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An important component of analyzing images quantitatively is modeling image blur due to
effects from the system for image capture. When the effect of image blur is assumed to be
translation invariant and isotropic, it can be generally modeled as convolution with a radially
symmetric kernel, called the point spread function (PSF). Standard techniques for estimating
the PSF involve imaging a bright point source, but this is not always feasible (e.g. high energy
radiography). This work provides a novel non-parametric approach to estimating the PSF from
a calibration image of a vertical edge. Moreover, the approach is within a hierarchical Bayesian
framework that in addition to providing a method for estimation, also gives a quantification
of uncertainty in the estimate by Markov Chain Monte Carlo (MCMC) methods.

In the development, we employ a recently developed enhancement to Gibbs sampling, re-
ferred to as partial collapse. The improved algorithm has been independently derived in
several other works, however, it has been shown that partial collapse may be improperly
implemented resulting in a sampling algorithm that that no longer converges to the desired
posterior. The algorithm we present is proven to satisfy invariance with respect to the target
density. This work and its implementation on radiographic data from the U.S. Department
of Energy’s Cygnus high-energy X-ray diagnostic system have culminated in a paper titled
“Partially Collapsed Gibbs Samplers for Linear Inverse Problems and Applications to X-ray
Imaging.”

The other component of this work is mainly theoretical and develops the requisite functional
analysis to make the integration based model derived in the first chapter rigorous. The
literature source is from functional analysis related to distribution theory for linear partial
differential equations, and briefly addresses infinite dimensional probability theory for Hilbert
space-valued stochastic processes, a burgeoning and very active research area for the analysis
of inverse problems. To our knowledge, this provides a new development of a notion of radial
symmetry for L2 based distributions. This work results in defining an L2 complete space of
radially symmetric distributions, which is an important step toward rigorously placing the
PSF estimation problem in the infinite dimensional framework and is part of ongoing work
toward that end.

ii



Acknowledgments

This work, although ultimately channeled through me, is truly the product of the best ad-
vising, guidance, and overall support that anyone could hope for. I have been very lucky to
have had mentors, teachers, colleagues, friends, and family that have guided and shaped the
journey through my graduate studies and have given me much more than I deserve. There are
too many to name here, and if you are omitted, know that it is not because I have forgotten
you, but because the task of thanking everyone who deserves it is more than I am capable of.

I must first thank my two advisors, Dr. John Bardsley and Dr. Aaron Luttman, whose vision,
generosity with ideas, and guidance have not only shaped this work into what it is, but also
me as a mathematician. They set me right when I was lost and pushed me forward and
encouraged me when the ideas were good. They graciously and patiently guided me along the
path to becoming a mathematical researcher each in their own distinctly valuable way, and I
have a unique skill set and perspective because of them, which I am truly grateful for.

The members of my committee deserve much thanks, not only for their input in this work,
but also, and likely more importantly, for their advice and tutelage over my time at the
University of Montana. Dr. Jon Graham instilled in me a solid appreciation for statistical
thought and his unrelenting dedication to teaching was an inspiration. Dr. Peter Golubtsov
was very generous with ideas and advice that have had a great influence on the direction
of the work, and his insights and answers to my questions in courses and discussions were
invaluable. Lastly, Dr. Leonid Kalechev guided me not just a teacher and mentor, but also as
a diligent and expertly capable department chair for three of my four years at UM.

I must also thank Dr. Jen Brooks, whose early influence and encouragement taught me to
be ever vigilant in the face of theoretical difficulties, for the fruits that they bear have been
truly worth the effort. Many thanks to the other members of the analysis group, Dr. Greg
St. George, Dr. Karl Stroetoff, and the late Dr. Thomas Tonev for the useful insights I gained
in their seminar and in preparation for the analysis preliminary exam. Also, thanks to the
current department chair and former graduate chair, Dr. Emily Stone and to the current
graduate chair, Dr. Cory Palmer without whose leadership and help I would not have made
it through.

I am very gratefule to have been financially supported from a Site Direct Research and De-
velopment grant from National Security Technologies LLC and the Mathematical Sciences
department at the University of Montana. This support made this work possible. Also, the
friendly staff at the Kettlehouse Southside provided many a beverage and listening ear when
emotional currency was low.

Finally, the most thanks is due to those who supported me emotionally and personally through
this journey. I am eternally grateful, as it is the relationships that I’ve built these last four
years that I value more than anything else that I have gained. Thanks to those who were at one
time or another, a fellow student with me for all the helpful conversations, mathematical or

iii



otherwise, but mostly, the camaraderie and collegiality that made the experience of graduate
school in Missoula truly unique. In particular, to Dr. Cody Palmer, Nhan Ngyuyen, Charlie
Katerba, Dr. Marylesa Howard: with you, I have made life-long friends. I cannot express
the magnitude of my gratitude to my close friends and family outside of mathematics – your
value has and ever shall be beyond my ability to quantify – Dayne Robinson, Lora Weitzel,
Alexis Billings, Corinne Casolar, Justin van Almelo, and Christa Carleton. To my family, and
especially Mom, Dad, and Abbey: you are my core and my everlasting support; without you
I would be lost.

This manuscript is dedicated to the memory of Paul Joyce, whose brilliance and grace were
taken from us too early.

iv



Notations

Image Model

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Point spread function

b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Observed data

G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Forward edge-blur operator on a radial profile

Sets

Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Integers

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Real numbers

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complex numbers

Rk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k-dimensional vector space over real numbers

Functional Analysis

(·, ·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inner product

‖ · ‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Norm

X ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Space of continuous linear functionals on X

〈·, ·〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Action of linear functional

D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compactly supported smooth test functions

D∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Space of distributions

L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Square integrable distributions

H n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sobolev space of order n

K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Space of radially symmetric PSFs

P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Space of radial profiles

arg minx∈A Φ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The x ∈ A such that Φ(x) is minimized

‖ · ‖TV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total variation semi-norm

Probability

P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probabilty measure

E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expectation operator

K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transition kernel

K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transition operator

π(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probability density

π(·|·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conditional probability density

X ∼ π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variable X has distribution p

v



Contents

Abstract ii

Acknowledgments iii

Notations v

List of Tables ix

List of Figures x

List of Algorithms xii

1 Images and Blur 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Modeling blur with a PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The Abel transform and a deterministic solution . . . . . . . . . . . . . . . . . 9

1.4 PSF reconstruction as an ill-posed inverse problem . . . . . . . . . . . . . . . . 14

vi



2 Radial Symmetry for Sobolev Spaces 18

2.1 Distribution spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 The space of test functions and distributions . . . . . . . . . . . . . . . 19

2.1.2 L2 as a subspace of distributions . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 The Sobolev space H n(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Radial symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 The pull-back operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 An extension theorem and a motivating example . . . . . . . . . . . . . 33

2.2.3 Radial symmetry for L2(Ω2) and H n(R2) . . . . . . . . . . . . . . . . . 36

2.3 The PSF inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 The Sobolev embedding theorem and extending to Pn([0,∞)) . . . . . 40

3 Markov Chains and Modified Gibbs Sampling 42

3.1 Markov Chain Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.3 The partially collapsed Gibbs sampler . . . . . . . . . . . . . . . . . . . 55

3.1.4 Metropolis-Hastings within partially collapsed Gibbs . . . . . . . . . . . 60

3.2 Evaluating Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Estimating the burn-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Autocorrelation and essential sample size . . . . . . . . . . . . . . . . . 67

vii



4 Discrete Bayesian Posterior PSF estimation 70

4.1 From the continuum to the discrete . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Discretization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.2 The discrete hierarchical posterior distribution . . . . . . . . . . . . . . 77

4.2 Sampling the PSF posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Gibbs sampling the PSF posterior . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 Partially collapsed Gibbs sampling for PSF reconstruction . . . . . . . . 83

4.2.3 Blocking the sampler and a connection to marginal then conditional

sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Synthetic PSF Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 PSF reconstruction from X-ray Radiographs . . . . . . . . . . . . . . . . 92

4.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 98

viii



List of Tables

4.1 Statistical diagnostics for the λ and δ chains associated with the synthetic PSF

reconstruction problem. The total chain length is M = 104, with a burn-in of

kburnin = 5× 103. The first column are the post-burn-in chain means of λ and

δ. The maximum IACT of λ and δ are used to calculate IACT and ESS. For

MTC algorithm, d(M−kburnin)/τinte is added to #Chol to evaluate the efficiency. 92

4.2 Statistical diagnostics for the λ and δ chains associated with the measured data

PSF reconstruction problem. The total chain length is M = 104, with a burn-in

of kburnin = 5 × 103. The first column are the post-burn-in chain means of λ

and δ. The maximum IACT of λ and δ are used to calculate IACT and ESS.

