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A regular lattice of spatially dependent binary observations is often modeled using the au-
tologistic model. It is well known that likelihood-based inference methods cannot be employed
in the usual way to estimate the parameters of the autologistic model due to the intractability
of the normalizing constant for the corresponding joint likelihood. Two popular and vastly
contrasting approaches to parameter estimation for the autologistic model are maximum pseu-
dolikelihood (PL) and Markov Chain Monte Carlo Maximum Likelihood (MCMCML). Two
newer and less understood approaches are maximum generalized pseudolikelihood (GPL) and
maximum block generalized pseudolikelihood (BGPL). Both of these newer methods repre-
sent varying degrees of compromise between maximum pseudolikelihood and MCMCML. The
research performed in this dissertation focuses on these four estimation methods, with partic-
ular emphasis given to GPL and BGPL, and incorporates theoretical, simulation-based, and
application-based components.

The theoretical components of this dissertation are three-fold. First, when employing GPL
or BGPL, the need to distinguish between types of neighbors within the neighborhood set of
a lattice site is formally developed. Such a distinction ultimately affects the functional forms
of the generalized pseudolikelihood and block generalized pseudolikelihood functions. Second,
extensions of generalized and block generalized pseudolikelihood for use in the space-time do-
main are proposed. As GPL and BGPL were initially only developed for use in the spatial
domain, these extensions are the first of their kind. Third, and finally, the basic asymp-
totic property of strong consistency is established for the estimates obtained via maximum
generalized and maximum block generalized pseudolikelihood.

In addition to the aforementioned theoretical components, this dissertation also includes
two simulation studies. In particular, a large scale purely spatial simulation study using the
autologistic model was conducted comparing the performances of PL, MCMCML, GPL, and
BGPL. This was the first such study to simultaneously compare GPL and BGPL, and it
was also the first such study to simultaneously incorporate a covariate, spatial anisotropy,
and higher-order neighborhood systems. The results of this study indicate that GPL tends
to outperform BGPL, and that both of these newer methods tend to achieve their intended
performance-based compromise between PL and MCMCML, particularly in situations where
estimation is notoriously difficult. Additionally, a small-scale space-time simulation study
using the spatio-temporal autologistic model was conducted comparing the performances of
PL, MCMCML, and the proposed space-time extensions of GPL and BGPL. Such a space-
time simulation study has never before been conducted. The results of this study suggest
that the proposed extensions of GPL and BGPL are indeed appropriate, and that the relative
performances of the four estimation methods in the space-time domain are largely analogous

ii



to those from the purely spatial domain.

The final component of this dissertation is application-based. More specifically, fire occur-
rence data from Oregon and Washington state are modeled, while accounting for the Departure
from Average fire potential metric as a covariate, using the spatio-temporal autologistic model.
All four estimation methods (PL, MCMCML, GPL, and BGPL) are employed to estimate the
parameters of several proposed spatio-temporal autologistic models, and a Monte Carlo-based
sum of absolute error (SAE) statistic is used as a model selection criterion.
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Chapter 1

Introduction to the Autologistic

Model

1.1 Introduction

Consider a forested region that is annually afflicted by wild fires. Envision partitioning a

large subsection of that forested region into equally sized pixels. Now associate with each

pixel of that subsection a binary random variable which is equal to one if any portion of the

region within that pixel experiences fire ignition in some time period, and zero otherwise.

Generally, these random variables should not be viewed as independent since pixels within

the subsection that are closer together are more apt to share a similar fire status than pixels

that are farther apart. Under such a scenario, the subsection can be viewed as a regular

lattice of spatially dependent binary random variables. Now suppose, for a cross section in

time, observations over the lattice were collected along with pertinent covariate information

corresponding to each pixel within the region (i.e. direction of the wind, average wind speed

over the region, a measure of relative greenness, etc.). The intuitive statistical question then

1
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becomes: How is the probability structure under such a paradigm modeled? The canonical

work by Besag ([2]) not only provided an answer to this question, but also elaborated on how

the probability structure of spatially dependent Gaussian, binomial, Poisson, and exponential

(i.e. exponential family of distributions) random variables on a regular lattice can intuitively

be defined. For the situation encompassing spatially dependent binary random variables on a

regular lattice, the model resulting from Besag’s work is aptly named the autologistic model. A

thorough theoretical treatment of the origins of the autologistic model is provided in Chapter

2, but the simplest type of autologistic model, known as the Ising model, is introduced here,

without formal development, to motivate and illustrate the content of this first chapter.

Let S = {(i, j) : i = 1, 2, . . . ,mr; j = 1, 2, . . . ,mc} be a finite two-dimensional subset of an

infinite-dimensional regular lattice, where mr and mc denote the number of rows and columns,

respectively, of S. Thus, (i, j) is the site located on the ith row and jth column of S. For

notational simplicity, let n ≡ mr × mc be the number of sites and S = {i : i = 1, . . . , n},

where the sites of S are labeled top to bottom within columns and left to right across columns,

although such an ordering is arbitrary. Let Zi be a binary random variable located on S, where

Ωi = {0, 1} is the corresponding support set. Furthermore, let Z = (Z1, . . . , Zn)′ denote

the random vector of binary variables over the entire lattice (S), where the joint support is

Ωn = Ω1 × . . .× Ωn. Define P(zi) ≡ P(Zi = zi) to be the probability of the random variable

Zi taking on the value zi ∈ Ωi, and similarly, define P(z) ≡ P(Z = z) to be the probability

of the random vector Z taking on the value z ∈ Ωn. The conditional probability form of the

Ising model is then given by the following equation:

P(zi|{zj : j ∈ Ni}) =
exp{αzi + θ

∑
j∈Ni

zizj}
1 + exp{α+ θ

∑
j∈Ni

zj}
, i = 1, . . . , n, (1.1)

where Ni is the set of sites neighboring site i (see Definition 2.2), α is the spatial trend

parameter, and θ is the spatial dependence parameter. The corresponding joint Ising model
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can be shown to have form:

P(z) =

exp{α
n∑
i=1

zi +
1

2
θ

n∑
i=1

∑
j∈Ni

zizj}

∑
y∈Ωn

exp{α
n∑
i=1

yi +
1

2
θ

n∑
i=1

∑
j∈Ni

yiyj}
, z ∈ Ωn. (1.2)

Note that the functional form of the Ising model, as given in (1.1), bears a strong resemblance

to that of the standard logistic model that is commonly employed with independent binary

random variables. This is not a coincidence. If the lattice sites were in fact spatially inde-

pendent, i.e. θ = 0, then (1.1) reduces to a simple intercept-only logistic model. Thus, the

functional form of the autologistic model is identical to that of the logistic model, except that

it also conditions on neighboring values of the binary response variable (i.e. the random vari-

able at a given site conditions on itself through it neighbors’ values). This explains prefacing

the term “logistic” with “auto” (meaning “self”) in naming the model.

To help solidify an understanding of this relationship between the logistic and autologistic

models and to help nurture intuition for the forthcoming exploration of the autologistic model

throughout this thesis, consider the fire example discussed at the beginning of this chapter.

If the spatial dependence is momentarily ignored, then the conditional probability that a

specified region experiences a fire ignition, given pertinent covariate values such as wind

direction, average wind speed, and relative greenness, can be modeled using the usual logistic

regression model. If, however, the pixel regions of the forest are instead viewed as a Markov

random field (i.e. they are assumed to have a spatial dependence structure: see Definition

2.3), then the conditional probability that a specified region experiences a fire ignition, given

the site’s covariate values and the fire ignition status of all other pixels in the region, depends

spatially only on the fire ignition status of the pixels within some neighborhood of the specified

site. The effect of these neighboring sites’ fire ignition status on the conditional probability

is then quantified through one or more spatial dependence parameters corresponding to the

number of neighboring sites with fire ignition. Hence, the usual logistic model is extended to
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an autologistic model.

The fact that the autologistic model is a seemingly intuitive extension of the logistic model

might seem to suggest that its development is void of difficulty and that its implementation is

straightforward. In reality, however, its development requires a powerful theorem to make such

a formulation even possible, and its implementation often requires the use of computationally

expensive estimation methods. More specifically, with the probability formulation coming

from a conditional point of view, the fact that the sites of a lattice are arbitrarily labeled

means that severe restrictions on the conditional distribution’s functional form exist. Such

restrictions could have prevented the development of the autologistic model if not for the

arrival of the Hammersley-Clifford theorem (see Theorem 2.3), which specifies the requisite

restrictions for obtaining a well-defined joint probability structure equivalent to the conditional

probability formulation. But even with this powerful result that enables a viable conditional

approach to modeling the probability structure, a closed form for the resulting joint density can

only be obtained up to a constant of proportionality. To see this, note that the denominator of

(1.2) consists of 2n summands. Even for small lattice samples of size 20×20, this corresponds

to 2400 ≈ 10120 summands! Consequently, with a generally intractable normalizing constant

for the likelihood function, methods other than exact maximum likelihood must be developed

and/or implemented to estimate the model parameters, most of which are computationally

expensive. In fact, since the autologistic model’s first appearance in the literature ([2]), the

nearly forty years of subsequent research on the autologistic model has primarily been focused

on methods of parameter estimation and their corresponding properties. The central interest

of this thesis continues this trend by exploring theoretical properties and comparing practical

results of several such estimation methods, including two recently developed methods that

attempt to offer a compromise between historical methods. The strong consistency of the

estimators for both of these newer methods is shown in Chapter 4 and comprises the major

theoretical component of this dissertation.

The remainder of this chapter summarizes relevant, with respect to this dissertation, re-
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search on the autologistic model. Section 1.2 will briefly introduce numerous methods for

estimating the parameters of the autologistic model; a thorough treatment of four such esti-

mation methods will be covered in Chapter 3. Section 1.3 provides a brief account of numer-

ous data sets the autologistic model has been applied to in the literature, while section 1.4

summarizes the results of the various simulation studies in the literature concerned with pa-

rameter estimation for the autologistic model. Section 1.5 briefly summarizes two approaches

considered for extending the autologistic model into the space-time domain, as well as the

approach employed for this dissertation, and discusses the few applications and simulation

studies revolving around such spatio-temporal autologistic models. A formal presentation of

spatio-temporal autologistic models is provided in Chapter 6, along with associated methods

of parameter estimation. Finally, section 1.6 outlines the objectives of this dissertation for

both the autologistic model and the spatio-temporal autologistic model.

1.2 Summary of Parameter Estimation Methods

The autologistic model is an intuitive extension of the logistic model, but estimating its

corresponding parameters is nontrivial since the inherent spatial dependence among the sites

of the lattice renders maximum likelihood estimation computationally intractable. Over the

past four decades numerous methods of parameter estimation have been developed to handle,

to varying extents, the intractable normalizing constant of the likelihood function. This

section summarizes, in some mathematical detail, many of these estimation methods as well

as pertinent, with regard to this dissertation, established properties of the resulting estimators.

Four of these methods are presented in full mathematical detail in Chapter 3.
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1.2.1 The Coding Method

The coding method was developed by Besag ([1],[2]) in 1974 and was the first estimation

method created for autologistic model parameters. The essence of this method is to partition

the sites of the lattice into conditionally independent sets, construct and maximize conditional

likelihoods for each such set of sites, and then average across these estimates to obtain the

corresponding coding method estimates for the parameters of the autologistic model. A more

precise description of this method is given below.

The coding method hinges on observing that the lattice sites can be minimally partitioned,

via a spatial Markov assumption (see Definition 2.3 and (2.3)), into conditionally independent

sets of sites, where the partitioning is dictated by the established neighborhood structure. For

instance, Figure 1.1 depicts a 5× 5 lattice under a first-order neighborhood system where all

of the “X” sites are conditionally independent, given the values at the “O” sites. Similarly,

the “O” sites are conditionally independent, given the values at the “X” sites. Under a

second-order neighborhood system, there would be four such sets of sites, where every site of

a set depends functionally on at least two variable values from each of the three remaining

sets. For each set of conditionally independent sites, a conditional likelihood function is then

obtained by forming the product of the autologistic conditional probabilities across all sites

within the conditionally independent set. For instance, assuming the Ising model (equation

(1.1)), and letting Sk denote the kth set of conditionally independent sites (so S =
K⋃
k=1

Sk),

the conditional likelihood for Sk, denoted CLk(·|·), is as follows:

CLk(α, θ|z) =
∏
i∈Sk

exp{αzi + θ
∑

j∈Ni
zizj}

1 + exp{α+ θ
∑

j∈Ni
zj}

, k = 1, 2, (1.3)

where K = 2 since the Ising model adheres to a first-order neighborhood system (see Figure

1.1). For each of the K conditional likelihoods, standard likelihood methods are then used to

obtain parameter estimates as with ordinary logistic regression. Finally, the K estimates are
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Figure 1.1: First-Order Coding Pattern
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and all of the “O” sites are conditionally inde-
pendent.

then combined (usually averaged) to obtain the coding method estimates for the parameters

of the autologistic model.

The coding method really does nothing more than use conditional maximum likelihood sev-

eral times and combine the resulting set of estimates. The primary appeal of this method is

its straightforward implementation and the fact that its estimates are consistent ([3]). Unfor-

tunately, each coding likelihood used to obtain the parameter estimates necessarily models no

more than 50% of the data at once. For instance, the conditional likelihood formed from the

“X” sites in Figure 1.1 necessarily does not include the conditional distributions of the “O”

sites, which comprise half of the lattice sites. To emphasize this limitation, consider a 20 by

20 lattice. Then each coding likelihood is necessarily only modeling at most 200 of the 400

random variables in producing an estimate of the parameters. This results in more variable

estimators than could be achieved if all data were simultaneously modeled in the likelihood.

Hence, despite the fact that the coding method is easy to implement, its use of a likelihood

based on just a subset of the data is most unsatisfactory.
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1.2.2 Pseudolikelihood

In 1975, only roughly three years after the coding method was first introduced, the method of

pseudolikelihood was developed by Besag ([3]). The driving idea behind pseudolikelihood is

to ignore the spatial correlation that exists between the random variables on the lattice, and

thus artificially treat the observations as independent and identically distributed realizations.

Effectively, the separate conditional likelihoods in the coding method are combined to form a

single “pseudo”likelihood. For the Ising model, the pseudolikelihood function, denoted PL(·|·),

is given as:

PL(α, θ|z) =

2∏
k=1

CLk(α, θ|z)

=

n∏
i=1

exp{αzi + θ
∑

j∈Ni
zizj}

1 + exp{α+ θ
∑

j∈Ni
zj}

. (1.4)

Straightforward maximum likelihood techniques can then be employed on the pseudolikelihood

function to determine the parameter estimates. However, because the likelihood function that

is being optimized is not the true likelihood function, unless the lattice sites are in fact

mutually independent, the method is called maximum pseudolikelihood (MPL) estimation.

This renders the asymptotic standard errors generally reported as part of standard logistic

regression output invalid. The standard errors for the maximum pseudolikelihood estimates

(MPLEs) may be obtained using a resampling technique such as parametric bootstrapping

since the observations are not actually independent ([19]).

The obvious advantages of maximum pseudolikelihood estimation include its use of all of

the data and the ease with which maximum pseudolikelihood estimates are obtained using

any basic statistical software program that has a generalized linear models package, which

includes logistic regression, such as R. The primary disadvantage of maximum pseudolikeli-

hood estimation is the fact that it blatantly ignores the spatial dependence structure of the

lattice. It should be intuitive, though, that the performance of pseudolikelihood improves
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with decreased spatial dependency, since the “closer” the data are to being independent, the

“closer” the pseudolikelihood function is to the true likelihood function. In other words, the

pseudolikelihood function is the true likelihood function only when all n sites of the lattice

are mutually independent. Finally, while Besag non rigorously argued the almost sure con-

vergence of the MPLEs to the true parameter values, many authors have rigorously proved

the strong consistency and/or the asymptotic normality of the maximum pseudolikelihood es-

timators under suitable conditions, including Geman and Graffigne ([13]), Jensen and Møller

([24]), Comets ([7]), and Guyon and Kunsch ([20]).

1.2.3 Markov Chain Monte Carlo Maximum Likelihood

While the coding method and pseudolikelihood established approaches to estimating spatially

dependent binary data, these methods did so by somewhat unsatisfactorily circumventing

the problem of the intractable normalizing constant. It was not until Geyer and Thompson

([15]) developed the Markov Chain Monte Carlo Maximum Likelihood (MCMCML) method

in 1992 that the pesky normalizing constant issue was approached head-on and resolved, at

least to some extent. A rigorous presentation of MCMCML is given in section 3.3, but a brief

overview of the method, without any theoretical justification, is given here. In particular,

MCMCML starts by selecting an arbitrary reference point in the parameter space. The Gibbs

sampler, or Metropolis-Hastings algorithm, is then employed to generate a Markov chain of

lattice realizations from the joint density of interest (e.g. (1.2)), but with the parameters set

equal to the aforementioned reference point. Ideally, this reference point is “close” to the

true parameter vector. These realizations are then used to create a Monte Carlo approximate

ratio of normalizing constants, where the numerator is evaluated at the true, but unknown,

parameter values and the denominator is evaluated at the reference point values. Finally,

this Monte Carlo approximate ratio is then used to construct a Monte Carlo approximate

likelihood, which is then numerically maximized to obtain the Markov chain Monte Carlo

maximum likelihood estimates (MCMCMLEs). The following outline of MCMCML applied
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to the Ising model, which comes largely from [18], should help solidify the basic understanding

of the method.

Let ψ = (α, θ)′ denote the true, but unknown, parameter values and let c(ψ) represent the

normalizing constant of the joint Ising model, i.e.

c(ψ) ≡
∑
z∈Ωn

exp{α
n∑
i=1

zi +
1

2
θ

n∑
i=1

∑
j∈Ni

zizj}, ψ ∈ Ψ, (1.5)

where Ψ = R × R is the two dimensional parameter space. Additionally, let φ = (α̂, θ̂)′ be

an initial estimate of ψ. The MPLEs are typically a convenient choice for φ, i.e. φ ≡ ψ̂PL =

(α̂PL, θ̂PL)′ ([18]). Either the Gibbs sampler or the Metropolis-Hastings algorithm, via the

Ising model (see (1.1)), is then used to generate an ergodic Markov chain of sample lattice

realizations, y1, . . . ,ym, for m large, from the joint probability mass function given by (1.2),

but with φ playing the role of ψ. These m Monte Carlo samples are then used, after sufficient

burn-in, to obtain a Monte Carlo approximation for the ratio of normalizing constants,
c(ψ)

c(φ)
,

which is given by the following equation:

c(ψ)

c(φ)
=

1

m

m∑
k=1

exp{Syk(α− α̂) +Nyk(θ − θ̂)}, (1.6)

where yk = (yk1, . . . , ykn)′ is the vector of responses on the kth generated lattice, k = 1, . . . ,m,

and Syk =
∑n

i=1 yki and Nyk = 1
2

∑n
i=1

∑
j∈Ni

ykiykj are the jointly sufficient statistics for the

kth realization from the Markov chain. The Monte Carlo approximate negative log-likelihood

function, denoted lm,z(ψ), is then given by the following equation:

lm,z(ψ) = −log{c(ψ)

c(φ)
}+ αSz + θNz

= −log

{
1

m

m∑
k=1

exp{Syk(α− α̂) +Nyk(θ − θ̂)}

}
+ αSz + θNz , (1.7)

where Sz and Nz are defined analogously to Syk
and Nyk

, respectively, and represent the



1.2. SUMMARY OF PARAMETER ESTIMATION METHODS 11

sufficient statistics for the true lattice data. Finally, the Markov chain Monte Carlo maximum

likelihood estimates (MCMCMLEs) are obtained by numerically minimizing lm,z(ψ) with

respect to ψ = (α, β)′. Asymptotic standard errors of the MCMCMLEs can be obtained by

inverting the approximate Markov Chain Monte Carlo observed information matrix ([18]),

which is just the Hessian matrix of lm,z(ψ) evaluated at the MCMCMLEs.

The impossible-to-overstate advantage of the previously described Markov Chain Monte

Carlo maximum likelihood method is the fact that estimates are obtained by approximating

the true log-likelihood function, not by ignoring the spatial dependence or by employing condi-

tional likelihoods that model a subset of the data. The resulting MCMCML estimates converge

almost surely to the true, but unknown, parameter values as a result of the Mean Ergodic

Theorem ([15]), and have been shown in simulation studies to be asymptotically normally

distributed ([23]). Furthermore, Graham ([18]) verified via a simulation study that “both the

Monte Carlo likelihood ratio test statistic and the Monte Carlo Wald test statistic have their

usual asymptotic chi-squared distributions” ([23]). While the method of MCMCML appears

to be optimal, it is, however, not without difficulties. Specifically, the primary disadvantages

of the MCMCML method are its computational expense, which can be quite substantial, and

the fact that while the reference point is in theory arbitrary, it needs to be relatively close,

in practice, to the true parameter values or the Markov chain may not converge ([36]). If the

spatial dependence is strong, the maximum pseudolikelihood estimates may be poor, and the

MCMCML method may not converge with the MPLEs as reference points.

Spurred by the intuitive appeal of MCMCML and the computational efficiency of MPL,

researchers began seeking a compromise between the two methods which addressed the spatial

dependence, yet did so in a computationally efficient manner. It can be inferred from some of

the subsequent research ([11], [22], [32]) that two objectives were to find a method that would

either estimate the model parameters almost as effectively as MCMCML, but with reduced

computational expense, and/or to improve the reference values for the MCMCML algorithm

in situations were pseudolikelihood was performing poorly.
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1.2.4 Generalized Pseudolikelihood

The method of generalized pseudolikelihood (GPL) was developed in 2002 by Huang and Ogata

([22]) as a compromise between pseudolikelihood and MCMCML. Ultimately this method is

a straightforward extension of pseudolikelihood. A thorough presentation of GPL is given in

section 3.4, but a brief overview of the method, as described by Sherman et al. ([32]), is given

here; the Ising model will serve as an example throughout the forthcoming discussion.

For each site of the lattice, let g(i) denote the group of sites “associated” with site i,

i = 1, . . . , n. Typically, each site’s group consists of that site and its nearest neighbors, but

in theory the modeler is free to implement any sort of group configuration imaginable and

different sites can even have different group configurations. For example, under the Ising

model, a common group configuration is g(i) = {i ∪ Ni} ∀i = 1, . . . , n, where Ni are the

four first-order neighbors of site i. This creates a 5-site group in the shape of a cross. The

set of variables corresponding to the sites of group i are denoted by Zg(i) = {Zk : k ∈

g(i)}. Similarly, Zg(i) = {Zk : k /∈ g(i)} denotes the set of variables corresponding to the

sites not in the ith group. Additionally, let N
g(i)
k denote the neighbors of site k that are

members of g(i) and N
∂g(i)
k denote the neighbors of site k that are not members of g(i), i.e.

the sites of N
∂g(i)
k are boundary neighbors of group i. Furthermore, Nk = N

g(i)
k ∪ N∂g(i)

k ,

where N
g(i)
k ∩ N∂g(i)

k = ∅. For example, in Figure 1.2, under a first-order neighborhood

system, N
g(X0)
X0

= {X1, X2, X3, X4} and N
∂g(X0)
X0

= ∅, while N
g(X0)
X1

= {X0} and N
∂g(X0)
X1

=

{B1, B2, B3}. The need for such a distinction among the neighbors of a site is not expressed in

the literature, but was discovered over the course of this thesis work; more will be said about

this crucial distinction in Chapter 3. For each group, g(i), the corresponding joint likelihood

function conditioned on the group boundary sites is then constructed. For example, under

the Ising model, the joint likelihood for group i, where zg(i) ∈ Ω|g(i)|, is the following:
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Figure 1.2: GPL Structure
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A group, its boundary neighbors, and the corresponding external sites under the Ising model
on a 7x7 lattice subset of S. Sites X1, X2, X3, and X4 are the neighbors and additional
group members corresponding to site X0, while the 8 B sites represent the fixed boundary
neighbors of the group. The 36 e sites represent the external sites of the group, i.e., the sites
that are conditionally independent of the group sites under the spatial Markov assumption.

P(zg(i)|zg(i))=

exp

α
∑
k∈g(i)

zk + θ

1

2

∑
k∈g(i)

∑
j∈Ng(i)

k

zkzj +
∑
k∈g(i)

∑
j∈N∂g(i)

k

zkzj




∑
y∈Ω|g(i)|

exp

α
∑
k∈g(i)

yk + θ

1

2

∑
k∈g(i)

∑
j∈Ng(i)

k

ykyj +
∑
k∈g(i)

∑
j∈N∂g(i)

k

ykyj



, (1.8)

where |g(i)| is the number of sites in group i. For the Ising model, |g(i)| = 5 ∀i = 1, . . . , n,

when g(i) is as defined above. By the spatial Markov assumption, the conditioned sites of

the group joint distributions are reduced from all other sites of the lattice (i.e. zg(i)) to just

the neighboring boundary sites of the group, i.e., the sites that are neighbors of at least one

group site but are not themselves a member of the group (see Figure 1.2). The sites that

are neither a member of group i nor a boundary neighbor of group i are referred to as the

external sites of group i. Since the number of sites within a group is relatively small and

the boundary neighbor sites are viewed as fixed, the normalizing constant of a group’s joint
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likelihood can be obtained fairly easily via brute force. For example, with the Ising model,

there are five sites in a group (and eight fixed boundary neighbor sites), which means that

the corresponding normalizing constant (denominator of right hand side of (1.8)) contains

25 summands, which can be computed relatively quickly. The generalized pseudolikelihood

function is then constructed by taking the product over all n group joint likelihood functions.

For example, the generalized pseudolikelihood function, denoted GPL(·|·), for the Ising model

is the following:

GPL(α, θ|z) =

n∏
i=1

P(zg(i)|zg(i))

=
n∏
i=1

exp

α
∑
k∈g(i)

zk + θ

1

2

∑
k∈g(i)

∑
j∈Ng(i)

k

zkzj +
∑
k∈g(i)

∑
j∈N∂g(i)

k

zkzj




∑
y∈Ω|g(i)|

exp

α
∑
k∈g(i)

yk + θ

1

2

∑
k∈g(i)

∑
j∈Ng(i)

k

ykyj +
∑
k∈g(i)

∑
j∈N∂g(i)

k

ykyj



. (1.9)

Note that for a 20 × 20 lattice (with a neighboring buffer), there are a total of 400 groups

each with 32 normalizing constant summands, for a total of 12, 800 pieces to compute. This

offers a significant reduction to the 10120 summands required by the true likelihood. The

corresponding maximum generalized pseudolikelihood estimates (MGPLEs) are obtained by

numerically maximizing the generalized pseudolikelihood function with respect to the model

parameters. As was the case with the MPLEs, standard errors for the MGPLEs can be

obtained using a resampling technique, such as parametric bootstrapping, since the generalized

pseudolikelihood function, under any reasonable group size, still does not fully account for the

spatial dependency.

Generalized pseudolikelihood is a compromise between PL and MCMCML for the following

reasons. If each site’s group consists only of that site, i.e. g(i) = {i} ∀i = 1, . . . , n, then GPL

reduces to PL since the generalized pseudolikelihood function becomes the pseudolikelihood

function. For example, under the Ising model, if g(i) = {i}, then (1.4) and (1.9) are equivalent.
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On the other hand, if each site’s group consists of the entire lattice, i.e. g(i) = {1, . . . , n}

∀i = 1, . . . , n, then each group’s joint likelihood is actually the true likelihood. For example,

under the Ising model, if g(i) = {1, . . . , n}, then (1.2) and (1.8) are equivalent. Thus, while

PL makes no adjustments to the normalizing constant and MCMCML cleverly approximates

the normalizing constant to fully accommodate the spatial dependency, GPL partially adjusts

(the extent depends on group size) the normalizing constant by accommodating the spatial

dependency within groups of the lattice, but without the computational expense.

The primary advantage of the method of generalized pseudolikelihood is the fact that the

user can dictate the amount of implemented compromise between PL and MCMCML by alter-

ing the size of the groups. Hence, in situations of relatively strong spatial dependency, where

PL is relatively inefficient and MCMCML is perhaps too computationally expensive, GPL

should in theory produce estimates that are more efficient than the corresponding MPLEs,

but at a cheaper computational expense than the MCMCMLEs. The noteworthy disadvan-

tages of GPL include the following. First, if the group size is too large, regardless of the

strength of the spatial dependency, the computational expense of GPL will swiftly increase as

a function of group size. Second, since a resampling method is generally implemented to ob-

tain valid standard errors for the MGPLEs, the computational expense in obtaining standard

errors could become substantial for even moderately sized groups. Therefore, MCMCML will

generally be preferable to GPL when employed using large group sizes. Despite these limita-

tions of GPL, Huang and Ogata ([22]) suggested that in the presence of very strong spatial

dependency, the MGPLEs that are obtained using a reasonable group size can still possibly

be used as the reference point for the MCMCML algorithm when the MPLEs may be too

poor for the Markov chain to converge. This claim will be analyzed as part of a simulation

study in Chapter 5.

It should also be mentioned that Sherman et al. ([32]) observed an interesting phenomenon

with regard to the MGPLEs that was attributed to edge effects (see section 2.2.4 for a discus-

sion of edge effects). Specifically, while one might intuitively speculate that the improvement
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in efficiency the MGPLEs yield over the MPLEs is a monotone increasing function of group

size, simulations revealed that if the group size becomes too large, the increase in efficiency

is outweighed by the increasing influence of edge effects. Finally, while GPL is a relatively

simple extension of PL, the strong consistency and asymptotic normality of the MGPLEs,

under suitable conditions, have hitherto remained unproven in the literature. A proof of the

strong consistency of the MGPLEs is provided in Chapter 4.

1.2.5 Block Generalized Pseudolikelihood

Another method that serves as a compromise between PL and MCMCML, that was presented

in an unpublished paper by Lim et al. ([27]) and in a Bayesian setting by Friel et al. ([11]),

is the method of block generalized pseudolikelihood (BGPL). As with GPL, this method

is a relatively straightforward extension of PL. A thorough presentation of BGPL is given

in section 3.5, but a brief overview of the method, as described by [11], but in a classical

(not Bayesian) setting, is given here. Once again the Ising model will serve as an example

throughout the forthcoming discussion.

The lattice of interest is first partitioned into L ≤ n disjoint blocks, where b(l) denotes

the sites “associated” with block l, l = 1, . . . , L (so S =
L⋃
l=1

b(l)). Typically, the lattice is

partitioned so that each block has an equal number of sites (if possible), but in theory the

modeler is free to partition in such a way that blocks have different numbers of sites. More

practical blocking mechanisms include forming b×b blocks across the lattice for b = 2, 3, or 4,

or letting multiple adjacent columns (or rows) represent a block. For illustrative purposes,

an Ising model in which a 3 × 3 block structure has been established will be assumed. The

set of variables corresponding to the sites of block l are denoted by Zb(l) = {Zk : k ∈ b(l)},

l = 1, . . . , L. Similarly, Zb(l) = {Zk : k /∈ b(l)} denotes the set of variables corresponding to

the sites not in the lth block. Additionally, let N
b(l)
k denote the neighbors of site k that are

members of block l and N
∂b(l)
k denote the neighbors of site k that are on the boundary of block



1.2. SUMMARY OF PARAMETER ESTIMATION METHODS 17

Figure 1.3: BGPL Structure

X3

X2

X1

X6

X5

X4

X9

X8

X7

B3

B2

B1

B12

B11

B10

B5 B7 B9

B4 B6 B8

e

e

e

e

e

e

e

e

e

e

e

e

e

ee e e e e

e e e e e

e

e

e

e
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l, i.e. the sites of N
∂g(i)
k are boundary neighbors of block l. Furthermore, Nk = N

b(l)
k ∪N∂b(l)

k ,

where N
b(l)
k ∩N∂b(l)

k = ∅. For example, suppose the block given in Figure 1.3 is the lth block in

the partitioning of S, then under a first-order neighborhood system, N
b(l)
x5 = {X2, X4, X6, X8}

and N
∂b(l)
x5 = ∅, while N

b(l)
x1 = {X2, X4} and N

∂b(l)
x1 = {B1, B4}, and N

b(l)
x4 = {X1, X5, X7} and

N
∂b(l)
x4 = {B6}. As with GPL, the need for such a distinction among the neighbors of a site is

not expressed in the literature, but its importance was realized over the course of this thesis

work; more will be said about this crucial distinction in Chapter 3. For each of these blocks,

the corresponding joint likelihood function is then constructed. For example, under the Ising

model, the joint likelihood for block l, where zb(l) ∈ Ω|b(l)|, is the following:

P(zb(l)|zb(l)) =

exp

α
∑
k∈b(l)

zk + θ

1

2

∑
k∈b(l)

∑
j∈Nb(l)

k

zkzj +
∑
k∈b(l)

∑
j∈N∂b(l)

k

zkzj




∑
y∈Ω|b(l)|

exp

α
∑
k∈b(l)

yk + θ

1

2

∑
k∈b(l)

∑
j∈Nb(l)

k

ykyj +
∑
k∈b(l)

∑
j∈N∂b(l)

k

ykyj



, (1.10)
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where |b(l)| is the number of sites in the lth block. For the Ising model, |b(l)| = 9 ∀l = 1, . . . , L,

when b(l) is as defined above. By a spatial Markov assumption, the conditioned sites of the

block joint distributions are reduced from all other sites of the lattice (i.e. zb(l)) to just the

neighboring boundary sites of the block, i.e., the sites that are neighbors of at least one block

site but are not themselves a member of the block (see Figure 1.3). The sites that are neither

a member of block l nor a boundary neighbor of block l are referred to as the external sites

of block l. Since the number of sites within a block is relatively small and the boundary

neighbor sites are viewed as fixed, the normalizing constant of a block’s joint likelihood can

be obtained fairly easily via brute force or via a recursion method (see section 1.2.6). For

example, with the Ising model, there are nine sites in a block (and twelve fixed boundary

neighbor sites), which means that the corresponding normalizing constant (denominator of

right hand side of (1.10)) contains 29 summands, which can be computed relatively quickly.

The block generalized pseudolikelihood function is then constructed by taking the product

over all L block joint conditional likelihood functions. For example, the block generalized

pseudolikelihood function, denoted BGPL(·|·), for the Ising model is the following:

BGPL(α, θ|z) =
L∏
l=1

P(zb(l)|zb(l))

=

L∏
l=1

exp

α
∑
k∈b(l)

zk + θ

1

2

∑
k∈b(l)

∑
j∈Nb(l)

k

zkzj +
∑
k∈b(l)

∑
j∈N∂b(l)

k

zkzj




∑
y∈Ω|b(l)|

exp

α
∑
k∈b(l)

yk + θ

1

2

∑
k∈b(l)

∑
j∈Nb(l)

k

ykyj +
∑
k∈b(l)

∑
j∈N∂b(l)

k

ykyj



.(1.11)

The corresponding maximum block generalized pseudolikelihood estimates (MBGPLEs) are

obtained by numerically maximizing the block generalized pseudolikelihood function with

respect to the model parameters. As was the case with the MPLEs and the MGPLEs, standard

errors for the MBGPLEs can be obtained using a resampling technique, such as parametric

bootstrapping, since the block generalized pseudolikelihood function, under any reasonable

block size, still does not fully account for the spatial dependency.
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Block generalized pseudolikelihood is a compromise between PL and MCMCML for essen-

tially the same reasons as GPL. Specifically, if each block consists only of a single site, i.e.

b(l) = {l} ∀l = 1, . . . , n (so L = n), then BGPL reduces to PL since the block generalized

pseudolikelihood function becomes the pseudolikelihood function. For example, under the

Ising model, if b(l) = {l}, then (1.4) and (1.11) are equivalent. Furthermore, if there is only

one block that consists of the entire lattice, i.e. b(1) = {1, . . . , n} (so L = 1), then that

block’s joint likelihood is actually the true likelihood. For example, under the Ising model,

if b(1) = {1, . . . , n}, then (1.2) and (1.10) are equivalent. Thus, just as with GPL, while PL

makes no adjustments to the normalizing constant and MCMCML cleverly approximates the

normalizing constant to fully accommodate the spatial dependency, BGPL partially adjusts

(the extent depends on block size) the normalizing constant by accommodating the spatial

dependency within blocks of the lattice.

Before discussing properties of the MBGPLEs, as well as pros and cons of BGPL, the

difference between GPL and BGPL should be clarified. Under GPL each site has a group

associated with it, but each site can belong to multiple groups; for instance, under the Ising

model with g(i) = {i ∪ Ni}, any given internal site of the lattice is a neighbor to four other

sites on the lattice and, thus, that internal site belongs to five distinct groups. On the other

hand, under BGPL, each site belongs to only one block. Hence, under BGPL each site only

appears in one of the block joint likelihoods that are used to form the BGPL function. Under

GPL, each site can appear in several of the group joint likelihoods that are used to form the

GPL function. In other words, groups overlap, but blocks do not. This subtlety is the only

difference between the two methods and if both the block and the group size are one, then

GPL and BGPL both reduce to PL. A thorough performance-based comparison of these two

methods does not currently exist in the literature, but is a topic of Chapter 5.

Returning to points of interest with BGPL, one substantial advantage of BGPL, just as with

GPL, is the fact that it allows the user to dictate the amount of compromise between PL and

MCMCML. Specifically, the extent of the compromise that is expressed through the BGPL
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function is determined by the block size. Hence, both BGPL and GPL can be used in place

of PL or MCMCML in situations of moderate to strong spatial dependency, where the unad-

justed normalizing constant of the PL function causes efficiency issues in the method and the

approximate normalizing constant obtained through MCMCML can make the method compu-

tationally expensive. The disadvantages of BGPL parallel those of GPL. First and foremost,

when and if large block sizes are used to model lattices exhibiting moderate to strong spatial

dependency, the computational expense of BGPL will markedly increase. Do note, however,

that if block size is equal to group size, everything else being held equal, BGPL should be less

computationally expensive than GPL due to the redundancy or overlap present in the GPL

function. The second limitation of BGPL, as with GPL, centers on obtaining standard errors

through a resampling method. Since such a method of obtaining standard errors can itself

be computationally expensive, the standard errors of the MBGPLEs can be costly to ascer-

tain under a relatively large block size. Thus, in situations where large block sizes are needed,

MCMCML will presumably be preferable to BGPL. Furthermore, although it is not suggested

in the literature, in the presence of strong spatial dependence, the MBGPLEs obtained using

a reasonable block size can still be used, just as the MGPLEs can, as the reference point for

the MCMCML algorithm when the MPLEs are ineffective at producing a convergent Markov

chain. Finally, as with the MGPLEs, the strong consistency and asymptotic normality of the

MBGPLEs remain unproven. A proof of the strong consistency of the MBGPLEs is provided

in Chapter 4.

1.2.6 Recursion Method

To efficiently calculate the group/block normalizing constants using GPL/BGPL, a method

known as the Recursion method can be employed. This method was originally presented in

Reeves et al. ([30]) as a means for computing the exact maximum likelihood estimates for

small lattices, but was adapted for supplementary use with BGPL by Pettitt et al. ([11]).

The essence of the original Recursion method, as described in Pettitt et al. ([11]), is to use a
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recursive formula to calculate the normalizing constant so that maximum likelihood methods

can be directly implemented. A fairly detailed overview of this method for calculating an

intractable normalizing constant, as presented in [30], is given here; the Ising model will again

serve as an example throughout the forthcoming development.

Let q(z) denote the unnormalized joint likelihood function for the discrete random vector

z. For the Ising model, q(z) would be the numerator of (1.2):

q(z) = exp{α
n∑
i=1

zi +
1

2
θ

n∑
i=1

∑
j∈Ni

zizj}, z ∈ Ωn. (1.12)

Let r < n denote the lag for the algorithm and let k = n − r. For the Ising model, r =

min{mr,mc}, where mr is the number of lattice rows and mc is the number of lattice columns.

The following factorization of q(·), referred to as the lag-r model, can then be obtained:

q(z) = q1(z1, z2, . . . , zr+1)q2(z2, z3, . . . , zr+2) . . . qk(zk, zk+1, . . . , zn). (1.13)

In the context of the Ising model, where for illustrative purposes it is assumed that the lattice

of interest is 3x4 (so n = 12, r = 3, and k = 9) as in figure 1.4, there are nine such functions,

q1(·), . . . , q9(·), which are defined as follows:

q1(z1, . . . , z4) = exp{α
4∑
i=1

zi + β(z1z2 + z2z3 + z1z4)}, (1.14)

qu(zu, . . . , zu+3) = exp{αzu+3 + βzu+3(zu + zu+3−1)}, u = 2, 3, 5, 6, 8, 9, (1.15)

qw(zw, . . . , zw+3) = exp{αzw+3 + βzw+3zw}, w = 4, 7. (1.16)

The visual intuition behind (1.14), (1.15), and (1.16) is aided by the following explanation,

when coupled with Figure 1.4. Specifically, q1(z1, . . . , z4) accounts for the
∑4

i=1 zi portion

of the jointly sufficient statistic associated with the spatial trend parameter (
∑12

i=1 zi), while

the (z1z2 + z2z3 + z1z4) terms account for the vertical neighbor relations between sites 1

and 2 and sites 2 and 3, and the one horizontal neighbor relation between sites 1 and 4; all
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Figure 1.4: Recursion Method Visual Aid
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tions of the Recursion method are defined
when working with the Ising model.

three of which are part of the jointly sufficient statistic for the spatial dependence parameter

(1
2

∑12
i=1

∑
j∈Ni

zizj). Next, q2(z2, . . . , z5) accounts for the z5 component of the jointly suffi-

cient statistic associated with the spatial trend parameter, while the z5(z2 +z4) term accounts

for the one vertical neighbor relation between sites 4 and 5, and the one horizontal neighbor re-

lation between sites 2 and 5; both of which are part of the jointly sufficient statistic for the spa-

tial dependence parameter. Similar statements apply to qu(zu, . . . , zu+3), u = 3, 5, 6, 8, and 9,

and analogous statements can be made for q4(z4, . . . , z7) and q7(z7, . . . , z10). Thus, the q(·)

functions are defined in such a way that when they are all multiplied together, each neigh-

bor relation will have been accounted for and the jointly sufficient statistics will have been

correctly manufactured.

Now let (zi, zi+1, . . . , zj) be concisely denoted by zji . The normalizing constant for q(z),

c(ψ), where ψ is the parameter vector, is then given by the following equation:

c(ψ) =
∑
z
q(z)

=
∑
zn

k+1

∑
zk

qk(z
n
k)
∑
zk−1

qk−1(zn−1
k−1) . . .

∑
z1

q1(zr+1
1 ). (1.17)

Returning to the 3x4 Ising model example, (1.17) becomes the following:

c(α, β) =
∑
z∈Ω12

q(z)
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=
∑
z12

10∈Ω3

∑
z9∈{0,1}

q9(z12
9 )

∑
z8∈{0,1}

q8(z11
8 ) . . .

∑
z1∈{0,1}

q1(z4
1). (1.18)

Now define the following two functions:

Q1(zr+1
2 ) =

∑
z1

q1(zr+1
1 ), (1.19)

Qt(z
r+t
t+1) =

∑
zt

qt(z
r+t
t )Qt−1(zr+t−1

t ), t = 2, . . . , k. (1.20)

In the context of the 3× 4 Ising model example, (1.19) and (1.20) become the following:

Q1(z4
2) =

∑
z1∈{0,1}

q1(z4
1), (1.21)

Qt(z
3+t
t+1) =

∑
zt∈{0,1}

qt(z
3+t
t )Qt−1(z3+t−1

t ), t = 2, . . . , k. (1.22)

Finally, the intractable normalizing constant can then be recursively evaluated as follows:

c(ψ) =
∑
zn

k+1

Qk(z
n
k+1). (1.23)

In light of (1.23), the normalizing constant corresponding to the 3x4 Ising model example is

then recursively evaluated as follows:

c(α, β) =
∑
z12

10∈Ω3

Q9(z12
10). (1.24)

Hence, the Recursion method provides a recursive approach to calculating the intractable

normalizing constant of the likelihood function associated with a lattice of spatially dependent

random variables, which then makes exact maximum likelihood methods possible.

In addition to providing a means for computing the normalizing constant of an intractable

likelihood function, the recursion method also provides this approach at a computational

expense that is less than that of brute force [30]. Unfortunately, the method is really only
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viable for lattices where the smaller of the number of rows and the number of columns is

at most 20, and the other dimension is not unreasonably large ([11]). Hence, the method

was borrowed for supplementary use with BGPL where block sizes were sufficiently small

([11]). Specifically, the recursive formula for calculating the normalizing constant is used

to more efficiently (relative to direct computations) calculate the normalizing constant of

each block joint likelihood function, thus alleviating, in theory, some of the computational

expense of BGPL. While it is not discussed in the literature, there is no reason, in theory,

why the Recursion method couldn’t also be used in a supplementary fashion with GPL to

more efficiently calculate the normalizing constant of each group joint likelihood function.

Since the Recursion method, on its own, is only viable with relatively small lattices and the

simulation studies carried out for this thesis (see Chapter 5) focused on lattices larger than

20×20, the method was only considered for use as a supplement to both BGPL and GPL. Once

the Recursion method was implemented with GPL and BGPL, however, it became apparent

that the method did not offer a substantial improvement in computational expense when

computing the normalizing constants associated with the group and block joint likelihoods.

Consequently, the Recursion method will not be discussed further in this thesis.

1.2.7 Additional Estimation Methods

While the aforementioned estimation methods comprise the focus of this dissertation, minus

the coding method (for reasons discussed in sections 1.3 and 1.4 below) and the Recursion

method, other estimation methods do exist, two of which are briefly discussed here. The first

is Markov Chain Monte Carlo Stochastic Approximation (MCMC-SA) which, as described

by He et al. ([21]), is a “two-stage stochastic approximation” algorithm that is ultimately

an iterative extension of MCMCML. In particular, once the MCMCML estimate of ψ is

found, the Gibbs sampler is then run again, but with the MCMCMLEs as the reference point

(φ), and the resulting chain of realizations is then used to obtain new MCMCMLEs. Note
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that an important distinction between this method and MCMCML is that with MCMC-SA

the numerical optimization is carried out using a stochastic approximation of the Newton-

Raphson algorithm. This process continues in an iterative fashion until some pre-specified

tolerance is reached; the resulting estimates signify the completion of the first stage of MCMC-

SA. The second and final stage of MCMC-SA iteratively repeats the first stage, where the

initial value for φ in the Gibbs sampler is set equal to the final estimate of ψ obtained

from stage I, but now the numerical optimization is performed by coupling the stochastic

approximation of the Newton-Raphson algorithm with an averaging procedure. Once a pre-

specified tolerance is achieved within stage II, the MCMC-SA estimate of ψ is then just

the MCMCMLEs obtained from the final iteration of stage II. The method of MCMC-SA

is not considered in this dissertation as it is substantially more expensive computationally

and, more importantly, simulation results revealed little difference between this method and

standard MCMCML ([21]). Finally, the reduced dependency approximation method, or RDA,

developed by Pettitt et al. ([11]), aims to better approximate the normalizing constant for

large lattices using the recursion method. RDA is not considered in this thesis since it is

essentially just an extension of the Recursion method.

1.3 Applications of Estimation Methods

The estimation methods for the autologistic model discussed in section 1.2 have been applied

to a wide range of real data sets in the literature. Arguably the most commonly implemented

method in the literature, despite its documented limitations (see section 1.4), is PL, which

is routinely either the only estimation method used or at least one of several methods used.

The MPLEs are routinely calculated for, if no other reason, use as the reference values for

MCMCML and/or the starting values in the numerical optimization of the GPL and BGPL

functions. Pseudolikelihood’s popularity is almost certainly due to its straightforward im-

plementation, but it is also popular because the MPLEs are “adequate for most purposes”
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when the spatial dependency is small ([36]). Markov chain Monte Carlo maximum likelihood

is also an extremely popular estimation method in the literature and, from a purely empir-

ical perspective, it seems to have become the “gold standard” since the late 1990s. Use of

the coding method is seen predominately either right after the autologistic model was first

introduced, or in papers conducting a simulation study comparing several estimation meth-

ods, which are also then typically applied to a real data set. The coding method’s limited

number of appearances in the literature is most likely attributable to both the inefficiency of

the estimates obtained from the coding method ([3]) and the fact that PL, a more efficient

method (see section 1.4), was presented in [3] shortly after the autologistic model was first

introduced in 1974. As several simulation studies (see section 1.4) have demonstrated that the

coding method is inferior to both PL and MCMCML ([35], [36], [18]), any use of the coding

method in the literature is hard to find past the late 1990s. Finally, as GPL and BGPL are

both relatively new estimation methods, their use in the literature is, to date, sparse. The

remainder of this section recounts, in limited detail, a representative sampling of examples in

the literature where the estimation methods for the autologistic model have been applied to

real data sets.

The coding method was employed to model the spatial distribution (presence/absence) of

the weed Plantago lanceolata in defunct mine workings in Flintshire, England ([2]). Pseu-

dolikelihood, along with parametric bootstrapping, was implemented to model the spatial

distribution (presence/absence) of a phytophthora epidemic in bell pepper plants, while in-

corporating soil water content and leaf disk assays as covariates ([19]). The spatial distribution

(presence/absence) of mountain pine beetle in a stand of lodgepole pine trees in Oregon was

modeled, while incorporating the covariates age, vigor, and log of diameter breast height,

using pseudolikelihood to estimate the model parameters and a parametric bootstrap proce-

dure to determine the corresponding standard errors ([29]). Pseudolikelihood was also used,

under an anisotropic first-order neighborhood system, to model the spatial distribution (pres-

ence/absence) of the citrus sudden death (CSD) disease in a grove of citrus trees in Minas
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Gerais State, Brazil ([25]). The spatial distribution (presence/absence) of the plant species

Rumex acetosella (red sorrel) in abandoned agricultural fields in the Piedmont region of New

Jersey, U.S., was modeled separately over 11 time points (annually from 1968 to 1978) us-

ing pseudolikelihood, while incorporating the presence/absence of the plant species Lonicera

japonica (Japanese honeysuckle) as a cofactor; a parametric bootstrap was employed to obtain

the corresponding standard errors ([5]).

Huffer and Wu applied the autologistic model, on several different occasions in the literature,

to describe the spatial distribution of two Florida plant species ([35], [36], [23]). Initially, the

spatial distribution (presence/absence) of Castanea pumila was modeled, while incorporating

the climate covariate median freeze-free period (in days), or FZF, using the coding method,

PL, and MCMCML to estimate the corresponding parameters ([35]). The coding method,

PL, and MCMCML were again used to model the spatial distributions (presence/absence)

of Castanea pumila and Zanthoxylum Clava-herculis while incorporating climate variables

([36]). Specifically, the presence/absence of Castanea pumila was again modeled, but this

time incorporating three climate covariates: mean annual temperature (oC), mean total annual

precipitation (mm), and a moisture index. Furthermore, the presence/absence of Zanthoxylum

Clava-herculis was also modeled while incorporating the climate covariates mean temperature

(oC) of coldest month, mean minimum temperature (oC) of coldest month, and elevation (ft).

Finally, the spatial distribution of Castanea pumila was additionally modeled in [23], while

again incorporating the climate covariate FZF, but only using MCMCML to estimate the

model parameters.

Pseudolikelihood and MCMC were employed, under a second-order neighborhood system, to

model, separately, both the spatial distributions (presence/absence) of the subarctic evergreen

woodland and the boreal evergreen forest, while incorporating climate covariates, in British

Columbia, Canada. Generalized pseudolikelihood, under five possible group sizes, was used to

model the spatial distribution of Wiebe’s wheat yield data ([22]) once the original observations

had been transformed into binary data according to whether a site’s yield was at least as
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large as the median site yield ([22]). Pseudolikelihood, GPL, and MCMC were implemented

to model the spatial distribution (high or low) of liver cancer mortality for 2,003 counties of

the eastern United States during the 1950’s ([32]). Finally, PL and BGPL were used, in a

Bayesian setting, to model the spatio-temporal distribution that corresponds to whether the

72 genes that make up the mitochondrial chromosome of the Plasmodium falciparum genome

are down- or up-regulated over 46 1-hr. intervals ([11]). Note that while this data set is a 46x72

spatio-temporal lattice in one-dimensional space, it can still be treated as a two-dimensional

lattice of spatial binary random variables, with time treated as a second spatial dimension.

For this thesis work, PL, MCMCML, GPL, and BGPL are used to model a cross-section in

time of the spatial distribution (presence/absence) of fire ignition in Oregon and Washington

state while incorporating a MODIS-derived (Moderate Resolution Imaging Spectroradiome-

ter) fire potential metric, Departure from Average (DA), as a covariate. The data for this

analysis, which cover the months between May and October for each of the four years from

2002 to 2005, were graciously shared by Cindy Leary, a researcher at The University of Mon-

tana, during the course of her work with the Fire Sciences Laboratory in Missoula, Montana.

The following brief description of the data set is a summary of the more exhaustive descrip-

tion given in [26]. In particular, the spatial domain encompassed by Oregon and Washington

that is modeled comprises an 870 km by 740 km regular lattice that consists of four distinct

terrestrial ecosystems including Temperate Broadleaf and Mixed Forests, Temperate Conifer-

ous Forests, Temperate Grasslands, Savannas, and Shrublands, and finally, Deserts and Xeric

Shrublands. The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite plat-

form data, obtained from “NASA’s Land Processes Distributed Active Archive Center (LP

DAAC)”, were used to derive the Enhanced Vegetation Index (EVI) that is ultimately used

to produce the DA values for each 1 km2 pixel. Furthermore, the binary fire data for the

spatial domain were constructed by first “merging state and federal fire occurrence records for

Oregon and Washington into a single historical database” and then converting these data into

a lattice of binary values where a pixel (or site) receives a value of 1 if any location within the
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1 km2 pixel experiences fire ignition, and a value of 0 otherwise. A more detailed description

of the data set, as well as the results of the analysis, is given in chapter 7.

1.4 Simulations of Estimation Methods

While it is clear that the autologistic model, under all of the aforementioned estimation

methods, can be and has been readily applied to countless real-life data sets, perhaps the

most pertinent questions that should then be addressed are: Which, if any, of the methods is

best? and/or Under what circumstances is one method preferable to all other methods? In

an attempt to address such questions, a handful of simulation studies have been conducted

comparing some of the estimation methods for the autologistic model described in section

1.2. Some pertinent details of the seven such simulation studies in the literature are discussed

below.

Graham ([17],[18]) performed a simulation study on the Ising model that compared the cod-

ing method, PL, and MCMCML. Throughout the simulation study, the intercept parameter

(i.e. spatial trend parameter) was held fixed. Multiple spatial dependence parameter values

were considered; these values correspond to spatial dependence strengths that sequentially

increase from weak to strong. Three different lattice sizes were used for the study, including

20 × 20, 40 × 40, and 60 × 60. For each of the possible parameter vectors, under all three

lattice sizes, 100 replicates were generated. The mean estimates between the three methods

tended to “differ very little” for the two larger lattice sizes, but for the smallest lattice size,

the MCMCMLEs were the most biased, particularly for “larger model values of (the spatial

dependence parameter).” The coding method estimates were the least biased of the three

methods, especially for the smallest lattice size. The estimated standard errors of the MCM-

CMLEs were “significantly smaller” than those of the coding method estimates and “slightly

smaller” than those of the MPLEs; this relationship was most pronounced at the smallest
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lattice size (20 × 20) and relatively negligible at the larger lattice sizes. Hence, MCMCML

seemed to perform the best of the three estimation methods except in situations of strong

spatial correlation, where “a significant percentage (≈ 80%) of the data are ones or zeros

(and) the bias (is) serious.”

Using a first-order isotropic autologistic model that included a covariate term, Wu and Huffer

([35]) conducted a simulation study that compared the coding method, PL, and MCMCML.

