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Methods for Analyzing High Dimensional Data
with Applications to the Accelerometry and Microbiome Data

Quy Xuan Cao

University of Montana, 2019

ABSTRACT

Modern studies in medicine, epidemiology, pharmacy and other fields gen-

erate high dimensional data. We developed statistical analysis methods for two

types of such data: activity and microbiome data. Specifically, reliable mea-

sures of the frequency, duration and intensity of physical activity provided by

wearable technology were used in the analysis of activity data. Accelerometry-

derived measures of physical activity were compared with established predic-

tors of 5-year all-cause mortality in older adults, aged between 50 and 85 years

from the 2003- 2006 National Health and Nutritional Examination Survey, in

terms of individual, relative, and combined predictive performance. A total of

33 predictors of 5-year all-cause mortality, including 20 measures of objective

physical activity, were compared using single-predictor and multiple logistic

regression. The results show that objective accelerometry-derived physical ac-

tivity measures outperform traditional predictors of 5-year mortality in single

predictor models, and offer some improvement in multiple predictor models

beyond what age and other traditional predictors provide. This highlights

the importance of wearable technology for providing reproducible, unbiased,

and prognostic biomarkers of health. In microbiome data, we concentrated on

pre-processing steps, where both the sparsity of counts and the large number

of observed taxa were considered. The current approach is to remove taxa

that appear in small counts in a few samples, which is known as filtering. We

iii



present the package PERFect which performs a permutation filtering approach

designed to address two problems in microbiome data processing: (1) define

and quantify loss due to filtering by implementing thresholds; and (2) intro-

duce and evaluate a permutation test for filtering loss to provide a measure

of excessive filtering. The package employs an unbalanced binary search al-

gorithm that greatly reduces computational time for these permutations. The

effectiveness of the proposed approach on downstream microbiome data anal-

ysis is illustrated on two microbiome quality control datasets. Our filtering

method reduces: (1) the magnitude of differences in alpha diversity for samples

containing the same bacteria processed at different labs and (2) the dissim-

ilarity between samples (beta diversity) that contain the same microbiome

potentially alleviating technical variability.

Keywords: High Dimensional, Accelerometry, Physical Activity, Physical

Performance, Exercise, Longevity, Microbiome, Filtering, Permutation Test,

Binary Search, Skew-normal Distribution, Quality Control.
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Chapter 1

Introduction

1.1 High dimensional data

The rise of technological developments has shifted research towards heavier use

of computational tools. It began in the late 1960s, when academics started us-

ing statistical software like SPSS to perform complex computations instead of

manual calculations [SPSS, 2018]. This addition of technology to the research

process has reduced the potential for human error and increased computa-

tional speed. Several decades later, in the 2000s, the spectacular evolution

of data acquisition technologies and computing facilities started changing the

way researchers collect and analyze data [Johnstone and Titterington, 2009].

From the classical scenario of ‘small p, large n’ (p is the number of variables

and n is the number of observations), modern data have become ‘large p,

small n’ or ‘large p, large n’, which is now referred to as high dimensional

data. This introduced new complex analyses that include image analysis, ge-

nomics research, document classification, and so on. Hence, the need for new

data analysis methods to provide computational efficiency and practical results
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have increased in response to these changes.

Studies using high dimensional data have shown many significant break-

throughs in medicine, epidemiology, pharmacy and other fields. One example

of high dimensional data is the activity measure using accelerometry, which

has received growing attention in recent years as shown in Figure 1.1. For

example, it is extremely difficult for field biologists to track wild animals’

activities; thus their attempts to quantify behavior to model ecological pro-

cesses may be inaccurate due to the lack of observing important behavioral

events. Using acceleration sensors, researchers can now measure the change

in velocity of a body over time as well as quantify fine-scale movements and

body postures without issues of visibility, observer bias, or the scale of space

use [Brown et al., 2013]. Moreover, the technology and application of current

accelerometer-based devices in human physical activity (PA) research allow the

capture and storage of large volumes of raw acceleration signal data, which

provide opportunities to characterize and improve physical activity behav-

ioral patterns [Troiano et al., 2014]. Functional magnetic resonance imaging

(fMRI) is another area where high dimensional data arise. Studies in fMRI

analyze functional brain networks to better understand how brain regions in-

teract, how this depends upon experimental conditions and behavioral mea-

sures and how anomalies (disease) can be recognized [Solo et al., 2018]. Lastly,

microbiome data are known to be high dimensional due to the number of sam-

ples and bacteria identified as a result of the sequencing process. The analyses

of the associations between the human microbiome and health aim to under-

stand the host-microbiome interactions and integrate them with other ‘omics’

datasets to enhance precision medicine [Petrosino, 2018].
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Figure 1.1: Publications by year with search terms ‘exercise or physical activ-

ity‘ and ‘accelerometry’. Source: [Troiano et al., 2014].

Figure 1.2: Accelerometry data for one subject followed over 5 days. Source:

[Smirnova et al., 2018b].
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1.2 Accelerometry data

In this dissertation, two types of high dimensional data are considered for

analysis: accelerometry data and microbiome data. Figure 1.2 displays ac-

celerometry data collected at a frequency of 10 Hz for five days from a sensor

placed on the hip of a person [Bai et al., 2012]. The top left panel shows data

measured along three orthogonal axes (up-down, left-right, backward-forward

in the device frame of reference) for one subject, whose data consist of ap-

proximately 13 million observations. The five days of long periods of higher

amplitude signals are separated by four nights characterized by low amplitude

signals. To get a closer view, the box in the top-left panel in Figure 1.2 which

identifies day 2 of the data is zoomed in as shown in the left-middle panel. A

vertical line indicates a period of six minutes during day 2, which is further

zoomed in and shown in the left-bottom panel. As one looks at finer resolu-

tions of the data, more patterns can be identified and possibly used. These

raw data are expressed in millivolts (mV), though most devices output raw

data in Earth gravitational units (g = 9.81m/s2). Working directly with raw

data could be quite daunting and, in practice, data are often summarized as

activity counts (or steps) per minute as in Figure 1.3, resulting in a matrix of

n×1440, where n is the number of samples and 1440 represents the number of

minutes per day. The middle-top panel in Figure 1.2 provides such a summary

measure at the minute level, while the middle-center panel displays the same

measure for day 2. While informative, overlaying such visualizations in the

same panel will lead to over-plotting and loss of information when comparing

different days or subjects or when displaying an entire cohort. Instead, the

middle-bottom plot shows the cumulative measure of activity up to a partic-
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ular time of the day. This panel contains exactly the same information as the

middle-center panel, but allows for joint plotting of multiple days and sub-

jects. The right panels display similar information, although they focus on the

proportion of time active per minute instead of activity intensity during that

minute. The proportion of time active is obtained by calculating the activity

intensity at the second level, applying a threshold on activity intensity that

indicates active/inactive, and then computing the proportion of active seconds

within that minute [Smirnova et al., 2018b] [Karas et al., 2019].

0 10 20 30 40 50 60 70 80 90 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

X:			0.19				0.02		 	… 		-0.06				0.05	 	 	… 		0.14				0.29				
Y:	-1.14			-1.14		 	… 		-1.27			-1.35 	 	…	 	-1.26			-1.29	
Z:	-1.03			-1.07		 	… 		-1.09			-1.04	 	 	…	 	-0.99			-0.94	

83.2	

Movement	

Raw	data	

Graphical		
representaFon	

CumulaFve	measure	

Figure 1.3: Raw data summarized as activity counts

Traditionally, the physical activity data resulting from accelerometry mea-

sures are analyzed using methods in functional data analysis (FDA), which
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deals with data that are in the form of continuous functions

[Augustin et al., 2017], [Smirnova et al., 2019] and [Leroux et al., 2019]. Here,

each function is typically observed at a finite number of points, and in the case

of accelerometry data summarized at the minute level, these functional data

are observed throughout 1440 points (minutes) in a day. Key aspects of FDA

include the choice of smoothing technique, dimension reduction, adjustment

for clustering and functional linear modeling [Finch, 2013]. The first step in

any FDA is smoothing, which represents raw discrete data points as a smooth

function that emphasizes patterns in the data by minimizing noise due to

observational errors. In particular, the use of B-spline basis functions is one of

the most popular smoothing techniques [Aguilera and Aguilera-Morillo, 2013].

As for data reduction, functional principal components analysis (fCPA) is a

popular multivariate analysis technique for extracting information from mul-

tiple variables by reducing the dimensions of a dataset while preserving as

much of the total variation as possible [Croux and Ruiz-Gazen, 2005]. As

fPCA results in dimension reduction, fPCA vector scores can be used for

clustering different functions/components using standard clustering methods

[Finch, 2013]. In the accelerometry data context, clustering helps to identify

representative curve patterns and individuals with similar activity patterns.

An interesting application of FDA involves the construction of functional lin-

ear models that describe the relationship between a response and explanatory

variables [Usset et al., 2016]. Here, functions could be used as the response

variable, the predictors or both. In R, the package fda [Ramsay et al., 2018]

and refund [Goldsmith et al., 2018] provide various statistical tools for func-

tional data analysis and are freely available for researchers to use.
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1.3 Microbiome data

Microbiome data are another type of high dimensional data that will be dis-

cussed in this dissertation. To generate a microbiome dataset, the first step is

to collect samples which could be taken at various body sites

[Belizario and Napolitano, 2015], as shown in Figure 1.4. These samples are

sequenced using the next generation sequencing (NGS) of the 16S ribosomal

RNA genes technology to generate DNA fragments, which are then grouped

into similar microbial organisms called taxa [Sanschagrin and Yergeau, 2014].

The resulting dataset, which has samples in the rows and taxa in the columns,

is a large sparse matrix as many rare taxa are identified. In current mi-

crobiome studies, the goal is to understand mechanisms of host genetic and

environmental factors that shape the microbiome. For example, in 2008, a

multi-institutional collaboration called the Human Microbiome Project (HMP)

was established to generate resources that facilitate characterization of the hu-

man microbiota and further our understanding of how the microbiome impacts

human health and disease [Turnbaugh et al., 2007]. Specifically, this project

aimed to develop a reference set of 3,000 isolate microbial genome sequences,

understand the ‘core’ microbiome at five regions in the body (nasal passages,

oral cavity, skin, gastrointestinal tract, and urogenital tract), determine the

relationship between disease and changes in the human microbiome and de-

velop new tools and technologies for computational analysis [HMP, 2008].

However, it is difficult to reproduce studies across labs because variation in

measurements between laboratories has not been systematically assessed. The

Microbiome Quality Control (MBQC) project was therefore initiated to iden-

tify sources of variation in microbiome studies, to quantify their magnitudes,
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and to assess the design and utility of different positive and negative control

strategies [Sinha et al., 2015].

Figure 1.4: Prevalence and abundance of microbial taxa inhabiting healthy

human body sites. Source: [Belizario and Napolitano, 2015]

Dynamic interactions exist among environment, microbiome and host.

For microbiome studies, the focus is to test the association between the

microbiome and the host, specifically whether the composition of the mi-

crobiome or ‘dysbiotic’ microbiome is linked to the health or disease of the

host [Xia and Sun, 2017]. For example, in small intestine bacteria overgrowth

(SIBO) research, dysbiosis is associated with the overgrowth of pathogenic

bacteria in the small intestine, causing pain and diarrhea and leading to

malnutrition [Leite et al., 2019]. It is also of interest to test whether the

microbiome is associated with environmental covariates or whether there is
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an effect of intervention of a specific microbiome composition on health and

disease [Chen et al., 2012]. Examples include testing whether dietary inter-

ventions shape gut microbiota [Albenberg et al., 2012] and understanding the

impact of a probiotic intervention on the composition of the human microbiota

[Lahti et al., 2013]. However, when analyzing microbiome data, taxa counts

are often overdispersed and have many zeros as displayed in Figure 1.5. In

order to fit microbiome count data with overdispersion and excess zeros, the

negative binomial (NB) [Zhang et al., 2018] and zero inflated models such

as the Zero-Inflated Poisson (ZIP), Zero-Inflated Negative Binomial (ZINB)

and Zero-inflated Gaussian (ZIG) mixture model [Paulson et al., 2017] were

chosen for modeling the excess zeros and testing differential abundance taxa

between groups.
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Figure 1.5: Heatmap of 1016 observed taxa on the log-scale, with taxa on

the x-axis arranged in decreasing abundance order and samples on the y-axis

arranged by processing institutes. Source: [Sinha et al., 2015]

1.4 Research contributions

The research problems studied as part of this dissertation, include the anal-

ysis of the National Health and Nutrition Examination Survey (NHANES)
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accelerometry data as well as the development of methodology for the micro-

biome quality control problem. Specifically, the accelerometry data studies

have mainly focused on developing interpretable metrics for summarizing raw

tri-axial accelerometry data [Bai et al., 2013] [Bai et al., 2016], deriving ap-

propriate measures for physical activity [Varma et al., 2018] and re-evaluating

the effect of age on physical activity over a lifespan [Varma et al., 2017]. How-

ever, development of mortality predictive models using accelerometry data and

the influence of physical activity while considering traditional predictors such

as age and body mass index simultaneously remained open. Hence, for my

research, I explored the associations between participants’ physical activity,

demographic and health-related characteristics and 5-year all-cause mortality

in NHANES data, performed single-predictor logistic regression to identify the

ranking of the most predictive predictors and their relative effects on mortality,

and compared derived measures of physical activity to established predictors

of 5-year all-cause mortality. With the assistance of my collaborators from

Johns Hopkins University in deriving information criterion for complex sur-

vey design model, I was able to build a multiple logistic regression model

using forward selection. Our results led to two publications and were fea-

tured in the recent press release of the Johns Hopkins University [JHU, 2019].

Moreover, I contributed to the R package rnhanesdata (available on github)

which organizes and helps with the analysis of the Activity Data in NHANES

[Leroux et al., 2019]. In this package, I helped with automating the extraction

of data from the Centers for Disease Control and Prevention website, merging

multiple files into one final file and cleaning the data based on our exclusion

criteria. A detailed vignette that describes the data processing steps and anal-

ysis is publicly available within the package to guide researchers who plan to
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use this package and replicate our findings.

For microbiome data, the microbiome quality control problem needs to

be addressed prior to data analysis. Recent microbiome quality control stud-

ies show that the majority of rare taxa are caused by contamination and/or

sequencing errors [Sinha et al., 2015]. The most common approach to ad-

dress this problem is to filter spurious taxa from the data, and one of the

most widely used techniques for filtering in microbiome studies is to select

taxa that have a number of counts above m = 0 in at least n samples.

[Davis et al., 2018] introduced the decontam R package that identifies con-

taminants using DNA concentration information which might not be always

available. [Smirnova et al., 2018a] introduced a filtering test, PERFect, by

filtering out taxa with insignificant contribution to the total covariance. How-

ever, the earlier software implementation was computationally intensive due

to the complex permutation filtering algorithm. Hence, using the idea of an

unbalanced binary search algorithm, I developed a fast implementation of

this algorithm that optimally finds the set of taxa to be removed without

building the permutation distribution and computing the p-values for all taxa

[Morin, 2013]. The proposed approach successfully reduces the algorithm run

time by almost four times. I also developed the R package PERFect which

was published in Bioconductor, a free and open development software project

for the analysis and comprehension of genomic data [PERFect, 2019]. The

reference manual for this package can be found in the appendix of the dis-

sertation. I then evaluated the effect of filtering on two major exploratory

analyses used in microbiome research: alpha and beta diversity. The meth-

ods were applied to two data sets, namely the MicroBiome Quality Control

(MBQC) project from [Sinha et al., 2015] and the laboratory contamination
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dataset from [Salter et al., 2014]. Results show that the filtering methods re-

duce the magnitude of differences in alpha diversity for samples containing

same bacteria processed at different labs. Filtering further reduces dissim-

ilarity between samples (beta diversity) that contain the same microbiome

and potentially alleviates technical variability. Results of this research are

currently being prepared for publication.

The rest of the dissertation is organized as follows. I introduce the neces-

sary background for functional data in Chapter 2. I show in Chapter 3 the

application of functional data analysis in the NHANES data. The microbiome

data and the filtering method PERFect are described in Chapter 4. Conclud-

ing remarks follow in Chapter 5.



Chapter 2

Functional Data Analysis

2.1 What is Functional Data?

2.1.1 Introduction

Functional data analysis corresponds to analysis of information on continuous

functions (or curves), typically observed at a finite number of points. The

primary interest is to study the behavior of such data, and their relationship

to other quantities. For example, Figure 2.1 displays average monthly temper-

ature and precipitation data at 35 different locations in Canada averaged over

1960 to 1994 [Ramsay and Silverman, 2006]; each smoothed curve can be con-

sidered as a function of temperature and precipitation of each location over

time. Another example from [Ramsay and Silverman, 2006] is the Berkeley

growth study data, displayed in Figure 2.2, in which the heights of boys and

girls were recorded from age 1 to 18. Here, heights of boys and girls can be

treated as smoothed functions over the 18 recorded ages.

14
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Figure 2.1: Canadian average annual weather cycle data. Average monthly

temperature and precipitation at 35 different locations in Canada from 1960

to 1994.
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Figure 2.2: Berkeley Growth Study data. Heights of 39 boys and 54 girls from

age 1 to 18 and the ages at which they were collected.

From both examples, temperature, precipitation and height govern the be-

havior of functional variables which are of interest in functional data analysis.

By definition, a functional variable is a random process X(t) with t taking

values in a closed interval [tmin, tmax], such that for each fixed t0, X(t0) is

a random variable. This is the underlying ‘smooth’ process that generates

the data we observe. In other words, since the data are assumed to have

been generated from an underlying random process, the set of observations

{X(t1), ..., X(tm)} is considered as a single curve observed at m grid points.

This is the main difference between functional and longitudinal data, since in

longitudinal analysis we do not assume that such an underlying random pro-

cess generated the data but instead an m−dimensional vector with a specific

correlation structure. A simple example of such a process is X(t) = a0 + a1t

where a0 and a1 are independently and identically distributed N(0, 1) random

variables, and t ∈ [0, 1]. For each fixed value of t = t0, X(t0) is a random
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variable with a mean and a variance (both are functions of t0). Moreover, for

any two values t1 and t2, X(t1) and X(t2) are correlated and their covariance

function is defined as K(t1, t2) = Cov{X(t1), X(t2)}.

For each random process, it is possible to have multiple measurements but

no parametric assumptions are typically made on the underlying process. The

primary interest is to describe the variation of the underlying process. For

example, we may ask what feature separates the temperature curves and pre-

cipitation curves, how can we discriminate the temperature patterns between

Montreal and Resolute, how can we predict a boy’s height using girl growth

curves, and are growth spurt (rate of change) patterns different for boys and

girls.