For MTC algorithm, d(M − kburnin)/τinte is added to #Chol to evaluate the

efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ix



List of Figures

1.1 A schematic of the measurement model for an X-ray image of an edge. An

opaque block aligned with the imaging plane blocks light on the half plane to

produce a blurred edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 A synthetically blurred edge with simulated measurement error and a line-out

(horizontal cross-section) from the data. . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The PSF forward integral operator kernel g(x, r) represented as the arc measure

of v in (−π, π) where x ≥ r cos v. . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 The 10%, 25%, 50%, 70%, and 90% quantiles of the reconstructed 1D radial

representations of the synthetic Gaussian PSF (left) along with the mean 2D

reconstruction (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Autocorrelation plots for PSF reconstruction for synthetic data of the chains

λ, δ and the central discretization point of p: in the upper-left are the ACF

for MCMC chains of λ, δ and central pixel of the radial profile for the Gibbs

sampler; on the upper-right are the plots for the PC Gibbs sampler with 1 inner

MH step; on the lower-left are plots for the PC Gibbs sampler with 5 inner MH

steps; and in the lower-right are plots for the MTC sampler. . . . . . . . . . . . 95

x



4.3 PSF reconstructions for radiographic data: in the upper left corner are the

radiographic image data; in the upper right corner is a line-out taken from the

image data; in the lower left corner are the central 10%, 25%, 50%, 70%, and

90% quantiles of the posterior reconstruction of x for each pixel; in the lower

right corner are plots of the forward mapped discrepancy of the post burn-in

chain mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Autocorrelation plots for PSF reconstruction for the measured data of λ and

δ chains: in the upper-left are the ACF for MCMC chains of λ, δ and central

pixel of the radial profile for the Gibbs sampler; on the upper-right are the plots

for the PC Gibbs sampler with 1 inner MH step; on the lower-left are plots for

the PC Gibbs sampler with 5 inner MH steps; and in the lower-right are plots

for the MTC sampler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xi



List of Algorithms

1 Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 m-Conditioned Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 m-Partially Collapsed Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Reversible Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Metropolis Hastings within m-Partially Collapsed Gibbs sampler . . . . . . . . 64

6 Hierarchical Gibbs sampler for PSF posterior estimation . . . . . . . . . . . . . 83

7 Metropolis-Hastings within PCG sampler for PSF posterior estimation . . . . . 86

8 Metropolis-Hastings within blocked PCG sampling for PSF posterior estimation 88

xii



Chapter 1

Images and Blur

1.1 Introduction

In addition to being a rich source of artistic and creative value, images (or more precisely,

visual information from projections of light) are an important source of scientific information.

Even the word ‘observation’ generally connotes visual perception, and its use as a catch-all

for the measured verification of a hypothesis exemplifies the central role of vision in science.

Many important scientific results have used visual information to discover and explain natural

phenomena; for example, visual observations such as the color and shape of various plant

organs in Gregor Mendel’s experiments on hybridized peas formed the primary source of

data for developing his model for genetic inheritance [Magner, 2002]. Arthur Eddington’s

1919 image of the gravitationally lensed path of a comet during a solar eclipse provided the

first experimental evidence supporting Albert Einstein’s general theory of relativity [Dyson

et al., 1920]. In these cases, only the qualitative components of the visual response and their

relationship to the experiment were relevant. With the advent of the camera, photosensitive

chemistry, and later digital imaging technology, high-fidelity recording of visual observations

1



1.1. INTRODUCTION 2

as data became possible, allowing the potential to quantitatively analyze visual information.

Digital images when viewed quantitatively, can be described as the response of the incidence of

light, and the subsequent exchange of energy, on a grid of regularly spaced grid elements, which

we refer to as pixels. The ever-progressing technologies in optical science and engineering are

rapidly increasing the amount of data that can be measured in an image. Images are quickly

becoming a source of ‘big data’ from which new methods are rapidly being developed to

extract information from this rich data source. Yet there is a dichotomy between the amount

of information available in image data and the complexity of how to quantitatively analyze

it. That is, despite having a large volume of data to extract information, their spatial nature

makes measurements at each pixel highly dependent on measurements at adjacent pixels,

and an objective extraction of information taking this structure into account is not obvious.

A quantitative analysis of the image cannot assume that measured values are independent,

because it is precisely this lack of independence that makes an image interesting – independent

image data is white noise (perhaps more appropriately, ‘gray noise’) – from which one can

only infer the average of the measured pixels.

In addition to the difficulties related to spatial dependence and high resolution, the struc-

ture of the data may have more components than spatial aspects since light is measured on

a spectrum. That is, the energy response of light is not univariate since it is frequency de-

pendent, and in many cases, is measured at several fixed bands of frequency. For example,

astronomical images captured by the interstellar robotic probes Voyagers I and II measured

5 bands in the visible spectrum on a pixel grid with dimension 800 × 800 [Showalter et al.,

2006]. In medical imaging, computed tomography (CT) is an imaging process where a se-

ries of axial measurements of attenuated electromagnetic radiation are used to reconstruct a

cross-section of a scanned object, and the geometry of the measurement system is a primary

source of complexity for quantitative analysis since data are organized in a non-Cartesian

parameterization [Epstein, 2008]. The primary focus of this work is analyzing pulsed X-ray

measurements, referred to as a radiographs, which are used as a diagnostic of high-energy
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physics experiments. Ultimately, analysis of the image is used to inform physical properties

of the scene of interest, yet this measurement is indirect in several ways. For example, in

several high-energy radiographic imaging systems, collimated X-rays are pulsed through a

scene of interest, then the attenuated X-rays excite a crystal that responds by luminescing

visible light at an intensity related to the energy of the attenuated wave-front. The light is

then focused and measured on a high resolution array (on the order of 1000×1000 or more) of

charge coupled devices (CCD) calibrated to count photons at a specified spectral band. Each

of these examples highlights the potential depth and complexity of modeling image capture,

and models must be sufficiently flexible in order to be realistic and reliable. Our approach

will be to remove the constraints of a parametric form for describing the process of image blur

so that we have more flexibility in capturing the effects of aggregate complexity, as well as

allowing data to better characterize the form of the model.

A general treatment for quantitatively modeling image capture is to consider image data as

response to a signalling system an ideal image or signal is filtered by some process forward

modeled by the physics of the system and stochastic measurement effects. The ideal image

is then estimated indirectly by ‘reversing’ the forward filter. When this process is modeled

as an operator between function spaces, tools from functional analysis can be used to ‘solve’

the system. See one of the books [Vogel, 2002; Epstein, 2008] for an in-depth discussion and

broad set of examples.

Relatively recently, techniques and ideas from formal data science have been used to not

only model stochastic effects from measurement, but also the unknown ideal image. Bayesian

techniques provide a natural way to incorporate prior knowledge as well as uncertainty in that

knowledge. Formally, an image is modeled as a random field, and its correlation structure

is the primary focus of study. Under the assumption of a Gaussian Markov random field,

the correlation and mean completely describe the stochastic properties of the image [Rue and

Held, 2005]. The books [Cressie, 1993; Rue and Held, 2005] provide an overview of the history

and current methods for statistical methods for spatial data. The study of random fields, and
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more specifically image data, has seen much development over the past half-century and has

inspired a wealth of theory and computational tools, but is far from complete. Moreover, a

broad field of scientific disciplines has considered image-like data in one way or another; fields

such as astronomy, astrophysics, biology, medicine, geology, computer science, and nuclear

physics to name a few. Each have a unique perspective on the problem, and a vast literature

on the subject has been accumulated. Although much work has been done, it is still a very

active research area and is far from achieving the level of consensus and understanding that

analysis of independently sampled data has achieved. The aim of this work is to develop and

adapt current models and methods for estimation and quantifying uncertainty to the specific

component of image analysis related to blur introduced by the system for capturing images.

Understanding this is an important component to the development and analysis of methods

for quantitatively analyzing the images themselves.

1.1.1 Organization

This dissertation consists of four, more or less independent chapters that address novel con-

tributions to aspects of modelling and estimating the point spread function for an imaging

system that exhibits translation invariant and radially symmetric blur.

The remaining sections of this chapter provide the general background for modeling image

blur and introduces how blurred images can be modeled with integral convolution with a

point spread function (PSF). The main goal of this work will be to estimate this quantity in

a rigorous way that also incorporates uncertainties of the estimate. The model we develop is

completely novel, and the development is substantially more general than other parametrically

dependent methods currently used. The modeling perspective will provide several mathemat-

ical forms (e.g. by changing variables) for describing the blurring of an opaque edge, with each

providing a different insight into the process. We emphasize that each of these forms does not

change the physical assumptions of the model and are used to prove and understand various
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aspects of the underlying, intrinsic operation. Moreover, each of these different mathematical

formulations provides several methods for analysis; e.g. one formulation shows that a blurred

edge is sufficient for estimation, and another is useful for seeing that the problem is ill-posed.

In this process, we will also show connections with other operator based models of active

interest; specifically, the Radon and Abel transforms Epstein [2008].

In the second chapter, we derive the necessary theory and technical definitions to formally

define the operator between separable Hilbert spaces. Again, this development takes several

perspectives but does not change the fundamental action. The analysis provides a formal

notion of the interaction of radially symmetric objects with non-radially symmetric objects.

Chapter 2 is mainly theoretical, but the explicit forms for the discrete model of the forward

operator and prior information are motivated and derived there. This chapter will use tools

from the theory of distributions for partial differential equations (PDEs) to develop a novel

notion of symmetry that retains the powerful structure of a complete inner product space.

For estimation, we take a Bayesian approach that allows for uncertainty quantification of

the estimate, and Chapter 3 will lay out prerequisite Markov Chain theory and the general

algorithms based on it that are used in this work. We derive and describe from first principles

a recently developed enhancement to Gibbs sampling, which has been independently derived

and studied in several other works [Van Dyk and Park, 2008; Agapiou et al., 2014]. Although

stated without proof in [Van Dyk and Park, 2008], we provide a novel argument from first

principles to prove an essential condition that has been overlooked in the literature for the

invariance and ergodicity of the algorithm. The algorithms presented in this chapter are not

specific to PSF reconstruction and can be generally applied to statistical inference problems

where simulating samples from a complicated density are required.

Chapter 4 further develops these notions in order to carry out PSF estimation on a computer,

and gives detailed descriptions of the algorithms and associated probability densities so that

they can easily be adapted for a standard scientific or statistical software suite. We will
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also deal with how to discretely represent each of the necessary components in the estimation

problem. Finally we present results from an implementation of the methods using the Matlab

computing software library on synthetically derived and measured radiographic data. The

measured data are from a high-energy X-ray imaging system at the U.S. Department of

Energy’s Nevada National Security Site. We will end with a discussion of conclusions and

possible future work.