This was the first detailed study of an autologistic model which also included a covariate

([35]). Two possibilities for the covariate term were separately considered; the first was a

“smooth” covariate, generated from a sine function, while the second covariate was randomly

generated from a uniform distribution. Throughout the simulation study, both the intercept

and covariate parameters were held fixed; the value of the covariate parameter that was used

corresponds to a “strong covariate effect” ([23]). As in Graham’s simulation study ([17],[18]),

multiple spatial dependence parameter values were considered; these values again correspond

to spatial dependence strengths that sequentially increase from weak to strong. The coding

method and PL were compared under both 40×40 and 80×80 lattices, but PL and MCMCML

were only compared under 40× 40 lattices, presumably because of the computational expense

involved in carrying out MCMCML for 80 × 80 lattices. For each of the spatial dependence

values, for both covariate options, and for each lattice size (when applicable), 30 replicates

were generated. The parameter estimates obtained from the coding method and PL were, for

all situations, “very close” and “strongly correlated.” The mean estimates obtained from PL

and MCMCML were also very close across all situations, but the variances and mean absolute

errors (MAE) for the MCMCMLEs were smaller than those for the MPLEs. Consequently,

even though it was the most computationally expensive, the authors concluded that of the

three estimation methods, MCMCML was the best since it was always either just as good or

better than the other two estimation methods. The simulation study also revealed a tendency,

in all three methods, “for the error of the estimates to increase as the spatial correlation

increased.”
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Wu and Huffer ([36]) conducted another simulation study that compared the coding method,

PL, and MCMCML for a first-order isotropic autologistic model that included a covariate term

corresponding to a diagonal sine wave across the lattice. Throughout the simulation study,

the covariate parameter was again held fixed at a value corresponding to a relatively strong co-

variate effect. As in Wu and Huffer’s first simulation study ([35]), multiple spatial dependence

parameter values were considered; once again, these values correspond to spatial dependence

strengths that sequentially increase from weak to strong. The values for the intercept were

then selected “in such a way as to balance the spatial interaction and avoid situations where

the value “1” or “0” dominates the entire lattice.” The reason for their imposing such a bal-

ance can surely be traced back to Besag, who asserted that parameter estimation for the

autologistic model is numerically more efficient if the lattice has a roughly 50/50 split of 0’s

and 1’s ([2]). A lattice size of 40 × 40 was used throughout the simulation study and 500

replicates were generated for each parameter vector considered. For all scenarios, the mean

(of the 500) estimates were “very close” between the three methods. However, the mean

estimates obtained using the coding method tended to be the least biased among the three

methods while the mean estimate obtained using MCMCML tended to be the most biased.

Among all scenarios, the standard errors and mean squared errors of the MCMCMLEs were

“consistently smaller” than those for either the coding method or PL. Hence, even though it

is the most computationally expensive of the three methods, Wu and Huffer concluded that

the MCMCMLEs are an improvement over both the MPLEs and the estimates obtained via

the coding method. As in the simulation study reported in [35], this study also revealed “a

tendency in the three methods for the error of the estimates to increase as the spatial inter-

action increases.” The authors speculate that this phenomenon is a result of a decrease in

the “effective sample size” as the spatial dependency increases. To elaborate, if the lattice

has n sites, then as the spatial correlation between sites increases, the “effective sample size”

decreases further from n.

A simulation study primarily comparing PL and GPL (using multiple group sizes) for the
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Ising model was carried out by Huang and Ogata ([22]). The primary objective of this study

was to evaluate the performances of PL and GPL as the parameter vector neared the critical

values ((−2θ, θ)′ where θ ≈ ±1.76 ) associated with phase transition (see section 2.2.5).

Hence, multiple parameter vectors that sequentially approached one of the critical values

were considered. A lattice size of 64× 64 was used throughout the simulation study and 500

replicates were generated for each of the considered parameter vectors. From the presented

results, it can be inferred that the mean estimates of the two methods were similar when

the parameter vector was relatively far from the critical value, but as the parameter vector

approached the critical value the performance of the methods differed. Specifically, the mean

estimates for the MPLEs were more biased than the corresponding mean estimates for the

MGPLEs (across all group sizes), and the bias of the MGPLEs generally decreased with

increased group size.

He et al. ([21]) conducted a simulation study of a first-order anisotropic autologistic model,

which also included a covariate term, by comparing PL, MCMCML, and MCMC-SA. The

covariate term was the same diagonal sine wave used in the simulation studies carried out in

[35] and [36]. Throughout this simulation study, as in several of the aforementioned simulation

studies ([17], [18], [35], [36]), both the intercept and covariate parameters were held fixed; the

value of the covariate parameter that was used again corresponds to a “strong covariate effect”

([23]). For the two spatial dependence terms, multiple parameter values were considered;

in particular, these values correspond to different combinations of anisotropy (i.e. isotropy

or two-way anisotropy) and spatial dependence strength (ranging from weak to moderately

strong). A lattice size of 40×40 was used throughout the simulation study and 500 replicates

were generated for each parameter vector considered. All scenarios yielded similar results.

Specifically, while the mean estimates were negligibly different between the three methods, the

standard deviations and the estimated standard errors for the MCMCMLEs and the MCMC-

SA estimates were superior to those of the MPLEs. Furthermore, as the MCMCMLEs and the

MCMC-SA estimates were “often too close to be distinguishable,” MCMCML was determined
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to be the best method of the three studied since it is less computationally expensive than

MCMC-SA.

Sherman et al. ([32]) conducted a simulation study of the Ising model by comparing PL,

MCMCML, and GPL (using multiple group sizes). The primary objective of this simulation

study, as with the one conducted by Huang and Ogata ([22]), was to evaluate the performances

of the three methods for parameter vectors near the critical values associated with phase

transition. To that end, two parameter vectors were considered, one vector just “below” one

of the critical values and one vector just “above” that same critical value. Corresponding to the

region of the liver mortality data set discussed in section 1.3, the lattice used for this simulation

study was irregular in shape and consisted of 2003 sites (essentially a 45×45 lattice). For both

parameter vectors considered, 100 replicates were generated. When implementing MCMCML,

multiple variations of the “control parameters” for the Gibbs sampler were considered, such as

the number of Gibbs steps, the initial burn-in, and the spacing between retained sweeps (see

section 3.3.2). For the parameter vector just below the selected critical value, all three methods

(and their respective variations) had similar mean estimates, but the standard deviations for

the MCMCMLEs were the largest while the standard deviations for the MPLEs and the

MGPLEs were negligibly different. For the parameter vector just above the selected critical

value, the MCMCMLEs obtained using relatively few sweeps of the Gibbs sampler “behave(d)

very badly” relative to the MPLEs and MGPLEs. The mean estimates for the MPLEs,

MGPLEs, and MCMCMLEs (using relatively many sweeps of the Gibbs sampler) are very

similar, but once again the standard deviations for the MCMCMLEs were the largest while the

standard deviations for the MPLEs and the MGPLEs were negligibly different. The authors

concluded that MCMCML works relatively well for parameter values below the critical value,

but for parameter values above that same critical value, “careful monitoring of the Markov

chain is necessary to realize (its) benefits.”

Finally, under a Bayesian paradigm, a simulation study comparing PL, BGPL, and RDA

was carried out by Friel et al. ([11]). The lattice size was fixed at 50 × 50 throughout the
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simulation and 50 replicates were generated for each scenario. The simulation performances of

the three methods were compared using the average absolute bias of the posterior mean. The

results of the simulations indicated that while both BGPL and RDA out-performed PL, RDA

was possibly a better method since it produced results comparable to BGPL, but at a cheaper

computational cost. As a Bayesian approach to the autologistic model is not of interest for this

dissertation, no additional details for this simulation will be discussed. It is worth mentioning,

however, that under a Bayesian paradigm, the parameters of the autologistic model are viewed

as random values, whereas under a frequentist paradigm the parameters are viewed as fixed,

but unknown, values. Hence, a Bayesian approach to implementing the autologistic model

first requires specifying a prior probability density for the model parameters and then, given

the observed lattice of binary response values, seeks through Bayes’ rule to determine the

posterior probability density for the model parameters. Requisite point estimates and/or

confidence intervals are then constructed via this posterior distribution.

When aggregated, the results of the above simulations reveal several trends. First, although

for small to moderately sized lattices the estimates obtained using the coding method typically

have a smaller bias than the estimates obtained using PL or MCMCML, they are consistently,

regardless of the lattice size, the most variable and have the most error. Such drawbacks of

the coding method certainly yield insight into why it is rarely ever implemented in practice,

and justify why it is not considered further in this thesis. Second, in comparing PL and

MCMCML, the MPLEs tend to have a smaller bias than the MCMCMLEs, especially as

the spatial dependence increases, but as the lattice size increases the difference in the mean

estimates between the two methods appears to become negligible, as long as the parameter

value is not close to the critical values where phase transition occurs in which case both

methods exhibit problems. Furthermore, the variability in the MCMCMLEs is consistently

smaller than the variability in the MPLEs, except possibly when the lattice sites are spatially

independent, or the parameter value is near the critical values associated with phase transition.

Third, and finally, the mean estimates for PL and GPL are comparable in cases of strong to
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moderate spatial dependence, but in cases where the parameter value is near the critical

values associated with phase transition, the MGPLEs tend to have a smaller bias than the

corresponding MPLEs.

Despite the varying amounts of insight the aforementioned simulation studies have provided

with respect to how PL, GPL, BGPL, and MCMCML perform and, to some extent, compare,

many questions remain either unconvincingly answered or altogether yet unaddressed. Many

of these questions fall into two general categories that are of particular interest for this thesis.

The first such category revolves around whether or not the two newest methods, GPL and

BGPL, accomplish their intended purposes. In particular, do the MGPLEs and MBGPLEs

strike the intended compromise between PL and MCMCML with respect to bias, variability,

and other performance-based measures such as the mean absolute error (MAE)? Does increas-

ing the block/group size dictate the amount of observed compromise? Is there even a practical

difference between the MGPLEs and the MBGPLEs? And finally, do the MGPLEs and/or

the MBGPLEs provide better reference points than the MPLEs for MCMCML in some situ-

ations? The second category of questions revolves around whether or not the performances of

the four methods under the “standard” scenarios (e.g. the Ising model) can be extended to

the “nonstandard” scenarios. In particular: how do GPL and BGPL perform when covariates

are incorporated into the autologistic model? How does allowing for neighborhood structures

other than a first-order system, and/or allowing for anisotropy, affect the performance of the

estimation methods? And finally, to what extent do the answers to the previous questions

depend on the lattice size? An extensive simulation study aimed at addressing these questions

has been conducted as a component of this thesis work. The specifics of this simulation, as

well as the results, are given in Chapter 5.
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1.5 Spatio-Temporal Autologistic Model (STAM)

Recall the example given at the beginning of this chapter where we had observed a cross-section

(in time) of data, along with pertinent covariate information, that indicated the presence or

absence of wild fire over a regular lattice within a forested region. Now imagine the same

scenario, but instead of one cross-sectional observation in time, we have regularly spaced

observations, such as weekly composites, of the lattice over time. The natural extension of

the question asked at the beginning of section 1.1, that was answered in sections 1.2, 1.3,

and 1.4 above, is then the following: Can the purely spatial autologistic model be generalized

naturally to a spatio-temporal autologistic model? Fortunately, the answer to this question is

yes, but how this extension is accomplished depends upon the type of temporal dependency,

if any, that the lattice exhibits with regard to the binary response variables measured on the

observational units. For example, an absorbing state is a type of temporal dependency in

which a site remains permanently in one state (say diseased), for the duration of the study,

if or once it becomes diseased. To elaborate within the context of the wild fire data, once the

trees of a region become burned, if they cannot return to an unburned status (i.e. cannot

burn again) before the time of observation has elapsed, then the sites of the lattice belong

to an absorbing state with regard to the fire presence variable. Such a temporal dependency

produces a generalization of the autologistic model into the space-time domain that is much

different than that of a non-absorbing state temporal dependency, as will be pointed out

below. Thus, the type of temporal dependency ultimately affects how the autologistic model

is generalized into the space-time domain.

Under non-absorbing states, Zhu et al. ([37]) proposed treating the sequence of observed

lattices as a space-time Markov random field. Such a proposal allows for the temporal pa-

rameters to be added to the spatial autologistic model in a natural way that allows for both

the spatial and temporal dependencies to be accounted for simultaneously. In particular, the

resulting spatio-temporal autologistic model, for a given site at a given time, conditions spa-
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tially on the nearest neighbor values, as under the purely spatial model, and temporally on

the auto-lagged (first-order) values, both from the past and in the future if desired. However,

as with the normalizing constant of the purely spatial autologistic model’s joint likelihood

function, the normalizing constant of the spatio-temporal autologistic model’s joint likelihood

function is intractable, rendering parameter estimation nontrivial. Zhu et al. ([37]) proposed

using pseudolikelihood to estimate the parameters of this model and a parametric bootstrap

to obtain the corresponding standard errors; they additionally proposed a means for using

the Gibbs sampler to forecast future realizations of the lattice. Finally, note that this model

assumes (1) that the parameters are space and time invariant, i.e. the effects of space and time

on the binary response variable are the same across all spatial locations and all time steps,

and (2) that space and time do not interact, i.e. the effects of space and time are separable.

Under absorbing states, Besag ([4]) first proposed a method that was later extended by

Chadoeuf et al. ([6]) to allow for observing multiple binary random variables at each site and

storing the resulting information as a count ([6]). In this approach, the sequence of observed

lattices is once again viewed as a space-time Markov random field, but now the resulting

spatio-temporal autologistic model conditions spatially on the nearest neighbor values and

temporally on both the nearest neighbor values (at all possible lags) and the auto-lag-one

value (past first-order). Furthermore, because an absorbing state dictates that the probability

a site has a value of 1 at the current time step, given that it had a value of 1 at the preceding

time step, is necessarily one, only the sites of the MRF having value 0 contribute directly

(i.e. rather than only indirectly as fixed spatial/temporal neighbor values for sites with value

0) to the likelihood. As is the case with the normalizing constant of the joint likelihood

function for the spatio-temporal autologistic model proposed by Zhu et al. ([37]), the joint

likelihood function for this spatio-temporal autologistic model has an intractable normalizing

constant, and parameter estimation is again nontrivial. Chadeouf et al. ([6]) proposed using an

extension of the coding method to estimate the parameters of this spatio temporal autologistic

model; they additionally proposed a means for using the Gibbs sampler to forecast future
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realizations of the lattice. Finally, note that as with the aforementioned non-absorbing state

model, this absorbing state model assumes that the parameters are space and time invariant

and that space and time do not interact, i.e. space and time are separable.

Ultimately the context of the data will determine the type of temporal dependency (e.g.

absorbing vs. non-absorbing state), while the objectives of the research, as well as the corre-

sponding questions of interest, will determine the particular temporal neighborhood structure

(e.g. past lags vs. past and future lags) employed. Hence, for the purposes of this dissertation,

we too will view the sequence of lattices as a space-time MRF and our focus will be limited to

a non-absorbing state temporal dependency since the data set of interest in Chapter 7 qualifies

as such. Furthermore, it will also be assumed that the temporal neighborhood structure will

be autoregressive (with past lags) in nature. In other words, only values of the binary response

variable for a particular site that were observed in the past can be temporally conditioned

on to help model the current value of the binary response variable at that site. The reasons

for making such an assumption here can be attributed to how any model fit to the data set

of interest in Chapter 7 will ultimately be utilized. Note that this temporal component of

the space-time Markov assumption is akin to that proposed by Chadeouf et al. ([6]) in the

aforementioned absorbing state model above. It is worth mentioning that one could condition

on the values at sites in the past that are at nearby sites, but this higher order spatio-temporal

conditioning was not explored here. Finally, we too will assume that the parameters are space

and time invariant and that space and time do not interact, i.e. space and time are sepa-

rable. The spatio-temporal model resulting from such stipulations, along with the necessary

background required to arrive at such a model, is formally presented in Chapter 6. To help

facilitate a better understanding later in this dissertation, however, such a spatio-temporal

extension of the Ising model is presented here, without formal development.

Let S = {(i, j, t) : i = 1, 2, . . . ,mr; j = 1, 2, . . . ,mc; t = 1, . . . ,mT } now be a finite three-

dimensional array subset of an infinite-dimensional regular lattice, where mr, mc, and mT

denote the number of rows, columns, and (two-dimensional) lattices (through time), respec-
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tively, of S. Let St = {(i, j, t) : i = 1, . . . ,mr; j = 1, . . . ,mc} denote the lattice of S at

time t. Thus, (i, j, t) is the site located on the ith row and jth column of St. For notational

simplicity, we will again let n ≡ mr ×mc, and we will numerically label sites of St from top

to bottom within its columns, and from left to right across its columns, ∀ t = 1, . . . ,mT ,

although such an ordering is again arbitrary. Hence, St = {(i, t) : i = 1, . . . , n}, where (i, t)

denotes site i of the tth lattice of the array. Let Zi,t now be a binary random variable located

on St, with support set Ωi,t = {0, 1}. Analogous to the previous sections of this chapter, let

Z = (Z ′1,Z
′
2, . . . ,Z

′
mT

)′ denote the random vector of binary variables over the entire array

S, where Z ′t = (Z1,t, Z2,t, . . . , Zn,t) ∀ t = 1, . . . ,mT . The joint support set for Z, however,

is now Ωn·mT = {0, 1} × . . . × {0, 1} = {0, 1}n·mT . Furthermore, P(zi,t) ≡ P(Zi,t = zi,t)

now denotes the probability of the random variable Zi,t taking on the value zi,t ∈ Ωi,t, and

P(z) ≡ P(Z = z) now denotes the probability of the random vector Z taking on the value

z ∈ Ωn·mT .

The conditional probability form of the Ising model (from (1.1)), when extended into the

space-time domain dictated by the above assumptions, is then given by the following equation:

P(zi,t|{zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t}) =

=

exp

αzi,t + θzi,t
∑

(j,t′)∈Ni,t

zj,t′ + τzi,t
∑

(j,t′)∈Γi,t

zj,t′


1 + exp

α+ θ
∑

(j,t′)∈Ni,t

zj,t′ + τ
∑

(j,t′)∈Γi,t

zj,t′


, ∀ (i, t) ∈ S, (1.25)

where, analogous to before, Ni,t is the set of sites which are spatial neighbors of site (i, t) (i.e.

(j, t′) ∈ Ni,t ⇒ t′ = t), α is the intercept parameter, and β is the spatial dependence parameter.

Additionally, Γi,t is the set of sites which are temporal neighbors of site (i, t) (i.e. (j, t′) ∈

Γi,t ⇒ t′ ≤ t−1), and τ is the corresponding temporal dependence parameter. Technically, no

formal notational distinction is necessary for spatial versus temporal neighbors (see Chapter
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6), but such a distinction will be made in this dissertation for clarity of presentation. Note that

the functional form of the spatio-temporal extension of the Ising model, as given in (1.25), still

bears a strong resemblance to that of the standard logistic model that is commonly employed

with independent binary random variables. In fact, if the sites of the array were spatially and

temporally independent, i.e. θ = 0 and τ = 0, then (1.25) reduces to a simple intercept-only

logistic model. Thus, the functional form of such a spatio-temporal autologistic model, as

with the purely spatial autologistic model, is identical to that of the logistic model, except

that it also conditions on neighboring values, both spatially and temporally, of the binary

response variable.

The corresponding extension of the joint Ising model (from (1.2)) into the space-time domain

can be shown to have form:

P(Z = z)

=

exp

α
mT∑
t=1

n∑
i=1

zi,t +
1

2
θ

mT∑
t=1

n∑
i=1

zi,t
∑

(j,t′)∈Ni,t

zj,t′ + τ

mT∑
t=1

n∑
i=1

zi,t
∑

(j,t′)∈Γi,t

zj,t′


∑

y∈Ωn·mT

exp

α
mT∑
t=1

n∑
i=1

yi,t +
1

2
θ

mT∑
t=1

n∑
i=1

yi,t
∑

(j,t′)∈Ni,t

yj,t′ + τ

mT∑
t=1

n∑
i=1

yi,t
∑

(j,t′)∈Γi,t

yj,t′


, (1.26)

z ∈ Ωn·mT . Note that the spatio-temporal extension of the Ising model given by (1.25) and

(1.26) is not substantially different, at least in functional form, than the extensions that would

result from the models proposed by Zhu et al. ([37]) or Chadeouf et al. ([6]). In particular, if τ

was pre-multiplied by 1
2 , like θ, in (1.26), then this modified joint likelihood, along with (1.25),

would yield the joint and conditional functional forms of the model proposed by Zhu et al.

([37]). Such a modification allows for both past and future auto-lagged temporal neighbors.

Furthermore, if (1.25) and (1.26) are modified so that only those sites, (i, t), of S which have

variable value 0 (i.e. zi,t 6= 1) contribute directly (i.e. rather than only indirectly as fixed

spatial/temporal neighbor values for sites with value 0), then these functions yield the joint
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and conditional functional forms of the model proposed by Chadeouf et al. ([6]).

Estimating the parameters of the spatio-temporal autologistic model given by (1.25) and

(1.26) is, as the case with the models proposed by Zhu et al. ([37]) and Chadeouf et al. ([6]),

non-trivial. More specifically, the normalizing constant, or rather the denominator of (1.26),

has 2n·mT summands and, therefore, cannot generally be computed in any reasonable amount

of time. Hence, as with the purely spatial autologistic model, methods other than maximum

likelihood are needed to estimate the parameters of the spatio-temporal autologistic model.

Fortunately, most, if not all, of the methods introduced in section 1.2 can be straightforwardly

extended into the space-time domain. Four such methods, including PL, MCMCML, GPL,

and BGPL, are formally presented in Chapter 6. It should be noted that while (1) PL’s use

in the space-time domain is already established ([37]) and (2) MCMCML’s initial theoretical

development naturally permits its use in the space-time domain ([15]), the development of

GPL and BGPL presented in Chapter 6 is novel.

Regardless of the type of temporal dependency or the type of temporal neighborhood struc-

ture, spatio-temporal autologistic models have been applied to relatively few real data sets.

In fact, only two such applications were found in the literature. In particular, Chadoeuf et al.

([6]) used their spatio-temporal ALM under an absorbing state, along with the coding method,

to model the simultaneous spread of Phellinus noxius and Rigidoporus lignosus (soil based

mushrooms) in a field of Hevea brasiliensis trees over the course of 3.5 years. Additionally, they

implemented a modification of the Gibbs sampler to simulate the spatio-temporal process into

the future as a means of forecasting. Finally, Zhu et al. ([37]) used their spatio-temporal ALM

under a non-absorbing state, along with maximum pseudolikelihood estimation, to model the

presence and absence of southern pine beetle in the 100 counties of North Carolina from 1960

to 1996 while simultaneously accounting for 11 covariates that had previously been identified

as important. They too employed the Gibbs sampler to simulate the process into the future

as a means of forecasting.
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While applications of a spatio-temporal autologistic model in the literature are indeed sparse,

simulation studies comparing estimation methods for such space-time models are even rarer.

In fact, the literature is void of even a single simulation study evaluating the performances of

estimation methods for the aforementioned spatio-temporal autologistic models. This is one

of the primary motivations behind the spatio-temporal autologistic model simulation study

carried out for this dissertation, the results of which are presented in Chapter 6.

1.6 Research Objectives

Having presented roughly 40 years of research and development for the autologistic model,

my research objectives for this dissertation can now be summarized. First, I have set out to

prove the strong consistency of the MGPLEs and the MBGPLEs. The background for these

proofs, as well as the proofs themselves, are presented in Chapter 4. Second, using my own

R-code, I have sought to conduct a thorough simulation study comparing the performances

of PL, MCMCML, GPL, and BGPL for the purely spatial autologistic model. This simula-

tion study has aimed to accommodate varying lattice size, levels of anisotropy, group/block

size, neighborhood size, spatial and covariate dependence parameter values, and alternative

reference points for MCMCML (using MPLE, MGPLE, and MBGPLE). The specifics of the

simulation study, as well as the results, are presented in Chapter 5. Third, I have endeavored

to implement PL, MCMCML, GPL, and BGPL as estimation methods for a non-absorbing

state spatio-temporal autologistic model. The required modifications to the purely spatial

methods and the resultant spatio-temporal methods are detailed in Chapter 6. Fourth, I have

sought to conduct a small scale simulation study comparing the performances of PL, MCM-

CML, GPL, and BGPL for the spatio-temporal autologistic model under a non-absorbing

state. The specifics of this simulation study, as well as the results, are presented in Chapter 6.

Fifth and finally, I have aimed to apply both the purely spatial ALM and the spatio-temporal

ALM to a real data set using PL, MCMCML, GPL, and BGPL. The particular data set con-
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sists of fire occurrence information for multiple regions across Oregon and Washington state.

The objective is to model the presence/absence of fire ignitions over these regions while si-

multaneously accounting for spatial, temporal, and covariate effects. The covariate of interest

in this application is the departure from average variable, a Normalized Difference Vegetation

Index (NDVI)-based measure of relative changes in vegetation across the sites of the regions.

A thorough description of this fire occurrence data set, as well as a discussion of the results

obtained from the autologistic models that were fit, is provided in Chapter 7.



Chapter 2

Origins of the Autologistic Model

2.1 Introduction

While it is ultimately the case that the autologistic model is an intuitive extension of the

standard logistic model ([19]), the theoretical development which justifies arriving at such a

conclusion is both important and enlightening. In particular, trudging through such theoret-

ical terrain will provide the justification needed to obtain the viable functional form of the

autologistic model, which in turn will provide clarity on why the autologistic model is just

the logistic model with the addition of spatial dependence terms in the deterministic portion

of the model. Section 2.2 rigorously presents the development of the autologistic model while

section 2.3 fleshes out the relationship between the logistic and autologistic models.

2.2 Development of the Autologistic Model

The initial development of automodels to characterize the probability structure of spatially

dependent random variables on a regular lattice is due to Besag ([2]), but Cressie gives a

44



2.2. DEVELOPMENT OF THE AUTOLOGISTIC MODEL 45

detailed treatment of [2] in sections 6.4 and 6.5 of [8] and provides some useful naming con-

ventions for several items that Besag had left otherwise untitled. Consequently, the following

presentation of the origins of the autologistic model is largely, but not exclusively, a detailed

recounting of pertinent portions of Cressie’s ([8]) presentation of [2]. When necessary, details

as well as examples have been added for clarity. All direct quotes come from sections 6.4 or

6.5 of [8] unless otherwise indicated. Finally, note that all proofs of theorems given in this

section are omitted as they can be found in [8].

2.2.1 Difficulties with a Conditional Specification

When initially considering how to model spatially dependent data observed on a regular

lattice, an important question was whether a joint or conditional probability formulation

should be used. A conditional probability model describes the probability distribution of the

random variable at one site on the lattice conditioned on the values of the random variable

at neighboring sites, as formally defined below. Due to its “intuitive appeal” a conditional

probability formulation became the common modeling choice ([2]). However, in developing a

conditional specification, which necessitates constructing the likelihood function (i.e. the joint

density) from the resulting conditional distributions, two problems surfaced: one malignant

if unresolved and the other benign. Before discussing these problems, some notation and

terminology must be established. The presentation will be in the discrete setting to mimic

that of the autologistic model, but all results analogously hold in the continuous setting for

general automodels with appropriate summations being systematically replaced by integrals.

For this dissertation, a “regular” lattice means a regularly spaced grid of points, or sites; in

other words, the distance between any two vertically/horizontally consecutive sites is constant.

Suppose the regular lattice of interest has n sites. Let Zi denote a discrete random variable

corresponding to site i, with countable support set Ωi, i = 1, . . . , n. The random vector over

the entire lattice, Z = (Z1, . . . , Zn)′, has support set Ωn = Ω1 × . . . × Ωn. For example,
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Ωi = {0, 1} for spatially dependent binary random variables and Ωn = {0, 1} × . . . × {0, 1}.

Finally, define P(zi) ≡ P(Zi = zi) to be the probability of the random variable Zi taking on

the value zi ∈ Ω, and similarly, define P(z) ≡ P(Z = z) to be the joint probability of the

random vector Z taking on the value z ∈ Ωn.

Definition 2.1 (Positivity Condition). If P (Zi = zi) > 0 for each i, i = 1, . . . , n, then

P (Z = (z1, . . . , zn)′) > 0.

The positivity condition simply asserts that if z1, z2, . . . , zn can individually occur at sites

1, 2, . . . , n, respectively, then they can occur together. This condition does not hold in gen-

eral, but it is usually satisfied in practice. The interested reader can find an example where

the positivity condition fails on pages 411-412 of [8]. Assuming this positivity condition holds,

the following theorem asserts a critical relationship between any conditional probability spec-

ification and the corresponding joint probability specification for a random vector Z.

Theorem 2.1 (Factorization Theorem). Suppose {Zi}ni=1 have joint probability mass function

P (·), whose support Ωn satisfies the positivity condition. Then,

P (x)

P (y)
=

n∏
i=1

P (xi|x1, . . . , xi−1, yi+1, . . . , yn)

P (yi|x1, . . . , xi−1, yi+1, . . . , yn)
, x,y ∈ Ωn (2.1)

where x and y are any two realizations of Z, with P(y) > 0.

The positivity condition is required to ensure a positive denominator in the right hand side

of (2.1).

In light of the Factorization Theorem, the two aforementioned problems with pursuing a

conditional specification are readily apparent. First, because sites on a lattice are arbitrarily

labeled, and because all possible n! factorizations of (2.1) must ultimately produce the same

joint probability structure, there exist severe restrictions on the possible functional form for

the conditional probability distribution. In fact, this consistency problem has the potential to
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prevent the construction of a viable conditional probability distribution. Fortunately, with the

advent of the Hammersley-Clifford Theorem (Theorem 2.3 below), this possibly terminal prob-

lem is overcome. After developing some additional concepts in the first half of section 2.2.2,

this essential result will then be presented. The second problem with pursuing a conditional

specification, which is really a problem with the joint specification, pertains to the normalizing

constant of the (joint) likelihood function. While Theorem 2.1 allows for the conversion of the

conditional specification to its joint format, the joint form can only be expressed up to a pro-

portionality constant. More specifically, through the conditional distributions, equation (2.1)

provides an expression for the ratio of joint probabilities, but it doesn’t provide a closed-form

expression for the absolute joint probability, P (z). This is because a conditional specification

cannot in general yield a closed form for the normalizing constant of the likelihood function; a

statement that will be made clear in section 2.2.2. Hence, even though a consistent conditional

formulation can be obtained through the Hammersley-Clifford Theorem, it will generally be

the case that the resulting likelihood function will have an intractable normalizing constant.

This means that exact maximum likelihood methods cannot be employed and alternative

parameter estimation methods will be required, which is the focus of Chapter 3.

2.2.2 Obtaining a Consistent Conditional Specification: Neighbors, Cliques,

Negpotential Function, and the Hammersley-Clifford Theorem

In pursuit of a conditional probability specification that successfully resolves the consistency

problem, two important concepts and one important function are foundational. The first

crucial, but intuitive, concept is the following notion of a neighbor.

Definition 2.2 (Neighbor). Site k is defined to be a neighbor of site i if the conditional

distribution of Zi, given all other values, depends functionally on zk, for k 6= i. Also define

Ni ≡ {k : k is a neighbor of i} (2.2)
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to be the neighborhood set of site i.

Note that a site cannot be a neighbor of itself (i.e.: i /∈ Ni). In general then, if the lattice

of interest has mr rows and mc columns (so mr ×mc = n), where the sites of the lattice are

arbitrarily numbered from top to bottom, left to right, then the set of first-order neighbors

of site i are defined to be this:

Ni = {i− 1, i+ 1, i−mr, i+mr}, i = 1, . . . , n,

the sites immediately above, below, to the left, and to the right of site i. The sites marked with

an X1 in Figure 2.1 provide a visual illustration of the generic “cross” shape corresponding to

the set of first-order neighbors of an arbitrary site, labeled Z in the figure. Hence, for a 5x5

lattice (see Figure 2.2), the set of first-order neighbors of site 7 is N7 = {2, 6, 8, 12}. Similarly,

the set of second-order neighbors of site i are defined to be this:

Ni = {i− 1, i+ 1, i−mr, i+mr, i− (mr + 1), i− (mr − 1), i+ (mr + 1), i+ (mr − 1)}, i = 1, . . . , n.

This set includes the 4 first-order neighbors as well as the 4 immediate diagonal sites. The

sites marked with an X1 as well as the sites marked with an X2 in Figure 2.1 provide a visual

illustration of the generic “block” shape corresponding to the set of second-order neighbors of

an arbitrary site. Thus, for a 5x5 lattice (see Figure 2.2), the set of second-order neighbors

of site 7 is N7 = {1, 2, 3, 6, 8, 11, 12, 13}. Higher-order Neighborhood systems are systematic

extensions of the first- and second-order systems discussed above, but are not discussed in this

thesis. The astute reader may have accurately surmised that the neighborhood set of an edge

site is different than that of an internal site. Several approaches to defining neighborhood

sets for edge sites have been proposed, but choosing which edge adjustment to implement is

ultimately a matter of selecting the least objectionable option. More will be said about edge

adjustments in section 2.2.4.

Regular lattices of random variables in which a neighborhood structure is either assumed

or imposed (when modeling) are extremely commonplace and have led to a particular class of
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Figure 2.1: 1st- and 2nd-Order Neighborhood Structures
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The sites marked with an X1 represent the
first-order neighbors of site Z, while both the
sites marked with an X1 and the sites marked
with an X2 represent the second-order neigh-
bors of site Z.

Figure 2.2: 5x5 Lattice Example
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A 5x5 lattice of random variables arbitrarily labeled top to
bottom, left to right.
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spatial random vectors known as Markov random fields, which are formalized in the following

definition.

Definition 2.3 (Markov Random Field). Any probability measure whose conditional distri-

butions define a neighborhood structure {Ni : i = 1, . . . , n} is defined to be a Markov random

field.

Hence, under a Markov random field assumption, the conditional distribution of zi only de-

pends on site i’s neighboring sites’ values:

P(zi|{zj : j 6= i}) = P(zi|{zj : j ∈ Ni}), i = 1, . . . , n. (2.3)

Note that the relationship expressed in equation 2.3 applies throughout the remainder of this

chapter, but will generally not be explicitly written so as to follow the presentation of this

material given in [8].

The second crucial concept in the pursuit of a consistent conditional probability specifica-

tion, which is a mechanism for grouping sites according to an established neighborhood set,

is known as a clique.

Definition 2.4 (Clique). A clique is defined to be a set of sites that consists either of a single

site or of sites that are all neighbors of each other.

In referring to Figure 2.2 under a first-order neighborhood system, any single site forms a one

element clique while {7, 12} and {7, 8} are examples of two element cliques. Three or larger

element cliques under a first-order neighborhood system do not exist. Once again referring to

Figure 2.2, but now under a second-order neighborhood system, {7, 12, 13} and {13, 14, 19}

are examples of three element cliques, while {7, 8, 12, 13} and {13, 14, 18, 19} are examples of

four element cliques. The one and two element cliques under a second-order neighborhood

system are the same as those under a first-order neighborhood system. Five or larger element

cliques under a second-order neighborhood system do not exist.
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The final component that is foundational to constructing a consistent conditional probability

specification is the negpotential function, which utilizes the relationship given by equation

(2.1), where y ≡ 0. Note that the term “negpotential,” while seemingly obscure, has its

origins in statistical physics, and to make sense of it we must momentarily look ahead. In

particular, (2.4) can ultimately be expressed as a summation of the family of terms in, what

in statistical physics is referred to as, a potential (the family of Vκ(·) terms in (2.18)), and the

joint probability mass function, P(·), is sometimes, though not in this dissertation, expressed

as a function of the negative of this summation ([12]). Hence, (2.4) is referred to as the

“negpotential” (i.e. negative potential) function.

Definition 2.5 (Negpotential Function). Without loss of generality, assume that zero can

occur at each site; that is 0 ∈ Ωn. The negpotential function is then defined as follows:

Q(z) = log

(
P (z)

P (0)

)
, z ∈ Ωn. (2.4)

It is important to recognize that knowledge of the negpotential function, Q(·), is equivalent

to knowledge of the joint density, P(·). To see this equivalency, let z ∈ Ωn and note that∑
y∈Ωn P(y) = 1. Observe the following:

P(z) =
P(z)∑

y∈Ωn

P(y)
(dividing by

∑
y∈Ωn

P(y) = 1)

=

P(z)

P(0)∑
y∈Ωn

P(y)

P(0)

(dividing all terms by P(0))

=
exp

(
log
[

P(z)

P(0)

])
∑
y∈Ωn

exp

(
log

[
P(y)

P(0)

])

=
exp(Q(z))∑

y∈Ωn

exp(Q(y))
. (2.5)
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This relationship between the negpotential function and the joint density is critical and will be

essential to the Hammersley-Clifford Theorem. It implies that if we can identify a form for the

negpotential function Q(·), this is equivalent to specifying the joint density. Two important

properties of the negpotential function, which allow for a simpler statement of (as well as a

simpler proof of) the Hammersley-Clifford Theorem, are given in the following theorem.

Theorem 2.2. The negpotential function satisfies the following two properties:

(i) Let zi ≡ (z1, . . . , zi−1, 0, zi+1, . . . , zn)′ and let 0i denote the event Zi = 0. Then

P (zi|{zj : j 6= i})
P (0i|{zj : j 6= i})

=
P (z)

P (zi)
= exp{Q(z)−Q(zi)}. (2.6)

(ii) For z ∈ Ωn, Q can be uniquely expanded on Ωn as

Q(z) =
∑

1≤i≤n
ziGi(zi) +

∑∑
1≤i<j≤n

zizjGij(zi, zj) +
∑∑∑
1≤i<j<k≤n

zizjzkGijk(zi, zj , zk)

+ . . . + z1z2 · · · znG12...n(z1, z2, . . . , zn). (2.7)

While the proof of Theorem 2.2 can be found in [8] and will not be discussed, it is important

to note that the proof hinges on the following definitions:

ziG(zi) = Q(0, . . . , 0, zi, 0, . . . , 0), (2.8)

zizjGij(zi, zj) = Q(0, . . . , 0, zi, 0, . . . , 0, zj , 0, . . . , 0)

−Q(0, . . . , 0, zi, 0, . . . , 0, 0, 0, . . . , 0)

−Q(0, . . . , 0, 0, 0, . . . , 0, zj , 0, . . . , 0), (2.9)

“and similar higher-order difference formulas for the rest of the Gs.” The expansion of the

negpotential function given in equation (2.7) is unique, but the {Gij...} functions can only be

uniquely specified “by defining Gij...(zi, zj , . . .) ≡ 0 whenever zi = 0, or zj = 0, or . . ..”
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Theorem 2.2 ultimately demonstrates how the negpotential function can be expanded in

terms of conditional probabilities. For instance, consider ziG(zi):

ziGi(zi) = Q(0, . . . , 0, zi, 0, . . . , 0) (2.10)

= log

{
P(0, . . . , 0, zi, 0, . . . , 0)

P(0, . . . , 0, 0, 0, . . . , 0)

}
(2.11)

= log


P(0,...,0,zi,0,...,0)

P(01,...,0j−1,0j+1,...,0n)

P(0,...,0,0,0,...,0)

P(01,...,0j−1,0j+1,...,0n)


= log

{
P(zi|{0j : j 6= i})
P(0i|{0j : j 6= i})

}
, (2.12)

where (2.10) follows from (2.8), (2.11) follows from (2.4), and (2.12) follows by the definition

of conditional probability. Similarly, by defining 0−ij ≡ (0, . . . , 0, zi, 0, . . . , 0, zj , 0, . . . , 0),

0−i ≡ (0, . . . , 0, zi, 0, . . . , 0, 0, 0, . . . , 0), and 0−j ≡ (0, . . . , 0, 0, 0, . . . , 0, zj , 0, . . . , 0), we obtain

the following result for the pairwise interaction term zizjGij(zi, zj):

zizjGij(zi, zj) = Q(0−ij)−Q(0−j)−Q(0−i) (2.13)

= Q(0−ij)−Q(0−j) +Q(0)−Q(0−i) (2.14)

= log {exp {Q(0−ij)−Q(0−j)} · exp {Q(0)−Q(0−i)}}

= log

{
P(0−ij)

P(0−j)
· P(0)

P(0−i)

}
(2.15)

= log


P(zi|zj ,{0k:k 6=i,j})
P(0i|zj ,{0k:k 6=i,j})

P(zi|{0k:k 6=i})
P(0i|{0k:k 6=i})

 . (2.16)

where (2.13) follows from (2.9), (2.14) follows because Q(0) = 0 by (2.4), and (2.15) follows

from (2.6). Three-way interaction terms, such as zizjzkGijk(zi, zj , zk), as well as all possible

higher-way interaction terms, can similarly be expressed as functions of conditional probabil-

ities.

Equations (2.12) and (2.16) demonstrate that the negpotential function, as expressed in

equation (2.7), can be expressed in terms of conditional probabilities. Then, since knowledge
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of the negpotential function is equivalent to knowledge of the joint probability mass function,

a resolution to the consistency problem can be pursued through the G functions making up

the negpotential function. This means that the consistency problem can be concisely thought

of as “those conditions needed to yield well-defined G functions.” This simple restatement

of the consistency problem is a direct consequence of equation (2.7), which usefully defines

the negpotential function in terms of the G functions. Note that by well-defined it is meant

that the conditional probability expansion of every interaction term should be invariant to the

site whose conditional probabilities are specified. For example, the pairwise interaction term,

zizjGij(zi, zj), should be the same if site j’s conditional probabilities are specified rather than

site i’s in the right hand side of equation (2.16), i.e.

zizjGij(zi, zj) = log


P(zj |zi,{0k:k 6=i,j})
P(0j |zi,{0k:k 6=i,j})

P(zj |{0k:k 6=j})
P(0j |{0k:k 6=j})

 .

The requisite conditions for producing well-defined G functions are exactly those expressed

by the Hammersley-Clifford Theorem.

Theorem 2.3 (Hammersley-Clifford Theorem). Suppose that Z is distributed according to

a Markov random field on Ωn that satisfies the positivity condition. Then, the negpotential

function Q(·) given by (2.4) must satisfy the property:

if sites i, j, . . . , s do not form a clique, then Gij...s(·) ≡ 0,

where the cliques are formed by some neighborhood structure {Ni : i = 1, . . . , n}.

In other words, the Hammersley-Clifford Theorem asserts that as long as all G functions

corresponding to sets of sites that don’t form a clique are defined to be 0, then the resulting

negpotential function and equivalent joint probability model will be well-defined from the

conditional probability specification.
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While Theorem 2.3 is crucial in that it reveals how the consistency issue can be successfully

addressed, two corollaries of the Hammersley-Clifford Theorem are also important. The first is

the converse of Theorem 2.3, which additionally exposes the intractable normalizing constant

issue, while the second establishes a useful equivalency between the local and global Markovian

properties.

Corollary 2.1. Suppose Ωn is countable in Euclidean n-space (or Ωn is a Lebesgue measurable

subset of Euclidean n-space) and that a well-defined set of G functions can be obtained from

specified conditional probabilities and neighborhoods {Ni : i = 1, . . . , n}. Then the resulting

negpotential function Q defined by (2.7) yields a unique well-defined joint probability function

proportional to exp{Q(·)}, provided the summability condition

∑
z∈Ωn

exp{Q(z)} < ∞ (2.17)

holds.

The importance of this corollary is two-fold. First, the development up to and including

the Hammersley-Clifford Theorem assumed the lattice of interest was a Markov random field

(MRF) and focused on constructing a valid conditional probability specification for this MRF,

but this corollary affirms the converse relationship. In other words, as long as “the specified

conditional probabilities yield well-defined G functions (of which, only those defined on the

cliques are nonzero) and a summability condition is satisfied, then there is a unique Markov

random field over {Zi : i = 1, . . . , n}.” The second and final important consequence of the

corollary is that the likelihood function, up to a constant of proportionality, is an explicit

function of Q, which when viewed according to (2.7), depends only on the nonnull G func-

tions. Unfortunately, the corresponding proportionality constant for the joint probability,∑
y∈Ωn exp{Q(y)}, rarely has a closed form, which is the previously referenced malignant

issue with a conditional formulation. Because this normalizing constant is usually intractable

and cannot be computed directly in a computationally feasible amount of time (e.g. for the
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binary case, n sites on the lattice implies 2n summands in the normalizing constant), the

joint probability structure, and therefore, the likelihood function, generally have no closed

form. Since likelihood-based inference methods cannot then be employed in the usual way,

one complication in implementing a conditional probability formulation is having to develop

and/or employ parameter estimation methods other than maximum likelihood, and, in fact,

much of the roughly forty years of subsequent research on the autologistic model has focused

on methods of parameter estimation.

The second important corollary of the Hammersley-Clifford Theorem, which must surely

have been foundational in the development of the alternative estimation method known as

block generalized pseudolikelihood (see section 3.5), is given in Besag ([2]).

Corollary 2.2. For any given Markov random field,

P(Zi = zi, Zj = zj , . . . , Zs = zs|{zk : k 6= i, j, . . . , s})

depends only upon zi, zj , . . . , zs and the values at sites neighboring sites i, j, . . . , s.

In other words, Corollary 2.2 conveys that the local Markovian properties are equivalent to

the global Markovian properties. To help explain what this actually means, consider the 4×4

lattice given in Figure 2.3, where the values in the 2 × 2 block of “z” sites shall be thought

of as random and those in the remaining “o” sites shall be thought of as fixed. Then the

information in the joint conditional distribution of the random variables in the 2 × 2 block,

given the neighbors of this block, P(z1, z2, z3, z4|o1, . . . , o12), is equivalent to the information

in

4∏
i=1

P(zi|{zj : j 6= i}, o1, . . . , o12). The utility of this equivalency will be demonstrated in

section 3.5.

Before presenting the actual functional form of the conditional distribution at each site, as

well as how that form was reached, some additional notation must be developed to arrive

at a useful simplified expression for the generic conditional probability corresponding to site
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Figure 2.3: 4x4 Local vs. Global Markovian Example

O1

O2

O3

O4

O5

Z1

Z2

O6

O7

Z3

Z4

O8

O9

O10

O11

O12

A 4x4 MRF where only the variables at the
“z” sites are viewed as random.

i. Let ℵ denote the set of all cliques and let κ ∈ ℵ. Now define zκ ≡ (zi : i ∈ κ)′, the

vector of variable values corresponding to the sites of clique κ. Additionally, define Vκ(zκ) ≡

{
∏
i∈κ zi}Gκ(zκ), the portion of the negpotential function under (2.7) that corresponds to

clique κ. Consequently, the expansion of the negpotential function given by (2.7) can more

concisely be expressed as follows:

Q(z) =
∑
κ∈ℵ

Vκ(zκ). (2.18)

Now recall from Theorem 2.2 that zi = (z1, . . . , zi−1, 0, zi+1, . . . , zn)′ and that

z = (z1, . . . , zi−1, zi, zi+1, . . . , zn)′. Since zi = 0 when considering zi, then for every κ ∈ ℵ

such that site i is a member of clique κ, Vκ(zκ) =
{∏

i∈κ zi
}
Gκ(zκ) = 0. Thus, in taking

the difference between Q(z) and Q(zi), the only Vκ(zκ) terms of Q(z) that are not canceled

out by their corresponding term in Q(zi) are those Vκ(zκ) terms where site i is a member of

clique κ, i.e.:

Q(z)−Q(zi) =
∑
κ:i∈κ

Vκ(zκ). (2.19)

Substituting the right-hand side of (2.19) into the far right-hand side of (2.6) yields the

following relationship between the conditional probability corresponding to site i, given the
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variable values at all other sites of the lattice, and the cliques of which site i is a member:

P(zi|{zj : j 6= i}) ∝ exp{
∑
κ:i∈κ

Vκ(zκ)}, i = 1, . . . , n. (2.20)

Hence, “a conditional specification typically involves just a few nonzero functions {Gij...s(·)},”

and only those defined on cliques for which site i is a member.

2.2.3 Simplifying Assumptions: Pairwise-Only Dependence and Conditional

Exponential Distributions

Having resolved the consistency problem with a conditional specification and having intro-

duced the intractable normalizing constant problem that is ultimately the motivation for this

dissertation, the next step is to determine a “specific form for the conditional distribution at

each site,” in accordance with an established neighborhood structure. In particular, we as-

sume the conditional distributions are of exponential family. This implies that the conditional

distribution corresponding to site i, given the values of the random variables at every other

site of the lattice, has the following form:

P(zi|{zj : j 6= i}) = exp [Ai({zj : j 6= i})Bi(zi) + Ci(zi) +Di({zj : j 6= i})] , (2.21)

i = 1, . . . , n, where {Ai(·)} and {Di(·)} are functions of site i’s observed neighboring values

and the forms for {Bi(·)} and {Ci(·)} are specified by the particular exponential family dis-

tribution. Besag states that “a valid choice of Ai determines the type of dependence upon

neighboring site values and Di is then the appropriate normalizing function (for the condi-

tional distribution)” ([2]). In using the exponential family of distributions as the form of the

conditional distributions, an extremely useful theorem provides the functional form of Ai, but

before stating this result the notion of pairwise-only dependence between sites must first be

explained.
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Definition 2.6 (Pairwise-only Dependence). If in (2.7) the subset of G functions correspond-

ing to cliques containing three or more sites are all equivalent to 0, then the sites of the MRF

are said to exhibit pairwise-only dependence.

In other words, pairwise-only dependence between sites means that for all κ ∈ ℵ such that

|κ| ≥ 3, Gκ(·) ≡ 0. Note that pairwise-only dependence does not mean that cliques containing

3 or more sites do not exist, but rather that every such clique ends up having its corresponding

G function being set to 0. The rationale for making such an assumption is that it is believed

to be adequate enough in practice to capture any spatial relationship ([2]) and the complexity

of the resulting conditional distributions is substantially reduced; i.e. such an assumption

“narrows down the search for sensible and interpretable models,” as can be seen in the following

theorem.

Theorem 2.4. Assume (2.21) and pairwise-only dependence between sites. Then

Ai({zj : j 6= i}) = αi +

n∑
j=1

θijBj(zj), i = 1, . . . , n, (2.22)

where θji = θij, θii = 0, and θik = 0 for k /∈ Ni.

Theorem 2.4 reveals two important results. First, Ai is a linear function of the parameters

corresponding to site i and second, spatial dependence is inherently conveyed through the

{θij : i, j = 1, . . . , n} parameters since θik = 0 iff k /∈ Ni. Consequently, by substituting

the right hand side of equation (2.22) into the right hand side of equation (2.21), and in

turn substituting this into the right hand side of equation (2.20), the following relationship is

obtained:

P(zi|{zj : j 6= i}) ∝ exp


αi +

n∑
j=1

θijBj(zj)

Bi(zi) + Ci(zi)

 , i = 1, . . . , n,(2.23)
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where θji = θij , θii = 0, and θik = 0 for k /∈ Ni. In other words,

∑
κ:i∈κ

Vκ(zκ) =

αi +
n∑
j=1

θijBj(zj)

Bi(zi) + Ci(zi), i = 1, . . . , n. (2.24)

This general form for an exponential family conditional distribution is then exploited to obtain

the autologistic model for a MRF of binary random variables (see section 2.2.5).

2.2.4 Subtle Complications: Uniqueness and Edge Sites

Before applying the previous development to derive a conditional specification for a Markov

random field of binary random variables, two subtle complications must be briefly addressed.

The first deals with properties of the probability measure induced by the specified conditional

distributions while the second deals with the treatment of edge sites in specifying neighborhood

sets.

Given a countably infinite Markov random field with all corresponding neighborhood sets

having finite cardinality, two important properties that come into question with respect to the

probability measure (Pθ, θ ∈ Θ) induced by the conditional probabilities P(zi|{zj : j 6= i},θ),

i = 1, . . . , n, are uniqueness and identifiability. Recall that for θ1,θ2 ∈ Θ, “uniqueness is

characterized by the property (that) if θ1 = θ2, then Pθ1
= Pθ2

,” while “identifiability

is characterized by the property (that) if θ1 6= θ2, then Pθ1
6= Pθ2

.” Although in general

there are situations in which these properties fail, for the purposes of this dissertation, both

uniqueness and identifiability will always be assumed, except in cases where phase transition

is considered (see further below). The interested reader can consult [9], [10], and [16] for

necessary and sufficient conditions under which uniqueness and/or identifiability hold.

In addition to possible theoretical complications with a conditional specification of a MRF,

there is also a practical complication. In particular, as any sample of lattice sites is necessarily
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finite and the conditional distributions given by (2.21) are functions of the observed neighbor-

ing values (recall equation (2.3)), the conditional distributions corresponding to edge sites are

incomplete. In an attempt to produce complete conditional distributions for edge sites, many

edge adjustment procedures have been suggested. Three approaches that permeate the liter-

ature include (1) viewing the lattice as a torus, (2) implementing a “guard region,” or buffer,

and (3) using a weighted average of the available neighboring sites’ values. While all three

methods yield complete conditional distributions for edge sites, each method carries with its

use certain unavoidable concessions. To elaborate on this, each of the three aforementioned

methods is explained in some detail below along with their corresponding limitations.

Arguably the most commonly implemented edge adjustment procedure in the literature is a

toroidal edge adjustment. This approach views the lattice as a torus, meaning that the lattice

is wrapped onto a torus so that there are no edges and every site has a complete neighborhood

set ([8]). For example, under a toroidal edge adjustment the first-order neighborhood set of

site 1 from Figure 2.2 would be N1 = {2, 5, 6, 21}, while the second-order neighborhood set

of site 1 would be N1 = {2, 5, 6, 7, 10, 21, 22, 25}. The potential problem with using a toroidal

edge adjustment, however, is that it assumes that an edge of the lattice is dependent on the

opposite edge, which in reality is rarely the case. In the fire ignition example in Chapter 1,

there may happen to have been more fire ignitions on one side of the region than the other;

in this case, the use of a toroidal edge correction does not make sense.

Besides the toroidal edge adjustment, the other most commonly employed method in the

literature for making edge adjustments is the guard region. This method treats the edge sites

as fixed. This means that the observed values at the edge sites are used in the conditional dis-

tributions of the “internal” (i.e. non edge sites) sites whose neighborhood sets contain at least

one edge site, but that the conditional distributions corresponding to the edge sites do not

contribute to the likelihood function. In other words, guard region sites “contribute to the like-

lihood only through their neighborhood relations with internal sites not in the guard region.”

The obvious problem with a guard region adjustment is the potentially tremendous loss of
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information. For example, in one of the four regions of interest from the Oregon/Washington

fire ignitions data set, the corresponding lattice dimensions are 38x46. Hence, under either a

first- or second-order neighborhood system, only the conditional distributions corresponding

to 36×44
38×46 ≈ 0.9062 of the sites will be used in constructing the likelihood function. Thus, using

a guard region does not require any potentially absurd assumptions, unlike the torus method,

but it can come with a substantial information loss.

The final edge adjustment method that will be considered for this dissertation is a weighted

edge adjustment. This method weights the functions (Ai and Di) of the observed values of

the existing neighboring sites by the reciprocal of the proportion of available neighbors for the

given edge site ([18]). For example, under a first-order neighborhood system, the conditional

distribution for site 1 in figure 2.2 would take the functions of the observed values at sites 2

and 6 (its only two existing neighbors) and multiply them both by 4
2 = 2 since there are four

possible neighbors and site 1 only has 2 of its possible neighbors available; under a second-

order neighborhood system the functions of the observed values at sites 2, 6, and 7 would

both be multiplied by 8
3 since there are eight possible neighbors and site 1 only has 3 of its

possible neighbors available. The problem with a weighted edge adjustment is that it always

assumes each unobserved neighboring value of an edge site is equal to the average of the

observed neighboring values of that edge site, even if the average is based only on a small

fraction of available neighbors. Thus, this approach produces “complete” neighborhood sets

for edge sites by using the average of available neighboring values to estimate information

about unavailable neighboring values.