2.1.2 Basic concepts and notation

In this section, we review some of the essential concepts that define functional

data. For simplicity, these concepts will be listed out as follows.

Definition 1 (Derivatives and integrals): Given a function f(t), denote

the mth derivative by f (m)(t) = Dmf = dmf(t)
dtm

. Also the integral of f will be

denoted by
∫
f =

∫
f(t)dt.

Definition 2 (Function space): A set of functions which have a particular

property in common. For example, the space of all real-valued square inte-

grable functions defined on [0, 1], i.e. L2[0, 1] space.

Definition 3 (Inner product and norm): For two functions f(t) and g(t)

(belonging to the same function space L2), the inner product is defined as:

〈f, g〉 =
∫
f(t)g(t)dt.
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Given the definition above, the norm of a function is given by:

‖f‖ = 〈f, f〉1/2 =
{ ∫

f 2(t)dt
}1/2

,

which satisfies the three important properties of a norm:

1. ‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0

2. ‖af‖ = a‖f‖ for any real number a

3. ‖f + g‖ ≤ ‖f‖+ ‖g‖ (Triangle Inequality).

Typically, the norm of a function measures its size and how far from zero the

function is in the function space to which it belongs.

Definition 4 (Distance between two functions): The distance between

two functions f and g is defined as:

d(f, g) = ‖f − g‖,

which is symmetric and non-negative since it is based on a norm.

Definition 5 (Orthogonality): Two functions f and g are called orthogonal

if 〈f, g〉 = 0.

Defintion 6 (Basis expansion of a function): A basis function system for

a function space is a set of known (possibly infinitely many) functions φk, k =

1, 2, ... such that any function f can be written as a linear combination of the

basis functions, i.e.:

f(t) =
∞∑
k=1

akφk(t),

where ak, k ≥ 1 are real numbers known as the coefficients of basis represen-

tation.
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2.1.3 Summary statistics for functional data

Suppose we observe n functional observations X1(t), ..., Xn(t) observed on

[0, 1]. The sample mean function is defined as the point-wise average of the

observed functions, given by

X̄(t) = 1
n

n∑
i=1

Xi(t),

and the sample median function is defined as the point-wise median of the

observed functions, given by

X̄m(t) = Med{Xi(t), i = 1, ..., n}.

The sample variance function is then naturally derived as

VarX(t) = 1
n− 1

n∑
i=1
{Xi(t)− X̄(t)}2,

and the standard deviation function is the square-root of the variance function.

Moreover, the covariance function, which characterizes the underlying process

that generates the data, is defined as

CovX(s, t) = 1
n− 1

n∑
i=1
{Xi(s)− X̄(s)}{Xi(t)− X̄(t)}

= 1
n− 1Xc

TXc,

where Xc is the centered matrix X that contains discrete observations of these

n functions. Figure 2.3 shows a sample mean and a sample median and func-

tion using the temperature data at 35 different locations in Canada. Since

the median function is higher than the mean function, this is the temperature
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distribution is slightly right-skewed. Figure 2.4 shows a corresponding sample

covariance function for these locations. For example, CovX(1, 2) is the covari-

ance of the temperature in 35 locations between January and February. This

covariance function has lower covariance toward the center of the heatmap

and higher covariance in four corners of the heatmap, indicating that there

are more variability of temperature in winter months than summer months.

Figure 2.3: Pointwise mean and median functions of the temperature.
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Figure 2.4: Sample covariance heatmap of the temperature.

2.1.4 Challenges of analyzing functional data

When analyzing functional data, we are interested in identifying the features

that characterize the functions. Some features may be obvious, such as the

sinusoidal shape of the temperature functions in Figure 2.1, but there may be

others that are hidden within. Since each function can be considered as an

element of an infinite dimensional function space with infinitely many bases,

ideally we want to represent each function using only finitely many bases.

One approach to accomplish this is the Principal Component Analysis (PCA),

which reduces the dimension of the data while explaining a significant percent

of variability present in the data. Specifically, given a p×p covariance matrix,
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we seek eigenvectors u1, ...,up such that

Σ = λ1u1uT
1 + ...+ λpupuT

p ,

where λ1 ≥ λ2 ≥ ... ≥ λp > 0 are eigenvalues, and the eigenvectors form an

orthonormal basis system. Given the data vectors X1, ...,Xn, the principal

component scores corresponding to the first component are given by

PC1i = uT
1 Xi = 〈u1,Xi〉, i = 1, ..., n,

and the scores corresponding to the other components are defined similarly.

The basic idea of functional PCA is similar. Since the functions are assumed

to be generated from an underlying process X(t), we start with the covari-

ance function of this process, K(s, t) = Cov{X(s), X(t)}. Thus we seek an

eigenfunction decomposition of this covariance function:

K(s, t) =
∞∑
k=1

λkψk(s)ψk(t),

where φk(·), k ≥ 1 are called eigenfunctions, which are known as ‘modes of

variation’, describing a certain percent of variation in the data. These eigen-

functions are denoted as harmonics. Hence, the principal component scores

are defined for the first harmonic as:

ξ1i = 〈ψ1, Xi − X̄〉 =
∫
ψ1(t){Xi(t)− X̄(t)}dt,

and the scores corresponding to the other components are defined similarly.

Later in this chapter, we will discuss in more detail the functional Principal



Chapter 2. Functional Data Analysis 23

Component Analysis and apply it extensively in our data analysis.

Predictive models can also be built with functional data. For example, to

find out if there is any relationship between the total amount of precipitation

of a location and its monthly temperature profile, we can perform functional

linear regression with a scalar response and functional covariate. Specifically,

let Zi, i = 1, ..., 35 be the total precipitation at the ith location, and let Xi(t),

t = 1, ..., 12 be the monthly temperature profile. Then the regression model

has the form:

Zi = α +
∫ 12

1
Xi(t)β(t)dt+ εi,

where α is an unknown intercept, β(·) is an unknown regression coefficient

function and εi is the error term for each location.

In a different setting, if we want to predict the daily precipitation profile of

a location based on its daily temperature profile, we can also fit a functional

linear model with a functional response, which has the form:

Zi(t) = α(t) +
∫ 365

0
Xi(s)β(s, t)ds+ εi(t),

where Zi(t) is the precipitation at time t, Xi(t) is the temperature at time

t, α(t) is an unknown intercept function that describes the overall day-to-day

change in precipitation regardless of temperature, εi(t) is a random error pro-

cess, and β(s, t) is the unknown regression surface, the relative weight placed

on the temperature at day s, for s = 1, ..., 365 to predict the precipitation at

day t.
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2.2 From Discrete to Functional Data

Recall that the philosophy of functional data analysis is to think of observed

data functions as single entities, rather than merely as a sequence of individual

observations. In practice, functional data are usually observed and recorded

discretely as n pairs (tj, Yj), where Yj is a snapshot of the function at time

tj, with possible measurement errors. Therefore, it is crucial to uncover the

underlying function for each set of observed discrete data. In this section,

we will discuss methods for transforming raw discrete data into smooth func-

tions using linear combinations of basis functions. Indeed, representing data

recorded at discrete times as a smooth function would allow us to evaluate the

function at any time point, which is extremely useful if we want to compare

subjects that were observed at different time points, and examine the rates of

change for each underlying curve, given that it is smooth (having one or more

derivatives).

In general, observed functional data are recorded as {(Yij; tij) : j =

1, ...,mi}i, for 1 ≤ i ≤ n, where Yij is the snapshot of the underlying function

at time tij for subject i, possibly blurred by error, tij varies in a continuum

interval τ and may not be the same across subjects and εij is the error as-

sociated with recording Yij. The underlying ith function, which is assumed

smooth on τ is denoted as Xi and these Xi’s are independent realizations of

a stochastic process X. In practice, Yij is assumed to be a measure of Xi at

time tij, i.e. Yij = Xi(tij) + εij.
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2.2.1 Representing Functional Data: Basis Expansions

The goal of basis expansion is to choose a set of bases so that their span

includes good approximations of most smooth functions. Since they have to

represent the underlying structure in the sample data, they must be able to

flexibly exhibit the required curvature where needed, but also to be nearly

linear when appropriate. Furthermore, for computational reasons they should

be computationally efficient, easy to evaluate, and differentiable as often as

required.

A generic underlying function Xi has the form

Xi(t) = ci1φ1(t) + ci2φ2(t) + ...+ ciKφK(t)

= Φ(t)ci,

where Φ(t) = (φ1(t), . . . , φK(t)) are predefined basic functions for Xi and

ci = (ci1, . . . , ciK)T are coefficients associated with Φ(t). Here, a basis function

system is defined as a set of known functions φk that are mathematically inde-

pendent of each other and have the property that any function can be approxi-

mated arbitrarily well by taking a weighted sum or linear combination of a suffi-

ciently large number K of these basis functions [Ramsay and Silverman, 2006].

In the example above, we say that {φk, k = 1, 2, ..., K} is a basis system for Xi.

Since we assume Yij = Xi(tij) + εij from above, each ‘snapshot’ of a function

Yi at time tij can be estimated as

Yi(tij) = Xi(tij) + εij, j = 1, . . . ,mi

≈ ci1φ1(tij) + ci2φ2(tij) + ...+ ciKφK(tij) + εij.

Ideally, basis functions should have features that reflect the nature of the data
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in order to achieve a good approximation using a small number K of basis

functions. Hence, we want to choose an appropriate basis system that only

requires a small number of bases to fit the data. Besides reflecting certain char-

acteristics of the data, the small K is more computationally efficient, yields

more degrees of freedom for hypothesis testing and confidence intervals, and

potentially gives meaningful coefficients that can become interesting descrip-

tors of the data.

For the rest of this section 2.2.1, we will discuss three basis function systems

that are widely used in practice and when to use them. To summarize what

follows, although a Monomial basis works well with very simple problems,

most functional data analyses employ either a Fourier basis for periodic data

or a B-spline basis for non-periodic data. Specifically, B-spline bases will be

discussed in detail since they are used in the “Application of functional data:

the NHANES data analysis” chapter.

Monomial Basis

Polynomials are perhaps the oldest and best known basis function expansion.

They can be considered as the senior citizens of the basis world since they can

only deal with the simplest functional problems. A polynomial function X(t)

has the form

X(t) =
K∑
k=1

ckt
k−1,

where tk, k = 1, . . . , K are the basis functions, i.e. they are the monomi-

als {1, t, t2, t3, . . . , tK−1} and ck are the corresponding coefficients. For simple

problems (which usually occur when the function X(t) is smooth), polynomi-

als typically only require K = 5 but they have severe problems tracking sharp
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localized features, and can run into computational problems for unequally

spaced data. Derivative estimation is another limitation of polynomials be-

cause their derivatives get simpler as the order of derivative increases, whereas

in most real world systems, derivatives become more complex as the order of

derivative increases.

Fourier Basis

The Fourier basis system contains basis functions that are sines and cosines of

increased frequency:

{1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), ..., sin(kωt), cos(kωt), ..}.

This basis is periodic, and the parameter ω determines the period of oscillation

P = 2π/ω. The number of bases needed is then K = 2M + 1, where M is the

largest number of oscillations required in a period of length P .

The Fourier series is a familiar concept to statisticians, engineers and ap-

plied mathematicians that possesses a lot of advantages when applied in func-

tional data representation. The Fourier basis functions have excellent com-

putational efficiency, especially if the times of observations are equally spaced

due to the orthogonality property of the basis [Ramsay and Silverman, 2006].

It can be shown that if the number of observations is a power of 2 and the

arguments are equally spaced, the Fast Fourier transform allows us to find

all the coefficients extremely efficiently [Tolimieri et al., 1989]. In terms of fit-

ting data, they are natural for describing periodic data such as the Canadian

weather example in Figure 2.1. Their derivatives are also simple to calculate

since the derivative of a Fourier series expansion is also a Fourier series expan-

sion, making the Fourier series infinitely differentiable. However, if the data
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are known to have discontinuities in the function or in the derivatives, the

Fourier series become inappropriate.

B-Spline Basis

Spline functions are the most common choice of approximation system for

non-periodic functional data. To define a spline, we first divide the interval

over which a function is to be approximated into L sub-intervals, separated by

‘knots’ (breakpoints). Over each sub-interval, a polynomial of order m, which

is the number of constants required in the polynomial (one more than its

degree), is fitted and joined with other polynomials from adjacent intervals.

Thus, a spline is a piece-wise function made of polynomial segments joined

end-to-end such that adjacent polynomials join up smoothly at the knots and

are thus differentiable at these points. The number of parameters required to

fit a spline function is the order plus the number of interior knots, m+(L−1),

which is also the total degrees of freedom. Moreover, derivatives up to order

m− 2 must also match up at these junctions. For example, for the commonly

used order four cubic spline, the second derivative is a line and the third

derivative is a step function.

Given the definition of a spline function, we can now construct a system

of basis spline functions φk(t) which comprise a B-Spline basis. Each basis

function φk(t) is a spline function defined by an order m of the polynomial

segments and the location of the knots. Specifically, a spline function S(t)

with order m and L − 1 discrete interior knots can be expressed as a linear
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combination of K = m+ (L− 1) basis functions:

S(t) =
m+L−1∑
k=1

ckφk(t, τ),

where φk(t, τ) is the B-Spline basis function defined by the knot sequence τ ,

evaluated at t and ck is the associated coefficient. Although there are many

ways that such systems can be constructed, [Ramsay and Silverman, 2006]

chooses the B-spline basis system developed by [de Boor, 2001], which is the

most popular since it allows fast computation for thousands of basis functions

and has the flexibility to fit any polynomial of order m. In general, the order

of the spline should be at least m + 2 if we are interested in m continuous

derivatives. The most common choice for polynomial order is m = 4 (cubic

function), implying continuous second derivatives which are linear functions.

Moreover, knots are often equally spaced by default such that each interval

contains at least one data point, but it is recommended to place more knots

where the function exhibits the most complex variation, and fewer where the

function is only mildly nonlinear.

2.2.2 Smoothing Functional Data: Least Squares

Once a basis system is chosen, the natural next step is to quantify the quality of

the approximation of the functional data. The classical solution for this prob-

lem is least squares estimation, a method that minimizes the sum of squared

errors between the observed data and the fitted data. Specifically, let us con-

sider a set of observations {(Yj, tj) : j = 1, ...,m} and assume Yj = X(tj) + εj,

where X(·) is the underlying curve that is observed at the finite grid points tj
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with noise εj. We want to estimate

X(t) =
K∑
k=1

ckφk(t) = cTΦ(t),

where cT = (c1, ..., cK)T is the row vector of length K of coefficients and Φ(t) =

(φ1(t), ..., φK(t)) is the column vector of length K containing basis functions.

Let Φ be the m × K matrix obtained by row-stacking Φ(tj) for j = 1, ...,m

and Y = (Y1, ..., Ym)T . The ordinary least square (OLS) criterion assumes that

residuals are independently and identically normal with mean 0 and variance

σ2, i.e: εj
iid∼ N(0, σ2). Given that this assumption is appropriate for the

data, we can determine the coefficients of the expansion cT = (c1, ..., cK)T by

minimizing

SSE(c) =
m∑
j=1
{Yj −X(tj)}2

=
m∑
j=1
{Yj − cTΦ(tj)}2

= (Y− Φc)T (Y− Φc).

After taking the derivative of SSE(c) with respect to c and solving, the OLS

estimate of c is therefore

ĉ = (ΦTΦ)−1ΦTY,

and the fitted value at time tj is

X̂(tj) = Φ(tj)ĉ

= Φ(tj)(ΦTΦ)−1ΦTY, j = 1, ...,m.
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In practice, the independently and identically distributed residual assumption

of OLS may not be met. For example, the data may be uncorrelated but exhibit

heteroskedastiscity (non constant variance). In such situations, we weight the

observations by extending the least squares criterion to the weighted least

squares (WLS) form:

WMSE(c) =
m∑
j=1

wj{Yj −X(tj)}2

=
m∑
j=1

wj{Yj − cTΦ(tj)}2

= (Y− Φc)TW(Y− Φc),

where W is a diagonal matrix with the diagonal elements equal to wj. It is

usually estimated by the covariance matrix Σε of Y as W = Σ−1
ε , where since

the Yj are uncorrelated (cor(Yi, Yj) = 0 for i 6= j), the off-diagonal terms of

Σε are zeroes. The weighted least squares estimate ĉ of the coefficient vector

c is then

ĉ = (ΦTWΦ)−1ΦWY

and the fitted curve at point tj is calculated as

X̂(tj) = Φ(tj)(ΦTWΦ)−1ΦWY, j = 1, ...,m.

2.2.3 Choosing the number of basis functions

During the data fitting process, the more basis functions we select, the better

the fit to the data but the higher the risk of fitting noise or variation that we do

not need. Although the bias would be small, the sampling variance would be

large, similar to the over-fitting problem in linear regression. Nevertheless, if
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we do not choose enough basis functions, we may miss some important aspects

of the function that we are trying to capture, potentially resulting in large bias.

Hence, the mean squared error is often used as a loss function that controls

the bias and variance of the estimator of the curve. Specifically, for a fixed t,

the mean squared error (MSE) in estimating X(t) is defined as

MSE{X̂(t)} = E[{X̂(t)−X(t)}2]

= Bias2{X̂(t)}+ Var{X̂(t)},

where the bias of the estimator is

Bias{X̂(t)} = X(t)− E{X̂(t)}

and the corresponding sampling variance is

Var{X̂(t)} = E[{X̂(t)− E[X̂(t)]}2].

The optimal number of basis functions K to fit a curve would minimize the

integrated mean squared error

MSE(X̂) =
∫
τ
MSE{X̂(t)}dt,

which can be be approximated numerically by 1
m

∑m
j=1 MSE{X̂(tj)} when the

number of time points m is large.
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2.3 Principal components analysis for func-

tional data

After the preliminary steps of registering and displaying the data, we want

to explore the data to see the features characterizing typical functions. Some

of these features can be detected easily, such as the sinusoidal nature of the

temperature curves, but other features might be more obscure. Principal com-

ponents analysis (PCA) of functional data is then a key technique to identify

these hidden features. In fact, it is the first method to be considered in the

early literature of functional data analysis since it provides us a way to examine

the variance-covariance and correlation functions that can be very informative.

In this section, we will briefly review the classical principal components anal-

ysis for multivariate data and then introduce its version for functional data.