1.2 Modeling blur with a PSF

One major component of the spatial relationship of neighboring pixels of an image is due to

blur from the imaging instrumentation. That is, under the assumption that arbitrary images

are consistently measured by the modeled system, what contribution does this system have

on how pixels are related, and how can we quantify this relationship? A widely used model

for blurring [Hansen, 2010; Jain, 1989; Vogel, 2002; Epstein, 2008] expresses this relationship

as a linear filter that maps an ideal image f to a blurred image b by integrating

b(x, y) =

∫∫
R2

k(x, y; s, t)f(s, t) dsdt, (1.1)

where b(x, y) represents the intensity of the blurred image at (x, y); f(s, t) represents the

intensity of the ideal un-blurred image at (s, t); and k is the kernel of the filter, which char-

acterizes the blurring process. For the purpose of modeling, we assume that each function

is sufficiently regular so that each integral and change of variable can be interpreted in the

Riemann sense.

Informally, the effect of blur can be viewed point-wise by observing the system response

of a ‘point-source’ at (x, y), then b(x, y) = k(x, y;x, y) represents the “spread” of the signal

f at the point source. The function k is referred to as the point spread function (PSF) of

the system at (x, y). When the effect of blurring does not depend on the location of this
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point, that is, translating the ideal image f by (x, y) results in the blurred image b also being

translated by (x, y), we say that the blur is spatially invariant. This means

b(x− x, y − y) =

∫∫
R2

k(x, y; s, t)f(s− x, t− y)dsdt

=

∫∫
R2

k(x, y; s′ + x, t′ + y)f(s′, t′)ds′dt′. (1.2)

On the other hand, applying the translation to (1.1) implies

b(x− x, y − y) =

∫∫
R2

k(x− x, y − y, s, t)f(s, t)dsdt. (1.3)

Since (1.2) and (1.3) hold for all f , we have for each x, y, x, y, s, and t that

k(x, y; s+ x, t+ y) = k(x− x; y − y, s, t) (1.4)

and, in particular, when we fix (s, t) = (0, 0),

k(x, y;x, y) = k(x− x, y − y; 0, 0). (1.5)

Hence, the PSF in the blurring operation is independent of translation by (x, y). Let us denote

k(x, y;x, y) = k(x− x, y − y), then the linear filter in (1.1) reduces to

b(x, y) =

∫∫
R2

k(x− s, y − t)f(s, t) dsdt. (1.6)

Equation (1.6) is called the convolution of f by k. In fact, any translation invariant linear filter

described as an operator between Lp spaces can be expressed through convolution with some

generalized function k [Grafakos, 2014]. In any case, when blur is assumed to be spatially

invariant, it results in solving the convolution equation (1.6). Mathematical methods that

estimate f given b and k are referred to as deconvolution techniques.

Note that a change of variables by s′ = x− s and t′ = y − t results in a convolution of k by
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f , which is to say that convolution, as an operation, is symmetric. That is

b(x, y) =

∫∫
R2

k(s, t)f(x− s, y − t) dsdt. (1.7)

This dual relationship between the PSF and the image will allow us to use the framework and

many of the tools of deconvolution for the problem of PSF estimation. That is, we will use a

known ideal f to estimate the PSF k.

Typically, deconvolution methods assume that the form of the PSF can be accurately de-

scribed by modeling the imaging system [Jain, 1989; Hansen, 2010], but for X-ray radiography

this is not realistic. If, instead, the imaging system is designed so that repeated images can be

taken under consistent conditions, then by convolution symmetry in (1.7), the blurring of a

known calibration image can be cast as deconvolving the PSF from the ideal f corresponding

to the known image.

Recall that the PSF models the blurring response of a single point, so a direct estimate of k

can be obtained by imaging a bright point-source, which approximates the impulse response

to (1.7). In astronomical imaging, the point-source can be a bright distant star, or in a con-

trolled setting where visible light is measured, a focused laser provides a good point-source

estimate [Tomaney and Crotts, 1996]. However, in the spectral regime of X-rays, focusing the

high-frequency light is notoriously difficult and usually is impractical in situations of interest,

so a point-source estimate of the PSF is usually unavailable. Instead, the system response of a

uniformly opaque calibration object with a simple geometry can be measured. When modeling

the image of an object that is sufficiently thick so that X-rays are completely attenuated on

its profile, we assume that the function for the ideal image is given by an indicator function

on a set E ⊆ R2 determined by the object’s profile. Calibration objects typically have sim-

ple geometry and reduce the complexity of solving the deconvolution problem in (1.7). For

example, the object could be a circular aperture or two perpendicular edges aligned with the

imaging plane [Doering et al., 1992; Watson, 1993]. As will be seen, the additional assump-
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tion of radial symmetry on k is sufficient to estimate the PSF from the calibration image of

a straight edge. Specifically, if the calibration object completely attenuates X-rays along a

vertical edge at the fixed location at s = 0 in the imaging plane, then E = {(s, t) : s ≥ 0}

and fE(s) = f(s, t) = 1 if s ≥ 0 and fE(s) = 0 if s < 0; see Figure 1.1 for a schematic of

the calibration object in the measurement system and Figure 1.2 for an example of recorded

intensity data. The model for blur in (1.7) reduces to

b(x, y) =

∫∫
R2

k(s, t)fE(x− s)dsdt. (1.8)

Note that b does not depend on y in (1.8), so denoting b(x) = b(x, 0), (1.8) reduces to

b(x) =

∫∫
R2

k(s, t)fE(x− s)dsdt. (1.9)

In general, estimating k from b in (1.9) is underdetermined, since there are many distinct k

that can result in the same output b. To see this, note that

∫ ∞
−∞

te−t
2−s2dt = 0 (1.10)

for all s since the integrand is odd in t, and given any solution k, k(s, t)+te−t
2−s2 also satisfies

(1.9). Observe that these PSFs are not radially symmetric. It will be seen in the next section

that the assumption of radial symmetry on k is sufficient for a unique solution to (1.9). Solving

the integral equation in (1.9) is the primary focus of this work.

1.3 The Abel transform and a deterministic solution

This section is devoted to explicitly deriving a solution to (1.9) and showing that radial

symmetry is sufficient to guarantee a unique solution. This deterministic method offers useful

insight into the problem, but will prove to be inadequate for practically obtaining estimates
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Opaque Edge

Image System Response

b(x) =

∫∫
R2

k(s, t)f(x− s) dsdt

Blurred Profile Recorded Data

Measurement error

+εx ∼ N(0, σ2)

Figure 1.1: A schematic of the measurement model for an X-ray image of an edge. An opaque
block aligned with the imaging plane blocks light on the half plane to produce a blurred edge.
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Figure 1.2: A synthetically blurred edge with simulated measurement error and a line-out
(horizontal cross-section) from the data.
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when the data are subject to measurement error.

Often, limitations due to physical laws put a lower bound on the measurement precision so

that even an optimal design cannot ignore the effect of blur. Although arbitrary resolution

may be impossible, it is often of interest to design a system that does not introduce error that

is biased. A system that is not biased with respect to spatial orientation is said to exhibit

isotropic blur, so that, in the convolution model, the PSF is radially symmetric. In fact, many

parametrically modeled PSFs assume radially symmetry [Doering et al., 1992; Jain, 1989;

Kundur and Hatzinakos, 1996; Watson, 1993].

When one assumes that the PSF of their system is a radially symmetric continuous function

on R2, then it has a unique representation on R; i.e., for k : R2 → R, there exists a function

p : [0,∞) → R so that k(s, t) = p
(√

s2 + t2
)

. The function p is referred to as the radial

profile of k. Define

`(s)
def
=

∫ ∞
−∞

p
(√

s2 + t2
)
dt, (1.11)

which is integration along a line perpendicular to the edge E, a form commonly encountered in

other imaging applications with radial geometry, such as tomographic imaging science. The

transformation that takes p to ` is known as the Abel transform; for its study in imaging

science, see [Bracewell, 1965; Epstein, 2008; Knill et al., 1993].

Viewing (1.9) as iterated integration first in t allows fE(s−x) to be factored out of the inner

integral. Then substituting (1.11) for k into (1.9) and changing the bounds of integration in

s according to fE(x− s), results in

b(x) =

∫ ∞
−∞

fE(x− s)
(∫ ∞
−∞

p
(√

s2 + t2
)
dt

)
ds

=

∫ x

−∞

(∫ ∞
−∞

p
(√

s2 + t2
)
dt

)
ds

=

∫ x

−∞
`(s)ds. (1.12)
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The graph of b exhibits reflection symmetry about (0, b(0)). That is, for any x > 0, the point

(0, b(0)) is the mid-point between the points (x, b(x)) and (−x, b(−x)). To see this explicitly,

let b̃(x)
def
= b(x)− b(0), then for x > 0, equation (1.12) implies

−b̃(x) = −
(
b(x)−

∫ 0

−∞
`(s)ds

)
= −

∫ x

0
`(s)ds =

∫ −x
0

`(s′)ds′ = b(−x)− b(0) = b̃(−x).

(1.13)

Hence b̃(x) is odd, so the graph of b(x) has reflection symmetry about (0, b(0)). This means

that data defined on either x ∈ (−∞, 0] or x ∈ [0,∞) are sufficient for estimating p, since the

other half is determined by symmetry. This observation will be important in the next section.

The Abel transform has an explicit expression for its inverse [Epstein, 2008] given by

p(r) = − 1

πr

d

dr

(∫ ∞
r

`(s)sds

(s2 − r2)1/2

)
. (1.14)

The following calculations verify (1.14).

Proposition 1.3.1. Suppose that p(r) is such limr→∞ rp(r) = 0, `(s) in (1.11) is point-wise

defined, and the integral in (1.14) is finite for each r. Then equation (1.14) holds.

