤ i ≤
[ rd

∆r

]
, ∀j,

ui,j,K−1 −
2∆zN3V3

D

(
ui,j,K

K
(3)
m + ui,j,K [ rd

∆r

]
< i ≤ I, ∀j,

− u∞

K
(3)
m + u∞

)
,

(21)

and

uI+1,j,k =



u∞, 0 ≤ j ≤ [2πρ] , ∀k,

uI−1,j,k −
2∆r

D

2∑
n=1

(
uI,j,k

K
(n)
m + uI,j,k

[2πρ] < j ≤ J, ∀k.

− u∞

K
(n)
m + u∞

)
,

(22)

Since we are using MATLAB, it is beneficial to write the equations in matrix form. To
do that, we define a 3—dimensional array U of size (I + 1) × (J + 1) × (K + 1) in the
following manner. Let U:,:,k, U:,j,:, and Ui,:,: be the 2—dimensional slices of U at level k
of the third dimension and parallel to the first and second dimensions, at level j of the
second dimension and parallel to the first and third dimensions, and at level i of the first
dimension and parallel to the second and third dimensions, respectively. Then these slices
may be written as follows:

U:,:,k =

 u0,0,k · · · u0,J,k
...

. . .
...

uI,0,k · · · uI,J,k

 , U:,j,: =

 u0,j,0 · · · u0,j,K
...

. . .
...

uI,j,0 · · · uI,j,K

 ,
Ui,:,: =

 ui,0,0 · · · ui,0,K
...

. . .
...

ui,J,0 · · · ui,J,K

 .
We will also start the indices with 0 for convenience. One could imagine U as a stack of
its corresponding slices. For example, a stack of U:,:,k slices (k = 0,K) standing one after
another in the third dimension, with matrix U:,:,0 being the frontmost and matrix U:,:,K

being the backmost. We consider U to be a simple extension of the regular matrices and
define a matrix multiplication. Note that we do not want to introduce the whole concept
of tensors here as it is not really needed. Next, we define array multiplication. Suppose F
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is a P × (I + 1)× (K + 1) array, then we say that U can be multiplied by F from the left
and their product is a P × (J + 1)× (K + 1) array that is defined as

(F ∗ U):,:,k = F:,:,k · U:,:,k, k = 0,K.

Suppose G is a (J + 1) × Q × (K + 1) array, then we say that U can be multiplied by G
from the right and their product is an (I + 1)×Q× (K + 1) array that is defined as

(U ∗G):,:,k = U:,:,k ·G:,:,k, k = 0,K.

Suppose H is an S × (J + 1)× (I + 1) array, then we say that U can be multiplied by H
from the front and their product is an S × (J + 1)× (K + 1) array that is defined as

(H ? U):,j,: = H:,j,: · U:,j,:, j = 0, J.

Suppose P is a (K + 1)× (J + 1)×W array, then we say that U can be multiplied by H
from the back and their product is an (I + 1)× (J + 1)×W array that is define as

(U ? P ):,j,: = U:,j,: · P:,j,:, j = 0, J.

Note, that ”·” stands for a standard matrix multiplication. See Figure 11 for a visual
representation of 3—dimensional array. Now, we are ready to write the discretized form of
(11):

1

D

dU

dt
=

1

∆r2
A ∗ U +

(
1

∆r2 ·∆θ2
U ∗B

)
◦B′ + 1

∆z2
U ? C + E, (23)

where ”◦” is the Hadamard product. We remind that ”∗” is used for multiplication from
the left and from the right, and ”?” is used for multiplication from the front and from the
back. And matrices A, B, B′, C are the following. Array A is (I + 1)× (I + 1)× (K + 1)
and its slices A:,:,k are the same across and are defined as

A:,:,k =



−4 β0 0 0 · · · 0 0 0
γ1 −2 β1 0 · · · 0 0 0
0 γ2 −2 β2 · · · 0 0 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 0 0 0 · · · γI−1 −2 βI−1

0 0 0 0 · · · 0 γI −2


,

where

βi =

{
0, i = 0,

1 +
1

2i
, i = 1, I,

γi = 1− 1

2i
, i = 1, I.
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28

Figure 11: A 3—dimensional array U and its slices. Each slice is a usual 2—dimensional
matrix. Multiplication of 3—dimensional arrays is a multiplication of corresponding slices
using rules for a regular 2—dimensional matrix multiplication and stacking the resulting
matrices together (U:,:,k for the multiplication from the left and from the right; U:,j,: for
the multiplication from the front and from the back; we do not consider multiplications
from the top or bottom here.



Array B is (J + 1) × (J + 1) × (K + 1) and its slices B:,:,k are the same across and are
defined as

B:,:,k =



−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 0 0 · · · −2 1
0 0 0 · · · 1 −2


.

Array B′ is (I + 1) × (J + 1) × (K + 1) and its slices B′:,:,k are the same across and are
defined as

B′:,:,k =



0 0 · · · 0

1

12

1

12
· · · 1

12

1

22

1

22
· · · 1

22

...
...

...

1

I2

1

I2
· · · 1

I2



.

Array C is (K + 1) × (J + 1) × (K + 1) and its slices C:,j,: are the same across and are
defined as

C:,j,: =



−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 0 0 · · · −2 1
0 0 0 · · · 1 −2


.

Array E is (I + 1)× (J + 1)× (K + 1) and its purpose is to add the missing terms for the
”boundary” elements. It is convenient to represent array E as a sum of the arrays of the
same size:

E = E(1) + E(2) + E(3) + E(4),

where E(1) corresponds to the boundary conditions for z variables and is an array with all
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entries being zero except the for the frontmost and the backmost slices:

E
(1)
:,:,0 =

1

∆z2

 u0,0,−1 · · · u0,J,−1
...

. . . · · ·
uI,0,−1 · · · uI,J,−1

 ,

E
(1)
:,:,K =

1

∆z2

 u0,0,K+1 · · · u0,J,K+1
...

. . . · · ·
uI,0,K+1 · · · uI,J,K+1

 ,
with all entries defined by (20) and (21); E(2) corresponds to the boundary conditions for
θ and is an array with all entries being zero except for the leftmost and rightmost slices:

E
(2)
:,0,: =

1

∆r2∆θ2

 u0,−1,0 · · · u0,−1,K
...

. . .
...

uI,−1,0 · · · uI,−1,K

 ◦B′:,:,0,

E
(2)
:,J,: =

1

∆r2∆θ2

 u0,J+1,0 · · · u0,J+1,K
...

. . .
...

uI,J+1,0 · · · uI,J+1,K

 ◦B′:,:,0,
with all entries defined by (19) and ”◦” being a Hadamard product; E(3) corresponds to
the boundary conditions for r and is an array with all entries being zero except for the
bottommost slice:

E
(3)
R,:,: =

1

∆r2

(
1

2I
+ 1

) uI+1,0,0 · · · uI+1,0,K
...

. . .
...

uI+1,J,0 · · · uI+1,J,K

 ,
with all entries defined by (22); E(4) corresponds to a special case when r = 0, described
by the equation (18), and is an array with all entries being zero except for the topmost
slice:

E
(4)
0,:,: =

1

∆r2


3∑
s=0

u1,js,0

3∑
s=0

u1,js,1 · · ·
3∑
s=0

u1,js,K

...
...

...
...

3∑
s=0

u1,js,0

3∑
s=0

u1,js,1 · · ·
3∑
s=0

u1,js,K

 .
The initial conditions (16) become

U = W + U, (24)

where W is the end state of the previous solution or a 3—dimensional array with all entries
being the same constant u∞ in the case of the first pulse; U is an array with all entries
being zero except for one: U0,0,0 = 3000 · 4/(π∆r2∆z) molecules per nm3.
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3.2.4 Simulation

We convert all units into nm for length; ms for time; # for amount of molecules, that we
define as number of molecules multiplied by a scale factor of 106 (to avoid numbers going
below machine precision). Here is the list of all numerical values used in the simulation
(see code in Appendix B.2):

L = 20 nm, R = 150 nm,
ra = 100 nm, rd = 100 nm,
D = 0.4× 106 nm2/ms,
N1 = 2300× 10−6 nm−2, N2 = 7500× 10−6 nm−2,
N ′2 = 750× 10−6 nm−2, N3 = 90× 10−6 nm−2,
V1 = 15.45× 103 #/ms, V2 = 23.96× 103 #/ms,
V3 = 1.98× 103 #/ms,

K
(1)
m = 12.044 #/nm3, K

(2)
m = 10.8396 #/nm3,

K
(3)
m = 16.8616 #/nm3,
u∞ = 0.0151 #/nm3,
I = 30, =⇒ ∆r = 5 nm,
J = 31, =⇒ ∆θ = π/16,
K = 4, =⇒ ∆z = 5 nm,

Figure 12 shows the simulated dynamics of averaged glutamate concentration on the
surface of the postsynaptic density ”PSD”. The dynamic changes with parameter ρ values:
the larger is the astrocytic coverage of the synapse, the slower is the clearance of the cleft.
Even in the case of high frequency stimulation (100Hz) and high values of ρ, the glutamate
was cleared from the synaptic cleft between pulses. The complete coverage (ρ = 1) caused
a drastic slowdown in synaptic clearance and accumulation of glutamate between high
frequency pulses (100Hz). Let us note, however, that a full envelopment of a synapse by
an astrocyte is very unlikely in reality [5]. We decided to further study EAATs’ relative
role on the glutamate dynamics. We simulated their blockage (by setting their turnover
rates to 0) with no significant effect even in a high—coverage case (ρ = 0.95). According to
our simulations, the rapid glutamate concentration rise and peak decay in the proximity of
the postsynaptic receptors is achieved by the physical properties of the cleft itself, rather
than active uptake of the transporters. It is unlikely that EAATs shape the time course
of the glutamate on a scale of a single synapse despite the evidence collected on a scale of
many synapses [23, 24, 25, 26, 27]. It appears that some other factors play a significant
role in a prolongation of synaptic transmission upon blockage of glutamate transporters,
e.g. it could be a previously mentioned spillover phenomenon.
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Figure 12: The simulated dynamics of the average glutamate concentrations on the surface
of PSD. Top left. Results of a single stimulation with various proportion of astrocytic
envelopment (fastest to slowest decays: ρ = 0, 0.3, 0.6, 0.9, 1). Top right. Series of 5
high-frequency vesicle releases (100Hz) with 95% complete astrocytic coverage. Glutamate
is cleared from the synaptic cleft and does not accumulate between the pulses. Bottom
left. Series of 3 at 100Hz in case ρ = 1. Glutamate accumulates between the pulses
and requires around 1000 ms to clear from the synaptic cleft via facilitated transport by
EAATs. The inset graph shows the first 25ms of the same plot that includes all three
pulses. Bottom right. The comparison of a normal case (solid line) vs. transporters’
blockage (dashed line). Even with high ρ = 0.95 the difference is insignificant: look at the
inset graph, which is the zoomed portion of the same plot.
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4 Glutamate receptors

One of the major subtypes of glutamate receptors on neurons is the N–methyl–D–aspartate
receptor (NMDAR). NMDARs play critical roles in neural plasticity, development, learn-
ing, and memory. NMDAR was a target of multiple studies and several models were
proposed to explain the dynamics of the processes in the ion channel protein. For com-
mon heterotetrameric NMDARs to signal, they must bind glutamate at each of the two
NR2 subunits and coagonist (D–serine or glycine) at each of the two NR1-type subunits.
[40]. In response to prolonged agonist pulses, NMDARs desensitize, a process in which the
response amplitude decays over time. This desensitization is observed to increase in the
presence of limiting coagonist [41, 42, 43]. This phenomenon could potentially be explained
by different mechanisms. One possibility is that coagonist already bound to the NMDAR
could experience a reduction in affinity following glutamate binding (”glycine—dependent
desensitization” or, in our case, ”D–serine—dependent desensitization”). Alternatively, the
effect of coagonist concentration on desensitization may not depend on agonist—coagonist
site interactions [44, 45, 46, 47, 48, 49, 50]. The general chemical-kinetic model is shown in
Figure 13. A number of studies that focus on that model, as well as some more complicated
ones, have been published over the past two decades, e.g. [42, 51, 52]. However, all these
models were overparameterized with respect to the available data. The authors tried to
avoid this problem, for example, by fixing subsets of parameters while fitting the rest of
them and then varied the fixed parameter values across numerous fitting procedures. Obvi-
ously this approach is not statistically correct and cannot be used to reliably estimate the
parameters. If the statistically correct estimates for the parameters were found, it would
answer the question about the nature of NMDAR desensitization.