2.3.1 PCA for multivariate data

One of the problems with multivariate data is that there are simply too many

variables to make the application of graphical techniques successful in provid-

ing an informative initial assessment of the data. Moreover, having too many

variables can also cause problems, such as multicollinearity, for other multi-

variate techniques that the researcher may want to apply to the data. Principal

components analysis is a multivariate technique with the central aim of reduc-

ing the dimensionality of a multivariate data set while accounting for as much

of the original variation as possible. This aim is achieved by creating a new

set of variables, the principal components, that are linear combinations of the

original variables, which are uncorrelated and are ordered so that the first few
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of them account for most of the variation in all the original variables. Ideally,

the result of a principal components analysis would be the creation of a small

number of new variables that can be used as surrogates for the originally large

number of variables and consequently provide a simpler basis for graphing or

summarising the data, and for further multivariate analyses of the data.

Let the data matrix X be of size n×p, where n is the number of samples and

p is the number of variables. Let us also assume that each variable is centered,

i.e. column means have been subtracted and the centered means are now equal

to zero. Principal components analysis describes variation in a set of correlated

variables, xT = (x1, ..., xp)T , in terms of a new set of uncorrelated variables,

yT = (y1, ..., yp)T , each of which is a linear combination of the x variables. The

new variables are derived in decreasing order of ‘importance’ in the sense that

y1 accounts for as much of the variation as possible in the original data amongst

all linear combinations of x. Then y2 is chosen to account for as much of the

remaining variation as possible, subject to being uncorrelated with y1, and so

on. The new variables defined by this process, y1, ..., yp, are the orthogonal

principal components. The general hope of principal components analysis is

that the first few components will account for a substantial proportion of the

variation in the original variables, x1, ..., xp, and can be used to provide a

convenient lower-dimensional summary of these variables.

Finding the principal components

The first principal component of the observations, y1, is the linear combination

y1 = ψ11x1 + ψ12x2 + ...+ ψ1pxp,
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whose sample variance is greatest among all such linear combinations. Since

the variance of y1 could be increased without limit simply by increasing the co-

efficients ψT
1 = (ψ11, ψ12, ..., ψ1p)T , a normalization restriction must be placed

on these coefficients: the sum of squares of the coefficients should take the

value 1. Hence, to find the coefficients defining the first principal component,

we need to choose the elements of the vector ψ1 that maximize the variance

of y1, subject to the constraint ψT
1 ψ1 = 1. The second principal component,

y2, is defined to be the linear combination

y2 = ψ21x1 + ψ22x2 + ...+ ψ2pxp

that has the greatest variance subject to the following two conditions: ψT
2 ψ2 =

1 and ψT
2 ψ1 = 0, i.e. y1 and y2 are uncorrelated. Continuing in this fashion,

the jth principal component is that linear combination yj = ψT
j x that has the

greatest variance subject to the conditions ψT
j ψj = 1 and ψT

j ψi = 0 for all

i < j. To calculate each ψj, we solve the eigenequation

Σψj = λjψj ,

where Σ is the sample variance-covariance matrix which is defined as Σ =

N−1XTX (X is the centered data matrix), ψj is the jth eigenvector of Σ with

the corresponding eigenvalue λj. Putting all eigenvectors as columns of a ma-

trix V and corresponding eigenvalues as entries of a diagonal matrix Λ, the

above equation can be extended to ΣV = VΛ, or Σ = VΛVT , the eigen de-

composition of Σ. Here, the columns of V are called the principal components

(PCs) which are orthogonal with unit norm; Λ is a diagonal matrix, defined
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as Λ = diag{λ1, λ2, . . . , λp} where the entries are non-negative and arranged

in decreasing order. The entry λk, k = 1, . . . , p gives the variance of the data

along the corresponding PC and the proportion of variance explained by the

kth PC is defined as λk/
∑p
l=1 λl. Finally, the projections of the data on the

principal components are known as PC scores; these can be seen as new trans-

formed variables. The jth principal component projection is given by the jth

column of XV and the coordinates of the ith data point in the new PC space

are given by the ith row of XV .

2.3.2 PCA for functional data

Functional principal components analysis (fPCA) was first developed by C.

Radhakrishna Rao in 1958 [Rao, 1958]. It is used to analyze the geometry

of the functions, capture the principal modes of variation and reduce the di-

mension of the data. Let X1(t), . . . , Xn(t) denote independent and identically

distributed random functions on a compact interval T such that each func-

tion Xi(t) belongs to the functional space of all real valued square integrable

functions defined on [T ], i.e. the L2[T ] space, with the true mean function

defined as µ(t) = E[Xi(t)] and their corresponding covariance function defined

as Σ(s, t) = Cov{Xi(s), Xi(t)}. For simplicity, let us assume that the functions

are observed fully on T and without noise.

Similar to PCA, fPCA is based on finding principal component scores of

maximum variance that highlight features of the smooth underlying curves.

Specifically, to find the first functional principal component, we find the prin-

cipal component weight function (eigenfunction) ψ1(t) for which the set of
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values

ξ1i =
∫
T
ψ1(t)Xi(t)dt

= 〈ψ1, Xi〉 i = 1, . . . , n

has the largest variance, subject to the constraint 〈ψ1, ψ1〉 = 1. The second

functional principal component finds the eigenfunction ψ2(t) for which the set

of values

ξ2i =
∫
T
ψ2(t)Xi(t)dt

= 〈ψ2, Xi〉 i = 1, . . . , n

has the largest variance, subject to the constraint 〈ψ2, ψ2〉 = 1 and 〈ψ1, ψ2〉 =

0. Continuing in this fashion, the kth functional principal component score

finds the eigenfunction ψk(t) for which the set of values

ξki =
∫
T
ψk(t)Xi(t)dt

= 〈ψk, Xi〉 i = 1, . . . , n
(2.1)

has the largest variance, subject to the constraint 〈ψk, ψk〉 = 1 and 〈ψk, ψj〉 = 0

for all j < k.

In order to calculate the eigenfunctions {ψk(t), k = 1, . . . , n} and rep-

resent any given function X(t) in terms of these eigenfunctions, we use

the theories from Mercer’s theorem and the Karhunen-Loève expansion

[Happ and Greven, 2015]. Mercer’s theorem allows for the eigen-decomposition

of a covariance function Σ(s, t) into eigenvalues λk and eigenfunctions ψk(t).

Under the assumption that Σ(s, t) is defined continuously over the compact
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interval T and square integrable, Mercer’s theorem states that there exists an

orthonomal sequence ψk of continuous functions in L2[T ] with unit norm and

a non-increasing sequence of positive numbers λ1 ≥ λ2 ≥ ... > 0 such that

Σ(s, t) =
∞∑
k=1

λkψk(s)ψk(t) s, t ∈ T ,

with the eigenvalues and eigenfunctions being solutions to

∫
T

Σ(s, t)ψk(s)ds = λkψk(t).

A complete proof of this theorem can be found in [Bosq, 2000]. When Mercer’s

theorem holds, the Karhunen-Loève theorem states that using the basis func-

tions determined by the eigenfunctions of the covariance function, the curves

Xi have the following representation

Xi(t) = µ(t) +
∞∑
k=1

ξikψk(t),

where the basis coefficients are the principal component scores ξik defined

similarly as in equation 2.1:

ξik =
∫
T
{ψk(t)(Xi(t)− µ(t))}dt (2.2)

such that ξik ∼ N(0, λk) and they are uncorrelated for different k. Recall that

we are interested in finding the set of K orthogonal functions {ψ1, . . . , ψk}

for which if X̂i(t) denotes the best approximation of Xi(t) using these basis
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functions, then the mean integrated squared error (MISE) criterion

MISE =
n∑
i=1
||Xi − X̂i||2

=
n∑
i=1

∫
T
{Xi(t)− X̂i(t)}2dt

(2.3)

is minimized. [Ramsay and Silverman, 2006] show that the set of basis func-

tions that minimizes equation 2.3 has the additional property that it maximizes

the amount of variation explained in the random functions Xi(t). Hence, the

collection of the first K eigenfunctions in the sample of curves {Xi(t), i =

1, . . . , n} forms a set of basis functions that minimizes the above MISE cri-

terion. Since these basis functions are derived directly from the functional

data instead of being chosen like the Fourier or B-spline basis, they can be

considered as empirical basis functions.
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Application of functional data:

the NHANES data analysis

3.1 Introduction

The National Health and Nutrition Examination Survey (NHANES) is a cross-

sectional, nationally representative survey designed to evaluate the health and

nutritional status of adults and children in the United States [CDC, 2016].

The survey samples around 5000 non-institutionalized civilians annually to

represent the US population. In particular, NHANES oversamples underrep-

resented groups, including elderly people 60+ years old, African Americans,

Asians, and Hispanics. The survey involves a 4-stage process to sample par-

ticipants, which indicates that the sample is not a simple random sample from

the US population. To make the sample representative for the US population

each individual sampled in the NHANES has a survey weight, which is defined

as the number of individuals in the US population represented by that individ-

ual. These survey weights need to be incorporated in any analysis to ensure

40
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that results are generalizable to the US population. The survey collects demo-

graphic, socioeconomic, dietary, and health-related information through home

interviews, and medical, dental, and physiological measurements through phys-

ical examinations in mobile centers [CDC, 2016]. Moreover, NHANES started

to monitor participants’ physical activity using an accelerometer during a 1-

week study for its 2003-2004 and 2005-2006 cohorts. The National Center for

Health Statistics also provides a mechanism for linking NHANES cohorts with

death certificate records from the National Death Index (NDI) [NCHS, 2015].

This allows us to investigate the associations between participants’ activity

and other non-activity related characteristics and future mortality.

For our research, we are interested in: 1) exploring the associations between

participants’ physical activity, demographic, and health-related characteristics

and 5-year all-cause mortality; 2) identifying the ranking of the most predic-

tive predictors and their relative effects on mortality; 3) comparing derived

measures of physical activity (PA) to established predictors of 5-year all-cause

mortality.

3.2 Study Population

The NHANES is a large study conducted by the Centers for Disease Con-

trol (CDC) to assess the health and nutritional status of the US population

[CDC, 2016]. These data include: (1) responses to demographic, socioeco-

nomic, and health related survey questions; (2) medical, dental, physiologi-

cal examination, and clinical laboratory tests; and (3) PA information mea-

sured by accelerometers. Non-institutionalized civilian residents of the United

States were selected to participate in this study according to the CDC sam-
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ple design specifications [Curtin et al., 2013]. Each study participant was as-

signed a survey weight equal to the number of people he or she represents

in the US population. The NHANES 2003-2004 and 2005-2006 data were

downloaded, processed, and combined with survey weights and mortality data

(updated through 2015). Data are organized in the R package rnhanesdata

[Leroux et al., 2019].

The NHANES 2003-2004 and 2005-2006 have a total of 14,631 participants

with accelerometry data. For this analysis, we excluded participants who: (1)

were younger than 50 years of age, or 85 and older at the time they wore the

accelerometer (10,859 participants); (2) had missing BMI or education predic-

tor variables (41 participants); (3) had fewer than 3 days of data with at least

10 hours of estimated wear time or were deemed by NHANES to have poor

quality data (517 participants); non-wear periods were identified as intervals

with at least 60 consecutive minutes of zero activity counts and at most 2 min-

utes with counts between 0 and 100; (4) had missing mortality information

(21 participants); (5) had missing systolic blood pressure (SBP), total or HDL

cholesterol measurements (293 participants). Among the remaining partici-

pants, 86 did not have alcohol consumption information and were retained in

the dataset by introducing the category ‘Missing Alcohol’. The final dataset

contained 2,978 participants with 297 deaths in the first five years after the

accelerometer study.
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3.3 Variables

3.3.1 Traditional mortality predictors

We integrated the NHANES data with the US national mortality registries

starting with the socio-demographic factors age, sex, race/ethnicity, and edu-

cational attainment. In NHANES, race/ethnicity was coded as Non-Hispanic

White (White), Mexican American (Mexican), Non-Hispanic Black (Black),

Other Hispanic and Other. Educational attainment was coded as less than

high school, high school equivalent and greater than high school. We further

included smoking status (never, former, current), alcohol consumption (non-

drinker, moderate drinker, heavy drinker, missing alcohol), body mass index

(BMI; kg/m2), mobility difficulty (yes/no), diabetes, coronary heart disease

(CHD), congestive heart failure (CHF), stroke, cancer, systolic blood pressure

(SBP), total cholesterol (mg/dL), and HDL cholesterol (mg/dL). Mobility dif-

ficulty was defined as a positive response to any of the following questions: (1)

difficulty walking a quarter mile; (2) difficulty climbing 10 stairs; or (3) use of

any special equipment to walk.

3.3.2 Accelerometry derived predictors

According to the NHANES protocol, the minute-by-minute activity data was

recorded using a hip-worn ActiGraph AM-7164 (formerly the CSA/MTI AM-

7164) accelerometer, as shown in Figure 1.3. Each participant was instructed

to wear the device for a period of 7 consecutive days from the day of NHANES

examination and remove the device during sleep and water-related activity,

such as swimming and bathing. The device was returned to the CDC by mail
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in postage-paid padded envelopes. Not every study participant wore the device

for the full 7-day period.

The high volume of minute-level activity measurements is challenging,

which is why the current practice is to take summary measures. Popular PA

summaries based on actigraphy include: (1) total activity count (TAC); (2)

total log(1+activity count), referred to as total log activity count (TLAC);

and (3) total minutes of moderate/vigorous physical activity (MVPA), where

MVPA is defined as the total time with more than 2020 counts per minute.

While informative, these summaries do not reflect the full complexity of daily

activity patterns and may miss important information that could be associ-

ated with health and functional status. To evaluate the effect of daily PA

patterns on mortality we introduce 12 additional summary variables (TLAC

12AM-2AM, TLAC 2AM-4AM,. . . , TLAC 10PM-12AM), where each vari-

able corresponds to the total log(1+activity count) in a 2-hour interval. For

example, TLAC 12AM-2AM is the total log activity between 12AM and

2AM. We also used two measures of activity fragmentation: transition prob-

abilities from sedentary to active (SATP) and active to sedentary (ASTP)

[Di et al., 2017]. The sedentary to active transition probability (SATP) is

defined as SATP=ns/Ts, where ns is the total number of sedentary bouts (pe-

riods where the activity count is less than 100) and Ts is the total sedentary

time. Specifically, if the duration of the longest sedentary bout is denoted

by Ds, the number of bouts of length t is denoted by ns(t), then the total

sedentary time can be represented as Ts = ∑Ds
t=1 ns(t)×t, and the total number

of sedentary bouts can be represented as ns = ∑Ds
t=1 ns(t). SATP is inversely

proportional to the average length of the inactivity bout, but has better

statistical properties (e.g., symmetric distribution with normal tails across
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study participants). Similarly, the active to sedentary transition probability

(ASTP) is defined as ASTP=na/Ta, where na is the total number of active

bouts and Ta is the total activity time. Larger values of transition probabili-

ties correspond to shorter average bout duration and more frequent switching

between states and more fragmented PA. The total accelerometer wear time

(Wear Time in minutes) and total sedentary/sleep/non-wear time were also

included. Since each participant had 3-7 days of available accelerometry data,

for each accelerometry derived summary measure we calculated the measure

for each day (i.e., TAC day1, TAC day2,. . . , TAC day7) and then averaged

across available days.

We also propose to use principal component analysis (PCA) to derive ad-

ditional predictors. This is a widely accepted and fast approach to addressing

whether something has been missed by simple summaries of the data. PCs

were obtained as follows: (1) transform minute-level activity count data as

x → log (1 + x), where x is the minute level activity count; (2) arrange all

activity trajectories into a 18373 by 1440 dimensional matrix, X, where each

row corresponds to a subject/day and each column corresponds to a specific

minute (time) of the day; (3) conduct functional PCA (fPCA) on the matrix

X using the fpca.face() function [Xiao et al., 2014] in the refund package

[Goldsmith et al., 2018] in R; (4) retain the first 6 PCs (shown in Figure 3.1),

which explain 57% of the variability in the activity data; and (5) obtain the

score for each day on each PC and calculate the mean and standard devia-

tion of these scores for each subject across days. More specifically, let zijk be

the score for subject i, on day j and PC k. Then we construct the following
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additional 2K variables (2 for each of the first K = 6 PCs):

mik = z̄ik = 1
Ji

Ji∑
j=1

zikj, i = 1, ..., N j = 1, ..., Ji k = 1, ..., 6

sik = sd(zik) =

√√√√∑Ji
j=1(zijk − z̄ik)2

Ji − 1 , i = 1, ..., N j = 1, ..., Ji k = 1, ..., 6.

To see what PCA-derived variables to retain we started with a model con-

taining the standard demographic, behavioral and comorbidity variables and

conducted forward selection on the means and standard deviations of the scores

on the 6 PCs (a total of 12 variables). Using this procedure, the average scores

for the first (mi1; odd ratio (OR) = 1.014, CI: (1.004, 1.026); p = 0.008), and

the standard deviation of the sixth PCs (si6; OR = 0.926, CI: (0.888, 0.965);

p <0.001) were found to be statistically associated with 5-year all-cause mor-

tality.

PCA is widely used, but is often criticized for the lack of intuition and

transportability potential across studies. To overcome this problem, we have

inspected the PCs and replaced them with surrogate variables that are intuitive

and can be calculated directly from the observed data.
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Figure 3.1: First 6 principal components calculated on the population, minute

level NHANES accelerometry data. Solid lines represent the population av-

erage curve; +,- lines denote the effect of being 2 standard deviations from a

score of 0 on the particular principal component.

Identifying potential surrogate measures is based on (subjective) interpre-

tations involving the shapes of each principal component. Fundamentally, the

idea is to use visual inspection of the principal components to identify the

‘dominant’ features of each component. Then, we return to the original data,

and calculate a statistic which we believe captures this dominant feature. For

example, looking at the upper-left panel of Figure 3.1, we see that days which

load negatively on the first principal component tend to be extremely active,

while those who load positively tend to be very inactive. As a result, one rea-

sonable ‘guess’ at a surrogate measure which is highly associated with average

first component is simply the total log transformed activity count (TLAC) for

that day. If that is true, we would also expect that the average PC1 score
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within subjects is highly correlated with their average TLAC across days. In

our data, average TLAC and average PC1 score are highly (negatively) corre-

lated (ρ̂ = −0.87), which is expected based on the sign of the first PC.)

This procedure would then be repeated for each feature identified as po-

tentially predictive. In our application, we are also interested in the standard

deviation of PC6. Looking at the bottom-right panel of Figure 3.1, we see

that there are 6 periods where the contrast is highest between days with pos-

itive and negative loadings (i.e. the difference between the + and - curves is

largest). One reasonable guess for a statistic which is highly correlated with

PC6 score is the difference in average activity during the specific time peri-

ods where positive/negative loadings are high/low, respectively. For example,

days that load highly on PC6 should, on average, have higher activity during

the mid morning (8AM-10AM), late afternoon (3PM-5PM) and late evening

(10PM-12AM) and lower activity during the early morning (5AM-7AM), late

morning/early afternoon (11AM-1PM), and early evening (6PM-8PM).Since

we are interested in the standard deviation of PC6 score, we calculate the stan-

dard deviation of average log-transformed activity counts during these periods

as a surrogate measure for si6. In our analysis, we used all 6 of these time

periods and obtained an observed correlation of ρ̂ = 0.87, though multiple

choices can be explored to see which statistic has the highest correlation with

si6.