Proof. We can express the inner integral in (1.12) as

`(s) = 2

∫ ∞
|s|

p(t)t

(t2 − s2)1/2
dt (1.15)

by symmetry of the integrand (it is even) and a change of variable by r = s2 + t2. Now,

interchanging the order of integration in (1.14) results in

(∫ ∞
r

`(s)sds

(s2 − r2)1/2

)
=

∫ ∞
r

∫ ∞
s

2p(t)ts

(s2 − r2)1/2(t2 − s2)1/2
dtds

=

∫ ∞
r

p(t)t

∫ t

r

2s

(s2 − r2)1/2(t2 − s2)1/2
dsdt. (1.16)
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In the second step, we have interchanged variables and the integral’s support can be expressed

{(s, t) : r ≤ s, s ≤ t} = {(s, t) : r ≤ s ≤ t, r ≤ t}. (1.17)

Another change of variables by s2 = τt2 + (1− τ)r2 (note s ≥ 0) results in 2sds = (t2− r2)dτ ,

so that the inner integral in (1.16) is

∫ t

r

2s

(s2 − r2)1/2(t2 − s2)1/2
ds =

∫ 1

0

1

τ1/2(1− τ)1/2
dτ = π, (1.18)

where the last equality is given by an integral identity involving the gamma function. Col-

lecting these results and applying the fundamental theorem of calculus with the assumption

that limr→∞ rp(r) = 0 to (1.16) implies

−π
r

d

dr

(∫ ∞
r

`(s)sds

(s2 − r2)1/2

)
= −π

r

d

dr

∫ ∞
r

p(t)tπdt

=
1

r

(
p(r)r − lim

r′→∞
p(r′)r′

)
= p(r), (1.19)

which proves the identity in (1.14).

With this result, p can be recovered from b in (1.12) as follows: given b(x), the fundamental

theorem of calculus gives `(x) + limx′→∞ `(x
′) by differentiating b(x). Since limr→∞ tp(t) = 0,

symmetry and the change of variables in (1.15) implies limx′→−∞ `(x
′) = 0. Then, applying

the inversion formula in (1.14) to b′(x) gives the radial profile p(r). That is,

p(r) = − 1

πr

d

dr

(∫ ∞
r

(
d

ds
b(s)

)
sds

(s2 − r2)1/2

)
. (1.20)

Hence, the assumption of radial symmetry gives a unique solution to (1.6), and hence, suffi-

ciently constrains the problem to uniquely determine the PSF from an edge calibration object

illustrated in Figure 1.2.
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In theory, we have outlined a solution to the problem, but there is one more component to

the model that has not been addressed – random effects due to measurement error – for which

a direct application of the outlined method on measured data will fail spectacularly, due to

the estimation problem being ill-posed, which we address in the next section.

1.4 PSF reconstruction as an ill-posed inverse problem

The solution given by (1.20) will not be sufficient when measurement errors are introduced.

One clue that indicates this insufficiency is that it requires taking derivatives of measured

data, which is known to be problematic [Hanke and Scherzer, 2001]. In this section, we will

return to (1.9), and perform a different variable transformation to explicitly illustrate the

instability, and in doing so, will derive a form that is more suitable for analysis and numerical

discretization.

The measurements of the imaging system are generally not deterministic and are subject to

measurement noise. Precisely modeling the stochastic effect of measurement error is system

dependent and can be quite complicated. In X-ray radiography, uncertainty can enter into

the system at the luminescing crystal response, in the counting process of the CCD array,

or through the electrical transmission of the signal. In order to be broadly applicable, and

appealing generally to various central-limit-theorem-like results in probability [Durrett, 2010],

we model the stochastic measurement effect in aggregate as an additive, independent Gaussian

noise process with zero mean and unknown variance. For now, this assumption can be viewed

as a small perturbation from the model, but its form will be important for the inference

techniques developed in subsequent chapters.

Estimating a quantity of interest, in our case k, from indirect and noisy measurements, b,

with a model where an operator takes k to b (referred to as the forward operator) is called an

inverse problem. The problem is called well-posed when the forward operator is invertible, and
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the inverse is continuous. These famous conditions were laid out in the early 20th century

by [Hadamard, 1902], but a number of important applications have arisen (among those

computational imaging) where these conditions are violated; enough to the extent that the

term ‘inverse problems,’ as it refers to the mathematical research area, is exclusively devoted

to solving ill-posed problems. In particular, most cases of interest exhibit a model where the

inverse of the forward operator is discontinuous.

Returning to (1.9), a variable transformation by (s, t) = T (r, v) = (r cos v, r sin v), has

|dT (r, v)| = r and

b(x) =

∫ ∞
0

p(r)

(∫ π

−π
fE(x− r cos v)dv

)
rdr

=

∫ ∞
0

p(r)g(x, r)rdr, (1.21)

where

g(x, r)
def
=


0 x < −r

2(π − acos(x/r)) |x| ≤ r

2π x > r

. (1.22)

To see that g has this form, note that integrating fE(x− r cos v) is the radian measure of the

set {v ∈ (−π, π) : r cos v ≤ x}; see Figure 1.3.

There are three key observations to make. From this viewpoint, the forward model is now

a one-dimensional integral equation on the radial profile as opposed to the two-dimensional

problem in (1.9). Second, note that g(x, r) is continuous (although it has a discontinuity in

its partial derivatives across r = s). Finally, recall that the graph of b(x) exhibits reflection

symmetry about (0, b(0)). So, b(x) defined on either (−∞, 0] or [0,∞) completely determines

p.

The discussion thus far has been somewhat informal, as we have assumed that all functions

are continuous and have not defined a space for the PSF, the domain of the forward operator



1.4. PSF RECONSTRUCTION AS AN ILL-POSED INVERSE PROBLEM 16
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Figure 1.3: The PSF forward integral operator kernel g(x, r) represented as the arc measure
of v in (−π, π) where x ≥ r cos v.

denoted P, or the ambient space for the data, the codomain of the forward operator. Defining

these spaces rigorously is the main focus of Chapter 2, and it will be shown that both of

these spaces are separable Hilbert spaces and, in particular, that the data are a subspace of

L2((−∞, 0]). For now, let G : P → L2((−∞, 0]) be given and let the action of the operator

be consistent with the integral equation in (1.21), i.e.,

[Gp](x) =

∫ ∞
0

p(r)g(x, r)rdr. (1.23)

The operator G is a compact Hilbert-Schmidt operator since g is continuous. Moreover, G

is an injective operator since we showed that b = Gp has an explicit solution. The spectral

theorem for such operators implies that G has a countable spectrum which has zero as a limit

point, so its inverse G−1 is unbounded. See one of many texts on functional analysis such as

[Bachman and Narici, 1966; Rudin, 1991] for the spectral theorem regarding Hilbert-Schmidt

operators, and [Tikhonov, 1963; Vogel, 2002; Morozov and Stessin, 1993] for its role in inverse

problems.

Solving ill-posed inverse problems requires prior assumptions about p that regularize the

unbounded inverse. Recall that the original formulation of the problem is cast in terms of
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deconvolution, and much of the literature of inverse problems is devoted to this subject. This

work draws heavily from techniques for that purpose, but has many nuanced differences that

make the analysis challenging, yet also novel and interesting. We will utilize a Bayesian

approach to analyzing the inverse problem, since in addition to estimating k, these techniques

provide uncertainties in the resulting estimate and can be quantified by analyzing the so-called

posterior distribution. These methods have been the subject of much recent research (see the

books [Calvetti and Somersalo, 2007; Kaipio and Somersalo, 2005; Stuart, 2010]), and the

problem of PSF reconstruction fits neatly into that framework once the space P and the

forward operator have been well-defined, which we address in the next chapter.



Chapter 2

Radial Symmetry for Sobolev

Spaces

The domain and geometry of an image and a point spread function are inherently two-

dimensional. While the assumption of radial symmetry reduces the representation dimension,

the geometry of the problem is still two-dimensional and must be appropriately translated to

the radial representations. The question of how regularity assumptions like square summa-

bility of derivatives translates to a radial representation does not have an obvious resolution

if we allow generalised functions and generalized derivatives. The goal of this chapter is to

rigorously address these issues by developing the necessary mathematical tools to encapsu-

late prior notions of regularity and radial symmetry within the structure of separable Hilbert

spaces and concretely establish how that affects a radial representation. The development is

done within the theory of distributions, developed initially for the analysis of linear partial

differential equations (PDEs). This framework provides sufficient generality to encapsulate

radial symmetry and sufficient regularization via generalization of differential operators and

function composition, all within the rich structure of a separable Hilbert space. Hence, tools

for analyzing inverse problems that require radial symmetry are readily applicable to the PSF

18
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estimation problem.

2.1 Distribution spaces

In this section we establish the preliminary definitions and main results from distribution

theory. There are several treatments of the subject in varying levels of generality, and this

work draws primarily from [Richtmyer, 1978; Hörmander, 1983; Rudin, 1991; Griffel, 2002;

Strichartz, 2003].

2.1.1 The space of test functions and distributions

Let D(Ω) denote the space of compactly supported smooth functions defined on an open set

Ω ⊆ RN . Endow D(Ω) with the topology such that convergence of the sequence (φn) ⊂ D(Ω)

happens whenever there exists a compact set K such that

∞⋃
n=1

suppφn ⊆ K and sup
m≥n
|∂α(φn − φm)| → 0 as n→∞ (2.1)

for any multi-index such that |α| ≤ k. That is, α is a k-tuple of non-negative integers

(α1, . . . , αk), such that
∑
αi ≤ k and ∂α =

∏( ∂
∂xi

)αi
. In distribution theory, these are

called test functions on Ω. The space of continuous linear functionals, denoted D∗(Ω), are

the distributions on Ω. We adopt the notation 〈f, φ〉 for the action of a linear functional f

on φ ∈ D(Ω) and freely use the natural inclusion of functions g → g̃ ∈ D∗(Ω) by 〈g̃, φ〉 =∫
g φ dx when the integration exists and omit the tilde notation distinguishing g and g̃ as the

representation should be clear from context.