Having described three common approaches, as well as their limitations, to creating com-

plete neighborhood sets for edge sites, an obvious question lingers: Which method should be

employed? Simulation studies comparing the three approaches discussed above demonstrated

that, in practice, all three methods are comparable ([18]). Hence, it seems only rational

when modeling real (not simulated) data to let the context dictate the selection of an edge

adjustment procedure. Along this vein, both a toroidal edge adjustment and a guard region
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edge adjustment were implemented for the simulation studies of Chapters 5 and 6, while a

weighted edge adjustment was be implemented for the fire occurrence application of Chapter

7. Justification for these decisions will be provided at the appropriate time.

2.2.5 Binary Data and the Autologistic Model

Given the preceding theoretical development for a conditional probability specification of

Markov random fields, the next step is to apply these results to binary data under a {0, 1}

parameterization. Before delving into the specifics, however, an observation should be noted.

Specifically, since pairwise-only dependence between sites will be assumed, the negpotential

function, as expanded in (2.7), simplifies to the following:

Q(z) =
n∑
i=1

ziGi(zi) +
∑∑
1≤i<j≤n

zizjGij(zi, zj). (2.25)

Additionally, since Gi(0) = Gij(0, 1) = Gij(1, 0) = 0 implies that Gi(1) = αi and Gij(1, 1) =

θij , then the negpotential function for binary data further reduces to the following:

Q(z) =
n∑
i=1

αizi +
∑∑
1≤i<j≤n

θijzizj , (2.26)

where θij = 0 unless there exists a two-site clique containing sites i and j. Using (2.26) pro-

duces the following for Q(z)−Q(zi), where we recall that zi = (z1, . . . , zi−1, 0, zi+1, . . . , zn)′:

Q(z)−Q(zi) = αizi +
∑n

j=1 θijzizj , (2.27)

where θij = θji and we define θii ≡ 0 “to maintain identifiability of the parameters.” When

combined with equations (2.19) and (2.24), equation (2.27) reveals the following:

αi +

n∑
j=1

θijBj(zj)

Bi(zi) + Ci(zi) = αizi +

n∑
j=1

θijzizj , i = 1, . . . , n. (2.28)
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Thus, Bk(zk) = zk ∀k = 1, . . . , n and Ci(zi) = 0 ∀i = 1, . . . , n. In other words, the following

holds for a MRF of binary random variables:

P (zi|{zj : j 6= i}) ∝ exp

αizi +

n∑
j=1

θijzizj

 , i = 1, . . . , n. (2.29)

As P (0i|{zj : j 6= i}) is the constant of proportionality, or normalizing constant, for equation

(2.29) (see equation (2.30)), the next step is to ascertain its specific form.

If the right hand side of (2.27) is substituted into the far right hand side of (2.6), then the

following is obtained for the far left hand side of (2.6):

P (zi|{zj : j 6= i})
P (0i|{zj : j 6= i})

= exp

αizi +

n∑
j=1

θijzizj

 . (2.30)

Setting zi = 1 in the numerator of the left hand side of (2.30) produces the following:

P (1i|{zj : j 6= i})
P (0i|{zj : j 6= i})

= exp

αi +
n∑
j=1

θijzj

 . (2.31)

Since zi can only take on the values 0 or 1,

P(1i|{zj : j 6= i}) + P(0i|{zj : j 6= i}) = 1

⇔

P(1i|{zj : j 6= i}) = 1− P(0i|{zj : j 6= i}). (2.32)

Replacing the numerator of the left hand side of (2.31) with the right hand side of (2.32)

and solving for P(0i|{zj : j 6= i}) yields the following for the normalizing constant of the

conditional distribution of site i:

P(0i|{zj : j 6= i}) =
1

1 + exp
{
αi +

∑n
j=1 θijzj

} i = 1, . . . , n. (2.33)
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Similarly, it can be shown that:

P(1i|{zj : j 6= i}) =
exp

{
αi +

∑n
j=1 θijzj

}
1 + exp

{
αi +

∑n
j=1 θijzj

} i = 1, . . . , n. (2.34)

Finally, if the right hand side of equation (2.29) is multiplied by the right hand side of equation

(2.33), then the conditional form of the autologistic model is derived:

P(zi|{zj : j 6= i}) =
exp

{
αizi +

∑n
j=1 θijzizj

}
1 + exp

{
αi +

∑n
j=1 θijzj

} , zi ∈ Ω = {0, 1}, i = 1, . . . , n.(2.35)

As {θij : i, j = 1, . . . , n} are the spatial-dependence parameters, the binary random variables

Z1, . . . , Zn are said to be independent if θij = 0 ∀i, j = 1, . . . , n. Recall also that θij = 0 iff

sites i and j do not form a two-site clique, which is to say that θij = 0 in (2.35) iff j /∈ Ni.

Note that the {αi} are referred to as the spatial-trend parameters, but it is often helpful to

think of them more as the “proportion of ones” parameters.

While (2.35) gives the conditional specification for a MRF of binary random variables, the

joint specification is obtained by substituting the right hand side of (2.26) into the right hand

side of (2.5):

P(z) =

exp


n∑
i=1

αizi +
∑∑
1≤i<j≤n

θijzizj


∑
y∈Ωn

exp


n∑
i=1

αiyi +
∑∑
1≤i<j≤n

θijyiyj


, z ∈ Ωn. (2.36)

Note that

n∑
i=1

zi and
∑∑
1≤i≤j≤n

zizj are sufficient statistics for this model. If (2.36) is viewed as

a function of the parameters rather than as a function of the random vector, Z, then (2.36)

is the likelihood function. As was discussed previously for general Markov random fields, the

normalizing constant (denominator of the right hand side of (2.36)) of the likelihood function
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for a MRF of binary random variables is intractable. Consequently, exact maximum likelihood

methods for parameter estimation cannot be readily employed since n sites corresponds to 2n

summands in the normalizing constant. Four alternative estimation methods will be rigorously

presented in Chapter 3.

Since the right hand side of (2.36) exhibits as many as n spatial-trend parameters and

n(n−1)
2 spatial-dependence parameters, but the MRF consists of just n sites, the model is

overparameterized. However, if spatial homogeneity is assumed, then only a single spatial-

trend parameter is required and the potential number of spatial-dependence parameters is

drastically reduced, with the number of such parameters depending on the type of anisotropy.

Recall that spatial homogeneity means that both the spatial trend and the spatial dependence

are independent of site location on the lattice ([2]). For example, if the MRF is homogeneous

and isotropic, then the parameter set {αi, θij : i, j = 1, . . . , n} reduces to {α, θ}. This two

parameter autologistic model is generally referred to in the literature as the Ising model, with

equation (2.35) simplifying to the following:

P(zi|{zj : j 6= i}) =

exp

αzi + θ
∑
j∈Ni

zizj


1 + exp

α+ θ
∑
j∈Ni

zj


, zi ∈ Ω = {0, 1}, (2.37)

where Ni is the neighborhood set for site i, i = 1, . . . , n. It should be noted here that while the

Ising model is nice in its simplicity, it is not without difficulties. In fact, the Ising model on a

two-dimensional infinite square lattice suffers from a phenomenon known as phase transition,

which can create identifiability issues in the model ([28]). The following brief description of

phase transition is summarized from Pickard’s ([28]) detailed treatment of the matter within

the context of the Ising model. In particular, there exist two critical parameter values (α = 0

and θ = ±1
2 sinh−1(1) ≈ ±0.44 under a {−1, 1} parameterization, and ψ = (−2θ, θ)′ where

θ ≈ ±1.76 under a {0, 1} parameterization) in the parameter space such that for parame-
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ter values between these critical values, sites of the lattice exhibit long range independence

(“asymptotic independence”), but for parameter values beyond these critical values, sites of

the lattice exhibit “long-range correlation,” even as the distance between sites approaches

infinity. A phase transition is the name reserved for such situations where there exists an

“abrupt change in the qualitative behavior at a critical parameter value” ([28]). It is impor-

tant to understand, however, that even though the Ising model is described by local properties

through neighborhood relationships, phase transition is a global property of the lattice, not a

local property. Thus, in the presence of long-range correlation, statistical inference becomes

difficult since the model resulting from equation (2.37) suffers from identifiability problems.

The Ising model is not the only autologistic model with phase transitions, but due to the dif-

ficulty inherent in identifying the critical values associated with phase transitions, it appears,

at least from our literature review, to be the only such model whose critical values have been

determined. Geman and Geman indicate, however, that the singularities of the normalizing

constant, when viewed as a function of the parameters, are where the phase transitions occur

([12]).

For the purpose of clarity through illustration, one more example of an autologistic model

under the assumption of a homogeneous MRF will be given. Specifically, if the MRF is homo-

geneous with two-way anisotropy under a first-order neighborhood system (suppose vertical

and horizontal gradients where the spatial dependence in these two directions is different),

then the parameter set is {α, θv, θh}, where θv corresponds to the vertical gradient and θh cor-

responds to the horizontal gradient. This three-parameter autologistic model has the following

altered form of equation (2.35):

P(zi|{zj : j 6= i}) =

exp

αzi + θv
∑
j∈Nv

i

zizj + θh
∑
j∈Nh

i

zizj


1 + exp

α+ θv
∑
j∈Nv

i

zj + θh
∑
j∈Nh

i

zj


, zi ∈ Ω = {0, 1},(2.38)
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where Nv
i and Nh

i are, respectively, the vertical and horizontal neighborhood sets for site i,

i = 1, . . . , n. If θv = θh, then equation (2.38) reduces to the Ising model (equation (2.37)).

Clearly spatial homogeneity is a useful assumption with respect to parameter reduction,

but is it reasonable? As it turns out, spatial homogeneity is essentially a requirement when

working with the autologistic model, as is indicated by [2]: “it is unreasonable to apply

(the autologistic model) in situations where there is evidence of gross heterogeneity over

the lattice.” Thus, unless otherwise explicitly stated, spatial homogeneity will be assumed

throughout the remainder of this thesis. In some instances, however, spatial homogeneity

is only attained after one or more covariates have been included in the autologistic model.

In particular, if covariates that adequately model the trend have also been observed across

the lattice of interest, then including them in the autologistic model can correct any spatial

heterogeneity and ultimately yield a homogeneous system for which the autologistic model

spatial parameters are once again appropriate. Therefore, spatial modelers who are seeking

to employ the autologistic model should be aware of the fact that even if initial EDA of the

response variable reveals the presence of spatial heterogeneity across the lattice, abandoning

the autologistic model is not automatically the proper course of action.

2.3 The Autologistic Model and Covariates

Equations (2.37) and (2.38) are two specific examples of a first-order autologistic model,

the first under isotropy and the second under two-way anisotropy. In general, however, the

autologistic model can be succinctly expressed as follows:

P(zi|{zj : j 6= i}) =
exp

{
ψ′T zi

}∑
y∈{0,1}

exp
{
ψ′T y

} , zi ∈ Ω = {0, 1}, i = 1, . . . , n, (2.39)
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where ψ is the vector of parameters, including the single spatial trend parameter and all

spatial dependence parameters, and T zi is a vector of statistics resulting from the specified

value for zi. With the Ising model, for example, ψ = (α, θ)′ and T zi = (zi,
∑

j∈Ni
zizj)

′. The

corresponding succinct representation of the joint autologistic model, or rather the likelihood

function, is the following:

P(z|ψ) =

exp

{
ψ′

n∑
i=1

T zi

}
∑
y∈Ωn

exp

{
ψ′

n∑
i=1

T yi

} , z ∈ Ωn. (2.40)

where
∑n

i=1 T zi is the vector of jointly sufficient statistics for a specified value of z =

(z1, . . . , zn)′. For the Ising model,
∑n

i=1 T zi = (
∑n

i=1 zi,
1
2

∑n
i=1

∑
j∈Ni

zizj)
′, where the 1

2

in the second element of
∑n

i=1 T zi accounts for the double counting of zizj pairs.

Now suppose that covariates (and/or cofactors) need to be incorporated into the autologistic

model to help explain any observed trend in the process across the region. Recall the fire

ignition example given at the beginning of Chapter 1 with possible covariates including wind

direction, wind speed, and a measure of relative greenness. The resulting autologistic model

will have exactly the same form as (2.39) withψ and T zi incorporating all covariate parameters

and corresponding sufficient statistics, respectively ([19]). For example, suppose there are

p spatial dependence parameters and k covariate parameters (with no interaction terms),

then ψ = (α, θ1, . . . , θp, β1, . . . , βk)
′ and T zi will be of length 1 + p + k and consist of a

sufficient statistic for the single spatial trend parameter, p sufficient statistics for the p spatial

dependence parameters, and k sufficient statistics for the k covariate parameters. For the sake

of clarity, consider a first-order neighborhood system, under vertical and horizontal anisotropy,

with a single covariate term, X = (X1, . . . , Xn)′ ∈ R1× . . .×Rn = Rn, observed on the MRF.
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Then the corresponding autologistic model would take the form:

P(zi|{zj : j 6= i},x) =

exp

αzi + θv
∑
j∈Nv

i

zizj + θh
∑
j∈Nh

i

zizj + βxizi


1 + exp

α+ θv
∑
j∈Nv

i

zj + θh
∑
j∈Nh

i

zj + βxi


, zi ∈ Ω = {0, 1}, (2.41)

where ψ = (α, θv, θh, β)′ and T zi = (zi,
∑

j∈Nv
i
zizj ,

∑
j∈Nh

i
zizj , xizi)

′.

The main observation to be made from the preceding discussion is that the “autologistic

model is a simple generalization to spatial data of the standard logistic model for independent

binary data” ([19]). More specifically, if the sites of the lattice are spatially independent, then

equation (2.39), with the addition of k covariates, is nothing more than a logistic regression

model with ψ = (α, β1, . . . , βk)
′ and T zi = (zi, zix1i, . . . , zixki)

′, where xji is the value of the

jth covariate at site i. Hence, the functional form of the autologistic model is identical to

that of the logistic model, except that it also conditions on neighboring values of the binary

random variable (i.e. the random variable at a given site conditions on itself through its

neighbors’ values), which explains prefacing the term “logistic” with “auto” (meaning “self”)

in naming the model.

Despite the fact that the autologistic model is functionally just a simple extension of the lo-

gistic model, parameter estimation for the model, as discussed in section 2.2.2, is not straight-

forward like that for the logistic model. This fact is a direct consequence of the lack of

independence between the sites of the lattice, which ultimately result in the intractable nor-

malizing constant for the joint autologistic model. In particular, the denominator of the right

hand side of equation (2.40) is intractable, which means methods other than exact maximum

likelihood have to be employed. Numerous such methods were briefly discussed in section 1.2

of Chapter 1. Four of these methods will be presented in detail in Chapter 3.



Chapter 3

Estimation Methods for the

Autologistic Model

3.1 Introduction

As introduced in Chapter 1 and thoroughly developed in Chapter 2, the normalizing con-

stant for the likelihood function of the autologistic model is intractable, as is the case with

most likelihood functions corresponding to Markov random field models ([18]). Consequently,

methods other than maximum likelihood must be employed to estimate the model param-

eters. Several such alternative methods were briefly introduced, as well as compared and

contrasted, in Chapter 1, and a more rigorous presentation of four of those methods is the

topic of this chapter. Specifically, the methods of maximum pseudolikelihood (PL), Markov

chain Monte Carlo maximum likelihood (MCMCML), generalized pseudolikelihood (GPL),

and block generalized pseudolikelihood (BGPL) are presented in sections 3.2, 3.3, 3.4, and

3.5, respectively. Note that the strong consistency of the MGPLEs, as well as the strong

consistency of the MBGPLEs, is proven in Chapter 4. Before these estimation methods can

71
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be presented, however, some notation must first be established.

Let D = {(i, j, k, . . .) : i = 1, 2, . . . ; j = 1, 2, . . . ; k = 1, 2, . . . ; . . .} be an infinite dimensional

square lattice, where (i, j, k, . . .) denotes site (i, j, k, . . .) on the lattice. For all applications of

the (purely spatial) autologistic model considered in this thesis, attention will be restricted to

a finite two-dimensional subset, S, of D; i.e. S = {(i, j) : i = 1, . . . ,mr; j = 1, . . . ,mc} ⊂ D,

where mr is the number of rows of S and mc the number of columns. In Chapter 6, S will

be expanded to a finite three-dimensional subset of D when the spatio-temporal autologistic

model is considered. For notational simplicity, further define n ≡ mr ×mc and S = {i : i =

1, . . . , n}, where i denotes site i of the lattice and sites are arbitrarily numerically labeled top

to bottom within columns and left to right across columns.

Let Z = (Z1, Z2, . . . , Zn)′ be a vector of discrete random variables on S, with joint support

Ωn ≡ Ω1× . . .×Ωn, where Z is distributed according to a Markov random field (MRF). Recall

that the autologistic model has joint support Ωn = {0, 1}× . . .×{0, 1}. The joint density (i.e.

likelihood), or MRF distribution, of Z has the following form:

L(ψ) = P(Z = z;ψ)

=
exp{T ′(z) ·ψ}∑
y∈Ωn exp{T ′(y) ·ψ}

=
exp{T ′(z) ·ψ}

c(ψ)
, (3.1)

where ψ = (α, θ1 . . . , θp−1)′ is the vector of parameters, with parameter space Ψ, T (z) =

(T1(z), . . . , Tp(z))′ is the corresponding vector of jointly sufficient statistics (determined by

the particular realization z), and c(ψ) is the intractable normalizing constant. Recall that

α is the spatial trend parameter while θ1, . . . , θp−1 are the spatial dependence parameters,

with the number of such parameters, p, depending on the type of anisotropy, if any, present

over the MRF. If one or more covariates (and/or cofactors) are also observed over the MRF,

(3.1) is easily expanded. In particular, suppose there are k covariates, x1, . . . ,xk, where
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xq = (xq1, . . . , xqn)′, 1 ≤ q ≤ k, and xqi is the value of the qth covariate at the ith site. Let

X be the nxk matrix of covariate values, where the qth column of X is xq. Then the MRF

distribution for Z is denoted as follows:

L(ψ) = P(Z = z|X;ψ)

=
exp{T ′(z;X) ·ψ}∑
y∈Ωn exp{T ′(y;X) ·ψ}

=
exp{T ′(z;X) ·ψ}

c(ψ)
, (3.2)

where ψ = (α, θ1, . . . , θp−1, β1, . . . , βk)
′ and T (z;X) = (T1(z;X), . . . , Tp+k(z;X))′ is the

vector of jointly sufficient statistics.

In addition to the joint density, the conditional probability density for Zi, given {Zj : j 6= i},

is also required. By the spatial Markov property, the form of the conditional distribution is

the following:

P(Zi = zi|{zj : j 6= i};ψ) = P(Zi = zi|{zj : j ∈ Ni};ψ)

=
exp{t′(zi, {zj : j ∈ Ni}) ·ψ}∑

yi∈Ωi
exp{t′(yi, {yj : j ∈ Ni}) ·ψ}

, i = 1, . . . , n, (3.3)

where ψ is the same parameter vector as in (3.1), t(zi, {zj : j ∈ Ni}) = (t1(zi, {zj : j ∈

Ni}), . . . , tp(zi, {zj : j ∈ Ni})′ is the vector of jointly sufficient statistics for ψ corresponding

to the ith site conditional likelihood, and Ni is the neighborhood set (see definition 2.2) for

the ith site. The normalizing constant for the conditional distribution is not an issue like c(ψ)

is for the joint density since the normalizing constant of the conditional distribution has a

closed form, consisting of just a few summands. Finally, just as covariates were incorporated

into the joint density, covariates can analogously be incorporated into the conditional model

specification. In particular, given the vector of k covariate values for site i, xi = (x1i, . . . , xki)
′,
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the conditional distribution becomes the following for i = 1, . . . , n:

P(Zi = zi|{zj : j ∈ Ni},xi;ψ) =
exp{t′(zi, {zj : j ∈ Ni},xi) ·ψ}∑

yi∈Ωi
exp{t′(yi, {yj : j ∈ Ni},xi) ·ψ}

, (3.4)

where ψ is the same parameter vector as in (3.2) and t(zi, {zj : j ∈ Ni},xi) = (t1(zi, {zj :

j ∈ Ni};xi), . . . , tp+k(zi, {zj : j ∈ Ni};xi)′. Note that it can be inferred from Wu and Huffer

([35]) that the neighboring covariate values of site i are not used in (3.4) because the spatial

dependence in the covariates is indirectly accounted for when the zj in Ni are included in the

model.

3.2 Maximum Pseudolikelihood Estimation

The method of pseudolikelihood (PL), developed by Besag ([3]), is a simple approach to

estimating the parameters of a MRF model. The essence of the method is straightforward:

construct a “pseudo”-likelihood function for the MRF by forming the product of the n site con-

ditional densities given by (3.3), or by (3.4) if covariates are included. This pseudolikelihood

function is then treated like a true likelihood function to obtain the corresponding maximum

pseudolikelihood estimates (MPLEs). The remainder of this section is broken into two sub-

sections. In section 3.2.1 a general treatment of PL is provided that is largely a summary of

Besag’s ([3]) development of the method, while in section 3.2.2 the method is demonstrated

within the context of the Ising model, when extended to incorporate a covariate.
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3.2.1 PL: Background

Assuming covariates have been observed over the MRF of interest, the PL function, denoted

PL(ψ), is just the product of the n site conditional distributions:

PL(ψ|z,X) =

n∏
i=1

exp{t′(zi, {zj : j ∈ Ni},xi)ψ}∑
yi∈Ωi

exp{t′(yi, {yj : j ∈ Ni},xi)ψ}
, z ∈ Ωn,ψ ∈ Ψ. (3.5)

Thus, the pseudolikelihood function is formed in the same fashion that the true likelihood

function is formed for independent random variables, which explains prefacing the name of

the method with “pseudo” since the random variables are in fact (almost always) dependent.

As is typically the case with the likelihood function, the logarithm of the pseudolikelihood

function is worked with in practice. In particular, the log of the PL function is the following:

log {PL(ψ|z,X)} =

n∑
i=1

t′(zi, {zj : j ∈ Ni},xi)ψ

−
n∑
i=1

log

∑
yi∈Ωi

exp{t′(yi, {yj : j ∈ Ni},xi)ψ}

 . (3.6)

The MPLEs, ψ̂PL, are then obtained by numerically maximizing (3.6). Any statistical soft-

ware package that has a generalized linear models (GLIM) package, such as R, can obtain

the MPLEs in a matter of seconds; when the MRF consists of binary response variables (i.e.

the ALM), the pseudolikelihood is just a logistic regression model likelihood. However, since

the pseudolikelihood function is not a true likelihood function, the asymptotic standard errors

generally reported as part of standard logistic regression output are invalid since the observa-

tions are not actually independent. As was mentioned in Chapter 1, the standard errors for

the MPLEs may be obtained using a resampling technique such as parametric bootstrapping

([19]); this technique will be presented in Chapter 7 when PL, as well as the other three es-

timation methods discussed in this current chapter, are applied to the fire data from Oregon

and Washington.
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As for properties of the MPLEs, all is known with respect to asymptotic efficiency, strong

consistency, and asymptotic normality. In particular, the MPLEs are not asymptotically

efficient, “but the inefficiency will often be slight, and compensated by dramatic computational

simplifications” ([33]). Strauss ([33]) attributes the inefficiency of the MPLEs to the fact that

they are generally not a function of the minimal sufficient statistics. Finally, although the

MPLEs are inefficient, they do possess the desirable properties of strong consistency and

asymptotic normality, one or both of which have been proven, under suitable conditions, by

several authors, including Geman and Graffigne ([13]), Jensen and Møller ([24]), Comets ([7]),

and Guyon and Kunsch ([20]). The proof of the strong consistency of the MPLEs given

by Geman and Graffigne ([13]) is instrumental in the proof of the strong consistency of the

MGPLEs and the MBGPLEs given in Chapter 4.

3.2.2 PL: Application to the ALM

To demonstrate the use of PL with a concrete example, consider the Ising model with a single

covariate, x = (x1, . . . , xn)′ measured on the n sites (so ψ = (α, θ, β)′):

P(Zi = zi|{zj : j ∈ Ni},x;ψ) =

exp

αzi + θzi
∑
j∈Ni

zj + βzixi


1 + exp

α+ θ
∑
j∈Ni

zj + βxi


, i = 1, . . . , n. (3.7)

Note that the joint probability mass function corresponding to the ALM given in (3.7) has

the following vector of jointly sufficient statistics:

T (z;x) = (

n∑
i=1

zi,
1

2

n∑
i=1

∑
j∈Ni

zizj ,

n∑
i=1

zixi)
′.
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The corresponding pseudolikelihood function is then just the product of the n site conditional

distributions given by (3.7):

PL(ψ|z,x) =
n∏
i=1

exp

αzi + θzi
∑
j∈Ni

zj + βzixi


1 + exp

α+ θ
∑
j∈Ni

zj + βxi


. (3.8)

The logarithm of (3.8) is then taken to obtain the log PL function:

log{PL(ψ|z,X)} = α
n∑
i=1

zi + θ

n∑
i=1

∑
j∈Ni

zizj +

n∑
i=1

βzixi

−
n∑
i=1

log

1 + exp

α+ θ
∑
j∈Ni

zj + βxi


 . (3.9)

The MPLEs, ψ̂PL = (α̂PL, θ̂PL, β̂PL)′, are then obtained by numerically maximizing (3.9)

with respect to ψ. As was mentioned in section 3.2.1, the corresponding standard errors must

be obtained using a resampling method such as parametric bootstrapping.

3.3 Markov Chain Monte Carlo Maximum Likelihood Estima-

tion

The method of Markov chain Monte Carlo maximum likelihood (MCMCML), developed by

Geyer and Thompson ([15]), is used to obtain an approximation of the maximum likelihood

estimate (MLE) in situations where the MLE is unavailable. In particular, when the true

likelihood is known only up to a constant of proportionality, i.e. its normalizing constant is

intractable, MCMCML can be employed to determine an estimate of the true MLE ([15]).

For the purposes of this thesis, the detailed development of the MCMCML method is three-

fold. First, in section 3.3.1, an in-depth description of MCMCML is provided and largely
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parallels the development of the method that is given in [23]. This background information first

demonstrates how a ratio of normalizing constants at two distinct parameter values is sufficient

to obtain the MCMC approximate log likelihood function, and then briefly discusses properties

of the corresponding MCMCMLEs. Second, in section 3.3.2, the Gibbs sampler is reviewed

since it provides the necessary machinery for generating a Markov chain of lattice realizations

necessary to construct the MCMC approximate log likelihood. Finally, in section 3.3.3, the

use of MCMCML methods within the context of the autologistic model is demonstrated, and

in particular, its use with the Ising model, when generalized to incorporate a covariate term,

is illustrated. Note that the theory behind Markov chain Monte Carlo methods that justifies

their use and the properties of the corresponding MCMCMLEs is both deep and involved,

and is beyond the scope of this thesis. Hence the following treatment of MCMCML does not

focus on why the method works, but rather on how it works. The interested reader can find

numerous articles and textbooks in the literature devoted to both the how and the why of

MCMCML, including [12], [18], and [31].

3.3.1 MCMCML: Background

Assume that the probability measure Pψ of the data z has a joint probability mass (or density)

function fψ (with respect to a measure µ) that can be expressed as in the right hand side of

(3.1), or as in the right hand side of (3.2) if there are also covariates observed on the lattice;

for simplicity of presentation, assume without any loss of generality that no covariates have

been observed over the MRF. Hence,

fψ(z) =
exp{T ′(z)ψ}∑
y∈Ωn exp{T ′(y)ψ}

=
1

c(ψ)
hψ(z), (3.10)

where hψ(z) is the known likelihood function, up to a proportionality constant, and c(ψ)

is the intractable normalizing constant. Now let φ be an arbitrary, but fixed, point in the
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parameter space Ψ. Note that in theory φ is arbitrary; in practice, it is desirable for φ to be

close to ψ. Then observe the following, where integrals have been used instead of summations

for generality (in the autologistic model, µ is taken as a counting measure):

c(ψ) =

∫
hψ(z)dµ(z)

=

∫
hψ(z)

1

fφ(z)
fφ(z)dµ(z)

=

∫
hψ(z)

1

fφ(z)
dPφ(z)

=

∫
hψ(z)

c(φ)

hφ(z)
dPφ(z)

= c(φ)

∫ hψ(z)

hφ(z)
dPφ(z)

= c(φ)Eφ

{
hψ(Z)

hφ(Z)

}
. (3.11)

Hence, from (3.11), the following equation for the ratio of normalizing constants is obtained:

c(ψ)

c(φ)
= Eφ

{
hψ(Z)

hφ(Z)

}
. (3.12)

This ratio of normalizing constants can then be estimated as a Monte Carlo average in the

following manner, where Z1,Z2, . . . ,Zm are realizations generated from Pφ using the Gibbs

sampler (see section 3.3.2 below):

c(ψ)

c(φ)
≈ 1

m

m∑
i=1

hψ(Zi)

hφ(Zi)
. (3.13)

While at first glance the above estimate of the ratio of normalizing constants may ap-

pear useless toward achieving an approximation to the MLE, it is in fact the cornerstone

of MCMCML. To comprehend this crucial fact, note that argmaxψ∈Ψ log {c(φ) · lz(ψ)} =

argmaxψ∈Ψ log {lz(ψ)}, where lz(ψ) denotes the log-likelihood. Hence, for purposes of op-
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timization lz(ψ) can be equivalently maximized as follows:

lz(ψ) ≡ log
{
c(φ)fψ(z)

}
= log

{
c(φ)

hψ(z)

c(ψ)

}

= log
{
hψ(z)

}
+ log

{
c(φ)

c(ψ)

}
= log

{
hψ(z)

}
− log

{
c(ψ)

c(φ)

}
. (3.14)

Consequently, an MCMC approximate log likelihood, lm,zobs
(ψ), can be obtained by replacing

c(ψ)

c(φ)
with the right hand side of (3.13):

lm,zobs
(ψ) = log

{
hψ(zobs)

}
− log

{
1

m

m∑
i=1

hψ(Zi)

hφ(Zi)

}
, (3.15)

where the m subscript on the lm,zobs
(ψ) indicates the amount of Monte Carlo effort and zobs

indicates the lattice realization of the MRF that was actually observed, rather than one of

the realizations Z1, . . . ,Zm generated using the Gibbs sampler. The MCMCMLEs, ψ̂MC , are

then obtained by numerically maximizing (3.15) with respect to ψ. The corresponding stan-

dard errors are obtained by calculating the MCMC approximate observed Fisher information

matrix, which amounts to evaluating the inverse of the Hessian of lm,zobs
(ψ) at ψ̂MC ([18]).

The Markov chain Monte Carlo maximum likelihood estimates are obtained through the

clever use of an approximation of a ratio of normalizing constants, but what, if anything, can

be said about the properties of such estimators? As it turns out, essentially every property

the statistical modeler could possibly desire holds for the MCMCMLEs. In particular, Geyer

and Thompson ([15]) proved that the MCMCMLEs converge almost surely to the true, but

unknown, parameter values (i.e. the MCMCMLEs are strongly consistent) as a result of

the Mean Ergodic Theorem. Additionally, Huffer and Wu ([23]) demonstrated in simulation

studies that the MCMCMLEs are asymptotically normally distributed. Finally, Graham ([18])



3.3. MARKOV CHAIN MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION 81

verified via a simulation study that “both the Monte Carlo likelihood ratio test statistic and

the Monte Carlo Wald test statistic have their usual asymptotic chi-squared distributions”

([23]). Hence, the method of MCMCML is a useful method for parameter estimation, with its

only major drawback stemming from the computational expense associated with generating

the realizations Z1, . . . ,Zm from Pφ, and choice of an appropriate φ.

3.3.2 MCMCML: Gibbs Sampler

Section 3.3.1 elaborated on how a Markov chain of realizations (Z1,Z2, . . . ,Zm) generated

from Pφ could be used to form a Monte Carlo average that approximates the ratio of nor-

malizing constants, which in turn leads to an approximation of the true MLE. It was assumed

throughout section 3.3.1, however, that Z1,Z2, . . . ,Zm were at hand. This section takes a

step back and discusses how such realizations are generated using the Gibbs sampler, which

was first described in the literature by Geman and Geman ([12]). Note that the Metropolis-

Hastings algorithm can also be used to generate such realizations, but for the purposes of this

thesis, only the Gibbs sampler is implemented, and, thus, it is the only method developed

here in any detail. The following development of the Gibbs sampler represents a compilation

of descriptions available in the literature, including [12], ([31]), and [23].

Suppose the lattice of interest, Z = (Z1, Z2, . . . , Zn)′, has probability measure Pφ, where

φ is as defined in section 3.3.1, and a site conditional distribution is given by (3.3), or by

(3.4) if there are covariates observed on the MRF, where a known φ has been substituted for

the unknown ψ. For simplicity of presentation, assume without any loss of generality that

covariates have not been observed over the MRF. Additionally, while the spatial Markovian

assumption dictates that the conditional distribution for a site only depends on the nearest

neighbors for that site, the presentation of the Gibbs sampler is more easily conveyed, as will

be seen shortly, if the conditioning is expressed in terms of all other sites of the lattice, rather

than in terms of only the nearest neighbors. Hence, the conditional distribution of the random
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variable corresponding to site i is the following:

f(zi|{zj : j 6= i};φ) = f(zi|z1, . . . , zi−1, zi+1, . . . , zn;φ)

=
exp{t′(zi, z−i)φ}∑

yi∈Ωi
exp{t′(yi,y−i)φ}

, i = 1, . . . , n, (3.16)

where z−i = {zj : j 6= i}. Now let Zt = (Zt1, Zt2, . . . , Ztn)′ be the tth realization of the

lattice within the Markov chain. Then the transition to the (t + 1)th realization, Zt+1 =

(Z(t+1)1, Z(t+1)2, . . . , Z(t+1)n)′, is accomplished through the following algorithm (i.e. the Gibbs

sampler).

The Gibbs Sampler:

Given zt = (zt1, . . . , ztn)′, generate

1. Z(t+1)1 ∼ f(z1|zt2, . . . , ztn;φ)

2. Z(t+1)2 ∼ f(z2|z(t+1)1, zt3, . . . , ztn;φ)

3. Z(t+1)3 ∼ f(z2|z(t+1)1, z(t+1)2, zt4, . . . , ztn;φ)

...

n. Z(t+1)n ∼ f(z2|z(t+1)1, z(t+1)2, . . . , z(t+1)(n−1);φ).

Note that “generate” in the above context means to randomly sample from the specified

conditional distribution site by site. Hence, the realization for site 1 of the (t+1)th realization,

z(t+1)1, is obtained by randomly sampling a single value from the conditional distribution

specified by f(z1|zt2, . . . , ztn;φ). Once all n steps have been carried out, the (t+1)th realization

in the Markov chain is obtained. Each time the n steps listed above are completed, a single

sweep of the Gibbs sampler has been performed. The starting, or initial, state for the Gibbs

sampler, Z0, is arbitrary, but the observed lattice, zobs, or a lattice of zeros is often used

as the initial state. Furthermore, as mentioned above in section 3.3.1, while the value used
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for φ is in theory arbitrary, in practice it is desirable that φ be close to ψ. Typically, a

burn-in period, call it b, is specified where the first b sweeps of the Gibbs sampler are used

to establish convergence of the chain to the desired MRF. These initial sweeps are not used

in calculating the Monte Carlo average specified in (3.13). Additionally, a spacing value,

call it δ, is often implemented such that only every δth sweep, after burn-in, is kept for use

in computing the aforementioned Monte Carlo average. The objective of this spacing is to

reduce the dependence between the kept realizations of the Gibbs sampler. Note that Geyer

conveys that “in many cases δ = 1 is optimal and in almost all cases the optimal δ is less

than five” ([14]). Hence, if Y j denotes the Markov chain lattice after the jth sweep of the

Gibbs sampler and Zk denotes the lattice corresponding to the kth sweep used in computing

the Monte Carlo average in (3.13), then Zk = Y b+δk, k = 1, . . . ,m, where m is the desired

number of realizations for computing the Monte Carlo average.

3.3.3 MCMCML: Application to the ALM

To demonstrate the use of MCMCML, as well as the Gibbs sampler, with a concrete example,

consider the Ising model with a single covariate. In particular, the joint probability mass

function, or likelihood, for the Ising model with a single covariate, x = (x1, . . . , xn)′, is the

following:

f(z|x;ψ) =

exp

α
n∑
i=1

zi +
1

2
θ

n∑
i=1

zi
∑
j∈Ni

zj + β
n∑
i=1

zixi


∑

y∈{0,1}n
exp

α
n∑
i=1

yi +
1

2
θ

n∑
i=1

yi
∑
j∈Ni

yj + β
n∑
i=1

yixi


. (3.17)

Now select a fixed point, φ, in the parameter space Ψ. Typically, the pseudolikelihood

estimates, ψ̂PL = (α̂PL, θ̂PL, β̂PL)′, are used for φ, i.e. φ ≡ ψ̂PL ([18]). Then, by (3.12) and



3.3. MARKOV CHAIN MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION 84

(3.13),
c(ψ)

c(ψ̂PL)
is approximated as follows:

c(ψ)

c(ψ̂PL)
≈ 1

m

m∑
i=1

hψ(Zi)

h
ψ̂PL

(Zi)
, (3.18)

where m is the number of Markov chain realizations, and hψ(Zi) =

exp

α
n∑
i=1

zi +
1

2
θ

n∑
i=1

zi
∑
j∈Ni

zj + β

n∑
i=1

zixi

, with h
ψ̂PL

(Zi) defined analogously, and Z1,

. . . , Zm are realizations generated from P
ψ̂PL

using the Gibbs sampler (this is explained in

detail below). Using (3.14) and (3.15), the MCMC approximate log likelihood, lm,zobs
(ψ), is

then given by the following equation:

lm,zobs
(ψ) = log

exp

α
n∑
i=1

zobsi +
1

2
θ

n∑
i=1

zobsi
∑
j∈Ni

zobsj + β

n∑
i=1

zobsi xi




−log


1

m

m∑
i=1

exp

α
n∑
k=1

zik +
1

2
θ

n∑
k=1

zik
∑
j∈Nk

zij + β

n∑
k=1

zikxk


exp

α̂PL
n∑
k=1

zik +
1

2
θ̂PL

n∑
k=1

zik
∑
j∈Nk

zij + β̂PL

n∑
k=1

zikxk




= −log

 1

m

m∑
i=1

exp

(α− α̂PL)

n∑
k=1

zik + (θ − θ̂PL)
1

2

n∑
k=1

zik
∑
j∈Nk

zij + (β − β̂PL)

n∑
k=1

zikxk




+ α

n∑
i=1

zobsi +
1

2
θ

n∑
i=1

zobsi
∑
j∈Ni

zobsj + β

n∑
i=1

zobsi xi, (3.19)

where zobs = (zobs1 , . . . , zobsn )′ and zi = (zi1, . . . , zin)′, i = 1, . . . ,m. The MCMCMLEs,

ψ̂MC = (α̂MC , θ̂MC , β̂MC)′, are obtained by numerically maximizing (3.19) with respect to

ψ = (α, θ, β)′. Finally, the standard errors corresponding to ψ̂MC are obtained by evalu-

ating the inverse of the Hessian of lm,zobs
(ψ) at ψ̂MC , i.e. computing the observed Fisher

information matrix.

To obtain the realizations Z1, . . . ,Zm generated from P
ψ̂PL

using the Gibbs sampler, first

note that the conditional distribution for the random variable corresponding to site i, given
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the values of the random variables at all other locations of the lattice, is the following under

the spatial Markovian assumption:

f(zi|{zj ∈ Ni}, xi; ψ̂PL) =

exp

α̂PLzi + θ̂PLzi
∑
j∈Ni

zj + β̂PLzixi


1 + exp

α̂PL + θ̂PL
∑
j∈Ni

zj + β̂PLxi


. (3.20)

As was done in section 3.3.2, the conditional distribution, given in (3.20), will be reex-

pressed with the conditioning being over all other sites of the lattice rather than just the

neighboring sites, so as to simplify the following illustration of the Gibbs sampler. Hence,

f(zi|z1, . . . zi−1, zi+1, . . . , zn, xi; ψ̂PL) ≡ f(zi|{zj ∈ Ni}, xi; ψ̂PL). Let Z0, the initial state of

the Markov chain, be a lattice of all zeros or the observed lattice zobs, then the (t+1)th lattice

realization of the Markov chain, Zt+1 = (Z(t+1)1, . . . , Z(t+1)n)′, given the tth lattice realiza-

tion of the Markov chain, Zt = (Zt1, . . . , Ztn)′, is transitioned to using the Gibbs sampler as

follows.

1. (a) Calculate r1 ≡ P (Z(t+1)1 = 1|zt2, . . . , ztn, x1; ψ̂PL), the conditional probability that

the random variable corresponding to site 1 assumes a value of 1. Note that the

conditional probability that the random variable corresponding to site 1 assumes

a value of 0 is simply 1− r1.

(b) Randomly sample a single realization, u, from U ∼ uniform(0, 1).

(c) If u ≤ r1, then set z(t+1)1 = 1, otherwise set z(t+1)1 = 0.

2. (a) Calculate r2 ≡ P (Z(t+1)2 = 1|z(t+1)1, zt3, . . . , ztn, x2; ψ̂PL), the conditional proba-

bility that the random variable corresponding to site 2 assumes a value of 1.

(b) Randomly sample a single realization, u, from U ∼ uniform(0, 1).

(c) If u ≤ r2, then set z(t+1)2 = 1, otherwise set z(t+1)2 = 0.

...
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n. (a) Calculate rn ≡ P (Z(t+1)n = 1|z(t+1)1, z(t+1)2, . . . , z(t+1)(n−1), xn; ψ̂PL), the condi-

tional probability that the random variable corresponding to site n assumes a value

of 1.

(b) Randomly sample a single realization, u, from U ∼ uniform(0, 1).

(c) If u ≤ rn, then set z(t+1)n = 1, otherwise set z(t+1)n = 0.

The above algorithm is then performed until m realizations of the lattice have been obtained,

after accounting for both the prespecified burn-in and spacing. This will leave the user with

Z1, . . . ,Zm, or m realizations generated from P
ψ̂PL

, which are used in computing the MCMC

approximate log likelihood (3.19) that is then numerically maximized to obtain the MCM-

CMLEs, ψ̂MC .

3.4 Maximum Generalized Pseudolikelihood Estimation

The method of generalized pseudolikelihood (GPL), developed by Huang and Ogata ([22]),

is intended to serve as a compromise between PL and MCMCML, as previously discussed

in Chapter 1. The essence of the method is to first divide the lattice of interest into n

overlapping groups such that each site is centered in its own distinct group. Second, for each

of these groups, a group joint likelihood function is constructed, where the corresponding

normalizing constants are calculated via brute force, and then the product over all group joint

likelihood functions is taken to produce the generalized pseudolikelihood function. Finally,

the logarithm of this function is then numerically maximized to obtain the corresponding

maximum generalized pseudolikelihood estimates (MGPLEs). The remainder of this section

is broken into two subsections. In section 3.4.1 a rigorous treatment of GPL is provided that

is essentially a compilation of the treatments of the method given in both [22] and [32], while

in section 3.4.2 the method is demonstrated within the context of the Ising model, when

generalized to incorporate a covariate.
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Figure 3.1: “L-Shape” Group Structure
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An “L-shaped” group representing g(i) on a 7 × 7 lattice subset of S, where Zg(i) =
{Zi, Z(1), Z(2)}. Under a first-order neighborhood system, the 7 B sites represent the lo-
cations of the fixed boundary neighbors of g(i), while the 39 e sites represent the locations
of the external sites that are conditionally independent of the sites of g(i) under a spatial
Markovian assumption.

3.4.1 GPL: Background

Let g(i) denote the group of sites “centered” at site i, i = 1, . . . , n. Typically, each site’s group

consists of that site and its nearest neighbors, but in theory the modeler is free to implement

any sort of group configuration imaginable and different sites can even have different group

configurations. Additionally, let Zg(i) = {Zk : k ∈ g(i)} be the set of variables corresponding

to sites contained within group i, and let Zg(i) = {Zk : k /∈ g(i)} be the set of variables

corresponding to all sites of the lattice that are not members of group i. For k ∈ g(i), let

N
g(i)
k denote the neighbors of site k that are members of g(i), or “internal” to g(i), and

let N
∂g(i)
k denote the neighbors of site k that are not members of g(i), i.e. the sites of

N
∂g(i)
k are “boundary” neighbors of the ith group. Observe then that the Neighborhood set

of site k, i.e. Nk, is Nk = N
g(i)
k ∪ N∂g(i)

k , where N
g(i)
k ∩ N∂g(i)

k = ∅. For example, in

Figure 3.1 a three-site “L-shaped” group structure, which is used in Chapter 7 when modeling

the fire occurrence data of Oregon and Washington state, is illustrated under a first-order

neighborhood system. More specifically, g(i) = {i, (1), (2)}, where the parentheses are to
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indicate that site (k) is not necessarily the same as site k. Furthermore, in Figure 3.1,

N
g(i)
i = {(1), (2)} and N

∂g(i)
i = {B2, B4}, while N

g(i)
(1) = {i} and N

∂g(i)
(1) = {B1, B3, B5}.

As was indicated in Chapter 1, the need for the distinction between internal neighbors and

boundary neighbors for the neighborhood sets of sites belonging to g(i) is not expressed in

the literature, but was discovered over the course of this thesis work. The relevance of this

discovery is tied to the sufficient statistics for the group joint likelihood functions and is

further addressed below. First, however, the formation of the group joint likelihoods must be

discussed.

For each group, g(i), the group joint likelihood, denoted GLi(ψ), is constructed. The form

of each group joint likelihood is essentially identical to the right hand side of (3.1), or (3.2)

if covariates have also been observed over the MRF. For presentation ease, assume without

any loss of generality that covariates have not been observed over the MRF. In particular,

∀i = 1, . . . , n, the functional form of the ith group joint likelihood is the following:

GLi(ψ) =

 exp{T ′
(
zg(i), z

g(i)
)
·ψ}∑

y∈Ω|g(i)| exp{T ′
(
yg(i),y

g(i)
)
·ψ}


1
|g(i)|

, (3.21)

where |g(i)| denotes the number of sites belonging to group i. Three things must be noted

in considering the functional form of the group joint likelihoods. First, even though z =

zg(i)∪zg(i), the group sufficient statistics, T ′
(
zg(i), z

g(i)
)
, have been expressed as functions of

zg(i) and zg(i) in (3.21), rather than as functions of z, as in (3.1). This is done to emphasize

that for each group joint likelihood zg(i) and zg(i) are viewed differently; in particular, while

the zg(i) represent the observed values of the variables corresponding to sites in group i, the

zg(i) represent fixed values corresponding to sites not in group i. Hence, the normalizing

constant of the ith group’s joint likelihood (denominator of (3.21)) is formed by summing over

all possible realizations of the variables corresponding to only the sites that are members of

group i; for each such summand, zg(i) remains fixed. Second, the sufficient statistics in (3.21)

have a slightly different form than the sufficient statistics in (3.1). In particular, the sufficient
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statistics for a group joint likelihood must distinguish a neighbor relation between two sites of

the group and a neighbor relation between one site of the group and one boundary neighbor

site of the group. For example, in Figure 3.1, the neighbor relation between sites i and (2)

must be distinguished from the neighbor relation between sites i and B3. This distinction is

important because the neighbor relations between a group site and a boundary neighbor site

must not be downweighted relative to the neighbor relations between two sites of a group in

the joint likelihood. This crucial fact, which was alluded to above as the distinction between

internal neighbors and boundary neighbors, is surprisingly void in the literature, but was

discovered over the course of this thesis work. An example demonstrating how the sufficient

statistics of the group joint likelihoods are altered when the internal neighbor relations of a

group are distinguished from the boundary neighbor relations of that group is provided in

section 3.4.2. Third and finally, while in section 1.2.4 it was assumed that |g(i)| was the same

for all i, this need not be the case and, consequently, the |g(i)|th root is taken to obtain the

ith group joint likelihood. If, however, |g(i)| = C ∀i = 1, . . . , n, then taking the Cth root of

each group joint likelihood is often omitted, as was done in section 1.2.4, since that constant,

as will be seen shortly, is irrelevant.

The generalized pseudolikelihood function, denoted GPL(ψ), is formed by taking the prod-

uct of the group joint likelihood functions over all sites:

GPL(ψ) =

n∏
i=1

GLi(ψ)

=

n∏
i=1

 exp{T ′
(
zg(i), z

g(i)
)
·ψ}∑

y∈Ω|g(i)| exp{T ′
(
yg(i),y

g(i)
)
·ψ}


1
|g(i)|

. (3.22)

Note that the GPL function, just like the PL function, is not a true likelihood, but by mul-

tiplying joint likelihoods over small groups, it is in some sense “closer” to a true likelihood.

Although already discussed in Chapter 1, it is worth mentioning again how GPL is a compro-

mise between PL and MCMCML. If g(i) = {i} ∀i = 1, . . . , n, then GPL reduces to PL since
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(3.5) and (3.22) would be equivalent. Furthermore, if g(i) = {1, . . . , n} ∀i = 1, . . . , n, then

GPL is equivalent to maximum likelihood since (3.1) and (3.22) would be equivalent. To see

this, note that if g(i) = {1, . . . , n} ∀i = 1, . . . , n, then |g(i)| = n, zg(i) = z, and zg(i) = ∅

∀i = 1, . . . , n, and (3.22) then becomes the following:

GPL(ψ) =
n∏
i=1

 exp{T ′
(
zg(i), z

g(i)
)
·ψ}∑

y∈Ω|g(i)| exp{T ′
(
yg(i),y

g(i)
)
·ψ}


1
|g(i)|

=
n∏
i=1

{
exp{T ′ (z) ·ψ}∑
y∈Ωn exp{T ′ (y) ·ψ}

} 1
n

=

{
exp{T ′ (z) ·ψ}∑
y∈Ωn exp{T ′ (y) ·ψ}

}n 1
n

=
exp{T ′ (z) ·ψ}

c(ψ)

= L(ψ). (3.23)

Thus, for a fixed group structure over the entire lattice, if the corresponding group size is 1,

then GPL is PL, if the corresponding group size is n, then GPL is maximum likelihood (which

MCMCML approximates), and if the corresponding group size is strictly between 1 and n,

then GPL is somewhere between PL and MCMCML.

As is the case with PL and MCMCML, the logarithm of the generalized pseudolikelihood

function is typically used in practice and, hence, the log generalized pseudolikelihood function

is the following:

log {GPL(ψ)} = log


n∏
i=1

 exp{T ′
(
zg(i), z

g(i)
)
·ψ}∑

y∈Ω|g(i)| exp{T ′
(
yg(i),y

g(i)
)
·ψ}


1
|g(i)|



=
n∑
i=1

1

|g(i)|
log

 exp{T ′
(
zg(i), z

g(i)
)
·ψ}∑

y∈Ω|g(i)| exp{T ′
(
yg(i),y

g(i)
)
·ψ}
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=
n∑
i=1

1

|g(i)|
T ′
(
zg(i), z

g(i)
)
·ψ

−
n∑
i=1

1

|g(i)|
log

 ∑
y∈Ω|g(i)|

exp{T ′
(
yg(i),y

g(i)
)
·ψ}

 . (3.24)

The MGPLEs are then obtained by numerically maximizing (3.24) with respect to ψ. Note

that if |g(i)| = C ∀i = 1, . . . , n, then the 1
|g(i)| terms become irrelevant in the maximiza-

tion, which justifies their omission in the group joint likelihoods when the group sizes are all

equivalent. The standard errors for the MGPLEs can be obtained by employing a resampling

method, such as parametric bootstrapping. Finally, while GPL is a compromise between

PL and MCMCML, basic asymptotic properties of the MGPLEs remain unestablished in the

literature. As part of this dissertation, the strong consistency of the MGPLEs is proven in

Chapter 4.

3.4.2 GPL: Application to ALM

To demonstrate the use of GPL with a concrete example, consider the Ising model with a

single covariate, with probability mass function, or likelihood, as given in (3.17). If it is

assumed that the group structure is the same for all n groups, then the group joint likelihood

for group i, i = 1, . . . , n, is the following:

GLi(α, θ, β) =

exp

α
∑
k∈g(i)

zk + θ

1

2

∑
k∈g(i)

∑
j∈Ng(i)

k

zkzj +
∑
k∈g(i)

∑
j∈N∂g(i)

k

zkzj

+ β
∑
k∈g(i)

zkxk


∑

y∈Ω|g(i)|

exp

α
∑
k∈g(i)

yk + θ

1

2

∑
k∈g(i)

∑
j∈Ng(i)

k

ykyj +
∑
k∈g(i)

∑
j∈N∂g(i)

k

ykyj

+ β
∑
k∈g(i)

ykxk


, (3.25)
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where θ is the spatial dependence parameter multiplied by the two sums of neighboring

site value products for both types of neighbor relations, and β is the covariate parame-

ter. Hence, the vector of jointly sufficient statistics for the ith group joint likelihood is

T (zg(i), z
g(i),xg(i)) = (T1(zg(i), z

g(i)), T2(zg(i), z
g(i)), T3(zg(i), z

g(i),xg(i)))′, where

T1(zg(i), z
g(i)) =

∑
k∈g(i)

zk, (3.26)

T2(zg(i), z
g(i)) =

1

2

∑
k∈g(i)

∑
j∈Ng(i)

k

zkzj +
∑
k∈g(i)

∑
j∈N∂g(i)

k

zkzj , (3.27)

T3(zg(i), z
g(i),xg(i)) =

∑
k∈g(i)

zkxk. (3.28)

Note that xg(i) denotes the vector of covariate values corresponding to the sites of group i.

The analogous vector of jointly sufficient statistics for the true likelihood function, given by

(3.17), is T (z,x) = (T1(z), T2(z), T3(z,x))′, where

T1(z) =
n∑
i=1

zi, (3.29)

T2(z) =
1

2

n∑
i=1

∑
j∈Ni

zizj , (3.30)

T3(z,x) =
n∑
i=1

zixi. (3.31)

In comparing the jointly sufficient statistics between the group joint likelihood and the true

likelihood, it is evident that (3.26) and (3.29), as well as (3.28) and (3.31), are directly

comparable. However, (3.27) and (3.30) are not directly comparable, and this is where the

distinction between a neighbor relation involving two sites of the group and a neighbor relation

involving one site of the group and one boundary neighbor site of the group is readily apparent.

In particular, in (3.27), the purpose of the 1
2 multiplier is to negate the double counting of

each neighbor relation in the likelihood function since each zizj term appears twice in the sum.

However, with a group joint likelihood function, a neighbor relation involving a site in the

group and a boundary neighbor site of the group will not be double counted since the boundary
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neighbor sites are treated as fixed. Thus, if those neighbor relation terms were multiplied by a

1
2 , such neighbor relations would be downweighted relative to the neighbor relations involving

two sites within the group. Hence, the first portion of (3.27), 1
2

∑
k∈g(i)

∑
j∈Ng(i)

k

zkzj , deals with

the terms corresponding to neighbor relations involving two sites of group i, while the second

portion of (3.27),
∑
k∈g(i)

∑
j∈N∂g(i)

k

zkzj , deals with the terms corresponding to neighbor relations

involving one site of group i and one boundary neighbor site of group i.