Here we show how designing the experiments in accordance with model prediction
resolves the issue of model overparameterization. We propose an algorithm with a series
of experiments that can reliably estimate some of the parameters. Finally, as a proof of
concept, we demonstrate the use of the algorithm on simulated data, which mimics the
data from real experiments.

4.1 General model

The estimation of all parameters of the model depicted in Figure 13 would answer the
question on the nature of NMDAR desensitization (e.g., if there is no desensitized state,
then K13 will be negligibly small). However, as stated previously, such models are overpa-
rameterized with respect to the available data and cannot be used to produce meaningful
estimations. One way to deal with the overparameterization problem is to decrease num-
ber of parameters under specific conditions, i.e., carefully chosen experiment designs, which
allow an introduction of additional model assumptions.

We apply the patch clamp technique, described in details in Section 3.1. The experi-
menters have tight control of fluids that interact with NMDAR receptors. By raising or
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Figure 13: General model of NMDA receptor with two binding cites for L–glutamate and
D–serine agonists. R denotes the receptor, S denotes D–serine, andG denotes L–glutamate.
G2R

′S2 is a long-lived nonconductive state and G2R
∗S2 is a conductive state. Each Ki is

an equilibrium constant for the corresponding reaction: Ki = k+
i /k

−
i , where k+

i and k−i
are forward and reverse reaction rate constants, respectively.

lowering the concentration of an NMDAR substrate, we effectively accelerate or decelerate
the transitions involving this substrate. If we make the difference in concentrations high
enough it will allow us to introduce a small parameter and apply the boundary function
method (Appendix A.1) to derive reduced models with fewer parameters. It will also help
us to get the insight on the nature of NMDAR desensitization. In all experiments one
of the substrates is present continuously and the second one is applied in a single pulse
manner. Thus, each experiment consists of three parts: before the pulse with only one
agonist present, during the pulse with both substrates interacting with NMDAR, and after
the pulse with again only one agonist present (the same as in the first part). We define two
types of the experiments: Type 1 experiment is an experiment when D–serine is continu-
ously present in the bath and L–glutamate is applied in a pulse-manner. The experiment
of Type 1 becomes Type 2 experiment if D–serine and L–glutamate are switched. We
also assume that the first part of the experiment is long enough for the system to reach
a steady—state. Let us also note that, as in Section 3, the only feedback we are able
to record is a current that corresponds to the flow of ions. This happens, i.e., the ion
current is observed, only when the receptor is in a full—ligand conductive state, i.e., state
G2R

∗S2. Therefore, we do not observe any current during the first part of the experiment,
we observe the current during the second part of the experiment due to the presence of
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both ligands in the bath, and we also observe some relaxation current during the third
part of the experiment as one of the ligands dissociates and washes out from the bath.
We do not need the whole system of differential equations to model the first part of the
experiment as we cannot observe any feedback. We just have to find the corresponding
steady–state, when one of the ligands is present, and use it as the initial conditions for
the second part. For the sake of convenience, let us change the notation for the receptor’s
states in the model; see Figure 14.

α S
K1

η S
K3

x

GK2

β
S
K5

θ
S
K7

y

GK8

γ S
K9

ζ
S
K11

z
K14
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K13

z′

GK4

GK10

GK6

GK12

Figure 14: Here all variables (α, β, γ, χ, φ, ψ, x, y, z, z′, z∗) represent concentrations of
the corresponding compounds (see Figure 13); Ki = k+

i /k
−
i , k+

i and k−i are the rate con-
stants of forward (leftward and downward) and reverse (rightward and upward) reactions,
respectively; S denotes the concentration of D–serine, G denotes L–glutamate.

For each state we define a corresponding variable, using the same notation, which is a
fraction of all receptors observed to be in this state (e.g., the variable x(t) is a fraction of
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all transporters in x state). The system has the following form:

dα

dt
= −k+

1 αS + k−1 η − k
+
2 αG+ k−2 β,

dη

dt
= k+

1 αS − k
−
1 η − k

+
3 ηS + k−3 x− k

+
4 ηG+ k−4 θ,

dx

dt
= k+

3 ηS − k
−
3 x− k

+
6 xG+ k−6 y,

dβ

dt
= k+

2 αG− k
−
2 β − k

+
5 βS + k−5 θ − k

+
8 βG+ k−8 γ,

dθ

dt
= k+

4 ηG− k
−
4 θ + k+

5 βS − k
−
5 θ − k

+
7 θS + k−7 y − k

+
10θG+ k−10ζ,

dy

dt
= k+

6 xG− k
−
6 y + k+

7 θS − k
−
7 y − k

+
12yG+ k−12z,

dγ

dt
= k+

8 βG− k
−
8 γ − k

+
9 γS + k−9 ζ,

dζ

dt
= k+

9 γS − k
−
9 ζ + k+

10θG− k
−
10ζ − k

+
11ζS + k−11z,

dz

dt
= k+

11ζS − k
−
11z + k+

12yG− k
−
12z − k

+
13z + k−13z

′ − k+
14z + k−14z

∗,

dz′

dt
= k+

13z − k
−
13z
′,

dz∗

dt
= k+

14z − k
−
14z
∗.

(25)

This system describes parts two and three of all the experiments. The initial conditions for
part three are the end states of part two. And, as mentioned earlier, the initial conditions
for part two is the steady–state of part one. In Type 1 experiment, D–serine is always
present. Thus, only the following states are present before the pulse: α, η, x. To find the
steady–state (αss, ηss, xss), we have to solve:

0 = −k+
1 αssS + k−1 ηss,

0 = k+
1 αssS − k−1 ηss − k+

3 ηssS + k−3 xss,
0 = k+

3 ηssS − k−3 xss.
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And thus,

αss =
1

1 +K1S +K1K3S2
,

ηss =
K1S

1 +K1S +K1K3S2
,

xss =
K1K3S

2

1 +K1S +K1K3S2
,

(26)

where Ki = k+
i /k

−
i are equilibrium constants. Analogously, in Type 2 experiments, L–

glutamate is always present, leading to the presence of the following states: α, β, γ. The
corresponding steady–state (αss, βss, γss) is

αss =
1

1 +K2G+K2K8G2
,

βss =
K2G

1 +K2G+K2K8G2
,

γss =
K2K8G

2

1 +K2G+K2K8G2
.

(27)

Next, we focus on model reduction under different conditions.

4.2 Model reduction

This section includes he reduction of the model for various cases. It is split in subsections
for the sake of convenience.

4.2.1 Model reduction during the pulse in the presence of high concentration
of D–serine

Here we consider the reduction of the system (25) in the case of high concentration of D–
serine (e.g., 10 mM) and low concentration of L–glutamate (e.g., 10 µM). We can introduce
a small parameter ε:

S � 1, S̄ = εS, S̄ = O(1), 0 < ε� 1. (28)

We now apply the Boundary Function Method (Appendix A.1). As before, we represent
each state function as an asymptotic series with respect to the small parameter ε:

α(t) = α0(t) + Π0α(τ) + ε (α1(t) + Π1α(τ)) + · · · ,
η(t) = η0(t) + Π0η(τ) + ε (η1(t) + Π1η(τ)) + · · · ,
x(t) = x0(t) + Π0x(τ) + ε (x1(t) + Π1x(τ)) + · · · ,

...
z∗(t) = z∗0(t) + Π0z

∗(τ) + ε (z∗1(t) + Π1z
∗(τ)) + · · · ,

(29)
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where τ = t/ε is a rescaled time variable. Let us remind that the functions which depend
on t are called the regular functions, and the functions which depend on τ are called the
boundary functions. Next, we substitute (28) and (29) into the system (25). Equating
coefficients of like powers of ε, separately for the regular and the boundary layer functions,
we obtain the reduced model problems for different terms of the asymptotic expansion (29).
Using the standard asymptotic procedure (see [59]), for regular functions in the leading
order approximation we obtain

0 = −k+
1 S̄α0,

dα0

dt
= k−1 η0 − k+

1 S̄α1 + k+
2 Gα0 + k−2 β0,

(30)

and

α0(t) ≡ 0, η0(t) ≡ 0,
β0(t) ≡ 0, θ0(t) ≡ 0,
γ0(t) ≡ 0, ζ0(t) ≡ 0,

dx0

dt
= k+

3 S̄η1 − k−3 x0 − k+
6 Gx0 + k−6 y0,

dy0

dt
= k+

6 Gx0 − k−6 y0 + k+
7 S̄θ1 − k−7 y0 − k+

12Gy0 + k−12z0,

dz0

dt
= k+

11S̄ζ1 − k−11z0 + k+
12Gy0 − k−12z0 − k+

13z0 + k−13z
′
0 − k

+
14z0 + k−14z

∗
0 ,

dz′0
dt

= k+
13z0 − k−13z

′
0,

dz∗0
dt

= k+
14z0 − k−14z

∗
0 .

(31)

For the regular functions in the first order approximation we get:

α1(t) ≡ 0,
β1(t) ≡ 0,
γ1(t) ≡ 0,

0 = −k+
3 S̄η1 + k−3 x0,

0 = −k+
7 S̄θ1 + k−7 y0,

0 = −k+
11S̄ζ1 + k−11z0.

(32)
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Combining (30), (31), and (32), we obtain the closed system for regular functions in the
leading order approximation:

α0(t) ≡ 0, η0(t) ≡ 0,
β0(t) ≡ 0, θ0(t) ≡ 0,
γ0(t) ≡ 0, ζ0(t) ≡ 0,

dx0

dt
= −k+

6 Gx0 + k−6 y0,

dy0

dt
= k+

6 Gx0 − k−6 y0 − k+
12Gy0 + k−12z0,

dz0

dt
= k+

12Gy0 − k−12z0 − k+
13z0 + k−13z

′
0 − k

+
14z0 + k−14z

∗
0 ,

dz′0
dt

= k+
13z0 − k−13z

′
0,

dz∗0
dt

= k+
14z0 − k−14z

∗
0 .

(33)
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For the boundary layer functions in the leading order approximation we obtain:

dΠ0α

dτ
= −k+

1 S̄Π0α,

dΠ0η

dτ
= k+

1 S̄Π0α− k+
3 S̄Π0η,

dΠ0x

dτ
= k+

3 S̄Π0η,

dΠ0β

dτ
= −k+

5 S̄Π0β,

dΠ0θ

dτ
= k+

5 S̄Π0β − k+
7 S̄Π0θ,

dΠ0y

dτ
= k+

7 S̄Π0θ,

dΠ0γ

dτ
= −k+

9 S̄Π0γ,

dΠ0ζ

dτ
= k+

9 S̄Π0γ − k+
11S̄Π0ζ,

dΠ0z

dτ
= k+

11S̄Π0ζ,

dΠ0z
′

dτ
= 0,

dΠ0z
∗

dτ
= 0.

(34)

The solutions for (34) can easily be found analytically. However, we need initial conditions
to solve both systems, which depend on the type of the experiment.

We start with Type 1 experiment. The initial conditions for Type 1 experiment at the
start of the pulse for the full model (25) are (26) for α, η, x, and zeros for all the other
states. Taking into account (28), we can expand the initial conditions in powers of ε using
Taylor’s series. We get:

α(0) = αss = 0 + 0 · ε+O(ε2),

η(0) = ηss = 0 +
ε

K3S̄
+O(ε2),

x(0) = xss = 1− ε

K3S̄
+O(ε2).
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Therefore,
α0(0) + Π0α(0) = Π0α(0) = 0,
η0(0) + Π0η(0) = Π0η(0) = 0,
x0(0) + Π0x(0) = 1,
β0(0) + Π0β(0) = Π0β(0) = 0,
θ0(0) + Π0θ(0) = Π0θ(0) = 0,
y0(0) + Π0y(0) = 0,
γ0(0) + Π0γ(0) = Π0γ(0) = 0,
ζ0(0) + Π0ζ(0) = Π0ζ(0) = 0,
z0(0) + Π0z(0) = 0,
z′0(0) + Π0z

′(0) = 0,
z∗0(0) + Π0z

∗(0) = 0.