Consider the following two general topological results regarding distributions. See [Hörmander,

1983, Chapter 2] for the proofs of each.
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Theorem 2.1.1. [Hörmander, 1983] Suppose (fn) is a sequence in D∗(Ω) such that lim〈fn, φ〉

exists for all φ ∈ D(Ω), then there exists a unique f ∈ D∗(Ω) such that

〈f, φ〉 = lim
n→∞

〈fn, φ〉. (2.2)

The existence of the linear functional f can be readily established by using the completeness

of the associated field (either R or C), and the main difficulty of establishing the result is

showing that the resulting linear functional is continuous with respect to the topology of

D(Ω). It essentially follows from a general statement of the Banach-Steinhaus theorem for

Fréchet spaces, and a complete development from first principles can be found in [Rudin,

1991].

The next result, sometimes referred to as localization, establishes a dense embedding of the

D(Ω) into D∗(Ω).

Theorem 2.1.2. [Hörmander, 1983] Given f ∈ D∗(Ω), there exists a sequence (φn) ⊂ D(Ω)

such that

〈f, ψ〉 = lim
n→∞

〈φn, ψ〉. (2.3)

These results allow for operators defined on D(Ω) to be extended in a continuous way to

D∗(Ω) so long as one can define an adjoint operation with respect to the sesquilinear form

〈·, ·〉. Moreover, if the operation is well-defined on test functions, then uniqueness of the

extension follows from Theorem 2.1.2. The classical example of this process is extending the

differential operator ∂
∂xi

: D∗(Ω) → D∗(Ω). First, for test functions observe that integrating

by parts and using the compactness of the support of ψ yields

〈
∂

∂xi
φ, ψ

〉
=

∫
Ω

∂

∂xi
φ(x)ψ(x)dx = −

∫
Ω
φ(x)

∂

∂xi
ψ(x)dx = −

〈
φ,

∂

∂xi
ψ

〉
. (2.4)
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This motivates defining ∂
∂xi
f ∈ D∗(Ω) by

〈
∂

∂xi
f, φ

〉
def
= −

〈
f,

∂

∂xi
ψ

〉
(2.5)

from which we can extend the definition of ∂α

〈∂αf, φ〉 def
= (−1)|α| 〈f, ∂αψ〉 . (2.6)

Note that the resulting functional is continuous, by the smoothness of ψ ∈ D(Ω). Since the

operator ∂α : D∗(Ω) → D∗(Ω) is expressed as an adjoint on test functions with respect to

evaluation, its continuity follows directly from the weak∗-topology induced from D(Ω), i.e.,

suppose fn → f in D∗(Ω), then

lim
n→∞

〈∂αfn, φ〉 = lim
n→∞

(−1)|α|〈fn, ∂αφ〉 = (−1)|α|〈f, ∂αφ〉 = 〈∂αf, φ〉. (2.7)

The idea of expressing an operation adjointly on test functions, serves as the model for

extending radial symmetry to distributions. That is, the radial change of variables introduced

in Chapter 1 can be ‘moved’ to test functions in an analgous way to express function compo-

sition on distributions. Before this argument is undertaken, we first show how L2 functions

can be thought of as distributions, and how regularity can be imposed through generalized

derivatives with Sobolev spaces.

2.1.2 L2 as a subspace of distributions

Hilbert spaces provide the rich structure of a complete inner product and guarantee com-

pleteness in the sense that Cauchy sequences converge to elements in the space. Moreover,

formulating inverse problems on a Hilbert space is, in many cases, a prerequisite for employ-

ing variational or infinite dimensional probabilistic Bayesian methods. This development will
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show how the space of square integrable functions L2 and their generalized derivatives can be

defined as distributions, which is necessary for defining the Hilbert space for radial profiles

and also provides valuable insights in how they will be constructed. The development follows

[Richtmyer, 1978; Griffel, 2002], for which we need only the notion the L2 inner product, as

opposed to the more common Fourier based approaches which can be found in [Rudin, 1991;

Hörmander, 1983; Strichartz, 2000]. Our development also provides several details that are

omitted in [Richtmyer, 1978].

We define the L2 inner-product for test functions as the sesquilinear form (·, ·)L2(Ω) : D(Ω)×

D(Ω)→ C by the Riemann integral

(φ, ψ)L2(Ω)
def
=

∫
Ω
φ(x)ψ(x) dx, (2.8)

with the induced norm

‖φ‖2L2(Ω)
def
= (φ, φ)L2(Ω). (2.9)

The linearity of the first component (and anti-linearity of the second) in (2.8) are given by

the linearity of integration, and positivity follows from the positivity of φ(x)φ(x) = |φ(x)|2.

For definiteness, note that if φ = 0 then ‖φ‖L2(Ω) = 0, and only if φ = 0, otherwise, continuity

of φ implies that there exists a neighborhood where |φ(x)| > 0, which gives ‖φ‖L2(Ω) > 0.

Since (2.8) defines an inner-product, the triangle inequality of the norm follows from the

Cauchy-Schwarz-Bunyakovsky inner product inequality |(φ, ψ)| ≤ ‖φ‖‖ψ‖; i.e.,

‖φ+ ψ‖2L2(Ω) = ‖φ‖2L2(Ω) + 2Re(φ, ψ)L2(Ω) + ‖ψ‖2L2(Ω)

≤ ‖φ‖2L2(Ω) + 2|(φ, ψ)L2(Ω)|+ ‖ψ‖2L2(Ω)

≤ ‖φ‖2L2(Ω) + 2‖φ‖L2(Ω)‖ψ‖L2(Ω) + ‖ψ‖2L2(Ω)

=
(
‖φ‖2L2(Ω) + ‖ψ‖2L2(Ω)

)2
. (2.10)
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A sequence (φn) ⊂ D(Ω) is Cauchy with respect to L2(Ω) if

lim
n→∞

sup
k≥n
‖φn − φk‖L2(Ω) = 0. (2.11)

Observe that (φ, ψ)L2(Ω) = 〈φ, ψ〉 when φ is viewed as an element of D∗(Ω). Hence, if (φn)

is Cauchy with respect to L2(Ω), then the sequence of complex numbers
{
〈φn, ψ〉

}
is Cauchy,

i.e., using Cauchy-Schwarz-Bunyakovsky

|〈φn, ψ〉 − 〈φk, ψ〉| = |(φn − φk, ψ)L2(Ω)| ≤ ‖φn − φk‖L2(Ω)‖ψ‖L2(Ω). (2.12)

Hence, lim〈φn, ψ〉 exists for all ψ ∈ D(Ω) (by completeness of C), and Theorem 2.1.1 provides

uniquely an f ∈ D∗(Ω) such that

lim
n→∞

〈φn, ψ〉 = 〈f, ψ〉. (2.13)

All such f are elements of the space L2(Ω).

Sequences (φn) and (φ′n) are equivalent L2(Ω) Cauchy sequences if

‖φn − φ′n‖L2(Ω) → 0. (2.14)

These distributions are well defined in the following sense:

Proposition 2.1.3. Sequences (φn) and (φ′n) determine the same distribution if and only if

they are equivalent.

The proof can be found in [Richtmyer, 1978], and follows from several straight-forward

applications of the Cauchy-Schwarz-Bunyakovsky inequality.

It can be readily shown that (2.14) defines an equivalence relation on Cauchy sequences

for which vector addition and scalar multiplication are well-defined, hence, the equivalence
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classes of Cauchy sequences correspond uniquely to a linear subspace of D∗(Ω).

We can now extend the inner product to elements in L2(Ω) in the following way,

(f, g)L2(Ω)
def
= lim

n→∞
(φn, ψn)L2(Ω) (2.15)

where (φn) and (ψn) are Cauchy sequences corresponding to f and g respectively. The fol-

lowing proposition is not proved in [Richtmyer, 1978], so we provide a short proof.

Proposition 2.1.4. The limit in (2.15) exists and is well-defined for equivalent Cauchy se-

quences. Moreover, limn→∞〈f, ψn〉L2(Ω) = (f, g)L2(Ω).

Proof. Since (φn) and (ψn) are Cauchy, the inequality |‖φn‖L2(Ω)−‖φk‖L2(Ω)| ≤ ‖φn−φk‖L2(Ω)

implies that ‖φn‖L2(Ω) and ‖ψn‖ are both Cauchy sequences of positive numbers, and thus

have finite limits.

Now observe,

|(φn, ψn)L2(Ω) − (φk, ψk)L2(Ω)| =
∣∣(φn, ψn − ψk)L2(Ω) − (φn − φk, ψk)L2(Ω)

∣∣
≤ ‖φn‖L2(Ω)‖ψn − ψk‖L2(Ω) + ‖φn − φk‖L2(Ω)‖ψk‖L2(Ω)

≤ ‖φn‖L2(Ω)‖ψn − ψk‖L2(Ω)

+ ‖φn − φk‖L2(Ω)

(
‖ψk − ψn‖L2(Ω) + ‖ψn‖L2(Ω)

)
. (2.16)

Since the limit as n → ∞ of the supk≥n of the right hand side of the inequality results in

0 (the sequences (‖φn‖) and (‖ψn‖) have finite limits) the convergence of the left hand side

follows. Thus, (φn, ψn) is a Cauchy sequence in C, and hence, has a finite limit.

Let ε > 0 be given. For all n, choose m sufficiently large so that

|〈f, ψn〉 − (f, g)L2(Ω)| ≤ |〈f − φm, ψn〉|+ |〈φm − φn, ψn〉|+ |〈φn, ψn〉 − (f, g)L2(Ω)|
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≤ |〈f − φm, ψn〉|+ ‖φm − φn‖‖ψn‖+ |〈φn, ψn〉 − (f, g)L2(Ω)|

< ε+ |〈φn, ψn〉 − (f, g)L2(Ω)|. (2.17)

Taking limits on both sides of the inequality

lim
n→∞

〈f, ψn〉 = (f, g)L2(Ω), (2.18)

since ε > 0 is arbitrary.