The generalized pseudolikelihood function is then obtained by forming the product over all

n group joint likelihoods given by (3.25). The logarithm of the GPL function would be the

following:

log {GPL(α, θ, β)} =
n∑
i=1

log {GLi(α, θ, β)}

= −
n∑
i=1

log


∑

y∈Ω|g(i)|

exp

α
∑
k∈g(i)

yk + θ

1

2

∑
k∈g(i)

∑
j∈Ng(i)

k

ykyj +
∑
k∈g(i)

∑
j∈N∂g(i)

k

ykyj

+ β
∑
k∈g(i)

ykxk




+
n∑
i=1

α
∑
k∈g(i)

zk + θ

1

2

∑
k∈g(i)

∑
j∈Ng(i)

k

zkzj +
∑
k∈g(i)

∑
j∈N∂g(i)

k

zkzj

+ β
∑
k∈g(i)

zkxk

 . (3.32)

The MGPLEs, ψ̂GPL = (α̂GPL, θ̂GPL, β̂GPL)′, are then obtained by numerically maximizing

(3.32) with respect to ψ = (α, θ, β)′. The MPLEs, ψ̂PL = (α̂PL, θ̂PL, β̂PL)′, are generally

used as starting values for the numerical optimization. The corresponding standard errors,

as mentioned at the end of section 3.4.1, can be obtained using a resampling method such as

parametric bootstrapping.
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3.5 Maximum Block Generalized Pseudolikelihood Estimation

Similarly to GPL, the method of block generalized pseudolikelihood (BGPL), first presented

in an unpublished paper by Lim et al. ([27]) and then developed in a Bayesian setting by Friel

et al. ([11]), is intended to serve as a compromise between PL and MCMCML, as previously

discussed in Chapter 1. The essence of the method is to first partition the lattice of interest

into blocks of sites. Second, for each of these blocks, a block joint likelihood function is con-

structed, where all of the block normalizing constants are calculated via brute force. Third,

the product of all block joint likelihood functions is formed to produce the block generalized

pseudolikelihood function. Finally, the logarithm of this function is numerically maximized

to obtain the corresponding maximum block generalized pseudolikelihood estimates (MBG-

PLEs).

The difference between GPL and BGPL was discussed in great detail in Chapter 1, but to

reiterate, the only difference between the two methods is that GPL divides the lattice into

overlapping groups, whereas BGPL partitions the lattice into (nonoverlapping) blocks perhaps

reducing the level of dependence between blocks. Thus, while the following presentation of

BGPL, which is divided into two subsections, will be nearly identical to the presentation of

GPL given in section 3.4, it is given nonetheless for clarity and completeness. In section 3.5.1

a rigorous treatment of BGPL is provided that is essentially a compilation of the treatments

of the method given in both [27] and [11], while in section 3.5.2 the method is demonstrated

within the context of the Ising model, when generalized to incorporate a covariate.

3.5.1 BGPL: Background

The lattice of interest is first partitioned into L ≤ n blocks, where b(l) denotes the sites

“associated” with block l, l = 1, . . . , L (so S =
⋃L
l=1 b(l)). Typically, the lattice is partitioned

so that each block has an equal number of sites (if possible), where any “edge” sites not
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Figure 3.2: 2× 2 Block Structure
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A 2 × 2 block representing b(l) on a 7 × 7 lattice subset of S, where Zb(l) =
{Z(1), Z(2), Z(3), Z(4)}. Under a second-order neighborhood system, the 12 B sites repre-
sent the locations of the fixed boundary neighbors of b(l), while the 33 e sites represent the
locations of the external sites that are conditionally independent of the sites of b(l) under a
spatial Markovian assumption.

belonging to a block are then treated as fixed, but in theory the modeler is free to partition in

such a way that each block has a different number of sites. Some practical blocking mechanisms

include forming b × b blocks across the lattice for b = 2, 3, or 4, or letting multiple adjacent

columns (or rows) represent a block. Additionally, let Zb(l) = {Zk : k ∈ b(l)} be the set of

variables corresponding to sites contained within block l, and let Zb(l) = {Zk : k /∈ b(l)} be

the set of variables corresponding to all sites of the lattice that are not members of block l.

For k ∈ b(l), let N
b(l)
k denote the neighbors of site k that are members of b(l), or “internal” to

b(l), and let N
∂b(l)
k denote the neighbors of site k that are not members of b(l), i.e. the sites

of N
∂b(l)
k are “boundary” neighbors of the lth block. Observe that Nk = N

b(l)
k ∪N∂b(l)

k , where

N
b(l)
k ∩N

∂b(l)
k = ∅. For example, in Figure 3.2 a 2×2 block, under a second-order neighborhood

system, is illustrated. More specifically, b(l) = {(1), (2), (3), (4)}, where the parentheses are

to indicate that site (k) is not necessarily the same as site k. Furthermore, in Figure 3.2,

N
b(l)
(1) = {(2), (3), (4)} and N

∂b(l)
(1) = {B1, B2, B3, B5, B7}, while N

b(l)
(4) = {(1), (2), (3)} and

N
∂b(l)
(4) = {B6, B8, B10, B11, B12}. As was indicated in Chapter 1, and similarly discussed for
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GPL, the need for the distinction between internal neighbors and boundary neighbors for

the neighborhood sets of sites belonging to b(l) is not expressed in the literature, but was

discovered over the course of this thesis work. As with GPL, the relevance of this discovery is

tied to the sufficient statistics for the block joint likelihood functions and is further addressed

below. First, however, the formation of the block joint likelihoods is discussed.

For each block, b(l), the block joint likelihood, denoted BLl(ψ), is constructed. The form

of each block joint likelihood is essentially identical to the right hand side of (3.1), or (3.2) if

covariates have also been observed over the MRF. For presentation ease, again assume without

any loss of generality that covariates have not been observed over the MRF. In particular,

∀l = 1, . . . , L, the functional form of the lth block joint likelihood is the following:

BLl(ψ) =
exp{T ′

(
zb(l), z

b(l)
)
·ψ}∑

y∈Ω|b(l)|

exp{T ′
(
yb(l),y

b(l)
)
·ψ}

, (3.33)

where |b(l)| denotes the number of sites belonging to block l. Two things must be noted

in considering the functional form of the block joint likelihoods. First, even though z =

zb(l) ∪ zb(l), the block sufficient statistics, T ′
(
zb(l), z

b(l)
)
, have been expressed as functions

of zb(l) and zb(l) in (3.33), rather than as functions of z, as in (3.1). As with GPL, this is

done to emphasize that for each block joint likelihood zb(l) and zb(l) are viewed differently;

in particular, while zb(l) represents the observed values of the variables corresponding to sites

in block l, zb(l) represents fixed values corresponding to sites not in block l. Hence, the

normalizing constant of the lth block’s joint likelihood (denominator of (3.33)) is formed by

summing over all possible realizations of the variables corresponding to only the sites that

are members of block l; for each such summand, zb(l) remains fixed. Second and finally,

the sufficient statistics in (3.33) have a slightly different form than the sufficient statistics

in (3.1). In particular, the sufficient statistics for a block joint likelihood, as with a group

joint likelihood, must distinguish a neighbor relation between two sites of the block and

a neighbor relation between one site of the block and one boundary neighbor site of the
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block. For example, in Figure 3.2, the neighbor relation between sites (1) and (2) must

be distinguished from the neighbor relation between sites (1) and B5. This distinction is

important because the neighbor relations between a block site and a boundary neighbor site

must not be downweighted relative to the neighbor relations between two sites of a block in the

joint likelihood. As with GPL, this crucial fact is surprisingly void in the literature, but was

discovered over the course of this thesis work. An example demonstrating how the sufficient

statistics of the block joint likelihoods are altered when the internal neighbor relations of a

block are distinguished from the boundary neighbor relations of that block is provided in

section 3.5.2.

The block generalized pseudolikelihood function, denoted BGPL(ψ), is formed by taking

the product of the block joint likelihood functions over all blocks:

BGPL(ψ) =
L∏
l=1

BLl(ψ)

=

L∏
l=1

exp{T ′
(
zb(l), z

b(l)
)
·ψ}∑

y∈Ω|b(l)| exp{T ′
(
yb(l),y

b(l)
)
·ψ}

. (3.34)

As with the GPL function, note that the BGPL function, just like the PL function, is not

a true likelihood, but by multiplying joint likelihoods over small blocks, it is in some sense

“closer” to a true likelihood. Although already discussed in Chapter 1, it is worth mentioning

again how BGPL is a compromise between PL and MCMCML. If b(l) = {l} ∀l = 1, . . . , L (so

L = n), then BGPL reduces to PL since (3.5) and (3.34) would be equivalent. Furthermore, if

b(l) = {1, . . . , n} (so L = 1 block), then BGPL is equivalent to maximum likelihood since (3.1)

and (3.34) would be equivalent. To see this, note that if b(l) = {1, . . . , n}, then |b(l)| = n,

zb(l) = z, and zb(l) = ∅, and (3.34) then becomes the following:

BGPL(ψ) =

L∏
l=1

exp{T ′
(
zb(l), z

b(l)
)
·ψ}∑

y∈Ω|b(l)| exp{T ′
(
yb(l),y

b(l)
)
·ψ}
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=
exp{T ′ (z) ·ψ}∑
y∈Ωn exp{T ′ (y) ·ψ}

=
exp{T ′ (z) ·ψ}

c(ψ)

= L(ψ). (3.35)

Thus, for a fixed block structure over the entire lattice, if the corresponding block size is 1,

then BGPL is PL; if the corresponding block size is n, then BGPL is maximum likelihood

(which MCMCML approximates); and if the corresponding block size is strictly between 1

and n, then BGPL is somewhere between PL and MCMCML.

As is the case with PL, GPL, and MCMCML, the logarithm of the block generalized pseu-

dolikelihood function is typically used in practice and, hence, the log block generalized pseu-

dolikelihood function is the following:

log {BGPL(ψ)} = log


L∏
l=1

exp{T ′
(
zb(l), z

b(l)
)
·ψ}∑

y∈Ω|b(l)| exp{T ′
(
yb(l),y

b(l)
)
·ψ}


=

L∑
l=1

log

 exp{T ′
(
zb(l), z

b(l)
)
·ψ}∑

y∈Ω|b(l)| exp{T ′
(
yb(l),y

b(l)
)
·ψ}


=

L∑
l=1

T ′
(
zb(l), z

b(l)
)
·ψ

−
L∑
l=1

log

 ∑
y∈Ω|b(l)|

exp{T ′
(
yb(l),y

b(l)
)
·ψ}

 . (3.36)

The MBGPLEs are then obtained by numerically maximizing (3.36) with respect to ψ. As

with PL and GPL, the standard errors of the MBGPLEs can be obtained by employing a

resampling method, such as parametric bootstrapping. Finally, while BGPL is a compro-

mise between PL and MCMCML, basic asymptotic properties of the MBGPLEs, as with the

MGPLEs, remain unestablished in the literature. As part of this dissertation, the strong

consistency of the MBGPLEs is proven in Chapter 4.
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3.5.2 BGPL: Application to ALM

To demonstrate the use of BGPL with a concrete example, again consider the Ising model

with a single covariate, with probability mass function, or likelihood, as given in (3.17). If it

is assumed that the block size is the same for all L blocks, then the block joint likelihood for

block l, l = 1, . . . , L, is the following:

BLl(α, θ, β) =

exp

α
∑
k∈b(l)

zk + θ

1

2

∑
k∈b(l)

∑
j∈Nb(l)

k

zkzj +
∑
k∈b(l)

∑
j∈N∂b(l)

k

zkzj

+ β
∑
k∈b(l)

zkxk


∑

y∈Ω|b(l)|

exp

α
∑
k∈b(l)

yk + θ

1

2

∑
k∈b(l)

∑
j∈Nb(l)

k

ykyj +
∑
k∈b(l)

∑
j∈N∂b(l)

k

ykyj

+ β
∑
k∈b(l)

ykxk


. (3.37)

Hence, the vector of jointly sufficient statistics for the lth block joint likelihood is T (zb(l), z
b(l),xb(l)) =

(T1(zb(l), z
b(l)), T2(zb(l), z

b(l)), T3(zb(l), z
b(l),xb(l)))′, where

T1(zb(l), z
b(l)) =

∑
k∈b(l)

zk, (3.38)

T2(zb(l), z
b(l)) =

1

2

∑
k∈b(l)

∑
j∈Nb(l)

k

zkzj +
∑
k∈b(l)

∑
j∈N∂b(l)

k

zkzj , (3.39)

T3(zb(l), z
b(l),xb(l)) =

∑
k∈b(l)

zkxk. (3.40)

Note that xb(l) denotes the vector of covariate values corresponding to the sites of block l.

The analogous vector of jointly sufficient statistics for the likelihood function, given by (3.17),

is the same as in section 3.4.2, with its three elements given in (3.29), (3.30), and (3.31). In

comparing the sufficient statistics between the block joint likelihood and the true likelihood,

it is evident that (3.38) and (3.29), as well as (3.40) and (3.31), are directly comparable.

However, (3.39) and (3.30) are not directly comparable, and this is where the distinction
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between a neighbor relation involving two sites of the block and a neighbor relation involving

one site of the block and one boundary neighbor site of the block is readily apparent. In

particular, in (3.39), recall that the purpose of the 1
2 multiplier is to negate the double counting

of each neighbor relation in the likelihood function since each zizj term appears twice in the

sum. However, with a block joint likelihood function, as with a group joint likelihood function,

a neighbor relation involving a site in the block and a boundary neighbor site of the block will

not be double counted since the boundary neighbor sites are treated as fixed. Thus, if those

neighbor relation terms were multiplied by 1
2 , such neighbor relations would be downweighted

relative to the neighbor relations involving two sites within the block. Hence, the first portion

of (3.39), 1
2

∑
k∈b(l)

∑
j∈Nb(l)

k

zkzj , deals with the terms corresponding to neighbor relations involving

two sites of block l, while the second portion of (3.39),
∑
k∈b(l)

∑
j∈N∂b(l)

k

zkzj , deals with the terms

corresponding to neighbor relations involving one site of block l and one boundary neighbor

site of block l.

The block generalized pseudolikelihood function is then obtained by forming the product of

all L block joint likelihoods given by (3.37). The logarithm of the BGPL function would be

the following:

log {BGPL(α, θ, β)} =
L∑
l=1

log {BLl(α, θ, β)}

= −
L∑
l=1

log


∑

y∈Ω|b(l)|

exp

α
∑
k∈b(l)

yk + θ

1

2

∑
k∈b(l)

∑
j∈Nb(l)

k

ykyj +
∑
k∈b(l)

∑
j∈N∂b(l)

k

ykyj

+ β
∑
k∈b(l)

ykxk




+
L∑
l=1

α
∑
k∈b(l)

zk + θ

1

2

∑
k∈b(l)

∑
j∈Nb(l)

k

zkzj +
∑
k∈b(l)

∑
j∈N∂b(l)

k

zkzj

+ β
∑
k∈b(l)

zkxk

 . (3.41)
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The MBGPLEs, ψ̂BGPL = (α̂BGPL, θ̂BGPL, β̂BGPL)′, are then obtained by numerically max-

imizing (3.41) with respect to ψ = (α, θ, β)′. The MPLEs, ψ̂PL = (α̂PL, θ̂PL, β̂PL)′, are

generally used as starting values for the numerical optimization. The corresponding standard

errors, as mentioned at the end of section 3.5.1, can be obtained using a resampling method

such as parametric bootstrapping.



Chapter 4

Strong Consistency of the MGPLEs

and MBGPLEs

4.1 Introduction

An important statistical question is whether or not the estimators obtained from both gen-

eralized pseudolikelihood and block generalized pseudolikelihood are strongly consistent. To

date, however, this property has not been proven in the literature for either of these newer es-

timation methods. Hence, the proofs given in this chapter establishing the strong consistency

of the MGPLEs and the MBGPLEs constitute the most substantial novel theoretical result of

this dissertation. Note that these proofs are generalizations of Geman and Graffigne’s ([13])

proof of the MPLE’s strong consistency.

The remainder of this chapter is divided into four sections. In section 4.2, necessary nota-

tion, in addition to that already established in Chapter 3, is developed for use in the proof of

the MGPLE’s strong consistency. The theorem stating the strong consistency of the MGPLEs

is also given near the end of section 4.2. In section 4.3, the five lemmas that will be used

102
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to succinctly prove the strong consistency of the MGPLEs are sequentially presented, along

with their corresponding proofs. In section 4.4, the concise proof of the MGPLE’s strong con-

sistency is given. Finally, in section 4.5, after developing the essential notation, the theorem

conveying the MBGPLE’s strong consistency is stated and the corresponding proof is dis-

cussed. More specifically, as this proof is entirely analogous and nearly identical in structure

to that of the MGPLE’s, only the few subtle adjustments that must be made to the proof of

the MGPLE’s strong consistency are presented in this final section.

4.2 Notation

Let the sequence of Markov random fields, L1(ψ0),L2(ψ0), . . ., be a sequence of random

vector distributions defined on expanding regular graphs (i.e. lattices) that share a common

unknown parameter vector ψ0 ∈ Ψ ⊆ Rp. Let z(1), z(2), . . . be a sequence of realizations

from L1(ψ0),L2(ψ0), . . ., where Z(m) is the vector of random variables corresponding to the

sites of Lm(ψ0). Note that the functional form of Lm(ψ0), m = 1, 2, . . ., is given by (3.1), or

by (3.2) if covariates have also been observed over the MRF; for ease of presentation, assume

without any loss of generality that covariates have not been observed over the MRF. Let

ψ̂m denote the maximum generalized pseudolikelihood estimate of ψ0 obtained from the mth

sample in the sequence, z(m). The purpose of this section is to prove that as m tends toward

infinity, ψ̂m → ψ0 with probability one. The proof establishing this result is a generalization

of the proof given by Geman and Graffigne ([13]) that establishes the strong consistency of

the MPLEs. Consequently, the proof demonstrating the strong consistency of the MGPLEs

parallels that of the MPLEs, though the notation has been altered to account for differences in

the GPL method and to align with this dissertation. Before the proof of the MGPLE’s strong

consistency can be presented, however, some additional notation must first be introduced and

some clarifying remarks made.
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Let D now be a d-dimensional infinite square lattice (non-square lattices are a straightfor-

ward generalization) and let Sm ⊂ D be a d-dimensional hypercube with sides of length m.

As before, let i denote site i of Sm, i = 1, . . . , nm, where nm = md. Let S1 ⊆ S2 ⊆ . . . , and⋃∞
m=1 Sm = D, so that Z(1) ⊆ Z(2) ⊆ . . ., and

⋃∞
m=1Z(m) = Z, where Z(m) = {Zi : i ∈

Sm} and Z = {Zi : i ∈ D}. Further note that the sequence of distributions corresponding

to Z(1),Z(2), . . ., i.e. L1(ψ0),L2(ψ0), . . ., are actually conditional distributions where the

conditioning is on the complement of Z(m), Z(m′) = {Zi : i ∈ D\Sm}, m = 1, 2, . . .. Let

N = {Ni}i∈D and G = {g(i)}i∈D denote the translation invariant neighborhood system and

group system, respectively, on D and its corresponding sublattices, S1, S2, . . .. Recall that

∀i ∈ D, g(i) denotes the group of sites, “centered” at site i, that are used in forming the

group joint likelihood corresponding to the ith site; hence, site i will be referred to as the

“central” site of group i, g(i). In this context, translation invariant means there is a fixed

neighborhood structure and group structure over D, i.e. all groups are the same size, regard-

less of their “central” site’s location on D. Note, however, that depending on the value of m,

it is possible that groups whose “central” site is on or near the edge may have an incomplete

group structure and/or an incomplete neighborhood structure. It is assumed that both a

neighborhood set and a group set are finite, i.e. ∃R1, R2 < ∞ 3 if j ∈ Ni then |j − i| ≤ R1

and if j ∈ g(i) then |j − i| ≤ R2. Let g(i)c = {k : k ∈ D\g(i)} be the sites of D that are

not members of the ith group and let ∂g(i) = {j : j ∈ Nk ∩ g(i)c, k ∈ g(i)} be the boundary

neighbor sites of group i, i.e. the sites that are neighbors of at least one site of group i, but

are not themselves members of group i. Let |g(i)| denote the number of sites in group i and

let |∂g(i)| denote the number of boundary sites for group i, both of which are constant for

all i ∈ D under the translation invariant group structure assumption, i.e. for all i = 1, 2, . . . ,

|g(i)| = g and |∂g(i)| = ∂g. Subgraphs of (D,N,G), consisting of sites Sm, are denoted by

(Sm, N,G). Each subgraph (Sm, N,G), m = 1, 2, . . ., has corresponding MRF distribution

Lm(ψ0), where each variable of Z(m) has finite support set, Ω, and Z(m) has joint support

set Ωnm = Ω× . . .× Ω.
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Now fix m and let z ∈ Ωnm be a realization from the MRF distribution Lm(ψ0). Then,

as in Chapter 3, let Zg(i) = {Zk : k ∈ g(i)} denote the vector of variables corresponding

to the sites of group i. Additionally, let N
g(i)
k = {j : j ∈ Nk ∩ g(i), k ∈ g(i)} denote the

neighbors of site k, where k is a member of group i, that are also members of group i,

and let N
∂g(i)
k = {j : j ∈ Nk ∩ ∂g(i), k ∈ g(i)} denote the neighbors of site k, where k is

a member of group i, that are boundary neighbors of group i. Furthermore, let Zg(i) =

{Zj : j ∈ N
∂g(i)
k , k ∈ g(i)} denote the vector of variables corresponding to the boundary

neighbor sites of group i. Note that the group and/or neighborhood sets for edge sites of

Sm will necessarily be incomplete in the sense that portions of these sets will belong to some

Sm′ , where m′ > m. The conditional probabilities (i.e. group joint likelihood functions)

GLmi (Zg(i) = zg(i)|Zg(i) = zg(i);ψ0), for each group with “central” site i ∈ Sm, z ∈ Ωnm , will

be referred to as the “local characteristics” of Lm(ψ0).

The MRF distributions L1(ψ0),L2(ψ0), . . . are connected by the assumption that the local

characteristics, which depend upon ψ0, are the same for all i and m on the interior S0
m of Sm,

where S0
m ≡ {i ∈ Sm : ∂g(i) ⊆ Sm}; note that ∂g(i) ⊆ Sm ⇒ g(i) ⊆ Sm. In other words,

the interior of Sm contains all of the sites of Sm whose corresponding group members and

boundary neighbors are all contained within Sm. Consequently, ∀m, and ∀i ∈ S0
m, |g(i)| = g

and |∂g(i)| = ∂g. Hence, the conditional probability distribution form, under N and G, for

interior sites of Sm does not depend on i or m:

GLmi (Zg(i) = zg(i)|Zg(i) = zg(i);ψ0) = GL(Zg(i) = zg(i)|Zg(i) = zg(i);ψ0)

=
exp{T ′

(
zg(i), z

g(i)
)
·ψ0}∑

y∈Ωg

exp{T ′
(
yg(i),y

g(i)
)
·ψ0}

, (4.1)

for all m, and for all i ∈ S0
m, zg(i) ∈ Ωg, and zg(i) ∈ Ω∂g. Since interest is limited to local

characteristics at interior sites, the sub/superscripts i and m will henceforth be dropped when

writing the conditional probabilities GL(·|·). Thus, the corresponding generalized pseudolike-
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lihood function of ψ ∈ Ψ, given a sample, Z = z, from Lm(ψ0), is

GPLm(ψ|z) =
∏
i∈S0

m

GL(zg(i)|zg(i);ψ) (4.2)

=
∏
i∈S0

m

exp{T ′
(
zg(i), z

g(i)
)
·ψ}∑

y∈Ωg

exp{T ′
(
yg(i),y

g(i)
)
·ψ}

.

The generalized pseudolikelihood estimator of ψ0 is the set, Mm(z), of ψ that maximizes

GPLm(ψ|z):

Mm(z) =

{
ψ ∈ Ψ : GPLm(ψ|z) = sup

φ∈Ψ
GPLm(φ|z)

}
. (4.3)

Throughout the remainder of this section identifiability of the MGPLE is assumed, where it

is defined as follows:

Definition 4.1 (Identifiability – GPL). ψ0 ∈ Ψ is identifiable if ψ 6= ψ0 ⇒ ∃ zg(i), zg(i) such

that GL(zg(i)|zg(i);ψ) 6= GL(zg(i)|zg(i);ψ0).

Theorem 4.1 (Strong Consistency of Generalized Pseudolikelihood). For each m = 1, 2, . . . ,

let z(m) be a sample from the Markov random field Lm(ψ0), with local characteristics (4.1).

If ψ0 is identifiable, then

(a) P (log GPLm(ψ|z(m)) is strictly concave for all m sufficiently large) = 1;

(b) P (Mm(z(m)) is a singleton for all m sufficiently large) = 1;

(c) P

(
sup

ψ∈Mm(z(m))

|ψ −ψ0| → 0

)
= 1, as m→∞.

It is worth emphasizing for Theorem 4.1 that since the number of sites of the lattice goes

to infinity as m → ∞, the asymptotics are when the number of sites of the lattice is large.

The proof of Theorem 4.1 uses five lemmas, all of which are stated and proven in section 4.3.

The proofs of the first two lemmas, however, require the following version of the strong law

of large numbers (SLLN) ([13]).
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Theorem 4.2 (SLLN). For each m = 1, 2, . . . , let I1(m), I2(m), . . . , Ikm(m) be random vari-

ables and Y (m) be a random vector. Assume

1. lim inf
m→∞

km
m > 0.

2. I1(m), I2(m), . . . , Ikm(m) are conditionally independent, given Y (m).

3. |Il(m)| ≤ B <∞ ∀ l,m.

Then as m→∞ ∣∣∣∣∣ 1

km

km∑
l=1

{Il(m)− E[Il(m)|Y (m)]}

∣∣∣∣∣→ 0 a.s.

A proof of Theorem 4.2 is given in [13].

Additionally, the proofs of the final two lemmas, as well as the proof of Theorem 4.1, require

a standard result from analysis. The following statement of that result is from [34], where it

is labeled Theorem 9.3.3.

Theorem 4.3. Let f : M → R be continuous and M compact. Then sup{f(x)} and inf{f(x)}

are both finite, and there are points in M where these values are assumed.

A proof of 4.3 is also given in [34].

4.3 Lemmas

The five lemmas, and their corresponding proofs, are sequentially presented below and make

use of the following notation. Let α and β denote arbitrary realizations of Ωg and Ω∂g,

respectively. In other words, α is a realization of the random vector corresponding to the

sites of a group, while β is a realization of the random vector corresponding to the boundary

neighbor sites of a group. Let ηm = |S0
m| denote the number of internal groups for the
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mth sublattice of D. Note that ηm is also equal to the number of internal sites for the mth

sublattice of D since each such site is also the “central” site of exactly one internal group

of the mth sublattice of D. Let ηm(β) = |{i ∈ S0
m : Zg(i) = β}| denote the number of

internal groups of Sm with boundary neighborhood configuration of type β. Finally, let

ηm(α, β) = |{i ∈ S0
m : Zg(i) = α,Zg(i) = β}| denote the number of internal groups of Sm

that have a group configuration of α and a boundary neighborhood configuration of β.

4.3.1 Lemma 1

The objective of this first lemma is to establish that the number of internal groups with

boundary neighborhood configuration β is increasing with the expanding sublattices Sm.

Lemma 4.1. lim inf
m→∞

ηm(β)
ηm

> 0 a.s., ∀ β.

Proof. For any i ∈ D, let

∆i = {r : ∃t ∈ [g(i) ∪ ∂g(i)], r ∈ Nt, r /∈ [g(i) ∪ ∂g(i)]}

denote the set of sites that border group i and its boundary neighbors, g(i)∪ ∂g(i), according

to the neighborhood and group structures, N and G. In other words, ∆i consists of sites that

are neighbors of group i or the boundary neighbors of group i (or both), but are neither a

member of group i nor a member of the boundary neighbors of group i. For example, in Figure

4.1, ∆i = {Oj : j = 1, . . . , 12} under a first-order neighborhood system where g(i) = {i∪Ni},

the 5 “X”-sites shown. Now let |∆i| denote the number of border sites for group i. Then

for each m, choose groups g(i1), g(i2), . . . , g(ikm), where i1, i2, . . . , ikm ∈ Sm are the “central”

sites of these groups, such that

1. lim inf
m→∞

km
ηm

> 0,

(This ensures that the number of chosen groups from Sm, km, increases “enough” as m

grows.)



4.3. LEMMAS 109

Figure 4.1: GPL Border Sites
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For a 7x7 lattice subset of Sm, under a first-order neighborhood system with g(i) = {i∪Ni},
the X sites represent the members of group i (Xi is the central site of the group), the B
sites represent the boundary neighbors of the group, the O sites represent the border sites of
the group (i.e. the sites belonging to ∆i), and the e sites represent the external sites of the
group.

2. ∆il ⊆ Sm, ∀ l = 1, . . . , km,

(This ensures that the groups chosen, g(i1), . . . , g(ikm), are “internal enough” within Sm

such that each ∆il , l = 1, . . . , km, consists entirely of sites belonging to Sm. Notice that

∆il ⊆ Sm ⇒ {g(il) ∪ ∂g(il)} ⊆ Sm.)

3. If l 6= j, then {g(il) ∪ ∂g(il)} ∩∆ij = ∅. (This ensures that for each chosen group, that

group, as well as its boundary neighbors, do not overlap with the border sites of any

other such group and its corresponding boundary neighbors. Note that this condition

does permit ∆il ∩∆ij 6= ∅, i.e. it permits distinct groups to share border sites.)

Since the neighborhood and group structures are both fixed and finite, the above three condi-

tions can be accomplished, for example, if Sm is regularly partitioned into large hypercubes,

with sizes independent of m, and big enough to accommodate g(i)∪∂g(i)∪∆i, for an arbitrary

i ∈ S0
m.

Now fix β and let Y (m) =

{
Zj(m) : j ∈

km⋃
l=1

{∆il ∪ g(il)}

}
and Iil(m) = 1

Zg(il)(m)=β
. In
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other words, Y (m) is the vector of variables corresponding to the sites of group il and the

sites bordering g(il) ∪ ∂g(il), l = 1, . . . , km, and Iil(m) is an indicator variable that is equal

to one when the vector of variables corresponding to the boundary neighbors of group il

have configuration (i.e. value) β, and zero otherwise. Clearly, |Iil(m)| ≤ 1 < ∞ ∀ l,m.

By an appropriate spatial Markovian property, Ii1(m), Ii2(m), . . . , Iikm (m) are conditionally

independent, given Y (m). Hence, by Theorem 4.2 (SLLN),

∣∣∣∣∣ 1

km

km∑
l=1

{Iil(m)− E[Iil(m)|Y (m)]}

∣∣∣∣∣ → 0 a.s. (4.4)

Furthermore, by the same spatial Markovian property,

E[Iil(m)|Y (m)] =
∑

zg(il)(m)∈Ω∂g

Iil(m)GL(Zg(il)(m) = zg(il)(m)|Y (m);ψ0)

=
∑

zg(il)(m)∈Ω∂g

Iil(m)GL(Zg(il)(m) = zg(il)(m)|{Zj(m) : j ∈ ∆il ∪ g(il)};ψ0)

= GL(Zg(il)(m) = β|{Zj(m) : j ∈ ∆il ∪ g(il)};ψ0), (4.5)

which can have only a finite number of possible values, corresponding to the Ω|∆il
|+g config-

urations of group il and its border sites, all of which are positive.1 Hence, for some ε > 0,

1

km

km∑
l=1

E[Iil(m)|Y (m)] > ε, ∀m,

and, thus, by (4.4)

lim inf
m→∞

1

km

km∑
l=1

Iil(m) > ε a.s. (4.6)

Then, since ηm ≥ km, it follows that ηm(β) ≥
km∑
l=1

Iil(m), and, therefore, by (4.6), lim inf
m→∞

ηm(β)
km

>

1The local characteristics (4.1) determine the conditional probabilities (4.5) as well. Thus, the conditional
distribution given in 4.5 is the same for all m.
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ε a.s. Finally, since by design lim inf
m→∞

km
ηm

> 0, the desired result is obtained:

0 < lim inf
m→∞

km
ηm
· lim inf
m→∞

ηm(β)

km
a.s.

≤ lim inf
m→∞

km
ηm
· ηm(β)

km

= lim inf
m→∞

ηm(β)

ηm
.

4.3.2 Lemma 2

The objective of this second lemma is to establish that among the groups with boundary

neighborhood configuration β, the proportion that have group configuration α is essentially

equivalent to the conditional probability specified by the local characteristics (4.1).

Lemma 4.2. lim
m→∞

ηm(α,β)

ηm(β)
= GL(α|β;ψ0) a.s. ∀ α, β.

Proof. Let C = {cl : l = 1, . . . , k} be a coloring of (D,N,G), i.e. c1, . . . , ck partition D such

that if i, j ∈ cl, then j /∈ {g(i)∪∂g(i)}. In other words, among all of the sites of a group and its

corresponding boundary neighbors, no two sites share the same color; hence, the neighborhood

structure, as well as the group structure, should guide the coloring scheme over D. To help

illustrate this visually, consider the group coloring given in Figure 4.2, where a first-order

isotropic neighborhood system and a cross-shaped group structure have been assumed. Under

such a neighborhood and group structure, 13 different colors (c1, . . . , c13) are needed to color

the sites of a group and its corresponding boundary neighbors; note that the “central” site of

the group has color c1 in Figure 4.2. Since (D,N,G) is a regular lattice (i.e. graph), it can

be assumed that C is chosen in such a way that lim inf
m→∞

|S0
m∩cl|
ηm

> 0. Thus, this assumption is

really asserting that only as many colors as are absolutely needed are used, and then because

the neighborhood and group structures are finite, the regular lattice structure ensures that the



4.3. LEMMAS 112

Figure 4.2: Coloring Schematic Example for a Group and its Boundary Neighbors
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A coloring schematic for a group under a first-order neighborhood
system and a cross-shaped group structure. For such neighbor-
hood and group structures, 13 different colors are needed to color
the 13 sites making up a group and its boundary neighbors. The
“central” site of the group illustrated above has color c1.

number of internal sites for the mth sublattice of color cl , |S0
m ∩ cl|, l = 1, . . . , k, is increasing

with the expanding sublattices, Sm.

For each color, cl, define ηm(β; cl) ≡ |{i ∈ S0
m ∩ cl : Zg(i) = β}|; i.e. ηm(β; cl) is the

number of internal sites of Sm that are of color cl and are the “central” site of a group whose

corresponding boundary neighbors have configuration β. Additionally, define ηm(α,β; cl) ≡

|{i ∈ S0
m ∩ cl : Zg(i) = α,Zg(i) = β}|; i.e. ηm(α,β; cl) is the number of internal sites of Sm

that are of color cl and are the “central” site of a group whose configuration is α and whose

corresponding boundary neighbors have configuration β. Now fix l ∈ {1, . . . , k}, α, and β,

and let Ii(m) = 1
Zg(i)=α,Z

g(i)
=β

for each i ∈ S0
m ∩ cl. Thus, Ii(m) is an indicator variable

that is equal to 1 if site i is an internal site of Sm that is of color cl and is a “central” site of

a group with configuration α and boundary neighborhood configuration β. Let ∂cl(m) = {j :

j ∈ ∂g(i), i ∈ (S0
m ∩ cl)} and let Y (m) = {Zi′(m) : i′ ∈ ∂cl(m)}. In other words, ∂cl(m) is the

set of all sites of Sm that are a boundary neighbor of a group whose defining, or “central,”

site is in S0
m and of color cl, and Y (m) is the vector of variables corresponding to all such

sites. Ultimately, as with Lemma 4.1, the successful completion of this proof of Lemma 4.2

is contingent upon being able to appeal to Theorem 4.2, which hinges on satisfying three
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assumptions. To that end, since it is clear that lim inf
m→∞

ηm
m > 0 and since it is assumed that

lim inf
m→∞

|S0
m∩cl|
ηm

> 0, then lim inf
m→∞

|S0
m∩cl|
m ≥ lim inf

m→∞
ηm
m lim inf

m→∞
|S0

m∩cl|
ηm

> 0, which satisfies the first

assumption for km = |S0
m ∩ cl|. Furthermore, the coloring scheme, C, dictates that any two

sites of color cl cannot belong to the same group or corresponding set of boundary neighbors,

and, thus, by a spatial Markovian property, Ii1(m), Ii2(m), . . . , Ii|S0
m∩cl|

(m) are conditionally

independent, given Y (m), which satisfies the second assumption. Finally, because Ii(m) is an

indicator variable, |Ii(m)| ≤ 1 < ∞ for all i,m, which satisfies the third assumption. Thus,

by Theorem 4.2,

∣∣∣∣∣∣ 1

|S0
m ∩ cl|

∑
i∈S0

m∩cl

{Ii(m)− E[Ii(m)|Y (m)]}

∣∣∣∣∣∣ → 0 a.s. (4.7)

Then, again by the same spatial Markovian property, for some fixed l ∈ {1, . . . , k}, and fixed

site i:

E[Ii(m)|Y (m)] =
∑

Ii(m)∈{0,1}

Ii(m)GL(Zg(i)(m) = zg(i)(m)|Y (m);ψ0)

=
∑

Ii(m)∈{0,1}

Ii(m)GL(Zg(i)(m) = zg(i)(m)|Zg(i)(m) = zg(i)(m);ψ0)

= GL(Zg(i)(m) = α|Zg(i)(m) = β;ψ0)

= GL(Zg(i)(m) = α|Zg(i)(m) = β;ψ0) · 1
Zg(i)

(m)=β

= GL(α|β;ψ0) · 1
Zg(i)

(m)=β
. (4.8)

Note that the 1
Zg(i)

(m)=β
piece in (4.8) appears redundant and unnecessary, but expressing

the right hand side of (4.8) in such a manner will be useful below. Now observe that

∑
i∈S0

m∩cl

Ii(m) = ηm(α,β; cl) (4.9)
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and

∑
i∈S0

m∩cl

1
Zg(i)

(m)=β
= ηm(β; cl). (4.10)

Hence, the left hand side of 4.7 can be reformulated as follows:

∣∣∣∣∣∣ 1

|S0
m ∩ cl|

∑
i∈S0

m∩cl

{Ii(m)− E[Ii(m)|Y (m)]}

∣∣∣∣∣∣ =
1

|S0
m ∩ cl|

∣∣∣∣∣∣
∑

i∈S0
m∩cl

Ii(m)−
∑

i∈S0
m∩cl

E[Ii(m)|Y (m)]

∣∣∣∣∣∣

=
1

|S0
m ∩ cl|

∣∣∣∣∣∣ηm(α,β; cl)−
∑

i∈S0
m∩cl

GL(α|β;ψ0) · 1
Zg(i)

(m)=β

∣∣∣∣∣∣ , by (4.8) and (4.9)

=
1

|S0
m ∩ cl|

∣∣∣∣∣∣ηm(α,β; cl)−GL(α|β;ψ0)
∑

i∈S0
m∩cl

1
Zg(i)

(m)=β

∣∣∣∣∣∣
=

1

|S0
m ∩ cl|

|ηm(α,β; cl)−GL(α|β;ψ0)ηm(β; cl)| , by (4.10). (4.11)

Therefore, by (4.7) and (4.11),

1

|S0
m ∩ cl|

|ηm(α,β; cl)−GL(α|β;ψ0)ηm(β; cl)| → 0 a.s. (4.12)

Noting that for all m,

k∑
l=1

ηm(β; cl)

ηm(β)
= 1 and

k∑
l=1

ηm(α,β; cl)

ηm(β)
=
ηm(α,β)

ηm(β)
, since C = {cl : l =

1, . . . , k} partitions Lm(ψ0), observe the following:

∣∣∣∣ηm(α,β)

ηm(β)
−GL(α|β;ψ0)

∣∣∣∣

=

∣∣∣∣∣
k∑
l=1

ηm(α,β; cl)

ηm(β)
−GL(α|β;ψ0)

k∑
l=1

ηm(β; cl)

ηm(β)

∣∣∣∣∣
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=

∣∣∣∣∣
k∑
l=1

1

ηm(β)
{ηm(α,β; cl)−GL(α|β;ψ0)ηm(β; cl)}

∣∣∣∣∣
≤

k∑
l=1

1

ηm(β)
|ηm(α,β; cl)−GL(α|β;ψ0)ηm(β; cl)| (Triangle Inequality)

=

k∑
l=1

ηm
ηm(β)

|S0
m ∩ cl|
ηm

1

|S0
m ∩ cl|

|ηm(α,β; cl)−GL(α|β;ψ0)ηm(β; cl)|. (4.13)

Finally, since 0 < lim inf
m→∞

|S0
m∩cl|
ηm

< 1 for all l, and since (by Lemma 4.1) lim inf
m→∞

ηm(β)
ηm

> 0 a.s.

⇒ 1 < lim inf
m→∞

ηm
ηm(β)

<∞ a.s., then appealing to (4.12) yields that

k∑
l=1

ηm
ηm(β)

|S0
m ∩ cl|
ηm

1

|S0
m ∩ cl|

|ηm(α,β; cl)−GL(α|β;ψ0)ηm(β; cl)| → 0 a.s. (4.14)

Therefore, by (4.13) and (4.14), ∀ α and β,

lim
m→∞

ηm(α,β)

ηm(β)
= GL(α|β;ψ0) a.s.

4.3.3 Lemma 3

The objective of this third lemma is to establish that the logarithm of the GPL function, when

shifted by a constant and rescaled by a constant, is almost surely strictly concave.

Lemma 4.3. Let

Fm(ψ) =
1

ηm
{log GPLm(Z(m);ψ)− log GPLm(Z(m);ψ0)} (4.15)

=
∑
β

ηm(β)

ηm

∑
α

ηm(α,β)

ηm(β)
log

GL(α|β;ψ)

GL(α|β;ψ0)
. (4.16)

Then P(Fm(·) is strictly concave for m sufficiently large) = 1.
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Before proving Lemma 4.3, two observations should be made. First, both log GPLm(Z(m);ψ0)

and GL(α|β;ψ0), for all α and β, are constants since ψ0 is the true, but unknown, value of

the parameter vector. Thus, Fm(ψ) is just the logarithm of the generalized pseudolikelihood

function shifted by a constant and rescaled by 1
ηm

. Second, (4.16) can be relatively easily

obtained from (4.15), as demonstrated below:

1

ηm
{log GPLm(Z(m);ψ)− log GPLm(Z(m);ψ0)}

=
1

ηm

log
∏
i∈S0

m

GL(zg(i)(m)|zg(i)(m);ψ)− log
∏
i∈S0

m

GL(zg(i)(m)|zg(i)(m);ψ0)


=

1

ηm

log
∏
β

∏
α
{GL(α|β;ψ)}ηm(α,β) − log

∏
β

∏
α
{GL(α|β;ψ0)}ηm(α,β)



=
1

ηm
log
∏
β

∏
α

{GL(α|β;ψ)}ηm(α,β)

{GL(α|β;ψ0)}ηm(α,β)

=
1

ηm

∑
β

∑
α
ηm(α,β) log

GL(α|β;ψ)

GL(α|β;ψ0)

=
∑
β

ηm(β)

ηm

∑
α

ηm(α,β)

ηm(β)
log

GL(α|β;ψ)

GL(α|β;ψ0)
. (4.17)

Proof. Let H(Fm(ψ)) be the Hessian of Fm(ψ) and let φ ∈ Rp. The objective will be to

derive a form of φ′H(Fm(ψ))φ from which the concavity of Fm(ψ) can relatively easily be

demonstrated. Obtaining such a form, while routine, is tedious; therefore, to ease readability,

the following shorthand references will be implemented, where the tilde will eventually be

needed within complicated expressions to distinguish between multiple summations over all

possible realizations of α.

T̃ ≡ T (α̃,β), (4.18)

T ≡ T (α,β), (4.19)
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E[·|β] ≡ Eψ[·|β], (4.20)

where Eψ[·|β] is the expectation on Ωg with respect to GL(·|β;ψ).

The first step in determining a “nice” form for the desired Hessian is to calculate the partial

derivatives of log
GL(α|β;ψ)

GL(α|β;ψ0)
with respect to ψi, 1 ≤ i ≤ p:

∂

∂ψi

{
log

GL(α|β;ψ)

GL(α|β;ψ0)

}

=
∂

∂ψi
{log GL(α|β;ψ)} (since GL(α|β;ψ0) is constant w.r.t ψ)

=
∂

∂ψi

{
log

(
exp{T ′ψ}∑

α∈Ωg exp{T ′ψ}

)}
(definition of GL( · |·;ψ))

=
∂

∂ψi

T ′ψ − log

 ∑
α∈Ωg

exp{T ′ψ}


= Ti −

∑
α∈Ωg Ti exp{T ′ψ}∑
α∈Ωg exp{T ′ψ}

. (4.21)

Continuing along this path, the next step is to calculate the second-order partial derivatives

of log
GL(α|β;ψ)

GL(α|β;ψ0)
, first with respect to ψi, and then with respect to ψj , 1 ≤ i, j ≤ p:

∂2

∂ψi∂ψj

{
log

GL(α|β;ψ)

GL(α|β;ψ0)

}
=

∂

∂ψj

{
∂

∂ψi

{
log

GL(α|β;ψ)

GL(α|β;ψ0)

}}
=

∂

∂ψj

{
Ti −

∑
α∈Ωg Ti exp{T ′ψ}∑
α∈Ωg exp{T ′ψ}

}
, by (4.21)
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=

−

 ∑
α∈Ωg

TiTj exp{T ′ψ}

 ∑
α∈Ωg

exp{T ′ψ}


 ∑
α∈Ωg

exp{T ′ψ}

2

+

 ∑
α∈Ωg

Tj exp{T ′ψ}

 ∑
α∈Ωg

Ti exp{T ′ψ}


 ∑
α∈Ωg

exp{T ′ψ}

2

= −E[TiTj |β] + E[Ti|β]E[Tj |β]

= −Cov(Ti, Tj |β). (4.22)

Thus, from (4.22), it is easily seen that the Hessian of log
GL(α|β;ψ)

GL(α|β;ψ0)
is the following:

H

(
log

GL(α|β;ψ)

GL(α|β;ψ0)

)
= −Var(T |β)

= −E
{

(T − E[T̃ |β])(T − E[T̃ |β])′
}
, (4.23)

where the outer expectation is taken relative to all group configurations α and the inner

expectation is taken relative to all group configurations α̃. Then,

φ′H

(
log

GL(α|β;ψ)

GL(α|β;ψ0)

)
φ = −φ′E

{
(T − E[T̃ |β])(T − E[T̃ |β])′

}
φ

= −E
{
φ′(T − E[T̃ |β])(T − E[T̃ |β])′φ

}
= −E

{(
φ′(T − E[T̃ |β])

)2
}
. (4.24)

Note that |Ω| < ∞ means that the number of summands in (4.17) is finite, which means

that the Hessian of (4.17) can be expressed as the sum (over α and β) of the Hessians of
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log
GL(α|β;ψ)

GL(α|β;ψ0)
. Hence, observe the following:

φ′H(Fm(ψ))φ

= φ′H

∑
β

ηm(β)

ηm

∑
α

ηm(α,β)

ηm(β)
log

GL(α|β;ψ)

GL(α|β;ψ0)

φ
= φ′

∑
β

ηm(β)

ηm

∑
α

ηm(α,β)

ηm(β)
H

(
log

GL(α|β;ψ)

GL(α|β;ψ0)

)
φ

=
∑
β

ηm(β)

ηm

∑
α

ηm(α,β)

ηm(β)
φ′H

(
log

GL(α|β;ψ)

GL(α|β;ψ0)

)
φ

= −
∑
β

ηm(β)

ηm

∑
α

ηm(α,β)

ηm(β)
E

{(
φ′(T − E[T̃ |β])

)2
}

(by (4.24)). (4.25)

Now note that E

{(
φ′(T − E[T̃ |β])

)2
}

is independent of α in the right hand side of (4.25)

since the outer expectation sums over all α ∈ Ωg. Hence, E

{(
φ′(T − E[T̃ |β])

)2
}

can be

pulled out in front of the sum,
∑
α

ηm(α,β)

ηm(β)
, in the far right hand side of (4.25), which after

additionally noting that
∑
α

ηm(α,β)

ηm(β)
= 1, yields the following:

φ′H(Fm(ψ))φ = −
∑
β

ηm(β)

ηm
E

{(
φ′(T − E[T̃ |β])

)2
}

= −
∑
β

ηm(β)

ηm
·
∑
α∈Ωg [φ′(T − E(T̃ |β))]2 exp{T ′ψ}∑

α∈Ωg exp{T ′ψ}
. (4.26)

Finally, as can clearly be seen from the right hand side of (4.26), φ′H(Fm(ψ))φ ≤ 0 ∀φ, and,

therefore, Fm(ψ) is concave. What remains to be shown is that for all m sufficiently large,

Fm(ψ) is almost surely strictly concave. The approach to demonstrating this will be to use

proof by contradiction.
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Lemma 4.1 conveys that for all m sufficiently large, inf
β

ηm(β)
ηm

> 0 with probability one.

Suppose Fm(ψ) is not almost surely strictly concave. In other words, assume there exists ψ

and φ such that φ′H(Fm(ψ))φ = 0. If φ = 0, then φ′H(Fm(ψ))φ = 0 trivially, so assume

φ 6= 0. Consequently, by (4.26), for these values of ψ and φ, φ′T = φ′E[T̃ |β], or rather

by (4.18), (4.19), and (4.20), φ′T (α,β) = φ′Eψ[T (α̃,β)|β] ∀ α and β. This implies that

for every β, φ′T (α,β) is independent (i.e. not a function) of α since φ′Eψ[T (α̃,β)|β] is

independent of α. Such a conclusion implies

GL(α|β;ψ + φ) =
exp{(ψ + φ)′T (α,β)}∑

α∈Ωg exp{(ψ + φ)′T (α,β)}

=
exp{ψ′T (α,β)} exp{φ′T (α,β)}∑

α∈Ωg exp{ψ′T (α,β)} exp{φ′T (α,β)}

=
exp{ψ′T (α,β)} exp{φ′T (α,β)}

exp{φ′T (α,β)}
∑
α∈Ωg exp{ψ′T (α,β)}

, (since φ′T (α,β) ⊥ α)

=
exp{ψ′T (α,β)}∑

α∈Ωg exp{ψ′T (α,β)}
= GL(α|β;ψ), (4.27)

which contradicts the identifiability assumption (Definition 4.1) since φ 6= 0. Therefore,

Fm(ψ) is strictly concave whenever inf
β

ηm(β)
ηm

> 0, and thus Fm(ψ) is a.s. strictly concave.

4.3.4 Lemma 4

Using a function that approximates Fm(ψ) from Lemma 4.3, the objective of the fourth lemma

is to establish that this approximating function is uniquely maximized, with probability one,

when it is evaluated at ψ0.

Lemma 4.4. Let

Gm(ψ) =
∑
β

ηm(β)

ηm

∑
α

GL(α|β;ψ0) log
GL(α|β;ψ)

GL(α|β;ψ0)
. (4.28)
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1. With probability one, ∀ε > 0, ∃δ > 0 such that

lim sup
m→∞

sup
|ψ−ψ0|≤ε

sup
φ∈Rp,|φ|=1

φ′H(Gm(ψ))φ < −δ,

where H(Gm(ψ)) is the Hessian of Gm(ψ) with respect to ψ.

2. Gm(ψ) ≤ 0 for all ψ,m.

3. Gm(ψ0) = 0 for all m.

Before proving Lemma 4.4, note the following two things. First, motivated by Lemma 4.2,

Gm(ψ) is just an estimate of Fm(ψ) in which
ηm(α,β)

η(β)
is now approximated by GL(α|β;ψ0).

Second, Lemma 4.4 establishes that Gm(ψ0) is, with probability one, the unique maximum

of Gm(ψ).

Proof. By an essentially identical argument that was used to establish the strict concavity of

Fm(ψ) in the proof of Lemma 4.3, the strict concavity of Gm(ψ) is also obtained whenever

inf
β

ηm(β)
ηm

> 0. The only difference in the argument is that before (4.26), instead of noting

that
∑
α

ηm(α,β)

ηm(β)
= 1, we must note that

∑
α

GL(α|β;ψ0) = 1. Now, by Lemma 4.1,

with probability one, there exists ς > 0 such that inf
β

ηm(β)
ηm

≥ ς for all m sufficiently large.

Furthermore, in light of (4.26), it is clear that φ′H(Gm(ψ))φ is differentiable in φ,ψ, and the

finite collection of variables
ηm(β)
ηm

; therefore, φ′H(Gm(ψ))φ is also jointly continuous in φ,ψ,

and the finite collection of variables
ηm(β)
ηm

. Then, since continuous functions over a compact

domain necessarily achieve their maximum at a point in that domain (by Theorem 4.3), we

know φ′H(Gm(ψ))φ must achieve its maximum on the compact set |φ| = 1, |ψ − ψ0| ≤ ε,

and
ηm(β)
ηm

∈ [ς, 1] for all β. Part 1 of Lemma 4.4 is then obtained by appealing to the strict

concavity of Gm(ψ).

As for part 2, first recall Jensen’s inequality which asserts that for a random variable X and
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a convex function g(·), g(E(X)) ≤ E[g(X)], provided that the expectations exist. Similarly,

a simple corollary of Jensen’s inequality asserts that for a random variable X and a concave

function g(·), g(E(X)) ≥ E[g(X)], provided that the expectations exist. Now consider the

following, noting that the logarithm is a concave function and that the specified expectations

clearly exist:

∑
α

GL(α|β;ψ0) log

{
GL(α|β;ψ)

GL(α|β;ψ0)

}

= Eψ0

[
log

{
GL(α|β;ψ)

GL(α|β;ψ0)

}]
≤ log

{
Eψ0

[
GL(α|β;ψ)

GL(α|β;ψ0)

]}
(by the Corollary to Jensen’s Inequality)

= log

{∑
α

GL(α|β;ψ0)

(
GL(α|β;ψ)

GL(α|β;ψ0)

)}

= log

{∑
α

GL(α|β;ψ)

}
= log{1}

= 0 (4.29)

Hence, since the inequality given by (4.29) holds for all ψ and m, part 2 of Lemma 4.4 is

easily obtained:

Gm(ψ) =
∑
β

ηm(β)

ηm

∑
α

GL(α|β;ψ0) log
GL(α|β;ψ)

GL(α|β;ψ0)

≤
∑
β

ηm(β)

ηm
· (0)

= 0. (4.30)
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Finally, part three of Lemma 4.4 is easily verified by evaluating Gm(·) at ψ0:

Gm(ψ0) =
∑
β

ηm(β)

ηm

∑
α

GL(α|β;ψ0) log
GL(α|β;ψ0)

GL(α|β;ψ0)

=
∑
β

ηm(β)

ηm

∑
α

GL(α|β;ψ0) log{1}

= 0.

Therefore, parts two and three have established, when coupled with part one, that Gm(ψ0) is

almost surely the unique maximum of Gm(·).

4.3.5 Lemma 5

The objective of this fifth and final lemma is to establish that the difference between Fm(ψ),

from Lemma 4.3, and its approximation, Gm(ψ), from Lemma 4.4, is almost surely zero.

Lemma 4.5. For all ε > 0,

lim sup
m→∞

sup
|ψ−ψ0|≤ε

|Fm(ψ)−Gm(ψ)| = 0 a.s.