3.3.3 Intuition behind fPCA

A major problem with PC analysis is that it is not always intuitive and re-

quires a degree of familiarity with matrix algebra and complex trajectories
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(functional data analysis in statistics speak). While some of these problems

are unavoidable given the complexity of the data, we will now provide the

needed intuition for understanding both the PCs and the implication of our

findings on the original data scale (daily minute-level activity profiles). We

will start by explaining the first 2 PCs, which are shown in the left panel of

Figure 3.2.

Figure 3.2: Left panel: the first two principal components that explains the

overall variability in the observed daily profiles of activity. The x-axis shows

the time of day and the y-axis shows the values of PC curve. Individuals with

a positive score on the first PC on a given day will tend to have less activity

during the night hours and more activity during the day hours than the average

activity across all subject-days. The second PC reflects the contrast between

morning and afternoon activity. Right panel: Examples of activity profile for

3 subjects to show the connection between the PCs and the activity profiles.

The x-axis shows the time of day and the y-axis shows log(1+AC) values.
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The first PC (solid blue line) captures 21.8% of the overall variability in the

observed daily profiles of activity. It has a distinct shape, with values starting

negative between 12AM and 5AM then becoming strongly positive with a

peak around 8AM and slowly decreasing but staying positive until 9:30PM,

and then becoming negative after 9:30PM. This is exactly what we expected

to see. For each subject, we have 3 - 7 days of valid activity data. Individuals

with a positive score on this component (a.k.a., positively loaded on the first

PC) on a given day will tend to have less activity during the night hours and

more activity during the day hours than the average activity across all subject-

days. The biggest difference between such a subject’s day and the average daily

activity across all subjects is centered on the morning hours (8AM-9AM). In

contrast, the second PC (dashed line) captures 14.2% of the overall variability

in the observed daily activity profiles. It starts positive between 12AM and

2AM, then becomes negative between 2AM and 11AM, with a negative peak

at 8AM, increases between 11 AM and 8PM, and decreases while staying

positive after 8PM. Participants with positive scores on this component will

be more active in the evening and less active in the morning than the average

individuals’ daily activity.

Now, let us investigate in detail the connection between PCs, scores and

individual daily trajectories. The right panel in Figure 3.2 displays one day

of activity profiles for 3 subjects. Here, we plot the activity data smoothed

for each subject and day using a thin-plate penalized regression spline with 30

knots as implemented using the gam() function in the mgcv package in R.

The individual days for subjects 21009 (red line) and 21913 (green line) have

overall high activity, which is reflected by the high positive loadings on PC 1

(56.27 and 58.67, respectively). In contrast, the individual day’s activity for
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subject 21039 (blue line) has lower levels, which is reflected by the negative

score on the first PC (-20.82). Subjects 21009 (red line) and 21039 (blue line)

are mostly active between 7AM and 9PM and their corresponding scores of

the second principal component are negative (-30.83 and -36.36, respectively).

Subject 21913 (green line) is however, unusually highly active during night

hours (8PM - 2AM) with a highly positive score on the second PC (66.54).

The last, but not least important interpretation is of means of scores versus

standard deviation of scores. In Figure 3.2, we have displayed three days, one

for each subject. However, each subject has multiple days and each day will

get a score and a pattern. For example, on days when subject 21009 (red line)

is less active the score on PC1 will be lower, even if the general pattern stays

the same. Thus, for every subject and PC we obtain a vector of scores; for

21009 (red line) we obtain (38.39, 56.27, 35.55, 60.61, 40.91, 48.67, -21.25) on

the first PC, where we showed only the trajectory corresponding to the 2nd

day. What we calculate is the mean of these scores, 37.02, and the standard

deviation, 27.32. The mean of the scores is relatively easy to interpret, as it

represents whether the average of the 7 days is higher or lower on PC1. The

standard deviation captures the day-to-day variability of the individual. In

this case the mean and standard deviation for subject 21009 (red line) were

37.02 and 27.32, respectively. In contrast, for subject 21039 (blue line), the

mean and standard deviation were -19.16 and 5.02, respectively, both much

smaller than for subject 21009 (red line). This means that both the overall

mean and the daily variability around this larger mean are larger for subject

21009 than for subject 21039 (blue line). This is depicted in Figure 3.3, where

we show smoothed activity data for all days for subjects 21009 (left panel) and

21039 (right panel). Note that the red lines tend to be higher the blue lines and
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that the blue lines are less variable around their means. We conclude that, in

general, average PC1 scores will tend to distinguish between lower and higher

activity individuals whose are, on average, more active over the course of days

with available activity data. In contrast, average PC2 scores will distinguish

between individuals who, on average, have high activity in the morning and

low in the evening/night and individuals who, on average, have lower activity

intensity in the morning and higher during the evening/nighttime.

Figure 3.3: Left panel: Daily activity profile for subject 21009. Right panel:

Daily activity profile for subject 21039. For both panels, the x-axis shows the

time of day and the y-axis shows log(1+AC) values. This figure demonstrates

the day-to-day variability of the activity profile for each subject that will in-

fluence the PC scores. This shows the importance of the use of means and

standard deviations of the PC scores in mortality prediction model.

Of course, things are more complicated once we start interpreting every

component. Instead, in Table 3.1 we will provide just the interpretation of
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Result Interpretation Surrogates

mi1

Individuals with higher levels
of overall activity during
the day, and those who
have higher early afternoon
activity relative to early AM
are associated with
later mortality

Average TLAC

si6

Individuals who are more
variable in the start time
of their daily activity are
associated with earlier
mortality.

1.Standard deviation of ratio
of mid-day to
morning/afternoon activity.
2. Standard deviation of the
difference in average
activity during peaks/troughs
highlighted by PC6.

Table 3.1: Interpretation of the results of fPCA

those components and summaries that were found to be predictive of the

outcome.

3.4 Statistical Analysis

The demographic and clinical characteristics of the participants are presented

in Table 3.2. They are separated by mortality status five years after the

accelerometry study. For continuous variables, the mean is reported along with

the standard deviation (in parentheses). For binary or categorical variables,

the number of study participants in each category is reported along with the

percent number of participants (in parentheses) out of the total number in

the corresponding alive or dead category. Variables are ranked in decreasing

order of their predictive performance as measured by the receiver operating

characteristic curve (ROC) in single predictor logistic regression with the 5-
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year all-cause mortality as response. The total activity count is the top-ranked

individual 5-year mortality predictor (AUC = 0.771) while age is a close second

(AUC = 0.758).

3.4.1 Mortality prediction models

Our main goals are to: (1) rank predictors in terms of their 5-year mortality

predictive performance; and (2) identify the best subset of 5-year mortality

predictors. To ensure that results are generalizable to the US population,

weights were calculated for the selected subset of participants using the func-

tion reweight accel() in the rnhanesdata package. After reweighting, we

employed survey-weighted logistic regression using the function svyglm() in

the R package survey. Variables are ranked according to the 10-fold complex

survey weighted cross validated AUC in univariate models, where one predic-

tor at a time is used to predict 5-year mortality. To select the best subset

of 5-year mortality predictors, we use forward selection survey weighted lo-

gistic regression with the weighted cross-validated AUC as the optimization

criterion. The variables in the final model were selected to maximize the

cross-validated AUC, though we also report the Akaike’s information crite-

rion (AIC) [Lumley and Scott, 2015] and the efficient parsimony information

criterion (EPIC) [Shinohara et al., 2011].

3.5 Results

Participant characteristics by mortality status are provided in Table 3.2. The

mean age of the study sample was 65.9 (± 9.6, range 50.0-84.9) years. The

proportions of men (51%) and women (49%) were similar with a larger pro-
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portion of men (65% of mortalities) dying within 5 years of the follow-up.

The participants who died within 5 years were on average 8.4 years older and

had less time in MVPA, higher active to sedentary/sleep/non-wear transition

probability (ASTPsl/nw), TAC, and TLAC, lower sedentary/sleep/non-wear to

active transition probability (SATPsl/nw), and more sedentary/sleep/non-wear

time. There was a larger proportion of nondrinkers and smaller proportion of

moderate drinkers among the individuals who died compared to the group who

did not. The proportions of smokers and former smokers were higher among

the individuals who died. There was a larger proportion of individuals with less

than high school education and a smaller proportion of individuals with more

than high school education who died versus those who survived. The propor-

tion of participants with CHF, coronary heart disease, and diabetes was higher

among those who died within 5 years. There was a slightly larger proportion

of deceased participants with underweight BMI, whereas the proportions of

deceased and alive participants with normal and overweight BMI was similar.

Finally, the proportion of alive individuals was slightly higher among Mexican

Americans relative to other race categories, whereas the proportions of alive

and deceased participants were similar in other race categories.

Table 3.2 shows the predictors’ ranking according to AUC in univariate

logistic regression models, where each mortality prediction model was fit with

one predictor at a time. TAC is the strongest individual predictor of 5-

year mortality (AUC = 0.771) with age (AUC = 0.758) and MVPA (AUC

= 0.745) being close a second and third, respectively. The transition probabil-

ity from active to sedentary/sleep/non-wear (ASTPsl/nw, AUC = 0.733) and

total sedentary time (sedentary/sleep/non-wear time, AUC = 0.728) round

out the list of the top five individual predictors of 5-year all-cause mortality.
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The next eight most predictive variables (excluding mobility difficulty) are all

derived from accelerometry data with AUCs from 0.721 to 0.658. These results

indicate that accelerometry-derived variables are strong predictors of mortality

that outperform traditional risk factors including smoking, total cholesterol,

gender, cancer, stroke, diabetes, and coronary heart disease.

Alive Dead

Rank Characteristics Mean(SD)/N(%)a AUCb

1 TAC 218013 (111831.2) 136362.7 (94487.5) 0.77

2 Age 65.1 (9.3) 73.5 (8.9) 0.757

3 MVPA 14.7 (17.3) 6.5 (12.1) 0.748

4 ASTP 0.29 (0.08) 0.37 (0.11) 0.734

5 Sedentary time 1102.5 (104.9) 1183.6 (110.6) 0.728

6 TLAC 2811.5 (704.6) 2281 (746.1) 0.722

7 TLAC 4PM-6PM 381.1 (112.1) 309.7 (116.6) 0.694

8 TLAC 12PM-2PM 410.2 (113.8) 333.5 (125.7) 0.692

9 TLAC 2PM-4PM 398.1 (116.6) 323 (121.6) 0.692

10 TLAC 6PM-8PM 320.7 (118.5) 250.8 (109.1) 0.691

11 TLAC 10AM-12PM 411.1 (127) 335.3 (132.3) 0.681

12 Mobility problem 766 (28.6%) 171 (58.2%) 0.672

13 SATP 0.08 (0.02) 0.07 (0.02) 0.66

14 SD on PC 6 (surrogate) 0.7 (0.27) 0.57 (0.25) 0.657

15 TLAC 8AM-10AM 344.7 (153) 282.3 (149.2) 0.63

16 Education 0.611

Less than high school 819 (30.6%) 121 (41.2%)

High school 657 (24.6%) 79 (26.9%)
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More than high school 1199 (44.8%) 94 (32%)

17 TLAC 8PM-10PM 209 (122.5) 166 (104.4) 0.603

18 TLAC 6AM-8AM 170.8 (153.3) 127.7 (122.2) 0.594

19 Drinking Status 0.593

Moderate Drinker 1341 (50.1%) 99 (33.7%)

Non-Drinker 1106 (41.3%) 158 (53.7%)

Heavy Drinker 153 (5.7%) 27 (9.2%)

Missing alcohol 75 (2.8%) 10 (3.4%)

20 Smoking Status 0.574

Never 1235 (46.2%) 90 (30.6%)

Former 1004 (37.5%) 137 (46.6%)

Current 436 (16.3%) 67 (22.8%)

21 CHF 117 (4.4%) 49 (16.7%) 0.569

22 BMI 0.56

Normal 666 (24.9%) 97 (33%)

Underweight 22 (0.8%) 7 (2.4%)

Overweight 1044 (39%) 100 (34%)

Obese 943 (35.3%) 90 (30.6%)

23 Cancer 383 (14.3%) 73 (24.8%) 0.559

24 Diabetes 441 (16.5%) 74 (25.2%) 0.556

25 Gender 0.554

Male 1324 (49.5%) 191 (65%)

Female 1351 (50.5%) 103 (35%)

26 Stroke 131 (4.9%) 42 (14.3%) 0.548

27 CHD 195 (7.3%) 47 (16%) 0.548
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28 TLAC 2AM-4AM 15.4 (52.5) 18.4 (45.1) 0.522

29 Race 0.514

White 1553 (58.1%) 199 (67.7%)

Mexican American 500 (18.7%) 33 (11.2%)

Other Hispanic 53 (2%) 3 (1%)

Black 482 (18%) 52 (17.7%)

Other 87 (3.3%) 7 (2.4%)

30 TLAC 12AM-2AM 25.1 (61.4) 24.7 (47.9) 0.509

31 TLAC 10PM-12AM 86.3 (100.5) 75.4 (80.9) 0.508

32 TLAC 4AM-6AM 39.2 (84.6) 34.5 (64.3) 0.504

33 Wear time 877.1 (134.5) 892.4 (171.4) 0.459

Table 3.2: Demographic and Clinical Characteristics Separated by Alive

and Deceased Status 5 Years After Participation in the Accelerometry Study,

National Health and Nutritional Examination Survey Pooled Cohorts Study,

United States, 2003-2006.

1

We also consider multipredictor models and use forward selection that adds

one variable at a time by maximizing the cross-validated AUC. Figure 3.4

displays the Akaike’s information criterion, efficient parsimony information

criterion, and AUC at each stage of the forward selection process. The scale
1BMI = body mass index; CHD = coronary heart disease; CHF = congestive heart

failure; MVPA = moderate-to-vigorous physical activity; SATP = transition probabilities
from sedentary to active; SD = standard deviation; TAC = total activity count; TLAC =
total log activity count.

a: For continuous variables, the mean is reported with the standard deviation shown
in parentheses. For binary or categorical variables, the number of study participants in
that category is reported with the alive/deceased specific prevalence of each category in
parentheses.

b:Variables are ranked by their individual predictive ability as measured by AUC in single
predictor logistic regressions with 5-year all-cause mortality as the outcome.
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for Akaike’s information criterion and efficient parsimony information criterion

is shown on the left y-axis, whereas the scale for AUC is shown on the right

y-axis. The final 5-year mortality prediction model selected based on the

cross-validated AUC criterion contains 13 predictors (arranged in the order of

their selection): TAC, age, smoking status, CHF, drinking status, ASTPsl/nw,

mobility problem, gender, the surrogate for the SD on the sixth PC (SD on

PC 6 surrogate), diabetes, education, TLAC 12-2 AM, and stroke.
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Figure 3.4: Model selection criteria plotted as a function of the variables added

in the forward selection procedure. Predictors are shown on the x-axis, with

accelerometry predictors in red. The AIC and EPIC information criterion

values are shown on the left y-axis and the AUC values are shown on the

right y-axis. This figures shows the best model for each of the three criteria

at the colored dots. It also shows the change of AIC, EPIC and AUC as each

variable is added into the model. Data source: National Health and Nutritional

Examination Survey Pooled Cohorts Study, United States, 2003-2006.

Figure 3.5 displays the correlation plot between age and all activity-derived

variables. Age has high negative correlations with TAC, TLAC, and positive

correlation with sedentary time. TAC is highly correlated with most activity-

derived measures, including MVPA, SATPsl/nw, sedentary time, TLAC, and

TLAC 4-6 PM, 6-8 PM, 2-4 PM, 12-2 PM, 10-12 PM, 8-10 AM, 6-8 AM.
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ASTPsl/nw, sedentary time, TLAC, and SATPsl/nw are the most highly corre-

lated with multiple other variables. The surrogate for the standard deviation

on the sixth PC (si6) has low correlation with other activity-derived variables,

which may explain why it was selected in the joint model in addition to the

other covariates.

Figure 3.5: Correlation plot between age and accelerometry derived measures.

National Health and Nutritional Examination Survey Pooled Cohorts Study,

United States, 2003-2006.
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Table 3.3 provides the results (point estimates odds ratio (OR), and confi-

dence intervals (CIs), p-value) for the 13-variable model obtained via forward

selection using the cross validated AUC, after accounting for all other predic-

tors in the model. The mortality risk increases significantly with age (OR =

1.087, CI: (1.063, 1.112); p < .001) and history of coronary heart failure (OR

= 2.175, CI: (1.177, 3.930); p = .013). Females have a lower probability of

death (OR = 0.523, CI: (0.332, 0.817); p = .007), whereas current smokers

(OR = 2.219, CI: (1.412, 3.478); p = .002) have a higher mortality risk than

nonsmokers. Nondrinkers (OR = 1.759, CI: (1.165, 2.677); p = .010) and

heavy drinkers (OR = 2.620, CI: (1.148, 5.673); p = .018) have higher 5-year

mortality risk compared with individuals who consume alcohol moderately.

When adjusted for age and other risk factors, including accelerometry-derived

variables, the mortality risk was not statistically associated with higher total

activity (OR = 1.007, CI: (0.508, 1.832); p = .982) but was positively asso-

ciated with the active to sedentary transition probability (ASTPsl/nw; OR =

1.465, CI: (1.078, 1.993); p = .016). Finally, higher values of the surrogate for

the SD on the sixth PC (SD on PC6 surrogate; OR = 0.748, CI: (0.629, 0.885);

p = .002) are associated with a lower probability of 5-year all-cause mortality.