Finally, to show that the inner product is well-defined, suppose (φ′n) and (ψ′n) are equivalent

Cauchy sequences to (φn) and (ψn) respectively. Then

| lim
n→∞

(φn, ψn)L2(Ω) − (φ′n, ψ
′
n)L2(Ω)| = | lim

n→∞
〈f, ψn〉 − lim

n→∞
〈f ′, ψn

′〉| by (2.18)

= | lim
n→∞

〈f, ψn − ψn
′〉| by Proposition 2.1.3

= 0.

Thus, the inner product is well-defined for equivalent Cauchy sequences.

Showing that (2.15) is an inner product on L2(Ω) is straight-forward, and the resulting inner

product space is a Hilbert space, as stated in the following theorem.

Theorem 2.1.5. The space L2(Ω) is complete with respect to the inner product defined in

(2.15), hence, is a Hilbert space.

See [Richtmyer, 1978] for the proof, which follows a standard diagonalization argument.

We remark that there is a correspondence with the standard notion of L2(Ω) with respect

to Lebesgue measure and this development. The basis of the correspondence comes from the

result that a simple function can be arbitrarily approximated with a sequence of test functions

in the standard L2(Ω) sense with Lebesgue measure. See [Hörmander, 1983] for a rigorous
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development of this correspondence.

2.1.3 The Sobolev space H n(Ω)

Sobolev spaces provide a framework for imposing regularity on distributions in terms of their

derivatives. In this work, we will be concerned only with Sobolev subspaces of L2, which are

sometimes denoted W k,2. In this subsection, we briefly overview the definition of these spaces,

and state a version of the Sobolev embedding theorem sufficient for characterizing PSFs of

interest in this work.

A Sobolev space of order n over an open set Ω ⊆ Rk is H n(Ω) = {f ∈ L2(Ω) : ∂αf ∈

L2(Ω) whenever |α| ≤ n}. Each of these form a sequence of linear subspaces H n(Ω) ⊂

H n−1(Ω) ⊂ · · · ⊂ H 1(Ω) ⊂ L2(Ω), however, the inclusion is strict and they are not closed

with respect to the L2 norm [Richtmyer, 1978].

They are, however, complete with respect to a new inner product and norm given by

(f, g)Ω,n =
∑

0≤|α|≤n

(∂αf, ∂αg)L2(Ω) . (2.19)

We denote the corresponding norm ‖f‖Ω,n. The proof is by induction on the order of |α|,

where the base case is the completeness of L2(Ω). To see the inductive step, note

(f, g)Ω,1 = (f, g)L2(Ω) +

k∑
i=1

(
∂

∂xi
f,

∂

∂xi
g

)
L2(Ω)

. (2.20)

Let (fn) ⊆H 1 be Cauchy with respect to the corresponding norm. Since ‖fn‖L2(Ω) ≤ ‖fn‖Ω,1,

there exists a function f ∈ L2(Ω) such that (fn) converges to f in L2(Ω) by completeness

there. Moreover, each ∂
∂xi
fn is similarly also a Cauchy sequence in L2(Ω), so let f (i) be the cor-

responding limit in L2(Ω). Since L2 convergence is stronger than distributional convergence,
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we also have that the distributional derivatives of f converge to f (i); explicitly,

〈
∂

∂xi
f, ψ

〉
= −

〈
f,

∂

∂xi
ψ

〉
= lim

n→∞
−
〈
fn,

∂

∂xi
ψ

〉
= lim

n→∞

〈
∂

∂xi
fn, ψ

〉
= 〈f (i), ψ〉. (2.21)

Hence, each distributional derivative ∂
∂xi
f ∈ L2(Ω), and thus f ∈H 1(Ω). Finally,

‖fn − f‖Ω,1 = ‖fn − f‖L2(Ω) +

n∑
i=1

∥∥∥∥ ∂

∂xi
fn − f (i)

∥∥∥∥
L2(Ω)

→ 0 (2.22)

since each term does by their construction, hence fn → f in H 1.

In this argument, note that each Sobolev space inherits completeness from the lower order

space, which will be similar to how the space of radial representations with an appropriate

inner product inherit completeness.

We will occasionally use the convenient abbreviations from differential calculus

(∇nf,∇ng)L2(Ω)
def
=
∑
|α|=n

(∂αf, ∂αg)L2(Ω) . (2.23)

When n = 1, the inner product and norm reduce to the familiar gradient forms,

(∇f,∇g)L2(Ω) =
k∑
i=1

(
∂

∂xi
f,

∂

∂xi
g

)
L2(Ω)

(2.24)

and

‖∇f‖2L2(Ω) =

k∑
i=1

∥∥∥∥ ∂

∂xi
f

∥∥∥∥2

L2(Ω)

. (2.25)

2.2 Radial symmetry

Symmetry is established by casting it as precomposition with a many-to-one smooth map

T that is constant on circles of a fixed radius. If f is a function on R2 and there exists a
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function p so that f(x, y) = p(
√
x2 + y2), then observe that f has the common notion of radial

symmetry with a radial profile p. This notion is easily adapted to distributions by developing

a notion of composition with T and using a so-called linear pullback operator to T ]. That

is, T ] maps p to f by precomposition with T (x, y) on sequences of test functions converging

to p. A pullback is the analogous notion of composition for distributions, and the idea of

the construction is to extend the range of T to a bijection similar to the polar coordinates

map and use it to perform an integral change of variables to ‘move’ the composition to a test

functions. For topological reasons, the bijection will only be with a dense subset of R2.

2.2.1 The pull-back operator

In this subsection, we will explicitly construct the pullback operator T ] for a slightly more

general smooth map T (x, y). It will turn out that by explicitly constructing the pullback

operator for radial symmetry, we will obtain the additional property of injectivity.

Let Ω1
def
= (0,∞) ⊂ R and Ω2

def
= R2 \ {x = 0 or y = 0}. For h : Ω1 → Ω1 with h(t)

def
= ta

and 0 < a < 1, let T : Ω2 → Ω1 by T (x, y) = h(x2 + y2). In order to establish the operator on

distributions, we first observe its adjoint action on test functions.

Lemma 2.2.1. There exists a map T] : D(Ω2)→ D(Ω1) so that for any ρ ∈ D(Ω1)

〈ρ ◦ T, φ〉Ω2 = 〈ρ, T]φ〉Ω1 . (2.26)

Proof. Let Qij = {(x, y) : (−1)ix > 0, (−1)jy > 0} for i, j ∈ {0, 1} so that
⋃
Qij = Ω2. Define

Tij : Qij → R ⊂ R2 by

Tij(x, y) =
(
T (x, y), (−1)jy

)
. (2.27)

Observe that each Tij is a diffeomorphism ontoR =
{

(r, t) : 0 < t <
√
h−1(r)

}
=
{

(r, t) : 0 < t < r
1
2a

}
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with inverse

T−1
ij (r, t) =

(
(−1)i

√
h−1(r)− t2, (−1)jt

)
=
(

(−1)i
√
r

1
a − t2, (−1)jt

)
, (2.28)

and

∣∣∣dT−1
ij (r, t)

∣∣∣ =
1

2

∂

∂r
[h−1(r)]

(
h−1(r)− t2

)−1/2
=

1

2a
r

1
a
−1
(
r

1
a − t2

)−1/2
, (2.29)

which is positive and smooth for all (r, t) ∈ Ω2. Furthermore, note that

T ◦ T−1
ij (r, t) = r. (2.30)

Now, given ρ ∈ D(Ω1), a change of variables results in

〈ρ ◦ T, φ〉Ω2 =
∑
ij

∫∫
Qij

ρ ◦ T (x, y) · φ(x, y)dxdy

=
∑
ij

∫∫
R
ρ(r) · φ ◦ T−1

ij (r, t) |dTij | drdt

=

∫ ∞
0

ρ(r)

∫ √h−1(r)

0

∑
ij

φ ◦ T−1
ij (r, t) |dTij | dt

 dr. (2.31)

Let

[T]φ](r) =

∫ √h−1(r)

0

∑
ij

φ ◦ T−1
ij (r, t) |dTij | dt (2.32)

=
r

1
a
−1

2a

∑
ij

∫ r
1
2a

0
φ

(
(−1)i

√
r

1
a − t2, (−1)jt

)(
r

1
a − t2

)−1/2
dt, (2.33)

and we must show that T]φ ∈ D(Ω1). Note that supp
(
φ ◦ T−1

ij

)
= Tij(suppφ) is compact

in R as it is the continuous image of a compact set, and since Tij is a diffeomorphism,

φ ◦ T−1
ij ∈ D(Ω2). Since φ ◦ T−1

ij (r, t) is smooth, a result in [Strichartz, 2000, pg. 433]

guarantees that integrating out t, i.e.,
∫
φ ◦T−1

ij (r, t) dt results in a smooth function in r. The
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support of this function is the projection of the support of φ ◦Tij onto the second coordinate,

and hence, is compact. Summing over i, j results in a compactly supported smooth function.

Using Lemma 2.2.1, we can now define the pullback by T on D∗(Ω1) by T ] : D∗(Ω1) →

D∗(Ω2) by

〈T ]p, φ〉Ω2

def
= 〈p, T]φ〉Ω1 . (2.34)

As previously remarked, this operator generalizes smooth composition for distributions, and

will be the basis for how we define radial symmetry. To see that T ]p ∈ D∗(Ω2) (i.e. acts

continuously on D(Ω2) as a linear functional), let (φn)→ 0 in D(Ω2), so fixing α = 0 in (2.1),

we have supΩ2
|φn| → 0 as n → ∞. Then, by (2.33), supΩ1

|T]φn| → 0 as n → ∞, and thus

〈p, T]φn〉 → 0 by the continuity of p.