Proof. First, observe the following:

lim sup
m→∞

sup
|ψ−ψ0|≤ε

|Fm(ψ)−Gm(ψ)|

= lim sup
m→∞

sup
|ψ−ψ0|≤ε

∣∣∣∣∣∣
∑
β

ηm(β)

ηm

∑
α

(
ηm(α,β)

ηm(β)
−GL(α|β;ψ0)

)
log

GL(α|β;ψ)

GL(α|β;ψ0)

∣∣∣∣∣∣
≤ lim sup

m→∞
sup

|ψ−ψ0|≤ε

∑
β

ηm(β)

ηm

∑
α

∣∣∣∣ηm(α,β)

ηm(β)
−GL(α|β;ψ0)

∣∣∣∣ ∣∣∣∣log
GL(α|β;ψ)

GL(α|β;ψ0)

∣∣∣∣ (Triangle Ineq.)
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≤ lim sup
m→∞

sup
α,|ψ−ψ0|≤ε

∑
β

ηm(β)

ηm
|Ωg|

∣∣∣∣ηm(α,β)

ηm(β)
−GL(α|β;ψ0)

∣∣∣∣ ∣∣∣∣log
GL(α|β;ψ)

GL(α|β;ψ0)

∣∣∣∣
≤ lim sup

m→∞
sup

α,β,|ψ−ψ0|≤ε
|Ωg+∂g|

∣∣∣∣ηm(α,β)

ηm(β)
−GL(α|β;ψ0)

∣∣∣∣ ∣∣∣∣log
GL(α|β;ψ)

GL(α|β;ψ0)

∣∣∣∣
= |Ωg+∂g| lim sup

m→∞
sup

α,β,|ψ−ψ0|≤ε

∣∣∣∣ηm(α,β)

ηm(β)
−GL(α|β;ψ0)

∣∣∣∣ ∣∣∣∣log
GL(α|β;ψ)

GL(α|β;ψ0)

∣∣∣∣
≤ |Ωg+∂g| sup

α,β,|ψ−ψ0|≤ε

∣∣∣∣log
GL(α|β;ψ)

GL(α|β;ψ0)

∣∣∣∣ lim sup
m→∞

sup
α,β

∣∣∣∣ηm(α,β)

ηm(β)
−GL(α|β;ψ0)

∣∣∣∣ . (4.31)

Now by Lemma 4.2, we know that lim sup
m→∞

sup
α,β

∣∣∣ηm(α,β)

ηm(β)
−GL(α|β;ψ0)

∣∣∣ = 0 a.s. Further-

more, since GL(α|β;ψ) 6= 0 for any α,β, ψ ∈ Rp and is continuous in ψ for each of the

finitely many possibilities of α ∈ Ωg and β ∈ Ω∂g, and since {ψ : |ψ −ψ0| ≤ ε} is a compact

set, sup
α,β,|ψ−ψ0|≤ε

∣∣∣log
GL(α|β;ψ)

GL(α|β;ψ0)

∣∣∣ is finite (by Theorem 4.3). Therefore, from the inequality

given by (4.31), we get the desired result:

lim sup
m→∞

sup
|ψ−ψ0|≤ε

|Fm(ψ)−Gm(ψ)| = 0 a.s.

4.4 Proof of MGPLE’s Strong Consistency

With the above five lemmas, a short proof of Theorem 4.1 can now be given.

Proof. By Lemma 4.3, we know that Fm(·) is almost surely strictly concave, and therefore

part (a) of Theorem 4.1 is satisfied for Fm(ψ). Now fix ε > 0. By Lemma 4.4, we can conclude

the following:

lim inf
m→∞

inf
|ψ0−ψ|=ε

|Gm(ψ)−Gm(ψ0)| > 0 a.s. (4.32)
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Then, because Lemma 4.5 asserts that Fm(·) is uniformly approximated by Gm(·), the result

given by (4.32) for Gm(·) also holds for Fm(·):

lim inf
m→∞

inf
|ψ0−ψ|=ε

|Fm(ψ)− Fm(ψ0)| > 0 a.s. (4.33)

Thus, whenever ψ 6= ψ0, with probability one Fm(ψ) 6= Fm(ψ0). Now, because Fm(·) is

almost surely strictly concave (by Lemma 4.3), we then know by Theorem 4.3 that Fm(·),

a continuous function of ψ, almost surely achieves its maximum, uniquely, in the compact

set {ψ : |ψ − ψ0| < ε}. Furthermore, since ε is arbitrary, Fm(ψ) almost surely obtains

its unique maximum when ψ = ψ0; therefore, parts (b) and (c) of Theorem 4.1 are also

satisfied for Fm(ψ). Finally, since by (4.15) we know that log{GPLm(ψ|Z(m))} = ηmFm(ψ)+

log{GPLm(ψ0;Z(m))}, where log{GPLm(ψ0;Z(m))} is just a constant, parts (a), (b), and

(c) of Theorem 4.1 are also satisfied for log{GPLm(ψ|Z(m))}.

4.5 Strong Consistency of MBGPLEs

The theorem establishing the strong consistency of the MBGPLEs is completely analogous to

Theorem 4.1, but before it can be formally stated, some of the notation introduced in section

4.2 must be reformulated under the BGPL paradigm. To that end, let ψ̂m now denote the

maximum block generalized pseudolikelihood estimate of ψ0 obtained from the mth sample in

the sequence, z(m). It will be assumed that D has been partitioned into a countably infinite

number of equally and finitely sized blocks, denoted b(l), l = 1, 2, . . .. Let N = {Ni}i∈D

and B = {b(l)}l∈Z+ denote the translation invariant neighborhood system and block system,

respectively, on D and its corresponding sublattices, S1, S2, . . .. In this context, translation

invariant means there is a fixed neighborhood structure and block structure over D. It is

assumed that the neighborhood set is finite, i.e. ∃R1 <∞ 3 if j ∈ Ni then |j − i| ≤ R1.

Let b(l)c = {k : k ∈ D\b(l)} be the sites of D that are not members of the lth block and let
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∂b(l) = {j : j ∈ Nk ∩ b(l)c, k ∈ b(l)} be the boundary neighbor sites of block l, i.e. the sites

that are neighbors of at least one site of block l, but are not themselves members of block l.

Let |b(l)| denote the number of sites in block l and let |∂b(l)| denote the number of boundary

sites for block l, both of which are constant for all i ∈ D and l ∈ Z+ under the translation

invariant block structure assumption. In other words, for all l = 1, 2, . . . , |b(l)| = b and

|∂b(l)| = ∂b. Subgraphs of (D,N,B), consisting of sites Sm, are denoted by (Sm, N,B). Each

subgraph (Sm, N,B), m = 1, 2, . . ., has corresponding MRF distribution Lm(ψ0), where each

variable of Z(m) has finite support set, Ω, and Z(m) has joint support set Ωnm = Ω× . . .×Ω.

Now fix m and let z ∈ Ωnm be a realization from the MRF distribution Lm(ψ0). Then,

as in Chapter 3, let Zb(l) = {Zk : k ∈ b(l)} denote the vector of variables corresponding

to the sites of block l. Additionally, let N
b(l)
k = {j : j ∈ Nk ∩ b(l), k ∈ b(l)} denote the

neighbors of site k, where k is a member of block l, that are also members of block l, and let

N
∂b(l)
k = {j : j ∈ Nk ∩ ∂b(l), k ∈ b(l)} denote the neighbors of site k, where k is a member of

block l, that are boundary neighbors of block l. Furthermore, let Zb(l) = {Zj : j ∈ N∂b(l)
k , k ∈

b(l)} denote the vector of variables corresponding to the boundary neighbor sites of block l.

Note that the block and/or neighborhood sets located on the edge of Sm will necessarily be

incomplete in the sense that portions of these sets will belong to some Sm′ , where m′ > m.

The way S0
m is defined, further below, explains how such blocks are handled. The conditional

probabilities (i.e. block joint likelihood functions) BLml (Zb(l) = zb(l)|Zb(l) = zb(l);ψ0), for

each b(l) 3 b(l) ∩ Sm 6= ∅, and each z ∈ Ωnm , will be referred to as the “local characteristics”

of Lm(ψ0).

The MRF distributions L1(ψ0),L2(ψ0), . . . are connected by the assumption that the local

characteristics, which depend upon ψ0, are independent of l and m, for all l such that b(l) ⊂

S0
m, the interior of Sm, where S0

m ≡ {i ∈ Sm : i ∈ b(l) ⇒ ∂b(l) ⊆ Sm}; note that ∂b(l) ⊆

Sm ⇒ b(l) ⊆ Sm. In other words, the interior of Sm contains all of the sites of Sm that belong

to a block whose corresponding members and boundary neighbors are all contained within

Sm. Consequently, ∀m, and ∀l such that b(l) ⊂ S0
m, |b(l)| = b and |∂b(l)| = ∂b. Hence, the
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conditional probability distribution, under N and B, for interior sites of Sm does not depend

on l or m:

BLml (Zb(l) = zb(l)|Zb(l) = zb(l);ψ0) = BL(Zb(l) = zb(l)|Zb(l) = zb(l);ψ0)

=
exp{T ′

(
zb(l), z

b(l)
)
·ψ0}∑

y∈Ωb

exp{T ′
(
yb(l),y

b(l)
)
·ψ0}

, (4.34)

for all m, l 3 b(l) ⊂ S0
m, zb(l) ∈ Ωb, and zb(l) ∈ Ω∂b. Since interest is limited to local

characteristics at interior sites, the sub/superscripts l and m will henceforth be dropped

when writing the conditional probabilities BL(·|·). Thus, the corresponding block generalized

pseudolikelihood function of ψ ∈ Ψ, given a sample, Z = z, from Lm(ψ0), is

BGPLm(ψ|z) =
∏

l:b(l)⊂S0
m

BL(zb(l)|zb(l);ψ) (4.35)

=
∏

l:b(l)⊂S0
m

exp{T ′
(
zb(l), z

b(l)
)
·ψ}∑

y∈Ωb

exp{T ′
(
yb(l),y

b(l)
)
·ψ}

.

The block generalized pseudolikelihood estimate of ψ0 is the set, Mm(z), of ψ that maximizes

BGPLm(ψ|z):

Mm(z) =

{
ψ ∈ Ψ : BGPLm(ψ|z) = sup

φ∈Ψ
BGPLm(φ|z)

}
. (4.36)

As with GPL, identifiability is assumed, where it is defined as follows for BGPL.

Definition 4.2 (Identifiability – BGPL). ψ0 ∈ Ψ is identifiable if ψ 6= ψ0 ⇒ ∃ zb(l), zb(l)

such that BL(zb(l)|zb(l);ψ) 6= BL(zb(l)|zb(l);ψ0).

With the notation reformulated for BGPL, the strong consistency of the MBGPLEs can now

be formally stated.
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Theorem 4.4 (Strong Consistency of Block Generalized Pseudolikelihood). For each m =

1, 2, . . . , let z(m) be a sample from the Markov random field Lm(ψ0), with local characteristics

(4.34). If ψ0 is identifiable, then

(a) P (log BGPLm(ψ|z(m)) is strictly concave for all m sufficiently large) = 1;

(b) P (Mm(z(m)) is a singleton for all m sufficiently large) = 1;

(c) P

(
sup

ψ∈Mm(z(m))

|ψ −ψ0| → 0

)
= 1, as m→∞.

As was the case for Theorem 4.1, it is worth emphasizing for Theorem 4.4 that since the

number of sites of the lattice goes to infinity as m → ∞, the asymptotics are when the

number of sites of the lattice is large. A proof of Theorem 4.4, with the notation established

at the beginning of this section, would be almost perfectly analogous to the proof of Theorem

4.1, and will, therefore, not be provided in this dissertation. The only subtle differences in

a proof of the MBGPLE’s strong consistency, relative to that of the MGPLE’s, would be

in the proofs of the analogous versions of Lemmas 4.1 and 4.2. In particular, in proving the

analogous version of Lemma 4.1 for BGPL, rather than selecting groups g(i1), g(i2), . . . , g(ikm),

where i1, i2, . . . , ikm ∈ Sm were the “central” sites of these groups, we would select blocks

b(l1), b(l2), . . . , b(lkm) ⊂ Sm. Lastly, in proving the analogous version of Lemma 4.2 for BGPL,

the coloring of (D,N,B), C = {cq : q = 1, . . . , k}, still partitions D, but under a different

schematic. If i, j ∈ b(l), then i, j ∈ cq, and if i ∈ {b(l) ∩ cq} and j ∈ ∂b(l), then j ∈ cr, r 6= q.

In other words, every site of a block is of the same color, but if another block has one or

more sites in the set of boundary neighbors of the first block, then the second block’s sites are

necessarily of a different color. Note that the neighborhood structure and the block structure

still guide the coloring scheme. As a result of this alteration to the coloring schematic, several

quantities that would be defined and used throughout the remainder of a proof of the analogous

version of Lemma 4.2 are in terms of blocks, rather than the “central” sites identifying groups.

For example, in the proof of Lemma 4.2 for GPL, ηm(β; cq) ≡ |{i ∈ S0
m ∩ cq : Zg(i) = β}|, but

in an analogous proof for BGPL, ηm(β; cq) ≡ |{b(l) ⊂ S0
m ∩ cq : Zb(l) = β}|. In other words,
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ηm(β; cq) is now the number of blocks of S0
m that are of color cq and have boundary neighbor

configuration β. Do note, however, that this modification to an analogous proof of Lemma

4.2 is, as with an analogous proof of Lemma 4.1, not a substantial one. More specifically,

while the ηm(β; cq) from the GPL proof is a count of the number of “central” sites satisfying

the specified conditions, it can in fact, as was discussed in the proof of Lemma 4.2, also be

viewed as a count of the number of groups that satisfy the specified conditions. Therefore,

when considered from this perspective, the few modifications to the proof of Theorem 4.1 that

are needed to then prove Theorem 4.4 are truly minor.



Chapter 5

Autologistic Model Simulation

Study

5.1 Introduction – Three Questions of Interest

Although numerous simulation studies involving the autologistic model have been carried out

in the literature, as discussed in detail in section 1.4, a simulation study simultaneously com-

paring the estimation methods discussed in Chapter 3 (MPL, MCMCML, MGPL, MBGPL)

has never been conducted. Hence, the large scale simulation study presented in this chapter

comparing these four methods via an examination of the precision and accuracy associated

with their corresponding estimators is the first of its kind. The overarching objective of this

simulation study is to answer three questions that have either been ignored or unconvincingly

addressed by the current simulation studies appearing in the literature. In particular, these

questions are:

(1) Which method, if either, of GPL and BGPL is “better.” More specifically, is there even

130
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a noticeable difference between the estimates obtained from these two newer methods?

(2) Do the resulting MCMCMLEs noticeably differ when the MGPLE or MBGPLE are used

as the reference point rather than the MPLE?

(3) How do the MPLEs, MCMCMLEs, MGPLEs, and MBGPLEs compare under different

types/strengths of spatial correlation? More specifically, do GPL and BGPL achieve the

intended compromise between PL and MCMCML and are there situations where some

methods are preferable to the others?

To address the above three questions, multiple cases, corresponding to various neighborhood

structures, both with and without a covariate term present in the model, were considered

in the simulation study. The specifics of each case will be discussed below in section 5.2.

Furthermore, to limit the extent to which the answers to the above three questions might be

obscured by secondary components of the simulation study, three lattices sizes (26×26, 50×50,

and 74× 74), multiple spatial dependence strengths, and, when applicable, multiple covariate

strengths and types were considered for each case of the simulation study. The specific values

used for both the spatial dependence and covariate (when applicable) strengths, as well as the

particular types of covariates considered (when applicable), varied from case to case and will be

explained in detail in section 5.2. The three lattice sizes employed throughout the simulation

study were chosen in tandem with the block sizes used for BGPL in the simulation study.

The reason for such consideration is the fact that the blocks of BGPL partition the lattice

and, thus, it is possible to select lattice sizes that do not result in partially incomplete blocks

near the edges of the lattice. Note that group sizes for GPL were not taken into consideration

when choosing the lattice sizes for the simulation study since groups unavoidably overlap and,

therefore, regardless of the lattice size selected, incomplete groups are impossible to avoid.

Now because blocks of size 5× 5 and larger were found, a priori, to be prohibitively expensive

to employ (because repeated generation of the 225 realizations necessary to compute block

normalizing constants was computationally expensive), block sizes of 2 × 2, 3 × 3, and 4 × 4
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were settled upon for use in the simulation study. Then, since the least common multiple of 2,

3, and 4 is 12, we decided to use lattices of dimension 24× 24, 48× 48, and 72× 72. However,

because we also wanted to employ a “guard region” edge adjustment procedure for all of the

estimation methods (to simplify the coding), which recall means that the outer “layer” of the

lattice is treated as fixed, we finally settled on using lattices of size 26 × 26, 50 × 50, and

74× 74.

The entire simulation study was carried out in R, and with the exception of using a handful of

built-in R functions, including glm for obtaining the maximum pseudolikelihood estimates and

optim for carrying out numerical optimization, most code used was written by the author for

the simulation study. This entailed, among other things, writing a function that constructed

the neighborhood matrices for an arbitrary lattice, a function that generated lattices for the

simulation study via the Gibbs sampler, functions that constructed the generalized and block

generalized pseudolikelihood functions, and functions that generated Monte Carlo samples and

constructed the subsequent Monte Carlo approximate negative log likelihood function. Finally,

note that as a result of personal communications between November 2010 and January 2011

with Dr. Jonathan Graham, a function that more efficiently computes the individual group

and block normalizing constants within the aforementioned generalized and block generalized

pseudolikelihood R functions was written by Dr. Graham and subsequently implemented in

this simulation study.

The remainder of this chapter is divided into 5 sections. Section 5.2 systematically explains

each of the seven cases of the simulation study, including how each case was implemented

within the framework of the study. Sections 5.3, 5.4, and 5.5 present the answers to questions

1, 2, and 3, respectively, that were obtained from the simulation study. Finally, section 5.6

summarizes the key results of the simulation study and briefly discusses a few potentially

lingering questions.
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5.2 Cases of Simulation Study

Three neighborhood structures were considered within the simulation study, including a first-

order isotropic structure, a second-order isotropic structure, and, finally, a first-order two-

way anisotropic structure where the anisotropy corresponds to north/south and east/west

gradients. The autologistic models associated with these three neighborhood structures, both

with and without a covariate term, comprise the first six cases of the simulation study. The

first three cases, which do not have a covariate term, are primarily concerned with comparing

the performances of the estimation methods as the strength of the spatial dependence increases

from weak to strong. The next three cases, which do have a covariate term, are primarily

concerned with comparing the performances of the estimation methods for various types of

covariates under both a moderately weak and a moderately strong covariate effect. The

seventh and final case of the simulation study addresses estimation of the Ising model (i.e.

first-order isotropic autologistic model) as the parameters near a critical value (θ ≈ 1.76

(α = −2θ)) associated with phase transition.

5.2.1 First-Order Isotropy without a Covariate – FI2p

The first case considered in this simulation study corresponds to the simplest autologistic

model, known as the Ising model, which has no covariate parameters and follows an isotropic

first-order neighborhood system. Thus, the Ising model has only two parameters, an intercept

parameter and a spatial dependence parameter. Recall that the form of the Ising model is

the following:

P(zi|{zj : j ∈ Ni}) =
exp{αzi + θ

∑
j∈Ni

zizj}
1 + exp{α+ θ

∑
j∈Ni

zj}
, i = 1, . . . , n, zi = 0, 1. (5.1)

Eleven different parameter vectors, (α, θ), were considered for this case of the simulation study.

In particular, α was held fixed at −1.0 for all eleven scenarios while θ = 0.0, 0.1, . . . , 1.0. These
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values of θ correspond to no spatial dependence (θ = 0.0) all the way up to extremely strong

spatial dependence (θ = 1.0). Values of θ > 1.0, holding α = −1.0 fixed, were not considered in

the simulation as the number of sites that assume a value of one or zero in the resulting lattices

would be disproportionate, which compromises the efficiency of the autologistic model ([2]).

For example, when α = −1.0 and θ = 1.0, we would expect roughly 93% of the lattice sites

to have value 1, and such a high percentage leads to a substantial decline in the performance

of all four estimation methods, as will be seen in the forthcoming analysis. Hence, no value

of θ was taken to be greater than 1.0. When α = −1 and θ = 0.5 (α = −2θ), the proportion

of 1’s is expected to be 50%.

Now with respect to the estimation methods, as was mentioned at the beginning of this

chapter, three different block sizes were implemented under BGPL for the simulation study,

including 2×2, 3×3, and 4×4. For GPL, two group sizes were considered, including a group

size of 5, corresponding to a cross shape, and a group size of 9, corresponding to a 3× 3 grid.

Finally, for MCMCML, six different reference points were employed, including the MPLE, the

MGPLE for both group sizes, and the MBGPLE for all three block sizes.

For this case, the simulation procedure for each of the 11 parameter vectors was the following:

(1) Using the Gibbs sampler, 500 80 × 80 Markov chain Monte Carlo (MCMC) lattice

realizations (i.e. samples) were generated from the Ising model with true parameter

vector (α0, θ0). A torus edge adjustment was used within the Gibbs sampler and each of

the 500 realizations was obtained from an independent Markov chain in which a burn-in

of 100 full lattice sweeps was employed to allow for convergence.

(2) For each of the above 500 lattice realizations, the central 26× 26 lattice was extracted.

These 500 26× 26 samples will henceforth be referred to as the “original” samples.

(3) For the ith “original” sample, i = 1, . . . , 500, the pseudolikelihood function was con-

structed and maximized with respect to (α, θ) to produce the maximum pseudolikeli-
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hood estimates (MPLEs) (α̂PLi , θ̂PLi). The mean, standard deviation, bias, and mean

absolute error (MAE) of the parameter estimates were estimated using the 500 MPLEs

as follows:

¯̂αPL =
1

500

500∑
i=1

α̂PLi ,
¯̂
θPL =

1

500

500∑
i=1

θ̂PLi ,

ŜD(α̂PL) =

√√√√ 1

500

500∑
i=1

(α̂PLi − ¯̂αPL)2, ŜD(θ̂PL) =

√√√√ 1

500

500∑
i=1

(θ̂PLi −
¯̂
θPL)2,

B̂ias( ¯̂αPL) = (¯̂αPL − α0), B̂ias(
¯̂
θPL) = (

¯̂
θPL − θ0),

M̂AE(α̂PL) =
1

500

500∑
i=1

|α̂PLi − α0| , M̂AE(θ̂PL) =
1

500

500∑
i=1

∣∣∣θ̂PLi − θ0

∣∣∣ .
(4) For the ith “original” sample, i = 1, . . . , 500, the generalized pseudolikelihood function

under a group size of 5 (gs5) was constructed and numerically maximized with respect

to (α, θ) to produce the maximum generalized pseudolikelihood estimates (MGPLEs)

(α̂gs5i , θ̂gs5i). The mean, standard deviation, bias, and mean absolute error (MAE)

of the parameter estimates were estimated in a manner analogous to the pseudolike-

lihood case above, yielding the sample means (¯̂αgs5,
¯̂
θgs5), sample standard deviations

(ŜD(α̂gs5), ŜD(θ̂gs5)), sample biases of the sample means (B̂ias( ¯̂αgs5), B̂ias(
¯̂
θgs5)), and

sample mean absolute errors (M̂AE(α̂gs5), M̂AE(θ̂gs5)).

(5) Step (4) was repeated but for a group size of 9 (gs9).

(6) For the ith “original” sample, i = 1, . . . , 500, the block generalized pseudolikelihood func-

tion under a block size of 2× 2 (bs2) was constructed and numerically maximized with

respect to (α, θ) to produce the maximum block generalized pseudolikelihood estimates

(MBGPLEs) (α̂bs2i , θ̂bs2i). The mean, standard deviation, bias, and mean absolute error

(MAE) of the parameter estimates were estimated in a manner analogous to the pseu-

dolikelihood case above, yielding the sample means (¯̂αbs2,
¯̂
θbs2), sample standard devi-

ations (ŜD(α̂bs2), ŜD(θ̂bs2)), sample biases of the sample means (B̂ias( ¯̂αbs2), B̂ias(
¯̂
θbs2)),

and sample mean absolute errors (M̂AE(α̂bs2), M̂AE(θ̂bs2)).
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(7) Step (6) was repeated but for a block size of 3× 3 (bs3).

(8) Step (6) was repeated but for a block size of 4× 4 (bs4).

(9) For the ith “original” sample, i = 1, . . . , 500, the Gibbs sampler was used to generate 550

Monte Carlo samples from an Ising distribution with parameter vector φ = (α̂PLi , θ̂PLi).

A burn-in period of 100 full sweeps of the lattice was implemented for convergence and

after each subsequent full sweep of the lattice, the resultant realization was retained as

one Monte Carlo sample.

(10) For i = 1, . . . , 500, the ith “original” sample and the corresponding 550 Monte Carlo sam-

ples (from step (9)) were then used to construct the Monte Carlo approximate negative

log likelihood function, which was then numerically maximized to obtain the correspond-

ing MCMCMLEs (α̂MCi , θ̂MCi). The mean, standard deviation, bias, and mean absolute

error of the parameter estimates were then computed in a manner analogous to the pseu-

dolikelihood case above, yielding the sample means (¯̂αMC ,
¯̂
θMC), sample standard devia-

tions (ŜD(α̂MC), ŜD(θ̂MC)), sample biases of the sample means (B̂ias( ¯̂αMC), B̂ias(
¯̂
θMC)),

and sample mean absolute errors (M̂AE(α̂MC), M̂AE(θ̂MC)).

(11) Steps (9) and (10) were repeated but with φ = (α̂gs5i , θ̂gs5i) in step (9).

(12) Steps (9) and (10) were repeated but with φ = (α̂gs9i , θ̂gs9i) in step (9).

(13) Steps (9) and (10) were repeated but with φ = (α̂bs2i , θ̂bs2i) in step (9).

(14) Steps (9) and (10) were repeated but with φ = (α̂bs3i , θ̂bs3i) in step (9).

(15) Steps (9) and (10) were repeated but with φ = (α̂bs4i , θ̂bs4i) in step (9).

(16) For each of the 500 lattices from step (1) the central 50×50 lattice was extracted. These

500 lattice samples will henceforth be referred to as the “original” samples.

(17) Steps (3) through (15) were repeated for the “original” samples from step (16).
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(18) For each of the 500 lattices from step (1) the central 74×74 lattice was extracted. These

500 lattice samples will henceforth be referred to as the “original” samples.

(19) Steps (3) through (15) were repeated for the “original” samples from step (18).

5.2.2 First-Order Two-Way Anisotropy without a Covariate – FAhv3p

The second case considered in this simulation study corresponds to an autologistic model

under a first-order two-way anisotropic neighborhood structure without a covariate term.

This autologistic model has three parameters and has the following functional form:

P(zi|{zj : j ∈ Ni}) =
exp

{
αzi + θv

∑
j∈Nv

i
zizj + θh

∑
j∈Nh

i
zizj

}
1 + exp

{
α+ θv

∑
j∈Nv

i
zj + θh

∑
j∈Nh

i
zj

} , (5.2)

i = 1, . . . , n, where θv and θh correspond to the north/south and east/west gradients, re-

spectively. For this case of the simulation study, 18 different parameter vectors, (α, θh, θv),

were considered. More specifically, three sets of six parameter vectors were employed. For

the first set of six parameter vectors, α was held fixed at −1.0 and θh was held fixed at

0.2 while θv = 0.1, 0.4, . . . , 1.6. These values for θh and θv correspond to a relatively weak

east/west spatial dependence (θh = 0.2) and a north/south spatial dependence that increases

from weak (θv = 0.1) to extremely strong (θv = 1.6). Since we would expect roughly 87%

of lattice sites to have a value of 1 when (α, θh, θv) = (−1.0, 0.2, 1.6), no values of θv > 1.6

were considered within this first set. For the second set of six parameter vectors, α was held

fixed at −1.0 and θh was held fixed at 0.5 while θv = 0.4, 0.6, . . . , 1.4. These values for θh

and θv correspond to a relatively moderate east/west spatial dependence strength (θh = 0.5)

and a north/south spatial dependence that increases from moderately strong (θv = 0.4) to

extremely strong (θv = 1.4). Since we would expect roughly 90% of lattice sites to have a

value of 1 when (α, θh, θv) = (−1.0, 0.5, 1.4), no values of θv > 1.4 were considered within

this second set. For the third and final set of six parameter vectors, α was again held fixed
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at −1.0 and θh was held fixed at 0.7 while θv = 0.6, 0.7, . . . , 1.1. These values for θh and

θv correspond to a relatively strong east/west spatial dependence strength (θh = 0.7) and

a north/south spatial dependence that increases from strong (θv = 0.6) to extremely strong

(θv = 1.1). Since we would expect roughly 88% of lattice sites to have a value of 1 when

(α, θh, θv) = (−1.0, 0.7, 1.1), no values of θv > 1.1 were considered within this final set. The

simulation procedure for this case of the study is analogous to the procedure for the first case,

except that only groups of size 9 were considered for GPL and only the MPLEs were used as

the reference point for MCMCML. The reasons for these exceptions will become apparent in

the forthcoming sections.

5.2.3 Second-Order Isotropy without a Covariate – SI2p

The third case considered in this simulation study corresponds to an autologistic model under

a second-order isotropic neighborhood structure without a covariate term. This autologistic

model has two parameters, (α, θ), and its functional form is identical to equation (5.1), where

the neighborhood sets now consist of 8 sites rather than 4 sites. Ten different parameter

vectors were considered for this case. In particular, α was held fixed at −1.0 while θ =

0.00, 0.05, . . . , 0.45. These values of θ correspond to no spatial dependence (θ = 0.00) all the

way up to extremely strong spatial dependence (θ = 0.45). Since we would expect roughly

90% of lattice sites to have value 1 when (α, θ) = (−1.0, 0.45), no values of θ > 0.45 were

considered for this case. The simulation procedure for this case of the study is also analogous

to the procedure for the first case, but, as with the second case, only groups of size 9 were

considered for GPL and only the MPLEs were used as the reference point for MCMCML.
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5.2.4 First-Order Isotropy with a Covariate – FI3p

The fourth case considered in this simulation study corresponds to an autologistic model under

a first-order isotropic neighborhood structure with a covariate term. This autologistic model

has three parameters, (α, θ, β), and its functional form is the following:

P(zi|{zj : j ∈ Ni}, xi) =
exp{αzi + θ

∑
j∈Ni

zizj + βzixi}
1 + exp{α+ θ

∑
j∈Ni

zj + βxi}
, i = 1, . . . , n. (5.3)

Three different covariate types were considered for this case, including a diagonal linear co-

variate, a diagonal sine wave covariate, and, finally, a covariate corresponding to the departure

from average (DA) variable of the Oregon and Washington fire data set. Note that this fire

covariate was generated in R, through the grf package, using the estimated covariogram ob-

tained from an arbitrary cross-sectional lattice of DA values from the aforementioned data

set. For an 80x80 lattice, the following functions were used to generate the linear and sine

wave covariate lattices, where k denotes the row and l denotes the column of the lattice:

xkl = 0.05 ∗ (k + 81− l)/80

xkl = 0.7 ∗ sin{0.06 ∗ (k + 81− l) + 3}.

Figure 5.1 displays these three covariate types. For the linear covariate type, two parameter

vectors were considered. In both, α was held fixed at −1.0 while (θ, β) = (0.5, 0.5) and

(0.2, 15.0). These values of β correspond to a relatively weak covariate effect (0.5) and a

relatively strong covariate effect (15.0). The values of θ selected were such that the resultant

lattices would yield a 50/50 split of zeros and ones. For the sine wave covariate type, two

parameter vectors were also considered. In both, α was again held fixed at −1.0, but (θ, β) =

(0.5, 0.3) and (0.4, 3.0). These values of β also correspond to a relatively weak covariate

effect (0.3) and a relatively strong covariate effect (3.0). The values of θ selected were again

such that the resultant lattices would yield a 50/50 split of zeros and ones. Finally, for the

fire covariate type, only one parameter vector was used: (−8.6, 0.8, 0.065). This particular
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Figure 5.1: Covariate Types
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parameter vector was selected after maximum pseudolikelihood estimation was used to model

the cross-sectional response lattice corresponding to the cross-sectional DA lattice used to

create the fire covariate lattice given in Figure 5.1. Since an objective of this dissertation is to

model the Oregon and Washington fire data using the four estimation methods of Chapter 3,

we wanted to get an idea via simulation how these methods would perform on a similar lattice

in which only approximately 5% of the sites have a value of one. The simulation procedure

for this case of the study is also analogous, for all three covariate types, to the procedure for

the first case, but only the MPLEs were used as the reference point for MCMCML.

5.2.5 First-Order Two-Way Anisotropy with a Covariate – FAhv4p

The fifth case considered in this simulation study corresponds to an autologistic model un-

der a first-order two-way anisotropic neighborhood structure with a covariate term. This

autologistic model has four parameters, (α, θh, θv, β), and has the following functional form:

P(zi|{zj : j ∈ Ni}, xi) =
exp

{
αzi + θv

∑
j∈Nv

i
zizj + θh

∑
j∈Nh

i
zizj + βzixi

}
1 + exp

{
α+ θv

∑
j∈Nv

i
zj + θh

∑
j∈Nh

i
zj + βxi

} , (5.4)
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i = 1, . . . , n, where θv and θh correspond to the north/south and east/west gradients, respec-

tively. For this case, both the diagonal linear and diagonal sine wave covariates were again

considered. For the linear covariate type, two parameter vectors were considered. In both, α

was held fixed at −1.0 while (θh, θv, β) = (0.3, 0.1, 14.0) and (0.7, 0.3, 0.5). These values of β

correspond to a relatively weak covariate effect (0.5) and a relatively strong covariate effect

(14.0). For the sine wave covariate type, two parameter vectors were also considered. In both,

α was again held fixed at −1.0, but (θh, θv, β) = (0.4, 0.2, 3.0) and (0.7, 0.3, 0.2). These values

of β also correspond to a relatively weak covariate effect (0.2) and a relatively strong covariate

effect (3.0). For both covariate types, the values of θh and θv selected were again such that

the resultant lattices would yield a roughly 50/50 split of zeros and ones. The simulation

procedure, for both covariate types, is also analogous to the procedure for the first case, but,

as with the second and third cases, only groups of size 9 were considered for GPL and only

the MPLEs were used as the reference point for MCMCML.

5.2.6 Second-Order Isotropy with a Covariate – SI3p

The sixth case considered in this simulation study corresponds to an autologistic model under

a second-order isotropic neighborhood structure with a covariate term. This autologistic

model has three parameters, (α, θ, β), and its functional form is identical to equation (5.3),

where the neighborhood sets now consist of 8 sites rather than 4 sites. For this case, both

the diagonal linear and diagonal sine wave covariates were again considered. For the linear

covariate type, two parameter vectors were considered. In both, α was held fixed at −2.0 while

(θ, β) = (0.3, 17.0) and (0.5, 0.5). These values of β correspond to a relatively weak covariate

effect (0.5) and a relatively strong covariate effect (17.0). For the sine wave covariate type,

two parameter vectors were also considered. In both, α was again held fixed at −2.0, while

(θ, β) = (0.45, 2.5) and (0.5, 0.2). These values of β also correspond to a relatively weak

covariate effect (0.2) and a relatively strong covariate effect (2.5). For both covariate types,

the values of θ selected were again such that the resultant lattices would yield a roughly 50/50
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split of zeros and ones. The simulation procedure for this case, for both covariate types, is

also analogous to the procedure for the first case, but, as with the second, third, and fifth

cases, only groups of size 9 were considered for GPL and only the MPLEs were used as the

reference point for MCMCML.

5.2.7 The Ising Model and Phase Transition

The seventh and final case of this simulation study revisits the Ising model from case one (see

equation 5.1). The objective of this case, however, is to explore the performance of the estima-

tion methods as the parameter vector nears a critical value associated with phase transition

(θ ≈ 1.76 (α = −2θ)) for this model. Eight different parameter vectors were considered for

this case, all of which maintain the relationship α = −2θ: (α, β) = (−0.4, 0.2), (−0.8, 0.4), . . . ,

(−3.2, 1.6), where the last of these is approaching this critical value. The simulation procedure

for this case is also analogous to the procedure for the first case, but only groups of size 9

were considered for GPL and only three types of estimates were used as the reference point

for MCMCML, including the MPLEs, the MGPLEs for a group size of 9, and the MBGPLEs

for a block size of 4× 4.

5.3 GPL vs. BGPL – Question 1

To address the first question of interest, which seeks to determine which method, if either,

between GPL or BGPL is “better,” comparisons of precision, bias, and accuracy (using MAE),

will be made between the estimates from both methods. Before we present the findings of the

simulation study with respect to this first question, recall that the precision of an estimation

procedure is a measure of its variability, while the accuracy of an estimation procedure is

often assessed though an estimate of its bias in conjunction with its variance. Due to its

resistance to outliers, the measure of accuracy used throughout this simulation study was the
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mean absolute error (MAE), defined as:

MAE(θ̂) =
1

n

n∑
i=1

|θ̂ − θ0|,

where θ̂ is an estimator of the true parameter θ0 and n is the number of samples generated

in a given simulation.

Although clear differences between the estimates obtained from GPL and BGPL were dis-

covered over the course of this simulation study, as will be demonstrated in the forthcoming

discussion, two phenomena that are present in the estimates obtained from both procedures

should first be addressed. In particular, the further a lattice deviates from a 50/50 split of ze-

ros and ones, 1) the more variable and 2) the more biased both the MGPLEs and MBGPLEs

generally become. For instance, consider Figure 5.2, which contains plots of the standard

errors and of the estimated biases for the MGPLEs of α and θ, under a group size of 9, from

Case 1. With respect to the first phenomenon, plots (a) and (c) clearly demonstrate that as

the spatial dependence increases, especially above 0.5, the corresponding standard errors of

α̂ and θ̂ increase, but to a lesser extent for larger lattices. Observe, however, that in both

plots (a) and (c), it is evident that, as would be expected, the standard errors decrease as

the lattice size increases. Finally, with respect to the second phenomenon, plots (b) and (d)

clearly demonstrate that the estimated biases for α̂ and θ̂ move further away from 0 as the

spatial dependence increases, but the magnitude of this deviation decreases as the lattice size

increases. Note that these phenomena were analogously observed in every applicable case of

the simulation study, not just in Case 1, and for every group size and block size considered,

not just a group size of 9. It is worth mentioning here that these phenomena are consistent

with the notion that the numerical efficiency of the autologistic model is optimal when the

lattice does not contain a disproportionate number of ones or zeros ([2]).

While the above phenomena apply to both estimation methods, several observations can

be made within each of the two estimation methods; i.e. important differences between the
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MGPLEs for groups of size 5 and 9, as well as important differences between the MBGPLEs for

the three different block sizes, exist. To this end, first consider Table 5.1 in which the average

estimates and corresponding standard errors of the MGPLEs, under all three lattice sizes, are

given for the parameters of Case 1 (α and θ). In particular, observe that the standard errors

of both α̂ and θ̂ for a group size of 9 are uniformly less than or equal to the corresponding

standard errors for a group size of 5. Furthermore, although there is no clear trend in the

estimated biases for α̂, the estimated biases of θ̂ for a group size of 9 tend to be larger than

the corresponding estimated biases for a group size of 5, especially for large θ. Hence, there

appears to be some evidence of a variance/bias trade off among the MGPLEs as the group size

is increased. Such evidence exists in every applicable case of the simulation study, not just in

Case 1. Now consider Table 5.2 in which the average estimates and corresponding standard

errors of the MBGPLEs, under all three lattice sizes, are given for the parameters of Case 1

(α and θ). In particular, note that the standard errors of both α̂ and θ̂ for a block size of

4× 4 tend to be smaller, though not uniformly so, than the corresponding standard errors for

either a block size of 3×3 or 2×2. Additionally, and perhaps surprisingly, the standard errors

of both α̂ and θ̂ for a block size of 3 × 3 tend to be larger than the corresponding standard

errors for a block size of 2 × 2. Furthermore, there is no clear trend in the estimated biases

of α̂ and θ̂ among the three different block sizes. Hence, unlike the MGPLEs, there does not

appear to be any evidence of a variance/bias trade off among the MBGPLEs as the block size

is increased. Such findings are evident in every applicable case of the simulation study, not

just in Case 1.

Having addressed phenomena present in both estimation methods, and having addressed

differences within each method, a comparison of the two estimation procedures is now made.

Since such a comparison is more easily conveyed visually, multiple plots within figures will be

both given and discussed below. Although plots of the standard errors and estimated biases

could be given for various cases of the simulation study to point out the major differences

between the two methods, plots of the MAE are more revealing and will, therefore, be the
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primary visual tool to compare GPL and BGPL. Specifically, plots of the relative MAE will

be employed, rather than just plots of the MAE, since the broad range of parameter vectors

considered in many cases of the simulation study makes it difficult to discern what are in

fact clear differences in MAE between the two estimation procedures. To calculate relative

MAE, the MAEs from each set of estimates are divided by their corresponding MAE from

an arbitrarily selected set of estimates. To be precise, for all plots and figures used in this

section, the arbitrarily selected set of estimates are those corresponding to the MGPLEs

under a group size of 9. Thus, for each case of the simulation study, the MAEs for every set

of estimates for a particular case are divided by the corresponding MAEs from the group size

9 set of estimates for that case. Note that relative MAE values greater than 1 indicate that

the corresponding estimates performed worse than the group size 9 estimates, while relative

MAE values less than 1 indicate that the corresponding estimates performed better than the

group size 9 estimates; the relative MAE values for the group size 9 estimates will obviously

be 1. For clarity, a relative MAE value of 1.10 will mean that the MAE of the corresponding

estimator is 1.10 times as large as the MAE for the group size 9 estimator. The following

comparison of GPL and BGPL is broken into two parts. The first part of the comparison

addresses the cases of the simulation study that do not include a covariate term, while the

second part of the comparison addresses the cases of the simulation study that do include a

covariate term.

In all four cases of the simulation study that do not include a covariate term, there is clear

evidence that GPL is superior to BGPL. To illustrate this point, consider Figure 5.3, which

contains plots of the relative MAE values, for both α̂ and θ̂, from Case 1 of the simulation

study. [For the interested reader, Tables A.1 and A.2 in section A.1 of Appendix A provide

the actual MAE values for Case 1.] Now, in plots (a) and (b), which correspond to 26 × 26

lattices, no single set among the five sets of relative MAEs tends to be better than the others,

although the relative MAEs for the group size 5 estimates tend to be the worst. Hence, these

first two plots suggest that GPL, at least for a group size of 9, and BGPL are relatively
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competitive. However, in plots (c) and (d), which correspond to 50× 50 lattices, the relative

MAEs for both sets of MGPLEs tend to be better than the relative MAEs for all three sets of

MBGPLEs. Furthermore, in plots (e) and (f), which correspond to 74×74 lattices, the relative

MAEs for both sets of MGPLEs are uniformly better than the relative MAEs for all three sets

of MBGPLEs. Hence, these six plots clearly suggest that while BGPL is competitive with

GPL for relatively small lattices, BGPL is inferior to GPL for larger lattices. Finally, as was

alluded to above, such results were consistent across the other three cases of the simulation

study that did not include a covariate term. In fact, the inferiority of BGPL is most extreme

in set 3 of Case 3, where for the north/south gradient parameter, θv, the relative MAE for

all three sets of MBGPLEs reaches values as large as 1.15. For the interested reader, a table

of the average estimates and corresponding standard errors, as well as a figure of the relative

MAEs, for set 3 of Case 3 of the simulation study are given in section A.1 (see Table A.3 and

Figure A.1.

Before moving on to a comparison of GPL and BGPL for the three cases of the simulation

study that do include a covariate term, a few additional observations should be pointed out

from Figure 5.3. First, notice that in all six plots, the relative MAEs for the group size 5

estimates are always larger than those of the group size 9 estimates. Such results were evident

in every applicable case of the simulation study, not just in Case 1. Hence, this suggests that

increased group size does in fact lead to an improvement in performance among the MGPLEs;

additionally, it suggests that within the variance/bias trade off mentioned earlier between the

two group sizes, variability is the more dominant contributor to the MAE. Finally, in all six

plots of Figure 5.3, and in particular plots (c)-(f), the relative MAEs for the 4× 4 block size

estimates tend to be the smallest of the three block sizes, but again somewhat surprisingly,

the relative MAEs for the 3× 3 block size estimates tend to be larger than those of the 2× 2

block size estimates. Such results were again evident in every applicable case of the simulation

study, not just in Case 1. Hence, despite the fact that the 4 × 4 block size estimates tended

to perform the best of the MBGPLEs, there is no clear evidence from this simulation study
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that increased block size necessarily leads to increased performance among the MBGPLEs.

While we would like to explore the effect of increasing block (and group) size, it becomes

prohibitively expensive once the block size becomes 5× 5.

Finally, in the three cases of the simulation study that do include a covariate term, there

is clear evidence that GPL still tends to be superior to BGPL in estimating the spatial

parameters and the intercept parameter, but now BGPL tends to be superior to GPL in

estimating the covariate parameter. To illustrate this point, consider Table 5.3, which provides

the 74× 74 lattice size relative MAE values for α̂, θ̂h, θ̂v, and β̂ from Case 5, for the diagonal

sine wave covariate type, of the simulation study. From this table it is clear that for both

spatial parameters, θh and θv, the MGPLEs uniformly outperform the MBGPLEs, under all

three block sizes. Furthermore, it is evident from the table that the MGPLEs tend to do better

than the MBGPLEs in estimating α, the intercept parameter. However, it is also clear from

the table that for the diagonal sine wave parameter, β, the MBGPLEs uniformly outperform

the MGPLEs. Such results, for all covariate types and all lattice sizes, were typical among

the three cases of the simulation study incorporating a covariate parameter into the model.
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Table 5.1: Sample Means and Standard Errors of α and θ when the Model is FI2p and the
Method of Estimation is GPL for Group Sizes of 5 (gs5) and 9 (gs9)

26x26 50x50 74x74
Model Estimate gs5 gs9 gs5 gs9 gs5 gs9

¯̂α -1.0150 -1.0139 -1.0045 -1.0046 -0.9990 -0.9992

Ising ŜD(α̂) 0.1904 0.1877 0.0901 0.0895 0.0612 0.0609

(−1.0, 0.0)
¯̂
θ 0.0021 0.0013 0.0010 0.0009 -0.0005 -0.0005

ŜD(θ̂) 0.1612 0.1587 0.0721 0.0716 0.0471 0.0468
¯̂α -1.0018 -1.0015 -1.0054 -1.0054 -1.0041 -1.0042

Ising ŜD(α̂) 0.1938 0.1914 0.0983 0.0972 0.0616 0.0615

(−1.0, 0.1)
¯̂
θ 0.0993 0.0989 0.1021 0.1020 0.1022 0.1022

ŜD(θ̂) 0.1421 0.1406 0.0731 0.0723 0.0445 0.0445
¯̂α -0.9874 -0.9866 -0.9935 -0.9936 -0.9964 -0.9965

Ising ŜD(α̂) 0.2009 0.1979 0.0991 0.0986 0.0659 0.0654

(−1.0, 0.2)
¯̂
θ 0.1931 0.1923 0.1977 0.1977 0.1986 0.1984

ŜD(θ̂) 0.1332 0.1314 0.0674 0.0671 0.0446 0.0444
¯̂α -1.0067 -1.0034 -1.0027 -1.0018 -1.0009 -1.0009

Ising ŜD(α̂) 0.2210 0.2162 0.1055 0.1045 0.0670 0.0667

(−1.0, 0.3)
¯̂
θ 0.2983 0.2967 0.2982 0.2976 0.2986 0.2986

ŜD(θ̂) 0.1351 0.1320 0.0648 0.0641 0.0416 0.0414
¯̂α -0.9879 -0.9857 -1.0031 -1.0029 -1.0033 -1.0033

Ising ŜD(α̂) 0.2165 0.2126 0.1094 0.1078 0.0726 0.0722

(−1.0, 0.4)
¯̂
θ 0.3916 0.3901 0.4020 0.4018 0.4013 0.4014

ŜD(θ̂) 0.1174 0.1157 0.0585 0.0578 0.0391 0.0389
¯̂α -0.9791 -0.9740 -0.9952 -0.9941 -0.9994 -0.9993

Ising ŜD(α̂) 0.2494 0.2440 0.1172 0.1151 0.0795 0.0784

(−1.0, 0.5)
¯̂
θ 0.4873 0.4847 0.4968 0.4962 0.4992 0.4992

ŜD(θ̂) 0.1204 0.1176 0.0554 0.0544 0.0378 0.0372
¯̂α -0.9639 -0.9595 -1.0037 -1.0013 -1.0008 -0.9998

Ising ŜD(α̂) 0.2936 0.2874 0.1446 0.1428 0.0929 0.0919

(−1.0, 0.6)
¯̂
θ 0.5863 0.5842 0.6016 0.6006 0.6005 0.6001

ŜD(θ̂) 0.1243 0.1212 0.0615 0.0606 0.0391 0.0386
¯̂α -0.9476 -0.9415 -0.9970 -0.9941 -0.9988 -0.9977

Ising ŜD(α̂) 0.3712 0.3619 0.1787 0.1750 0.1153 0.1144

(−1.0, 0.7)
¯̂
θ 0.6833 0.6809 0.6989 0.6978 0.6995 0.6991

ŜD(θ̂) 0.1366 0.1332 0.0670 0.0657 0.0435 0.0431
¯̂α -0.9099 -0.9001 -0.9796 -0.9764 -0.9932 -0.9914

Ising ŜD(α̂) 0.5109 0.4939 0.2512 0.2445 0.1626 0.1608

(−1.0, 0.8)
¯̂
θ 0.7745 0.7710 0.7936 0.7925 0.7979 0.7973

ŜD(θ̂) 0.1692 0.1635 0.0839 0.0817 0.0545 0.0540
¯̂α -0.8620 -0.8504 -0.9787 -0.9737 -0.9755 -0.9708

Ising ŜD(α̂) 0.8181 0.7854 0.3576 0.3513 0.2448 0.2416

(−1.0, 0.9)
¯̂
θ 0.8639 0.8602 0.8951 0.8936 0.8931 0.8917

ŜD(θ̂) 0.2497 0.2403 0.1103 0.1084 0.0747 0.0739
¯̂α -0.7536 -0.7235 -0.9505 -0.9432 -0.9834 -0.9754

Ising ŜD(α̂) 1.2098 1.1514 0.5140 0.5042 0.3452 0.3403

(−1.0, 1.0)
¯̂
θ 0.9362 0.9271 0.9882 0.9862 0.9967 0.9944

ŜD(θ̂) 0.3452 0.3286 0.1495 0.1468 0.1009 0.0996
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Table 5.2: Sample Means and Standard Errors of α and θ when the Model is FI2p and the
Method of Estimation is BGPL for Block Sizes of 2x2 (bs2), 3x3 (bs3), and 4x4 (bs4)

26x26 50x50 74x74
Model Estimate bs2 bs3 bs4 bs2 bs3 bs4 bs2 bs3 bs4

¯̂α -1.0140 -1.0097 -1.0127 -1.0036 -1.0044 -1.0044 -0.9992 -0.9990 -0.9994

Ising ŜD(α̂) 0.1815 0.1819 0.1810 0.0910 0.0925 0.0924 0.0629 0.0623 0.0622

(−1.0, 0.0)
¯̂
θ 0.0005 -0.0034 -0.0007 0.0000 0.0008 0.0008 -0.0007 -0.0009 -0.0005

ŜD(θ̂) 0.1597 0.1599 0.1589 0.0742 0.0740 0.0752 0.0492 0.0489 0.0486
¯̂α -1.0050 -1.0029 -1.0052 -1.0045 -1.0040 -1.0061 -1.0039 -1.0037 -1.0044

Ising ŜD(α̂) 0.1834 0.1857 0.1854 0.0973 0.0968 0.0983 0.0630 0.0644 0.0630

(−1.0, 0.1)
¯̂
θ 0.1020 0.1001 0.1018 0.1014 0.1010 0.1027 0.1019 0.1017 0.1023

ŜD(θ̂) 0.1377 0.1417 0.1400 0.0738 0.0735 0.0746 0.0459 0.0472 0.0462
¯̂α -0.9877 -0.9880 -0.9896 -0.9940 -0.9953 -0.9934 -0.9973 -0.9983 -0.9964

Ising ŜD(α̂) 0.1999 0.2013 0.1992 0.0975 0.1001 0.0993 0.0683 0.0687 0.0695

(−1.0, 0.2)
¯̂
θ 0.1928 0.1932 0.1942 0.1978 0.1987 0.1974 0.1988 0.1996 0.1981

ŜD(θ̂) 0.1356 0.1367 0.1351 0.0669 0.0694 0.0680 0.0468 0.0469 0.0475
¯̂α -0.9978 -1.0067 -0.9976 -0.9997 -1.0020 -0.9997 -1.0003 -1.0009 -1.0008

Ising ŜD(α̂) 0.2147 0.2218 0.2111 0.1057 0.1075 0.1044 0.0685 0.0688 0.0677

(−1.0, 0.3)
¯̂
θ 0.2940 0.2997 0.2939 0.2966 0.2981 0.2966 0.2981 0.2985 0.2985

ŜD(θ̂) 0.1326 0.1374 0.1287 0.0654 0.0661 0.0641 0.0431 0.0429 0.0426
¯̂α -0.9970 -0.9866 -0.9887 -1.0042 -1.0009 -1.0024 -1.0040 -1.0021 -1.0039

Ising ŜD(α̂) 0.2104 0.2093 0.2034 0.1101 0.1101 0.1070 0.0746 0.0747 0.0750

(−1.0, 0.4)
¯̂
θ 0.3957 0.3899 0.3911 0.4025 0.4007 0.4015 0.4017 0.4007 0.4017

ŜD(θ̂) 0.1171 0.1154 0.1138 0.0593 0.0595 0.0578 0.0401 0.0402 0.0405
¯̂α -0.9794 -0.9764 -0.9805 -0.9933 -0.9935 -0.9952 -1.0015 -1.0008 -1.0002

Ising ŜD(α̂) 0.2483 0.2447 0.2413 0.1173 0.1189 0.1179 0.0812 0.0818 0.0816

(−1.0, 0.5)
¯̂
θ 0.4873 0.4858 0.4877 0.4960 0.4961 0.4968 0.5003 0.4999 0.4997

ŜD(θ̂) 0.1201 0.1177 0.1166 0.0556 0.0563 0.0561 0.0385 0.0389 0.0388
¯̂α -0.9744 -0.9629 -0.9741 -1.0064 -1.0015 -1.0024 -1.0018 -1.0012 -1.0011

Ising ŜD(α̂) 0.2907 0.2948 0.2927 0.1486 0.1469 0.1467 0.0965 0.0963 0.0937

(−1.0, 0.6)
¯̂
θ 0.5898 0.5852 0.5898 0.6029 0.6009 0.6013 0.6008 0.6007 0.6006

ŜD(θ̂) 0.1230 0.1246 0.1232 0.0633 0.0625 0.0623 0.0407 0.0406 0.0395
¯̂α -0.9587 -0.9494 -0.9512 -0.9957 -0.9941 -0.9919 -0.9982 -0.9981 -0.9959

Ising ŜD(α̂) 0.3637 0.3566 0.3578 0.1774 0.1787 0.1760 0.1201 0.1187 0.1179

(−1.0, 0.7)
¯̂
θ 0.6866 0.6833 0.6839 0.6982 0.6977 0.6969 0.6993 0.6994 0.6986

ŜD(θ̂) 0.1343 0.1312 0.1323 0.0670 0.0673 0.0662 0.0453 0.0448 0.0446
¯̂α -0.9253 -0.9029 -0.9167 -0.9837 -0.9744 -0.9866 -0.9983 -0.9909 -0.9965

Ising ŜD(α̂) 0.5027 0.4912 0.4875 0.2541 0.2521 0.2506 0.1697 0.1724 0.1682

(−1.0, 0.8)
¯̂
θ 0.7788 0.7714 0.7762 0.7951 0.7921 0.7960 0.7996 0.7972 0.7989

ŜD(θ̂) 0.1666 0.1627 0.1614 0.0855 0.0846 0.0844 0.0571 0.0582 0.0567
¯̂α -0.8920 -0.8916 -0.8704 -0.9865 -0.9810 -0.9717 -0.9716 -0.9723 -0.9696

Ising ŜD(α̂) 0.8080 0.7756 0.7680 0.3677 0.3713 0.3673 0.2471 0.2573 0.2487

(−1.0, 0.9)
¯̂
θ 0.8725 0.8722 0.8660 0.8976 0.8959 0.8930 0.8920 0.8922 0.8913

ŜD(θ̂) 0.2483 0.2409 0.2356 0.1132 0.1149 0.1127 0.0756 0.0789 0.0759
¯̂α -0.7386 -0.7358 -0.7255 -0.9539 -0.9478 -0.9521 -0.9807 -0.9715 -0.9760

Ising ŜD(α̂) 1.2029 1.1541 1.1495 0.5297 0.5304 0.5202 0.3518 0.3529 0.3454

(−1.0, 1.0)
¯̂
θ 0.9309 0.9300 0.9271 0.9897 0.9879 0.9891 0.9958 0.9932 0.9945

ŜD(θ̂) 0.3433 0.3299 0.3295 0.1540 0.1543 0.1515 0.1030 0.1030 0.1011
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Figure 5.2: Standard Errors and Estimated Biases of α and θ when the Model is FI2p and
the Method of Estimation is GPL for a Group Size of 9 (gs9)
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Figure 5.3: Relative MAEs of α and θ when the Model is FI2p and the Methods of Estimation
are GPL for Group Sizes of 5 (gs5) and 9 (gs9) and BGPL for Block Sizes of 2x2 (bs2), 3x3
(bs3), and 4x4 (bs4)
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● ●
●

● ●
●

● ●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
95

1.
00

1.
05

1.
10

Spatial Dependence
R

el
at

ive
 M

AE

(b) θ Relative MAE (26x26)
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(c) α Relative MAE (50x50)
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(d) θ Relative MAE (50x50)
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(e) α Relative MAE (74x74)
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Table 5.3: Relative MAEs of α, θh, θv, and β (Sine Wave Covariate) when the Model is
FAhv4p and the Methods of Estimation are GPL for a Group Size of 9 (gs9) and BGPL for
Block Sizes of 2x2 (bs2), 3x3 (bs3), and 4x4 (bs4)

74x74
Model Estimate gs9 bs2 bs3 bs4

Rel. MAE(α̂) 1 1.0004 0.9896 1.0031

FAhv4p SineWave Rel. MAE(θ̂h) 1 1.0136 1.0299 1.0283

(−1.0, 0.4, 0.2, 3.0) Rel. MAE(θ̂v) 1 1.0458 1.0364 1.0485

Rel. MAE(β̂) 1 0.9860 0.9847 0.9907

Rel. MAE(α̂) 1 1.0221 1.0282 1.0207

FAhv4p SineWave Rel. MAE(θ̂h) 1 1.0336 1.0327 1.0334

(−1.0, 0.7, 0.3, 0.2) Rel. MAE(θ̂v) 1 1.0549 1.0752 1.0490

Rel. MAE(β̂) 1 0.9680 0.9689 0.9679

5.4 Reference Points for MCMCML – Question 2

The second question of interest for this simulation study addresses the performance of the

MCMCMLEs under various reference point values. In particular, while use of the MPLEs

as the reference point value for the Gibbs sampler is typically sufficient, it is of interest to

know whether or not use of the MGPLEs and/or MBGPLEs as the reference point value will

improve the performance of the MCMCMLEs, especially in situations where the difficulties of

MCMCML are well-established. Such situations include autologistic models under extremely

strong spatial correlation, as well as autologistic models near phase transition. As with ques-

tion 1 in section 5.3, answers to this second question are pursued through comparisons of the

precision, bias, and MAE of the MCMCMLEs obtained from all of the various reference point

values. Based on the conclusions that can ultimately be drawn, such analysis is separated

below into two parts. The first part briefly addresses the cases of the simulation study, for

this particular question, that pertain to autologistic models under extremely strong spatial

correlation, while the second part thoroughly addresses the one case of the simulation study

that pertains to Ising models near phase transition.

