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Tree ensembles have proven to be a popular and powerful tool for predictive modeling
tasks. The theory behind several of these methods (e.g. boosting) has received considerable
attention. However, other tree ensemble techniques (e.g. bagging, random forests) have
attracted limited theoretical treatment. Specifically, it has remained somewhat unclear as to
why the simple act of randomizing the tree growing algorithm should lead to such dramatic
improvements in performance. It has been suggested that a specific type of tree ensemble
acts by forming a locally adaptive distance metric [Lin and Jeon, 2006]. We generalize this
claim to include all tree ensembles methods and argue that this insight can help to explain
the exceptional performance of tree ensemble methods. Finally, we illustrate the use of tree
ensemble methods for an ecological niche modeling example involving the presence of malaria
vectors in Africa.
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Chapter 1

Tree Ensemble Methods

1.1 Introduction

Tree ensembles1 (bagging, random forests, etc.) have proven to be one of the most successful

techniques in statistical learning. However, the theoretical understanding of tree ensembles

has lagged behind the empirical evidence for their success. The result has been a diverse array

of tree ensemble methods that perform very similarly to each other.

We will briefly review decision trees and tree ensemble methods, describe some of the different

tree ensemble methods and review some recent attempts at theoretical explanations for their

success. We conclude by suggesting that the motivation driving the creation of new tree

ensemble techniques is unsatisfactory and by offering a promising alternative.
1By this we mean non-adaptive tree ensembles, so we are excluding methods like boosting [15,28] and arcing

[3] that have received more complete theoretical treatments.

1
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1.2 Statistical Learning

In statistical learning we are presented with a data sample, or training set, (yi,xi) for i =

1, . . . , n where (Y,X) arise from some joint distribution fY,X(y,x). The values x = (x1, . . . , xp)

are referred to as feature vectors or covariates. Let X and Y denote the domains of the random

variables X and Y respectively. The goal is as follows: given some independently observed

test point x0, accurately predict the value y0. (There are many other aspects to modeling, of

course, but here we will focus on predictive accuracy.)

This framework is divided further based on the nature of the values of y. When y is a

continuous random variable, y ∈ R, then we have a regression problem. When y is a discrete

random variable taking the unordered values y ∈ {1, . . . , G}, then it is called a classification

problem. In either case, we model the conditional distribution of y given x: E[y|X = x] for

regression and Pr[y = g|X = x] = Pr[g|X = x] for classification.

A statistical learner is a function f : X → Y that is intended to serve as an estimate of

either E[y|X = x] or Pr[g|X = x]. Let L(ŷ, y) denote a loss function that measures the dis-

crepancy between our function’s predictions and reality. This might be squared error loss or

misclassification rate. The apparent or empirical error is the average error over our training

sample:

1
n

n∑
i=1

L(ŷi, yi)

The expected prediction error, or generalization error is the expected loss over the distribution

of (Y,X): EY,XL(ŷ, y). The empirical loss is typically a biased estimate of the generalization

error and so various methods have been developed for obtaining more accurate estimates (for

example, cross-validation, the bootstrap)
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1.3 Decision Trees

A decision tree is a piece-wise constant function, f(x), on the feature space X . Let Π =

{R1, . . . , Rm} be a partitioning of X . A decision tree is constant on each region Ri ∈ Π.

Specifically, if x0 ∈ Ri, and Ri also contains the training points {(y1,x1), . . . , (y`,x`)} then

f(x0) =


1
`

∑`
i yi y ∈ R

arg max
∑`

i I(yi = g) y ∈ {1, 2, . . . , G}

where I denotes the indicator function. That is, f simply predicts the average response (or

majority class) in each region Ri ∈ Π. When y is discrete we have written f as returning a

class label, but we can easily modify f to estimate the class probabilities by the proportion

of training observations of each class in a region.

Clearly, the challenge is in constructing an optimal partition Π. Searching for an optimal

partition is generally a difficult combinatorial problem so we will simplify things considerably.

This is done via a greedy algorithm and by restricting ourselves to a small class of partitions:

those using only binary splits of the form: xi ≤ c.

This greedy algorithm is often called recursive binary partitioning, which leads to the char-

acteristic “tree” structure. We begin with all of the training data in the root node and we

perform an exhaustive search for the binary split of the form xi ≤ c that minimizes a loss

function L(ŷ, y). All of the training observations for which xi ≤ c constitute the left daugh-

ter node (or child node) and the training observations for which xi > c constitute the right

daughter node. We then repeat our search for a split on each daughter node. The process

continues recursively until there is only one training observation in each node. These nodes

represent the regions Ri in the partition Π and are called leaf or terminal nodes.
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A partitioning with only one training observation in each terminal node is typically not op-

timal. Specifically, its generalization error will often be very high. Many methods have been

developed to prune a maximally grown decision tree (cf. [4]). We will not address these

methods here, as they are fairly involved and are not typically used in tree ensemble methods.

Instead we will simply refer to trees that are “grown” until there are a maximum number

of training observations in each terminal node. When this number is small we will split our

training data many times and get a “large” tree, while when this number is large we will split

our training data only a few times and get a “small” tree. This is called a stopping criteria:

we stop splitting nodes when they contain ≤ k training observations.

1.4 Tree Ensembles

A tree ensemble is simply a statistical learner that is defined to be the average (or majority

vote, in the classification case) over a collection of trees, f1, . . . , fB.

The first tree ensemble method was bootstrap aggregation, or bagging [2]. Suppose we draw B

bootstrap samples from the training set and fit a decision tree using each bootstrap replicate:

f∗1 , . . . , f
∗
B. Each bootstrap sample will result in a slightly different partitioning and hence a

slightly different decision tree. Then the bagged decision tree is

fe(x) =
1
B

B∑
b=1

f∗b (x)

for a continuous response y, and

fe(x) = arg max
g

B∑
b=1

I(f∗b (x) = g)
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when y is categorical. Hence when y is continuous we average the predictions f∗b (x) and

when y is categorical we take the majority vote among the f∗b (x). Again, this expression is

easily modified to estimate the class probabilities directly. Breiman [2] demonstrated that

this simple procedure significantly outperforms single pruned decision trees.

The success of bagging spurred the development of other methods that employ increasing

amounts of randomization in the creation of the individual decision trees. Breiman [5] intro-

duced Random Forests (RFs) based on a technique developed by Amit and Geman [1]. In

RFs, trees are built on bootstrap samples of the data, as in bagging. However, at each node

of each tree, the algorithm only searches over a randomly selected subset of the covariates

for the best split. Breiman also discussed randomizing the procedure further by searching for

splits over random linear combinations of covariates (RF-RC): at each node select L variables

and create F linear combinations of these L variables using coefficients generated randomly

on the interval [−1, 1].

Ho [20] suggested the random subspace method (RS), which is essentially identical to RFs

but omits the bootstrap resampling. Cutler and Zhao [10] introduced perfect random tree

ensembles (PERT) for classification tasks. In PERT, trees are constructed as follows: at

each node two data points xi = (xi1, . . . , xip), xj = (xj1, . . . , xjp) are selected at random

until they belong to different classes (if this is not possible, all values in this node are in

the same class, and the node is terminal); randomly choose a feature, k, and split the data

at αxik + (1 − α)xjk where α ∼ U(0, 1). Cutler and Zhao note that this procedure can

be performed with or without bootstrapping. They observe that PERT achieves accuracies

similar (or better) than AdaBoost, RF, and RF-RC with running times that are considerably

faster.

Geurts et al. [17] introduced extremely randomized trees (ERT). Here, at each node a random

subset of L variables is selected, as in RFs. However, ERTs then select a split point completely

at random on each of these L variables and split the node on the best of these L splits. This
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procedure is essentially identical to that suggested by Lin and Jeon [22], although they call it

random point selection (RPS). They also note that this procedure can easily be incorporated

into RF-RC: a split is randomly chosen on each linear combination and the best of these

is selected to split the data. Lin and Jeon observe that this procedure maintains very high

accuracies while running much faster than traditional bagging or RF procedures that search

over all possible splits on each covariate.

Several authors have examined completely random trees (CRT) [13,14,23], where each split is

chosen randomly, without evaluating any of the commonly used improvement criteria such as

gini index, mean squared error (MSE) or variance reduction. Surprisingly, even this amount

of randomness seems to work very well, although it appears to perform poorly when a large

number of irrelevant features are present [24]. This problem can be ameliorated by varying

the probability that one chooses a split randomly or according to some improvement criteria

at each node [24].

In general, each author recommends growing large trees (i.e. a small number of training

observations in each terminal node), frequently the largest trees possible, although Lin and

Jeon [22] suggest that this may not always be optimal. Typically what is recommended is

growing trees until there are between 1 and 5 observations per terminal node, depending on

the particular algorithm and whether the problem is one of classification or regression.

1.4.1 Theoretical justifications for tree ensembles

We begin by reviewing Breiman’s [2] justification for bagging. Suppose that y is continuous

(a similar argument exists for when y is discrete, which we omit) and that we can collect

multiple independent training sets T from a distribution and fit a learner (i.e. a decision tree)

on each set, f(x, T ). Then the aggregated learner is defined to be the expected prediction

over all possible training sets,
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fA(x) = ET (f(x, T )).

Let (y0,x0) be an independent test point. Using squared-error loss we have,

ET (y0 − f(x0, T ))2 = y2
0 − 2y0ET f(x0, T ) + ET f

2(x0, T )

Substituting ET f(x0, T ) = fA(x0) and applying the inequality EZ2 ≥ (EZ)2 yields

ET (y0 − f(x0))2 ≥ (y0 − fA(x0))2.

Integrating over (Y,X) on both sides shows that the mean squared error of the aggregated

learner is never greater than the mean squared error of a learner fit to a single training set.

Breiman asserts that how much improvement we see depends on how unequal the two sides

of

(ET f(x0, T ))2 ≤ ET f2(x0, T )

are. In essence, the more variable f(x, T ) is with each individual training set T , the greater the

advantage of the aggregated predictor fA. Hence Breiman claims the advantage of bagging

is to reduce variance, and will be particularly effective for learners that are in some sense

“unstable”. By unstable, Breiman means that small perturbations in the training set T

produce large changes in the function f(x, T ).