The linearity and continuity of T ] follow directly from this definition. That is

〈T ]p1 + αT ]p2, φ〉Ω2 = 〈T ]p1, φ〉Ω2 + α〈T ]p2, φ〉Ω2

= 〈p1, T]φ〉Ω1 + α〈p2, T]φ〉Ω1

= 〈T ](p1 + αp2), φ〉Ω2 (2.35)

and if 〈pn, ψ〉 → 0 for all ψ ∈ D(Ω1), then

〈T ]pn, φ〉Ω2 = 〈pn, T]φ〉Ω1 → 0. (2.36)

Loosely speaking, the pullback by T represents a change of variables from (x, y) to (r, v)

by expanding the domain of T to an invertible Tij(x, y) with the choice of Tij arbitrary.

Observe that for a fixed r̃ = r1/(2a), the image of T−1
ij (r, v) is a quarter circle of radius r̃

in the quadrant determined by i, j. Another valid choice of Tij , which is similar to a polar-
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coordinates transformation, would be (T (x, y),Arg(x, y)), but the calculations in this case are

somewhat more tedious. We will show that T ] is unique with respect to the choice of Tij , and

it will allow us to freely choose any other change of variables such that T ◦Tij(r, v) = r with the

analysis on T remains valid. We remark that the existence and continuity of a more generally

defined pullback operator can be carried for any smooth T and is outlined in [Hörmander,

1983]. However, in this case, because of the specific form of T under consideration, the induced

pullback T ] is injective. This will be a consequence of the next lemma.

Lemma 2.2.2. For all p ∈ D∗(Ω1) and ω ∈ D(Ω1)

〈T ]p, ω ◦ T 〉Ω2 = 〈p, S(ω)〉Ω1 , (2.37)

where S(ω) is the shift operator defined by S(ω) = ω · πh−1′, the derivative of the inverse of

h in Theorem 2.2.4. When h(r) = r1/2, then h−1′(r) = 2πr.

Proof. First, note that both ω◦T and h−1′ ·ω are elements of D(Ω1). From (2.29), we calculate

the trigonometric integral

∫ √h−1(r)

0
|dTij( r, t)|dt =

h−1′(r)

2

∫ √h−1(r)

0

(
h−1(r)− t2

)−1/2

=
π

4
h−1′(r). (2.38)

By invoking Theorem 2.1.2, let (ρn) be a sequence in D(Ω1) converging to p in D∗(Ω1), then

substituting ρn for p and ψ ◦ T for φ in (2.31), we have

〈T ]ρn, ψ ◦ T 〉Ω2 = 4

∫ ∞
0

ρn(r)ψ(r)

(∫ √h−1(r)

0
|dTij | dt

)
dr

= π

∫ ∞
0

ρn(r)ψ(r)h−1′(r)dr

= 〈ρn, S(ψ)〉Ω1
. (2.39)

By continuity of T ], the desired equality is established.
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Recall that the action of T ] on test functions was the standard notion of composition with

T , so the operator T]T
] : D(Ω1)→ D(Ω1) acts on ρ as a distribution by

〈
T]T

]ρ, ω
〉

Ω1

=
〈
T ]ρ, T ]ω

〉
Ω2

= π

∫ ∞
0

ρn(r)T ]ω(r)h−1′(r)dr = 〈S(ρ), ω〉Ω1
. (2.40)

Since the shifting function is positive, we have that the operator T]T
] is invertible, and in

particular we have the following corollary:

Corollary 2.2.3. The operator T] : D(Ω2)→ D(Ω1) is a surjection.

Having established the previous lemmas, we can now show:

Theorem 2.2.4. The pullback by T on D∗(Ω1) is a linear operator T ] : D∗(Ω1) → D∗(Ω2)

that is injective, continuous, and unique in the sense that 〈T †ρ, φ〉 = 〈ρ◦T, φ〉 for all φ ∈ D(Ω2)

and ρ ∈ D(Ω1) implies T † = T ] in the sense of evaluation on distributions.

Proof. We have already established that T ] : D∗(Ω1)→ D∗(Ω2) is a continuous linear opera-

tor. Uniqueness is a consequence of Theorem 2.1.2. That is, suppose T † : D∗(Ω1)→ D∗(Ω2)

is a continuous linear functional such that 〈T †p, φ〉 = 〈p ◦ T, φ〉 for all φ ∈ D(Ω2) whenever

p ∈ D(Ω1). Then, for any p ∈ D∗(Ω1), let {pn} ⊂ D(Ω1) converge to p (in the D∗(Ω1) sense),

so 〈
(T ] − T †)p, φ

〉
Ω2

= lim〈T ]pn, φ〉Ω2 − lim〈T †pn, φ〉Ω2 = 0. (2.41)

Hence T ] = T †. Thus, as previously remarked, any choice of Tij to define T ] such that

T ]φ = φ ◦ T on test functions results in an equivalent distribution.

It remains to show that T ] is injective. This follows from the surjectivity of T]; explicitly,

suppose p ∈ D∗(Ω1) is such that T ]p = 0, then for ψ an arbitrary test function in D(Ω1)

0 =
〈
T ]p, ψ

〉
Ω2

=
〈
p, T]ψ

〉
Ω1

, (2.42)
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implies p = 0 as a distribution by Corollary 2.2.3. Hence, T ] has trivial kernel and, as it is a

linear map, is injective. We have established all of the properties in Theorem 2.2.4.

2.2.2 An extension theorem and a motivating example

Using the development in the last section, we can define what it means for a distribution to be

radially symmetric. As before, let Ω2 = R2 \ {x = 0 or y = 0},Ω1 = (0,∞), and T : Ω2 → Ω1,

henceforth we will consider only T (x, y) =
√
x2 + y2 (that is, h(r) = r1/2). A distribution

f ∈ D∗(Ω2) is radially symmetric if f = T ]p for some distribution p ∈ D∗(Ω1). We call p the

radial profile of f , and the results of the last section establish that the correspondence with

p is well-defined. Care must be taken in order to develop radial symmetry that is compatible

with the topology of L2, as it is not necessarily the case that the corresponding radial profile

p ∈ L2(Ω1) even if f ∈ L2(Ω2). To demonstrate this, we must first establish a result that

allows us to explicitly construct Cauchy sequences of test functions from continuous square

integrable functions. The construction of test functions is slightly different than the standard

development used to prove Theorem 2.1.2 in [Hörmander, 1983; Richtmyer, 1978], in that it

will allow us avoid convolving over a singularity.

The following result was established by [Seeley, 1964] for functions defined on Rk, and we

state a form on R, whose proof can be found in [Strichartz, 2000].

Theorem 2.2.5. Suppose f : [a, b] → R is smooth in the sense that the one sided limits of

the derivatives of f exist and are inductively given by

fn+1(a) = lim
h→0+

f (n)(a+ h)− f (n−1)(a)

h
(2.43)

and

fn+1(b) = lim
h→0−

f (n)(b+ h)− f (n−1)(b)

h
, (2.44)

with f (0)(a) = f(a). Then, for any open Ω ⊆ R such that [a, b] ⊂ Ω, there exists a smooth
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compactly supported f̃ : Ω→ R such that f̃(x) = f(x) for all x ∈ [a, b].

The idea of the proof is to construct continuous ‘flaps’ on (a−ε, a] and [b, b+ε) that converge

to zero on the open side like e−1/x as x → 0 and matching the one sided derivatives on the

closed side by using an argument similar to one used by Borel to construct smooth functions

with arbitrarily prescribed Taylor series.

With this powerful extension theorem, we can easily construct sequences of test functions

that are given by restrictions of smooth functions to compact sets. We will use this to construct

an important example that will guide the construction of the space of radially symmetric

functions and their profiles.

Consider the sequence of functions ρn : Ω1 → R defined by ρn(r) = r−1/2 for r ∈ [1/n, 1]

and are smoothly extended by Theorem 2.2.5 such that ρn ∈ D(Ω1). Since ρn is compactly

supported on Ω1 = (0,∞), there exists δ > 0 and a sequence (kn) such that 0 < kn < 1/n with

supp ρn ⊆ [kn, 1 + δ], hence, upon showing that it is Cauchy with respect to the L2 norm, we

will have shown that it corresponds to distribution in L2(Ω2). The limit of this sequence defines

a distribution, since for a given ω ∈ D(Ω1), let N > 0 such that 1
N < inf{r ∈ Ω1 : r ∈ supp(ω)}

and M = sup{r > 0 : r−1/2ω(r)}. Then ‖ρnω‖∞ is bounded by M for n ≥ N , hence∣∣∣ lim
n→∞

〈ρn, ω〉
∣∣∣ <∞.

Now, observe that

‖ρn‖2L2(Ω1) =

∫ 1+δ

kn

ρn(r)2 dr ≥
∫ 1

1/n
r−1 dr = lnn (2.45)

so, ρn cannot define a Cauchy sequence in L2(Ω1). On the other hand, the Cauchy sequence

(T ]ρn) ⊂ D(Ω2) corresponds to a distribution in D∗(Ω2) by

lim
n→∞

〈
T ]ρn, ψ

〉
Ω2

= lim
n→∞

〈ρn, T]ψ〉Ω1
. (2.46)
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Moreover, since T]ψ is compactly supported and the integrand in (2.46) is smooth, we can ex-

press the action of the distribution by integration with the point-wise limit p(r)
def
= r−1/2I(0,1]+

ρ1(r)I[1,∞) (since ρn changes only for r < 1/n),

lim
n→∞

〈
T ]ρn, ψ

〉
Ω2

=

∫ ∞
0

p(r)[T]ψ](r) dr. (2.47)

Since p(r) is continuous on (0,∞), we can perform the same change of variables used to define

T] in Lemma 2.2.1, so

lim
n→∞

〈
T ]ρn, ψ

〉
Ω2

=

∫∫
Ω2

p
(√

x2 + y2
)
ψ(x, y) dxdy, (2.48)

hence, the distribution corresponding to the limit of (T ]ρn) is integration against the contin-

uous function p
(√

x2 + y2
)

. Observe that this function is square integrable since p2(r) =

r−1I(0,1] + ρ1(r)2I[1,∞), and changing variables yields

∫∫
Ω2

p
(√

x2 + y2
)2
dxdy =

∫ 2π

0

∫ 1

0
dr + 2π

∫ ∞
1

ρ1(r)rdr <∞ (2.49)

since ρ1 is smooth and compactly supported.