From (34) and using the fact that all boundary functions must tend to zero as τ goes
to infinity, we find that all the boundary functions become equal to zero in this case.
Moreover, we get the initial conditions for the system of regular functions in the leading
order approximation (33):

x0(0) = 1,
y0(0) = 0,
z0(0) = 0,
z′0(0) = 0,
z∗0(0) = 0.

(35)

Together, the system (33) with the initial conditions (35) and zero boundary functions
approximate the dynamics of the full system (25) according to the expansion (29) in Type
1 experiment with high concentration of D–serine and low concentration of L–glutamate,
if the system is allowed to reach a steady–state before the pulse of glutamate is applied.

The initial conditions for Type 2 experiment at the start of the pulse for the full model
(25) are (27) for α, β, γ, and zeros for all the other states. There is no small parameter in
(27), therefore, just using (29), we get

α0(0) + Π0α(0) = Π0α(0) = αss,
η0(0) + Π0η(0) = Π0η(0) = 0,
x0(0) + Π0x(0) = 0,
β0(0) + Π0β(0) = Π0β(0) = βss,
θ0(0) + Π0θ(0) = Π0θ(0) = 0,
y0(0) + Π0y(0) = 0,
γ0(0) + Π0γ(0) = Π0γ(0) = γss,
ζ0(0) + Π0ζ(0) = Π0ζ(0) = 0,
z0(0) + Π0z(0) = 0,
z′0(0) + Π0z

′(0) = 0,
z∗0(0) + Π0z

∗(0) = 0.
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From (34) and using the fact that all boundary functions must tend to zero as τ goes to
infinity, we get that

Π0α(τ) = αsse
−k+1 S̄τ ,

Π0η(τ) =
k+

1 αss

k+
3 − k

+
1

(
e−k

+
1 S̄τ − e−k

+
3 S̄τ
)
,

Π0x(τ) =
k+

1 k
+
3 αss

k+
3 − k

+
1

(
1

k+
3

e−k
+
3 S̄τ − 1

k+
1

e−k
+
1 S̄τ

)
,

Π0β(τ) = βsse
−k+5 S̄τ ,

Π0θ(τ) =
k+

5 βss

k+
7 − k

+
5

(
e−k

+
5 S̄τ − e−k

+
7 S̄τ
)
,

Π0y(τ) =
k+

5 k
+
7 βss

k+
7 − k

+
5

(
1

k+
7

e−k
+
7 S̄τ − 1

k+
5

e−k
+
5 S̄τ

)
,

Π0γ(τ) = γsse
−k+9 S̄τ ,

Π0ζ(τ) =
k+

9 γss

k+
11 − k

+
9

(
e−k

+
9 S̄τ − e−k

+
11S̄τ

)
,

Π0z(τ) =
k+

9 k
+
11γss

k+
11 − k

+
9

(
1

k+
11

e−k
+
11S̄τ − 1

k+
9

e−k
+
9 S̄τ

)
,

Π0z
′(τ) ≡ 0,

Π0z
∗(τ) ≡ 0.

(36)

We also get the following initial conditions for the system of regular functions in leading
order approximation (33):

x0(0) = αss,
y0(0) = βss,
z0(0) = γss,
z′0(0) = 0,
z∗0(0) = 0.

(37)

Together, the system (33) with the initial conditions (37), and the boundary functions (36),
approximate the dynamics of the full system (25) according to the expansion (29) in Type
2 experiment with high concentration of D–serine and low concentration of L–glutamate,
if it is allowed to reach a steady–state before the pulse of serine is applied.
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4.2.2 Model reduction during the pulse in the presence of high concentration
of L–glutamate

We now consider a mirrored case of the reduction of system (25) in the case of high con-
centration of L–glutamate (e.g., 10 mM) and low concentration of D–serine (e.g., 10 µM).
Now we introduce a small parameter ε:

G� 1, Ḡ = εG, Ḡ = O(1), 0 < ε� 1. (38)

As before, we apply the Boundary Function Method (Appendix A.1) and represent each
state function of the system as an asymptotic series (29). Following the same procedure of
equating coefficients of like powers of ε separately for the regular and the boundary layer
functions, we obtain the systems analogous to (33) and (34) from the previous case:

α0(t) ≡ 0, η0(t) ≡ 0,
β0(t) ≡ 0, θ0(t) ≡ 0,
x0(t) ≡ 0, y0(t) ≡ 0,

dγ0

dt
= −k+

9 Sγ0 + k−9 ζ0,

dζ0

dt
= k+

9 Sγ0 − k−9 ζ0 − k+
11Sζ0 + k−11z0,

dz0

dt
= k+

11Sζ0 − k−11z0 − k+
13z0 + k−13z

′
0 − k

+
14z0 + k−14z

∗
0 ,

dz′0
dt

= k+
13z0 − k−13z

′
0,

dz∗0
dt

= k+
14z0 − k−14z

∗
0 ,

(39)
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and

dΠ0α

dτ
= −k+

2 ḠΠ0α,

dΠ0η

dτ
= −k+

4 ḠΠ0η,

dΠ0x

dτ
= −k+

6 ḠΠ0x,

dΠ0β

dτ
= k+

2 ḠΠ0α− k+
8 ḠΠ0β,

dΠ0θ

dτ
= k+

4 ḠΠ0η − k+
10ḠΠ0θ,

dΠ0y

dτ
= k+

6 ḠΠ0x− k+
12ḠΠ0y,

dΠ0γ

dτ
= k+

8 ḠΠ0β,

dΠ0ζ

dτ
= k+

10ḠΠ0θ,

dΠ0z

dτ
= k+

12ḠΠ0y,

dΠ0z
′

dτ
= 0,

dΠ0z
∗

dτ
= 0.

(40)

As before, we consider two types of the experiment that will define initial conditions for
both systems (39) and (40).

The initial conditions for Type 1 experiment at the start of the pulse for the full model
(25) are (26) for α, η, x, and zeros for all other states. There is no small parameter in (26),
therefore

α0(0) + Π0α(0) = Π0α(0) = αss,
η0(0) + Π0η(0) = Π0η(0) = ηss,
x0(0) + Π0x(0) = Π0x(0) = xss,
β0(0) + Π0β(0) = Π0β(0) = 0,
θ0(0) + Π0θ(0) = Π0θ(0) = 0,
y0(0) + Π0y(0) = Π0y(0) = 0,
γ0(0) + Π0γ(0) = 0,
ζ0(0) + Π0ζ(0) = 0,
z0(0) + Π0z(0) = 0,
z′0(0) + Π0z

′(0) = 0,
z∗0(0) + Π0z

∗(0) = 0.
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Using (40) and the fact that all boundary functions must rend to zero as τ goes to infinity,
we get

Π0α(τ) = αsse
−k+2 Ḡτ ,

Π0η(τ) = ηsse
−k+4 Ḡτ ,

Π0x(τ) = xsse
−k+6 Ḡτ ,

Π0β(τ) =
k+

2 αss

k+
8 − k

+
2

(
e−k

+
2 Ḡτ − e−k

+
8 Ḡτ

)
,

Π0θ(τ) =
k+

4 ηss

k+
10 − k

+
4

(
e−k

+
4 Ḡτ − e−k

+
10Ḡτ

)
,

Π0y(τ) =
k+

6 xss

k+
12 − k

+
6

(
e−k

+
6 Ḡτ − e−k

+
12Ḡτ

)
,

Π0γ(τ) =
k+

2 k
+
8 αss

k+
8 − k

+
2

(
1

k+
8

e−k
+
8 Ḡτ − 1

k+
2

e−k
+
2 Ḡτ

)
,

Π0ζ(τ) =
k+

4 k
+
10ηss

k+
10 − k

+
4

(
1

k+
10

e−k
+
10Ḡτ − 1

k+
4

e−k
+
4 Ḡτ

)
,

Π0z(τ) =
k+

6 k
+
12xss

k+
12 − k

+
6

(
1

k+
12

e−k
+
12Ḡτ − 1

k+
6

e−k
+
6 Ḡτ

)
,

Π0z
′(τ) ≡ 0,

Π0z
∗(τ) ≡ 0.

(41)

We also get initial conditions for the system of regular functions in the leading order
approximation (39):

γ0(0) = αss,
ζ0(0) = ηss,
z0(0) = xss,
z′0(0) = 0,
z∗0(0) = 0.

(42)

Together, the system (39) with the initial conditions (42), and the boundary functions (41),
approximate the dynamics of the full system (25) according to the expansion (29) in Type
1 experiment with high concentration of L–glutamate and low concentration of D–serine,
if it is allowed to reach a steady–state before the pulse of glutamate is applied.

The initial conditions for Type 2 experiment at the start of the pulse for the full model
(25) are (27) for α, β, γ, and zeros for all other states. Taking into account (38), we can
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expand the initial conditions in powers of ε using Taylor’s series. We get:

α(0) = αss = 0 + 0 · ε+O(ε2),

β(0) = βss = 0 +
ε

K8Ḡ
+O(ε2),

γ(0) = γss = 1− ε

K8Ḡ
+O(ε2).

As before, for the leading order approximation functions we get:

α0(0) + Π0α(0) = Π0α(0) = 0,
η0(0) + Π0η(0) = Π0η(0) = 0,
x0(0) + Π0x(0) = Π0x(0) = 0,
β0(0) + Π0β(0) = Π0β(0) = 0,
θ0(0) + Π0θ(0) = Π0θ(0) = 0,
y0(0) + Π0y(0) = Π0y(0) = 0,
γ0(0) + Π0γ(0) = 1,
ζ0(0) + Π0ζ(0) = 0,
z0(0) + Π0z(0) = 0,
z′0(0) + Π0z

′(0) = 0,
z∗0(0) + Π0z

∗(0) = 0.

Using (40) and the fact that all boundary functions must tend to zero as τ goes to infinity,
we find that all the boundary functions become equal to zero in this case. Moreover, we get
the initial conditions for the system of regular functions in the leading order approximation
(39):

γ0(0) = 1,
ζ0(0) = 0,
z0(0) = 0,
z′0(0) = 0,
z∗0(0) = 0.

(43)

Together, the system (39) with the initial conditions (43), and zero boundary functions
approximate the dynamics of the full system (25) according to the expansion (29) in Type
2 experiment with high concentration of L–glutamate and low concentration of D–serine,
if it is allowed to reach a steady–state before the pulse of serine is applied.

4.2.3 Model reduction during the pulse in the presence of high concentrations
of D–serine and L–glutamate

Suppose that the concentrations of both D–serine and L–glutamate are high. Then we can
introduce a small parameter ε:

S � 1, G� 1, S̄ = εS, Ḡ = εG, S̄ = O(1), Ḡ = O(1), 0 < ε� 1. (44)
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We apply the Boundary Function Method (Appendix A.1) and represent each state function
of the system as an asymptotic series (29). Following the same procedure of equating
coefficients of like powers of ε separately for regular and the boundary layer functions, we
obtain the following systems

α0(t) ≡ 0, η0(t) ≡ 0,
β0(t) ≡ 0, θ0(t) ≡ 0,
x0(t) ≡ 0, y0(t) ≡ 0,
γ0(t) ≡ 0, ζ0(t) ≡ 0,

dz0

dt
= −k+

13z0 + k−13z
′
0 − k

+
14z0 + k−14z

∗
0 ,

dz′0
dt

= k+
13z0 − k−13z

′
0,

dz∗0
dt

= k+
14z0 − k−14z

∗
0 ,

(45)

and

dΠ0α

dτ
= −k+

1 S̄Π0α− k+
2 ḠΠ0α,

dΠ0η

dτ
= k+

1 S̄Π0α− k+
3 S̄Π0η − k+

4 ḠΠ0η,

dΠ0x

dτ
= k+

3 S̄Π0η − k+
6 ḠΠ0x,

dΠ0β

dτ
= k+

2 ḠΠ0α− k+
5 S̄Π0β − k+

8 ḠΠ0β,

dΠ0θ

dτ
= k+

4 ḠΠ0η + k+
5 S̄Π0β − k+

7 S̄Π0θ − k+
10ḠΠ0θ,

dΠ0y

dτ
= k+

6 ḠΠ0x+ k+
7 S̄Π0θ − k+

12ḠΠ0y,

dΠ0γ

dτ
= k+

8 ḠΠ0β − k+
9 S̄Π0γ,

dΠ0ζ

dτ
= k+

9 S̄Π0γ + k+
10ḠΠ0θ − k+

11S̄Π0ζ,

dΠ0z

dτ
= k+

11S̄Π0ζ + k+
12ḠΠ0y,

dΠ0z
′

dτ
= 0,

dΠ0z
∗

dτ
= 0.