For Case 1 of the simulation study, the MCMCMLEs were obtained using the MPLEs,

the MGPLEs, under both group sizes, and the MBGPLES, under all three block sizes, as
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the reference point values. The differences in the sample means, standard errors, and MAEs

between the MCMCMLEs obtained under these six different sets of reference points were, for

both α and θ, virtually nonexistent. In fact, considering the MCMCMLEs with the MPLEs

as the reference point as the baseline case, all sets of relative MAEs, across all 11 parameter

vectors and all three lattice sizes, were within 0.01 of 1 with no consistent patterns. In other

words, the other reference point sets offered, at best, an MAE that was 0.99 times that of

the baseline MAE and, at worst, an MAE that was 1.01 times that of the baseline MAE.

The interested reader can find all such corresponding relative MAE plots in Figure A.2 of

section A.2, where, for example, MCMCML(PL) denotes the MCMCMLEs with the MPLEs

as the reference point. With such clear evidence that the MGPLEs and MBGPLEs are not

better than the MPLEs as reference points when implementing MCMCML to estimate the

parameters of an autologistic model under extremely strong spatial correlation, analogous

comparisons were not conducted among the other applicable cases of the simulation study.

For Case 7 of the simulation study, which recall explores the Ising model as the parameter

vector nears one of the critical values associated with phase transition (θ = 1.76, α = −2θ), the

results were not nearly as mundane as those for Case 1. Note that since the results from Case

1 indicated that there were no differences in the MCMCMLEs obtained under the six reference

point sets, and because section 5.4 revealed 1) that the group size 9 MGPLEs were uniformly

better than the group size 5 MGPLEs, and 2) that the block size 4 × 4 MBGPLEs tended

to be better than both the block size 3 × 3 and 2 × 2 MBGPLEs, only three reference point

sets were considered. In particular, the MPLEs, the group size 9 MGPLEs, and the block size

4× 4 MBGPLEs were used as the three reference point sets for obtaining the MCMCMLEs.

The sample means and corresponding standard errors of these three sets of MCMCMLEs are

given below in Table 5.4, where, for example, MCMC(PL) indicates MCMCML with MPLE

reference points. From the table it is evident that, with the exception of the two models

closest to phase transition (θ = 1.4 and θ = 1.6), there are negligible differences between

these three sets of MCMCMLEs. However, for these last two models there are differences
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between the three sets of MCMCMLEs. The relative MAE plots given in Figure 5.4, where

the MCMCMLEs with MPLE reference points serve as the baseline set, more clearly reveal

these differences. From these six plots, there is some indication that when the group size

9 MGPLEs and the block size 4 × 4 MBGPLEs are used as reference points, they tend

to produce better MCMCMLEs near phase transition. For instance, in plots (c) and (d)

the MAEs corresponding to the MCMCMLEs with MGPLE and MBGPLE reference points

are, for α = −3.2 and θ = 1.6, roughly 0.85 to 0.90 times the corresponding MAE for the

MCMCMLEs with MPLE reference points. At the surface, such observations would seem to

suggest that when dealing with models near phase transition, the MGPLEs and MBGPLEs

might be better reference points than the MPLEs when employing MCMCML. A deeper

analysis, however, reveals that such observations must be interpreted cautiously.

The above cautionary warning stems from the fact that there are vast discrepancies in the

number of estimates used in obtaining the sample means, standard errors, and MAEs given

in Table 5.4 and plotted in Figure 5.4. This is a result of the fact that for parameter values

near phase transition, the Gibbs sampler used within the MCMCML algorithm frequently

fails to converge, and, therefore, fails to produce an estimate. To quantify such convergence

failures visually, consider plots (a), (c), and (e) of Figure 5.5, which display the proportion

of runs (out of 500) that the MCMCML algorithm actually converged for the three different

lattice sizes. From these plots, when θ = 1.6, it can be seen that in lattices of size 74 × 74,

for example, only roughly 45%, 55%, and 80% of the time did the MCMCML algorithm con-

verge when the MPLEs, MBGPLEs, and MGPLEs, respectively, were used as the reference

points. Furthermore, many of the estimates that were produced were extremely, i.e. orders

of magnitude, unusual, and, thus, the 1.5 × IQR rule was used to filter out such abberant

values. Plots (b), (d), and (f) in Figure 5.4 display the proportion of runs (out of 500) for the

three different lattice sizes that the MCMCML algorithm actually converged and the resultant

estimate was not an outlier. From these plots, when θ = 1.6, it can be seen that in lattices

of size 74× 74, for example, only roughly 35%, 50%, and 70% of the time did the MCMCML



5.4. REFERENCE POINTS FOR MCMCML – QUESTION 2 155

algorithm converge and produce non-outlying estimates when the MPLEs, MBGPLEs, and

MGPLEs, respectively, were used as the reference points. This perhaps suggests that, in a re-

turn on computational investment sense, the MGPLEs, and to a lesser extent the MBGPLEs,

are better reference points than the MPLEs are for MCMCML. However, in a relative perfor-

mance sense, measured through numerical quantities like the MAE, it is difficult to draw such

firm conclusions. More specifically, because direct comparisons can only be made for the runs

in which all three sets of reference points produced “reasonable” MCMCMLEs, the sample

means, standard errors, and MAEs from the simulation study for the models closer to phase

transition are based on substantially fewer runs/trials. For instance, when θ = 1.6, at most

35% of the 500 runs are used in calculating the summary statistics. Therefore, caution should

be exercised in inferring from Table 5.4 and Figure 5.4 that the MGPLEs and MBGPLEs

tend to be better, in a relative error sense, reference points when employing MCMCML to

estimate model parameters near phase transition. Finally, note that it may be because there

was such a limited number of usable trials for these more extreme models that the standard

errors in Table 5.4 surprisingly seem to decrease as the model nears phase transition. Perhaps

these estimates were usable precisely because they fell within some relatively narrow window

of the parameter space.

At this point, it would appear that not much can be said in way of an answer to question 2.

However, if we realize that the underlying objective in answering question 2 is to ultimately

determine if there is a better procedure for implementing MCMCML when the model is near

phase transition, then a heuristic approach presents itself. More specifically, consider Table

5.5, which displays, for θ = 1.6, the proportion of runs that either failed to converge or

produced an outlying estimate under one set of reference points, but produced “reasonable”

estimates according to one of the other sets of reference points. For example, the 0.6000

value in the MCMCMLgs9 row and MCMCMLPL column indicates that 60% of the runs

that either failed to converge or produced an outlying observation with the MPLEs as the

reference point, produced “reasonable” estimates with the MGPLEs as the reference point.
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While it is evident from the table that the MGPLEs have the highest, and the MPLEs the

lowest, percentages as an alternative reference point when either one of the other two reference

point options has failed, it is more important to note that all three sets of reference points,

when used after one of the others has failed, had a decent chance of producing reasonable

estimates. To elaborate on this point, consider Table 5.6, which displays the proportion of

trials (out of 500) in which at least one of the three reference points produced a “reasonable”

MCMCMLE. From this table we see that, for example, when α = −3.2 and θ = 1.6, 84.8%

of the runs produced a usable estimate from at least one of the three sets of reference points.

Compare this with the 35%, 50%, and 70% obtained individually for the MPLEs, MBGPLEs,

and MGPLEs, respectively. Thus, for models near phase transition, parameter estimation

using MCMCML can be improved, in the sense that there is a greater chance of obtaining a

“reasonable” estimate, if all three reference point options are utilized. The interested reader

should note that tables analogous to Tables 5.5 and 5.6, which are based only on whether the

MCMCML algorithm converged, and not additionally on whether the resultant estimate was

an outlier, are given in section A.2 and suggest the same heuristic indicated above (see Tables

A.4 and A.5). It is worth mentioning that this lack of convergence could also be overcome

using a suite of parameter vectors, but having these three computationally simpler estimation

methods provides three informed estimates of the parameter vector.
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Table 5.4: Sample Means and Standard Errors of α and θ when the Model is an Ising Model
Near Phase Transition and the Method of Estimation is MCMCML Under the Following
Reference Points: MPLE (PL), MGPLE for a Group Size of 9 (gs9), and MBGPLE for a
Block Size of 4x4 (bs4)

26x26 50x50 74x74
MCMC MCMC MCMC MCMC MCMC MCMC MCMC MCMC MCMC

Model Estimate (PL) (gs9) (bs4) (PL) (gs9) (bs4) (PL) (gs9) (bs4)
¯̂α -0.3990 -0.4002 -0.3991 -0.4019 -0.4012 -0.4012 -0.4020 -0.4019 -0.4018

Ising ŜD(α̂) 0.2350 0.2348 0.2366 0.1160 0.1162 0.1160 0.0838 0.0838 0.0837

(−0.4, 0.2)
¯̂
θ 0.1985 0.1990 0.1987 0.1998 0.1994 0.1995 0.2002 0.2002 0.2001

ŜD(θ̂) 0.1091 0.1089 0.1099 0.0549 0.0551 0.0549 0.0395 0.0395 0.0395
¯̂α -0.7816 -0.7816 -0.7825 -0.7978 -0.7982 -0.7973 -0.8034 -0.8030 -0.8032

Ising ŜD(α̂) 0.2244 0.2233 0.2245 0.1097 0.1099 0.1100 0.0757 0.0760 0.0756

(−0.8, 0.4)
¯̂
θ 0.3924 0.3924 0.3929 0.3997 0.3999 0.3994 0.4020 0.4018 0.4019

ŜD(θ̂) 0.1067 0.1062 0.1068 0.0521 0.0521 0.0522 0.0364 0.0367 0.0365
¯̂α -1.1704 -1.1711 -1.1711 -1.1940 -1.1942 -1.1937 -1.1973 -1.1976 -1.1973

Ising ŜD(α̂) 0.2236 0.2229 0.2241 0.1124 0.1116 0.1125 0.0785 0.0786 0.0784

(−1.2, 0.6)
¯̂
θ 0.5852 0.5856 0.5855 0.5973 0.5973 0.5972 0.5995 0.5996 0.5996

ŜD(θ̂) 0.1070 0.1065 0.1074 0.0535 0.0531 0.0534 0.0371 0.0372 0.0372
¯̂α -1.5590 -1.5601 -1.5588 -1.5909 -1.5910 -1.5908 -1.6008 -1.6009 -1.6008

Ising ŜD(α̂) 0.2203 0.2209 0.2216 0.1080 0.1079 0.1078 0.0716 0.0716 0.0719

(−1.6, 0.8)
¯̂
θ 0.7808 0.7813 0.7808 0.7962 0.7963 0.7962 0.8007 0.8007 0.8007

ŜD(θ̂) 0.1034 0.1032 0.1033 0.0507 0.0508 0.0509 0.0342 0.0342 0.0343
¯̂α -1.9667 -1.9672 -1.9677 -1.9943 -1.9941 -1.9952 -1.9945 -1.9939 -1.9943

Ising ŜD(α̂) 0.1994 0.2001 0.2004 0.0945 0.0943 0.0942 0.0648 0.0639 0.0645

(−2.0, 1.0)
¯̂
θ 0.9841 0.9845 0.9847 0.9978 0.9978 0.9982 0.9976 0.9973 0.9975

ŜD(θ̂) 0.0964 0.0963 0.0962 0.0458 0.0458 0.0456 0.0314 0.0309 0.0312
¯̂α -2.3435 -2.3475 -2.3425 -2.3916 -2.3906 -2.3906 -2.4002 -2.4007 -2.4009

Ising ŜD(α̂) 0.1735 0.1731 0.1740 0.0941 0.0908 0.0917 0.0585 0.0570 0.0573

(−2.4, 1.2)
¯̂
θ 1.1739 1.1751 1.1733 1.1959 1.1955 1.1953 1.2000 1.2001 1.2002

ŜD(θ̂) 0.0824 0.0819 0.0815 0.0446 0.0434 0.0431 0.0282 0.0275 0.0275
¯̂α -2.7344 -2.7345 -2.7323 -2.7876 -2.7903 -2.7876 -2.7946 -2.7940 -2.7948

Ising ŜD(α̂) 0.1644 0.1536 0.1518 0.0829 0.0821 0.0816 0.0595 0.0560 0.0576

(−2.8, 1.4)
¯̂
θ 1.3672 1.3668 1.3661 1.3934 1.3949 1.3934 1.3974 1.3969 1.3971

ŜD(θ̂) 0.0803 0.0760 0.0750 0.0406 0.0407 0.0399 0.0293 0.0275 0.0282
¯̂α -3.0642 -3.0567 -3.0548 -3.1667 -3.1763 -3.1578 -3.1753 -3.1861 -3.1801

Ising ŜD(α̂) 0.1397 0.1247 0.1268 0.0953 0.0781 0.0726 0.0455 0.0480 0.0474

(−3.2, 1.6)
¯̂
θ 1.5258 1.5225 1.5214 1.5792 1.5809 1.5747 1.5855 1.5879 1.5852

ŜD(θ̂) 0.0739 0.0652 0.0664 0.0476 0.0407 0.0379 0.0242 0.0278 0.0249
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Table 5.5: Proportion of Trials Converging/Non-Outlying when the Model is an Ising Model
Near Phase Transition with (α, θ) = (−3.2, 1.6) and the Method of Estimation is MCMCML
Under the Following Reference Points: MPLE (MCMCMLPL), MGPLE for a Group Size of
9 (MCMCMLgs9), and MBGPLE for a Block Size of 4x4 (MCMCMLbs4)

Failed To Converge or was an Outlier For

Lattice Size Method MCMCMLPL MCMCMLgs9 MCMCMLbs4

But MCMCMLPL 0 0.2549 0.3070
26× 26 Converged or was not MCMCMLgs9 0.6000 0 0.5658

an Outlier For MCMCMLbs4 0.4456 0.3529 0

But MCMCMLPL 0 0.2887 0.2987
50× 50 Converged or was not MCMCMLgs9 0.6854 0 0.6623

an Outlier For MCMCMLbs4 0.4953 0.4507 0

But MCMCMLPL 0 0.2573 0.3308
74× 74 Converged or was not MCMCMLgs9 0.5968 0 0.6353

an Outlier For MCMCMLbs4 0.4349 0.4327 0

Table 5.6: Proportion of MCMCML Trials Converging as Non-Outliers for at Least One of
the Three Reference Point Sets (MPLE, MGPLE for a Group Size of 9, or MBGPLE for a
Block Size of 4x4) when the Model is an Ising Model Near Phase Transition

Model 26× 26 50× 50 74× 74

Ising (-0.4,0.2) 0.994 0.986 0.996

Ising (-0.8,0.4) 0.998 0.984 0.986

Ising (-1.2,0.6) 0.990 0.990 0.988

Ising (-1.6,0.8) 0.996 0.986 0.990

Ising (-2.0,1.0) 0.994 0.992 0.990

Ising (-2.4,1.2) 0.990 0.996 0.994

Ising (-2.8,1.4) 0.982 0.998 0.992

Ising (-3.2,1.6) 0.832 0.884 0.848
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Figure 5.4: Relative MAEs of α and θ when the Model is an Ising Model Near Phase Transition
and the Method of Estimation is MCMCML Under the Following Reference Points: MPLE
(MCMCML(PL)), MGPLE for a Group Size of 9 (MCMCML(gs9)), and MBGPLE for a Block
Size of 4x4 (MCMCML(bs4))
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Figure 5.5: Proportion of Convergent Trials ((a), (c), (e)) and Proportion of Convergent and
Non-Outlying Trials ((b), (d), (f)) when the Model is an Ising Model Near Phase Transition
and the Method of Estimation is MCMCML Under the Following Reference Points: MPLE
(MCMCML(PL)), MGPLE for a Group Size of 9 (MCMCML(gs9)), and MBGPLE for a Block
Size of 4x4 (MCMCML(bs4))
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5.5 PL vs. MCMCML vs. GPL vs. BGPL – Question 3

The third and final question of interest for this simulation study addresses the relative per-

formances of the four different estimation methods. In particular, do the MGPLEs and/or

MBGPLEs achieve the intended compromise between PL and MCMCML, and are there sit-

uations where one of the four methods is preferable to the other three? As with the first two

questions covered in sections 5.3 and 5.4, answers to this third question are pursued through

comparisons of the precision, bias, and MAE of the estimates from all four methods. Based

on the conclusions that can ultimately be drawn, such analysis is separated below into three

parts. The first part addresses, in detail, the initial three cases of the simulation study that

deal with purely spatial autologistic models, i.e. models that contain only an intercept and

one or more spatial parameters. The second part briefly addresses Cases 4 through 6 of the

simulation study which deal with autologistic models with an intercept, one or more spatial

parameters, and a covariate parameter. Finally, the third part thoroughly addresses the one

case of the simulation study that pertains to Ising models near phase transition.

Before addressing each part in turn, however, note that since the block size 4×4 MBGPLEs

tended to be the best of the three block sizes considered, and since any statements below for

these MBGPLEs also typically hold in an analogous manner for the MBGPLEs corresponding

to the two smaller block sizes, only the block size 4×4 MBGPLEs are formally compared below

with the MPLEs, MGPLEs, and MCMCMLEs. Similarly, since the group size 9 MGPLEs

were uniformly the best of the two group sizes considered, and since any statements below for

these MGPLEs also typically hold in an analogous manner for the group size 5 MGPLEs, only

the group size 9 MGPLEs are formally compared below with the MPLEs, MBGPLEs, and

MCMCMLEs. Additionally, for the first two parts, the MCMCMLEs were obtained using the

MPLEs as the reference point, but for the third part, the MCMCMLEs were obtained using

a variety of reference points. The procedure for obtaining these “hybrid” MCMCMLEs, as

they will be referenced here, will be discussed below at the appropriate time.
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The first three cases of the simulation study revealed several trends in the relative perfor-

mances of the four estimation methods. Consider Table 5.7, which provides the sample means

and corresponding standard errors for the estimates obtained from each method for Case 2,

set 3. From this table it is clear that for all four methods and for all three parameters, as the

strength of the north/south spatial dependence increases (i.e. θv increases), both the stan-

dard errors and estimated biases also tend to increase. Furthermore, as would be expected,

for all four methods and for all three parameters, as the lattice size increases, the estimated

biases and corresponding standard errors tend to decrease. Such trends were present in all

cases of the simulation study where the strength of the spatial dependence was incrementally

increased, i.e. Cases 1 through 3. As for trends explaining how the methods differed, consider

the relative (to PL) MAE plots for α, θh, and θv, corresponding to set 3 of Case 2, given

in Figure 5.6. From this figure, the most obvious trend is that BGPL not only tends to fail

in achieving the intended compromise between PL and MCMCML, but it is in fact often

noticeably worse than PL. Among the 4 sets of MAEs corresponding to each of the spatial

parameters, θh and θv, the MAEs for the MBGPLEs are almost uniformly the worst, with

MAEs, in some instances, more than 1.10 times those of the MPLEs. As for GPL, in the in-

stances where the differences in PL, GPL, and MCMCML were not negligible, GPL not only

appears to achieve the intended compromise between PL and MCMCML, but at times, it is

also competitive, or even better than, MCMCML. This tendency is more evident in the two

larger lattice sizes, and more evident for α̂ and θ̂v, the correlation direction whose strength

was sequentially increased. As these trends were evident across each of the first three cases

of the simulation study, it appears that for purely spatial autologistic models, GPL tends to

achieve its intended purpose while BGPL tends to fail to achieve its intended purpose.

Before moving on to the results of Cases 4 through 6, we should pause for a moment and

note the implications of consolidating the knowledge we have just obtained with the knowledge

we have from the previous simulation studies discussed in section 1.4. Such implications, I

believe, are clearly synopsized in Figure 5.7, which gives the relative (to PL) MAE plots for
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α and θ, corresponding to Case 1, for 74 × 74 lattices. In particular, when the strength of

the spatial dependence is weak (0 ≤ θ ≤ 0.4 in Figure 5.7), PL appears to be the practical

choice for estimating the parameters of the autologistic model. However, when the strength

of spatial dependence is moderate to strong (0.4 ≤ θ ≤ 0.9 in Figure 5.7), either MCMCML

or GPL should be used instead of PL. Note that while it appears that MCMCML is not really

any better than GPL in these situations, it is possible that this is merely an artifact of needing

to assuage the Gibbs sampler, in some form, to improve the estimates, such as, for example,

using more sweeps or a longer burn-in. Finally, in situations where the strength of the spatial

dependence is extremely strong (θ ≥ 1.0 in Figure 5.7), GPL is probably the best choice,

or perhaps even just PL. Note that in such situations MCMCML tends to struggle. In fact,

for the strongest spatial dependency parameter scenarios of Case 3, the MCMCMLEs had

MAEs that were nearly 1.10 times the MAEs of the corresponding MPLEs. I suspect that

the difficulties of MCMCML in these situations may be attributable to the Gibbs sampler,

since its inherent use of randomness may lead it to produce “bad” realizations with increased

probability. In any event, when the spatial dependence is extremely strong, the performance

of any of these estimation methods will be less than desirable.

While several trends were evident in the purely spatial cases of the simulation study, for

the cases of the simulation study incorporating a covariate parameter into the autologistic

model (Cases 4 through 6), no such trends were clearly evident. More specifically, there were

instances when GPL did achieve its intended compromise, and there where instances when

it did not. An analogous statement also applies to BGPL in these cases. Perhaps the only

trend in the results from these three cases was that the differences in the performances of

the estimates between the four methods tended to be negligible. I suspect that this is largely

attributable to the fact that the few parameter vectors considered in these cases were selected

so that the proportion of ones/zeros across a lattice was roughly 0.50/0.50. As was inferred

from the first three cases of the simulation study, differences in the methods are typically

more apparent in cases of stronger spatial dependence, where the proportion of ones across
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the lattice dominates the proportion of zeros. Hence, in the more “balanced” scenarios of Cases

4 through 6, the relative results of the estimates from the four methods are less consistent. In

order for more general conclusions to be made, a more exhaustive simulation study involving

covariate parameters will have to be conducted. Such a study will need to explore numerous

parameter vectors in which the strength of the spatial dependence, as well as the strength of

the covariate effect, are sequentially increased.

Before moving on to the results of the final case of the simulation study, it is of value to

briefly discuss the results of the fire covariate scenario of Case 4. In particular, as it is the only

scenario in Cases 4 through 6 in which the lattice exhibits very strong spatial dependence, and

as the fire ignition data from Oregon/Washington, from which this covariate was constructed,

are modeled in Chapter 7, it is of interest to note how the four estimation methods performed,

both in general and relative to each other. To that end, while all four methods did produce

average estimates that were “reasonable” (see Table A.6 in section A.3), especially as the

lattice size was increased, there were differences in their relative performances. Table 5.8

contains the relative (to PL) MAEs for the four estimation methods. From this table, it

is evident that GPL is only better than BGPL at estimating the spatial parameter for the

largest lattice size, but BGPL is better than GPL, especially for the smallest lattice sizes, at

estimating both the intercept and fire covariate parameters. Finally, it is also evident from

the table that MCMCML uniformly produces the best estimates for the two larger lattice

sizes, although PL is arguably competitive with MCMCML. Hence, to some extent, both

GPL and BGPL fail to achieve the intended compromise between PL and MCMCML in this

more extreme scenario.

For the final part of this section, we consider Case 7 of the simulation study in which the Ising

model is considered as its parameter vector approaches one of the critical values associated

with phase transition. It is in this case that the most pronounced trends and differences are

found between the four estimation methods. Before presenting these results, however, the set

of MCMCMLEs that were ultimately used for the following comparisons should be described.
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In particular, since the number of available estimates in a set of MCMCMLEs obtained from

any one type of reference point (MPLEs, MGPLEs, or MBGPLEs), as discussed in section

5.4, becomes extremely limited as the parameter vector nears phase transition, a hybrid set of

estimates, related to the heuristic suggested at the end of section 5.4, was employed. For each

of the 500 trials, the MCMCMLE obtained from the MPLE reference point was automatically

in this hybrid set if 1) the Gibbs sampler converged and produced an estimate and 2) that

estimate was not deemed an outlier, with respect to the MCMCMLEs with MPLE reference

points, by the 1.5×IQR rule. If an estimate was not produced or it was deemed an outlier,

then the corresponding MCMCMLE obtained from the MGPLE reference point was included

in the hybrid set if it satisfied conditions 1) and 2) above, where an outlier is now determined

with respect to the MCMCMLEs with MGPLE reference points. If an estimate was still either

not produced or deemed an outlier, then the corresponding MCMCMLE obtained from the

MBGPLE reference point was included in the hybrid set if it satisfied conditions 1) and 2)

above, where an outlier is now determined with respect to the MCMCMLEs with MBGPLE

reference points. If an estimate was still either not produced or deemed an outlier, then the

hybrid set failed to have an estimate for that given trial. In other words, if an estimate

satisfied (1) and (2) for at least one of the three reference values, it was included in the hybrid

set. Table 5.9 displays the proportion (out of 500) of trials, for each parameter vector, used

to compare the four estimation methods (PL, GPL, BGPL, and “hybrid”-MCMCML). From

the table, we see that in all but the (α, β) = (−3.2, 1.6) case, at least 97% of the trials were

used in the comparison. Furthermore, in the extreme case, (α, β) = (−3.2, 1.6), well over

80% of trials were used in the comparison, which is far larger than the roughly 35%, 50%,

and 70% that would have been used if only one set of MCMCMLEs had been used rather

than the hybrid set. Therefore, the clear advantage in this hybrid approach to MCMCML is

that it allows for a clearer comparison of the four estimation methods since the overwhelming

majority of trials are included in the evaluation.

With the description of how the MCMCMLEs were ultimately obtained for this comparison,
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the aforementioned trends and differences can finally be presented. To that end, the table

of sample means and corresponding standard errors for the estimates from each method are

given in Table A.7 in section A.3 of Appendix A, but the clear message conveyed by this

table is most succinctly expressed by the relative (to PL) MAE plots in Figure 5.8. From

these plots it is clear that in the scenarios corresponding to the parameter vectors that are

the furthest from the critical value (i.e. θ ≤ 0.6), PL appears to do as well as the other

three estimation methods and thus is preferred due to its simplicity of use. However, as

the parameter vector approaches the critical value (θ ≥ 0.8), GPL, BGPL, and MCMCML

are all better than PL, and the amount of improvement increases as θ increases. In fact, for

θ ≥ 1.4, all three methods have MAEs that are at most 0.80 of the corresponding MAEs for the

MPLEs. Furthermore, both GPL and BGPL have achieved the intended compromise between

PL and MCMCML, with the MGPLEs tending to perform slightly better than the MBGPLEs.

Finally, the MCMCMLEs are almost uniformly best among the four sets of estimates. Hence,

it appears that it is near phase transition that both GPL and BGPL not only achieve their

intended compromise, but show their most substantial improvement relative to PL.
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Table 5.7: Sample Means and Standard Errors of α, θh, and θv when the Model is FAhv3p
and the Methods of Estimation are PL, GPL for a Group Size of 9 (gs9), BGPL for a Block
Size of 4x4 (bs4), and MCMCML (26× 26, 50× 50, and 74× 74 Lattices)

26x26 50x50
Model Estimate PL gs9 bs4 MCMCML PL gs9 bs4 MCMCML

¯̂α -0.9924 -0.9767 -0.9856 -0.9715 -1.0079 -1.0035 -1.0040 -1.0037

ŜD(α̂) 0.3326 0.3236 0.3232 0.3257 0.1597 0.1541 0.1580 0.1545

FAhv3p
¯̂
θh 0.7086 0.6998 0.7117 0.6996 0.7056 0.7022 0.7106 0.7032

(−1.0, 0.7, 0.6) ŜD(θ̂h) 0.1864 0.1890 0.1963 0.1836 0.0912 0.0904 0.0944 0.0904
¯̂
θv 0.5930 0.5907 0.5840 0.5865 0.6029 0.6025 0.5938 0.6020

ŜD(θ̂v) 0.1931 0.1914 0.2114 0.1901 0.0904 0.0905 0.0973 0.0895
¯̂α -0.9829 -0.9520 -0.9776 -0.9660 -0.9907 -0.9913 -0.9927 -0.9875

ŜD(α̂) 0.3483 0.3425 0.3430 0.3399 0.1718 0.1679 0.1721 0.1706

FAhv3p
¯̂
θh 0.6814 0.6691 0.6824 0.6757 0.6977 0.6980 0.6999 0.6978

(−1.0, 0.7, 0.7) ŜD(θ̂h) 0.1921 0.1943 0.2048 0.1900 0.0927 0.0934 0.0974 0.0942
¯̂
θv 0.7080 0.6978 0.7033 0.7023 0.6957 0.6957 0.6947 0.6932

ŜD(θ̂v) 0.1927 0.1895 0.2144 0.1931 0.0963 0.0949 0.1069 0.0949
¯̂α -0.9839 -0.9547 -0.9821 -0.9525 -1.0025 -0.9975 -1.0021 -0.9938

ŜD(α̂) 0.4371 0.4312 0.4265 0.4377 0.2027 0.2013 0.1989 0.2004

FAhv3p
¯̂
θh 0.6894 0.6833 0.6879 0.6841 0.6987 0.6981 0.6959 0.6979

(−1.0, 0.7, 0.8) ŜD(θ̂h) 0.2259 0.2271 0.2404 0.2317 0.1080 0.1088 0.1129 0.1061
¯̂
θv 0.8068 0.7942 0.8085 0.7914 0.8053 0.8019 0.8086 0.7998

ŜD(θ̂v) 0.2157 0.2119 0.2344 0.2169 0.1023 0.1012 0.1106 0.1027
¯̂α -0.9705 -0.9147 -0.9653 -0.9282 -0.9922 -0.9792 -0.9932 -0.9735

ŜD(α̂) 0.5177 0.5177 0.5084 0.5112 0.2554 0.2394 0.2545 0.2430

FAhv3p
¯̂
θh 0.6941 0.6743 0.6889 0.6806 0.6979 0.6935 0.6887 0.6910

(−1.0, 0.7, 0.9) ŜD(θ̂h) 0.2469 0.2526 0.2607 0.2487 0.1181 0.1153 0.1225 0.1179
¯̂
θv 0.8957 0.8811 0.8994 0.8832 0.8997 0.8954 0.9111 0.8943

ŜD(θ̂v) 0.2426 0.2427 0.2624 0.2435 0.1221 0.1177 0.1298 0.1198
¯̂α -0.9365 -0.8860 -0.9331 -0.8740 -0.9905 -0.9741 -0.9972 -0.9758

ŜD(α̂) 0.6315 0.6223 0.6307 0.6413 0.2996 0.2841 0.2973 0.2846

FAhv3p
¯̂
θh 0.6827 0.6645 0.6683 0.6721 0.7019 0.6951 0.6926 0.6987

(−1.0, 0.7, 1.0) ŜD(θ̂h) 0.2808 0.2790 0.2959 0.2831 0.1480 0.1457 0.1547 0.1510
¯̂
θv 0.9912 0.9792 1.0075 0.9629 0.9943 0.9911 1.0102 0.9888

ŜD(θ̂v) 0.2996 0.3043 0.3263 0.3120 0.1432 0.1409 0.1499 0.1408
¯̂α -0.8578 -0.7929 -0.8532 -0.8024 -0.9743 -0.9516 -0.9783 -0.9547

ŜD(α̂) 0.7355 0.7299 0.7294 0.7601 0.3697 0.3564 0.3678 0.3501

FAhv3p
¯̂
θh 0.6466 0.6344 0.6317 0.6251 0.6876 0.6798 0.6753 0.6793

(−1.0, 0.7, 1.1) ŜD(θ̂h) 0.3629 0.3550 0.3723 0.3731 0.1652 0.1602 0.1692 0.1628
¯̂
θv 1.0825 1.0589 1.0991 1.0738 1.0998 1.0941 1.1170 1.0966

ŜD(θ̂v) 0.3310 0.3368 0.3439 0.3471 0.1610 0.1621 0.1664 0.1568
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Table 5.7 (continued): Sample Means and Standard Errors of α, θh, and θv when the Model
is FAhv3p and the Methods of Estimation are PL, GPL for a Group Size of 9 (gs9), BGPL
for a Block Size of 4x4 (bs4), and MCMCML (26× 26, 50× 50, and 74× 74 Lattices)

74x74
Model Estimate PL gs9 bs4 MCMCML

¯̂α -1.0017 -1.0005 -0.9998 -0.9993

ŜD(α̂) 0.0984 0.0967 0.0978 0.0959

FAhv3p
¯̂
θh 0.7028 0.7028 0.7070 0.7026

(−1.0, 0.7, 0.6) ŜD(θ̂h) 0.0583 0.0582 0.0603 0.0588
¯̂
θv 0.5991 0.5983 0.5925 0.5974

ŜD(θ̂v) 0.0608 0.0605 0.0651 0.0608
¯̂α -0.9956 -0.9958 -0.9949 -0.9947

ŜD(α̂) 0.1137 0.1096 0.1126 0.1096

FAhv3p
¯̂
θh 0.6983 0.6992 0.6989 0.6982

(−1.0, 0.7, 0.7) ŜD(θ̂h) 0.0642 0.0638 0.0684 0.0640
¯̂
θv 0.6984 0.6978 0.6974 0.6979

ŜD(θ̂v) 0.0666 0.0645 0.0736 0.0643
¯̂α -1.0018 -0.9972 -1.0037 -0.9944

ŜD(α̂) 0.1413 0.1339 0.1407 0.1363

FAhv3p
¯̂
θh 0.6976 0.6974 0.6944 0.6964

(−1.0, 0.7, 0.8) ŜD(θ̂h) 0.0728 0.0725 0.0759 0.0728
¯̂
θv 0.8047 0.8016 0.8099 0.8005

ŜD(θ̂v) 0.0758 0.0727 0.0809 0.0731
¯̂α -0.9925 -0.9861 -0.9956 -0.9873

ŜD(α̂) 0.1692 0.1648 0.1674 0.1619

FAhv3p
¯̂
θh 0.6993 0.6963 0.6936 0.6966

(−1.0, 0.7, 0.9) ŜD(θ̂h) 0.0801 0.0799 0.0817 0.0785
¯̂
θv 0.8964 0.8954 0.9054 0.8958

ŜD(θ̂v) 0.0795 0.0789 0.0845 0.0797
¯̂α -0.9985 -0.9877 -1.0028 -0.9875

ŜD(α̂) 0.2028 0.1908 0.2008 0.1959

FAhv3p
¯̂
θh 0.7020 0.6977 0.6937 0.6978

(−1.0, 0.7, 1.0) ŜD(θ̂h) 0.0970 0.0942 0.0993 0.0955
¯̂
θv 0.9979 0.9953 1.0105 0.9954

ŜD(θ̂v) 0.0919 0.0895 0.0929 0.0906
¯̂α -0.9864 -0.9764 -0.9900 -0.9756

ŜD(α̂) 0.2403 0.2329 0.2397 0.2344

FAhv3p
¯̂
θh 0.6909 0.6878 0.6834 0.6861

(−1.0, 0.7, 1.1) ŜD(θ̂h) 0.1078 0.1055 0.1085 0.1071
¯̂
θv 1.1029 1.1004 1.1143 1.1014

ŜD(θ̂v) 0.1071 0.1042 0.1096 0.1046
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Table 5.8: Relative MAEs of α, θ, and β (Fire Covariate) when the Model is FI3p and the
Methods of Estimation are PL, GPL for a Group Size of 9 (gs9), BGPL for a Block Size of
4x4 (bs4), and MCMCML

26x26
Model Estimate PL gs9 bs4 MCMCML

FI3p Rel MAE(α̂) 1.0000 1.0836 0.9846 1.0102

(-8.6,0.8,0.065) Rel MAE(θ̂) 1.0000 1.0245 0.9405 0.9443

Rel MAE(β̂) 1.0000 1.0757 0.9836 1.0089

50x50
Model Estimate PL gs9 bs4 MCMCML

FI3p Rel MAE(α̂) 1.0000 1.0269 1.0003 0.9970

(-8.6,0.8,0.065) Rel MAE(θ̂) 1.0000 0.9816 0.9772 0.9675

Rel MAE(β̂) 1.0000 1.0278 1.0017 0.9993

74x74
Model Estimate PL gs9 bs4 MCMCML

FI3p Rel MAE(α̂) 1.0000 1.0201 1.0063 0.9901

(-8.6,0.8,0.065) Rel MAE(θ̂) 1.0000 0.9489 0.9880 0.9343

Rel MAE(β̂) 1.0000 1.0147 1.0005 0.9920

Table 5.9: Proportion of Trials (out of 500) Used in Comparisons of MPLEs, MGPLEs,
MBGPLEs, and MCMCMLEs when the Model is an Ising Model Near Phase Transition

Model 26× 26 50× 50 74× 74

Ising (-0.4,0.2) 0.994 0.986 0.996

Ising (-0.8,0.4) 0.996 0.984 0.986

Ising (-1.2,0.6) 0.990 0.990 0.988

Ising (-1.6,0.8) 0.992 0.984 0.990

Ising (-2.0,1.0) 0.990 0.990 0.990

Ising (-2.4,1.2) 0.986 0.994 0.994

Ising (-2.8,1.4) 0.976 0.998 0.988

Ising (-3.2,1.6) 0.828 0.882 0.848
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Figure 5.6: Relative MAEs of α, θh, and θv when the Model is FAhv3p and the Methods of
Estimation are PL, GPL for a Group Size of 9 (gs9), BGPL for a Block Size of 4x4 (bs4), and
MCMCML
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Figure 5.6 (continued): Relative MAEs of α, θh, and θv when the Model is FAhv3p and the
Methods of Estimation are PL, GPL for a Group Size of 9 (gs9), BGPL for a Block Size of
4x4 (bs4), and MCMCML
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Figure 5.7: Relative MAEs of α and θ when the Model is FI2p and the Methods of Estimation
are PL, GPL for a Group Size of 9 (gs9), BGPL for a Block Size of 4x4 (bs4), and MCMCML

● ● ● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.9
5

1.0
0

1.0
5

1.1
0

Spatial Dependence

Re
lat

ive
 M

AE
(a) α Relative MAE (74x74)

● ● ● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.9
5

1.0
0

1.0
5

1.1
0

Spatial Dependence

Re
lat

ive
 M

AE

(b) θ Relative MAE (74x74)

● PL
gs9
bs4
MCMCML

5.6 Concluding Remarks

With respect to the first question posed at the beginning of this chapter, direct comparisons of

GPL and BGPL through the seven cases of this simulation study clearly revealed that GPL is

better than BGPL for purely spatial autologistic models with an intercept term. However, for

autologistic models that incorporate a covariate term, this simulation study also revealed that

BGPL tended to outperform GPL with respect to estimating the covariate parameter (at least

for the three cases considered), but not the spatial parameters or the intercept parameter.

Hence, we are left with a lingering question: Does this caveat hold for autologistic models with

more than one covariate parameter? In other words, will BGPL continue to outperform GPL

in estimating all of the covariate parameters, but none of the spatial parameters or intercept

parameter? Such a question was not explored in this dissertation, but could be the focus of

further simulation studies.

As for the second question posed at the beginning of this chapter, direct comparisons of the

MCMCMLEs produced under various reference points for autologistic models whose parame-

ters are notoriously difficult to estimate revealed a wide spectrum of conclusions. For models
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Figure 5.8: Relative MAEs of α and θ when the Model is an Ising Model Near Phase Transition
and the Methods of Estimation are PL, GPL for a Group Size of 9 (gs9), BGPL for a Block
Size of 4x4 (bs4), and MCMCML
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corresponding to extremely strong spatial correlation, virtually no differences were found to

exist between the various MCMCMLEs. However, for models near phase transition, incon-

sistencies were found to exist in the MCMCMLEs produced from different reference points.

Analysis of these inconsistencies suggested, without convincing evidence, that perhaps the

MGPLEs, and to a lesser extent the MBGPLEs, served as better reference points than the

corresponding MPLEs. While no conclusive results to this end were obtained, further analy-

sis did suggest a heuristic approach to improving MCMCML for use with autologistic models

near phase transition. In particular, if all three reference points are separately implemented,

then there is a reasonably high probability of obtaining a useful parameter estimate. Thus,

this heuristic procedure offers an approach to obtaining, with relatively high probability, rea-

sonable MCMCMLEs in situations were the method is known to struggle. Such a procedure is

certainly an improvement over using MCMCML with only the MPLEs as the reference point.

Finally, with respect to the last question posed at the beginning of this chapter, comparisons

of the relative performances of the four estimation methods revealed some interesting results.

In particular, for the purely spatial autologistic model simulations, BGPL generally did not

achieve the intended compromise between PL and MCMCML and it was in fact often the

worst of the four methods. On the other hand, GPL either achieved the intended compromise

between PL and MCMCML, or its performance was competitive with MCMCML and PL

when these two methods were negligibly different. In the simulations where a covariate term

was included in the autologistic model, neither GPL nor BGPL consistently succeeded or

failed in achieving the intended compromise. Furthermore, in these cases the four methods

generally produced estimates that were negligibly different when precision, bias, and accuracy

were compared. Ultimately, these cases revealed that a more extensive simulation study

involving covariates is needed to more conclusively establish the relative performances of the

four methods. Finally, for the simulations dealing with the Ising model as its parameter

vector nears the critical value associated with phase transition, the most pronounced results

were obtained. Both GPL and BGPL achieved the intended compromise between PL and
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MCMCML, with GPL consistently performing slightly better than BGPL. Additionally, it

was also clearly evident that the closer the Ising model moves toward phase transition, the

greater the improvement GPL, BGPL, and MCMCML all have relative to PL. Such results for

the MGPLEs of Ising model parameters near phase transition are consistent with the results

obtained from the simulation studies conducted by Huang and Ogata ([22]) and Sherman et

al. ([32]).



Chapter 6

Spatio-Temporal Autologistic Model

6.1 Introduction

The preceding chapters have primarily focused on binary Markov random fields corresponding

to, or observed at, a single instance in time. Often, however, such binary MRFs are repeatedly

observed at a discrete number of equally spaced time points. In these situations, the sites of

such a space-time MRF may exhibit both spatial and temporal dependencies; i.e. we expect

sites that are relatively close together in both space and time to have more similar response

values than sites that are relatively far apart in space and/or time. Furthermore, although

it is assumed otherwise for this dissertation, it is even likely that the strength and/or type

of spatial dependency may depend on the temporal location of the MRF, and vice versa. In

other words, the effects of space and time on the binary response variables of the MRF may

interact.

Fortunately, the purely spatial autologistic model has an intuitive extension into the space-

time domain, but this spatio-temporal autologistic model still possesses an intractable normal-

izing constant that makes exact maximum likelihood methods either impractical or impossible.

176
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Thus, the primary objective of this chapter is to present PL, MCMCML, GPL, and BGPL

under the space-time paradigm, rather than the purely spatial paradigm of Chapter 3, so

that their implementation with the spatio-temporal autologistic model is tractable. It should

be noted that while (1) PL’s use in the space-time domain is already established ([37]) and

(2) MCMCML’s initial theoretical development naturally permits its use in the space-time

domain ([15]), the development of GPL and BGPL in the space-time domain, as presented in

this chapter, is novel. More specifically, both methods were originally proposed in only the

purely spatial domain, as presented in sections 3.4 and 3.5, and as far as I am aware, their

use in the (three-dimensional) space-time domain, to date, has been neither developed nor

implemented in the literature.

Let us pause for a moment here and note several things. First, both in section 1.5 and

the preceding paragraphs of this chapter, the term space-time MRF has been used as if its

meaning were intuitively understood. This is because the definition given for a MRF in

Chapter 2 (Definition 2.3), under a purely spatial domain paradigm, also holds for a space-

time MRF, except that now the neighborhood structure is three-dimensional, rather than two-

dimensional. More will be said about such spatio-temporal neighborhood structures further

below. Second, as discussed in section 1.5, we will assume, based on the data set being

modeled in Chapter 7, that (1) the type of temporal dependency exhibited by the space-time

MRF adheres to a non-absorbing state and (2) the temporal neighborhood structure of the

space-time MRF is autoregressive (with past-lags only) in nature. Recall that the second

assumption stipulates that only values of the response variable observed in the past can be

temporally conditioned on to help model the current value of the response variable, and, thus,

future values of the response variable cannot be temporally conditioned on to help model the

current value of the response variable. Third and finally, we will assume that the parameters

used in modeling the space-time MRF are separable and space and time invariant. Recall that

while the separability of space and time means that their respective effects on the response

variable do not interact, the invariance of space and time means that their respective effects
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are the same across all spatial locations and all time steps (i.e. the process is stationary in

space and time).

As the notation used throughout this chapter is predominantly in accordance with the

notation of Chapter 3, in general only the notation that is unique to this chapter, or altered

from Chapter 3, will be formally established. Furthermore, when considering space-time

MRFs, edge effects exist not only in space, but also in time. The spatial edge effects can

still be handled as in previous chapters of this dissertation, and the resulting temporal edge

effects can be handled in a manner analogous to the spatial edge effects. For instance, a

guard-region can be employed in which all of the observations from the first t (where the

value of t depends on the temporal neighborhood structure) time steps are treated as fixed,

or a toroidal temporal edge adjustment can be employed in which the initial time steps have

the later time steps as temporal neighbors. For ease of presentation, edge effects (both spatial

and temporal) will be ignored while presenting/developing the space-time extensions of the

four estimation methods within this chapter.

The remainder of this chapter is divided into six sections. In section 6.2, the two-dimensional

spatial MRF of Chapter 3 is generalized to a three-dimensional space-time MRF. Additionally,

the spatio-temporal autologistic model is formally presented. In sections 6.3-6.6, the respective

methods of PL, MCMCML, GPL, and BGPL are presented/developed and then exemplified

with the spatio-temporal autologistic model. Finally, in section 6.7, the results of a small-

scale simulation study evaluating and comparing the performances of these methods in the

space-time domain for the autologistic model are presented.

6.2 The Spatio-Temporal Autologistic Model

As in Chapter 3, let D = {(i, j, t, . . .) : i = 1, 2, . . . ; j = 1, 2, . . . ; t = 1, 2, . . . ; . . .} be an

infinite dimensional square lattice, where (i, j, t, . . .) denotes site (i, j, t, . . .) on the lattice.
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Unlike in Chapter 3, however, S will now denote a finite three-dimensional (rather than two-

dimensional) subset of D. To facilitate a more tractable development, S will be referred to as

a three-dimensional array, rather than lattice, with its three dimensions corresponding to the

number of rows, columns, and lattices, respectively. Hence, S = {(i, j, t) : i = 1, . . . ,mr; j =

1, . . . ,mc; t = 1, . . . ,mT } ⊂ D, where mr is the number of rows, mc is the number of columns,

and mT is the number of lattices. Let St = {(i, j, t) : i = 1, . . . ,mr; j = 1, . . . ,mc} denote

the tth lattice of S (or the lattice of S at time t). For notational simplicity, we will again let

n ≡ mr×mc, and we will numerically label sites of St from top to bottom within its columns,

and from left to right across its columns, ∀ t = 1, . . . ,mT . Hence, St = {(i, t) : i = 1, . . . , n},

where (i, t) denotes site i of the tth lattice of the array.

Let Z = (Z ′1,Z
′
2, . . . ,Z

′
mT

)′ again be a vector of discrete random variables on S, with

joint support Ωn·mT , where Z is distributed according to a Markov random field (MRF)

and Z ′t = (Z1,t, Z2,t, . . . , Zn,t) ∀ t = 1, . . . ,mT . The joint density (i.e. likelihood), or MRF

distribution, of Z has the same functional form as that of (3.1), if no covariates are in the

model, and of (3.2) if covariates are in the model. In particular, if covariates are in the model,

then the likelihood function has the following general form:

L(ψ) = P(Z = z|X;ψ)

=
exp{T ′(z;X) ·ψ}∑

y∈Ωn·mT exp{T ′(y;X) ·ψ}

=
exp{T ′(z;X) ·ψ}

c(ψ)
, (6.1)

where ψ = (α, θ1 . . . , θp−1, β1, . . . , βk, τ1, . . . , τq)
′ is the vector of parameters, with parame-

ter space Ψ, T (z) = (T1(z), . . . , Tp+q+k(z))′ is the corresponding vector of jointly sufficient

statistics (determined by the particular realization z), and c(ψ) is the intractable normalizing

constant. Recall that α is the spatial trend parameter, θ1, . . . , θp−1 are the spatial depen-

dence parameters, and β1, . . . , βk are the covariate parameters. The τ1, . . . , τq terms are used

to denote the q temporal dependence parameters.
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The corresponding conditional probability density for Zi,t, given {Zj,t′ : (j, t′) 6= (i, t)}, is

analogous to (3.3), if no covariates are in the model, and to (3.4) if covariates are in the model.

In particular, using spatial and temporal Markovian properties, the corresponding conditional

probability density for (6.1), ∀ (i, t) ∈ S, can be written:

P(Zi,t = zi,t|{zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t},xi,t;ψ) =

exp{t′(zi,t, {zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t},xi,t) ·ψ}∑
yi,t∈Ωi,t

exp{t′(yi,t, {yj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t},xi,t) ·ψ}
, (6.2)

where ψ is the same parameter vector as in (6.1) and t(zi,t, {zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t},xi,t) =

(t1(zi,t, {zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t},xi,t), . . . , tp+q+k(zi,t, {zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t},xi,t)′. As in

all previous chapters, Ni,t denotes the set of “spatial” (within a lattice subset St of S) neighbors

of site (i, t), but now Γi,t, as introduced in section 1.5, denotes the set of “temporal” (between

lattice subsets St and St′ , St′′ , . . . of S) neighbors of site (i, t). Technically, distinguishing

between spatial versus temporal neighbors of a site is unnecessary since their respective effects

can be separated within the MRF model, as in (6.2), when spatio-temporal anisotropy is

exhibited across the array. Note that spatio-temporal anisotropy is analogous to the concept

of spatial anisotropy and simply means that the effect of time on the response variable is

different than the effect, or one or more of the effects under spatial anisotropy, of space. The

notational distinction between spatial and temporal neighbors made above, and throughout

the remainder of this dissertation, is employed only because it allows for a more tractable

presentation. Finally, recall that xi,t = (x1,i,t, x2,i,t, . . . , xk,i,t)
′ denotes the vector of k covariate

values for site (i, t).