Obviously, it is not possible to sample randomly with replacement from the distribution that

generated the training set T . Instead, the bagging procedure samples with replacement from
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the empirical distribution placing mass 1/n at each training point in T . The hope is that

sampling from the bootstrap distribution will be a good approximation to sampling from the

distribution that generated the actual data. As has been noted elsewhere [31], this is not

really a proof that bagging works so much as a justification for why it’s reasonable to try. It

is important to note that many of the subsequently developed tree ensemble methods omit

bootstrapping entirely and still perform very well. This strongly suggests that data resampling

is not a crucial element of the success of tree ensembles.

There have been other limited investigations of tree ensembles, mostly focusing on bagging.

Domingos [12] suggested from a Bayesian perspective that bagging “shifts the priors to a

more appropriate model space”. Buja and Stuetzle [7] examine bagging in the limited case of

U -statistics and find that bagging always increases bias and that the effect on variance and

mean squared error (MSE) depend on the particular U -statistic and its distribution. Friedman

and Hall [16] provide a heuristic argument that bagging can reduce variance, although their

argument applies only to smooth estimators, whereas trees are non-smooth (the function is

not continuous). Buja [8] also argues in a very general setting that bagged functionals are

always “smooth” even if the original functional is not. Buhlmann and Yu [6] argue that

bagging results in a smoother decision boundary which in turn reduces variance. Unlike most

other investigations, Buhlmann and Yu address bagged decision trees directly, although the

theoretical results become very technical and shed little light on the essential mechanism of tree

ensembles. Grandvalet [18] observed that bagged decision trees tend to equalize the influence

of each training point on the resulting learner. Few of the more randomized tree ensembles

have received much theoretical examination. Cutler and Zhao [10] observe that PERT fits a

“blockwise multilinear interpolating surface.” They note that this can be calculated exactly

using some extremely complicated recursive equations but that it is faster to use Monte Carlo

estimation.

Some more promising results have been achieved for RFs. Breiman [5] proved that RFs

generalization error converges (in probability) as the number of trees increases, meaning that
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RFs will not overfit the training data. He also derives an upper bound on the generalization

error for RFs for classification, which we review here.

Let f(x, θ) denote a learner in an ensemble corresponding to the random vector θ and assume

that y is categorical. In the specific case of RFs, f(x, θ) is a single tree where θ denotes

the bootstrap sample used and the variables selected at each node. We can think of θ as

representing the randomness injected into the tree construction procedure. Hence different

realizations of the random vector θ will yield slightly different trees. Define the margin function

for a RF as

mr(x, y) = Pθ(f(x, θ) = y)−max
j 6=y

Pθ(f(x, θ) = j)

as the difference between the proportion of ensemble members making a correct prediction at

the point (x, y) and the proportion of ensemble members predicting the second most likely

class. The margin function can be thought of as measuring the certainty of an ensemble’s

predictions. Define the strength of a set of classifiers as

s = EX,Ymr(x, y),

the expectation of the margin over all points (x, y). Note that −1 ≤ mr(x, y), s ≤ 1. To ease

notation, let

ĵ(x, y) = arg max
j 6=y

Pθ(f(x, θ) = j)

denote the second most commonly predicted class at a point (x, y). Define the raw margin

function as
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rmg(θ,x, y) = I(f(x, θ) = y)− I(f(x, θ) = ĵ(x, y))

so that mr(x, y) is the expectation of rmg(θ,x, y) over the random vector θ. Let ρ(θ, θ1)

denote the correlation between rmg(θ,x, y) and rmg(θ1,x, y) where θ and θ1 are fixed and

the point (x, y) is allowed to vary. Finally, let ρ̄ denote the mean value of this correlation over

all pairs of realizations of θ. Breiman proves that the generalization error for RFs, PE∗, is

bounded by

PE∗ ≤ ρ̄(1− s2)
s2

(1.1)

The correlation ρ̄ measures the extent to which the same training points are correctly classified

by different trees. For example, if each tree correctly classifies the same subset of training

points, then ρ̄ = 1. A similar bound can be proven for the regression case, relating prediction

error to the correlation between residuals and the overall strength of each tree.

Breiman concludes that the goal in constructing tree ensembles is to decrease the correlation

between trees while maintaining their overall strength. This conclusion has driven much of the

pursuit for random tree building procedures in order to reduce ρ̄. Many (PERT, ERT, CRT

etc.) are motivated by an attempt to make the individual trees as uncorrelated as possible.

However, this path has had several drawbacks:

� The bound in (1.1) is likely to be loose. Indeed, in the unit square the median value

of this upper bound is roughly 1.2. In [5] Breiman calculates estimates of ρ̄ and s for

three data sets. For the sonar data the bound exceeds 1; for the satellite data the bound

is about 5 times higher than the actual accuracy achieved and it is fairly tight for the

breast data set. The only other instance we have found where ρ̄ and s are estimated
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is in [10] using PERT and CART. The results are summarized in Table 1.1. Note that

the upper bound is always far higher than the best error rate achieved with PERT (and

is once greater than one). Also observe that in two cases the upper bound for single

CART trees is actually lower than for PERT, even though their error rates are higher.

Table 1.1: Values for s, ρ̄, upper bound from (1.1) and error rates for PERT. Entries in
parentheses are values for single trees (CART).

s (CART) ρ̄ (CART) Bound (CART) Error
waveform 0.2 (0.37) 0.06 (0.22) 1.44 (1.39) 16.8
twonorm 0.5 (0.54) 0.07 (0.14) 0.21 (0.34) 3.0
threenorm 0.2 (0.31) 0.04 (0.13) 0.96 (1.22) 15.3
ringnorm 0.27 (0.48) 0.05 (0.14) 0.64 (0.47) 10.7

� Reducing ρ̄ has diminishing returns. The most extreme randomization exists in PERT

and CRT and the correlations achieved by PERT are remarkably small (Table 1.1).

However, the improvements in accuracy over methods like bagging and RFs are relatively

modest.

� This bound fails to account for the particular success of randomization in decision tree

ensembles as opposed to other learners. In deriving this bound, f(x, θ) could refer to

any base learner, including those known to receive little benefit from bagging (i.e. k

nearest neighbor). Why randomization techniques should be so successful with trees

but not with other learners is unclear.

1.5 A Look Ahead

We have given a short introduction to decision trees, tree ensembles and some of the theoret-

ical justifications for the success of these methods. Also, we have argued that the principal

theoretical justification has some serious shortcomings. In the following chapter, we will pro-

vide an alternative framework for understanding the success of tree ensembles by investigating
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a connection between tree ensembles, weighted k-nearest neighbor methods and distance met-

rics.



Chapter 2

Metrics

2.1 Introduction

In this chapter we will expand upon an observation by Lin and Jeon [22] to connect all

tree ensemble methods to weighted k-nearest neighbor, or kernel methods. We will discuss

the concept of an optimal distance metric and see how this relates to the behavior of tree

ensembles in general. We begin with the following definitions.

Definition 2.1.1. A function d(x,y) is called a metric when it satisfies the following condi-

tions,

1. d(x,y) ≥ 0

2. d(x,y) = d(y,x)

3. d(x,y) = 0⇔ x = y

4. d(x,y) ≤ d(x, z) + d(z,y).

13
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Definition 2.1.2. A function d(x,y) is called a pseudometric when it satisfies conditions 1,

2 and 4 from Definition 2.1.1.

Clearly, every metric is a pseudometric, but not vice versa. However, any pseudometric d

gives rise to a genuine metric in the following manner. Define an equivalence relation between

the points x and y by

x ∼ y⇔ d(x,y) = 0.

Then d is a metric on the resulting equivalence classes.

Definition 2.1.3. A kernel is a non-negative real valued function that satisfies the following

two conditions,

�

∫∞
−∞K(u)du = 1

� K(−u) = K(u).

We note here the important point that if K is a kernel, then so is Kλ(u) = λ−1K(λ−1u) for

λ > 0.

2.2 Kernel Methods

2.2.1 Introduction

Kernel methods are a general statistical learning method that estimates the conditional distri-

bution of y locally. The local nature of these methods are obtained via a kernel function that

identifies training observations that are in some sense “close” to the test point at which we
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would like to make a prediction. Almost any model for the conditional expectation of y can be

made “local” by introducing weights corresponding to a particular kernel function. Examples

include weighted versions of linear and non-linear parametric models. Here we consider only

the simplest form, a locally constant model, commonly called the Nadaraya-Watson estimator,

Ê(y|X = x0) =
∑n

i Kλ(x0,xi)yi∑n
i Kλ(x0,xi)

stated here for the case that y is continuous, where the kernel function acts by

Kλ(x0,x) = K

(
d(x0,x)
hλ(x0)

)
(2.1)

where d is some distance metric and hλ is a scaling factor, commonly called the bandwidth.

The analogous version when y is discrete is simply

P̂r(g|X = x0) =
∑n

i Kλ(x0,xi)I(yi = g)∑n
i Kλ(x0,xi)

.

Note that scaling by
∑n

i Kλ(x0,xi) is somewhat redundant, since this scaling factor could be

incorporated into the bandwidth function hλ.

With the appropriate choice of hλ and K this definition includes the well known k-nearest

neighbor and weighted k nearest neighbor methods.

2.2.2 Optimal metrics

The notion of “closeness” that is embodied in a kernel is largely captured by the distance metric

used in 2.1. It is well known in k-nearest neighbor modeling that the choice of distance metric

can dramatically affect performance. This has motivated the identification of an optimal

distance metric. The central result in this vein is by Cover and Hart [9], where they motivate

and derive an optimal distance metric for the 1-nearest neighbor learner in the case of 2-class
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classification. We review this result here.