(46)
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As before, we will consider two types of the experiment which will define initial conditions
for both systems (45) and (46).

The initial conditions for Type 1 experiment at the start of the pulse for full model (25)
are (26) for α, η, x, and zeros for all other states. Using (44) we can write the expansion
of the initial conditions in powers of ε and get:

α0(0) + Π0α(0) = Π0α(0) = 0,
η0(0) + Π0η(0) = Π0η(0) = 0,
x0(0) + Π0x(0) = Π0x(0) = 1,
β0(0) + Π0β(0) = Π0β(0) = 0,
θ0(0) + Π0θ(0) = Π0θ(0) = 0,
y0(0) + Π0y(0) = Π0y(0) = 0,
γ0(0) + Π0γ(0) = Π0γ(0) = 0,
ζ0(0) + Π0ζ(0) = Π0ζ(0) = 0,
z0(0) + Π0z(0) = 0,
z′0(0) + Π0z

′(0) = 0,
z∗0(0) + Π0z

∗(0) = 0.
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Then from (46) we get:

Π0α(τ) ≡ 0,

Π0η(τ) ≡ 0,

Π0x(τ) = e−k
+
6 Ḡτ ,

Π0β(τ) ≡ 0,

Π0θ(τ) ≡ 0,

Π0y(τ) =
k+

6

k+
12 − k

+
6

(
e−k

+
6 Ḡτ − e−k

+
12Ḡτ

)
,

Π0γ(τ) ≡ 0,

Π0ζ(τ) ≡ 0,

Π0z(τ) =
k+

6 k
+
12

k+
12 − k

+
6

(
1

k+
12

e−k
+
12Ḡτ − 1

k+
6

e−k
+
6 Ḡτ

)
,

Π0z
′(τ) ≡ 0,

Π0z
∗(τ) ≡ 0.

(47)

We also get initial conditions for the system describing the regular functions in leading
order approximation (45):

z0(0) = 1,
z′0(0) = 0,
z∗0(0) = 0.

(48)

Together, the system (45) with the initial conditions (48), and the boundary functions (47),
approximate the dynamics of the full system (25) according to the expansion (29) in Type
1 experiment with high concentration of both D–serine and L–glutamate, if it is allowed
to reach a steady–state before the pulse of glutamate is applied.

The initial conditions for Type 2 experiment at the start of the pulse for the full model
(25) are (27) for α, β, γ, and zeros for all other states. Using (44) we can write the
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expansion of the initial conditions in powers of ε and get:

α0(0) + Π0α(0) = Π0α(0) = 0,
η0(0) + Π0η(0) = Π0η(0) = 0,
x0(0) + Π0x(0) = Π0x(0) = 0,
β0(0) + Π0β(0) = Π0β(0) = 0,
θ0(0) + Π0θ(0) = Π0θ(0) = 0,
y0(0) + Π0y(0) = Π0y(0) = 0,
γ0(0) + Π0γ(0) = Π0γ(0) = 1,
ζ0(0) + Π0ζ(0) = Π0ζ(0) = 0,
z0(0) + Π0z(0) = 0,
z′0(0) + Π0z

′(0) = 0,
z∗0(0) + Π0z

∗(0) = 0.

Then from (46) we get

Π0α(τ) ≡ 0, Π0η(τ) ≡ 0,
Π0β(τ) ≡ 0, Π0θ(τ) ≡ 0,
Π0x(τ) ≡ 0, Π0y(τ) ≡ 0,

Π0γ(τ) = e−k
+
9 S̄τ ,

Π0ζ(τ) =
k+

9

k+
11 − k

+
9

(
e−k

+
9 S̄τ − e−k

+
11S̄τ

)
,

Π0z(τ) =
k+

9 k
+
11

k+
11 − k

+
9

(
1

k+
11

e−k
+
11S̄τ − 1

k+
9

e−k
+
9 S̄τ

)
,

Π0z
′(τ) ≡ 0,

Π0z
∗(τ) ≡ 0,

(49)

We also obtain the initial conditions for the system of regular functions in the leading order
approximation (45):

z0(0) = 1,
z′0(0) = 0,
z∗0(0) = 0.

(50)

Together, the system (45) with the initial conditions (48), and the boundary functions (49)
approximate the dynamics of the full system (25) according to the expansion (29) in Type
2 experiment with high concentration of both D–serine and L–glutamate, if it is allowed
to reach a steady–state before the pulse of serine is applied.
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4.2.4 Model reduction after the pulse for all cases

After the pulse ends in each experiment, the concentrations of substances (and our as-
sumptions) change, which can lead to a need for a new model. Here, we will consider all
6 cases discussed above. Let us note that the initial conditions for new models after the
pulse are approximated by the asymptotic expansion (29) and depends on the final states
of corresponding reduced models during the pulse. We assume that the second part of
experiment is long enough so that the fast decaying boundary functions reach negligibly
small values by the end of the pulse.

We start with going over the easiest cases when the model does not actually change. In
Type 1 experiment (D–serine is continuously present in the bath and L–glutamate is ap-
plied in a pulse manner) when the concentration of D–serine is high and the concentration
of L–glutamate is low, the conditions after the pulse do not change: D–serine continues to
be present at high concentration, while L–glutamate concentration switches from low to
zero. Therefore, the same reduced model can be used: (33) for the regular leading order
approximation functions and (34) for the boundary leading order approximation functions.
Moreover only states x, y, z, z′, and z∗ are nonzero in the leading order approximation,
therefore, all the boundary functions are equal to zero. Thus, the third part of Type 1 ex-
periment in the presence of high concentration of D–serine is approximated by system (33)
(with G = 0 and initial conditions being the end state of the previous stage of experiment)
and zero boundary functions according to the expansion (29).

Analogously, In Type 2 experiment (L–glutamate is continuously present in the bath
and D–serine is applied in a pulse manner) when the concentration of L–glutamate is high
and the concentration of D–serine is low, the conditions after the pulse do not change:
L–glutamate continues to be present at high concentration, while D–serine switches from
low to zero. Following the same logic, the third part of Type 2 experiment in the presence
of high concentration of L–glutamate is approximated by system (39) (with S = 0 and
initial conditions corresponding to the end state of the previous stage of experiment) and
zero boundary functions according to the expansion (29).

We consider now more complicated cases. In Type 1 experiment when the concentration
of L–glutamate is high and the concentration of D–serine is low, the conditions after the
pulse change: while D–serine continues to be present at low concentrations, L–glutamate
concentration switches from high to zero. The reduction is not possible in this case and
we must use the full system (25) with G = 0 to describe the washout portion of this
experiment. Again, the initial conditions of the system are the end state of the previous
stage of experiment.

Analogously, in Type 2 experiment when the concentration of D–serine is high and the
concentration of L–glutamate is low, the reduction is not possible. Thus, the full system
(25) with S = 0 must be used to describe the washout portion of this experiment.

Finally, following the same logic, when concentrations of both D–serine and L–glutamate
are high we should use system (33) with G = 0 to describe the third part of Type 1 exper-
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iment and system (39) with S = 0 to describe the third part of Type 2 experiment.

4.3 Model application

By varying the conditions of the experiments we can change the number of parameters in
the corresponding reduced model. Performing the experiments in a correct order allows
us to estimate parameters in a step–wise manner, using the estimates obtained during the
previous step in the consecutive step. That is, the following sequence of experiments and
fitting to the corresponding models allows the estimation of some parameters of the model
depicted in Figures 13, 14:

1. Type 1 and Type 2 experiments with high concentrations of both substrates. The
reduced model describing the second part of the experiment contains parameters k±13

and k±14.

2. Type 1 experiment with saturating D–serine and low concentration of L–glutamate;
third part of Type 1 experiment with saturating concentrations of both ligands. The
reduced model contains additional parameters k±6 and k±12.

3. Type 2 experiment with saturating L–glutamate and low concentration of D–serine;
third part of Type 2 experiment with saturating concentrations of both ligands. The
reduced model contains additional parameters k±9 and k±11.

4. Type 1 experiment with saturating L–glutamate and low concentration of D–serine.
The reduced model is identical to the one in step 3 (except boundary functions that
do not enter into the formula of the recorded current, which is just proportional to
the state z∗). The initial conditions contain additional parameters: K1 = k+

1 /k
−
1 and

K3 = k+
3 /k

−
3 .

5. Type 2 experiment with saturating D–serine and low concentration of L–glutamate.
The reduced model is identical to the on in step 2 (with the same remark as in step
4). However, initial conditions contain additional parameters: K2 = k+

2 /k
−
2 and

K8 = k+
8 /k

−
8 .

The approach described above guarantees that we do not have overparameterized models
as the number of parameters at each step is sufficiently low and may be reliably estimated.
Let us also note that depending on the data the estimation of the parameters K1, K2, K3,
and K8 may be numerically unstable.

We note that we do not have the experimental data to perform the estimation proce-
dure and answer the question about the nature of NMDAR desensitization. Here we show
the proof of concept and illustrate the described process using the simulated data. As we
mentioned previously, there are several studies that tried to overcome the overparameter-
ization by performing statistically incorrect procedures. The results of these procedures
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Parameter True value Estimated value

k+
13 3.68 3.65 ± 0.02
k−13 3.00 3.00 ± 0.01
k+

14 83.80 81.93 ± 0.63
k−14 83.80 83.45 ± 0.19

k+
6 4.00 4.00 ± 0.01
k−6 0.97 1.42 ± 0.23
k+

12 4.00 4.04 ± 0.02
k−12 8.25 8.17 ± 0.00

k+
9 1.70 1.70 ± 0.01
k−9 2.35 2.36 ± 0.17
k+

11 1.70 1.70 ± 0.02
k−11 19.90 19.73 ± 0.02

K1 0.7234 0.5537 ± 0.08
K3 0.7234 0.7720 ± 0.03

K2 4.1237 15.74 ± 60.78
K8 4.1237 3.82 ± 0.26

Table 1: True values (used in simulation) and estimated values with their 95% confidence
intervals. Equilibrium constants K1, K3, K2, and K8 might be numerically unstable to
estimate: see confidence interval for K2.

produce the sets of parameters which fit the experimental data perfectly. However these
estimates do not have reliable confidence intervals. In other words, there are other sets
of parameters that would fit the data equally well and, at the same time, have drastically
different numerical values. Nevertheless, this allows us to use any of these sets to simulate
the experimental data. In order to simulate the data we used the values from [51] and
added some noise to the solution of the system. Then we estimated parameters according
to the proposed algorithm outlined here. We used MATLAB (R2018a) for all numerical
computations (see the code in Appendix B.3). The results of fitting are shown in Table 1.
Examples of fitted model solutions are shown in Fig. 15.

Thus, from the simulated data we can conclude that the long–lived desensitized state
is present (k+

13 is significantly greater than zero) and that the full—ligand state G2RS2 is
more likely to unbind one of L–glutamate or D–serine molecule than the states GRS2 or
G2RS, respectively (k−12 is significantly greater than k−6 and k−11 is significantly greater than
k−9 ). Thus, we correctly identified two independent sources of desensitization: presence of
long–lived non–conductive state G2R

′S2 and D–serine–dependent desensitization.

53



54

0 5 10 15 20

s

-5

-4

-3

-2

-1

0

1

C
u

rr
e

n
t

0 5 10 15 20

s

-5

-4

-3

-2

-1

0

1

C
u

rr
e

n
t

0 5 10 15 20

s

-5

-4

-3

-2

-1

0

1

C
u

rr
e

n
t

0 5 10 15 20

s

-5

-4

-3

-2

-1

0

1
C

u
rr

e
n

t

Figure 15: Top left. Example of a simulated current (black) in Type 1 experiment with
both substrates being at a saturating levels (10mM for both). The rest of the pictures
correspond to the other examples of simulated current (gray) fitted with the corresponding
models (black). Top right. Type 1 experiment with both substrates being at a saturating
levels (10 mM for both). Bottom left. Type 1 experiment with saturating concentration
of D–serine (10 mM) and low concentration of L–glutamate (10 µM). Bottom right.
Type 2 experiment with saturating concentration of L–glutamate (10 mM) and low con-
centration of D–serine (10 µM).