Although TAC is the most predictive individual variable of the 5-year mor-

tality in single-regression models, its importance is substantially reduced after

forward selection. This likely happens because many accelerometry-derived

variables are highly correlated with age (Figure 3.5).
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Estimate p-value Confidence interval (95%)

Intercept 0.000 <.001 (0.000, 0.001)

Total activity count 1.007 .982 (0.508, 1.832)

Age 1.087 <.001 (1.063, 1.112)

Former smoker 1.394 .176 (0.835, 2.345)

Current smoker 2.219 .002 (1.412, 3.478)

Coronary heart failure: yes 2.175 .013 (1.177, 3.930)

Nondrinker 1.759 .010 (1.165, 2.677)

Heavy drinker 2.620 .018 (1.148, 5.673)

Missing alcohol 2.111 .106 (0.752, 5.193)

ASTP 1.465 .016 (1.078, 1.993)

Mobility problem 1.726 .028 (1.057, 2.816)

Gender: female 0.523 .007 (0.332, 0.817)

SD on PC 6 (surrogate) 0.748 .002 (0.629, 0.885)

Diabetes: yes 1.241 .310 (0.780, 1.937)

High school education 0.992 .973 (0.582, 1.694)

More than high school education 0.794 .309 (0.489, 1.294)

TLAC 12-2 AM 1.137 .099 (0.958, 1.322)

Stroke: yes 1.213 .505 (0.636, 2.227)

Table 3.3: Estimated Final Model Coefficients Odds Ratio (OR) with Corre-

sponding Standard Errors and Significance Values in the Final Complex Survey

Design Model, National Health and Nutritional Examination Survey Pooled

Cohorts Study, United States, 2003-2006

To study the added prediction performance of accelerometry-derived PA



Chapter 3. NHANES data 64

variables, we started with the optimal model using forward selection with PA

and non-PA variables. This model had 13 variables, a cross validated AUC

= 0.838 and is summarized in Table 3.3. From this model we constructed a

model without PA variables by removing TAC, ASTPsl/nw, the surrogate for

the standard deviation on the 6th PC (SD on PC 6 surrogate), and TLAC

12AM-2AM. The resulting model had a cross validated AUC = 0.798 with the

following non-PA variables: age, smoking status, CHF, drinking status, mo-

bility problem, gender, Diabetes, Education, and Stroke. The improvement

in the continuous net reclassification index (NRI) [Pencina et al., 2010], when

comparing the 9-predictor (without PA covariates) and 13 predictor (with ad-

ditional PA covariates) models was strongly statistically significant (p-value <

0.001). This indicates that there is strong evidence against the null hypothesis

of no improvement in reclassification when accelerometry-derived PA measures

are allowed to enter the prediction model.

3.6 Discussion

One of our goals was to compare the individual predictive power of physi-

cal activity measures to traditional measures. However, some of the activity

measures can be highly correlated with other variables. Thus, to make the

predictive accuracy of these variables comparable, we examine the effect of

each variable in single predictor regression models. Table 3.2 illustrates the

strong predictive performance of objective PA measures derived from measure-

ments collected by a hip-placed accelerometer. These predictors substantially

outperform established predictors of mortality in single predictor regression

models.
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There are important limitations to the results in Table 3.2. Indeed, they

are based on single variable regressions, which provide ranking of predictors

of 5-year all-cause mortality if one can measure only one variable at a time.

This is useful, but one is often interested in building risk scores based on

combinations of variables. Indeed, one could argue that accelerometer-derived

PA measurements may be so predictive because they are highly correlated

with age. The practical implication would be that objective PA measurements

might not be modifiable. For this reason, we have conducted forward selection

with a rich pool of potential mortality predictors including the standard de-

mographic, behavioral and comorbidities. Another limitation is the exclusion

of interaction terms from the analysis. Unreported results indicate that most

predictive interactions were between age and objective PA predictors. While

some of the interactions were significant, they did not fundamentally change

the results. Thus, to preserve simplicity, the focus here is on main effects

prediction.

The association between PA and time to death using Cox models in the

NHANES population has been investigated in several publications

[Fishman et al., 2016a], [Di et al., 2017]. Here we focused on the 5-year mor-

tality instead of time-to-death because: (1) the model and the results are

easy to communicate; (2) potential problems with Cox model assumptions are

avoided; and (3) it is one of the standard horizons for prediction modeling

[Fishman et al., 2016b], [Choudhury et al., 2019]. We further considered ex-

cluding all participants who died within 1 and 2 years from the time when the

survey was conducted to avoid potential reverse causation. When doing that,

results remained qualitatively consistent, identifying the same core predictors

of mortality. However, since the focus is on mortality prediction (and not
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causal associations), results are presented without removing mortality data

for the first years.

To study the robustness of finding, we have also conducted the same anal-

yses in two age subgroups: (1) participants age 50 to 70 (1828 alive and 98

deceased within 5 years); and (2) participants age 70 and above (853 alive and

199 deceased within 5 years). In both age subgroups, 8 and 9 out of the top 10

mortality predictors were accelerometry derived PA summaries, respectively.

The selection of the exact collection of PA summaries derived from ac-

celerometry that predict the 5-year all-cause mortality outcome can vary when

data sets are slightly modified. This is likely due to the strong correlation

among the objective PA summaries as well as to their correlation to other,

established, risk factors. A better understanding of these relationships may

further strengthen our understanding of the mutual effects of activity and

other risk factors and their joint effect on mortality risk. However, these re-

sults indicate that: (1) there is a strong association between PA summaries

derived from accelerometry and mortality; (2) these effects are encapsulated

in different dimensions of PA measures; and (3) the combined effects of these

summaries are independent of other, well known, mortality risk factors.

Given the large body of research on possible predictors of mortality, we con-

clude that PA summaries derived from accelerometry should become one of the

top standard predictors of mortality risk. These measurements are becoming

increasingly routine, are cheap and nonintrusive. Once they are normalized

across cohorts and can be quantified in terms of easy to understand activi-

ties, duration, and timing, this could lead to more targeted PA intervention

research.
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Microbiome Data Analysis

In this chapter, we will introduce microbiome data and the challenges in ana-

lyzing these data. Specifically, we will discuss the idea of filtering, an approach

to detect and remove contaminant taxa. After a thorough literature review,

we will present a novel filtering method by [Smirnova et al., 2018a] and my

improvement to the efficiency of the filtering algorithm. The corresponding

R package PERFect is then provided and two applications are presented to

illustrate the robustness of the method.

4.1 Microbiome Data

The human microbiome is the collection of microbial organisms (microbiota)

that live both inside and on the surface of humans [Matsen, 2014]. For exam-

ple, they can be found on the skin, in the saliva, in the lung and especially in

the gut and gastrointestinal tract. The five types of microorganisms that make

up the human microbiome are bacteria, archaea, fungi, protozoans and viruses.

Among them, bacteria are the most abundant members of the human micro-

67
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biome: it has been estimated that there are ten times as many bacteria than

there are human cells within each individual. Since the majority of the human

microbiota are found in the gut, they significantly contribute to our immune

system development, nutrition and drug metabolism [Maurice et al., 2013]. It

has been shown that changes in microbiota composition play an important

role in the development of multiple diseases including inflammatory bowel dis-

ease [Huttenhower et al., 2014], diabetes [Proctor, 2014, Pascale et al., 2019],

preterm birth [Callahan et al., 2017, DiGiulio et al., 2015], and liver dis-

eases [Puri et al., 2018]. Hence, studies of microbiota association with hu-

man disease states have received increasing attention over the last decade

[Nguyen et al., 2015].

Next generation sequencing (NGS) of the 16S rRNA marker is currently

among the most widely used methods for microbial organisms identification. In

these studies, samples collected at different body sites (e.g., vaginal swab, stool

or blood) give counts of DNA fragments which are then grouped into similar

microbial organisms, usually referred to as taxa; in statistical terminology,

these are random variables. In contrast to other measurements in genomics

or metabolomics, microbiome data are very sparse as many taxa are rare and

often have zero counts in most samples. Hence, the resulting data, usually

referred to as the ‘taxa table’ are typically high dimensional.

4.1.1 Challenge of Microbiome Data

The extreme levels of sparsity in microbiome datasets is one of the major chal-

lenges in data analysis. Indeed, it is not unusual to have over 90% of the counts

being zero in these data as they contain a large number of rare taxa observed
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in as few as 1 to 5% of samples. However, recent microbiome quality con-

trol studies show that the majority of rare taxa are caused by contamination

and/or sequencing errors. Potential sources of contamination are bacteria that

are frequently handled in the lab, those that reside on the skin of lab workers,

or in the extraction kits [Salter et al., 2014]. Several studies have been con-

ducted using ‘mock’ samples curated so that they consist of known microbial

species in prescribed proportions and, after cultivation, the samples are se-

quenced using NGS technology to identify the taxa and evaluate the effects of

such contamination on the observed taxa counts [Brooks et al., 2015]. Errors,

especially due to misclassification, arise as the sequencing technology employs

a combination of statistical and computational algorithms that make assump-

tions about identifying nucleotide bases [Cacho et al., 2015] and for assembling

the DNA fragments during the alignment process [Li and Homer, 2010]. Over-

all, contamination and sequencing errors lead to either falsely identifying taxa

that were not in the sample or misclassifying the taxa of DNA fragment reads.

The most common approach to address this problem is filtering, or removing

spurious taxa from the 16S data set, which is a variation of an ad hoc, albeit

simple, procedure. For example, one of the most widely used techniques for

filtering in microbiome studies selects taxa that have a number of counts above

m = 0 in at least n samples.

In practice, it is often of interest to use taxa as covariates to predict dis-

ease outcomes and understand their association with the host health. Exam-

ples include predicting small intestine bacteria overgrowth (SIBO) condition

using taxa sequenced from the intestine [Leite et al., 2019], testing whether

dietary interventions shape gut microbiota [Albenberg et al., 2012] and un-

derstanding the impact of a probiotic intervention on the composition of the



Chapter 4. Microbiome Data Analysis 70

human microbiota [Lahti et al., 2013]. However, in high dimensional setting

(large number of variables), it is challenging to find a few important predic-

tors [Fan and Lv, 2008]. Indeed, with the high dimensionality p, computa-

tional cost and prediction accuracy are two top concerns for any statistical

procedure, especially in the presence of extreme sparsity. Hence, dimension

reduction for sparse data is often recommended to reduce computational bur-

den by effectively identifying the subset of important predictors and improve

estimation accuracy by using well-developed lower dimensional methods.

In microbiome setting, contaminant and rare taxa may be considered as

unimportant predictors. While several techniques have been proposed to de-

tect and remove them, the literature in this research area is scarce. One ap-

proach, developed by [Knights et al., 2011] and implemented in the R package

sourcetracker, relies on microbial source tracking to identify the proportion of

contaminant taxa in each sample by matching the taxa table to the database

of known contaminants.

However, this method does not detect individual contaminant taxa that

should be removed from the data set. [Davis et al., 2018] addressed this

problem by introducing the decontam R package that identifies contami-

nants by: (1) inversely correlating taxa frequencies with sample DNA con-

centrations; and (2) using the prevalence of sequenced negative controls

[Salter et al., 2014]. A major practical limitation of this method is that the

auxiliary data from DNA quantitation, which is in most cases intrinsic to

sample preparation or negative controls data, might not be available.

Recently, [Smirnova et al., 2018a] introduced a filtering loss measure and

a principled filtering test, PERFect, for deciding which taxa to remove. In

contrast to the standard procedures, which assume that taxa in a biological
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network are isolated, PERFect filters out taxa with insignificant contribution

to the total covariance. This method relies on ranking taxa importance, mea-

suring their contribution to the total covariance, and quantifying the chance

that the loss increase for a set of filtered taxa is due to randomness. The two

principled filtering methods, simultaneous and permutation algorithm, rely on

estimating the null distribution for the increase in filtering loss due to each

taxon. The simultaneous approach fits one distribution for the filtering loss

differences for all taxa, whereas the permutation approach generates a distri-

bution containing k permutations of filtering loss differences and fits it for each

taxon. Thus, one major limitation of our initial software implementation was

the computational intensity of the PERFect permutation method, which was

shown to be both a statistically rigorous and highly effective filtering approach.

Here, I introduce the fast implementation of the permutation PERFect method

that efficiently selects a small subset of taxa to build the distribution necessary

to assess the taxon’s significance. The process of selecting this taxa subset is

performed using an unbalanced binary search algorithm [Morin, 2013] that op-

timally finds the set of taxa to be removed without building the permutation

distribution and computes the p-values for all taxa. The proposed approach

successfully reduces algorithm running time by almost four times.

The effects of filtering are further evaluated on two major exploratory anal-

yses used in microbiome research: alpha and beta diversity. The methods were

applied to two data sets, namely the MicroBiome Quality Control (MBQC)

project from [Sinha et al., 2015] and the laboratory contamination dataset

(Salter) from [Salter et al., 2014]. Results show that the filtering methods

reduce the magnitude of differences in alpha diversity for samples containing

the same bacteria processed at different MBQC project labs. Filtering further
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reduces dissimilarity between samples (beta diversity) that contain the same

microbiome and potentially alleviates technical variability. In the next section,

we will be introduced to the setup for MBQC data, which will be used as a

guided example, to reinforce our understanding throughout the whole methods

section.

4.1.2 The MicroBiome Quality Control data

Consider the dataset from the MBQC project, a collaborative effort designed

to comprehensively evaluate sample processing and computational methods

for human microbiome data analysis [Sinha et al., 2015]. There are four types

of samples in this dataset: (1) 11 unique fresh stool samples; (2) seven unique

freeze-dried stool samples; (3) two unique chemostat samples generated from

a Robogut; and (4) two artificial colonies representing the gut and oral cavity.

These samples were randomly sequenced at 15 laboratories and then randomly

distributed to 9 bioinformatics facilities for microbiome analyses. Here, we

consider the oral artificial communities data comprised of 22 true taxa from

the human oral cavity. The MBQC data identified a total of 27, 140 taxa across

the four types of samples. For the purposes of this analysis, 14, 861 taxa that

have a 0 count across all oral artificial community samples are excluded; 1277

taxa that match names at the species level are combined; finally, 10, 210 taxa

that appeared in less than 5% of the samples are removed. The final dataset

considered for this analysis contains 1016 samples and 792 taxa. A limitation

of this dataset is that the samples were created from the species in prescribed

proportions; however, after the samples were processed many taxa were only

identified up to the genus level (higher order phylogenetic hierarchy). As
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a consequence, only two signal taxa, Veillonellaceae Veillonella Parvula and

Coriobacteriaceae Eggerthella Lenta, were correctly detected while the other

20 signal species corresponded to one of the 184 taxa identified at the genus

level.

Figure 4.1: The heatmap of 100 observed taxa on the log-scale, with taxa on

the x-axis arranged in decreasing abundance order and samples on the y-axis

arranged by processing institutes. Source: [Sinha et al., 2015]
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Figure 4.2: The multidimensional scaling plot of 1016 samples, colored by the

processing institutes. Source: [Sinha et al., 2015]

Figure 4.1 displays the log-counts heat map for the 100 most abundant

taxa, arranged in decreasing order of abundance. The lighter-colored areas of

the heatmap in the lower right corner indicate unobserved taxa, showing the

decrease of signal strength with different processing institutes/labs. Figure 4.2

displays the Bray-Curtis distance [Quaak and Kuiper, 2011] multidimensional

scaling (MDS) plots for 1016 samples from the heat map on the left. The

first two principal components (PCs) that explain 32.2% of variability are

shown on the plot. The distance between samples varies as the labs change,

indicating that the samples processed at different institutes appear to have

dramatic differences on MDS plots even though they contain exactly the same

signal species. These differences are likely due to the bioinformatics pipeline
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that varies between different labs. This problem motivates filtering, which

removes rare taxa displayed in columns on the right-hand-side of the heatmap

in Figure 4.1. Left unresolved, this problem may cause a number of practical

issues including: (1) falsely inflating within sample diversity, called α-diversity

[Park and Allaby, 2017a]; (2) obscuring true distances between samples, called

β-diversity [Park and Allaby, 2017b]; and (3) interpreting rare taxa as disease

biomarkers (especially in low sample biomass environments).

4.1.3 Methodology

Let X = (x1, . . . ,xp) be a taxa counts table, where each column xj ∈ Rn, j =

1, . . . , p contains the jth taxon counts observed across n samples. Filtering

removes columns of the taxa table, X, that correspond to the subset of taxa

J ⊂ {1, . . . , p} according to a particular criterion. For example, if X contains

p = 20 taxa columns, labeled T1, . . . , T20 and taxa {T4, T5, T15} (in the 4th, 5th

and 15th columns of X) do not contribute to the signal, then J = {4, 5, 15}.

[Smirnova et al., 2018a] introduced simultaneous and permutation filtering ap-

proaches and implemented them in the PERFect package. Here these ap-

proaches are briefly described.

PERFect derives a filtering threshold based on measuring the loss of taxa

contribution to the total covariance of the data. Specifically, the filtering loss

due to removing a group of taxa J is defined as

FL(J) = 1− ‖X
T
−JX−J‖2

F

‖XTX‖2
F

, (4.1)

where X−J is the n× (p− |J |) dimensional matrix obtained by removing the

columns indexed by the set J from the data matrix X, || · ||2F is the Frobenius



Chapter 4. Microbiome Data Analysis 76

norm, and |J | is cardinality of the set J (here, the number of removed taxa).

The filtering loss FL(J) is a number between 0 and 1, with values close to

0 if the set of taxa J has small contribution to the total covariance and 1

otherwise.

To compute the filtering loss, taxa are first re-arranged in ascending order

of importance, based on the assumption of taxa contribution to the signal.

The most common filtering criterion used in practice is based on taxa abun-

dance. This is equivalent to arranging taxa in ascending order from left to

right according to their number of presences in the n samples, defined for the

jth taxon as

NP (j) =
n∑
i=1

I(xij > 0), (4.2)

where xij is the ith element in xj = (x1j, x2j, . . . , xnj)T from the jth column

of X, and I(·) is the indicator function. For example, if the taxon T1 appears

in only 1 sample, it is the least abundant taxon and will show up to the left

of the table, whereas if the taxon T2 appears in every sample, it is the most

abundant taxon and will be rearranged to the right of the table. Once taxa are

ordered, the filtering loss is calculated sequentially by removing taxa from left

to right. The statistical threshold for separating the signal from noise taxa is

defined based on the location of dramatic increases in the filtering loss. This

statistic is the key ingredient for deciding which increases in filtering loss can

be attributed to randomness and which increases correspond to true signal in

the data. It is defined for the (j + 1)th taxon as

DFL(j + 1) = FL(Jj+1)− FL(Jj), (4.3)
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where FL(Jj) is the filtering loss from removing the first j taxa and FL(Jj+1)

is the filtering loss from removing the first j + 1 taxa. Assuming that P =

{pij}n×p is a matrix of the true relative abundance of microbe j in sample i

(∑j pij = 1 for each sample i), the theoretical quantity for the filtering loss

when a group of taxa J is removed is defined as

FJ = 1− ||P
T
−JP−J ||2F
||P TP ||2F

,

which is equal to 0 if the group of taxa J is included erroneously. Then

dFj+1 = FJj+1 −FJj
is the theoretical improvement to the signal from adding

the taxon j + 1. FJ and dFj+1 are estimated using the filtering loss FL(J)

(4.1) and corresponding differences in filtering loss DFL(j+1) (4.3) statistics.