Let xnn denote the closest training point to the independent test point x0. The risk of a

1-nearest neighbor classifier is the probability that we misclassify x0. We will shorten our

notation slightly so that, for example, Pr(1|x0) = Pr(Y0 = 1|x0) and Pr(1|xnn) = Pr(Ynn =

1|xnn). They begin by substituting the asymptotic risk of the 1-NN rule with its upper bound

(see [29],[26] for a derivation of this bound):

r?(x0) = 2 Pr(1|x0) Pr(2|x0)

On the other hand, the finite sample risk is given by

r(x0,xnn) = Pr(1|x0) Pr(2|xnn) + Pr(2|x0) Pr(1|xnn)

= Pr(1|x0) Pr(2|xnn) + Pr(1|x0)− Pr(1|x0) Pr(2|x0)− Pr(1|x0) +

Pr(1|x0) Pr(2|x0) + Pr(2|x0) Pr(1|xnn)

= Pr(1|x0) Pr(2|x0) + Pr(1|x0)− Pr(1|x0) Pr(2|x0)− Pr(1|x0) + Pr(1|x0) Pr(2|xnn) +

Pr(2|x0) Pr(1|xnn)

= Pr(1|x0) Pr(2|x0) + Pr(1|x0) [1− Pr(2|x0)]− Pr(1|x0) [1− Pr(2|xnn)] +

Pr(2|x0) Pr(1|xnn)

= Pr(1|x0) Pr(2|x0) + Pr(1|x0)2 − Pr(1|x0) Pr(1|xnn) + Pr(2|x0) Pr(1|xnn)

= 2 Pr(1|x0) Pr(2|x0) + Pr(1|x0)2 − Pr(1|x0) Pr(1|xnn)−

Pr(1|x0) Pr(2|x0) + Pr(2|x0) Pr(1|xnn)

= 2 Pr(1|x0) Pr(2|x0) + [Pr(1|x0)− Pr(2|x0)] · [Pr(1|x0)− Pr(1|xnn)]

In light of these two expressions for r?(x0) and r(x0,xnn), they argue that it makes sense
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to choose a distance metric that minimizes the difference between the asymptotic and finite

sample risk of the 1-nearest neighbor model. The difference is simply

r(x0,xnn)− r?(x0) = [Pr(1|x0)− Pr(2|x0)] · [Pr(1|x0)− Pr(1|xnn)] .

So for a fixed x0, minimizing this is equivalent to minimizing |Pr(1|x0) − Pr(1|xnn)| or

[Pr(1|x0)− Pr(1|xnn)]2. Hence, for two class classification, when using the 1-NN learner,

we should use as a distance metric the function

d1(x1,x2) = |Pr(1|x1)− Pr(1|x2)|. (2.2)

Arguing by analogy, there are several options for extending this metric to multi-class classifi-

cation (cf. [26]), among them

d1(x1,x2) =
G∑
g=1

|Pr(g|x1)− Pr(g|x2)|, or

d1(x1,x2) =
G∑
g=1

Pr(g|x1) · |Pr(g|x1)− Pr(g|x2)|.

Similarly, the analogous version of d1 for a continuous response would be d1(x1,x2) = |E[y|x1]−

E[y|x2]|.

The first thing to note is that 2.2 is not, in fact, a metric. Specifically, we may have two points

x1 6= x2 where d1(x1,x2) = 0, so it fails condition (3) in Definition 2.1.1. Hence d1 is in fact

a pseudometric, which can be converted to a true metric by considering equivalence classes

defined by those points where Pr(1|x1) = Pr(1|x2). Additionally, the usefulness of this metric

seems limited, since if we knew the conditional class probabilities, a simple application of Bayes

rule would yield the optimal classifier. Specifically, if we knew Pr(g|x0) for g = 1, . . . , G, then

we would simply set ŷ0 = arg maxg Pr(g|x0).
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Intuitively, this metric is telling us that observations that lie on similar contours of the condi-

tional expectation of y should be considered “close”. Note that this may or may not correspond

to our intuitive notion of distance in the space X . Two points x1 and x2 might be very dis-

tant in terms of their Euclidean distance, but if the conditional expectation of y at these two

points is very close, then in some sense they are very “similar”. Several authors ([11], [19])

have used this result to motivate the development of local distance metrics, that create a

unique distance metric for each test point x0 that accounts for the local characteristics of the

conditional distribution of y. Usually, this is done through some form of feature weighting. For

example, if near x0 the conditional distribution of y changes rapidly in the xi direction, but

remains relatively constant in the xj direction, then in the resulting metric the xi coordinate

will receive a large weight and xj a small weight.

2.3 Tree Ensembles as Kernel Method

2.3.1 Introduction

Here we will characterize all tree ensemble methods as kernel models. Specifically, the pre-

dictions from tree ensembles are weighted averages of the training data, and the weights are

based upon a distance metric created by the tree ensemble. This basic idea was first noticed

by Lin and Jeon [22]; we extend this notion to include all tree ensembles rather than just a

particular type of random forest model.

Next, we explain how the metric created by tree ensembles is related to the optimal 1-NN

metric d1 described above, and provide a general, heuristic argument that this type of metric

is sensible in the context of kernel methods in general.
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2.3.2 Partition Based Metrics

Let Π1, . . . ,ΠB be a finite number of partitions on the space X , with Πi = {R1i , . . . , Rmi}.

Hence in each Πi, R` ∩ Rj = ∅ for all ` 6= j and
⋃
`R` = X . Let A(x1,x2,Π) denote the

event that x1 and x2 lie in the same region of the partition Π. In other words, there exists an

R` ∈ Π such that x1,x2 ∈ R`.

Further, let Q(x1,x2) be defined as

Q(x1,x2) =
1
B

B∑
i=1

I(A(x1,x2,Πi))

and let d2(x1,x2) = 1 − Q(x1,x2). So Q(x1,x2) is simply the proportion of times that x1

and x2 lie in the same region over all partitions Π1, . . . ,ΠB. First we prove that d2 is a

pseudometric.

Proposition 1. The function d2(x1,x2) = 1−Q(x1,x2) is a pseudometric.

Proof. First we observe that d2(x1,x2) ≥ 0 simply by construction. By the properties of a

partition and set inclusion, we have that the event A(x1,x2,Π) occurs if and only if the event

A(x2,x1,Π) occurs, so we immediately have that d2(x1,x2) = d2(x2,x1). To demonstrate

that d2 satisfies the triangle inequality, we must show that

d2(x1,x2) ≤ d2(x1,x3) + d2(x3,x2)

which is equivalent to showing that

1−Q(x1,x2) ≤ 1−Q(x1,x3) + 1−Q(x3,x2)

or finally that

Q(x1,x3) +Q(x3,x2) ≤ 1 +Q(x1,x2).



2.3. TREE ENSEMBLES AS KERNEL METHOD 20

The remaining part of the proof proceeds by induction on the number of partitions, B. First

suppose there is only one partition, Π1. Then the function Q can take only the values 1 or 0.

The only way the inequality could be violated is if Q(x1,x2) = 0 but Q(x3,x2) = Q(x1,x3) =

1. But this would imply that there exists an R` ∈ Π1 such that x3,x2 ∈ R` and there exists

an Rj ∈ Π1 such that x1,x3 ∈ Rj . But by the properties of partitions, this would imply that

R` = Rj , and that x1,x2 ∈ Rj = R` which contradicts Q(x1,x2) = 0.

Now suppose that the inequality holds for B partitions, and let ΠB+1 be another partition.

To ease notation, define

a =
B∑
i=1

I(A(x1,x3,Πi))

b =
B∑
i=1

I(A(x3,x2,Πi))

c =
B∑
i=1

I(A(x1,x2,Πi))

so that a, b, c simply count the number of times that each pair of points lies in the same region

over the first B partitions. Then by our induction hypothesis we have that

a

B
+
b

B
≤ 1 +

c

B
,

a+ b ≤ B + c.

Now, when we add the partition ΠB+1, there are only three possibilities: (1) each of a, b, c

is increased by one, (2) precisely one of a, b, c is increased by one and the others remain
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unchanged, or (3) they all remain unchanged. In the first case we would have

a+ 1
B + 1

+
b+ 1
B + 1

≤ 1 +
c+ 1
B + 1

a+ 1 + b+ 1 ≤ B + 1 + c+ 1

a+ b ≤ B + c.

Similarly, if we assume that (without loss of generality) only a is increased by one we would

have

a+ 1
B + 1

+
b

B + 1
≤ 1 +

c

B + 1

a+ 1 + b ≤ B + 1 + c

a+ b ≤ B + c

Finally, if none of a, b, c are increased by one, we are left with

a+ b ≤ B + 1 + c

and so the expression holds in each case.

It is easy to note that d2 may fail (3) from Definition 2.1.1; namely, two points x1 6= x2 may

lie in the same region in every partition Πi and hence would have d2(x1,x2) = 0. As noted

above, we can create a true metric from d2 simply by defining equivalence classes consisting

of those points whose distance is zero and allowing d2 to act on the equivalence classes.

Since a decision tree partitions the space X , we have as an immediate corollary to Proposition
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1.

Corollary 2.3.1. For any tree ensemble method the function d2, defined as above, is a pseu-

dometric (and hence there exists an associated metric), on the feature space X .

We emphasize that this corollary applies to any tree ensemble, regardless of the depth of the

trees, or the nature of their construction. All that is required is that each tree consists of a

partition of X .

2.3.3 Tree Ensembles as Kernel Methods

We begin by describing Lin and Jeon’s original observation in this vein, in which they consid-

ered a restricted class of random forest tree ensembles. Specifically, consider a tree ensemble

in which each tree is grown to maximal depth: each leaf of each tree contains only a single

training point.

This is slightly awkward in a classification setting, since if a node contains multiple training

points all from the same class (i.e. the node is pure) we would typically not continue to

split that node. So we must make the assumption that pure nodes with more than one

training observation will be split, albeit randomly. (How we split pure nodes is irrelevant

to the resulting ensemble, since the predictions will remain unchanged.) We can handle the

analogous situation for regression in the same manner.

As before, let Π1, . . . ,ΠB denote B trees (i.e. partitions of X ) grown in this fashion on the

training set (yi,xi)ni=1. Then it is easy to see that the ensemble’s prediction at a point x0 is



2.3. TREE ENSEMBLES AS KERNEL METHOD 23

simply a weighted average of the yi’s:

Ê(y|x0) =
n∑
i=1

Q(xi,x0)yi if y is a continuous response (2.3)

P̂r(g|x0) =
n∑
i=1

Q(xi,x0)I(yi = g) if y is a discrete response (2.4)

where the function Q has the same meaning as in equation 2.3; namely the proportion of

times that xi and x0 lie in the same region (terminal node) over all partitions (trees). In

addition, we see that these tree ensembles are creating a unique distance metric and then

fitting a distance weighted n-nearest neighbor model. In practice, many of the training points

receive a weight of 0, so we might say that the ensemble is fitting a distance weighted k-nearest

neighbor model, where k (and the metric!) is different for each test point x0.