5 Chaos Theory

Chaotic system is a deterministic dynamical system with high sensitivity to initial condi-
tions and parameters, whose trajectories are bounded but are not periodic and do not tend
to any steady–states. The slight change in initial conditions or parameter values leads to a
long–term divergence of the ”perturbed” solution from the solution of the original problem.
This effect can be caused by such small variation in parameter values as those in rounding
errors, different solver algorithms, or even the same algorithm but with minuscule changes
in tolerance settings. This specific characteristic of chaotic systems lead to a problem of
inability to estimate the system parameters via conventional means. The likelihood func-
tion cannot be constructed in a meaningful way: after a short initial period of time the
small changes in parameters lead to arbitrary large changes in a solution. The standard
Markov–Chain Monte–Carlo (MCMC) sampling can be applied but it results in a ”Swiss
cheese” style parameter posterior. A number of the recently published papers discuss this
issue, see e.g., [53, 54, 55, 56].

A novel approach was introduced recently that allows one to construct a valid likelihood
function based on a new concept of distance between the chaotic trajectories [57]. It was
shown to produce robust and meaningful confidence regions for the parameters of various
chaotic systems, which allows us to solve problems considered as ”intractable and unsolved”
in prior literature; see, e.g., [55]. Here we outline the approach and discuss its extension
for systems with different time scales.

5.1 Correlation integral likelihood

The central idea of the approach is related to a generalized correlation integral concept.
We remind the definition of a correlation integral: let x1, x2, . . . , xN be the points of a
trajectory x ∈ Rn at time points t1, t2, . . . , tN , respectively. For any R > 0 we can define
a Correlation Integral sum

C(R,N) =
1

N2

∑
i,j

# (‖xi − xj‖ < R) , (51)

where ‖ · ‖ denotes an Euclidean distance; #(·) is equal to 1 if the condition within the
parenthesis is satisfied and 0 otherwise. The correlation integral is then defined as

C(R) = lim
N→∞

C(R,N).

The approach discussed in [57] modifies the definition of integral sum (51) in order to use
it as a measure of a distance between two different trajectories. Let x = x(θ, x0) and
x̃ = x̃(θ̃, x̃0) be two solutions of the same model with different set of parameters θ, θ̃ and
different initial conditions x0, x̃0. Then for R > 0 the generalized correlation sum between
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the trajectories x and x̃ is defined to be

C(R,N, θ, x0, θ̃, x̃0) =
1

N2

∑
i,j

# (‖xi − x̃j‖ < R) , (52)

where xi and x̃j are defined as before on the same time grid. By computing the generalized
correlation sum for a fixed set of radii R1, R2, . . . , RK , we obtain a K—dimensional vector
for the trajectories. Since each component of the vector is an average, by the Central
Limit Theorem, the vector is expected to be Gaussian. Then one constructs a distribution
of a ”natural” variability in the solutions due to their chaotic nature, i.e., variability in
C(Ri, N, θ, x0, θ, x̃0) (i = 1, . . . ,K) for various initial conditions. Then one can compare
this variability with variability due to the parameter variation, i.e., C(Ri, N, θ, x0, θ̃, x̃0)
(i = 1, . . . ,K), using MCMC approach. The idea is that variation in initial conditions of
the system changes the solution of the system but does not change the chaotic attractor,
while variation in parameters does change the properties of the attractor. Here we do not
go into more details of the methodology because this is not needed for further discussion.

5.2 Parameter estimation in chaotic systems with different time scales
using the correlation integral approach

The described method constructs a likelihood based on the generalized correlation integral
and allows one to compare trajectories of chaotic systems. However, because the whole
solution gets mapped into a vector, some information is obviously lost, e.g., the time
dependent dynamics of the system. Let us consider a case when variables of the system
act on significantly different time scales. In particular, we assume that the fast dynamics
corresponds to a stable transition of the solution trajectories starting ”outside” of the
”slow” chaotic attractor, approaches it, and stays on it. This situation rises two potential
problems for the described methodology. First, in order to construct the appropriate
distribution of mapped vectors that corresponds to ”natural” variation, all initial conditions
must start on the attractor. Usually, the authors simply ”cut—off” some initial period of
each solution to resolve this problem. While it might work for simple systems, generally
speaking the length of such ”initial” period is unknown. Second, if we are interested
in parameters that regulate the transition of the solution to the attractor, they may be
impossible to estimate once the solution reaches the attractor. In both cases it is important
to find a methodology that can answer how close a given trajectory point is to the attractor.
Here we discuss such procedure (based on the one from Appendix A.4), which allows one
to check if a particular point of a solution has a chaotic attractor in its vicinity.

For the sake of clarity we discuss a special case of a system with a single fast variable
that adjusts to the behavior of one chaotic variable. However, this approach can be easily
extended to a more general case. Let us consider a chaotic system with slow variables

dx

dt
= f(x),
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where x = (x1, x2, . . . , xn) and f = (f1, f2, . . . , fn), where all components of f are differ-
entiable. We introduce a fast variable w which adjusts to the variable x1 in the following
way

dx

dt
= f(x),

dw

dt
= −K(w − x1),

with a positive constant K � 1. Let us perform the change of variables v = w− x1. Then
the system becomes

dx

dt
= f(x),

dv

dt
= −Kv − f1(x).

If we are interested in whether a point (x0, w0) is at most at distance R from the attractor
or not, we find

h0 =

 f(x0)

−Kv0 − f1(x0)

 , J0 =

J
0
x 0

0 −K

 ,

where v0 = w0 − x0
1 and J0

x is a Jacobian of f(x) at x0. There is a transformation matrix
Tx such that S0

x = T−1
x JxT

x is a block diagonal matrix. Thus, matrix

T =

(
Tx 0
0 1

)
is the transformation matrix such that T−1J0T is block diagonal:

T−1J0T =

(
T−1
x 0
0 1

)(
J0
x 0
0 −K

)(
Tx 0
0 1

)
=

(
S0
x 0

0 −K

)
.

Following the procedure from Appendix A.4, we can now choose ν = K. Since K � 1, all
eigenvalues of S0

x are greater than −K. Thus, S0
11 = S0

x and S0
22 = (−K). It is obvious

that the inequality
‖S0

11‖
K

< 1

is always true. Thus, the only condition left to be checked is

|ĥ0
2|
K

< R,
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where ĥ0
2 is the bottommost entry of vector T−1h0, i.e., ĥ0

2 = −Kv0 − f(x0) = −K(w0 −
x0

1)− f(x0). The condition becomes

1

K

∣∣K(w0 − x0
1) + f(x0)

∣∣ < R. (53)

As an example, let us consider the following extended Lorenz63 chaotic system:

dx

dt
= β(y − x),

dy

dt
= x(γ − z),

dz

dt
= xy − αz,

dw

dt
= −K(w − x).

(54)

For v = w − x, the last equation of the above system can be rewritten as:

dv

dt
= −Kv − β(y − x), (55)

where α = 8/3, β = 10, γ = 28, and K = 1000. We take the following initial conditions
x(0) = 2.51, y(0) = 2.51, z(0) = 19.92, and v(0) = −20. In that case (x, y, z) lie on
the chaotic attractor and v rapidly approaches its stable manifold v = 0 (as w rapidly
adjusts to x). We take the following time points t1 = 1.0005, t2 = 1.0015, t3 = 1.0025, and
t4 = 1.0035 and check whether the corresponding points v1, v2, v3, and v4 are near the
chaotic attractor within radius R = 2 or not; see Figure 16.

The methodology described here can be automatically implemented to complement
the generalized correlation integral approach of estimation of chaotic system’s parameters.
This will allow for automating a crucial step of the estimation.
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Figure 16: The solid line represents the solution of system (54), (55) projected on an (x, v)
plane and the dashed line is the corresponding stable manifold (v = 0). The solution is
already on the chaotic attractor for x, y, z variables. The selected points on the trajectory
at time points t1, t2, t3, t4 are marked with the stars. Each selected point has a circle drawn
around it (radius R = 2). Note that in reality the projection of each ball of radius 2 onto
(x, v) plane would look like and ellipse on the graph (see scale of x—axis). However, since
we are interested in the proximity of a solution approaching plane v = 0 along v—axis, we
decided to draw circles instead to make the plot more visual. The corresponding values of
left—hand side of inequality condition (53) for t1, t2, t3, t4 are 13.67, 5.03, 1.85, and 0.68,
respectively. Thus, the condition (53) is true only for point v3 = v(t3) and v4 = v(t4) as
expected.
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6 Conclusion

In this dissertation, we constructed a chemical kinetics model that allowed us to obtain
statistically reliable estimates of the glutamate transporters’ turnover rates (in the current
literature the reliability regions for the parameter values are rarely estimated). We used
estimated values to create a 3–dimensional model of a single synapse and simulate synaptic
transmission. We concluded that, based on the simulation, transporters do not play a
significant role in clearing the synaptic cleft from the neurotransmitter glutamate. The
effects observed during whole–cell recording experiments or field Excitatory Postsynaptic
Potential recordings are due to some other effects, e.g., an activation of extrasynaptic
receptors and spillover phenomenon.

We also constructed a series of models alongside with series of experiments that, if used
on conjunction, allow for a statistically reliable estimates of some parameters of N–methyl–
D–aspartate receptors. We do not have experimental data to fully answer the question
about the nature of NMDARs’ desensitization but we demonstrated the effectiveness of
the proposed algorithm on a simulated data.

Finally, we discussed a novel approach of estimating parameters of chaotic systems and
its possible improvement.
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Appendix

A Useful results and methods

A.1 Asymptotic methods

Suppose, we have a system

ε
dz

dt
= F(t, z,y).

dy

dt
= G(t, z,y),

(56)

z(0, ε) = z0, y(0, ε) = y0,

where 0 < ε � 1 is a small parameter and time t varies from 0 to T . Here z and y are
vectors, F and G are vector functions. Moreover, the functions F(t, z,y) and G(t, z,y) are
continuous together with their derivatives in some domain

Ω = {‖z‖ ≤ a, ‖y‖ ≤ a, 0 ≤ t ≤ T}.

Along with the system (56) we will consider the system

0 = F(t, z̄, ȳ).

dȳ

dt
= G(t, z̄, ȳ),

(57)

ȳ(0) = y0,

and call it a reduced system.
Now, let us introduce the following conditions:

1. Let F(t, z̄, ȳ) = 0 have an isolated root z̄(t) = φ(t, ȳ(t)), (t, ȳ) ∈ D = {‖ȳ‖ ≤ a, 0 ≤
t ≤ T}, and suppose that the corresponding reduced problem has a unique solution
in the interval 0 ≤ t ≤ T .

2. The steady–state z̃ = φ(t, ȳ) of the system

dz̃

dτ
= F(t, z̃, ȳ), τ ≥ 0, (58)

with parameters t and ỹ, is asymptotically stable in the sense of Lyapunov, uniformly
in (t, ȳ) ∈ D as τ →∞.

3. Let the solution z̃(τ) of the problem (58) for z̃ with ȳ = y0 and t = 0 exist for τ ≥ 0
and tend to the stationary point φ(0,y0) as τ →∞.
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Theorem 1 (Tikhonov’s theorem [58, 59]) Under conditions 1 — 3 and for
sufficient small ε, the original perturbed problem (56) has a unique solution z(t, ε), y(t, ε)
such that the following limiting equalities hold:

lim
ε→0

y(t, ε) = ȳ(t), for 0 < t ≤ T,

lim
ε→0

z(t, ε) = z̄(t), for 0 ≤ t ≤ T,

Now, let us consider one more condition.

4. The functions F(t, z,y) and G(t, z,y) are infinitely differentiable in the domain Ω.

And let us define the asymptotic series of some vector or scalar function x(t, ε) as

x(t, ε) = x̄(t, ε) + Πx(τ, ε),

where τ = t/ε and

x̄(t, ε) = x̄0(t) + εx̄1(t) + · · ·+ εkx̄k(t) + · · ·

is called the regular part of the expansion and each individual function is called a regular
function,

Πx(t, ε) = Π0x(τ) + εΠ1x(τ) + · · ·+ εkΠkx(τ) + · · ·

is called the boundary layer part and each individual function is called a boundary function.
Because the boundary layer part corresponds to the behavior of the function x(t, ε)

near t = 0, the following condition holds

lim
τ→∞

Πkx(τ) = 0.