Therefore, for each taxon, we test

H0 : dFj+1 = 0 vs. HA : dFj+1 > 0.

In the following two sections, we will introduce the main functions of the

PERFect package and describe two approaches to building the distribution of

dF using DFL(j + 1) values to distinguish noise and true signal in the data.

4.1.4 The PERFect Package

The main input for all functions in the PERFect package is a taxa table of

class matrix or data frame. The major functions provided in this package are

listed in Table 4.1.
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Function Description
FL J Calculate filtering loss due to removing a group of J taxa.
FiltLoss Calculate filtering loss sequentially for removing a set of Jj taxa for j = 1, ..., p.
DiffFiltLoss Calculate differences in filtering loss due to removing a set of J taxa sequentially.
PERFect sim Perform the simultaneous filtering test.
PERFect perm Perform the permutation filtering test.
pvals Plots Plot all the p-values from the results of a filtering test.

Table 4.1: Major functions in the package PERFect

4.2 Filtering algorithms

4.2.1 Simultaneous filtering

This method assumes that a large percentage of the taxa has low signal

(dFj+1 = 0) and the differences in filtering loss for p taxa are fit using one

distribution. Due to the extreme left-skewed nature of the DFL measures, a

log-transformation to the DFL data is required. The left part of the distri-

bution of these log differences can be fit by quantile matching a Skew-Normal

distribution [Azzalini, 2005] with location parameter ξ, scale parameter ω2

and shape parameter α denoted by SN(ξ, ω2, α), while the right tail of the

distribution is assumed to be generated by an unspecified distribution. The

significance p-value of the set of the first j taxa Jj is calculated as:

pj = P [X > log{DFL(j + 1)}], (4.4)

where the random variable X ∼ SN(ξ̂, ω̂2, α̂) with parameters estimated from

the log-transformed DFL data, and log{DFL(j + 1)} is the log-transformed

value of the filtering loss difference due to removing the Jj taxa. The simulta-

neous procedure is performed by the function PERFect sim() in the package

and its algorithm can be summarized in Algorithm 1, as given.
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Algorithm 1 PERFect: simultaneous filtering
Input: Taxa table X, test critical value α
Output: Filtered OTU table X, p-value for each taxon

1: Order columns of X such that NP (1) ≤ NP (2) ≤ NP (p)
2: for taxon j = 1, ..., p-1 do

Calculate DFL(j + 1) using (4.3) for Jj = {1, . . . , j}
end

3: Using quantile matching fit the Skew-Normal distribution to the logarithm of the sample
DFL(j + 1), j = 1, . . . , p− 1 to obtain the null distribution X ∼ SN(ξ̂, ω̂2, α̂)

4: Calculate the p-value pj+1 for DFL(j + 1), j = 1, . . . , p− 1 as
pj+1 = P [X > log{DFL(j + 1)}]

5: Average p-values for each set of 3 subsequent taxa
6: Filter out the set of taxa Jj with the first p-value such that pj+1 ≤ α

For example, the microbiome dataset from [Sinha et al., 2015] consists of

1016 samples and 792 taxa. The simultaneous filtering method removes 617

taxa, leaving a smaller dataset of 1016 samples and 175 taxa for further anal-

ysis. By default, the function PERFect sim() takes the data table, X, as a

matrix or data frame, orders it by the taxa abundance defined in (4.2), uses

10%, 25% and 50% quantiles for matching the log of DFL to a Skew-Normal

distribution and then calculates the p-value for each taxon at the significance

level of α = 0.1. The function PERFect sim() only needs a taxa table as the

input, and other parameters are set to default.

> dim( Counts .mat)

[1] 1016 792

> res1 <- PERFect_sim (X = Counts .mat , Order = "NP",

+ quant = c(0.1 ,0.25 ,0.5) , distr = "sn", alpha = 0.1)

> dim(res1$filtX)

[1] 1016 175

The plot of differences in filtering loss values by taxa and the histogram of

log differences in filtering loss are extracted from the object res1 above using

the commands res1$hist and res1$pDFL and displayed in Figure 4.3. On the

left panel, the spike of differences in filtering loss indicates the true signal taxa,
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suggesting that taxa to the left of this spike should be removed from the data.

The right panel shows a Skew-Normal distribution, which fits reasonably well

the left part of the log differences in filtering loss using the quantile matching

method. Although the robustness of this fit will vary based on the choice of

quantiles, I suggest using 10%, 25% and 50% quantiles for matching since this

method assumes that at least 50% of the taxa are not informative.

Figure 4.3: Left panel: plot of the differences in filtering loss for the taxa

that are arranged in the order of increasing values of NP . Right panel: his-

togram of the log differences in filtering loss. The blue line indicates a SN(ξ̂ =

−8.12, ω̂ = 1.12, α̂ = 0.04) density fitted to the log-transformed data using

10%, 25% and 50% quantiles for matching. Data source: [Sinha et al., 2015].

4.2.2 Permutation filtering

The major difference between permutation simultaneous filtering is that in-

stead of fitting the differences in filtering loss for p taxa using one distribu-

tion, we assume that at each step (j+1), the corresponding DFL(j+1) value
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has its own Skew-Normal distribution. In order to estimate the parameters

for this distribution, we randomly permute the labels of the taxa, calculate

DFL∗(j + 1) for every permutation and fit a Skew-Normal distribution on

these permuted DFL values. This approach ensures that a taxon with weak

signal remains unimportant to any combination of other (j + 1) taxa. The

remainder of this method is similar to the simultaneous method and its algo-

rithm is summarized in Algorithm 2, as given.

Algorithm 2 PERFect: permutation filtering
Input: OTU table X, test critical value α
Output: Filtered OTU table X, p-value for each taxon

1: Run simultaneous PERFect algorithm to obtain
taxa p-values pj , j = 1, . . . , p

2: Order columns of X such that p1 ≥ p2 ≥ pp
3: for taxon j = 1, ..., p-1 do

Let Jj = {1, . . . , j}
Calculate DFL(j + 1) using (4.3)

4: for permutation 1, ..., k do
Randomly select J∗

j+1 ⊂ {1, . . . , p} with |J∗
j+1| = j + 1

Calculate DFL∗(j + 1) using (4.3)
end

5: Using quantile matching fit the normal distribution to the
logarithm of the sample DFL∗(j + 1), j = 1, . . . , p− 1 to obtain
the null distribution Xj+1 ∼ SN(ξ̂j+1, ω̂

2
j+1, α̂j+1)

6: Calculate the p-value pj+1 for DFL(j + 1), j = 1, . . . , p− 1 as
pj+1 = P [Xj+1 > log{DFL(j + 1)}]

end
7: Average p-values for each set of 3 subsequent taxa
8: Filter the set of taxa Jj with the first p-value such that pj+1 ≤ α

This procedure is performed by the function PERFect perm(), which takes

similar arguments as the function PERFect sim(). For the same dataset from

[Sinha et al., 2015], we applied the permutation filtering method using the

decreasing order of p-values from the simultaneous filtering method above,

resulting a dataset that retains 233 taxa and removes 559 taxa in total.

> res2 <- PERFect_perm (X = Counts .mat , Order = "pvals",

+ pvals_sim = res1 , algorithm = "full", k = 10000 ,

+ quant = c(0.1 ,0.25 ,0.5) , distr = "sn", alpha = 0.1)
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> dim(res2$filtX)

[1] 1016 233

4.2.3 Fast permutation filtering

One drawback of the permutation filtering method is that it might be compu-

tationally expensive. Indeed, given that k permutations are performed for each

taxon j = 2, 3, . . . , p, the algorithm requires a total of k(p− 1) permutations,

where k and p are large. Thus, I employ parallel processing and an unbalanced

binary search algorithm [Morin, 2013] that optimally finds the cut-off taxon j

to remove the set of Jj taxa without building the permutation distribution and

computing the p-values for all p− 1 taxa. Recall that the main goal is to find

the first taxon j in the ordered set of taxa for which the filtering loss difference

increases significantly. Thus, if the DFL value for a set Jj with, for example 10

taxa, is not significant, then the DFL values of the first 9 taxa in this set will

not be significant as well and we can proceed to test the next set. However,

there are two problems we need to consider: 1) we expect that the differences

in filtering loss shown in Figure 4.3 (left panel) increase with j, thus the length

of the search intervals need to be optimized to perform the least number of

tests; 2) given taxa are ordered by a chosen order, if any taxon in the set Jj

has a DFL value larger than that of the jth taxon we tested (the last taxon

of the ordered interval), then we need to test its significance.

We address the first problem by creating M sets S1, S2, . . . , SM (shown in

Figure 4.4) such that

Sm = {T1, T2, . . . , T∑m

k=1 M−k+1}, (4.5)



Chapter 4. Microbiome Data Analysis 83

where Tm is the mth taxon, ∑m
k=1(M − k+ 1) is the index of the last taxon for

the subset Sm and 1 ≤ m ≤M << p.

1 M M + (M − 1) ∑m
k=1(M − k + 1) p

S1

S2

Sm

SM

Figure 4.4: Taxa intervals tested by the fast permutation filtering algorithm.

Thus, at every step we include smaller numbers of additional taxa as m

increases (i.e. M,M − 1, . . . , 1). This approach minimizes the number of taxa

distributions we need to calculate as taxa importance increases. We then we

apply steps 3 to 6 of Algorithm 2, where in step 3 we set the taxa index j ∈

{∑m
k=1 M−k+1}Mm=1 and test whether the set {Sm}Mm=1 should be removed until

we find the interval with the first significant p-value. If set Sm is significant,

it means that any taxon added to the previously tested set Sm−1 might be

significant. Therefore, we apply steps 3 to 6 of Algorithm 2 to each taxon

added to Sm−1 until the potential cut-off taxon, T ∗cut−off , with first significant

p-value is identified. Finally, to address the second problem, we further test

significance of all taxa with higher DFL values than the values of potential

cut-off taxon. The first taxon with the smaller index that is significant is

chosen as the final cut-off taxon Tcut−off . By default, this computation is

given by algorithm = "fast", but the user can modify it to algorithm =

"full", which will compute p-values for all taxa. The code for this result is

shown below.
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> system .time(res2 <- PERFect_perm (X = Counts .mat ,

+ Order = "NP", k = 10000 ,

+ algorithm = "full",

+ quant = c(0.1 ,0.25 ,0.5) ,

+ distr = "sn", alpha = 0.1))

user system elapsed

573.18 0.37 775.87

> system .time(res3 <- PERFect_perm (X = Counts .mat ,

+ Order = "NP", k = 10000 ,

+ algorithm = "fast",

+ quant = c(0.1 ,0.25 ,0.5) ,

+ distr = "sn", alpha = 0.1))

user system elapsed

5.11 2.00 236.16

Figure 4.5 illustrates the plot of permutation PERFect p-values calculated

by the full and fast algorithm for the [Sinha et al., 2015] data. Although both

methods achieve a similar cutoff taxon, the fast algorithm only calculates 43

out of 792 p-values, and hence is more computationally efficient.

4.3 Application and Evaluation

[Smirnova et al., 2018a] validated PERFect simultaneous and permutation fil-

tering approaches using three mock community data sets ([Knights et al., 2011],

[Ravel et al., 2011], and [Fettweis et al., 2012]), using the number of contam-

inant taxa correctly removed as an efficiency criterion. Here, I concentrate

on the effects of filtering on downstream analyses, using the the two major
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(a) Full algorithm (b) Fast algorithm

Figure 4.5: Left panel: Permutation PERFect p-values for every taxon from

the [Sinha et al., 2015] data. Taxa on the x-axis, arranged in order of their

abundance, are represented by points colored according to their individual

filtering loss quantile values. The dashed horizonal red line indicates the α =

0.10 cutoff. Taxa to the left of the dashed purple vertical line correspond to

the set of filtered out taxa J and to the right of this line correspond to the

set {−J} of retained taxa. Right panel: Permutation PERFect p-values for

43 taxa (fast algorithm) from the [Sinha et al., 2015] data.

exploratory analyses used in microbiome research: alpha and beta diversity.

4.3.1 The MicroBiome Quality Control data

One of the main goals of the MBQC project is to understand major differences

in technology and methods for analyzing human microbial data. This can be

achieved by analyzing the observed taxa variation between handling lab and

bioinformatics processing protocols. Here, we concentrate on the effect of

bioinformatics processing laboratories on the observed oral mock community

data measured by alpha and beta diversity, two of the most commonly used

summaries in microbiome research. The left panel in Figure 4.6 shows the
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logarithm of the Chao1 index (a measure of richness in alpha diversity) in

the unfiltered and filtered data, colored by the processing institutes. Both

filtering methods significantly reduce the richness in each dataset, especially

the simultaneous method, but the overall variation pattern within labs remains

unchanged. For example, samples coming from labs BL − 2, BL − 6 and

BL− 9A consistently have the most variation in the index for every dataset.

The right panel of Figure 4.6 shows the Shannon index, the most widely-

used diversity metric which weights the number of species by relative evenness

data [Reese and Dunn, 2018], in the unfiltered and filtered data. This plot

and the summary statistics in Table 4.2 indicate a decrease in the Shannon

index between the unfiltered and filtered data, which implies a reduction in the

diversity and evenness of taxa. This phenomenon is expected since filtering

highlights the signal contribution, causing a less even distribution of taxa in

the data due to a large number of rarely observed variables.

BL-1 BL-2 BL-3 BL-4 BL-6 BL-8 BL-9A BL-9B

Median
Unfiltered 5.301 5.293 5.700 5.622 5.324 5.270 5.317 5.536
Simultaneous 4.122 4.147 4.061 3.998 4.381 3.247 4.332 4.061
Permutation 4.287 4.301 4.261 4.300 4.552 3.519 4.459 4.269

IQR
Unfiltered 0.137 0.175 0.165 0.446 0.181 0.062 0.161 0.477
Simultaneous 0.135 0.231 0.123 0.420 0.205 0.456 0.280 0.083
Permutation 0.166 0.235 0.127 0.475 0.224 0.489 0.288 0.098

Table 4.2: Summary statistics of the Shannon index for each processing lab.

In order to study the effect of filtering on differences across bioinformatics

processing labs, we applied Dunn’s test with a Benjamini-Hochberg correction

for multiple testing to all possible pairwise Shannon alpha diversity compar-

isons between processing labs. Results are summarized in Table 4.3. Since
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Figure 4.6: Left panel: The logarithm of the Chao1 index for the original data

and two filtered data, colored by the dilution levels. Right panel: The Shannon

index for the original data and two filtered data, colored by the dilution levels.

Data source: [Sinha et al., 2015].

all samples contained the same mock communities, in the absence of technical

variability, none of the differences should be significant. For the unfiltered

data, 21 out of 28 possible pairs have significant differences in alpha diversity

at the 0.05 significance level. Applying simultaneous and permutation filter-

ing decreases differences in alpha diversity for most pairs. Moreover, there

are a total of 4 and 8 pairwise comparisons that are no longer significant at

the 0.05 level after simultaneous and permutation filtering results were applied

respectively. While filtering does not remove all differences due to processing

labs, these results indicate that it dramatically alleviates differences in alpha

diversity estimates caused by lab-to-lab variability.

In order to study the effect of filtering on beta diversity, we calculated
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Unfiltered Simultaneous Permutation
Comparison Difference P-values Difference P-values Difference P-values
BL-1 - BL-2 0.00 0.4990 0.20 0.4214 -0.06 0.4778
BL-1 - BL-3 -10.75 < 0.0001 2.52 0.0074 1.27 0.1307
BL-2 - BL-3 -10.83 < 0.0001 2.35 0.0115 1.33 0.1283
BL-1 - BL-4 -7.22 < 0.0001 3.90 0.0001 0.29 0.4173
BL-2 - BL-4 -7.28 < 0.0001 3.73 0.0001 0.35 0.4088
BL-3 - BL-4 3.91 0.0001 1.25 0.1243 -1.01 0.1816
BL-1 - BL-6 -1.63 0.0632 -6.35 < 0.0001 -7.10 < 0.0001
BL-2 - BL-6 -1.64 0.0646 -6.60 < 0.0001 -7.10 < 0.0001
BL-3 - BL-6 9.36 < 0.0001 -8.78 < 0.0001 -8.23 < 0.0001
BL-4 - BL-6 5.70 < 0.0001 -10.47 < 0.0001 -7.55 < 0.0001
BL-1 - BL-8 2.47 0.0090 11.30 < 0.0001 9.99 < 0.0001
BL-2 - BL-8 2.49 0.0089 11.19 ¡ 0.0001 10.13 < 0.0001
BL-3 - BL-8 13.27 < 0.0001 8.51 < 0.0001 8.50 < 0.0001
BL-4 - BL-8 9.81 < 0.0001 7.60 < 0.0001 9.92 < 0.0001
BL-6 - BL-8 4.16 < 0.0001 17.93 < 0.0001 17.36 < 0.0001
BL-1 - BL-9A -1.09 0.1535 -5.46 < 0.0001 -5.74 < 0.0001
BL-2 - BL-9A -1.10 0.1583 -5.70 < 0.0001 -5.73 < 0.0001
BL-3 - BL-9A 9.66 < 0.0001 -7.86 < 0.0001 -6.88 < 0.0001
BL-4 - BL-9A 6.09 < 0.0001 -9.46 < 0.0001 -6.14 < 0.0001
BL-6 - BL-9A 0.51 0.3167 0.77 0.2455 1.24 0.1311
BL-8 - BL-9A -3.57 0.0003 -16.78 < 0.0001 -15.76 < 0.0001
BL-1 - BL-9B -6.44 < 0.0001 3.32 0.0006 1.58 0.0840
BL-2 - BL-9B -6.49 < 0.0001 3.14 0.0011 1.65 0.0770
BL-3 - BL-9B 4.55 < 0.0001 0.70 0.2609 0.27 0.4090
BL-4 - BL-9B 0.71 0.2556 -0.56 0.2996 1.33 0.1233
BL-6 - BL-9B -4.92 < 0.0001 9.79 < 0.0001 8.79 < 0.0001
BL-8 - BL-9B -9.00 < 0.0001 -8.06 < 0.0001 -8.49 < 0.0001
BL-9A - BL-9B -5.32 < 0.0001 8.82 < 0.0001 7.37 < 0.0001

Table 4.3: Pairwise comparisons of the Shannon index between laboratories

using Dunn’s test for each dataset. Data source: [Sinha et al., 2015].

the pairwise Bray-Curtis distances between samples using a combined taxa

matrix which consists of the unfiltered taxa matrix, and the taxa filtered ma-
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trices of PERFect simultaneous and PERFect permutation each at the p-value

threshold of 0.1. The multidimensional scaling ordination plot for the first

two principal components which explain 30.5% of the variability in the data

is shown in Figure 4.7. Three filtering methods (unfiltered, simultaneous and

permutation PERFect) are arranged in columns and samples are colored ac-

cording to 8 processing institutes. Figure 4.7 shows that while data clusters

by laboratory in each dataset, the proximity between clusters decreases when

simultaneous or permutation filtering is applied. This observation indicates

that filtering improves similarity between samples that contain the same mock

communities and alleviates the effects of lab-to-lab variability.