Of course, in actual implementations of tree ensembles it is often the case that we do not

construct each tree such that every terminal node contains only a single training point. Hence,

we might ask what can be said about tree ensembles in general: what happens if we relax the

requirement that each terminal node contains only a single training point? The answer will

require a simple modification of our definition of Q.

Let us assume again that we have B partitions (trees), Π1, . . . ,ΠB and a training set (yi,xi)ni=1.

We need not have used the training set to create the partitions (trees), Πi, but there must be

at least one training point in every region of every partition. Let Ri(xj) denote the region

in partition (tree) Πi that contains the point xj . Finally, let |Ri(xj)| denote the number of

training points contained in the region Ri(xj).

Suppose for the moment that y is continuous and consider a point x0 not in the training set.

We can write the prediction made by the tree ensemble at the point x0 using the notation

above as
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ŷ0 =
1
B

B∑
i=1

|Ri(x0)|−1

 ∑
yj∈Ri(x0)

yj

 . (2.5)

So this is simply an average of averages; we average the mean of the yj ’s in each node containing

x0. If we rearrange the terms in this sum we find that the weight that each training value yj

receives in the final prediction is simply the sum of the |Ri(x0)|−1 over the yj , the reciprocal

of the number of training observations in each node containing yj .

We have used the notation z1, z2 to emphasize that they may not be points in the training

set. Then we can write equivalent expressions to Equations 2.3 and 2.4 by modifying our

definition of Q. Specifically, we define Q? as

Q?(z1, z2) =
1
B

B∑
i=1

|Ri(z1)|−1I(A(z1, z2,Πi)). (2.6)

Note that Q? includes Q as a special case, when |Ri(zj)| = 1 for all i, j. Additionally, we note

that |Ri(zj)| only counts the training points contained in that region of a partition (tree).

With this modification, we can say that for any tree ensemble,

Ê(y|x0) =
n∑
i=1

Q?(xi,x0)yi if y is a continuous response (2.7)

P̂r(g|x0) =
n∑
i=1

Q?(xi,x0)I(yi = g) if y is a discrete response (2.8)

There are some important differences between Q and Q?. First, our definition of Q required

only a collection of partitions (trees) on the space X ; Q? requires both a collection of partitions

(trees) and a training set (yi,xi)ni=1. Additionally, we require that each region in each partition

contain at least one training point; there can be no “empty” regions. However, we again note

that the training points need not have been used to create the partitions (trees).

Next, we can see that the function Q is bounded 0 ≤ Q(x1,x2) ≤ 1, so that the resulting
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pseudometric is also bounded between 0 and 1. However, when we allow more than one

training observation in each region (terminal node) of every partition (tree), the bounds on

Q? may be different. Specifically, if z1 and z2 never lie in the same region (terminal node),

then Q?(z1, z2) = 0, so the lower bound is the same. However, suppose that z1 and z2 always

lie in the same region (terminal node), but that one of those regions contains more than one

training point: |Ri(z1)| > 1. Then Q?(z1, z2) < 1.

To make this observation more concrete, suppose that there are exactly k > 1 training observa-

tions in each region (terminal node). Then if z1 and z2 always lie in the same region (terminal

node) we have that Q?(z1, z2) = 1/k so the function Q? is bounded 0 ≤ Q?(z1, z2) ≤ 1/k. In

general, there may be a different number of training points in each region of each partition,

so determining universal bounds on Q? is in practice unrealistic. However, we can observe

that increasing the average number of observations per region (terminal node) will generally

cause the values Q?(xi,x0) in (2.8) to be more evenly distributed across the training points

xi. Conversely, decreasing the average number of observations per region (terminal node) will

cause the values Q?(xi,x0) to depend on only a handful of training points.

The fact that there may be different numbers of training points in each region of every partition

gives the impression that Q? is considerably more complex than Q. However, this is not

necessarily the case. Assume, as above, that every region of each partition Π contains exactly

k training points. Then we can rewrite Q? simply as
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Q?(z1, z2) =
1
B

B∑
i=1

1
|Ri(z1)|

I(A(z1, z2,Πi))

=
1
B

B∑
i=1

k−1I(A(z1, z2,Πi))

=
1
kB

B∑
i=1

I(A(z1, z2,Πi))

= k−1Q(z1, z2)

and so in this case Q? is simply a scaled version of Q. Of course, in practice tree ensembles

will only achieve this property approximately: the number of training observations in each

region of every partition will only be approximately equal.

If we define d?2(z1, z2) = 1−Q?(z1, z2), we can use a similar argument as in Proposition 1 to

show that d?2 is a pseudometric.

Proposition 2.3.2. The function d?2(z1, z2) = 1−Q?(z1, z2) defined above is a pseudometric.

Proof. The proof is essentially identical to that in Proposition 1. Properties (1) and (2) from

Definition 2.1.1 follow directly from the definition of d?2, so we turn to property (4), the triangle

inequality. As in Proposition 1, this amounts to showing that

Q?(z1, z3) +Q?(z3, z2) ≤ 1 +Q?(z1, z2) (2.9)

As before, we proceed by induction on the number of partitions B. First suppose that B = 1,

so there is only a single partition, Π. Then one of the following must be true: (1) none of the

zi lie in the same region of Π, (2) precisely two of the zi lie in the same region of Π or (3)

all of the zi lie in the same region of Π. In the case of (1), then Equation 2.9 simply reduces

to 0 ≤ 1. In the case of (3) we have that |R(z1)| = |R(z2)| = |R(z3)| = R, so Equation 2.9
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reduces to

1
R

+
1
R
≤ 1 +

1
R

Finally, in the case that (2) holds we simply have (without loss of generality) that |R(z1)|−1 ≤

1. So equation 2.9 holds in all cases.

Now assume that 2.9 holds for B, and consider adding a new partition, ΠB+1. Proceeding as

in Proposition 1 we set

a =
B∑
i=1

1
|Ri(z1)|

I(A(z1, z3,Πi))

b =
B∑
i=1

1
|Ri(z3)|

I(A(z3, z2,Πi))

c =
B∑
i=1

1
|Ri(z1)|

I(A(z1, z2,Πi))

so that our induction hypothesis amounts to assuming that

a

B
+
b

B
≤ 1 +

c

B
⇒ a+ b ≤ B + c (2.10)

Now for the partition ΠB+1 we again consider the three possible cases listed above. In case

(1) equation 2.10 becomes
a

B + 1
+

b

B + 1
≤ 1 +

c

B + 1

which clearly holds. Next, assume we are in case (2). Then we must increase one of a, b or c

by r = |RB+1(zi)|−1, i = 1, 2, 3. For example, if z1, z3 lie in the same region then equation

2.10 becomes
a+ r

B + 1
+

b

B + 1
≤ 1 +

c

B + 1
⇒ a+ b+ r ≤ B + c+ 1

which holds since r < 1. The other two options in case (2) are similar. Finally, suppose that
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we are in case (3). Then setting r = |RB+1(zi)|−1, i = 1, 2, 3, since they all lie in the same

region, equation 2.10 becomes

a+ r

B + 1
+

b+ r

B + 1
≤ 1 +

c+ r

B + 1
⇒ a+ b+ r ≤ B + c+ 1

which holds since r < 1.

It is interesting to note that the ways in which d?2 can fail the identifiability condition (3)

for metrics distinguish it from d2. We observed before that with d2 we may easily have two

points z1 6= z2 that nevertheless fall in the same terminal node in every partition and hence

have d2(z1, z2) = 0. This can happen with d?2 as well; however, we may be unable to achieve

a distance of 0 at all, even when z1 = z2!

This will be the case in our previous example where each region contains exactly k > 1

training points. This means that if z1 = z2 that Q?(z1, z2) = 1/k so d?2(z1, z2) = 1− 1/k > 0.

This makes converting d?2 into a true metric somewhat more complicated. Specifically, simply

creating equivalence classes defined by z1 ∼ z2 ⇔ d?2(z1, z2) will not work since it may be that

no pairs of points have distance 0. In the case where each region has exactly k > 1 training

points we can simply define d?2(z1, z2) = 1/k − Q?(z1, z2); however, there is not a similarly

simple solution for the case when we allow different numbers of training points in each region.

2.3.4 d1 is Optimal for Kernel Methods Generally

Here we provide a heuristic argument that the metric d1 is in some sense the optimal notion of

distance for kernel methods in general. First we examine the regression case, so y is continuous.

Consider estimators of the form

Ê(y|X = x0) =
∑n

i=1wiyi∑n
i=1wi
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i.e. kernel method estimators. It is natural to ask how we should choose the values wi to most

efficiently estimate the conditional expectation of y. An obvious answer is that we should

choose the wi such that

wi =

 1 E(y|X = x0) = E(y|X = xi)

0 otherwise

In other words, the “best” estimate of E(y|X = x0) would be to average only those train-

ing observations where the conditional expectation remains unchanged. Then as long as

1/n
∑

iwi → 1 as n→∞ we will have that Ê(y|X = x0)→ E(y|X = x0). (All this means is

that as n → ∞, the number of training points actually included in the estimate at x0 must

also grow but not at the same rate.) This is optimal in the sense that it is unbiased and

has minimum variance, since the only variability we will see is that of the true conditional

expectation at x0. An identical argument can be made in the classification case.

This argument is meant only to emphasize that for kernel type estimators, it is sensible to make

the weights wi large when the conditional distributions E(y|x0) (or Pr(g|x0)) and E(y|xi) (or

Pr(g|xi)) are close and wi should be small when these conditional expectations are distant.