As we want to model the fire ignitions data from Oregon and Washington in Chapter 7,

the spatio-temporal autologistic model we will present below and use to exemplify each of

the estimation methods throughout the remainder of the chapter, will be the model that is

ultimately fit to these data in Chapter 7. In particular, for illustrative purposes, assume we
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are working with a spatio-temporal autologistic model that has four parameters, including

an intercept parameter, a first-order isotropic spatial parameter, a first-order autoregressive

temporal parameter, and a single covariate parameter. Note that a first-order autoregressive

temporal parameter means that site i at time t has only one temporal neighbor, which is

site i at time t − 1; i.e. Γi,t = {(i, t − 1)} ∀ (i, t) ∈ S. The likelihood function for such a

spatio-temporal autologistic model has the following form:

L(ψ) = P(Z = z|X;ψ)

=

exp

α
mT∑
t=1

n∑
i=1

zi,t +
1

2
θ

mT∑
t=1

n∑
i=1

zi,t
∑

(j,t′)∈Ni,t

zj,t′ + β

mT∑
t=1

n∑
i=1

zi,txi,t + τ

mT∑
t=1

n∑
i=1

zi,t
∑

(j,t′)∈Γi,t

zj,t′


∑

y∈Ωn·mT

exp

α
mT∑
t=1

n∑
i=1

yi,t +
1

2
θ

mT∑
t=1

n∑
i=1

yi,t
∑

(j,t′)∈Ni,t

yj,t′ + β

mT∑
t=1

n∑
i=1

yi,txi,t + τ

mT∑
t=1

n∑
i=1

yi,t
∑

(j,t′)∈Γi,t

yj,t′


, (6.3)

for all z ∈ Ωn·mT = {0, 1}n·mT . The corresponding conditional probability form of such

a spatio-temporal autologistic model, by the spatial and temporal Markovian properties, is

then

P(Zi,t = zi,t|{zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t},xi,t;ψ) =

=

exp

αzi,t + θzi,t
∑

(j,t′)∈Ni,t

zj,t′ + βzi,txi,t + τzi,t
∑

(j,t′)∈Γi,t

zj,t′


1 + exp

α+ θ
∑

(j,t′)∈Ni,t

zj,t′ + βxi,t + τ
∑

(j,t′)∈Γi,t

zj,t′


, (6.4)

for all zi,t ∈ Ω = {0, 1}, where xi,t = xi,t since there is only one covariate term in the model in

our case. Observe that (6.4) strongly resembles the two-way anisotropic spatial autologistic

model given by (2.41), and, thus, θ and τ communicate spatio-temporal anisotropy across
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the array in a manner analogous to the way that θv and θh communicate spatial anisotropy

across the lattice. This emphasizes the point made previously that the distinction between

temporal and spatial neighbors is really only necessary for clarity of presentation. Finally,

note that the functional form of (6.4) still bears a strong resemblance to that of the standard

logistic model that is commonly employed with independent binary random variables. In fact,

if the sites of the array were spatially and temporally independent, i.e. θ = 0 and τ = 0,

then (6.4) reduces to a simple intercept-only logistic model. In general, the functional form of

spatio-temporal autologistic models, as with purely spatial autologistic models, is identical to

that of the logistic model, except that it also conditions on neighboring values, both spatially

and temporally, of the binary response variable.

6.3 Spatio-Temporal PL

Employing pseudolikelihood in the space-time domain is straightforward, and the development

presented here is analogous to that suggested by Zhu et al. ([37]). For the purely spatial MRFs

of Chapter 3, the PL function was defined as the product of all n site conditional distributions.

Hence, in the space-time domain, the PL function is still formed by taking the product over

all of the site conditional distributions, except now there are n ·mT , rather than just n, of

them. In other words, the pseudolikelihood function, assuming covariates are in the model, is

defined as follows in the space-time domain:

PL(ψ|z,X) =

mT∏
t=1

n∏
i=1

P(Zi,t = zi,t|{zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t},xi,t;ψ), (6.5)

z ∈ Ωn·mT ,ψ ∈ Ψ.

The logarithm of (6.5) is then numerically maximized with respect to ψ to obtain the

corresponding maximum pseudolikelihood estimate, ψ̂PL, of ψ. As in the purely spatial

case, the numerical optimization can be carried out using any statistical software that has a
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generalized linear models package, such as R. However, the corresponding asymptotic standard

errors obtained from such optimization are once again invalid as the observations over the array

are not independent. As before, a resampling method such as parametric bootstrapping may

be used to obtain valid standard errors for ψ̂PL. As mentioned in section 3.2, this technique

will be presented in Chapter 7 when PL, as well as the other three estimation methods

discussed in this current chapter, are applied to the fire data from Oregon and Washington.

The computational expense of employing PL to obtain parameter estimates in the space-time

domain is still negligible, although the expense in obtaining their corresponding standard

errors with this additional dimension can be relatively substantial if mT is large. Finally, note

that the strong consistency of the MPLEs still applies here in the space-time domain as a

result of the general nature under which this property was proven by Geman and Graffigne

([13]).

To provide a concrete example of (6.5) for the autologistic model, once again consider

the four parameter spatio-temporal autologistic model with conditional distribution given by

(6.4). In this context, the logarithm of the PL function is the following:

log {PL(ψ|z,X)} =

mT∑
t=1

n∑
i=1

αzi,t + θzi,t
∑

(j,t′)∈Ni,t

zj,t′ + βzi,txi,t + τzi,t
∑

(j,t′)∈Γi,t

zj,t′

−
mT∑
t=1

n∑
i=1

log

1 + exp

α+ θ
∑

(j,t′)∈Ni,t

zj,t′ + βxi,t + τ
∑

(j,t′)∈Γi,t

zj,t′


 . (6.6)

The MPLEs, ψ̂PL = (α̂PL, θ̂PL, β̂PL, τ̂PL)′, are then obtained by numerically maximizing (6.6)

with respect to ψ, and the corresponding standard error can be obtained using a parametric

bootstrap via the Gibbs sampler.
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6.4 Spatio-Temporal MCMCML

Employing Markov chain Monte Carlo maximum likelihood in the space-time domain is also

straightforward, and the development presented here is derived from Geyer and Thompson’s

([15]) canonical paper on MCMCML. In particular, a ratio of normalizing constants is used,

in a fashion analogous to that described in section 3.3, to obtain a MCMC approximate log

likelihood. The general functional form of this MCMC approximate log likelihood is identical

to (3.15) given in section 3.3, namely:

lm,zobs
(ψ) = log

{
hψ(zobs)

}
− log

{
1

m

m∑
r=1

hψ(Z(r))

hφ(Z(r))

}
, (6.7)

where hψ(·) is now just the un-normalized spatio-temporal joint likelihood and φ is the

reference point for the Gibbs sampler. As in the purely spatial case, we expect that using the

MPLEs for φ should generally yield satisfactory results. Recall that the m subscript on the

lm,zobs
(ψ) indicates the amount of Monte Carlo effort, zobs indicates the array realization of

the MRF that was actually observed, and Z(r) is the rth array realization of the Markov chain

generated using the Gibbs sampler, whose use in the space-time domain is addressed further

below.

The MCMCMLEs, ψ̂MC , of ψ are obtained by numerically maximizing (6.7) with respect

to ψ, while the corresponding standard errors are again obtained by evaluating the inverted

Hessian of lm,zobs
(ψ) at ψ̂MC . The computational expense of employing MCMCML in the

space-time domain is, as would be expected, substantial relative to PL, especially if mT is

large. This fact is once again the motivation for alternative methods, such as GPL and BGPL,

which aim to strike a computational, as well as a performance-based, compromise between PL

and MCMCML. Finally, note that, as with PL, the strong consistency of the MCMCMLEs

still applies here in the space-time domain as a result of the general nature under which this

property was proven by Geyer and Thompson ([15]).
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The use of the Gibbs sampler in the space-time domain is entirely analogous to its use in

the purely spatial domain, as presented in section 3.3.2. Some important things to note in

the space-time domain, however, are (1) the conditional probability densities that are now

employed are given by (6.2), assuming covariates are in the model, and (2) a sweep now

constitutes a realization being generated for each of the n · mT sites of the array. Finally,

note that the MRF realizations generated through the Gibbs sampler are now mr ×mc ×mt

arrays, rather than mr ×mc lattices as in the purely spatial setting.

To provide a concrete example of (6.7) for the autologistic model, once again consider the

four parameter spatio-temporal autologistic model with conditional distribution given by (6.4).

In this context, with the MPLEs serving as the reference point, the MCMC approximate log

likelihood function is the following:

lm,zobs
(ψ) =

− log


1

m

m∑
r=1

exp

α
mT∑
t=1

n∑
i=1

z
(r)
i,t +

1

2
θ

mT∑
t=1

n∑
i=1

z
(r)
i,t

∑
(j,t′)∈Ni,t

z
(r)
j,t′ + β

mT∑
t=1

n∑
i=1

z
(r)
i,t xi,t + τ

mT∑
t=1

n∑
i=1

z
(r)
i,t

∑
(j,t′)∈Γi,t

z
(r)
j,t′


exp

α̂PL

mT∑
t=1

n∑
i=1

z
(r)
i,t +

1

2
θ̂PL

mT∑
t=1

n∑
i=1

z
(r)
i,t

∑
(j,t′)∈Ni,t

z
(r)
j,t′ + β̂PL

mT∑
t=1

n∑
i=1

z
(r)
i,t xi,t + τ̂PL

mT∑
t=1

n∑
i=1

z
(r)
i,t

∑
(j,t′)∈Γi,t

z
(r)
j,t′




+ α

mT∑
t=1

n∑
i=1

zobsi,t +
1

2
θ

mT∑
t=1

n∑
i=1

zobsi,t

∑
(j,t′)∈Ni,t

zobsj,t′ + β

mT∑
t=1

n∑
i=1

zobsi,t xi,t + τ

mT∑
t=1

n∑
i=1

zobsi,t

∑
(j,t′)∈Γi,t

zobsj,t′ , (6.8)

where zobs = (z′obs,1, . . . ,z
′
obs,mT

)′ with z′obs,t = (zobs1,t , . . . , z
obs
n,t ), and z(r) = (z′(r)1, . . . ,z

′
(r)mt

)′

with z′(r)t = (z
(r)
1,t , . . . , z

(r)
n,t). The Gibbs sampler, with conditional distribution given by (6.4),

is used to generate the m Markov chain space-time realizations z(r), r = 1, . . . ,m. The

MCMCMLEs, ψ̂MC = (α̂MC , θ̂MC , β̂MC , τ̂MC)′, are obtained by numerically maximizing (6.8)

with respect to ψ = (α, θ, β, τ)′. Finally, the standard errors corresponding to ψ̂MC are

obtained by evaluating the inverse of the Hessian of (6.8) at ψ̂MC , i.e. by computing the

observed Fisher information matrix.
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6.5 Spatio-Temporal GPL

The generalization of generalized pseudolikelihood for use in the space-time domain, while not

terribly difficult, is novel. The critical component in making this generalization is establishing

the group structure. In the purely spatial domain, there is a group corresponding to each site of

the lattice and the group structure implemented (e.g. the cross structure) is the same for every

group. These two characteristics of groups in the spatial domain will be analogously extended

into the space-time domain. However, in the space-time domain, groups can now consist of

not only multiple sites of the array from the same time point, but also of sites of the array

at previous time points. Thus, if we let g(i, t) denote the group of sites associated with site

(i, t) ∈ S, then a reasonable group structure might consist of site (i, t), its spatial neighbors and

its temporal neighbors, i.e. g(i, t) = {{(i, t)} ∪Ni,t ∪ Γi,t}. For example, Figure 6.1 illustrates

a possible group structure for the spatio-temporal autologistic model corresponding to (6.3),

where g(i, t) consists of site (i, t), its four nearest neighbors at time t, and site (i, t − 1) (i.e.

site i at the previous time point, t−1). The set of boundary neighbors of a group consists of all

sites that are not themselves members of the group, but are spatial and/or temporal neighbors

of at least one site belonging to the group. For instance, in Figure 6.1, sites B1, . . . , B13 are

the boundary neighbors of the group. Notice, for example, that site B13 is only a temporal

neighbor of group site X5, site B2 is only a spatial neighbor for group sites X1 and X2, and

site B9 is both a temporal neighbor of group site X1 and a spatial neighbor of group site X5.

With the general notion of a group in the space-time domain established, the corresponding

group joint likelihood functions and generalized pseudolikelihood function, which are analo-

gous to their counterparts (3.21) and (3.22) presented in section 3.4, can now be defined. In

particular, ∀ (i, t) ∈ S, the group joint likelihood function for the (i, t)th group, assuming no
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Figure 6.1: Space-Time Domain Group Structure Example

Time t

X0X1 X4

X3

X2

B1

B2

B3

B4

B5

B6

B7

B8

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

Time t-1

X5B9

B10

B11

B12

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

Time t-2

B13

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

A group, its boundary neighbors, and the corresponding external sites on a 7 × 7 × 3 array subset of S under a first-
order isotropic spatial structure and a first-order autoregressive temporal structure. Moving left to right, the three lattices
correspond to times t, t − 1, and t − 2, respectively. Assume that sites X1, X2, X3, X4, and X5 are the additional group
members, as well as the spatial and temporal neighbors, corresponding to site X0. Then the 13 B sites represent the fixed
spatial and/or temporal boundary neighbors of the group and the 128 e sites represent the external sites of the group, i.e.,
the sites that are conditionally independent of the group sites under the spatial and temporal Markov assumptions.

covariates are in the model, still has the following general form:

GLi,t(ψ) =

 exp{T ′
(
zg(i,t), z

g(i,t)
)
·ψ}∑

y∈Ω|g(i,t)| exp{T ′
(
yg(i,t),y

g(i,t)
)
·ψ}


1

|g(i,t)|

, (6.9)

where |g(i, t)| is the number of sites belonging to group (i, t). Recall from section 3.4.1 that the

sufficient statistics for a group joint likelihood must distinguish between a (spatial) neighbor

relation between two sites of the group and a (spatial) neighbor relation between one site of

the group and one boundary neighbor site of the group. No such distinction is needed for

temporal neighbor relationships since they are naturally ordered in time. More specifically,

because the space-time paradigm implemented for this dissertation assumes that the temporal

neighbors of any site, (i, t), of the array can only belong to an “earlier” lattice of the array,

i.e. (j, t′) ∈ Γi,t ⇒ t′ ≤ (t − 1), the temporal relations between two sites (in different time

steps) of the group will not be “double-counted” relative to the temporal relations between a

site (at one time step) of the group and a boundary neighbor site (at a different time step) of
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the group. For example, in Figure 6.1 the temporal relation between sites X0 and X5 is not

double-counted relative to the other temporal relations of the group, such as those between

sites X1 and B9 or sites X5 and B13.

The generalized pseudolikelihood function, again assuming no covariates are in the model,

is then just the product of all group joint likelihood functions from (6.9):

GPL(ψ) =

mT∏
t=1

n∏
i=1

 exp{T ′
(
zg(i,t), z

g(i,t)
)
·ψ}∑

y∈Ω|g(i,t)| exp{T ′
(
yg(i,t),y

g(i,t)
)
·ψ}


1

|g(i,t)|

. (6.10)

Note that, just as in the purely spatial domain, if g(i, t) = {(i, t)} ∀ (i, t) ∈ S, then GPL

reduces to PL, and if g(i, t) = S ∀ (i, t) ∈ S, then GPL is ultimately maximum likelihood.

The MGPLEs of ψ, ψ̂GPL, are then obtained by numerically maximizing the logarithm of

(6.10). As in the purely spatial domain, the standard errors of the MGPLEs can be obtained

using a resampling method, such as a parametric bootstrap. The strong consistency of the

MGPLEs in the space-time domain still applies since the proof given in Chapter 4 is general

enough to accommodate more than two-dimensions.

Before demonstrating the extended GPL method within the context of the spatio-temporal

autologistic model, we should briefly discuss a potentially computational issue with GPL in

the space-time domain. In particular, just as was the case in the purely spatial domain,

the group size in the space-time domain cannot be too large or the computational compro-

mise GPL strives to achieve between PL and MCMCML will be lost. Thus, while GPL can

straightforwardly be extended into the space-time domain, it is computationally difficult to

use group sizes any larger than the biggest group sizes used in the purely spatial domain.

Such limitations, however, can make choosing a group structure unsatisfactory since striking

the appropriate balance between spatial and temporal relations can then be difficult. For

example, in Figure 6.1, the given group structure has 5 sites from the same time step (spatial

relations) in the group, but only one site from a different time step (temporal relations) in
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the group. Maybe this is ultimately a satisfactory group structure, but perhaps this group

structure actually overemphasizes the spatial relations relative to the temporal relations of

the array. Thus, the issue of selecting a suitable group structure becomes more important in

the space-time domain.

Finally, as an example of (6.9) and (6.10), again consider the four parameter spatio-temporal

autologistic model conveyed by (6.3). In this context, the group likelihood functions have the

following form for all (i, t) ∈ S:

GLi,t(ψ) =

exp

α
∑

(j,t′)∈g(i,t)

zj,t′ + θ
∑

(j,t′)∈g(i,t)

zj,t′

1

2

∑
(k,t′′)∈Ng(i,t)

j,t′

zk,t′′ +
∑

(k,t′′)∈N∂g(i,t)

j,t′

zk,t′′

 + β
∑

(j,t′)∈g(i,t)

zj,t′xj,t′ + τ
∑

(j,t′)∈g(i,t)

zj,t′
∑

(k,t′′)∈Γj,t′

zk,t′′


∑

y∈Ω|g(i,t)|
exp

α
∑

(j,t′)∈g(i,t)

yj,t′ + θ
∑

(j,t′)∈g(i,t)

yj,t′

1

2

∑
(k,t′′)∈Ng(i,t)

j,t′

yk,t′′ +
∑

(k,t′′)∈N∂g(i,t)

j,t′

yk,t′′

 + β
∑

(j,t′)∈g(i,t)

yj,t′xj,t′ + τ
∑

(j,t′)∈g(i,t)

yj,t′
∑

(k,t′′)∈Γj,t′

yk,t′′


.(6.11)

The corresponding GPL function is then just the product over all n · Tm group likelihood

functions from (6.11). The logarithm of this function is then numerically maximized with

respect to ψ to obtain the MGPLEs, ψ̂GPL = (α̂GPL, θ̂GPL, β̂GPL, τ̂GPL)′, of ψ, while a

parametric bootstrap can be used to obtain the corresponding standard errors.

6.6 Spatio-Temporal BGPL

Just as with GPL, the generalization of block generalized pseudolikelihood for use in the

space-time domain, while not terribly difficult, is novel. The critical component in making

this generalization, as was analogously the case with GPL, is establishing the block structure.
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Figure 6.2: Space-Time Domain Block Structure Example
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A block, its boundary neighbors, and the corresponding external sites on a 7 × 7 × 3 array subset of S under a second-
order isotropic spatial structure and a first-order autoregressive temporal structure. Moving left to right, the three lattices
correspond to times t, t − 1, and t − 2, respectively. Assume that sites Xi, i = 1, . . . 18 are members of block l. Then the
41 B sites represent the fixed spatial and/or temporal boundary neighbors of the block and the 88 e sites represent the
external sites of the block, i.e., the sites that are conditionally independent of the block sites under the spatial and temporal
Markov assumptions.

Once again, the array must be partitioned into L ≤ n ·mT (non overlapping) blocks, where

b(l) denotes the sites “contained” within the lth block; so S =
⋃L
l=1 b(l). While it is not

theoretically necessary that the L blocks all be the same size or shape, we will assume, as was

done in the purely spatial domain, that they are all the same size and shape. Possible blocking

mechanisms include forming b×b×d blocks, where 1 ≤ d ≤ mT and 1 ≤ b ≤ min{mr,mc}. For

example, Figure 6.2 illustrates a possible block structure for the spatio-temporal autologistic

model example corresponding to (6.3), where b(l) is 3 × 3 × 2. Analogous to GPL, the set

of boundary neighbors of a block consists of all sites that are not themselves members of the

block, but are spatial and/or temporal neighbors of at least one site belonging to the block.

For instance, in Figure 6.2, sites B1, . . . , B41 are the boundary neighbors of the block. Notice,

for example, that site B31 is only a temporal neighbor of block site X10 and site B10 is only

a spatial neighbor for block sites X4 and X7.

With the general notion of a block in the space-time domain established, the corresponding

block joint likelihood functions and block generalized pseudolikelihood function, which are
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analogous to their counterparts (3.33) and (3.34) presented in section 3.5, can now be defined.

In particular, ∀ l, l = 1, . . . , L, the block joint likelihood function for the lth block, assuming

no covariates are in the model, still has the following general form:

BLl(ψ) =
exp{T ′

(
zb(l), z

b(l)
)
·ψ}∑

y∈Ω|b(l)|
exp{T ′

(
yb(l),y

b(l)
)
·ψ}

, (6.12)

where |b(l)| is the number of sites belonging to block l. Recall from section 3.5.1 that the

sufficient statistics for a block joint likelihood must distinguish between a (spatial) neighbor

relation between two sites of the block and a (spatial) neighbor relation between one site of

the block and one boundary neighbor site of the block. As was the case for GPL, no such

distinction is needed here for temporal neighbor relationships since they are naturally ordered

in time. More specifically, as was discussed in section 6.5, because the space-time paradigm

implemented for this dissertation assumes that the temporal neighbors of any site, (i, t), of

the array can only belong to an “earlier” lattice of the array, i.e. (j, t′) ∈ Γi,t ⇒ t′ ≤ (t− 1),

the temporal relations between two sites of the block will not be “double-counted” relative to

the temporal relations between a site of the block and a boundary neighbor site of the block.

For example, in Figure 6.2 the temporal relation between sites X1 and X10, or sites X5 and

X14, is not double-counted relative to the other temporal relations of the group, such as those

between sites X10 and B33 or sites X14 and B37.

The block generalized pseudolikelihood function, again assuming no covariates are in the

model, is then just the product of all block joint likelihood functions from (6.12):

BGPL(ψ) =
L∏
l=1

exp{T ′
(
zb(l), z

b(l)
)
·ψ}∑

y∈Ω|b(l)|
exp{T ′

(
yb(l),y

b(l)
)
·ψ}

(6.13)

Note that, just as in the purely spatial domain, if |b(l)| = 1 ∀ l ∈ L (i.e. L = n · mT ),

then BGPL reduces to PL, and if b(l) = S (i.e. L = 1), then BGPL is ultimately maximum

likelihood. The MBGPLEs of ψ, ψ̂BGPL, are then obtained by numerically maximizing the
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logarithm of (6.13). As in the purely spatial domain, the standard errors of the MBGPLEs

can be obtained using a resampling method, such as a parametric bootstrap. As with the

MGPLEs, the strong consistency of the MBGPLEs in the space-time domain still applies since

the proof given in Chapter 4 is general enough to accommodate more than two-dimensions.

Note that the computational issue discussed in section 6.5 in choosing a group structure also

applies to choosing a block structure for BGPL in the space-time domain.

Finally, as an example of (6.12) and (6.13), again consider the four parameter spatio-

temporal autologistic model conveyed by (6.3). In this context, the block likelihood functions

have the following form for all l = 1, . . . , L:

BLl(ψ) =

exp

α
∑

(i,t)∈b(l)

zi,t + θ
∑

(i,t)∈b(l)

zi,t

1

2

∑
(j,t′)∈Nb(l)

i,t

zj,t′ +
∑

(j,t′)∈N∂b(l)
i,t

zj,t′

 + β
∑

(i,t)∈b(l)

zi,txi,t + τ
∑

(i,t)∈b(l)

zi,t
∑

(j,t′)∈Γi,t

zj,t′


∑

y∈Ω|b(l)|
exp

α
∑

(i,t)∈b(l)

yi,t + θ
∑

(i,t)∈b(l)

yi,t

1

2

∑
(j,t′)∈Nb(l)

i,t

yj,t′ +
∑

(j,t′)∈N∂b(l)
i,t

yj,t′

 + β
∑

(i,t)∈b(l)

yi,txi,t + τ
∑

(i,t)∈b(l)

yi,t
∑

(j,t′)∈Γi,t

yj,t′


. (6.14)

The corresponding BGPL function is then just the product over all L block likelihood functions

from (6.14). The logarithm of this function is then numerically maximized with respect to ψ to

obtain the MBGPLEs, ψ̂BGPL = (α̂BGPL, θ̂BGPL, β̂BGPL, τ̂BGPL)′, of ψ, while a parametric

bootstrap can be used to obtain the corresponding standard errors.
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6.7 Spatio-Temporal Autologistic Model Simulation Study

As discussed in section 1.5, a simulation study involving the spatio-temporal autologistic model

does not currently exist in the literature. Hence, the small-scale simulation study of the spatio-

temporal autologistic model carried out for this dissertation, which evaluates and compares

the performances of the estimates obtained via PL, MCMCML, GPL, and BGPL, is the first

of its kind. The two primary objectives of this simulation study were exploratory in nature.

More specifically, we wanted to (1) evaluate, via measures of bias, precision, and accuracy, the

utility of these four methods in estimating the parameters of the spatio-temporal autologistic

model and (2) compare, via the relative mean absolute error (MAE), the performances of the

estimates obtained from these four different methods.

6.7.1 Scope

As the computational expense of conducting a simulation study for the spatio-temporal autol-

ogistic model is substantial, the scope of the study that was conducted is necessarily limited.

In particular, the only (spatial/temporal) neighborhood structure considered had a first-order

isotropic spatial structure and an autoregressive lag-one temporal structure. In other words,

each internal site of the array has 4 spatial neighbors and 1 temporal neighbor at the same

location but previous time step. Furthermore, the only array size considered was 50×50×11.

Note that the 50× 50 spatial dimensions were ultimately selected because they were the most

moderate of the three lattice sizes used in the purely spatial simulation study of Chapter 5,

while the temporal dimension of 11 was ultimately selected because that is the number of

time steps available in the Oregon/Washington fire occurrence data set modeled in Chapter 7.

Additionally, only a 3×3×1 group structure, centered at the “defining” site of the group, and

a 4× 4× 1 block structure were considered. Note that these structures were ultimately used

for two reasons. First, the 3× 3 group structure, denoted by gs9 in Chapter 5, and the 4× 4
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block structure, denote by bs4 in Chapter 5, were the best of their respective structures in

the purely spatial simulations of Chapter 5. Second, adding any “depth” to these structures

in the space-time simulations, such as a 3× 3× 2 group structure or a 4× 4× 2 block struc-

ture, would have compromised the computational objective of GPL and BGPL in that both

methods would then be computationally more expensive, i.e. take longer, than MCMCML.

In addition to the above stipulations, the first-order isotropic autoregressive lag-one spatio-

temporal autologistic model (FIAR1) was considered both with and without a covariate term

in the model. The functional form of the conditional spatio-temporal autologistic model,

without a covariate term, is given by the following:

P(Zi,t = zi,t|{zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t};ψ) =

=

exp

αzi,t + θzi,t
∑

(j,t′)∈Ni,t

zj,t′ + τzi,tzi,t−1


1 + exp

α+ θ
∑

(j,t′)∈Ni,t

zj,t′ + τzi,t−1


. (6.15)

The functional form of the conditional spatio-temporal autologistic model, with a covariate

term, is given by (6.4), where recall Γi,t = {(i, t − 1)} ∀ (i, t) ∈ S. For the model without

a covariate term, two parameter vectors were considered for (α, θ, τ)′. In both, α and θ

were held fixed at −1.0 and 0.4, respectively, while τ = 0.5 and 1.5. Note that in both of

these vectors the strength of the spatial dependence is moderate, while the strength of the

temporal dependence is relatively moderate for τ = 0.5 and relatively strong for τ = 1.5. In

particular, for (α, θ, τ)′ = (−1.0, 0.4, 0.5), approximately 52% of the sites of the array have

value 1, while for (α, θ, τ)′ = (−1.0, 0.4, 1.5), approximately 79% of the sites of the array have

value 1. For the model with a covariate term, two covariate types were considered. The first

covariate type corresponds to the departure from average (DA) variable of the Oregon and

Washington fire occurrence data set. Note that this fire covariate, as in the analogous spatial
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simulations of Chapter 5, was generated via the grf package in R by using the estimated

covariograms obtained from each cross-sectional lattice of DA values from the aforementioned

data set. Only the parameter vector (α, θ, τ, β)′ = (−6.87, 1.20, 0.015, 0.023) was used for this

covariate type. This particular parameter vector was selected after maximum pseudolikelihood

estimation was used to model the array of data from Oregon/Washington. Since an objective

of this dissertation is to model the Oregon and Washington fire data using the four estimation

methods previously developed in this chapter, we wanted to get an idea via simulation how

these methods would perform on a similar array in which approximately < 1% of the sites

have a value of 1.

The second covariate corresponds to a Uniform(0,1) random variable in which the sites of

the array were each randomly assigned a value from this distribution. Only the parameter

vector (α, θ, τ, β)′ = (−2.0, 0.80, 0.30, 0.50) was used for this covariate type. This particular

parameter vector was selected for two reasons. First, we wanted the spatial dependence,

temporal dependence, and uniform covariate to all have a relatively moderate effect on the

binary response variable. Second, we wanted approximately 50% of the sites of the array to

have a value of 1. Figure 6.3 displays, for both covariate types, the 1st and 11th covariate

lattices (cross-sections) of the array.

6.7.2 Procedure

The simulation procedures used for this space-time simulation study was analogous to the

procedures used and outlined in Chapter 5 for the purely spatial simulation study. To avoid

any confusion, however, the simulation procedure used for the 2 parameter vectors of the first-

order isotropic autoregressive lag-one spatio-temporal autologistic model, without a covariate

term, was the following:

(1) Using the Gibbs sampler, 510 56×56×11 Markov chain Monte Carlo (MCMC) array re-
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Figure 6.3: Cross-Sections 1 and 11 for Both Covariate Types
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alizations (i.e. samples) were generated from the Ising model with true parameter vector

(α0, θ0, τ0). A torus spatial and temporal edge adjustment was used within the Gibbs

sampler and each of the 510 realizations was obtained from an independent Markov

chain in which a burn-in of 100 full array sweeps was employed to allow for convergence.

(2) For each of the above 510 array realizations, the “central” 50 × 50 × 11 lattice was

extracted. These 510 50×50×11 samples will henceforth be referred to as the “original”

Markov chain samples.

(3) For the ith “original” sample, i = 1, . . . , 510, the pseudolikelihood function was con-

structed and maximized with respect to (α, θ, τ) to produce the maximum pseudolike-

lihood estimates (MPLEs) (α̂PLi , θ̂PLi , τ̂PLi). The mean, standard deviation, bias, and

mean absolute error (MAE) of the parameter estimates were estimated using the 510
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MPLEs as follows:

¯̂αPL =
1

510

510∑
i=1

α̂PLi ,
¯̂
θPL =

1

510

510∑
i=1

θ̂PLi ,
¯̂τPL =

1

510

510∑
i=1

τ̂PLi ,

ŜD(α̂PL) =

√√√√ 1

510

510∑
i=1

(α̂PLi − ¯̂αPL)2, ŜD(θ̂PL) =

√√√√ 1

510

510∑
i=1

(θ̂PLi −
¯̂
θPL)2,

ŜD(τ̂PL) =

√√√√ 1

510

510∑
i=1

(τ̂PLi − ¯̂τPL)2,

B̂ias( ¯̂αPL) = (¯̂αPL − α0), B̂ias(
¯̂
θPL) = (

¯̂
θPL − θ0), B̂ias(¯̂τPL) = (¯̂τPL − τ0),

M̂AE(α̂PL) =
1

510

510∑
i=1

|α̂PLi − α0| , M̂AE(θ̂PL) =
1

510

510∑
i=1

∣∣∣θ̂PLi − θ0

∣∣∣ ,
M̂AE(τ̂PL) =

1

510

510∑
i=1

|τ̂PLi − τ0| .

(4) For the ith “original” sample, i = 1, . . . , 510, the generalized pseudolikelihood function

under a 3 × 3 × 1 group size was constructed and numerically maximized with respect

to (α, θ, τ) to produce the maximum generalized pseudolikelihood estimates (MGPLEs)

(α̂GPLi , θ̂GPLi , τ̂GPLi). The mean, standard deviation, bias, and mean absolute error

(MAE) of the parameter estimates were estimated in a manner analogous to the pseu-

dolikelihood case above, yielding the sample means (¯̂αGPL,
¯̂
θGPL, ¯̂τGPL), sample stan-

dard deviations (ŜD(α̂GPL), ŜD(θ̂GPL), ŜD(τ̂GPL)), sample biases of the sample means

(B̂ias( ¯̂αGPL), B̂ias(
¯̂
θGPL)B̂ias(¯̂τGPL)), and sample mean absolute errors (M̂AE(α̂GPL),

M̂AE(θ̂GPL), M̂AE(τ̂GPL)).

(5) For the ith “original” sample, i = 1, . . . , 510, the block generalized pseudolikelihood

function under a 4× 4× 1 block size was constructed and numerically maximized with

respect to (α, θ, τ) to produce the maximum block generalized pseudolikelihood estimates

(MBGPLEs) (α̂BGPLi , θ̂BGPLi , τ̂BGPLi). The mean, standard deviation, bias, and mean

absolute error (MAE) of the parameter estimates were estimated in a manner analogous
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to the pseudolikelihood case above, yielding the sample means (¯̂αBGPL,
¯̂
θBGPL, ¯̂τBGPL),

sample standard deviations (ŜD(α̂BGPL), ŜD(θ̂BGPL), ŜD(τ̂BGPL)), sample biases of the

sample means (B̂ias( ¯̂αBGPL), B̂ias(
¯̂
θBGPL), B̂ias(¯̂τBGPL)), and sample mean absolute er-

rors (M̂AE(α̂BGPL), M̂AE(θ̂BGPL), M̂AE(τ̂BGPL)).

(6) For the ith “original” sample, i = 1, . . . , 510, the Gibbs sampler was used to generate 550

Monte Carlo samples from a first-order isotropic autoregressive lag-one spatio-temporal

autologistic distribution with parameter vector φ = (α̂PLi , θ̂PLi , τ̂PLi). A burn-in pe-

riod of 100 full sweeps of the array was implemented for convergence and after each

subsequent full sweep of the array, the resultant realization was retained as one Monte

Carlo sample.

(7) For i = 1, . . . , 510, the ith “original” sample and the corresponding 550 Monte Carlo sam-

ples (from step (6)) were then used to construct the Monte Carlo approximate negative

log likelihood function, which was then numerically maximized to obtain the correspond-

ing MCMCMLEs (α̂MCi , θ̂MCi , τ̂MCi). The mean, standard deviation, bias, and mean

absolute error of the parameter estimates were then computed in a manner analogous to

the pseudolikelihood case above, yielding the sample means (¯̂αMC ,
¯̂
θMC , ¯̂τMC), sample

standard deviations (ŜD(α̂MC), ŜD(θ̂MC), ŜD(τ̂MC)), sample biases of the sample means

(B̂ias( ¯̂αMC), B̂ias(
¯̂
θMC), B̂ias(¯̂τMC)), and sample mean absolute errors (M̂AE(α̂MC),

M̂AE(θ̂MC), M̂AE(τ̂MC)).

The simulation procedure for the first-order isotropic autoregressive lag-one spatio-temporal

autologistic model, with a covariate term, is analogous to the above procedure for both co-

variate types and, therefore, will not be provided.
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6.7.3 Results

As with the purely spatial simulation study of Chapter 5, the performances of the four esti-

mation methods in the space-time domain for this small-scale simulation study are assessed

via evaluations and comparisons of their respective measures of bias, precision, and accuracy,

via the MAE. Based on the conclusions that can ultimately be drawn, the analysis is sepa-

rated below into two parts. The first part addresses the two scenarios considered in the study

that do not incorporate a covariate term, while the second part addresses the two scenarios

considered in the study that do incorporate a covariate term.

For the two scenarios, or rather parameter vectors, considered under a first-order isotropic

autoregressive lag-one spatio-temporal autologistic model, without a covariate term, the sam-

ple means and corresponding standard errors of the estimates obtained from each of the four

methods are given in Table 6.1. From this table, we highlight two observations of note. First,

the sample means for all three parameters from all four estimation methods appear to be

relatively close to the truth, relative to their corresponding standard errors. For example,

for the (α, θ, τ)′ = (−1.0, 0.4, 0.5) scenario, GPL yielded (¯̂α,
¯̂
θ, ¯̂τ)′ = (−0.9875, 0.3975, 0.4886)

with (ŜD(α̂), ŜD(θ̂), ŜD(τ̂))′ = (0.0410, 0.0190, 0.0263). This suggest that the extensions of

PL, MCMCML, GPL, and BGPL into the space-time domain presented above in sections 6.3-

6.6 are indeed useful in estimating the parameters of the spatio-temporal autologistic model.

Second, for the stronger temporal dependence scenario (τ = 1.5), both the biases and stan-

dard errors for all 4 methods are larger than for the smaller temporal dependence scenario

(τ = 0.5). For example, when using PL under the stronger temporal dependence scenario,

the estimated bias in estimating α is nearly 4.5 times larger (0.0705 vs. 0.0157), while the

corresponding standard error is nearly 2 times larger (0.0800 vs. 0.0415), than when using

PL under the weaker temporal dependence scenario. This is not surprising since an increase

in the strength of temporal dependence will tend to produce arrays that deviate further from

a 50/50 split of zeros and ones, which we know from section 1.4 and Chapter 5 are associated



6.7. SPATIO-TEMPORAL AUTOLOGISTIC MODEL SIMULATION STUDY 200

Table 6.1: Sample Means and Standard Errors of α, θ, and τ when the Model is FIAR1 (No
Covariate) and the Methods of Estimation are PL, GPL, BGPL, and MCMCML

50x50x11
Model Estimate PL GPL BGPL MCMCML

¯̂α -0.9843 -0.9875 -0.9843 -0.9952

ŜD(α̂) 0.0415 0.0410 0.0428 0.0424

FIAR1
¯̂
θ 0.3958 0.3975 0.3963 0.3982

(−1.0, 0.4, 0.5) ŜD(θ̂) 0.0191 0.0190 0.0197 0.0190
¯̂τ 0.4890 0.4886 0.4869 0.4949

ŜD(τ̂) 0.0255 0.0263 0.0257 0.0277
¯̂α -0.9295 -0.9600 -0.9427 -0.9737

ŜD(α̂) 0.0800 0.0859 0.0890 0.0913

FIAR1
¯̂
θ 0.3816 0.3916 0.3866 0.3926

(−1.0, 0.4, 1.5) ŜD(θ̂) 0.0256 0.0271 0.0284 0.0274
¯̂τ 1.4808 1.4815 1.4783 1.4885

ŜD(τ̂) 0.0373 0.0376 0.0377 0.0416

with more biased and more variable parameter estimates.

With the MPLEs serving as the baseline, the four sets of relative MAEs, for both scenarios,

under a first-order isotropic autoregressive lag-one spatio-temporal autologistic model, without

a covariate term, are given in Table 6.2. From this table, we infer the following. In particular,

first note that for the weaker temporal dependence scenario (τ = 0.5), where the array has

a roughly 48/52 split of zeros and ones, the relative MAEs between the four methods, across

all three parameters, do not appear to be substantially different. For example, the best and

worst MAEs are only 0.9610 and 1.0548, respectively, times their corresponding PL MAEs.

However, for the stronger temporal dependence scenario (τ = 1.5), where the array has a

roughly 21/79 split of zeros and ones, the relative MAEs for α̂ and θ̂ corresponding to GPL

and MCMCML appear to be substantially less, i.e. better, than the corresponding MAEs for

PL and BGPL. For example, the MAEs of α̂ for GPL and MCMCML are only approximately

0.862 and 0.855, respectively, times the MAE corresponding to PL. Hence, this suggests that,

as in the purely spatial case, the further the proportion of ones on the array increases above
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Table 6.2: Relative MAEs of α, θ, and τ when the Model is FIAR1 (No Covariate) and the
Methods of Estimation are PL, GPL, BGPL, and MCMCML

50x50x11
Model Estimate PL GPL BGPL MCMCML

FIAR1 Rel MAE(α̂) 1 0.9610 1.0383 0.9699

(−1.0, 0.4, 0.5) Rel MAE(θ̂) 1 0.9739 1.0382 0.9815
Rel MAE(τ̂) 1 1.0548 1.0424 1.0053

FIAR1 Rel MAE(α̂) 1 0.8623 0.9885 0.8554

(−1.0, 0.4, 1.5) Rel MAE(θ̂) 1 0.8826 0.9925 0.8754
Rel MAE(τ̂) 1 0.9941 1.0370 1.0152

0.50, the greater the improvement both GPL and MCMCML demonstrate relative to PL. In

addition to this inference, it is also worth noting that, just as in the purely spatial simulations

(without a covariate term) of Chapter 5, in situations where the array has a relatively high

proportion of ones, GPL appears to not only achieve its compromise between PL and GPL,

but it also appears to even be competitive with MCMCML. Consistent with the results of

Chapter 5, this does not appear to be the case for BGPL, which is generally only competitive,

at best, with PL.

For the two scenarios, or rather covariate types, considered under a first-order isotropic

autoregressive lag-one spatio-temporal autologistic model, with a covariate term, the sample

means and corresponding standard errors of the estimates obtained from each of the four

methods are given in Table 6.3. The main thing to note from this table is that the sample

means, for all but the temporal parameter of the fire covariate scenario, from all four es-

timation methods appear to be relatively close to the truth, relative to their corresponding

standard errors. For example, for the (α, θ, τ, β)′ = (−2.0, 0.8, 0.3, 0.5) scenario, BGPL yielded

(¯̂α,
¯̂
θ, ¯̂τ ,

¯̂
β)′ = (−1.9966, 0.7997, 0.2745, 0.5198) with (ŜD(α̂), ŜD(θ̂), ŜD(τ̂), ŜD(β̂))′ =

(0.0473, 0.0174, 0.0270, 0.0470). Hence, as in the covariate-free scenarios above, this suggests

that the extensions of PL, MCMCML, GPL, and BGPL into the space-time domain are indeed

useful for estimating the parameters of the spatio-temporal autologistic model, even when a

covariate term has been incorporated into the model. Note that the one inconsistency with
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the above statement, as already alluded to, is the temporal component from the fire covariate

scenario. In particular, the MCMCML estimate, for example, of τ = 0.015 is roughly 2.7

times larger than the truth (τ̂ = 0.0408), and the corresponding standard error of 0.5420 is

relatively large. This “abnormality” is most likely attributable to at least one of the following

two conjectures. First, perhaps the autoregressive lag-one temporal parameter for the fire

occurrence data from Oregon/Washington is insignificant in the model in the presence of the

spatial and covariate effects. Second, as < 1% of the array’s sites have a value of 1, the array

is extremely disproportionate and this too could be affecting the estimates of the temporal

parameter. Note that in this extreme situation, 79 of the 510 runs of the simulation proce-

dure produced estimates that were orders of magnitude from the truth; such estimates were

removed from the analysis. Hence, the plausible insignificance of this temporal parameter

in the model, along with the extremely disproportionate number of zero-valued sites on the

array, could explain why all four methods preform relatively poorly in estimating the value of

this parameter.

With the MPLEs serving as the baseline, the four sets of relative MAEs, for both covariate

types, under a first-order isotropic autoregressive lag-one spatio-temporal autologistic model,

with a covariate term, are given in Table 6.4. From this table, it is arguably evident that

the relative MAEs between the four methods, across all four parameters, do not appear to be

substantially different. In particular, while for the Uniform(0,1) covariate scenario the relative

MAE values of 1.0696 and 0.9307 for β̂GPL and θ̂GPL, respectively, might be substantially

different from the MAEs for the corresponding MPLEs, the differences in relative MAEs for

the fire covariate scenario estimates seem negligible. For example, the best and worst MAEs for

the fire covariate scenario are only 0.9907 and 1.0483, respectively, times their corresponding

PL MAEs. Hence, PL appears to be a good choice for parameter estimation, especially in

the extreme fire covariate scenario. We suspect that in the space-time domain, as in the

purely spatial domain, GPL and MCMCML will demonstrate more substantial performance-

based improvements relative to PL in situations where the proportion of ones in the array is
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Table 6.3: Sample Means and Standard Errors of α, θ, τ , and β (Unif(0,1) or Fire (DA)
Covariate) when the Model is FIAR1 (With a Covariate) and the Methods of Estimation are
PL, GPL, BGPL, and MCMCML

50x50x11
Model Estimate PL GPL BGPL MCMCML

¯̂α -1.9844 -2.0005 -1.9966 -1.9937

Unif(0,1) ŜD(α̂) 0.0488 0.0479 0.0473 0.0510

Covariate
¯̂
θ 0.7977 0.8004 0.7997 0.7984

ŜD(θ̂) 0.0185 0.0172 0.0174 0.0182
¯̂τ 0.2763 0.2787 0.2745 0.2846

FIAR1 ŜD(τ̂) 0.0270 0.0271 0.0270 0.0327

(−2.0, 0.8, 0.3, 0.5)
¯̂
β 0.5012 0.5206 0.5198 0.5007

ŜD(β̂) 0.0483 0.0477 0.0470 0.0472
¯̂α -6.8741 -6.8822 -6.8807 -6.8697

Fire (DA) ŜD(α̂) 0.6309 0.6364 0.6325 0.6309

Covariate
¯̂
θ 1.1614 1.1600 1.1605 1.1594

ŜD(θ̂) 0.3151 0.3167 0.3226 0.3119
¯̂τ 0.0457 0.0296 0.0432 0.0408

FIAR1 ŜD(τ̂) 0.5330 0.5851 0.5331 0.5420

(−6.87, 1.2, 0.015, 0.023)
¯̂
β 0.0230 0.0231 0.0231 0.0230

ŜD(β̂) 0.0070 0.0071 0.0070 0.0070

somewhere roughly between 0.2 and 0.8.

In conclusion, the results of this small-scale spatio-temporal autologistic model simulation

study ultimately suggested two important outcomes. First, the extensions of PL, MCMCML,

GPL, and BGPL into the space-time domain, as described in the preceding sections of this

chapter, appear to be useful for estimating the parameters of the spatio-temporal autologis-

tic model. Second, and finally, the relative performances of these four methods, under the

limited scope of this space-time study, appeared to be fairly consistent with the results ob-

tained from the large-scale purely spatial simulation study of Chapter 5. In particular, in

situations of moderate to extreme spatial and/or temporal dependency, GPL and MCMCML

(and occasionally BGPL) are the best methods, but in situations of weak spatial and/or tem-

poral dependency, or aberrantly extreme spatial and/or temporal dependency, PL is no worse
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Table 6.4: Relative MAEs of α, θ, τ , and β (Unif(0,1) or Fire (DA) Covariate) when the
Model is FIAR1 (With a Covariate) and the Methods of Estimation are PL, GPL, BGPL,
and MCMCML

50x50x11
Model Estimate PL GPL BGPL MCMCML

Unif(0,1) Rel MAE(α̂) 1 1.0164 1.0124 1.0094

Covariate Rel MAE(θ̂) 1 0.9307 0.9319 0.9610
FIAR1 Rel MAE(τ̂) 1 0.9544 1.0584 0.9621

(−2.0, 0.8, 0.3, 0.5) Rel MAE(β̂) 1 1.0696 1.0483 0.9841

Fire (DA) Rel MAE(α̂) 1 1.0014 1.0011 0.9993

Covariate Rel MAE(θ̂) 1 1.0059 1.0294 0.9907
FIAR1 Rel MAE(τ̂) 1 1.0483 0.9995 1.0169

(−6.87, 1.2, 0.015, 0.023) Rel MAE(β̂) 1 1.0180 1.0048 1.0025

than the other three methods. Ultimately, however, a more extensive space-time simulation

study must be conducted if such conjectures are to be validated. Furthermore, it would be

of interest to explore in such a simulation study how adding “depth” to both the group and

block structures would affect the performances of GPL and BGPL, particularly with respect

to estimating any temporal parameters. For this to be accomplished, more efficient code needs

to be developed to counteract the increased computational complexity necessary to do this.



Chapter 7

Spatio-Temporal Autologistic

Model Application

7.1 Introduction

Throughout this dissertation, references to a wild fire occurrence data set from regions of

Oregon and Washington state have been made. In fact, the essence of this data set was used

in Chapter 1 to help motivate the need for the autologistic model. Furthermore, aspects of

this data set were incorporated into the simulation studies presented in Chapters 5 and 6.

In this chapter, a subset of these data will be modeled. The objectives of such modeling are

three-fold. First, we want to demonstrate the use of the autologistic model on an actual,

rather than simulated, data set. The methods of PL, MCMCML, GPL, and BGPL will all

be employed to estimate the corresponding model parameters. Second, since in practice the

truth is never known, we want to present an approach to model selection for situations when

the autologistic model is being employed. Such an approach is a hybrid of the approaches

suggested by Gumpertz et al. ([19]) and Wu and Huffer ([35]). Third, and finally, we want

205
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to better understand what affects the pattern (presence/absence) of wild fire occurrence in

Oregon and Washington. More specifically, we want to know if accounting for the effects of

space, time, and/or the Departure from Average covariate (see section 7.2) will provide us

with a “better” understanding of the wild fire occurrence pattern in these two states.

The remainder of this chapter is divided into three sections. In section 7.2, a detailed de-

scription of the fire occurrence data from Oregon and Washington is provided. In section 7.3,

the model fitting process is explained along with the aforementioned model selection proce-

dure. Note that the parametric bootstrap procedure, which has been alluded to throughout

this dissertation as a means for obtaining the standard errors of the MPLEs, MGPLEs, and

MBGPLEs, is also presented in this section. Finally, in section 7.4, the results of the model

fitting process are presented along with the subsequent interpretations.

7.2 Description of Data Set

The data for the analysis carried out in this chapter were graciously shared by Cindy Leary, a

researcher at The University of Montana, during the course of her work with the Fire Sciences

Laboratory in Missoula, Montana. The description of the data set given throughout this

section is a summary of the more exhaustive description given by Leary et al. ([26]). The

spatial domain of the data set consists of an 870 km by 740 km regular lattice comprising

Oregon and Washington state. This regular lattice, as displayed in Figure 7.1, consists of four

distinct terrestrial ecosystems including Temperate Broadleaf and Mixed Forests, Temperate

Coniferous Forests, Temperate Grasslands, Savannas, and Shrublands, and finally, Deserts

and Xeric Shrublands. The temporal domain of the data set covers the months between May

and October for each of the four years from 2002 to 2005. More specifically, over the span of

these six months, for each of the four years, data were collected on the lattice at 11 distinct

and equally-spaced times; thus, the temporal lag is roughly two weeks. Thus, there are 4 data
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Figure 7.1: Four Terrestrial Ecosystems of Oregon and Washington
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arrays, each consisting of 11 cross-sectional readings of the lattice. It should be pointed out

here that as annual wild fire occurrence values are believed to be unrelated, these 4 arrays are

viewed as four distinct data sets rather than as one massive data set.

The response variable for this data set is fire ignition, recorded as the presence or absence

of fire. More specifically, each 1 km2 pixel (or site) of the lattice has a response value of

1 at a given time point if any location within that 1 km2 pixel experiences fire ignition at

some instance between the last time point and the current time point, and a value of 0

otherwise. These response values were constructed by first “merging state and federal fire

occurrence records for Oregon and Washington into a single historical database” ([26]) and

then converting these data into arrays of binary values.

The only covariate considered in this data set is the Departure from Average (DA) variable,

which is a MODIS-derived (Moderate Resolution Imaging Spectroradiometer) fire potential

metric. As was mentioned in Chapter 1, this covariate is essentially a surrogate for the relative

change in vegetation across the sites of the lattice over time. In particular, let EV Ii,t denote



7.2. DESCRIPTION OF DATA SET 208

the Enhanced Vegetation Index of pixel i at time t, where i denotes one of the 1 km2 pixels of

the lattice and t denotes one of the 11 readings collected annually. Additionally, let EV Iavgi,t

denote the historical average Enhanced Vegetation Index of pixel i at time t. Then the DA

value for site i at time t is given by the following:

DAi,t = 100 + (EV Ii,t − EV Iavgi,t ) ∗ 100, (7.1)

where all relevant Enhanced Vegetation Index (EVI) values are obtained from MODIS satellite

platform data, which are available through NASA’s Land Processes Distributed Active Archive

Center (LP DAAC). Leary et al. convey that “DA values generally range from 0 to 200 where

values of 100 indicate that a site is equal to the historic average (EVI) for that time period

and values closer to 200 indicate that a site appears much greener than usual” ([26]). It is

believed that lower DA values are associated with an increased probability of fire occurrence

as they indicate “dryer than usual” conditions.

While it is theoretically possible to model this entire data set at a 1 km2 resolution, practi-

cally speaking, this is not reasonable. More specifically, at such a resolution, the proportion of

pixels with a response value of 1 is substantially less than 1%, which, as discussed in previous

chapters of this dissertation, makes the parameter estimates for the autologistic model highly

variable. Thus, a 20 km2 resolution was utilized so as to produce a data set with a greater

proportion of pixels having a response value of 1. Such a scale remains practical from the

perspective of a forest manager seeking to acquire resoures to combat wild fires. Note that

finer resolutions did not sufficiently increase the proportion of pixels with a response value of

1, while coarser resolutions reduced the number of sites to an unacceptable level. Under a

20 km2 resolution (similar to a 1 km2 resolution) a pixel, or site, has a response value of 1 at

a given time point if any location within that 20 km2 pixel experiences fire ignition at some

instance between the last time point and the current time point, and a value of 0 otherwise.

The DA value for a pixel under a 20 km2 resolution is the median DA value of the 400 1 km2

DA values enclosed in the 20 km2 pixel, all 400 of which are obtained using (7.1).
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For the purposes of this dissertation, only the temperate grasslands terrestrial ecosystem

will be modeled since, among the four ecosystems, it had the greatest proportion of sites with

a response value of 1. Furthermore, of the four years of data collected for this ecosystem, only

the first year (2002) will be modeled since, among the four years, it had the greatest proportion

of sites with a response value of 1. Note that this subset of the Oregon and Washington data

set, under a 20 km2 resolution, is contained within a 19 × 23 lattice, but only 170 of the

pixels in this lattice make up the temperate grasslands ecosystem. Hence, the data array

being modeled in this chapter consists of 170 sites observed at 11 time points. Fire occurrence

indicator plots of this ecosystem for the first and last time points of 2002 are displayed in

Figure 7.2, along with the corresponding DA plots. From these plots, it appears that fire

occurrence is more prevalent at the end of the fire season (Time 11) than at the beginning

(Time 1) of the fire season, and that the temperate grasslands ecosystem is dryer at the end

of the fire season than it was at the beginning of the fire season. It is worth mentioning that

intermediate weeks had even higher proportions of ignitions, ranging as high as 46
170 ≈ .271 at

Time 5. Note that of the 170 ∗ 11 = 1870 sites making up the data array for the temperate

grasslands ecosystem, 237 of them, or 237
1870 ≈ 0.1267, have a response value of 1.

7.3 Approach to Model Fitting and Model Selection

The process of model selection when employing the spatio-temporal autologistic model is not

routine since the corresponding likelihood function is almost always intractable. Hence, the

process suggested here is a hybrid of the processes suggested by Gumpertz et al. ([19]) and Wu

and Huffer ([35]). In particular, once any number of possible models are initially considered,

PL can be used to estimate the parameters for each of these initial models. As PL is extremely

computationally cheap, especially relative to other methods of parameter estimation, obtaining

the MPLEs for each of the possible models poses no real difficulties. Using the standard output

that is associated with any standard statistical software package, such as R, each model can
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Figure 7.2: Fire Occurrence and Departure from Average (DA) Readings for the Temperate
Grasslands Ecosystem – Cross-Sections 1 and 11 of 2002
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then be evaluated by checking the significance of each of the parameters in the respective

model. Note that while the standard errors used to assess such parameter significance are

usually incorrect, as discussed in previous chapters of this dissertation, they can still be used as

a rough guide to determine a subset of “best” models from the initial set of models. Gumpertz

et al. ([19]) even suggest employing an AIC-like measure (PL-AIC), using the pseudolikelihood

function in lieu of the true likelihood function, to determine the aforementioned “best” subset

of models for further consideration. The approach implemented for this application uses both

PL and PL-AIC to determine the “best” subset of models for further examination. After

employing the above process to reduce the number of viable models down to just a few

potential models, the MGPLEs, MBGPLEs, and MCMCMLEs could then be obtained. Note

that as these estimates are computationally more expensive to obtain than the MPLEs, it is

best in terms of computational expense if relatively few models are considered at this stage

of the fitting process.