Figure 4.7: Multidimensional scaling plots of the unfiltered, simultaneous and

permutation PERFect filtered data colored by bioinformatics processing insti-

tutes. Data source: [Sinha et al., 2015].
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4.3.2 The reagent and laboratory contamination data

The [Salter et al., 2014] study was designed to determine the effects of DNA

extraction kits and other laboratory reagent contamination on sequencing out-

put. These data contain mock samples of a pure Salmonella bongori culture

that had been processed at three different institutes: (1) Imperial College

London (ICL); (2) University of Birmingham (UB); and (3) Wellcome Trust

Sanger Institute (WTSI). Each mock sample underwent five rounds of serial

ten-fold dilutions to generate a series of high (dilution = 0) to low (dilution

= 5) biomass samples. Figure 4.8 displays the log-counts heat map for 635

observed taxa, generated using 40 Polymerase Chain Reaction (PCR) cycles.

The taxa on the horizontal axis are arranged in decreasing order of abundance

and the 18 samples on the vertical axis arranged by low to high (0 to 5) degrees

of dilution. Figure 4.9 displays the Bray-Curtis distance MDS plots for the 18

samples from the heat map on the left. The first two principal components

that explain 81.1% of the variability in the data are shown on the plot. As

the dilution number increases, true taxa contain less signal and are observed

in lower counts, which makes it difficult to separate the signal from the noise.
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Figure 4.8: The heatmap of the observed taxa on the log-scale, with taxa

on the x-axis arranged in decreasing abundance order and samples on the

y-axis arranged from low to high (0 to 5) degrees of dilution. Source:

[Salter et al., 2014]
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Figure 4.9: The multidimensional scaling plots for each degree of dilution,

colored by the processing institutes. Source: [Salter et al., 2014]

Figure 4.10 displays the difference in the alpha diversity of the filtered

outputs, corresponding to the p-value threshold 0.1, using simultaneous and

permutation filtering among 6 dilution levels and 3 processing institutes. The

left panel uses the log of the Chao1 index to measure the richness of species in

the unfiltered and filtered data, colored by the dilution levels. The original data

have the highest Chao1 indices which increase with dilution levels, indicating

that there are more contaminants in higher dilution samples. The PERFect

simultaneous method preserves the least number of species, which leads to

the least richness and variability due to the dilution levels. Both PERFect

filtering methods alleviate the increasing trend with dilution levels (clearer

effect in the Simultaneous method), thus we conclude that filtering successfully

mitigates the dilution effects measured by Chao1 index. The right panel shows
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the Shannon index, color by the dilution number. It is expected that as the

dilution levels increase, the proportion of signal taxa decreases whereas that of

noise taxa increases, causing the data to become more even, and thus leading

to a higher Shannon index. This effect may cause problems comparing alpha

diversity for different groups of samples with variable biomass because it will

be more difficult to differentiate between signal and noise taxa in low biomass

samples. The filtering methods address this issue by removing noise taxa in

highly diluted samples (dilutions 3, 4 and 5), where the simultaneous filtering

removes more taxa than the permutation algorithm and has more impact on

reducing the alpha diversity.

To compare the beta diversity for filtered outputs, the pairwise between-

sample Bray-Curtis distances are calculated using the taxa matrices’ combi-

nation with a similar set up to the analysis with the MBQC data. The mul-

tidimensional scaling ordination plot for the first two principal components

that explain 81.3% of the variability in the data is shown in Figure 4.11. The

six dilution levels and three filtering methods (none, simultaneous and per-

mutation PERFect) are arranged in columns and rows respectively; samples

are colored according to the three processing institutes. Ideally, the samples

from all three processing institutes should have the same composition of taxa

regardless of the dilution levels. However, contaminants that went into the

samples during the DNA extraction and PCR process lead to the differences

between the three processing institutes. Figure 4.11 shows that filtering does

not dramatically change samples’ pairwise distances in ordination plots. This

is due to the fact that PERFect, like many other filtering methods, removes

taxa with low abundance which do not contribute to the signal, and thus do

not dramatically affect samples’ pairwise distances. These observations lead to
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Figure 4.10: Left panel: The logarithm of the Chao1 index for the original data

and two filtered data, colored by the dilution levels. Right panel: The Shannon

index for the original data and two filtered data, colored by the dilution levels.

Data source: [Salter et al., 2014].

the important conclusion that filtering reduces the number of taxa considered

in the analysis, and thus reduces dimensionality of the OTU table, without

affecting beta diversity.

4.3.3 Computation time

Table 4.4 displays the computation time of the PERFect filtering methods,

using the abundance and p-values ordering, on the [Sinha et al., 2015] and

[Salter et al., 2014] data. The simultaneous filtering method is the most com-
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Figure 4.11: Multidimensional scaling plots of the unfiltered and filtered data

at different dilution levels, colored by the processing institutes. Data source:

[Salter et al., 2014].

putationally efficient because it fits the differences in filtering loss for all taxa

using one skew-normal distribution. Although arbitrarily there is no difference

in the running time between the two types of ordering, there is a large differ-

ence in the running time between the full and fast permutation algorithm. By

only calculating the “necessary” taxa’s p-values, we have effectively reduced

the running time by almost four times. Moreover, it is clear that as the dataset

gets larger, the permutation method requires more time to execute the full al-

gorithm, whereas the fast implementation requires much less additional time.

Therefore, we set the default of our permutation method to use the fast algo-

rithm (used to conduct the comparisons in section 4.3), but users may choose

to use the full algorithm to evaluate the significance of every taxon.
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Dataset Method Ordering Computation time

MBQC
(1016 × 792)

Simultaneous Abundance 1.38
Simultaneous P-values 1.18
Permutation (full algorithm) Abundance 750.39
Permutation (fast algorithm) Abundance 212.14
Permutation (full algorithm) P-values 808.75
Permutation (fast algorithm) P-values 216.60

Salter
(42 × 635)

Simultaneous Abundance 0.50
Simultaneous P-values 0.45
Permutation (full algorithm) Abundance 462.70
Permutation (fast algorithm) Abundance 153.30
Permutation (full algorithm) P-values 448.25
Permutation (fast algorithm) P-values 153.66

Table 4.4: The running time (in seconds) for different settings of the filtering

methods on the [Sinha et al., 2015] and [Salter et al., 2014] data.
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Final Remarks

In this dissertation, we introduce mortality models using reliable measures

derived from accelerometry data. A total of 33 predictors of 5-year all-cause

mortality, including 20 measures of objective PA, were compared using univari-

ate and multivariate logistic regression. In univariate logistic regression, the

total activity count was the best predictor of 5-year mortality (AUC = 0.771),

followed by age (AUC = 0.758). Overall, 9 of the top 10 predictors were objec-

tive PA measures (AUC from 0.771 to 0.692). Hence, objective accelerometry-

derived PA measures have the potential to outperform traditional predictors

of 5-year mortality, including age. This highlights the importance of wearable

technology for providing reproducible, unbiased, and prognostic biomarkers of

health.

In multiple regression, the best 10-fold cross-validated AUC was 0.798 for

the model without objective PA variables (9 predictors) and 0.838 for the for-

ward selection model with objective PA variables (13 predictors, including two

PA variables which are the ASTP and the surrogate of the standard deviation

of the PC6). Here, we use these surrogates for the models since they make

97
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it possible to do predictions for new data (not originally observed in the pre-

diction model). Indeed, if we collect activity for another person who did not

participate in the NHANES study and would like to use the final mortality

prediction model to predict their 5-year mortality risk, we would have to re-

calculate the PCs using both the NHANES and the new person data. This is

clearly not practical. Thus, we replace the PC scores by the surrogates which

can be easily calculate from the new data.

A limitation of the forward selection model is the exclusion of interaction

terms from the analysis. Unreported results indicate that most predictive in-

teractions were between age and objective PA predictors. Although some of

the interactions were significant, they did not fundamentally change the re-

sults. Thus, to preserve simplicity, the focus here is on main effects prediction.

Another limitation is our focus on maximizing cross-validated AUC and we did

not examine the change in contribution of one variable after accounting for oth-

ers in the model. In the future, we plan to perform stepwise variable selection

and compare its result to the current model. Finally, the association between

physical activity and time to death using Cox models in the NHANES pop-

ulation has been investigated in several publications [Fishman et al., 2016a],

[Di et al., 2017], [Leroux et al., 2019] and the results are consistent with our

findings in this dissertation.

In the future work, we plan to investigate Cox modeling, other binary end-

points, such as 1-, 2-, 3-, 4- year mortality and cause-specific mortality. The

unique perspective our method provides is the focus on quantifying the ab-

solute and relative performance of mortality predictors. We hope that this

will add clarity to the large, existing literature on mortality predictors and

will provide much needed information about the individual, combined, and
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relative prediction performance of these predictors. We also hope to illustrate

the strong performance of objectively measured physical activity predictors

of mortality relative to well-known, established predictors. We further plan

to build mortality models using the UK Biobank data (the equivalent of US

NHANES data in the UK), validating interactions between objective PA pre-

dictors and other covariates and studying the effect of changing/extending the

prediction horizon.

For the filtering problem, there is no single statistical method besides the

rule of thumb that suggests to keep taxa that are present in at least k samples.

Another popular approach is to remove taxa that are observed in fewer than

k% of the samples. The advantage of these methods is that they are simple,

intuitive, and easy to communicate with collaborators. However, they do not

have an explicit loss function and objective criteria for choosing the tuning

parameters m and k. The method decontam identifies contaminants by: 1)

inversely correlating taxa frequencies with sample DNA concentration; and

2) using the prevalence of sequenced negative controls but the auxiliary data

might not always be available. In this dissertation, we introduce the R package

PERFect implementing the PERFect microbiome filtering algorithm, which is

a statistically driven method for choosing a threshold value for removing rare

taxa [Smirnova et al., 2018a]. A comparison of these methods (two rules of

thumb, decontam and PERFect) is performed by [Smirnova et al., 2018a] and

results show that PERFect removes rare taxa and contaminants more effec-

tively. We then further improved our method by implementing a fast version of

the permutation algorithm, which significantly reduces computational time. In

addition, we focus on the improvement of alpha and beta diversity estimation

and reduction of lab-to-lab variability between samples that contain similar
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microbial species. Results indicate strong potential of the filtering methods

in alleviating the differences between samples processed at different institutes

and according to different protocols. Moreover, filtering removes rare taxa

that have low contribution to the signal, thus reducing dimensionality of the

data with minimal information loss. To the best of our knowledge, this is

the first report on the effects of the PERFect filtering approach on downstream

analyses of microbiome data.

A limitation of filtering is that the reduction of type I errors (probability of

removing important taxa) will inevitably increase type II errors (probability

of keeping unimportant taxa). Indeed, if we want to be cautious in removing

rare taxa to ensure that important taxa will still remain in the data, we will

not remove many taxa and will likely have a lot of unimportant taxa remained;

if we remove taxa aggressively, there is a high chance of filtering important

rare taxa. In particular, in researches that aim to study rare taxa, filtering

would not be advisable since it will likely remove the rare but important taxa.

However, this is a general limitation of any filtering approach that does not

consider additional information about negative controls, or feature DNA con-

centrations in the samples. This issue can be moderated by having a good

understanding of the data (where the data are sampled and how they are gen-

erated) and using auxiliary data that allows us to filter with confidence. In

the future package implementation, we will incorporate this information in our

filtering approach, as well as relax the taxa ordering assumption.

In the comparison of data quality between labs, if we have greater confi-

dence in some labs’ protocols over others, a possible way to reduce noise in the

data before filtering is to consider a weighted average of data from the labs,

where labs with higher confidence receive more weights. Specifically, data from
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all the labs are combined using the weighted mean of the corresponding taxon

count and the final weighted taxa matrix will be used for filtering.

Finally, in this dissertation, we evaluated the effect of filtering on the de-

scriptive microbiome analyses. In our future work, we plan to evaluate the

effects of filtering on case-control group comparison methods, such as ran-

dom forest model, linear discriminant analysis effect size (LEfSe) and disease

association (biomarker discovery) problems.
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DiffFiltLoss Difference in filtering loss

Description

This function calculates differences in filtering loss due to removing a set of J taxa sequentially.

Usage

DiffFiltLoss(X, Order_Ind, Plot = TRUE, Taxa_Names = NULL)

Arguments

X OTU table, where taxa are columns and samples are rows of the table. It should
be a in dataframe format with columns corresponding to taxa names.

Order_Ind Numeric column order corresponding to taxa importance arrangement.

Plot A binary TRUE/FALSE value. If TRUE, the function returns plot of sequential
differences in filtering loss.

Taxa_Names Optional taxa labels corresponding to the columns ordering given by Order_Ind.

Details

This function calculates and plots (if Plot = TRUE) differences in filtering loss sequentially for
removing the first j taxa as DFL(j+1) = FL(J_j+1) - FL(J_j) for taxa j=1, ..., p.

Value

DFL Differences in filtering loss values.

p_FL Plot of the differences in filtering loss.

Author(s)

Ekaterina Smirnova
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References

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutation filtration of microbiome data’, to
be submitted.

See Also

FiltLoss

Examples

data(mock2)

# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts

#arrange counts in order of increasing number of samples taxa are present in
NP <- NP_Order(Counts)

#obtain numeric column order corresponding to taxa importance arrangment
Order_Ind <- match(NP, names(Prop))
DFL <- DiffFiltLoss(X=Prop, Order_Ind = Order_Ind, Plot = TRUE, Taxa_Names = NP)

#Differences in filtering loss values
DFL$DFL

#Plot of the differences in filtering loss
DFL$p_FL

FiltLoss Filtering Loss

Description

Sequential filtering loss calculation for removing a set of J_j taxa for J= 1, ..., p.

Usage

FiltLoss(X, Order = "NP", Order.user = NULL, type = "Cumu", Plot = TRUE)

Arguments

X OTU table, where taxa are columns and samples are rows of the table. It should
be a in data frame format with columns corresponding to taxa names.

Order Taxa ordering. The default ordering is the number of occurrences (NP) of the
taxa in all samples. Other types of order are number of connected taxa and
weighted number of connected taxa, denoted as "NC", "NCw" respectively. More
details about taxa ordering are described in Smirnova et al. User can also specify
their preference order with Order.user.
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Order.user User’s taxa ordering. This argument takes a character vector of ordered taxa
names.

type Type of filtering loss calculation.

"Ind" Individual taxon’s filtering loss FL_u(j)
"Cumu" Cumulative filtering loss FL(J) due to removing a set of taxa J

Plot Binary TRUE/FALSE value. If TRUE, the function returns plot of sequential
differences in filtering loss.

Details

The individual filtering loss due to removing one taxon j is defined as:

FL_u(j)= 1- (||X^T_-j X_-j||_F^2/||X^TX||_F^2),

where X_-j is the matrix X without column corresponding to jth taxon and ||Z||_F is the Frobenious
norm of a matrix Z.

The cumulative filtering loss due to removing a set of taxa is defined as:

FL(J)= 1- (||X^T_-J X_-J||_F^2\||X^TX||_F^2),

where X_-J is the n x (p-|J|) dimensional matrix obtained by removing the columns indexed by the
set J from the data matrix X.

The cumulative filtering loss is calculated sequentially for each set of taxa J_j, j=1, ..., p.

Value

FL Filtering loss values.

p_FL Plot of filtering loss values.

Author(s)

Ekaterina Smirnova

References

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutation filtration of microbiome data", to
be submitted.

See Also

DiffFiltLoss

Examples

data(mock2)

# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts

#Calculate cumulative filtering loss
FL <- FiltLoss(X=Prop, Order = "NP", type = "Cumu", Plot = TRUE)
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#Differences in filtering loss values
FL$FL

#Plot of the differences in filtering loss
FL$p_FL

FL_J Filtering Loss for a set of filtered taxa J

Description

This function calculates filtering loss due to removing a group of J taxa.

Usage

FL_J(X, J)

Arguments

X OTU table, where taxa are columns and samples are rows of the table. It should
be a in data frame format with columns corresponding to taxa names.

J A vector of J taxa to be removed. It must be subset of column names of X.

Value

FL Filtering loss value.

Author(s)

Ekaterina Smirnova

References

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutation filtration of microbiome data", to
be submitted.

See Also

FiltLoss

Examples

data(mock2)

# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts

#arrange counts in order of increasing number of samples taxa are present in
NP <- NP_Order(Counts)
Counts <- Counts[,NP]
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# Extract the taxa names to be removed
J <- colnames(Counts)[1:30]

#Calculate filtering loss due to removing these taxa
FL_J(Counts,J)

mock2 Bias experiment data

Description

These publicly available data (Brooks et al., 2015) were generated as a part of a study designed
to evaluate the bias at each step of the VCU sequencing protocol, namely, DNA extraction, PCR
amplification, sequencing and taxonomic classification. Mock community samples were created
out of 7 vaginally relevant bacteria by mixing prescribed quantities of cells, with quantities varying
across samples according to an experimental design described in Brooks et al, 2015. As opposed to
the positive controls data, bacteria appear in different proportions across samples. The number of
taxa identified by the sequencing and bioinformatics pipeline was 46.

Usage

data(mock2)

Format

This file contains a count OTU table and a proportion OTU table, each with 240 samples and 46
taxa. A list of true taxa is also given.

NCw_Order Taxa importance ordering by the weighted number of connected taxa

Description

Taxa importance ordering by the weighted number of connected taxa

Usage

NCw_Order(Counts)

Arguments

Counts OTU COUNTS table, where taxa are columns and samples are rows of the table.
It should be a in data frame format with columns corresponding to taxa names.

Value

NCW Taxa names in increasing order of the weighted number of connected taxa.
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Author(s)

Ekaterina Smirnova

References

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutation filtration of microbiome data", to
be submitted.

Examples

data(mock2)
# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts

#arrange counts in order of increasing number of samples taxa are present in
NCw <- NCw_Order(Counts)

NC_Order Taxa importance ordering by the number of connected taxa

Description

Taxa importance ordering by the number of connected taxa

Usage

NC_Order(Counts)

Arguments

Counts OTU COUNTS table, where taxa are columns and samples are rows of the table.
It should be a in data frame format with columns corresponding to taxa names.