2.3.5 Connection to Optimal Metric

All kernel methods begin with the implicit assumption that the conditional distribution of y

can be well approximated by a locally constant function, which is a reasonable assumption if

the underlying conditional distribution is sufficiently smooth. The optimality of metrics like

d1 for the 1-NN rule can be seen then as a natural consequence of this assumption, as it tells

us to look for the nearest neighbor in those regions near x0 where the conditional distribution

of y is constant.

The connection to tree ensemble methods should now be clear. Recall how the greedy al-
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gorithm acts in the construction of each individual tree: each split is part of a search for a

partition that consists of regions where the conditional distribution of y is as close to being

constant as possible. Hence when two points x1 and x2 lie in the same region of a partition,

that is a rough indicator that the conditional distributions at those points are likely very

similar. Hence, over the entire ensemble, the more often this happens, the “closer” these two

points should be.

2.4 A Look Ahead

In this chapter we reviewed Lin and Jeon’s [22] observation that tree ensembles grown such that

there is only one training observation in each terminal node (partition region) are actually a

kernel method. Specifically they fit a weighted average of the training points where the weights

are given by the function Q(z1, z2). Next we generalized this observation to include arbitrary

tree ensembles, where the terminal nodes of each tree (partition regions) can contain any

number (≥ 1) of training observations and in this case the weights were given by the function

Q?(z1, z2).

We observed that both situations lead to pseudometrics (and hence metrics) of the form 1−Q

or 1 − Q?, although converting 1 − Q? to a true metric can be awkward due to the way in

which it fails the identifiability condition for metrics. Of course, it is still possible to perform

this conversion. We can simply define an equivalence relation by saying that x1 ∼ x2 precisely

when they lie in the same region of every partition and then use this equivalence relation to

convert d?2 into a metric. We just cannot use a convenient numerical condition on d?2 to define

this equivalence relation. However, in many circumstances we can consider 1−Q as a simple

approximation of 1−Q?. In subsequent chapters this observation will allow us to focus on the

much simpler task of calculating 1 − Q. We have been careful thus far to refer to d1 and d2

as pseudometrics, with the understanding that they can (in general) be used to define a valid
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distance metric. In what follows we will drop this formality and refer to d1 and d2 simply as

metrics.

In the next chapter we will examine the role that randomization plays in the metric generated

by d1.



Chapter 3

Variable Randomness in Stump

Ensembles

3.1 Introduction

As discussed in Chapter 1, different types of tree ensembles employ different amounts of

randomness. For example, bagging builds trees on distinct bootstrap samples; random forests

add the additional step of randomly selecting a subset of covariates at each node to search

over for potential splits; completely random decision trees perform no bootstrapping, but

split each node completely at random. This raises the question of what all this randomness

is accomplishing. Here we will examine this question in light of our discussion in Chapter

2, where we established that tree ensembles act as a kernel method by generating a distance

metric. Specifically, we will ask what varying degrees of randomization do to the resulting

distance metric.

Typically, tree ensembles are too complex to allow a direct analytical treatment, so we will

examine the role of randomness in a simplified tree ensemble model. We will argue that

32
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the level of randomness used in the ensemble influences how closely the resulting contours

adapt themselves to the local conditional distribution. Specifically, extreme randomness will

generally cause the contours of the metric to spread evenly in all directions from a given point.

Additionally, we will argue that complete randomness in tree ensembles essentially recreates

a nearest neighbor method using the L1 distance and hence that extreme randomness may

not be helpful.

We will focus our attention on the function Q(x1,x2) rather than Q?(x1,x2). The reasons are

twofold: first, since Q(x1,x2) is easily interpreted as the probability that two points lie in the

same region it is easier to understand and to calculate. Second, as we argued in Section 2.3.3,

under many circumstances these functions differ (approximately) only by a constant factor,

so there is little lost in considering the simpler of the two.

3.2 Stump Ensembles

The simplest type of tree ensemble employs the simplest partition: a single binary partition.

A tree that consists of only a single split is called a stump, so we will refer to this method

as an ensemble of stumps. In general, we can partition the feature space X however we

please. However, in practice it is convenient to have the range of possible partitions depend

in some way on the data. Therefore, let (xi, yi)ni=1 denote a training sample of size n where

xi = (xi1, . . . , xip). Let x0 denote an independent test point. A stump consists of a single

binary partition of the training sample of the form,

f(x0) =

 c1 x0j < xij

c2 x0j ≥ xij .

where x0j is the jth component of the vector x0 and c1, c2 are formed either by the average
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or majority vote of the training observations that satisfy the corresponding condition.

The value xij is called a split point. Each training point xi is a p-vector and each coordinate

of xi yields a unique stump. Hence, given a training set there are p(n − 1) possible stumps.

(We make two mild assumptions here: first, we assume that all of the xij are distinct, so that

there really are p(n− 1) unique split points. Second, we require that at least one data point

fall in each half of every stump.)

Different ensemble creation techniques will lead us to select different combinations of stumps.

For example, a completely random stump ensemble would select stumps randomly with re-

placement from the p(n − 1) possible stumps. Other techniques will lead us to select some

stumps more than others.

A stump ensemble is formed by generating multiple stumps and then combining them either

by averaging their predictions (continuous y) or by majority vote (discrete y). We will focus

not on the performance of stump ensembles as a statistical learner (which is undoubtedly

poor) but on the characteristics of the resulting metric via the function Q(x1,x2).

3.3 Completely Random Stump Ensembles

Let f(x) be a distribution function on the p-dimensional unit box [−0.5, 0.5]p, let {xi}ni=1 be

a random sample from the distribution f and let z1, z2 be two additional points arising from

the distribution f .

In asking what role randomness is playing in tree ensembles, a convenient place to start is

the extreme example of total randomness. Therefore, let Π1, . . . ,ΠB be stumps (as defined

above) chosen randomly, with replacement, from among the n(p − 1) available given our

training sample.
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The function Q(z1, z2) represents the proportion of times (out of B) that these points lie in the

same region of a stump, Πi. Hence 1−Q(z1, z2) is simply the proportion of times these points

are separated over all partitions Πi. For the stump defined by the split point xij to separate

the points z1, z2 we must have that z1j < xij < z2j (assuming without loss of generality that

z1j < z2j). The probability that such a stump exists to be chosen in the ensemble depends

in a simple fashion on the distribution f that generated the data. Indeed, the probability

that some point in our training sample has its jth component falling between z1j and z2j is

simply
∫ z2j

z1j
fj(xj)dxj , where fj is simply the marginal distribution of the jth component of

x. This leads naturally to the following expression for 1 −Q(z1, z2), which holds as B → ∞

and n→∞, the number of training points and the number of stumps (partitions) grows,

1−Q(z1, z2) =
1
p

p∑
j=1

∫ z2j

z1j

fj(x)dxj

=
1
p

p∑
j=1

|Fj(z1j)− Fj(z2j)|.

Note that the region in the hyperrectangle defined by the points z1, z2 is in fact being counted

p times. This is due to the fact that a training point in that hyperrectangle can contribute p

potential partitions that can split these points, one for each coordinate.

If we impose a particular distribution on f we can see the potential limitations of complete

randomness in tree ensembles. If we assume that f is uniform over [−0.5, 0.5]p then the above

expression reduces to 1 − Q(z1, z2) = 1
p

∑p
j=1 |z1j − z2j | which is simply the L1 Euclidean

distance (scaled by p to lie between 0 and 1). Hence completely random stump ensembles

simply mimic a kernel model based on the L1 metric.

More generally, this metric essentially computes distances between points z1, z2 that are pro-



3.4. VARIABLE RANDOMNESS STUMP ENSEMBLES 36

portional to the value of the cumulative distribution function along each coordinate direction

between these points. Intuitively, the more training data points that are likely to fall “be-

tween” z1, z2, the farther apart they are.

3.4 Variable Randomness Stump Ensembles

One possible way to decrease the level of randomness in our stump ensemble model we must

introduce a way to evaluate the “goodness” of each potential stump using a score function.

A stump ensemble completely lacking in randomness (a deterministic stump ensemble) would

simply choose the “best” stump at every turn, and hence would essentially consist of only one

stump. In between these two extremes we can tie the selection of stumps in the ensemble to

their scores to varying degrees.

First we introduce some additional notation for our notion of stump ensembles discussed

above. Let X = (xij) be the n×p covariate matrix and let X
′

= (x(i)j) denote the (n− 1)×p

matrix obtained by sorting the columns of X and removing the final row. Then the elements

of X
′

are the (n− 1)p possible split points for the stump ensemble. In particular, we will use

x(i)j to refer to specific stumps: fx(i)j
is the stump obtained by splitting on the value x(i)j .

Now define the function δij(x0) as follows:

δij(x0) =

 1 x0j > x(i)j

−1 x0j ≤ x(i)j

for i = 1, . . . , n − 1 and j = 1, . . . , p. Finally, let wij denote the probability that the stump

fx(i)j
is selected for inclusion in the ensemble when sampling with replacement from all the

possible at stumps. Then the probability that two independent test points z1 and z2 lie in

the same region across the entire ensemble is
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Pr(z1, z2 lie in the same region) =
∑
i

∑
j

wijI(δij(z1) = δij(z2)).

We will vary the levels of randomness by assigning values to the wij . Let G(x(i)j) be a

score function that assigns a value to each possible stump. For example, for regression data

G might be mean squared error and for classification data G might be the Gini index. Let

g∗ = maxi,j G(x(i)j) and let gij = G(x(i)j). Set wij = φ(gij |g∗, σ) where φ is the pdf of a normal

distribution with mean g∗ and standard deviation σ. The fixed values gij are calculated first

and then the values wij are obtained by evaluating φ at the values gij as described above.

The values wij are then scaled to ensure they lie between 0 and 1 to ensure that they are

probabilities.

By choosing σ to be very small we approach the completely deterministic case by focusing

more heavily on stumps with high scores; by choosing σ to be large we spread the probability of

selection into the ensemble more evenly across all possible stumps, approaching the completely

random case. Our interest is in how the metric 1 − Q(z1, z2) changes as we vary σ. To do

this we will examine the contours of this metric empirically. Specifically, we will look at the

contours defined by C = {z|c = Q(z0, z)} for a fixed point z0. This is the set of points that

are the same “distance” from z0 as defined by the proportion of times they are separated by

the stumps.