Finally, let us define the partial sum of the asymptotic series as

Xn(t, ε) =

n∑
k=0

εk[x̄k(t) + Πkx(τ)].

We introduce the following theorem.
Theorem 2 (Vasil’eva’s theorem [58, 59]) Under conditions 1 — 4, for the asymp-

totic series of the solution x(t, ε) = {z(t, ε),y(t, ε)} of the original perturbed problem in the
interval 0 ≤ t ≤ T , the following estimate holds:

max
0≤t≤T

‖x(t, ε)−Xn(t, ε)‖ = O(εn+1).
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A.2 Modeling chemical kinetics on the boundary of a free diffusion re-
gion

Suppose we have a free diffusion process defined in some convex region Θ ⊂ R3:

∂y

∂t
= D∆y, t ≥ 0, x ∈ Θ,

where y(t, x) is the concentration of the substance of interest; D is a diffusion coefficient.
Suppose S ⊂ ∂Θ is some connected portion of a boundary of the region. We also assume
that a number of chemical reactions occur in a small volume in a proximity of S, i.e. in a
volume P , defined by a Cartesian product S×ωn, where n is a normal vector to S and ω is
a small number that characterizes the width of the volume P . We further assume that these
chemical reactions can be described by a chemical kinetics system of ordinary differential
equations (ODEs) and include the substance of interest as one of the compounds:

∂ỹ

∂t
= f(ỹ, z1, . . . , zn),

dz1

dt
= g1(ỹ, z1, . . . , zn),

...

dzn
dt

= gn(ỹ, z1, . . . , zn),

(59)

where ỹ is a concentration of a substance of interest; z1, . . . , zn are other compounds that
interact with the substance of interest; f, g1, . . . gn are some functions that describe the
interaction of substances according to the stoichiometric relationships and the law of mass
action.

If ω is small enough, then we can assume that as soon as the substance of interest
enters volume P from volume Θ via a free diffusion, it is well—mixed in P and takes part
in the reactions described by (59). The substance flux from Θ to P is defined by Fick’s
first law of diffusion. The total concentration of a substance entering and leaving through
the surface S per unit of time is

−D 1

ω

∂y

∂n
.

At the same time, the amount of produced and consumed substance due to the chemical
reactions is given by (59). Since these two formulas describe the same substance, their
equality must hold at the surface S:

−D∂y

∂n
= ωf(y, z1, . . . , zn),

which produces Neumann type boundary conditions for the diffusion equation, where
z1, . . . zn are the solutions of (59) with ỹ = y.
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A.3 Finite difference approximation

Let us consider a k times differentiable (on some interval (a, b)) function f(x) . We can
apply Taylor’s theorem [60] to it at an arbitrary point x0 ∈ (a, b):

f(x0 + h) = f(x0) +
f ′(x0)

1!
h+

f ′′(x0)

2!
h2 + · · ·+ f (k)(x0)

k!
hk +O(hk+1), (60)

and

f(x0 − h) = f(x0)− f ′(x0)

1!
h+

f ′′(x0)

2!
h2 − · · ·+ (−1)k

f (k)(x0)

k!
hk +O(hk+1), (61)

where h > 0 is a step size of discretization. Therefore, subtracting (61) from (60) we get:

f(x0 + h)− f(x0 − h) = f ′(x0)2h+O(h3),

and so,

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
+O(h2). (62)

Taking the sum of equations (60) and (61), we obtain

f(x0 + h) + f(x0 − h) = 2f(x0) + f ′′(x0)h2 +O(h4),

and hence,

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
+O(h2). (63)

Thus, if a function f is differentiable in some interval, we can approximate its first and
second derivatives at any point inside that interval with the first terms of the right hand
sides of the equations (62) and (63), respectively.
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A.4 A method to check the presence of an invariant manifold in the
proximity of a point in the phase space

Suppose we have a system

dz

dt
= h(z, t), (z, t) ∈ Rn × R, (64)

where h is twice continuously differentiable with respect to z and t. Let R > 0 be a
sufficiently small constant. In order to answer whether a point (z0, t0) has an invariant
manifold of system (64) within the ball of radius R we need to follow the following procedure
[61]:

1. Find value of function h and its Jacobian at the point of interest: h0 = h(z0, t0) and
J0 = hz(z0, t0). Note that h̃(z, t, z0, t0) = h(z, t) − h0 − J0(z − z0) = O(|z − z0|3 +
|t− t0|).

2. Find a transformation matrix T that block diagonalizes matrix J0, i.e., S0 = T−1J0T
is a block diagonal matrix. Moreover, among all possible matrices T choose such
that S0 = diag

(
S0

11, S
0
22

)
, where all eigenvalues of S0

11 are greater than −ν and all
eigenvalues of S0

22 are less than or equal to −ν, where ν > 0 is some constant.

3. Apply the following substitution of variables: z = z0 + Tu.

4. Rewrite the system (64) in terms of the variable u:

du

dt
= T−1h0 + S0u+ T−1h̃(z0 + Tu, t, z0, t0).

Taking into account the block diagonal structure of S0 = diag
(
S0

11, S
0
22

)
, the system

can be further rewritten in the following form:

du1

dt
= ĥ0

1 + S0
11u1 + h̄1(u, t, z0, t0),

du2

dt
= ĥ0

2 + S0
22u2 + h̄2(u, t, z0, t0).

5. Verify the following inequalities:

‖S0
11‖
ν

< 1,
|ĥ0

2|
ν

< R,

where ‖ · ‖ is the matrix norm induced by the euclidean vector norm, i.e., ‖A‖ =√
ρ(ATA), where ρ denotes the spectral radius. If the inequalities are satisfied, then

there is an invariant manifold of system (64) within the ball of radius R and center
at (z0, t0).
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B MATLAB codes

B.1 Glutamate transporter chemical kinetics model

EAAT/run.m

addpath ./mcmcstat

run mcmc = true;
nonlinfit = false;
add peaks = false;
add overshoots = false;
transporter = 'e1';
nsimu = 1000;

load(sprintf('%s.mat', transporter))
time = eval(sprintf('%s.time', transporter));
current = eval(sprintf('%s.traces', transporter));
beta0 = eval(sprintf('%s.beta0', transporter));
indeces = eval(sprintf('%s.indeces', transporter));
try

overshoots = eval(sprintf('%s.overshoot ind', transporter));
end
pulses = arrayfun(@(i) time{i}(indeces{i}), 1:length(indeces), 'Uni', 0);
for i = 1:length(current)

m = mean(current{i}(indeces{i}(1):indeces{i}(2)));
current{i} = current{i} - m;

end
% add weight to peaks
if add peaks | | add overshoots

switch transporter
case 'e2'

add spike scale = 2;
add overshoot scale = 1;

case 'e3'
add spike scale = 4;

otherwise
add spike scale = 2;

end
for i = 1:length(current)

if add overshoots
% overshoot
for j = 3:2:length(indeces{i})

start = overshoots{i}(j-2);
finish = overshoots{i}(j-1);
ovs = current{i}(start:finish);
l = length(ovs);
n = round((indeces{i}(j+1) - 1 - indeces{i}(j)) /...

add overshoot scale / l);
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timeshoot = repmat(time{i}(start:finish)', n, 1);
time{i} = [time{i}(1:start-1); timeshoot(:);...

time{i}(finish+1:end)];
ovs = repmat(ovs', n, 1);
current{i} = [current{i}(1:start-1); ovs(:);...

current{i}(finish+1:end)];
indeces{i}(j+1:end) = indeces{i}(j+1:end) + (n - 1) * l;
overshoots{i}(j:end) = overshoots{i}(j:end) + (n - 1) * l;

end
end

if add peaks
% peaks
for j = 2:2:length(indeces{i})-1

start = indeces{i}(j);
finish = indeces{i}(j+1)-1;
n = round((finish - start) / add spike scale);
[peak, k] = min(current{i}(start:finish));
timepeak = repmat(time{i}(start+k), n, 1);
time{i} = [time{i}(1:start+k-1); timepeak;...

time{i}(start+k+1:end)];
current{i} = [current{i}(1:start+k-2);...

repmat(peak, n, 1); current{i}(start+k:end)];
indeces{i}(j+1:end) = indeces{i}(j+1:end) + n - 1;

end
end

end
end

% median pulse index
if nonlinfit

mpi = ceil(length(pulses) / 2);
hack = @(c, i) c{i};
nlinfit func = @(beta, time) hack(fit function(beta, time,...

pulses(mpi)), 1);
nlinfit time = time(mpi);
opt = statset('MaxIter', 1000);
[beta nlfit, res, J] = nlinfit(nlinfit time, current{mpi},...

nlinfit func, beta0, opt);
else

switch transporter
case 'e1'

beta nlfit = [940.28, 61.40, 56.39, 244.44, 90.71, 12.82,...
12.87, 856.33, 1232.35, 733.6];

case 'e2'
beta nlfit = [1000, 0, 100, 10, 100, 100, 100, 100, 100, 0];

case 'e3'
beta nlfit = [1041, 1, 110, 104, 289, 220, 61, 669, 1343, 665];

otherwise
beta nlfit = beta0;
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end
end

if ~run mcmc
ci = nlparci(beta nlfit, res, 'jacobian', J);
figure(1)

plot(nlinfit time{1}, current{mpi}, 'k',...
nlinfit time{1}, nlinfit func(beta nlfit, nlinfit time), 'r')

else
data.time = time;
data.current = current;
data.indeces = indeces;
data.pulses = pulses;

beta mcmc = beta nlfit;
model.ssfun = @ssfun;
model.N = sum(cellfun(@(c) c(end), indeces));
model.sigma2 = ssfun(beta mcmc, data) / (model.N - length(beta mcmc));

params = {
{'m 1ˆ+', abs(beta mcmc(1)), 0}
{'m 1ˆ-', abs(beta mcmc(2)), 0}
{'m 2ˆ+', abs(beta mcmc(3)), 0}
{'m 2ˆ-', abs(beta mcmc(4)), 0}
{'m 3ˆ+', abs(beta mcmc(5)), 0}
{'m 4ˆ+', abs(beta mcmc(6)), 0}
{'m 4ˆ-', abs(beta mcmc(7)), 0}
};
i = 1;
k = length(params) - 3;
params{k + 4 * i} = {sprintf('A%i', i), beta mcmc(8)};
params{k + 1 + 4 * i} = {sprintf('B%i', i), beta mcmc(9)};
params{k + 2 + 4 * i} = {sprintf('C%i', i), beta mcmc(10)};

options.nsimu = nsimu;
options.qcov = 1000 * eye(length(beta mcmc));
options.method = 'dram';
options.adaptint = 100;
options.updatesigma = 0;
options.drscale = [10 100];
options.ntry = length(options.drscale) + 1;
options.verbosity = 1;
options.waitbar = 1;
options.burnintime = 30000;

[results,chain,s2chain] = mcmcrun(model,data,params,options);

I = fit function(results.theta, time, pulses);
figure(100), hold on

for i = 1:length(I)
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plot(time{i}(indeces{i}(1):indeces{i}(end)),...
data.current{i}(indeces{i}(1):indeces{i}(end)), 'k',...
time{i}(indeces{i}(1):indeces{i}(end)), I{i}, 'g')

end
xlabel('s')
ylabel('pA')
hold off

figure(200)
mcmcplot(chain,1:7,results,'pairs',2);

rate chain = zeros(size(chain, 1), 1);
rate chain = to rate(chain);
ci = prctile(rate chain, [0.5, 2.5, 97.5, 99.5, 50]);
fprintf(['Rate: %0.5f per second\nCI 95%%: [%0.2f, %0.2f]\n',...