For each model under consideration, and for each of the four sets of parameter estimates

for that model, a Monte Carlo approach can then be used to determine the “best-fitting”

model. This approach, based on a sum of absolute error (SAE), was first proposed by Wu

and Huffer ([35]) and will be employed in this application as a further means for selecting the

“best” model. To determine the SAE for a particular model and a particular set of parameter

estimates, first let ψ̂ denote a set of parameter estimates for one of the models. Then with

the unknown parameter vector set equal to ψ̂, the Gibbs sampler is employed to generate N

samples, or realizations, of the model. Next, the average realization for each site is calculated

using these N samples, i.e. let p̂i,t be the average value of the N realizations for site i at time

t. Note that p̂i,t can also be thought of as the estimated probability of a fire occurrence at

site i at time t. Finally, with zi,t denoting the observed fire occurrence value at site i at time

t, the sum of absolute error is calculated as follows:

SAE =
∑

All Array Sites

|p̂i,t − zi,t|. (7.2)
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Observe that the SAE is ultimately just an aggregate measure of the fitted errors, or rather

the differences between the unconditional predicted values and the observed data. The SAE

for each model and for each set of parameter estimates is then obtained in a manner analogous

to the above. In this way, the SAE can be used to compare models and estimation methods

for a given set of data. Note that instead of using the SAE, Gumpertz et al. ([19]) suggest

using cross-validation, but this was not considered here.

To determine the standard errors of any estimates obtained using PL, GPL, or BGPL, a

parametric bootstrap can be employed. For ease of presentation, assume we want the standard

errors for a set of MPLEs, ψ̂PL. Then the parametric bootstrap procedure entails using the

Gibbs sampler (see sections 3.3.2 and 3.3.3), with the unknown parameter vector set equal

to ψ̂PL, to generate K realizations of the data array. For each of these K realizations, PL is

used to estimate the model parameters. The standard deviations of the MPLEs from these

K sets of estimates are then calculated to obtain the standard errors of the original MPLEs,

i.e. SE(ψ̂PL). The parametric bootstrap procedure for obtaining the standard errors of the

MGPLEs, or MBGPLEs, is analogous to the above procedure for the MPLEs.

Before presenting the results of the model fitting process for the temperate grasslands ecosys-

tem (see section 7.4), the type of spatial and temporal edge-adjustments implemented for this

data set should be discussed. First, with respect to the spatial edges, since the temperate

grasslands ecosystem is rather irregular in shape and since we have no reason to believe, for

example, that fire occurrence on the northern edge of the region is similar to fire occurrence

on the southern edge of the region, a toroidal spatial edge adjustment was not considered.

Furthermore, since the temperate grasslands ecosystem consists of only 170 sites, we decided

that implementing a guard-region spatial edge adjustment would be too expensive, from an

information point of view. Hence, we have employed a weighted spatial edge adjustment pro-

cedure (see section 2.2.4) in modeling the temperate grasslands ecosystem data set. Finally,

with respect to the temporal edge (recall from Chapter 6 that we are assuming a past-lags-only

temporal Markov assumption), since we have no reason to believe that the fire occurrence at
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the later time steps is similar to the fire occurrence at the initial time steps, a toroidal temporal

edge adjustment was not considered. Furthermore, since we have absolutely no information on

the temporal neighbors of sites from the first time step, it is impossible to employ a weighted

temporal edge adjustment at this time point. Thus, we have employed a guard-region tem-

poral edge adjustment procedure in modeling the temperate grasslands ecosystem data set,

which means we are simply not modeling the first time point.

7.4 Results

In accordance with the process described above in section 7.3, the first step in modeling

the temperate grasslands ecosystem data array was to determine an initial set of models to

consider. For the purposes of this dissertation, only five such models were considered. The

most complex of these models was a first-order isotropic autoregressive lag-one autologistic

model with a term for the DA covariate. The conditional probability form of such a model,

using the notation established in Chapter 6, is the following:

P(Zi,t = zi,t|{zj,t′ : (j, t′) ∈ Ni,t ∪ Γi,t}, xi,t;ψ) =

=

exp

αzi,t + θzi,t
∑

(j,t′)∈Ni,t

zj,t′ + βzi,txi,t + τzi,t
∑

(j,t′)∈Γi,t

zj,t′


1 + exp

α+ θ
∑

(j,t′)∈Ni,t

zj,t′ + βxi,t + τ
∑

(j,t′)∈Γi,t

zj,t′


, (7.3)

where in this case, Γi,t = {(i, t − 1)}, Ni,t consists of the four first-order isotropic spatial

neighbors of site (i, t), and xi,t is the DA value for site i at time t. The other four models

considered are all nested within the model given by (7.3), which we will henceforth refer to

as Model 5. In particular, those four models consist of the following subset of parameters:
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• Model 1: ψ(M1) = (α, β)′ ⇒ covariate effect only (no spatial or temporal effects);

• Model 2: ψ(M2) = (α, θ)′ ⇒ spatial effect only (no covariate or temporal effects);

• Model 3: ψ(M3) = (α, θ, β)′ ⇒ spatial and covariate effects (no temporal effect);

• Model 4: ψ(M4) = (α, β, τ)′ ⇒ temporal and covariate effects (no spatial effect).

Note that more complex models than Model 5, such as models allowing for spatial anisotropy

or higher-order spatial and/or temporal dependencies, were not considered due to the limited

size of the data set.

The next step in the model fitting process was to use PL to obtain parameter estimates

and PL-AIC values for Models 1 through 5. The resulting PL-AIC values for the five models

are given in Table 7.1. From this table, it is evident that Model 5 is the “best” model,

according to PL-AIC, and that Model 3 is a distant second “best.” In terms of tests of

parameter significance, for each model including a spatial effect parameter (Models 2, 3, and

5), the corresponding test of significance produced a p-value of less than 0.0001. Hence,

fire occurrence in the temperate grasslands ecosystem is significantly spatially correlated at

the 20-km resolution. Furthermore for each of the two models including a temporal effect

parameter (Models 4 and 5), the corresponding test of significance produced a p-value greater

than 0.1. Thus, there is no evidence of temporal correlation in fire occurrence in the temperate

grasslands ecosystem. Finally, in each of the four models including a DA covariate parameter

(Models 1, 3, 4, and 5), the corresponding test of significance produced a p-value less than

0.1. It is worth noting, however, that the aforementioned p-values for the DA covariate

parameter were less than 0.002 for both models not including a temporal effect (Models 1

and 3). Therefore, it appears that fire occurrence in the temperate grasslands ecosystem is

dependent on the DA covariate, but the strength of this relationship may depend on whether

a temporal component is included. The above results indicate that any model considered

further must certainly have a spatial dependence parameter and a DA covariate parameter.
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Table 7.1: PL-AIC Values for the Five Fire Application Models

Model M1 M2 M3 M4 M5

PL-AIC 1410.4 1322.1 1314.0 1325.7 1247.1

Of the 5 models considered, only Models 3 and 5 satisfy this condition, the models with the

lowest PL-AIC values. Thus, even though the significance of the temporal effect parameter is

questionable, both Models 3 and 5 were considered for further examination, which coincides

with what the PL-AIC values in Table 7.1 would suggest. It is worth mentioning here that

while PL-AIC was used as a component of this analysis, little is understood regarding its use.

Having isolated Models 3 and 5 as two potential models to consider further, the methods of

GPL, BGPL, and MCMCML were all then used to obtain separate estimates for the param-

eters of both models. Before presenting the corresponding estimates, however, we must first

discuss a couple of issues involved in employing these three additional estimation methods

with the temperate grasslands ecosystem data array. First, for this application the group and

block structures implemented for GPL and BGPL, respectively, were ultimately determined

by the shape of and the relatively limited number of sites making up the temperate grasslands

ecosystem. In particular, the group structure ultimately used to model these data was neither

the cross-shape nor the 3× 3 shape used in the simulation studies of Chapters 5 and 6 since

such group structures produced relatively few groups with a complete set of sites within the

region of interest. Instead, the three-site L-shaped group structure displayed in Figure 3.1 was

employed as it yielded the best compromise between the largest group size and the greatest

number of complete groups. Recognize that this does not imply that the spatial dependence

only exists in particular orientations from a given site; all 3 sites within this L-shaped group

have their complete neighborhoods. Also, note that there was no “depth” to this group struc-

ture, i.e. a group does not contain sites from different time steps. Similarly, a block size of

2× 2× 1 was used for BGPL since it yielded the best compromise between the largest block
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size and the greatest number of complete blocks. Second, and finally, the MCMCML algo-

rithm did not converge with the MPLEs as the reference point (i.e. φ = ψ̂PL) for the Gibbs

sampler for either Model 3 or Model 5. Fortunately, the MCMCML algorithm did converge

for Model 3 when the MGPLEs, and the MBGPLEs for that matter, were instead used as the

reference point for the Gibbs sampler. However, the MCMCML algorithm still did not con-

verge for Model 5 when the MGPLEs or MBGPLEs were instead used as the reference point

for the Gibbs sampler. Hence, an additional approach was needed to get a reference point

for the Gibbs sampler that would yield the MCMCMLEs for Model 5. The approach that

we ultimately employed was essentially the approach suggested and demonstrated by Wu and

Huffer ([35]). In particular, Wu and Huffer suggest adjusting the initial choice for φ such that

the observed sufficient statistics fall within the data cloud produced by the sufficient statistics

resulting from the sweeps of the Gibbs sampler. Such an adjustment ultimately entailed using

our intuition to guide a guess-and-check procedure, but eventually we were able to achieve

convergence of the MCMCML algorithm and, therefore, obtain the MCMCMLEs for Model

5.

The parameter estimates obtained for Models 3 and 5, from all four estimation procedures,

are given in Table 7.2, along with the corresponding standard errors. Note that the stan-

dard errors for the MPLEs, MGPLEs, and MBGPLEs were all obtained using a 500-sweep

parametric bootstrap, after 100 burn-in sweeps, as described in section 7.3. From the table,

several things are evident for Model 3. First, the standard errors for the MCMCMLEs are

uniformly the smallest. Second, while all four methods produced comparable estimates for the

three parameters, the PL estimate of θ is noticeably smaller than the corresponding estimates

from the other three methods. Third, and finally, with the one exception being the BGPL

estimate of β, the absolute value of a parameter estimate, across all four methods for all three

parameters, is more than two standard errors from zero. Hence, appealing to the asymptotic

normality of the MPLEs and MCMCMLEs, and possibly erroneously assuming asymptotic

normality of the MGPLEs and MBGPLEs, this suggests that there is a consensus among the
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four methods that each of the parameters in Model 3 is statistically significant. From Table

7.2, several things are also evident with respect to Model 5. First, the standard errors for the

MPLEs and MCMCMLEs are both uniformly larger than the standard errors for the MG-

PLEs and MBGPLEs, particularly for τ . A histogram of the 500 PL parametric bootstrap

estimates of τ was bimodal with approximately half of the estimates for τ being centered

around a value of −14, and the other half being centered around a value of 0, which explains

why the SE(τ̂) is so much larger than the corresponding standard errors for the other three

methods. Second, with the exception of the PL estimate of τ and the MCMCML estimate of

θ, all four methods produced comparable estimates of the 4 parameters in the model. Third,

and finally, once again appealing to asymptotic normality, while GPL and BGPL both suggest

that each of the four model parameters is significant, MCMCML suggests that the spatial and

temporal effects are significant, and PL suggests that none of the effects are significant in the

model. Such discrepancies are surely attributable to the inclusion of the temporal parameter

in Model 5 since the four methods produced largely comparable results for Model 3. Perhaps

the temporal variable is correlated with, and thus competing with, the spatial variable and/or

the covariate, causing instability in the model estimates.

To help assess the adequacy of the fit for each of the four sets of parameters, for both Models

3 and 5, the SAE, as described in section 7.3, was computed with N = 500. The resulting

SAEs are given in Table 7.3. Note that the SAEs in this table were computed using only the

sites of the region that were not treated as fixed (i.e. all sites from time steps 2-11) so that the

SAEs from Models 3 and 5 were comparable. From Table 7.3, it is clear that for Model 3 the

MGPLEs provided the “best” fit with respect to SAE. Similarly, it is also clear from the table

that for Model 5 the MPLEs clearly provided the “best” fit with respect to SAE, with the

MCMCMLEs a close second. However, as the Model 5 fit of the MPLEs is questionable, for

reasons discussed in the preceding paragraph, we would be hesitant to consider such estimates

as reliable. Thus, we would argue that for Model 5 the MCMCMLEs provide the “best” fit in

terms of SAE. As for which model provides the overall best fit for the temperate grasslands
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Table 7.2: Parameter Estimates and Standard Errors for Fire Application Models M3 and M5
where the Methods of Estimation are PL, GPL for a three-site L-shaped Group Size, BGPL
for a 2x2x1 Block Size, and MCMCML

Model 3

Method PL GPL BGPL MCMCML

α̂ -4.4430 -4.2081 -3.9041 -4.0969
SE(α̂) 0.5568 0.6388 0.8652 0.5196

θ̂ 0.6260 0.8158 0.8742 0.8931

SE(θ̂) 0.1121 0.1053 0.1334 0.1015

β̂ 0.0229 0.0179 0.0140 0.0169

SE(β̂) 0.0062 0.0071 0.0095 0.0058

Model 5

Method PL GPL BGPL MCMCML

α̂ -5.3912 -4.8143 -4.9408 -5.0132
SE(α̂) 1.2920 0.7796 1.0434 1.8522

θ̂ 0.5735 0.6189 0.6420 1.2441

SE(θ̂) 0.4133 0.1268 0.1518 0.5137

β̂ 0.0197 0.0231 0.0245 0.0141

SE(β̂) 0.0145 0.0088 0.0115 0.0165
τ̂ 0.0150 1.6891 1.6520 2.1766

SE(τ̂) 6.6738 0.2198 0.2532 0.6039
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Table 7.3: SAEs for Fire Application Models M3 and M5 where the Methods of Estimation are
PL, GPL for a three-site L-shaped Group Size, BGPL for a 2x2x1 Block Size, and MCMCML

Model 3

Method PL GPL BGPL MCMCML

SAE 371.67 357.22 361.45 378.80

Model 5

Method PL GPL BGPL MCMCML

SAE 264.90 355.57 357.76 281.92

ecosystem data array, it depends on the criterion used. Model 5, with the MCMCMLEs as

the estimated values of the parameters, and Model 3, with the MGPLEs as the estimated

values of the parameters, appear to be two of the better models, but without a true cross

validation of these models, it is difficult to determine a “best” model or even whether any of

these models are very useful.

While we have determined that, among the five models considered, Model 5 is potentially

the best, we should take a moment and interpret the MCMCMLEs of Model 5. In particular,

since the autologistic model is just an intuitive extension of the logistic model, its parameters

are interpreted in the same manner as the parameters of a logistic model. Thus, if we let Yi,t

denote one of the regressor variables in the autologistic model for site i at time t , then the

odds ratio for an increase of one unit in Yi,t, holding the values of the other regressor variables

constant, is the following:

odds ratio =
odds of presence if Yi,t = (yi,t + 1)

odds of presence if Yi,t = yi,t
. (7.4)

Therefore, θ̂MCMC = 1.2441 produces an odds ratio of e1.2441 ≈ 3.47. In other words, for

each additional first-order isotropic neighbor experiencing a fire occurrence, the odds of a fire

occurrence increase by approximately 247%. Similarly, β̂MCMC = 0.0141 produces an odds

ratio of e0.0141 ≈ 1.0142. Hence, a ten unit increase in Departure from Average increases

the odds of fire occurrence by approximately 15.14% (e0.0141×10 ≈ 1.1514). Note that this
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indicates that the dryer the region becomes over the year, the less likely it is to experience

a fire occurrence, which is contrary to our intuition. We are not suggesting here, however,

that our intuition be labeled as incorrect since alternative explanations exist which can rectify

these inconsistencies. For example, perhaps the dryness of the region is related to weather

patterns over the area, which somehow influence fire occurrence, or there may be “swamping”

or competition effects with the space or time variables. In other words, perhaps there is a

confounding variable not accounted for that explains the inconsistency between our analysis

and long-held beliefs. Finally, τ̂MCMC = 2.1766 produces an odds ratio of e2.1766 ≈ 8.8163,

which means that if the lag-one temporal neighbor experiences a fire occurrence, the odds

of fire occurrence increase by approximately 782%. Therefore, in conclusion, the analysis

carried out in this chapter suggests that space, time, and the Departure from Average fire

potential metric are all helpful in explaining the spread of fire occurrence across the temperate

grasslands ecosystem of Oregon and Washington state.



Chapter 8

Concluding Remarks

To conclude the presentation of the research conducted for this dissertation, the novel contri-

butions made over the course of the previous seven chapters, as well as several problems that

remain either completely uninvestigated or unsatisfactorily explored, are summarized and dis-

cussed in this eighth and final chapter. There are five novel contributions made in this thesis

to the topic of Markov Random Field (MRF) modeling, and particularly to Binary MRF mod-

eling, as highlighted in Chapter 1. First, the need for a distinction between types of spatial

neighbor relations when using GPL and BGPL was recognized and justified in this disserta-

tion. More specifically, the spatial neighbor relations between two sites of any group/block

cannot be treated in the same fashion as the spatial neighbor relations between a site of that

group/block and a boundary site of that group/block and the conditional distribution forms

were modified to reflect this. Second, in Theorem 4.1 the strong consistency of the MGPLEs

and MBGPLEs was established for any finite and discrete state-space MRF. The proof of

this property that was given in Chapter 4, for both GPL and BGPL, was a generalization

of the proof of the MPLE’s strong consistency given by Geman and Graffigne ([13]). Third,

the first simulation study of the autologistic model comparing the newer and subtly different

methods of GPL and BGPL was conducted. This large-scale simulation study, which also in-

221
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corporated the well-established methods of PL and MCMCML, was conducted entirely in the

spatial domain and demonstrated that GPL is not only usually superior to BGPL, but is also

frequently competitive with MCMCML. This simulation study was also the first such study

to simultaneously incorporate covariates, spatial-anisotropy, and higher-order neighborhood

systems. Fourth, extensions of GPL and BGPL into the space-time domain for non-absorbing

state models were proposed and validated via a comparison with PL and MCMCML through

a small-scale simulation study using the spatio-temporal autologistic model. Fifth and finally,

the spatio-temporal autologistic model was applied to the fire occurrence data of the temper-

ate grasslands ecosystem of Oregon and Washington state. The methods of PL, GPL, BGPL,

and MCMCML were all used to estimate the corresponding model parameters and an SAE

procedure ([35]) was employed for model selection.

While this dissertation is both extensive and thorough, there remain topics within these

pages that require further investigation. The most pertinent of these topics, at least in our

opinion, along with a corresponding brief description, are given in the following list:

(1) Implementation of more efficient programming languages: As one of the primary

motivations behind the methods of GPL and BGPL is achieving a compromise between

PL and MCMCML, in terms of computational expense, programming these methods

in other languages may be worthwhile. More specifically, as R was the only language

used to carry out parameter estimation in this dissertation, GPL and BGPL can more

efficiently be carried out in another language, such as C, which would allow for the use

of larger group/block sizes when employing GPL/BGPL.

(2) Exploration of group/block structures that have “depth”: For this dissertation,

all group/block structures employed, either via simulation or application, involved sites

from the current time step only and, therefore, sites from previous time steps were only

conditioned upon in forming the group/block joint likelihoods. In other words, the

groups/blocks had no spatial or temporal “depth.” Incorporating such “depth” into the
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group/block structure was theoretically developed in Chapter 6, but the utility of such

structures for GPL and BGPL was never evaluated in this dissertation. Hence, it is of

interest to know whether or not the additional “depth” in such group/block structures

would produce “better” MGPLEs/MBGPLEs. Such a question could be addressed in a

straightforward manner via a simulation study.

(3) Incorporation of a space-time interaction component: Throughout this disser-

tation the separability of space and time was assumed. In reality, however, such a

simplifying assumption is likely invalid. In other words, the effect of space may depend

on time, and vice versa. Thus, spatio-temporal autologistic models that incorporate

a space-time interaction term need to be explored. The difficulty in such exploration

should not be in the form of such an autologistic model, but in estimating its corre-

sponding parameters. In particular, generalizing GPL and BGPL for use with such a

model will require theoretical investigation along with a simulation study validating any

proposed extensions.

(4) Development and validation of a model selection criterion: While the SAE

approach of Wu and Huffer ([35]) was used in this dissertation as a model selection

criterion, along with the PL-AIC measure suggested by Gumpertz et al. ([19]), the

validity of either of these methods has never been formally explored. Note that a cross-

validation approach to model selection has also been suggested by Gumpertz et al. ([19]),

as mentioned in Chapter 7, but the validity of this approach also has never been formally

explored. Hence, as modern computing has made implementing auto-models, such as the

autologistic model, fairly practical with respect to computational expense, we suspect

that the need for a model selection criterion that is both practical and reliable is only

going to grow. Perhaps one of the aforementioned methods is such a method, or perhaps

a new method needs to be developed, but either way the validity of such a procedure

must be theoretically justified and practically evaluated via a rigorous simulation-based

study.
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(5) Extensions of GPL and BGPL for spatio-temporal autologistic models under

absorbing states: The focus of this dissertation within the space-time domain was on

non-absorbing state models. However, absorbing state models are also needed in the

space-time domain for many applications, as briefly alluded to in Chapter 1. Recall that

an absorbing state is a type of temporal dependency in which a site remains permanently

in one state (say diseased) for the duration of the study, if or once it becomes diseased.

Hence, in order to employ GPL and BGPL in such a domain, these methods would

have to be adapted. We suspect that such an adaptation is not terribly difficult, but

nonetheless one does not currently exist in the literature.

(6) Extensions of the proofs of the strong consistency of the MGPLEs and MBG-

PLEs: The proofs given for the MGPLE’s and MBGPLE’s strong consistency assumes

a finite state-space and a fixed group/block structure. Extending these proofs so that

such assumptions are not needed would be extremely useful for the following two rea-

sons. First, the strong consistency of the MGPLEs and MBGPLEs would then apply to

additional models such as the auto-Poisson model. Second, the statistical modeler could

then confidently apply GPL and/or BGPL under varying group/block structures, which

may be helpful in modeling small and awkwardly shaped regions like the temperate

grasslands ecosystem modeled in Chapter 7.

In addition to the aforementioned topics, many other concepts from this dissertation deserve

further investigation, but have been omitted from the above list to limit the length of this

concluding chapter. Finally, note that as modern computing continues to advance, estimating

the parameters of the autologistic model, as well as the parameters of other auto-models, will

becomes less and less computationally expensive, which should allow for larger group/block

sizes and, therefore, better compromises between PL and MCMCML.
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Table A.1: MAEs of α and θ when the Model is FI2p and the Method of Estimation is GPL
for Group Sizes of 5 (gs5) and 9 (gs9)

26x26 50x50 74x74
Model Estimate gs5 gs9 gs5 gs9 gs5 gs9

FI2p MAE(α̂) 0.1542 0.1522 0.0720 0.0715 0.0491 0.0489

(−1.0, 0.0) MAE(θ̂) 0.1299 0.1282 0.0576 0.0572 0.0378 0.0376

FI2p MAE(α̂) 0.1551 0.1529 0.0783 0.0777 0.0500 0.0498

(−1.0, 0.1) MAE(θ̂) 0.1149 0.1132 0.0578 0.0571 0.0356 0.0356

FI2p MAE(α̂) 0.1597 0.1578 0.0803 0.0797 0.0527 0.0524

(−1.0, 0.2) MAE(θ̂) 0.1072 0.1059 0.0539 0.0535 0.0351 0.0349

FI2p MAE(α̂) 0.1787 0.1752 0.0850 0.0841 0.0535 0.0531

(−1.0, 0.3) MAE(θ̂) 0.1095 0.1065 0.0518 0.0513 0.0340 0.0338

FI2p MAE(α̂) 0.1698 0.1666 0.0869 0.0855 0.0580 0.0578

(−1.0, 0.4) MAE(θ̂) 0.0919 0.0907 0.0464 0.0461 0.0315 0.0313

FI2p MAE(α̂) 0.1981 0.1938 0.0932 0.0910 0.0633 0.0622

(−1.0, 0.5) MAE(θ̂) 0.0964 0.0941 0.0444 0.0435 0.0305 0.0299

FI2p MAE(α̂) 0.2372 0.2325 0.1176 0.1150 0.0743 0.0733

(−1.0, 0.6) MAE(θ̂) 0.1004 0.0979 0.0500 0.0490 0.0317 0.0313

FI2p MAE(α̂) 0.3012 0.2956 0.1406 0.1389 0.0929 0.0922

(−1.0, 0.7) MAE(θ̂) 0.1119 0.1098 0.0529 0.0520 0.0352 0.0349

FI2p MAE(α̂) 0.4102 0.3970 0.2008 0.1941 0.1277 0.1258

(−1.0, 0.8) MAE(θ̂) 0.1366 0.1324 0.0674 0.0654 0.0430 0.0425

FI2p MAE(α̂) 0.6552 0.6325 0.2839 0.2799 0.1952 0.1924

(−1.0, 0.9) MAE(θ̂) 0.2019 0.1952 0.0881 0.0871 0.0597 0.0589

FI2p MAE(α̂) 0.9572 0.9170 0.4096 0.4010 0.2709 0.2687

(−1.0, 1.0) MAE(θ̂) 0.2751 0.2640 0.1194 0.1173 0.0794 0.0787
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Table A.2: MAEs of α and θ when the Model is FI2p and the Method of Estimation is BGPL
for Block Sizes of 2x2 (bs2), 3x3 (bs3), and 4x4 (bs4)

26x26 50x50 74x74
Model Estimate bs2 bs3 bs4 bs2 bs3 bs4 bs2 bs3 bs4

FI2p MAE(α̂) 0.1454 0.1466 0.1451 0.0728 0.0739 0.0747 0.0507 0.0497 0.0498

(−1.0, 0.0) MAE(θ̂) 0.1292 0.1287 0.1295 0.0599 0.0596 0.0608 0.0394 0.0391 0.0389

FI2p MAE(α̂) 0.1473 0.1471 0.1477 0.0779 0.0772 0.0788 0.0509 0.0520 0.0510

(−1.0, 0.1) MAE(θ̂) 0.1117 0.1117 0.1119 0.0587 0.0585 0.0590 0.0371 0.0381 0.0371

FI2p MAE(α̂) 0.1624 0.1620 0.1627 0.0782 0.0814 0.0792 0.0543 0.0555 0.0556

(−1.0, 0.2) MAE(θ̂) 0.1084 0.1099 0.1076 0.0526 0.0564 0.0541 0.0371 0.0373 0.0380

FI2p MAE(α̂) 0.1748 0.1826 0.1719 0.0849 0.0862 0.0843 0.0548 0.0546 0.0540

(−1.0, 0.3) MAE(θ̂) 0.1073 0.1112 0.1035 0.0525 0.0524 0.0519 0.0350 0.0347 0.0344

FI2p MAE(α̂) 0.1673 0.1631 0.1613 0.0888 0.0877 0.0855 0.0602 0.0603 0.0601

(−1.0, 0.4) MAE(θ̂) 0.0939 0.0914 0.0907 0.0478 0.0476 0.0465 0.0325 0.0324 0.0325

FI2p MAE(α̂) 0.1977 0.1978 0.1951 0.0932 0.0932 0.0916 0.0643 0.0643 0.0641

(−1.0, 0.5) MAE(θ̂) 0.0960 0.0946 0.0942 0.0443 0.0444 0.0445 0.0305 0.0309 0.0304

FI2p MAE(α̂) 0.2386 0.2396 0.2354 0.1196 0.1183 0.1172 0.0770 0.0775 0.0757

(−1.0, 0.6) MAE(θ̂) 0.1014 0.1019 0.0993 0.0506 0.0510 0.0502 0.0328 0.0327 0.0321

FI2p MAE(α̂) 0.2943 0.2891 0.2917 0.1425 0.1440 0.1399 0.0985 0.0969 0.0963

(−1.0, 0.7) MAE(θ̂) 0.1082 0.1071 0.1071 0.0536 0.0545 0.0525 0.0372 0.0367 0.0365

FI2p MAE(α̂) 0.4047 0.4020 0.3966 0.2053 0.2014 0.2010 0.1347 0.1370 0.1333

(−1.0, 0.8) MAE(θ̂) 0.1357 0.1344 0.1318 0.0693 0.0682 0.0680 0.0452 0.0466 0.0451

FI2p MAE(α̂) 0.6365 0.6218 0.6094 0.2953 0.2932 0.2915 0.2022 0.2023 0.1981

(−1.0, 0.9) MAE(θ̂) 0.1977 0.1935 0.1885 0.0911 0.0916 0.0903 0.0620 0.0622 0.0607

FI2p MAE(α̂) 0.9352 0.9180 0.8958 0.4183 0.4166 0.4196 0.2779 0.2800 0.2726

(−1.0, 1.0) MAE(θ̂) 0.2699 0.2651 0.2599 0.1223 0.1218 0.1220 0.0813 0.0814 0.0798
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Table A.3: Sample Means and Standard Errors of α, θh, and θv when the Model is FAhv3p
and the Methods of Estimation are GPL for a Group Size of 9 (gs9) and BGPL for Block
Sizes of 2x2 (bs2), 3x3 (bs3), and 4x4 (bs4) (26× 26, 50× 50, and 74× 74 Lattices)

26x26 50x50
Model Estimate gs9 bs2 bs3 bs4 gs9 bs2 bs3 bs4

¯̂α -0.9754 -0.9814 -0.9815 -0.9843 -1.0039 -1.0050 -1.0063 -1.0044

ŜD(α̂) 0.3247 0.3286 0.3297 0.3242 0.1541 0.1576 0.1603 0.1580

FAhv3p
¯̂
θh 0.6993 0.7091 0.7091 0.7111 0.7028 0.7095 0.7074 0.7110

(−1.0, 0.7, 0.6) ŜD(θ̂h) 0.1892 0.1955 0.1950 0.1965 0.0911 0.0943 0.0963 0.0949
¯̂
θv 0.5904 0.5826 0.5828 0.5838 0.6023 0.5953 0.5990 0.5936

ŜD(θ̂v) 0.1914 0.2100 0.2127 0.2113 0.0905 0.0978 0.1006 0.0973
¯̂α -0.9477 -0.9757 -0.9775 -0.9735 -0.9920 -0.9898 -0.9908 -0.9937

ŜD(α̂) 0.3484 0.3532 0.3520 0.3484 0.1684 0.1723 0.1755 0.1732

FAhv3p
¯̂
θh 0.6677 0.6802 0.6797 0.6812 0.6983 0.6992 0.6978 0.7002

(−1.0, 0.7, 0.7) ŜD(θ̂h) 0.1951 0.2056 0.2063 0.2053 0.0936 0.0987 0.0996 0.0976
¯̂
θv 0.6962 0.7037 0.7072 0.7017 0.6959 0.6931 0.6958 0.6951

ŜD(θ̂v) 0.1908 0.2167 0.2174 0.2155 0.0949 0.1081 0.1074 0.1072
¯̂α -0.9535 -0.9817 -0.9764 -0.9798 -0.9970 -1.0044 -1.0012 -1.0014

ŜD(α̂) 0.4420 0.4433 0.4442 0.4372 0.2015 0.2009 0.2019 0.1994

FAhv3p
¯̂
θh 0.6819 0.6806 0.6840 0.6860 0.6985 0.6944 0.6959 0.6962

(−1.0, 0.7, 0.8) ŜD(θ̂h) 0.2310 0.2448 0.2444 0.2441 0.1090 0.1160 0.1154 0.1130
¯̂
θv 0.7952 0.8159 0.8090 0.8093 0.8013 0.8122 0.8083 0.8078

ŜD(θ̂v) 0.2136 0.2371 0.2352 0.2354 0.1021 0.1138 0.1146 0.1117
¯̂α -0.9146 -0.9687 -0.9731 -0.9654 -0.9766 -0.9945 -0.9942 -0.9904

ŜD(α̂) 0.5192 0.5189 0.5158 0.5123 0.2427 0.2578 0.2570 0.2578

FAhv3p
¯̂
θh 0.6747 0.6860 0.6842 0.6887 0.6924 0.6878 0.6901 0.6878

(−1.0, 0.7, 0.9) ŜD(θ̂h) 0.2535 0.2622 0.2576 0.2617 0.1163 0.1249 0.1245 0.1234
¯̂
θv 0.8808 0.9051 0.9106 0.9001 0.8947 0.9132 0.9107 0.9102

ŜD(θ̂v) 0.2423 0.2595 0.2615 0.2624 0.1184 0.1276 0.1296 0.1309
¯̂α -0.8925 -0.9468 -0.9433 -0.9410 -0.9741 -0.9966 -0.9947 -0.9972

ŜD(α̂) 0.6251 0.6289 0.6309 0.6341 0.2841 0.2984 0.2969 0.2973

FAhv3p
¯̂
θh 0.6672 0.6704 0.6710 0.6720 0.6951 0.6906 0.6903 0.6926

(−1.0, 0.7, 1.0) ŜD(θ̂h) 0.2822 0.3053 0.2958 0.3013 0.1457 0.1525 0.1530 0.1547
¯̂
θv 0.9811 1.0142 1.0111 1.0094 0.9911 1.0116 1.0107 1.0102

ŜD(θ̂v) 0.3049 0.3277 0.3302 0.3268 0.1409 0.1507 0.1522 0.1499
¯̂α -0.7971 -0.8683 -0.8626 -0.8591 -0.9516 -0.9819 -0.9790 -0.9783

ŜD(α̂) 0.7327 0.7419 0.7481 0.7369 0.3564 0.3696 0.3667 0.3678

FAhv3p
¯̂
θh 0.6340 0.6254 0.6248 0.6321 0.6798 0.6725 0.6775 0.6753

(−1.0, 0.7, 1.1) ŜD(θ̂h) 0.3580 0.3778 0.3766 0.3775 0.1602 0.1670 0.1675 0.1692
¯̂
θv 1.0623 1.1141 1.1129 1.1030 1.0941 1.1219 1.1149 1.1170

ŜD(θ̂v) 0.3368 0.3498 0.3632 0.3454 0.1621 0.1666 0.1692 0.1664
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Table A.3 (continued): Sample Means and Standard Errors of α, θh, and θv when the Model
is FAhv3p and the Methods of Estimation are GPL for a Group Size of 9 (gs9) and BGPL for
Block Sizes of 2x2 (bs2), 3x3 (bs3), and 4x4 (bs4) (26× 26, 50× 50, and 74× 74 Lattices)

74x74
Model Estimate gs9 bs2 bs3 bs4

¯̂α -0.9999 -0.9984 -0.9982 -0.9992

ŜD(α̂) 0.0976 0.0995 0.0982 0.0985

FAhv3p
¯̂
θh 0.7025 0.7060 0.7057 0.7068

(−1.0, 0.7, 0.6) ŜD(θ̂h) 0.0585 0.0606 0.0613 0.0605
¯̂
θv 0.5981 0.5922 0.5924 0.5923

ŜD(θ̂v) 0.0607 0.0644 0.0651 0.0652
¯̂α -0.9958 -0.9947 -0.9959 -0.9949

ŜD(α̂) 0.1096 0.1146 0.1142 0.1126

FAhv3p
¯̂
θh 0.6992 0.6993 0.6988 0.6989

(−1.0, 0.7, 0.7) ŜD(θ̂h) 0.0638 0.0684 0.0689 0.0684
¯̂
θv 0.6978 0.6968 0.6982 0.6974

ŜD(θ̂v) 0.0645 0.0738 0.0737 0.0736
¯̂α -0.9972 -1.0043 -1.0036 -1.0037

ŜD(α̂) 0.1339 0.1405 0.1397 0.1407

FAhv3p
¯̂
θh 0.6974 0.6942 0.6949 0.6944

(−1.0, 0.7, 0.8) ŜD(θ̂h) 0.0725 0.0758 0.0760 0.0759
¯̂
θv 0.8016 0.8108 0.8095 0.8099

ŜD(θ̂v) 0.0727 0.0807 0.0821 0.0809
¯̂α -0.9851 -0.9970 -0.9960 -0.9946

ŜD(α̂) 0.1661 0.1693 0.1714 0.1687

FAhv3p
¯̂
θh 0.6959 0.6920 0.6930 0.6933

(−1.0, 0.7, 0.9) ŜD(θ̂h) 0.0802 0.0824 0.0827 0.0821
¯̂
θv 0.8952 0.9081 0.9065 0.9052

ŜD(θ̂v) 0.0790 0.0811 0.0846 0.0846
¯̂α -0.9864 -1.0020 -1.0016 -1.0016

ŜD(α̂) 0.1926 0.2034 0.2039 0.2025

FAhv3p
¯̂
θh 0.6972 0.6915 0.6920 0.6931

(−1.0, 0.7, 1.0) ŜD(θ̂h) 0.0949 0.0982 0.0985 0.1000
¯̂
θv 0.9951 1.0120 1.0115 1.0103

ŜD(θ̂v) 0.0896 0.0910 0.0939 0.0929
¯̂α -0.9735 -0.9883 -0.9882 -0.9872

ŜD(α̂) 0.2369 0.2437 0.2441 0.2434

FAhv3p
¯̂
θh 0.6872 0.6814 0.6809 0.6827

(−1.0, 0.7, 1.1) ŜD(θ̂h) 0.1057 0.1083 0.1080 0.1088
¯̂
θv 1.0993 1.1151 1.1158 1.1133

ŜD(θ̂v) 0.1054 0.1090 0.1095 0.1105



A.3. SUPPLEMENTAL ITEMS FOR SECTION 5.5 233

Figure A.1: Relative MAEs of α, θh, and θv when the Model is FAhv3p and the Methods of
Estimation are GPL for a Group Size of 9 (gs9) and BGPL for Block Sizes of 2x2 (bs2), 3x3
(bs3), and 4x4 (bs4)

● ● ● ● ● ●

0.6 0.7 0.8 0.9 1.0 1.1

1.
00

1.
05

1.
10

1.
15

North/South Spatial Dependence

R
el

at
iv

e 
M

AE
(a) α Relative MAE (26x26)

● ● ● ● ● ●

0.6 0.7 0.8 0.9 1.0 1.1

1.
00

1.
05

1.
10

1.
15

North/South Spatial Dependence
R

el
at

iv
e 

M
AE

(b) θh Relative MAE (26x26)

● ● ● ● ● ●

0.6 0.7 0.8 0.9 1.0 1.1

1.
00

1.
05

1.
10

1.
15

North/South Spatial Dependence

R
el

at
iv

e 
M

AE

(c) α Relative MAE (50x50)

● ● ● ● ● ●

0.6 0.7 0.8 0.9 1.0 1.1

1.
00

1.
05

1.
10

1.
15

North/South Spatial Dependence

R
el

at
iv

e 
M

AE

(d) θh Relative MAE (50x50)

● ● ● ● ● ●

0.6 0.7 0.8 0.9 1.0 1.1

1.
00

1.
05

1.
10

1.
15

North/South Spatial Dependence

Re
la

tiv
e 

M
AE

(e) α Relative MAE (74x74)

● ● ● ● ● ●

0.6 0.7 0.8 0.9 1.0 1.1

1.
00

1.
05

1.
10

1.
15

North/South Spatial Dependence

Re
la

tiv
e 

M
AE

(f) θh Relative MAE (74x74)

● gs9
bs2
bs3
bs4



A.3. SUPPLEMENTAL ITEMS FOR SECTION 5.5 234

Figure A.1 (continued): Relative MAEs of α, θh, and θv when the Model is FAhv3p and the
Methods of Estimation are GPL for a Group Size of 9 (gs9) and BGPL for Block Sizes of 2x2
(bs2), 3x3 (bs3), and 4x4 (bs4)
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Table A.4: Proportion of Trials Converging when the Model is an Ising Model with (α, θ) =
(−3.2, 1.6) and the Method of Estimation is MCMCML Under the Following Reference Points:
MPLE (MCMCMLPL), MGPLE for a Group Size of 9 (MCMCMLgs9), and MBGPLE for a
Block Size of 4x4 (MCMCMLbs4)

Failed To Converge For

Lattice Size Method MCMCMLPL MCMCMLgs9 MCMCMLbs4

But MCMCMLPL 0 0.2636 0.3333
26× 26 Converged MCMCMLgs9 0.6836 0 0.6613

For MCMCMLbs4 0.5156 0.4273 0

But MCMCMLPL 0 0.3333 0.3636
50× 50 Converged MCMCMLgs9 0.7606 0 0.7847

For MCMCMLbs4 0.5317 0.5588 0

But MCMCMLPL 0 0.2830 0.4395
74× 74 Converged MCMCMLgs9 0.7226 0 0.7713

For MCMCMLbs4 0.5438 0.5189 0

Table A.5: Proportion of MCMCML Trials Converging for At Least One of the Three Refer-
ence Point Sets (MPLE, MGPLE for a Group Size of 9, or MBGPLE for a Block Size of 4x4)
when the Model is an Ising Model Near Phase Transition

Model 26× 26 50× 50 74× 74

Ising (-0.4,0.2) 1.000 1.000 1.000

Ising (-0.8,0.4) 1.000 1.000 1.000

Ising (-1.2,0.6) 1.000 1.000 1.000

Ising (-1.6,0.8) 1.000 1.000 1.000

Ising (-2.0,1.0) 1.000 1.000 1.000

Ising (-2.4,1.2) 1.000 1.000 1.000

Ising (-2.8,1.4) 0.992 1.000 1.000

Ising (-3.2,1.6) 0.898 0.932 0.924
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Figure A.2: Relative MAEs of α and θ when the Model is an Ising Model Near Phase Transition
and the Method of Estimation is MCMCML Under the Following Reference Points: MPLE
(MCMCML(PL)), MGPLE for a Group Size of 9 (MCMCML(gs9)), and MBGPLE for a Block
Size of 4x4 (MCMCML(bs4))
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Table A.6: Sample Means and Standard Errors of α, θ, and β (Fire Covariate) when the
Model is FI3p and the Methods of Parameter Estimation are PL, GPL for a Group Size of 9
(gs9), BGPL for a Block Size of 4x4 (bs4), and MCMCML

26x26
Model Estimate PL gs9 bs4 MCMCML

¯̂α -8.6995 -8.7342 -8.6957 -8.7033

ŜD(α̂) 2.4917 2.6683 2.4570 2.5670

FI3p
¯̂
θ 0.6423 0.5951 0.6435 0.6038

(-8.6,0.8,0.065) ŜD(θ̂) 0.5745 0.6032 0.5338 0.5323
¯̂
β 0.0660 0.0666 0.0660 0.0663

ŜD(β̂) 0.0305 0.0325 0.0299 0.0315

50x50
Model Estimate PL gs9 bs4 MCMCML

¯̂α -8.5868 -8.6346 -8.6378 -8.5706

ŜD(α̂) 1.1641 1.1922 1.1639 1.1639

FI3p
¯̂
θ 0.7689 0.7771 0.7846 0.7591

(-8.6,0.8,0.065) ŜD(θ̂) 0.2401 0.2351 0.2334 0.2288
¯̂
β 0.0648 0.0654 0.0654 0.0647

ŜD(β̂) 0.0142 0.0146 0.0142 0.0142

74x74
Model Estimate PL gs9 bs4 MCMCML

¯̂α -8.6815 -8.7427 -8.7551 -8.6806

ŜD(α̂) 0.7212 0.7245 0.7142 0.7190

FI3p
¯̂
θ 0.7872 0.8041 0.8103 0.7807

(-8.6,0.8,0.065) ŜD(θ̂) 0.1355 0.1288 0.1327 0.1271
¯̂
β 0.0660 0.0666 0.0667 0.0660

ŜD(β̂) 0.0086 0.0086 0.0085 0.0085
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Table A.7: Sample Means and Standard Errors of α and θ when the Model is an Ising Model
Near Phase Transition and the Methods of Estimation are PL, GPL for Group Sizes of 5 (gs5)
and 9 (gs9), BGPL for Block Sizes of 2x2 (bs2), 3x3 (bs3), and 4x4 (bs4), and MCMCML

26x26 50x50 74x74
Model Estimate PL MCMCML PL MCMCML PL MCMCML

¯̂α -0.4079 -0.4003 -0.4026 -0.4013 -0.4028 -0.4015

Ising ŜD(α̂) 0.2310 0.2367 0.1168 0.1165 0.0839 0.0843

(−0.4, 0.2)
¯̂
θ 0.2026 0.1991 0.2001 0.1995 0.2006 0.2000

ŜD(θ̂) 0.1093 0.1099 0.0561 0.0552 0.0398 0.0398
¯̂α -0.7942 -0.7818 -0.7998 -0.7973 -0.8038 -0.8034

Ising ŜD(α̂) 0.2278 0.2270 0.1105 0.1103 0.0768 0.0757

(−0.8, 0.4)
¯̂
θ 0.3984 0.3927 0.4006 0.3994 0.4021 0.4020

ŜD(θ̂) 0.1109 0.1080 0.0532 0.0524 0.0373 0.0364
¯̂α -1.1874 -1.1667 -1.2001 -1.1934 -1.2014 -1.1977

Ising ŜD(α̂) 0.2425 0.2279 0.1163 0.1130 0.0802 0.0790

(−1.2, 0.6)
¯̂
θ 0.5932 0.5834 0.6001 0.5969 0.6014 0.5997

ŜD(θ̂) 0.1185 0.1091 0.0560 0.0538 0.0385 0.0374
¯̂α -1.5880 -1.5600 -1.6012 -1.5915 -1.6063 -1.6009

Ising ŜD(α̂) 0.2304 0.2214 0.1173 0.1086 0.0810 0.0716

(−1.6, 0.8)
¯̂
θ 0.7950 0.7814 0.8010 0.7964 0.8032 0.8007

ŜD(θ̂) 0.1102 0.1039 0.0564 0.0510 0.0392 0.0341
¯̂α -2.0040 -1.9680 -2.0063 -1.9956 -1.9987 -1.9958

Ising ŜD(α̂) 0.2284 0.2002 0.1099 0.0955 0.0780 0.0658

(−2.0, 1.0)
¯̂
θ 1.0019 0.9848 1.0034 0.9984 0.9995 0.9982

ŜD(θ̂) 0.1138 0.0969 0.0546 0.0463 0.0385 0.0317
¯̂α -2.4004 -2.3513 -2.4019 -2.3919 -2.4044 -2.4005

Ising ŜD(α̂) 0.2368 0.1796 0.1163 0.0947 0.0737 0.0582

(−2.4, 1.2)
¯̂
θ 1.2020 1.1776 1.2012 1.1961 1.2021 1.2002

ŜD(θ̂) 0.1158 0.0848 0.0571 0.0449 0.0364 0.0281
¯̂α -2.8266 -2.7641 -2.8078 -2.7931 -2.8067 -2.7968

Ising ŜD(α̂) 0.2412 0.1695 0.1164 0.0838 0.0799 0.0612

(−2.8, 1.4)
¯̂
θ 1.4128 1.3813 1.4034 1.3961 1.4033 1.3985

ŜD(θ̂) 0.1210 0.0820 0.0581 0.0413 0.0397 0.0299
¯̂α -3.1700 -3.1158 -3.1952 -3.1819 -3.1967 -3.1870

Ising ŜD(α̂) 0.2156 0.1348 0.1102 0.0862 0.0704 0.0506

(−3.2, 1.6)
¯̂
θ 1.5815 1.5512 1.5945 1.5845 1.5964 1.5880

ŜD(θ̂) 0.1138 0.0706 0.0590 0.0460 0.0375 0.0283
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Table A.7 (continued): Sample Means and Standard Errors of α and θ when the Model is an
Ising Model Near Phase Transition and the Methods of Estimation are PL, GPL for Group
Sizes of 5 (gs5) and 9 (gs9), BGPL for Block Sizes of 2x2 (bs2), 3x3 (bs3), and 4x4 (bs4), and
MCMCML

26x26 50x50 74x74
Model Estimate gs5 gs9 gs5 gs9 gs5 gs9

¯̂α -0.3999 -0.3984 -0.4024 -0.4017 -0.4021 -0.4019

Ising ŜD(α̂) 0.2447 0.2424 0.1246 0.1228 0.0842 0.0837

(−0.4, 0.2)
¯̂
θ 0.1987 0.1980 0.1999 0.1996 0.2003 0.2002

ŜD(θ̂) 0.1160 0.1147 0.0592 0.0583 0.0400 0.0397
¯̂α -0.7861 -0.7846 -0.7988 -0.7988 -0.8031 -0.8033

Ising ŜD(α̂) 0.2381 0.2345 0.1136 0.1130 0.0776 0.0771

(−0.8, 0.4)
¯̂
θ 0.3945 0.3940 0.3999 0.3999 0.4019 0.4020

ŜD(θ̂) 0.1151 0.1129 0.0545 0.0542 0.0375 0.0373
¯̂α -1.1757 -1.1711 -1.1983 -1.1966 -1.1989 -1.1982

Ising ŜD(α̂) 0.2484 0.2391 0.1146 0.1128 0.0803 0.0792

(−1.2, 0.6)
¯̂
θ 0.5876 0.5853 0.5990 0.5981 0.6001 0.5998

ŜD(θ̂) 0.1208 0.1159 0.0553 0.0545 0.0386 0.0380
¯̂α -1.5726 -1.5657 -1.5974 -1.5952 -1.6049 -1.6039

Ising ŜD(α̂) 0.2342 0.2280 0.1111 0.1074 0.0759 0.0726

(−1.6, 0.8)
¯̂
θ 0.7867 0.7832 0.7992 0.7981 0.8025 0.8020

ŜD(θ̂) 0.1116 0.1083 0.0535 0.0516 0.0367 0.0351
¯̂α -1.9893 -1.9809 -2.0048 -2.0026 -2.0004 -2.0002

Ising ŜD(α̂) 0.2250 0.2156 0.1020 0.0972 0.0702 0.0663

(−2.0, 1.0)
¯̂
θ 0.9950 0.9906 1.0027 1.0016 1.0002 1.0002

ŜD(θ̂) 0.1107 0.1064 0.0507 0.0481 0.0345 0.0326
¯̂α -2.3874 -2.3777 -2.3992 -2.3975 -2.4053 -2.4045

Ising ŜD(α̂) 0.2088 0.1909 0.1044 0.0953 0.0650 0.0592

(−2.4, 1.2)
¯̂
θ 1.1950 1.1899 1.1997 1.1988 1.2025 1.2021

ŜD(θ̂) 0.1011 0.0915 0.0509 0.0464 0.0320 0.0291
¯̂α -2.8197 -2.8086 -2.8077 -2.8061 -2.8045 -2.8029

Ising ŜD(α̂) 0.2191 0.1973 0.1031 0.0930 0.0693 0.0629

(−2.8, 1.4)
¯̂
θ 1.4087 1.4032 1.4034 1.4026 1.4022 1.4013

ŜD(θ̂) 0.1088 0.0977 0.0516 0.0464 0.0344 0.0312
¯̂α -3.1619 -3.1602 -3.1950 -3.1954 -3.1995 -3.1999

Ising ŜD(α̂) 0.1884 0.1661 0.0925 0.0819 0.0597 0.0521

(−3.2, 1.6)
¯̂
θ 1.5763 1.5754 1.5944 1.5946 1.5973 1.5973

ŜD(θ̂) 0.1000 0.0879 0.0491 0.0432 0.0314 0.0272
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Table A.7 (continued): Sample Means and Standard Errors of α and θ when the Model is an
Ising Model Near Phase Transition and the Methods of Estimation are PL, GPL for Group
Sizes of 5 (gs5) and 9 (gs9), BGPL for Block Sizes of 2x2 (bs2), 3x3 (bs3), and 4x4 (bs4), and
MCMCML

26x26 50x50 74x74
Model Estimate bs2 bs3 bs4 bs2 bs3 bs4 bs2 bs3 bs4

¯̂α -0.4004 -0.4065 -0.3981 -0.4004 -0.4031 -0.4007 -0.4002 -0.4035 -0.4013

Ising ŜD(α̂) 0.2434 0.2461 0.2372 0.1261 0.1238 0.1234 0.0883 0.0881 0.0874

(−0.4, 0.2)
¯̂
θ 0.1989 0.2019 0.1977 0.1990 0.2003 0.1992 0.1993 0.2009 0.1998

ŜD(θ̂) 0.1153 0.1173 0.1121 0.0606 0.0598 0.0594 0.0414 0.0418 0.0410
¯̂α -0.7904 -0.7824 -0.7863 -0.8029 -0.8004 -0.8006 -0.8055 -0.8040 -0.8040

Ising ŜD(α̂) 0.2380 0.2333 0.2312 0.1143 0.1169 0.1142 0.0805 0.0812 0.0806

(−0.8, 0.4)
¯̂
θ 0.3965 0.3924 0.3944 0.4022 0.4008 0.4011 0.4030 0.4022 0.4023

ŜD(θ̂) 0.1158 0.1139 0.1124 0.0549 0.0568 0.0548 0.0390 0.0397 0.0389
¯̂α -1.1781 -1.1779 -1.1746 -1.1969 -1.1988 -1.1925 -1.2003 -1.2011 -1.1978

Ising ŜD(α̂) 0.2377 0.2418 0.2294 0.1176 0.1181 0.1170 0.0832 0.0828 0.0826

(−1.2, 0.6)
¯̂
θ 0.5885 0.5886 0.5868 0.5985 0.5994 0.5965 0.6009 0.6013 0.5997

ŜD(θ̂) 0.1160 0.1173 0.1127 0.0566 0.0574 0.0567 0.0401 0.0399 0.0399
¯̂α -1.5835 -1.5774 -1.5758 -1.5996 -1.5991 -1.5957 -1.6053 -1.6053 -1.6044

Ising ŜD(α̂) 0.2314 0.2328 0.2306 0.1154 0.1143 0.1122 0.0779 0.0777 0.0753

(−1.6, 0.8)
¯̂
θ 0.7927 0.7894 0.7889 0.8003 0.7998 0.7982 0.8027 0.8027 0.8023

ŜD(θ̂) 0.1107 0.1120 0.1093 0.0552 0.0549 0.0534 0.0377 0.0377 0.0363
¯̂α -1.9911 -1.9847 -1.9832 -2.0028 -2.0003 -2.0015 -1.9981 -1.9977 -1.9985

Ising ŜD(α̂) 0.2179 0.2175 0.2159 0.1055 0.1024 0.1019 0.0724 0.0697 0.0705

(−2.0, 1.0)
¯̂
θ 0.9955 0.9924 0.9918 1.0016 1.0004 1.0010 0.9992 0.9990 0.9993

ŜD(θ̂) 0.1077 0.1066 0.1063 0.0523 0.0503 0.0503 0.0358 0.0344 0.0346
¯̂α -2.3885 -2.3807 -2.3784 -2.4017 -2.3995 -2.4001 -2.4060 -2.4054 -2.4055

Ising ŜD(α̂) 0.2151 0.1947 0.1963 0.1063 0.1014 0.0982 0.0671 0.0635 0.0608

(−2.4, 1.2)
¯̂
θ 1.1959 1.1924 1.1904 1.2010 1.2002 1.2002 1.2029 1.2026 1.2026

ŜD(θ̂) 0.1043 0.0931 0.0938 0.0520 0.0490 0.0473 0.0332 0.0309 0.0297
¯̂α -2.8257 -2.8071 -2.8106 -2.8115 -2.8049 -2.8059 -2.8060 -2.8016 -2.8034

Ising ŜD(α̂) 0.2222 0.2001 0.1901 0.1037 0.0948 0.0919 0.0689 0.0656 0.0633

(−2.8, 1.4)
¯̂
θ 1.4123 1.4022 1.4054 1.4051 1.4016 1.4024 1.4029 1.4006 1.4015

ŜD(θ̂) 0.1104 0.0987 0.0946 0.0517 0.0471 0.0456 0.0341 0.0325 0.0309
¯̂α -3.1638 -3.1685 -3.1628 -3.1935 -3.1974 -3.1976 -3.1970 -3.1981 -3.1984

Ising ŜD(α̂) 0.1853 0.1799 0.1594 0.0935 0.0892 0.0821 0.0593 0.0567 0.0526

(−3.2, 1.6)
¯̂
θ 1.5775 1.5802 1.5769 1.5934 1.5957 1.5954 1.5962 1.5965 1.5963

ŜD(θ̂) 0.0980 0.0951 0.0834 0.0493 0.0467 0.0426 0.0314 0.0297 0.0274
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