Our discussion above suggests that when σ is large (and the data are generated uniformly)

we should expect these contours to resemble those of the L1 metric, namely to be diamond

shaped around the point z0. As σ becomes smaller, the contours will reflect an increasing

emphasis on the “good” stumps (as indicated by their scores). Between these two extremes,

the metric should more closely adapt itself to the local class conditional distribution near z0.

Figure 3.1 contains a training set (n = 500) from the XOR data in the mlbench package in

R. We constructed four stump ensembles on these data using σ = 0.05, 0.5, 1, 10. Next we



3.4. VARIABLE RANDOMNESS STUMP ENSEMBLES 38

generated a test set that consisted of a grid of points over the same domain as the XOR data.

We fixed one point in this grid to be z0 and calculated Q(z0, zi) for each of the remaining zi

in the grid. We used these values to construct contour plots of Q(z0, z) relative to the point

z0. These are shown in Figure 3.2.
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Figure 3.1: Training set (n = 500) used to construct stump ensembles.

The contours in Figure 3.2 represent the proportion of times each point lies in the same half

of a stump in each ensemble as the point z0. Hence, the 0.9 contour represents points that are

in the same half of the stumps of an ensemble 90% of the time, so the 0.9 contour constitutes
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Contour Plots of Q(z0, zi)
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Figure 3.2: Contour plots of Q(z0, z). Each panel is labeled according to the value of σ used
in the ensemble. The point z0 is indicated as the black dot in the lower right of each panel.
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points that are close to z0 and the 0.1 contour represents points that are far from z0.

Note that for σ = 10 in Figure 3.2 the contours indeed resemble those we would obtain from

the L1 metric, as they are roughly diamond shaped and even spaced away from the point

z0. When σ = 0.05, the stump ensemble consists almost entirely of stumps that split the

data on x2 near 0.5. In this sense the ensemble is essentially acting as a single stump. With

intermediate amounts of randomness (σ = 0.5, 1) the ensemble is more adaptive to the local

structure of the two classes by identifying only the points in the lower right as being close to

z0.

3.5 Conclusion

In this chapter we have investigated the effect of varying amounts of randomness in tree en-

sembles. Since full tree ensembles pose significant obstacles to direct analytical treatment,

we examined the simpler method of stump ensembles. We argued that extreme randomness

is not necessarily beneficial, as in the case of stump ensembles complete randomness simply

recreates a kernel method using the L1 metric. Subsequently, we argued empirically that mod-

erate amounts of randomness aids performance by allowing the distance metric 1−Q(zi, zj)

to adapt itself to the local structure of the conditional density of the response y.

An important question is whether these metrics must be estimated via a randomized tree

ensemble, or whether they can be calculated directly. We have considered this question in some

depth but could not achieve any meaningful results. In general, the precise metric one obtains

will be different depending on the particular randomization strategy used. Additionally, the

extreme non-linearity inherent in decision trees makes a theoretical analysis challenging. Thus,

it remains an open question whether there is a deterministic route to calculating the values

of the functions d2 or d?2.



Chapter 4

Local Models Using Tree Ensemble

Weights

4.1 Introduction

The previous chapters developed the idea that tree ensembles are fitting weighted averages of

the training points, where the weights are determined by a particular locally adaptive distance

metric. This means that the predicted value of a tree ensemble at x0 (for a continuous response

variable y) is

ŷ0 =
n∑
i=1

Q(x0,xi)yi.

The form of this model is simply that of a locally constant model. But this naturally leads us

to ask if we might use these weights in some other fashion. Given the weights (or distances,

if you prefer) Q(x0,xi), we might apply them to any model that accepts weights.

41
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In this chapter we briefly explore the possible benefits to using the distance metric Q(x0,xi)

as weights in locally linear models. By this we simply mean fitting weighted linear regression

models using the values Q(x0,xi) as weights.

4.2 Fitting Local Models

Consider training data that conform to a traditional regression setting, (y,X) and a corre-

sponding test point (y0,x0). A standard linear model using these data has the form y =Xβ+ε

where the errors are typically assumed to be independent and normally distributed. The co-

efficients are found using least squares with the familiar formula β̂ = (X
′
X)−1X

′
y. This

model can be altered to become a local mode by adding weights to each of the training

points. In particular, given a diagonal weight matrix W, the coefficient vector is now found

via β̂ = (X
′
WX)−1X

′
Wy.

We propose using the tree ensemble distances Q(x0,xi) as the diagonal elements of the matrix

W. To accomplish this we use the R implementation of Leo Breiman’s RandomForest software.

The R function randomForest1 allows us to estimate the values Q(x0,xi) using only the out-

of-bag samples. This means that the function returns a matrix of values that represent the

proportion of times that the two observations land in the same terminal node, and that these

proportions are estimated using only those trees for which this pair of observations are both

“out-of-bag”, that is not included in the bootstrap sample for that tree. Once we have the

values Q(x0,xi) to be used in the matrix W we estimate the coefficients β̂ and use them to

predict the value y0 at x0. This process is repeated for each test point, so a distinct set of

coefficients β̂ is estimated for each test point.

One issue that arises in implementing this procedure is that tree ensembles are often used

in situations where the number of covariates is very large. While the tree ensemble easily
1http://cran.r-project.org/web/packages/randomForest/index.html
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handles large numbers of covariates, traditional linear models can have difficulties, specifically

in inverting the matrix X
′
X. Generally, the solution to this problem is some form of regular-

ization. Instead, we will utilize another feature of the randomForest that measures the local

variable importance for each training point. What this means is that for each training point

we examine the trees in the ensemble for which that observation is out-of-bag. Next we pick

a variable, say the mth, and permute its values (i.e. permute that column in the matrix X).

Then we run our training observation down each of the trees and record the number of votes

for the correct class (classification) or the mean squared error (regression). This is repeated

over several permutations of the mth variable and the results averaged. The difference be-

tween this and the corresponding value for the un-permuted version of X is the importance

of variable m on this training observation.

We can estimate the local variable importance for our independent test point x0 by combining

the local variable importance values of the training points with their proximities to the test

point x0. Let p be the vector of proximities of the test point to each of the training points

as estimated by the tree ensemble and let L be the matrix of local variable importance scores

for the training observations. The columns of L correspond to the training observations and

the rows to variables. Take the point-wise product of each row of L with the vector p and

sum along the rows of the resulting matrix. This vector is the local variable importance for

the independent test point. The rationale here is that the local variable importance at our

test point is estimated by the (weighted) average of the local variable importance at training

points close to our test point. We can now use this vector to select only the m most relevant

covariates to use when we fit our local linear model. Specifically, we would only use the m

columns of X corresponding to the m highest local variable importance values for the test

point.

This procedure actually allows us to significantly enlarge the number of covariates we can

consider. Since the tree ensemble method does not suffer from over-fitting problems when

we include large numbers of variables, we can add additional transformations of our original
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variables to the tree ensemble model, and only those that are locally relevant at a particular

test point will be selected for inclusion in our linear model. (We must be still be cautious

regarding collinearity issues though; this procedure may very well select both x and log xi as

locally relevant which will likely cause problems when fitting the linear model.) For simplicity,

we will only consider adding the corresponding quadratic terms here, although in principle

we might consider including interactions and other more complicated transformations. The

only modification to our procedure needed is that we included the square of each of the orig-

inal covariates when constructing our tree ensemble model. From there everything proceeds

normally. This model fitting procedure can be summarized as follows,

� Generate a tree ensemble using the training data.

� For each test point requiring a prediction, use the (out-of-bag) proximities and local

variable importances from the tree ensemble to fit a locally linear/quadratic regression

model.

� Use this local model to make a prediction at our test point.

Next we demonstrate the potential benefits of adopting such locally linear or quadratic models

using several simulated and real datasets. Finally, we will demonstrate how fitting local models

can serve as a tool for visualizing models of multivariate data.

4.3 Numerical Study

For the simulated data sets we selected three classification and three regression from the

mlbench package in R. Additionally, we selected four real data sets, two regression problems

and two classification problems. These are all summarized in Table 4.1.

For the simulated data sets, training and test samples of size 200 were generated. A random
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forest model was fit to the training data using the randomForest function in R. Then using

the resulting proximity matrix and local variable importance measures for the test set, we

fit a locally linear/quadratic regression model to each test point in turn. This process was

repeated 30 times and the results averaged.

For the real data sets, we used a leave-one-out cross-validation strategy rather than an inde-

pendent test set. We first fit a random forest model to the entire data set, yielding proximity

and local variable importance matrices based upon the out-of-bag data. Then for each ob-

servation we fit a locally linear/quadratic regression model to the remaining observations and

use this model to make a prediction at the omitted point. Since there is considerable random-

ness in this process (forming the tree ensemble, which provides us the proximity and local

variable importance) we also repeat this procedure 30 times and average the results. (Our

implementation in R generally took several minutes to run for a single data set.)

Table 4.1: Dataset summaries. Twonorm, Threenorm, Circle and Friedman 1, 2 and 3 are the
simulated data sets, the remaining are real data sets.

Dataset Sample Size Dimension Classes
Twonorm 200 20 2
Threenorm 200 20 2
Circle 200 20 2
Ionosphere 351 34 2
Sonar 208 60 2
Friedman 1 200 10
Friedman 2 200 4
Friedman 3 200 4
Boston Housing 506 14
Concrete 1030 9

4.3.1 Results

The results are summarized in Table 4.2. Table 4.2 suggests that the local regression models

using the RF proximities as weights do provide some improvement in accuracy, although not
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always. There appears to be greater advantage to using this method with regression problems

rather than with classification problems. Figures 4.1, 4.2, 4.3 and 4.4 display boxplots for a

selection of the simulation results from Table 4.2.

With the exception of the Twonorm data, the locally linear (or quadratic) models all perform

better than the standard RF model. There is no clear pattern to recommend locally linear

over locally quadratic models, as their performance differs between data sets. In general, the

local models are improving performance in regression problems more than classification, and

seem to perform better on the real data sets than on the simulated ones.

Table 4.2: Mean out-of-bag error rates for random forests (RF) using its default settings and
weighted linear/quadratic models using weights derived from the RF model.