'CI 99%%: [%0.2f, %0.2f]\n'], ci(5), ci(2), ci(3), ci(1), ci(4))
figure(300)

hist(rate chain, 20), hold on
plot([ci(2), ci(3)], [0, 0], 'r.', 'MarkerSize', 30)
plot([ci(1), ci(4)], [0, 0], 'r*', 'MarkerSize', 10), hold off
xlabel('Turnover rate (sˆ{-1})', 'FontSize', 12)

save(['optimized ', transporter, ' 10p.mat'], 'results', 'chain',...
's2chain', 'rate chain')

'finished'
for i = 1:10

figure(i)
plot(chain(:, i))

end
end

EAAT/fit function.m

function I = fit function(beta, t, pulses)
I = cell(size(pulses));
beta(1:7) = abs(beta(1:7));
bta = num2cell(beta);
% number of common parameters
ncp = 10;
% number of individual paramaters
nip = 0;

for i = 1:length(pulses)
ind = [1:ncp, (ncp + (1 + (i - 1) * nip:i * nip))];
[m1p, m1m, m2p, m2m, m3p, m4p, m4m, A, B, C] = deal(bta{ind});
% individual beta
ibeta = [m1p, m1m, m2p, m2m, m3p, m4p, m4m, A, B, C];
y = solve system(ibeta, t{i}, pulses{i});
I{i} = - A * y(:, 1) - B * y(:, 2) - C * y(:, 4) +...

(A * m4p + C * m4m) / (m4p + m4m);
end
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end

EAAT/solve system.m

function y = solve system(beta, time, pulses)
bta = num2cell(beta);
[m1p, m1m, m2p, m2m, m3p, m4p, m4m] = deal(bta{1:7});
y = zeros(length(time), 4);

% steady state
t = time(time >= pulses(1) & time <= pulses(2));
y(1:length(t), :) = repmat([m4p, 0, 0, m4m] / (m4m + m4p),...

length(t), 1);

% for all consecuitive pulses
i = 3;
j = length(t);
A template = @(m1pp)...

[-(m1pp + m4m), m1m, 0, m4p;
m1pp, -(m1m + m2p), m2m, 0;
0, m2p, -(m2m + m3p), 0;
m4m, 0, m3p, -m4p];

A pulse = A template(m1p);
A washout = A template(0);
[V p, D p] = eig(A pulse);
[V w, D w] = eig(A washout);

while i <= length(pulses)
y0 = y(j, :)';
t = time(time > pulses(i - 1) & time <= pulses(i));
t = t - t(1);
if mod(i, 2) == 1

% pulse of glutamate
V = V p;
E = diag(D p);

else
% washout
V = V w;
E = diag(D w);

end
C = V \ y0;
y(j+1:j+length(t), :) = real((repmat(C, 1, length(t))...

.* exp(kron(E, t')))' * V');
j = j + length(t);
i = i + 1;

end
y = y(1:j, :);

end
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EAAT/ssfun.m

function y = ssfun(beta, data)
I = fit function(beta, data.time, data.pulses);
y = 0;
ind = data.indeces;
for i = 1:length(I)

y = y + sum((data.current{i}(ind{i}(1):ind{i}(end)) - I{i}).ˆ2);
end

end

EAAT/to rate.m

function rate = to rate(beta)
rate = zeros(size(beta, 1), 1);
for i = 1:size(beta, 1)

bta = num2cell(beta(i, :));
[m1p, m1m, m2p, m2m, m3p, m4p, m4m] = deal(bta{1:7});
rate(i) = m1p * m2p * m3p * m4p / (m1p * m2p * (m3p + m4p) +...

m1p * m4p * (m2m + m3p) +...
(m4p + m4m) * (m1m * m2m + m1m * m3p + m2p * m3p));

end
end
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B.2 Synaptic diffusion model

Synapse/run.m

clear all

%% Parameters
% Space grid size
I = 30;
J = 31;
K = 4;
% Number of pulses
Cmax = 1;
% Delay between pulses (ms). 100Hz ~ 10ms
Td = 10;
% Wait after the last pulse (ms)
Tw = 1000;
% Astrocyte coverage
coverage = 0.95;
% draw a figure?
draw = false;
% save?
save data = true;

%% Constants (in nm, ms, #1e-6molecules)
% numerical modifier for molecules
scaling = 1e6;
% ambient glutamate (25nM)
u inf = @(t) 25 * 6.022e-10 * scaling;
% Height of a synaptic cleft (20nm)
L = 20;
% Radius of a synaptic cleft (150nm)
R = 150;
% Radius of an active zone (100nm)
ra = 100;
% Radius of an postsynaptic density (100nm)
rd = 100;
% Diffusion constant (0.4e-9 mˆ2 / s = 0.4 umˆ2 / ms)
D = 0.4e6;
% EAATs densities (1, 2a, 2n, 3) [2300 7500 750 90] umˆ-2
N = [2300 7500 750 90] * 1e-6;
% EAATs turnover rates (1 - 3) [15.45 23.96 1.98] sˆ-1
V = [15.45, 23.96, 1.98] * 1e-3 * scaling;
% EAATs Km's (1 - 3) [20, 18, 28] uM
Km = [20, 18, 28] * 6.022e-7 * scaling;
% pulse apmlitude (delta function) molecules
delta = 3000 * scaling;
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%% Define system of ODE
% step sizes, indeces, matrices, etc.
dr = R / I;
dp = 2 * pi / (J + 1);
dz = L / K;
params = make matrices(dr, dp, dz, I, J, K, [9, 17, 25], coverage);
% params.dt = dt;
params.ia = round(ra / dr) + 1;
params.id = round(rd / dr) + 1;
params.D = D;
params.N = N;
params.V = V;
params.Km = Km;
params.u inf = u inf;
% rhs
rhs = @(t, y) rhs template(t, y, params);
% Initial conditions before the first pulse
y0 = u inf(0) * ones(K + 1 + I * (J + 1) * (K + 1), 1);

if draw
f1 = figure(1);
f1.Position = [10 90 1400 900];

end
[rgrid, phigrid] = meshgrid(0:dr:R, 0:dp:2*pi-dp);

yc = cell(1, Cmax);
time = {};
tc = 0;
for cycle = 1:Cmax

% 1/4 * h * S base = delta / 2
y0(1, 1) = y0(1, 1) + delta * 4 / (pi * dz * drˆ2);
switch cycle

case Cmax
tc = tc(end) + [0 Tw];

case 1
tc = [0 Td];

otherwise
tc = tc(end) + [0 Td];

end
[time{cycle}, y] = ode15s(rhs, tc, y0);
% initial condition for the next pulse
y0 = y(end, :)';
if draw

for i = 2:size(y, 1)
x = y(i, :)';
u = zeros(I + 1, J + 1, K + 1);
u(1, :, :) = repmat(reshape(x(1:K+1), [1, 1, K + 1]), 1, J + 1, 1);
u(2:end, :, :) = reshape(x(K + 2:end), [I, J + 1, K + 1]);
for j = 1:4

subplot(2, 2, j)
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surf(rgrid .* cos(phigrid), rgrid .* sin(phigrid),...
u(:, :, j)'/scaling);

view(0.1, 90)
set(gca, 'colorscale', 'log')
caxis([1e-10 1e0])
colorbar()

end
suptitle(sprintf('%s ms', time{cycle}(i)))
pause(0.1)

end
end
yc{cycle} = y;

end

% Concentration at the center and average at psd,
% and astrocytic flux
cca = [];
% flx = [];
total time = [];
for i = 1:length(yc)

for t = 1:size(yc{i}, 1)
x = yc{i}(t, :)';
u = zeros(I + 1, J + 1, K + 1);
u(1, :, :) = repmat(reshape(x(1:K + 1), [1, 1, K + 1]), 1, J + 1, 1);
u(2:end, :, :) = reshape(x(K + 2:end), [I, J + 1, K + 1]);
w = u(1:params.id, :, end);
rw = rgrid(1, 1:params.id);
f = @(r) r .* interp1(rw, mean(w, 2), r);
cca = [cca; integral(f, rw(1), rw(end)) * 2 / rw(end)ˆ2];

end
total time = [total time; time{i}];

end

f2 = figure(2);
f2.Position = [424 319 797 659];

plot(total time, cca/6.022e-4/scaling, 'k')% from #molecules/nmˆ3 to mM

if save data
file name to save = sprintf('%d %d at %dHz.mat', coverage, Cmax, 1000/Td);
save(file name to save, 'time', 'yc', 'params', 'total time', 'cc',...

'cca', 'scaling')
end

Synapse/make matrices.m

function p = make matrices(dr, dp, dz, I, J, K, ipg, coverage)
alpha = [-4, - 2 * ones(1, I)] / drˆ2;
beta = [0, (1 + 0.5 ./ (1:I))] / drˆ2;
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gamma = (1 - 0.5 ./ (0:I)) / drˆ2;

p.A = diag(alpha) + diag(beta(1:end-1), 1) + diag(gamma(2:end), -1);
p.B = (- 2 * diag(ones(1, J + 1)) + diag(ones(1, J), 1) +...

diag(ones(1, J), -1)) / dpˆ2;
p.BB = repmat([0; 1 ./ (1:I)'.ˆ2], 1, J + 1) / drˆ2;
p.C = (- 2 * diag(ones(1, K + 1)) + diag(ones(1, K), 1) +...

diag(ones(1, K), -1)) / dzˆ2;

p.beta I = beta(end);
p.gamma 0 = gamma(1);
p.I = I;
p.J = J;
p.K = K;
p.dr = dr;
p.dp = dp;
p.dz = dz;
p.ipg = ipg;
p.jc = round(2 * pi * coverage / dp);

end

Synapse/rhs template.m

function y = rhs template(t, x, p)
u = zeros(p.I + 1, p.J + 1, p.K + 1);
u(1, :, :) = repmat(reshape(x(1:p.K + 1), [1, 1, p.K + 1]), 1, p.J + 1, 1);
u(2:end, :, :) = reshape(x(p.K + 2:end), [p.I, p.J + 1, p.K + 1]);

MM = @(u, Km) u ./ (Km + u);
E = zeros(p.I + 1, p.J + 1, p.K + 1);
E(1, :, :) = repmat(u(2, 1, :) + u(2, p.ipg(1), :) +...

u(2, p.ipg(2), :) + u(2, p.ipg(3), :), 1, p.J + 1, 1)...
/ p.drˆ2;

J2 = p.N(3) * p.V(2) * (MM(u(p.ia + 1:end, :, 1), p.Km(2)) -...
MM(p.u inf(t), p.Km(2)));

J3 = p.N(4) * p.V(3) * (MM(u(p.id + 1:end, :, end), p.Km(3)) -...
MM(p.u inf(t), p.Km(3)));

J12 = p.N(1) * p.V(1) * (MM(u(end, 1:p.jc, :), p.Km(1)) -...
MM(p.u inf(t), p.Km(1)))+...

p.N(2) * p.V(2) * (MM(u(end, 1:p.jc, :), p.Km(2)) -...
MM(p.u inf(t), p.Km(2)));

E(end, 1:p.jc, :) = (- J12 * 2 * p.dr / p.D + u(end - 1, 1:p.jc, :))...

* p.beta I;
E(end, p.jc+1:end, :) = ones(1, p.J + 1 - p.jc, p.K+1)...

* p.u inf(t) * p.beta I;

E(2:end, 1, :) = E(2:end, 1, :) + u(2:end, end, :) / p.dpˆ2 /...
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p.drˆ2 ./ repmat(((1:p.I)').ˆ2, 1, 1, p.K + 1);
E(2:end, end, :) = E(2:end, end, :) + u(2:end, 1, :) / p.dpˆ2 /...

p.drˆ2 ./ repmat(((1:p.I)').ˆ2, 1, 1, p.K + 1);

E(1:p.ia, :, 1) = E(1:p.ia, :, 1) + u(1:p.ia, :, 2) / p.dzˆ2;
E(p.ia + 1:end, :, 1) = E(p.ia + 1:end, :, 1) +...

(- J2 * 2 * p.dz / p.D + u(p.ia + 1:end, :, 2)) / p.dzˆ2;
E(1:p.id, :, end) = E(1:p.id, :, end) +...

u(1:p.id, :, end - 1) / p.dzˆ2;
E(p.id + 1:end, :, end) = E(p.id + 1:end, :, end) +...

(- J3 * 2 * p.dz / p.D + u(p.id + 1:end, :, end - 1)) / p.dzˆ2;

y = zeros(size(E));
for i = 1:p.K + 1

y(:, :, i) = p.A * u(:, :, i) + (u(:, :, i) * p.B) .* p.BB +...
E(:, :, i);

end
for i = 1:p.J + 1

y(:, i, :) = y(:, i, :) +...
reshape(reshape(u(:, i, :), [p.I+1, p.K+1]) * p.C,...