Value

NC Taxa names in increasing order of the number of connected taxa.

Author(s)

Ekaterina Smirnova

References

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutation filtration of microbiome data", to
be submitted.
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Examples

data(mock2)
# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts

#arrange counts in order of increasing number of samples taxa are present in
NC <- NC_Order(Counts)

NP_Order Taxa importance ordering by the number of occurrences of the taxa in
the n samples

Description

Taxa importance ordering by the number of occurrences of the taxa in the n samples

Usage

NP_Order(Counts)

Arguments

Counts OTU COUNTS table, where taxa are columns and samples are rows of the table.
It should be a in data frame format with columns corresponding to taxa names.

Value

NP Taxa names in increasing order of the number of samples taxa are present in.

Author(s)

Ekaterina Smirnova

References

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutation filtration of microbiome data", to
be submitted.

Examples

data(mock2)
# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts

#arrange counts in order of increasing number of samples taxa are present in
NP <- NP_Order(Counts)
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PERFect_perm Permutation PERFect filtering for microbiome data

Description

Permutation filtering of the provided OTU table X at a test level alpha. Each set of j taxa signif-
icance is evaluated by fitting the Skew-Normal, Normal, t or Cauchy distribution to the sampling
distribution obtained by permuted taxa labels.

Usage

PERFect_perm(X, infocol = NULL, Order = "NP", Order.user = NULL, normalize = "counts",
algorithm = "fast", center = FALSE, quant = c(0.1, 0.25, 0.5),

distr = "sn", alpha = 0.1, rollmean = TRUE, direction = "left", pvals_sim = NULL,
k = 10000, nbins = 30, hist = TRUE, col = "red", fill = "green",
hist_fill = 0.2, linecol = "blue")

Arguments

X OTU table, where taxa are columns and samples are rows of the table. It should
be a in data frame format with columns corresponding to taxa names.

infocol Index vector of the metadata. We assume user only gives a taxa table, but if the
metadata of the samples are included in the columns of the input, this option
needs to be specified.

Order Taxa ordering. The default ordering is the number of occurrences (NP) of the
taxa in all samples. Other types of order are p-value ordering, number of con-
nected taxa and weighted number of connected taxa, denoted as "pvals", "NC",
"NCw" respectively. More details about taxa ordering are described in Smirnova
et al. User can also specify their preference order with Order.user.

Order.user User’s taxa ordering. This argument takes a character vector of ordered taxa
names.

normalize Normalizing taxa count. The default option does not normalize taxa count, but
user can convert the OTU table into a proportion table using the option "prop"
or convert it into a presence/absence table using "pres".

algorithm Algorithm speed. The default is speed is "fast", which allows the program to
efficiently search for significant taxa without computing all the p-values. User
must use the default option "hist = FALSE" for the fast algorithm. The alterna-
tive setting is "full", which computes all the taxa’s p-values.

center Centering OTU table. The default option does not center the OTU table.

quant Quantile values used to fit the distribution to log DFL values. The number of
quantile values corresponds to the number of parameters in the distribution the
data is fitted to. Assuming that at least 50% of taxa are not informative, we
suggest fitting the log Skew-Normal distribution by matching the 10%, 25% and
50% percentiles of the log-transformed samples to the Skew-Normal distribu-
tion.

distr The type of distribution to fit log DFL values to. While we suggest using Skew-
Normal distribution, and set as the default distribution, other choices are avail-
able.
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"sn" Skew-Normal distribution with 3 parameters: location xi, scale omega^2
and shape alpha

"norm" Normal distribution with 2 parameters: mean and standard deviation sd

alpha Test level alpha, set to 0.1 by default.

rollmean Binary TRUE/FALSE value. If TRUE, rolling average (moving mean) of p-
values will be calculated, with the lag window set to 3 by default.

direction Character specifying whether the index of the result should be left- or right-
aligned or centered compared to the rolling window of observations, set to "left"
by default.

pvals_sim Object resulting from simultaneous PERFect with taxa abundance ordering, al-
lowing user to perform Simultaneous PERFect with p-values ordering. Be aware
that the choice of distribution for both methods must be the same.

k The number of permutations, set to 10000 by default.

nbins Number of bins used to visualize the histogram of log DFL values, set to 30 by
default.

hist Binary TRUE/FALSE value. If TRUE, the function builds histograms for each
taxon.

col Graphical parameter for color of histogram bars border, set to "red" by default.

fill Graphical parameter for color of histogram fill, set to "green" by default.

hist_fill Graphical parameter for intensity of histogram fill, set to 0.2 by default.

linecol Graphical parameter for the color of the fitted distribution density, set to "blue"
by default.

Details

Filtering is the process of identifying and removing a subset of taxa according to a particular crite-
rion. As opposed to the the simultaneous filtering approach, we do not assume that all distributions
for each set of taxa are identical and equal to the distribution of simultaneous filtering. Function
PERFect_perm() filters the provided OTU table X and outputs a filtered table that contains signal
taxa. PERFect_perm() calculates differences in filtering loss DFL for each taxon according to the
given taxa order. By default, the function fits Skew-Normal distribution to the log-differences in
filtering loss but Normal, t, or Cauchy distributions can be also used.

Value

If "algorithm = full" is chosen, a list is returned containing:

filtX Filtered OTU table.

info The metadata information.

pvals P-values of the test.

DFL Differences in filtering loss values.

fit Fitted values and further goodness of fit details passed from the fitdistr()
function.

hist Histogram of log differences in filtering loss.

est Estimated distribution parameters.

dfl_distr Plot of differences in filtering loss values.

If "algorithm = fast" is chosen, fit, hist, est, dfl_distr will not be returned.
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Author(s)

Ekaterina Smirnova

References

Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian
Journal of Statistics, 32(2), 159-188.

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutationfiltration of microbiome data", to
be submitted.

See Also

PERFect_sim

Examples

data(mock2)

# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts

# Perform simultaenous filtering of the data
res_sim <- PERFect_sim(X=Counts)

#order according to p-values
pvals_sim <- pvals_Order(Counts, res_sim)

## Not run:
# obtain permutation PERFEct results using NP taxa ordering
res_perm <- PERFect_perm(X = Prop, Order.user = pvals_sim, algorithm = "fast")

# permutation perfect colored by FLu values
pvals_Plots(PERFect = res_perm, X = Counts, quantiles = c(0.25, 0.5, 0.8, 0.9), alpha=0.05)

## End(Not run)

PERFect_perm_reorder Permutation PERFect filtering for microbiome data

Description

This function filters the provided OTU table X at a test level alpha given a fitted object perfect_perm
obtained by running PERFect_perm() function. PERFect_perm_reorder() reavaluates taxa sig-
nificance p-values for a different taxa ordering.

Usage

PERFect_perm_reorder(X, Order = "NP", Order.user = NULL, res_perm, normalize = "counts",
center = FALSE, alpha = 0.1, distr = "sn", rollmean = TRUE, direction = "left",
pvals_sim = NULL)
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Arguments

X OTU table, where taxa are columns and samples are rows of the table. It should
be a in data frame format with columns corresponding to taxa names.

Order Taxa ordering. The default ordering is the number of occurrences (NP) of the
taxa in all samples. Other types of order are p-value ordering, number of con-
nected taxa and weighted number of connected taxa, denoted as "pvals", "NC",
"NCw" respectively. More details about taxa ordering are described in Smirnova
et al. User can also specify their preference order with Order.user.

Order.user User’s taxa ordering. This argument takes a character vector of ordered taxa
names.

res_perm Output of PERFect_perm() function.

normalize Normalizing taxa count. The default option does not normalize taxa count, but
user can convert the OTU table into a proportion table using the option "prop"
or convert it into a presence/absence table using "pres".

center Centering OTU table. The default option does not center the OTU table.

alpha Test level alpha, set to 0.1 by default.

distr The type of distribution used in PERFect_perm() function to obtain res_perm
object.

"sn" Skew-Normal distribution with 3 parameters: location xi, scale omega^2
and shape alpha

"norm" Normal distribution with 2 parameters: mean and standard deviation sd
"t" Student t-distribution with 2 parameters: n degrees of freedom and noncen-

trality ncp
"cauchy" Cauchy distribution with 2 parameters: location and scale

rollmean Binary TRUE/FALSE value. If TRUE, rolling average (moving mean) of p-
values will be calculated, with the lag window set to 3 by default.

direction Character specifying whether the index of the result should be left- or right-
aligned or centered compared to the rolling window of observations, set to "left"
by default.

pvals_sim Object resulting from simultaneous PERFect with taxa abundance ordering, al-
lowing user to perform Simultaneous PERFect with p-values ordering. Be aware
that the choice of distribution for both methods must be the same.

Details

This function is designed to save computational time needed to obtain and fit the sampling distribu-
tion for each taxon if taxa ordering different from the one used in PERFect_perm() is used. Note,
the distribution and OTU table X should match the distribution used in PERFect_perm().

Value

res_perm The perfect_perm object updated according to the alternative taxa ordering. All
elements in this list are same as in perfect_perm object given by PERFect()
function.

Author(s)

Ekaterina Smirnova
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References

Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian
Journal of Statistics, 32(2), 159-188.

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutationfiltration of microbiome data", to
be submitted.

See Also

PERFect_perm

Examples

data(mock2)

# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts

## Not run:
# obtain permutation PERFEct results using NP taxa ordering
system.time(res_perm <- PERFect_perm(X=Prop, k = 1000, algorithm = "fast"))

# run PERFEct_sim() function and obtain p-values ordering
res_sim <- PERFect_sim(X=Prop)

# order according to p-values
pvals_sim <- pvals_Order(Counts, res_sim)

# update perfect_perm object according to p-values ordering
res_reorder <- PERFect_perm_reorder(X=Prop, Order.user = pvals_sim, res_perm = res_perm)

# permutation perfect colored by FLu values
pvals_Plots(PERFect = res_perm, X = Counts, quantiles = c(0.25, 0.5, 0.8, 0.9), alpha=0.05)

## End(Not run)

PERFect_sim Simulation PERFect filtering for microbiome data

Description

Simultaneous filtering of the provided OTU table X at a test level alpha. One distribution is fit to
taxa simultaneously.

Usage

PERFect_sim(X,infocol = NULL, Order = "NP", Order.user = NULL, normalize = "counts",
center = FALSE, quant = c(0.1, 0.25, 0.5), distr = "sn",
alpha = 0.1, rollmean = TRUE, direction = "left", pvals_sim = NULL,
nbins = 30, col = "red", fill = "green", hist_fill = 0.2,
linecol = "blue")
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Arguments

X OTU table, where taxa are columns and samples are rows of the table. It should
be a in data frame format with columns corresponding to taxa names. It could
contains columns of metadata.

infocol Index vector of the metadata. We assume user only gives a taxa table, but if the
metadata of the samples are included in the columns of the input, this option
needs to be specified.

Order Taxa ordering. The default ordering is the number of occurrences (NP) of the
taxa in all samples. Other types of order are p-value ordering, number of con-
nected taxa and weighted number of connected taxa, denoted as "pvals", "NC",
"NCw" respectively. More details about taxa ordering are described in Smirnova
et al. User can also specify their preference order with Order.user.

Order.user User’s taxa ordering. This argument takes a character vector of ordered taxa
names.

normalize Normalizing taxa count. The default option does not normalize taxa count, but
user can convert the OTU table into a proportion table using the option "prop"
or convert it into a presence/absence table using "pres".

center Centering OTU table. The default option does not center the OTU table.
quant Quantile values used to fit the distribution to log DFL values. The number of

quantile values corresponds to the number of parameters in the distribution the
data is fitted to. Assuming that at least 50% of taxa are not informative, we
suggest fitting the log Skew-Normal distribution by matching the 10%, 25% and
50% percentiles of the log-transformed samples to the Skew-Normal distribu-
tion.

distr The type of distribution to fit log DFL values to. While we suggest using Skew-
Normal distribution, and set as the default distribution, other choices are avail-
able.
"sn" Skew-Normal distribution with 3 parameters: location xi, scale omega^2

and shape alpha
"norm" Normal distribution with 2 parameters: mean and standard deviation sd
"t" Student t-distribution with 2 parameters: n degrees of freedom and noncen-

trality ncp
"cauchy" Cauchy distribution with 2 parameters: location and scale

alpha Test level alpha, set to 0.1 by default.
rollmean Binary TRUE/FALSE value. If TRUE, rolling average (moving mean) of p-

values will be calculated, with the lag window set to 3 by default.
direction Character specifying whether the index of the result should be left- or right-

aligned or centered compared to the rolling window of observations, set to "left"
by default.

pvals_sim Object resulting from simultaneous PERFect with taxa abundance ordering, al-
lowing user to perform Simultaneous PERFect with p-values ordering. Be aware
that the choice of distribution for both methods must be the same.

nbins Number of bins used to visualize the histogram of log DFL values, set to 30 by
default.

col Graphical parameter for color of histogram bars border, set to "red" by default.
fill Graphical parameter for color of histogram fill, set to "green" by default.
hist_fill Graphical parameter for intensity of histogram fill, set to 0.2 by default.
linecol Graphical parameter for the color of the fitted distribution density, set to "blue"

by default.
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Details

Filtering is the process of identifying and removing a subset of taxa according to a particular cri-
terion. Function PERFect_sim() filters the provided OTU table X and outputs a filtered table that
contains signal taxa. PERFect_sim() calculates differences in filtering loss DFL for each taxon
according to the given taxa order. By default, the function fits Skew-Normal distribution to the
log-differences in filtering loss but Normal, t, or Cauchy distributions can be also used. This is
implementation of Algorithm 1 described in Smirnova et al.

Value

A list is returned containing:

filtX Filtered OTU table.

info The metadata information.

pvals P-values of the test.

DFL Differences in filtering loss values.

fit Fitted values and further goodness of fit details passed from the fitdistr()
function.

hist Histogram of log differences in filtering loss.

est Estimated distribution parameters.

pDFL Plot of differences in filtering loss values.

Author(s)

Ekaterina Smirnova

References

Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian
Journal of Statistics, 32(2), 159-188.

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutationfiltration of microbiome data", to
be submitted.

See Also

PERFect_perm

Examples

data(mock2)
# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts
dim(Counts) # 240x46

# Perform simultaenous filtering of the data
res_sim <- PERFect_sim(X=Counts)
dim(res_sim$filtX) # 240x10, removing 36 taxa
colnames(res_sim$filtX) # signal taxa
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#permutation perfect colored by FLu values
pvals_Plots(PERFect = res_sim, X = Counts, quantiles = c(0.25, 0.5, 0.8, 0.9), alpha=0.05)

pvals_Order Taxa importance ordering by PERFect p-values

Description

This function orders taxa by increasing significance of simultaneous PERFect p-values.

Usage

pvals_Order(Counts, res_sim)

Arguments

Counts OTU COUNTS table, where taxa are columns and samples are rows of the table.
It should be a in data frame format with columns corresponding to taxa names.

res_sim Output of PERFect_sim() function.

Value

Order_pvals Taxa names in increasing order of p-values significance.

Author(s)

Ekaterina Smirnova

References

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutation filtration of microbiome data", to
be submitted.

See Also

PERFect_sim, PERFect_perm

Examples

data(mock2)

# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts

# Perform simultaenous filtering of the data
res_sim <- PERFect_sim(X=Counts)

#order according to p-values
pvals_sim <- pvals_Order(Counts, res_sim)
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pvals_Plots Plots of PERFect p-values

Description

Graphical representation of p-values obtained by running PERFect_sim() or PERFect_perm() for
jth taxon colored by quantile values of individual filtering loss.

Usage

pvals_Plots(PERFect, X, quantiles = c(0.25, 0.5, 0.8, 0.9), alpha = 0.1)

Arguments

PERFect Output of PERFect_sim() or PERFect_perm() function.
X OTU table, where taxa are columns and samples are rows of the table. It should

be a in data frame format with columns corresponding to taxa names.
quantiles Quantile values for coloring, these are set to 25%, 50%, 80% and 90% per-

centiles of the individual filtering loss values.
alpha Alpha level of the test, set to 0.1 by default.

Value

A list is returned containing:

df Dataframe of taxa names, p-values, Flu values and quantiles.
p_vals Plot of p-values.

Author(s)

Ekaterina Smirnova

See Also

PERFect_sim, PERFect_perm

Examples

data(mock2)
# Proportion data matrix
Prop <- mock2$Prop

# Counts data matrix
Counts <- mock2$Counts
dim(Counts) # 240x46

# Perform simultaenous filtering of the data
res_sim <- PERFect_sim(X=Counts)
dim(res_sim$filtX) # 240x10, removing 36 taxa
colnames(res_sim$filtX) # signal taxa

#permutation perfect colored by FLu values
pvals_Plots(PERFect = res_sim, X = Counts, quantiles = c(0.25, 0.5, 0.8, 0.9), alpha=0.05)
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TraditR1 Traditional Filtering Rule 1

Description

This rule suggests to remove taxa that are mostly absent in all samples.

Usage

TraditR1(X, thresh =5)

Arguments

X OTU COUNTS table, where taxa are columns and samples are rows of the table.
It should be a in data frame format with columns corresponding to taxa names.

thresh Numerical value, set to 5 by default. Throughout all samples, taxa that are
present for less than this threshold with be removed.

Value

filtX Filtered OTU table

Author(s)

Ekaterina Smirnova

References

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutation filtration of microbiome data.

Examples

data(mock2)

# Counts data matrix
Counts <- mock2$Counts

# Filtering
Filtered_X <- TraditR1(Counts)
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TraditR2 Traditional Filtering Rule 2

Description

This rule is adopted from Milici et al. (2016) that removes taxa with low abundance level. Specifi-
cally, it keeps taxa with abundance level higher than 0.001%. Then it further selects taxa that satisfy
at least one of the following conditions: Present in at least one sample at a relative abundance higher
than 1% of the reads of that sample, present in at least 2% of samples at a relative abundance higher
than 0.1% for a given sample, present in at least 5% of samples at any abundance level.

Usage

TraditR2(X, Ab_min = 0.001)

Arguments

X OTU COUNTS table, where taxa are columns and samples are rows of the table.
It should be a in data frame format with columns corresponding to taxa names.

Ab_min Numerical value, set to 0.001 by default. Throughout all samples, taxa with
abundance less than this threshold with be removed.

Value

filtX Filtered OTU table

Author(s)

Ekaterina Smirnova

References

Smirnova, E., Huzurbazar, H., Jafari, F. “PERFect: permutation filtration of microbiome data.

Examples

data(mock2)

# Counts data matrix
Counts <- mock2$Counts

# Filtering
Filtered_X <- TraditR2(Counts)
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