Dataset Local Linear Local Quadratic RF
Twonorm 0.1108 - 0.0473
Threenorm 0.1762 - 0.1710
Circle 0.1678 0.1379 0.1680
Ionosphere - 0.0595 0.0751
Sonar - 0.1196 0.1531
Friedman 1 4.64 - 7.08
Friedman 2 19134 17725 21625
Friedman 3 0.0187 0.0241 0.0204
BostonHousing 7.31 - 9.72
Concrete - 21.07 26.42

4.4 Local Models As Visualization Tool

Finally we consider how these local models can be used as data exploration and visualiza-

tion tools. First we will examine a simple simulated example and then a real data set. The

simulated data we begin with is used simply to illustrate that our method is correctly identi-

fying features of the data when we know the true data generation mechanism. Generally, the

method we are introducing would be more useful in situations where we are presented with
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Figure 4.1: Boxplots of errors for simulation on the Friedman 2 dataset.
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Figure 4.2: Boxplots of errors for simluation on the Friedman 3 dataset.
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Figure 4.3: Boxplots of errors for the real data sets.
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Figure 4.4: Boxplots of the errors for the simulated data sets.
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large numbers of covariates and little a priori information regarding the functional relation-

ship generating the data. The examples in this section are meant for illustrative purposes

only; similar results and conclusions could likely be derived using standard methods (i.e. lin-

ear regression models). In Chapter 5 we will examine a case where the dimensionality and

complexity of the data make standard approaches more difficult.

We generated 1000 observations from some unknown model (to be revealed below) that we

divide into a training and test set of 500 observations each. The data consists of a single

continuous response variable, y and 10 covariates xi, i = 1, . . . , 10.

4.4.1 Local Model

Here we fit a locally linear model to the same data for comparison using RF proximities as

weights. The MSE for this model is 180.2. Since we have, in the process, estimated a unique

set of coefficients for each test point, this means we end up with a matrix of coefficient values,

allowing us to plot how each coefficient changes across the feature space. This allows a flexible

collection of models to be explored.

Specifically, we are allowing the coefficients in our linear model to be functions of the data:

y = β0 + β1(x)x1 + · · ·+ β10(x)x10 + ε.

So if we plot β1 versus x1 we are visualizing how the coefficient of x1 changes as a function

of x1. Of course, with ten variables there are many such two dimensional plots we could

examine. Here we will present only a few, chosen for relevance. First consider Figure 4.5. The

blue lines are loess smoothers applied to the scatterplots as visual aids. Notice that in (a) β1

grows roughly linearly with x1. This might suggest that β1 ∝ x1, which would imply that x1
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is in fact influencing the response, y, in a quadratic fashion.

Continuing, we note that in (b) β2 is roughly constant with respect to x2, remaining near the

value −2. This suggests that β2 ∝ −2. Similarly, we note that in (c) β3 ∝ x2
3, suggesting that

x3 influences y in a cubic fashion. Finally, in (d) we note that β4 ∝ −x5, which suggests a

negative interaction between the variables x4 and x5 (a plot of β5 vs. x4 would show the same

pattern).

In Figure 4.6 we show four more plots where each range of coefficients appears to be roughly

constant and near zero, suggesting that these variables (and interactions) are less important.

The actual model used to generate the data was as follows:

y = 5x2
1 − 2x2 + 3x3

3 − 4x4x5 + ε

xi ∼ U(−3, 3), i = 1, . . . , 10

ε ∼ N(0, 2)

Note that the variables x6, . . . , x10 were irrelevant to the response y. Our local linear model

correctly implied that x1, x2 and x3 should be quadratic, linear and cubic terms, respectively,

and that there should be a negative interaction between variables x4 and x5.

Next we demonstrate this visualization method on a real data set, the Boston Housing data.

This is a regression problem where the response variable is the median value of owner-occupied

homes (in thousands) together with 13 predictor variables. We can gain some insight into the

data by examining Figure 4.7.

The first three variables, crim (per capita crime rate by town), zn (proportion of residential

land zoned for lots over 25,000sq ft) and indus (proportion of non-retail business acres per

town) each seem to have only a very mild impact on home values. The binary variable
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Figure 4.5: Plots of coefficients from local linear models versus variable values.
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Figure 4.6: Plot of coefficients from local linear models versus variable values.
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chas (= 1 if tract bounds Charles River, = 0 otherwise) is noteworthy in that it indicates

(unsurprisingly) that lying on the shore of the Charles River is unlikely to reduce ones home

value, relative to other locations. The behavior of rm (average number of rooms/dwelling) is

also interesting. This probably acts as a decent proxy for average home size. Interestingly,

average home size seems to have little impact on home values until the average number of

rooms rises above about 6. Finally, we note the impact of age (proportion of owner-occupied

units built prior to 1940). This appears to have a very weak negative effect on home values,

until we reach the oldest neighborhoods (≥ 80) when it switches to having a small positive

effect on home values.
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Figure 4.7: Scatterplots (with loess smooths in blue) of each coefficient with respect to their
corresponding variable.



Chapter 5

Case Study: Prediction of Malaria

Presence from Environmental and

Climatic Data

5.1 Introduction

In this chapter we demonstrate how tree ensembles may be useful in the analysis of certain

types of disease data. Specifically, we consider the case of niche modeling for malaria vectors

in Africa. The modeling goal is to accurately predict the presence or absence of a certain

species using only environmental or climatic data. These data first appeared in [25] and were

kindly supplied by the authors.

57
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5.2 Data

Malaria is a vector borne infectious disease occurring in primarily tropical regions. Human

infection is caused by protozoan parasites that are spread by mosquitos (vectors). Transmis-

sion typically occurs when a female mosquito takes a blood meal from an infected human,

ingesting the parasites. The mosquito then passes the parasites on while taking a blood meal

from an uninfected human. These data concern malaria vectors, rather than infected humans.

The data consist of 977 locations for malaria vectors, along with values for 21 environmen-

tal variables at each location. (These are summarized in Table 5.1) This constitutes our

presence data. Thirty-seven of these presences were subsequently omitted due to suspected

geo-referencing errors causing them to appear on large bodies of water, leaving us with 940

presence observations. 1

Additionally, we randomly selected 15532 locations on the African continent to serve as absence

data. Clearly, we have no reason to be sure that malaria vectors are truly not present at these

locations. This is a common, and oft discussed ([27],[21],[30],[32]), difficulty in niche modeling;

namely that it is often impossible (or even nonsensical) to directly observe a species’ absence.

For this reason, our randomly selected locations are often referred to as pseudo-absences. We

will not enter into the extensive debate about the use of pseudo-absence data here, except

to say that this type of modeling is common in the niche modeling literature and that the

difficulties it raises are beyond the scope of this work.

Along with these 1553 pseudo-absence locations, we collected the analogous environmental

data for each location on the 21 variables mentioned above. Hence our complete data set can

be organized into a matrix consisting of 940 + 1553 = 2493 rows and 22 columns: one column
1For a more complete discussion of how these data were compiled using ArcMap GIS see [25].
2We desired a “large” number of background points, but there is no particular significance to this number;

extracting a large random set of points from ArcGIS is an involved process that is not compatible with specifying
the exact number of points ahead of time.
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Table 5.1: Environmental parameters used in niche modeling.

Parameter
Annual Mean Temperature
Mean Diurnal Range
Isothermality
Temperature Seasonality
Maximum Temperature of Warmest Month
Minimum Temperature of Warmest Month
Temperature Annual Range
Mean Temperature of Wettest Quarter
Mean Temperature of Driest Quarter
Mean Temperature of Warmest Quarter
Mean Temperature of Coldest Quarter
Annual Precipitation
Precipitation of Wettest Month
Precipitation of Driest Month
Precipitation Seasonality
Precipitation of Wettest Quarter
Precipitation of Driest Quarter
Precipitation of Warmest Quarter
Precipitation of Coldest Quarter
Altitude
Land Cover
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for the binary response variable of 1’s (presences) and 0’s (pseudo-absences) and 21 columns

for each of the environmental variables. The goal is to accurately predict the response variable

using the 21 environmental variables. Additionally, we would like to infer some information

on the relative importance of the various environmental variables on the presence of malaria

vectors.

5.3 Random Forests

Random Forests (RFs) were briefly outlined in Chapter 1. They are a particular form of tree

ensemble with the following characteristics: B bootstrapped copies of the data are generated

via sampling with replacement. A single decision tree is constructed on each of the B repli-

cated data sets. At each node of each tree, M of the variables are randomly selected (without

replacement) and these M variables are scanned for the best binary split at that node. Split-

ting continues until a node contains a single observation or until the node is “pure”, meaning

that there are only observations from one class in that node.

The bootstrap resampling allows for a convenient method for obtaining accurate assessments

of prediction accuracy. Specifically, each observation will only be used in the construction of

approximately 2/3 of the trees in the ensemble. We drop each observation down only those

trees for which it was not included in that bootstrap sample to obtain a prediction; these

predictions are aggregated to obtain a final prediction. The resulting error rate is called the

out-of-bag error.

The resulting tree ensemble provides two ways to graphically investigate the importance of

each variable on the response. First, we can compare each variable to each other to get a

ranking of the most influential variables. Second, we can plot the partial dependence of the

response on each variable. The variable importance measure is obtained using a permutation

test. The values of each variable are permuted (while holding all other variables fixed). The
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degree to which this permutation increases the out-of-bag error rate is our measure of variable

importance (the larger the increase, to more important the variable). The partial dependence

plots are obtained by plotting the following function:

f̃(x) =
1
n

n∑
i=1

f(x, xiC)

where n is the number of observations in the data, x is the variable for which the partial

dependence is sought, xiC is the covariate vector for the ith observation omitting the variable

x and f(x, xiC) is the log odds of belonging to class 1 (presence) for the (artificial) data vector

(x, xiC).

5.4 Analysis

The RF algorithm was run on our malaria data; we constructed an ensemble of 2000 trees,

selecting 4 variables at each node. The resulting out-of-bag error estimate and confusion

matrix is given in Table 5.2.

Table 5.2: Confusion matrix for malaria random forest niche model. The overall out-of-bag
error rate was 0.039. (Rows are true values, columns are prediction by the RF model.)