[p.I+1, 1, p.K+1]);
end
y = [reshape(y(1, 1, :), p.K+1, 1);...

reshape(y(2:end, :, :), p.I * (p.J + 1) * (p.K + 1), 1)] *...
p.D;

end
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B.3 Glutamate receptor model

NMDAR/run.m

%% Define true parameters (model B)
% on (uMˆ-1 sˆ-1); off (sˆ-1)
k1 on = 4.0; k1 off = 0.97;
k2 on = 1.7; k2 off = 2.35;
k3 on = 4.0; k3 off = 8.25;
k4 on = 1.7; k4 off = 19.9;
k5 on = 3.68; k5 off = 3.0;
k6 on = 83.8; k6 off = 83.8;
params = [k2 on; k2 off; k1 on; k1 off; k2 on; k2 off; k1 on; k1 off;...

k2 on; k2 off; k1 on; k1 off; k2 on; k2 off; k1 on; k1 off;...
k2 on; k2 off; k1 on; k1 off; k4 on; k4 off; k3 on; k3 off;...
k5 on; k5 off; k6 on; k6 off];

% time course and substrate concentrations
time = {};
time{1} = 0:0.1:10;
time{2} = max(time{1}):0.001:(max(time{1})+5);
time{3} = max(time{2}):0.001:(max(time{2})+3.5);

% concentrations (uM)
Smin = 10; Smax = 10000;
Gmin = 10; Gmax = 10000;

% current scale factor (nA (normalized transporter concentration)ˆ-1 )
% and noise level
C = -10;
eps = 0.01;

%% Simulate data
simulated data = sim data(time, params, Gmin, Gmax, Smin, Smax, C, eps);

%% Model fitting
k1 on = 1.7; k1 off = 2.35;
k2 on = 4.0; k2 off = 0.97;
k3 on = 1.7; k3 off = 2.35;
k4 on = 4.0; k4 off = 0.97;
k5 on = 1.7; k5 off = 2.35;
k6 on = 4.0; k6 off = 0.97;
k7 on = 1.7; k7 off = 2.35;
k8 on = 4.0; k8 off = 0.97;
k9 on = 1.7; k9 off = 2.35;
k10 on = 4.0; k10 off = 0.97;
k11 on = 1.7; k11 off = 19.9;
k12 on = 4.0; k12 off = 8.25;
k13 on = 3.68; k13 off = 3.0;
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k14 on = 83.8; k14 off = 83.8;
C = -10;
% params0 = [k1 on, k1 off, k2 on, k2 off, k3 on, k3 off, k4 on, k4 off,...
% k5 on, k5 off, k6 on, k6 off, k7 on, k7 off, k8 on, k8 off,...
% k9 on, k9 off, k10 on, k10 off, k11 on, k11 off, k12 on, k12 off,...
% k13 on, k13 off, k14 on, k14 off];
% params0 = params0 + eps * randn(size(params0));

%% Fitting
stage2 = (length(time{1})+1):(length(time{1})+length(time{2}));
stage3 = (length(time{1})+length(time{2})+1):...

(length(time{1})+length(time{2})+length(time{3}));
% Step 1. Fit (K13, K14, C)
step1 params0 = [k13 on, k13 off, k14 on, k14 off, C];
step1 params0 = step1 params0 + 0.1 * randn(size(step1 params0));

[step1 fit, step1 res, step1 J] = nlinfit(time, simulated data{1}(stage2),...
@step1 fit func, step1 params0);

step1 fit ci = nlparci(step1 fit, step1 res, 'jacobian', step1 J);

% Step 2. Fit (K6, K12)
step2 params0 = [k6 on, k6 off, k12 on, k12 off];
step2 params0 = step2 params0 + 0.1 * randn(size(step2 params0));

[step2 fit, step2 res, step2 J] = nlinfit(time, [simulated data{3}(stage2);...
simulated data{3}(stage3); simulated data{1}(stage3)],...

@(b, t) step23 fit func(b, t, step1 fit, Gmin), step2 params0);
step2 fit ci = nlparci(step2 fit, step2 res, 'jacobian', step2 J);

% Step 3. Fit (K9, K11)
step3 params0 = [k9 on, k9 off, k11 on, k11 off];
step3 params0 = step3 params0 + 0.1 * randn(size(step3 params0));

[step3 fit, step3 res, step3 J] = nlinfit(time, [simulated data{6}(stage2);...
simulated data{6}(stage3); simulated data{2}(stage3)],...

@(b, t) step23 fit func(b, t, step1 fit, Smin), step3 params0);
step3 fit ci = nlparci(step3 fit, step3 res, 'jacobian', step3 J);

% Step 4. (K1, K3)
step4 params0 = [k1 on / k1 off, k3 on / k3 off];
step4 params0 = step4 params0 + 0.1 * randn(size(step4 params0));

[step4 fit, step4 res, step4 J] = nlinfit(time, simulated data{5}(stage2),...
@(b, t) step45 fit func(b, t, [step3 fit, step1 fit], Smin),...

step4 params0);
step4 fit ci = nlparci(step4 fit, step4 res, 'jacobian', step4 J);

% Step 5. (K2, K8)
step5 params0 = [k2 on / k2 off, k8 on / k8 off];
step5 params0 = step5 params0 + 0.1 * randn(size(step5 params0));
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[step5 fit, step5 res, step5 J] = nlinfit(time, simulated data{4}(stage2),...
@(b, t) step45 fit func(b, t, [step2 fit, step1 fit], Gmin),...

step5 params0);
step5 fit ci = nlparci(step5 fit, step5 res, 'jacobian', step5 J);

NMDAR/sim data.m

function current = sim data(time, params, Gmin, Gmax, Smin, Smax, C, eps)
current = {};
% High concentrations
% Type 1
current{1} = sim exp(time, params, @true rhs, Gmax, Smax, C, 1, eps);
% Type 2
current{2} = sim exp(time, params, @true rhs, Gmax, Smax, C, 2, eps);

% High Serine, low Glutamate
% Type 1
current{3} = sim exp(time, params, @true rhs, Gmin, Smax, C, 1, eps);
% Type 2
current{4} = sim exp(time, params, @true rhs, Gmin, Smax, C, 2, eps);

% High Glutamate, low Serine
% Type 1
current{5} = sim exp(time, params, @true rhs, Gmax, Smin, C, 1, eps);
% Type 2
current{6} = sim exp(time, params, @true rhs, Gmax, Smin, C, 2, eps);

% Low Glutamate, low Serine
% Type 1
current{7} = sim exp(time, params, @true rhs, Gmin, Smin, C, 1, eps);
% Type 2
current{8} = sim exp(time, params, @true rhs, Gmin, Smin, C, 2, eps);

end

NMDAR/sim exp.m

function current = sim exp(time, params, rhs, G, S, C, T, eps)
y0 = [1; zeros(10, 1)];
x = {};
if T == 1

p = [params; 0; S];
else

p = [params; G; 0];
end
[~, x{1}] = ode23s(@(t, x) rhs(t, x, p), time{1}, y0);
[~, x{2}] = ode23s(@(t, x) rhs(t, x, [params; G; S]), time{2},...

x{1}(end, :));
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[~, x{3}] = ode23s(@(t, x) rhs(t, x, p), time{3}, x{2}(end, :));

current = [x{1}(:, 11); x{2}(:, 11); x{3}(:, 11)];
current = C * current + eps * randn(size(current));

end

NMDAR/true rhs.m

function y = true rhs(~, x, params)
params = num2cell(params);
[k1 on, k1 off, k2 on, k2 off, k3 on, k3 off, k4 on, k4 off,...

k5 on, k5 off, k6 on, k6 off, k7 on, k7 off, k8 on, k8 off,...
k9 on, k9 off, k10 on, k10 off, k11 on, k11 off,...
k12 on, k12 off, k13 on, k13 off, k14 on, k14 off, G, S] =...

deal(params{:});
x = num2cell(x);
[a, eta, b, x, th, g, y, xi, z, zp, zs] = deal(x{:});
y = [ % alpha

(- k1 on * a * S + k1 off * eta - k2 on * a * G + k2 off * b);
% eta

(k1 on * a * S - k1 off * eta - k3 on * eta * S + k3 off * x...
- k4 on * eta * G + k4 off * th);
% beta

(k2 on * a * G - k2 off * b - k5 on * b * S + k5 off * th...
-k8 on * b * G + k8 off * g);
% x

(k3 on * eta * S - k3 off * x - k6 on * x * G + k6 off * y);
% theta

(k4 on * eta * G - k4 off * th + k5 on * b * S - k5 off * th...
- k7 on * th * S + k7 off * y - k10 on * th * G + k10 off * xi);
% gamma
(k8 on * b * G - k8 off * g - k9 on * g * S + k9 off * xi);
% y
(k6 on * x * G - k6 off * y + k7 on * th * S...
- k7 off * y - k12 on * y * G + k12 off * z);
% xi
( k9 on * g * S - k9 off * xi + k10 on * th * G - k10 off * xi...
- k11 on * xi * S + k11 off * z);
% z
(k11 on * xi * S - k11 off * z + k12 on * y * G - k12 off * z...
- k13 on * z + k13 off * zp - k14 on * z + k14 off * zs);
% zp
(k13 on * z - k13 off * zp);
% zs
(k14 on * z - k14 off * zs)];

end
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NMDAR/hone rhs.m

function y = hone rhs(~, x, params)
params = num2cell(params);
% kX and kY are:
% k6 and k12 for high Serine and low Glutamate
% k9 and k11 for high Glutamate and low Serine
% L is:
% G for high Serine and low Glutamate
% S for high Glutamate and low Serine
[kX on, kX off, kY on, kY off, k13 on, k13 off, k14 on, k14 off,...
L] = deal(params{:});

x = num2cell(x);
% X and Y are:
% RS2 and GRS2 for high Serine and low Glutamate
% RG2 and G2RS for high Glutamate and low Serine
[X, Y, z, zp, zs] = deal(x{:});
y = [% RS2 / RG2

(- kX on * X * L + kX off * Y);
% GRS2 / G2RS
(kX on * X * L - kX off * Y - kY on * Y * L + kY off * z);
% G2RS2
(kY on * Y * L - kY off * z - k13 on * z + k13 off * zp...
- k14 on * z + k14 off * zs);
% G2RpS2
(k13 on * z - k13 off * zp);
% G2RsS2
(k14 on * z - k14 off * zs)];

end

NMDAR/hboth rhs.m

function y = hboth rhs(~, x, params)
params = num2cell(params);
[k13 on, k13 off, k14 on, k14 off] = deal(params{:});
x = num2cell(x);
[z, zp, zs] = deal(x{:});
y = [% z

(- k13 on * z + k13 off * zp...
- k14 on * z + k14 off * zs);
% zp
(k13 on * z - k13 off * zp);
% zs
(k14 on * z - k14 off * zs)];

end
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NMDAR/step1 fit func.m

function fit data = step1 fit func(params, time)
[~, x] = ode23s(@(t, x) hboth rhs(t, x, params(1:end-1)), time{2},...

[1; 0; 0]);
fit data = params(end) * x(:, end);

end

NMDAR/step23 fit func.m

function fit data = step23 fit func(params, time, known, L)
[~, x1] = ode23s(@(t, x) hone rhs(t, x, [params, known(1:end-1), L]),...

time{2}, [1; 0; 0; 0; 0]);
[~, x2] = ode23s(@(t, x) hone rhs(t, x, [params, known(1:end-1), 0]),...

time{3}, x1(end, :)');
[~, y] = ode23s(@(t, x) hboth rhs(t, x, known(1:end-1)), time{2},...

[1; 0; 0]);
[~, x3] = ode23s(@(t, x) hone rhs(t, x, [params, known(1:end-1), 0]),...

time{3}, [0; 0; y(end, :)']);
fit data = known(end) * [x1(:, end); x2(:, end); x3(:, end)];

end

NMDAR/step45 fit func.m

function fit data = step45 fit func(params, time, known, L)
[~, x] = ode23s(@(t, x) hone rhs(t, x, [known(1:end-1), L]),...

time{2}, [1; params(1) * L; params(1) * params(2) * Lˆ2; 0; 0]./...
(1+ params(1) * L + params(1) * params(2) * Lˆ2));

fit data = known(end) * x(:, end);
end
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