Pseudo-absence Presence Error Rate
Pseudo-absence 1510 43 0.028
Presence 54 886 0.057

As we can see, the RF model did an admirable job of identifying malaria vector presence

observations. Figure 5.1 shows the environmental variables ranked in order of importance, as

measure by the mean decease in out-of-bag accuracy upon permuting that variable. Altitude is

clearly the most important factor, followed by precipitation of the wettest month and quarter,

landcover and the minimum temperature of the coldest month. Landcover is a categorical
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(unordered) variable with 14 levels that is difficult to interpret as we were not provided a key

for the specific types of landcover classes it indicates. The remaining variables are of lesser

importance, by this measure.

Mean Temp of Warmest Quarter
Max Temp of Warmest Month
Precip of Coldest Quarter
Precip of Warmest Quarter
Annual Mean Temp
Isothermality
Mean Diurnal Range
Mean Temp of Driest Quarter
Precip of Driest Quarter
Temp Annual Range
Annual Precip
Mean Temp of Wettest Quarter
Precip of Driest Month
Mean Temp of Coldest Quarter
Temp Seasonality
Precip Seasonality
Min Temp of Coldest Month
Landcover
Precip of Wettest Quarter
Precip of Wettest Month
Altitude

0.60 0.65 0.70 0.75 0.80 0.85

Variable Importance

MeanDecreaseAccuracy

Figure 5.1: Variable importance plot for malaria vector niche model.

Figures 5.2, 5.3, 5.4, 5.5, and 5.6 show the partial dependence plots for the five most important

variables on the response. We can interpret the vertical axis of these plots as the approxi-

mate log odds of class 1 (presence). Hence positive values indicate an increased likelihood of

malaria vector presence and negative values indicate a decreased likelihood. The horizontal

axis represents the range of values for the indicated variable that occur in the data set; the
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rug plot indicates the deciles of that variable.

We can conclude from these graphs that malaria vectors are most likely to be present at

relatively low elevations (< 500 meters), in climates that are relatively wet, and that are

relatively warm all year (i.e. mild winters).
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Figure 5.2: Partial dependence plot of altitude (in meters) on the log odds of malaria vector
presence.

We can also apply the methods from Chapter 4 to use the proximities from the RF model to

fit a locally linear model. We found that centering and scaling the covariate values helped

stabilize the linear models, so the values here will not directly correspond to the partial
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Figure 5.3: Partial dependence plot of precipitation of the wettest month (units unknown) on
the log odds of malaria vector presence.
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Figure 5.4: Partial dependence plot of precipitation of the wettest quarter (units unknown)
on the log odds of malaria vector presence.
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Figure 5.5: Partial dependence plot of landcover type (categories unknown) on the log odds
of malaria vector presence. While the landcover classes associated with these categories is un-
known, one might surmise that landcover 12 corresponds to something analogous to “desert”.
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Figure 5.6: Partial dependence plot of the minimum temperature of the coldest month (units
unknown) on the log odds of malaria vector presence.
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dependance plots shown before. The locally linear model yields a slightly lower error rate of

0.026, although we should be careful making comparisons as these error rates were estimated

differently (out-of-bag vs. leave one out cross validation). Additionally, visualizations of the

estimated coefficients yields similar conclusions about the relative importance of the variables.

For example, Figures 5.7 and 5.8 show the estimated coefficients for Altitude and Precipitation

of the Wettest Month.
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Figure 5.7: Estimated coefficient versus Altitude for the locally linear model.

For comparison, we analyze these malaria data using logistic regression. First, we fit the

entire data set using logistic regression and chose the best model using backwards stepwise

selection using AIC as the selection criteria. This procedure removed only three variables:

temperature annual range, mean temperature of driest quarter and precipitation of the wettest

quarter. The remaining variables have all been retained in the model. The resulting coefficient
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Figure 5.8: Estimated coefficient versus Precipitation of the Wettest Month for the locally
linear model.
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estimates are shown in Table 5.3. The 10-fold cross validation error estimate for this model is

0.117. Backward stepwise selection via AIC is a fairly liberal procedure, meaning that it will

tend to allow the inclusion of many variables.

Next we attempted to find a reduced model by hand. We began by scaling the (continuous)

covariates and checking them for collinearity. Many of these 22 variables are very highly

correlated (Pearson correlation coefficient > 0.9). In order to maintain a useful comparison

with the RF models, we elected to retain variables that the RF model identified as important,

whenever possible. Five variables (Temperature Annual Range, Mean Temperature of the

Warmest Quarter, Mean Temperature of the Coldest Quarter, Precipitation of the Wettest

Quarter and Precipitation of the Driest Quarter) were omitted for the remainder of this

analysis.

We fit a linear logistic model using all of the remaining variables. Next we performed a

backwards stepwise elimination procedure (by hand) using χ2 tests. This process removed

another five variables. Once we’d obtained a reduced model using only linear terms, we

examined the addition of quadratic terms. Ultimately, three were deemed significant and

added to the model. A summary of the resulting final model is shown in Table 5.4 (note

that we have scaled the covariates, so the coefficient estimates differ in scale from those in

Table 5.3). The 10-fold cross validated error estimate of this model was 0.101. There are

too many interaction terms to check by hand and have too little intuition about the physical

system to propose likely variable interactions that may exist, so we opted not to pursue adding

interaction terms.

Selecting a reduced model by hand did improve the error rate of our model slightly. It is

possible that further improvements in accuracy are possible by refining this logistic model,

although the time and complexity required may become prohibitive. However, none of the

logistic models came close to matching the tree ensembles in terms of pure accuracy. That

said, both approaches generally identified altitude and precipitation of the wettest month as
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being particularly important, so both methods are in a crude sense both identifying altitude

and precipitation as the most important variables.

5.5 Conclusion

Tree ensembles, and RFs in particular, can be a powerful technique for niche modeling. They

are a fast, easy to use and extremely accurate modeling technique that easily accommodates

large numbers of covariates. Additionally, RFs provide convenient tools to graphically inves-

tigate the importance and influence that each covariate has on the response. These features

are particular useful in cases where such visualizations using standard methods are more chal-

lenging (high dimensionality, classification tasks). For these reasons, tree ensembles should

be considered a strong candidate for modeling tasks like species niche modeling.
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Table 5.3: Logistic regression coefficients of best model resulting from backwards stepwise
selection using AIC.

Estimate Std. Error z value Pr(>|z|)
Intercept 2.15 1.26 1.71 0.09
Altitude -0.002 0.00 -8.27 0.00
Landcover1 3.08 1.16 2.65 0.01
Landcover2 -1.97 0.59 -3.33 0.00
Landcover3 -0.01 0.82 -0.02 0.99
Landcover4 -0.50 0.82 -0.61 0.54
Landcover5 2.54 0.94 2.70 0.01
Landcover6 0.32 0.55 0.59 0.55
Landcover7 1.19 0.53 2.25 0.02
Landcover8 1.03 0.56 1.86 0.06
Landcover9 0.65 0.55 1.17 0.24
Landcover10 0.89 0.57 1.56 0.12
Landcover11 2.63 0.61 4.30 0.00
Landcover12 0.09 0.59 0.16 0.88
Landcover13 17.86 381.88 0.05 0.96
AnnualMeanTemp 0.09 0.03 2.73 0.01
MeanDiurnalRange 1.82 1.29 1.41 0.16
Isothermality -1.76 1.29 -1.36 0.17
TempSeasonality -0.01 0.00 -4.63 0.00
MaxTempofWarmestMonth -0.12 0.02 -7.31 0.00
MinTempofColdestMonth 0.04 0.01 3.27 0.00
MeanTempofWettestQuarter 0.01 0.00 3.58 0.00
MeanTempofWarmestQuarter 0.26 0.05 5.42 0.00
MeanTempofColdestQuarter -0.27 0.04 -5.92 0.00
AnnualPrecip -0.01 0.00 -9.73 0.00
PrecipofWettestMonth 0.05 0.00 15.84 0.00
PrecipofDriestMonth -0.04 0.03 -1.43 0.15
PrecipSeasonality -0.03 0.00 -8.22 0.00
PrecipofDriestQuarter 0.02 0.01 2.40 0.02
PrecipofWarmestQuarter -0.00 0.00 -1.67 0.10
PrecipofColdestQuarter -0.00 0.00 -3.11 0.00
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Table 5.4: Logistic regression coefficients of best model resulting from manual backwards
stepwise selection followed by forward addition of quadratic terms.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.00 0.60 0.01 1.00
Altitude -1.58 0.16 -10.12 0.00
Landcover1 3.69 0.98 3.78 0.00
Landcover2 -2.34 0.67 -3.51 0.00
Landcover3 -0.17 0.88 -0.19 0.85
Landcover4 -0.02 0.84 -0.02 0.98
Landcover5 2.37 0.97 2.44 0.01
Landcover6 -0.04 0.62 -0.07 0.94
Landcover7 1.02 0.60 1.70 0.09
Landcover8 1.22 0.63 1.93 0.05
Landcover9 0.99 0.62 1.58 0.11
Landcover10 1.27 0.65 1.96 0.05
Landcover11 2.17 0.67 3.22 0.00
Landcover12 -0.59 0.68 -0.88 0.38
Landcover13 18.38 389.08 0.05 0.96
AnnualMeanTemp 2.78 0.59 4.74 0.00
MeanDiurnalRange 1.50 0.35 4.33 0.00
TempSeasonality 4.22 0.62 6.78 0.00
MaxTempofWarmestMonth -5.10 0.68 -7.54 0.00
MinTempofColdestMonth 2.98 0.69 4.30 0.00
AnnualPrecip -3.75 0.38 -9.79 0.00
PrecipofWettestMonth 5.59 0.39 14.26 0.00
PrecipofDriestMonth 2.45 0.29 8.55 0.00
PrecipSeasonality -1.11 0.15 -7.25 0.00
PrecipofColdestQuarter -0.34 0.10 -3.43 0.00
I(Altitude^2) 0.37 0.04 9.43 0.00
I(MinTempofColdestMonth^2) -1.46 0.16 -8.95 0.00
I(PrecipofDriestMonth^2) -0.60 0.07 -8.84 0.00
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