We have shown that T ] is not a closed map with respect to the L2 topologies, or equivalently,

that T ]
−1

is unbounded with respect to the L2 topologies. This means that the closure of

T ]D(Ω1) with respect to the L2(Ω2) inner product is not equal to the image of the closure

of D(Ω1) with respect to L2(Ω1) under T ]. This lack of agreement is overcome in the same

way that it was dealt with in the case of the Sobolev space construction. That is, we let the

topology of radial profiles be inherited by enforcing L2(Ω2) convergence of the two-dimensional

PSF through the linear map T ]. This is carried out in detail in the next section.
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2.2.3 Radial symmetry for L2(Ω2) and H n(R2)

As previously mentioned, the structure of the space of radial profiles will be induced by

imposing structure on their images under T ]. As before, we denote Ω1 = (0,∞) and Ω2 =

R2 \ {x = 0 or y = 0}. We also fix T (x, y) =
√
x2 + y2, and remark that the arguments

can be modified in a straight forward was so that they apply to T (x, y) = (x2 + y2)a. We

define for a distribution k ∈ L2(Ω2) to be radially symmetric whenever there exists a sequence

(ρn) ⊂ D(Ω1), so that (T ]ρn) is Cauchy with respect to L2(Ω2),and

〈
k, φ

〉
Ω2

= lim
n→∞

〈
T ]ρn, φ

〉
Ω2

= lim
n→∞

〈
ρn, T]φ

〉
Ω1

. (2.50)

This collection forms a linear subspace of L2(Ω2) which we denote K 0 ⊂ D∗(Ω2), and by

construction is complete with respect to the L2 norm. Moreover, the completion results in a

radially symmetric distribution, as is stated in the following proposition.

Proposition 2.2.6. The space K 0 ⊆ T ]D∗(Ω1).

Proof. Let ρn ∈ D(Ω1) so that (T ]ρn) is Cauchy with respect to L2(Ω2). We must show that

there exists p ∈ D∗(Ω1) such that

lim
n→∞

〈
T ]ρn, ψ

〉
Ω2

=
〈
T ]p, ψ

〉
Ω2

(2.51)

for all ψ ∈ D(Ω2). Since the limit

lim
n→∞

〈
T ]ρn, ψ

〉
Ω2

= lim
n→∞

〈
ρn, T]ψ

〉
Ω1

(2.52)

for all ψ ∈ D(Ω2), and by the surjectivity of T], Corollary 2.2.3, and the localization theorem

Theorem 2.1.2, there exists p ∈ D∗(Ω1) so that

lim
n→∞

〈
ρn, T]ψ

〉
Ω1

=
〈
p, T]ψ

〉
Ω1

= lim
n→∞

〈
T ]p, ψ

〉
Ω2

. (2.53)
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Now, the space of radial profiles corresponding to radially symmetric L2(Ω2) distributions

is P0 = {p ∈ D∗(Ω1) : T ]p ∈ K 0}. Observe that this set is precisely the preimage of K 0

under T ], and similar to the computation in Lemma 2.2.2, imposes a regularity on the shift

of p. That is, let 〈S1/2(p), ω〉Ω1

def
=
〈
p,
√

2πr · ω
〉

Ω1
and consider the following proposition:

Proposition 2.2.7. If p ∈P0 then S1/2(p) ∈ L2(Ω1).

Proof. We will construct a sequence of test functions (ρn) ⊂ D(Ω1) that converges in L2(Ω1)

to p. By construction, p ∈P0 implies that there is a sequence of test functions (ρn) ⊂ D(Ω1)

such that (T ]ρn) is Cauchy with respect to L2(Ω2) and

〈p, ω〉Ω1 = lim
n→∞

〈ρn, ω〉Ω1 (2.54)

for all ω ∈ D(Ω1). The action of the shift on test functions is [S1/2(ρn)](r) =
√

2πrρn(r) since

ρn are smooth. Now, observe

‖S1/2(ρn)− S1/2(ρk)‖2L2(Ω1) =

∫
Ω1

(ρn − ρk)
(

2πr · (ρn − ρk)
)
dr

=
〈

(ρn − ρk), T]T ](ρn − ρk)
〉

Ω1

=
〈
T ](ρn − ρk), T ](ρn − ρk)

〉
Ω2

=
∥∥∥T ](ρn − ρk)∥∥∥2

L2(Ω2)
. (2.55)

Hence
(
S1/2(ρn)

)
inherits the Cauchy criterion from (T ]ρn), and by completeness of L2(Ω1),

there exists a distribution g ∈ L2(Ω1) corresponding to
(
S1/2(ρn)

)
. That is,

〈
g, ω

〉
Ω1

= lim
n→∞

〈
S1/2(ρn), ω

〉
Ω1

= lim
n→∞

∫
Ω1

ρn(r),
√

2πr · ω(r)dr =
〈
S1/2(p), ω

〉
Ω1

. (2.56)
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In fact, the computation in (2.55) gives precisely the method for translating the structure

of L2(Ω) onto P0.

Theorem 2.2.8. The space P0 is the completion of D(Ω1) with inner product and norm given

by (ρ, ω)T (Ω1) =
(
S1/2(ρ), S1/2(ω)

)
L2(Ω1)

. Moreover, the space P0 with this inner product is

isometric with K 0 ⊂ L2(Ω2).

Proof. Note that T ]
−1

K 0 = P0 by definition, hence restricting T ] : P0 → K 0 is a surjec-

tion, and by Theorem 2.2.4 a bijection. Moreover, for any p ∈P0, let (ρn) be a corresponding

Cauchy sequence with respect to L2(Ω1), then the same calculation as (2.55) yields

‖p‖2T (Ω1) = lim
n→∞

‖(S1/2(ρn)‖2L2(Ω1) = lim
n→∞

‖T ]ρn‖2L2(Ω2), (2.57)

Thus, T ] restricted to P0 into K 0 is an isometry, and since K 0 is the completion of T ]D(Ω1)

with respect to ‖ · ‖L2(Ω2), it must be that P0 is the completion of D(Ω1) with respect to

‖ · ‖T (Ω).

A straightforward modification of the exact same construction by replacing L2(Ω2) with

H n(Ω2) gives rise to radial profiles with regularity that is inherited from H n(Ω2). That is,

k ∈ K 1 ⊂ D∗(Ω2) provided there exists a sequence (ρn) ⊂ D(Ω1), so that (T ]ρn) is Cauchy

with respect to the Sobolev inner product (·, ·)Ω2,1 and corresponds with k as in (2.50). Note

that K 1 ⊆ K 0 ⊆ T ]D∗(Ω1). The following proposition results from the multi-dimensional

chain rule and links the Sobolev inner products to the L2(Ω) norms.

Proposition 2.2.9. If ρ, ω ∈ D(Ω1), then (∇T ]ρ,∇T ]ω)L2(Ω2) = (∂ρ, ∂ω)T (Ω1).

Proof. First, note that the chain rule for partial derivatives gives the shift ∂xT
]ρ = ∂x(ρ◦T ) =

ρ′ ◦ T · Tx, where Tx = x(x2 + y2)−1/2 = x/T (x, y). So Tx(x, y)2 + Ty(x, y)2 = T (x, y) implies

T 2
x + T 2

y = T ]IdΩ, where IdΩ denotes the identity on Ω1. Using these facts, consider the
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following computation,

(∇T ]ρ,∇T ]ω)L2(Ω2) = (∂xT
]ρ, ∂xT

]ω)L2(Ω2) + (∂yT
]ρ, ∂yT

]ω)L2(Ω2)

=
(
T ](∂ρ), T ](∂ω) · T 2

x

)
L2(Ω)

+
(
T ](∂ρ), T ](∂ω) · T 2

x

)
L2(Ω2)

=
(
T ](∂ρ), T ](∂ω) · T ]IdΩ1

)
L2(Ω2)

=
(
T ](∂ρ), T ](∂ω)

)
L2(Ω2)

=
(
∂ρ, ∂ω

)
T (Ω1)

. (2.58)

We remark that this computation can be modified slightly to accommodate the more general

form of T (x, y) = (x2 + y2)a, and instead of a shift by T ]IdΩ1 , the shift is T ]4a2(r2−1/a).

Now, let Pn = {p ∈ D∗(Ω1) : T ]p ∈ K n}, and by inductively applying the preceding result

in Proposition 2.2.9, and Proposition 2.2.7, the induced Sobolev semi-norm is

(p, q)T (Ω),n
def
= lim

m→∞

n∑
k=0

(∇kT ]ρm,∇kT ]ωn)L2(Ω2) = lim
m→∞

n∑
k=0

(∂kρm, ∂
kωm)T (Ω1), (2.59)

where (ρn) and (ωn) are the corresponding Cauchy sequence to p and q respectively.

2.3 The PSF inverse problem

The ultimate goal of this theory will be to rigorously develop the inverse problem introduced

at the end of Chapter 1. The development so far has defined the space of radial representations

on distributions only on Ω1 = (0,∞). A complete description of the space will require that

we have some notion of the distributions p on the boundary, i.e. if p has a representation as a

locally integrable function, what is p(0) and lim
r→∞

p(r)? The theory to rigorously develop this
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is ongoing, however, we will state results that will provide insight on how to proceed.

2.3.1 The Sobolev embedding theorem and extending to Pn([0,∞))

We now state a version of the Sobolev embedding theorem that shows how higher order

Sobolev spaces enforce regularity in terms of spaces of continuous functions, whose proof can

be found in [Strichartz, 2003].

Theorem 2.3.1. Suppose ‖∂αf‖L2(RN ) is finite whenever all α are such that |α| < n where n

is equal to the smallest integer greater than n/2 (so n = N+1
2 if N is odd and n = N+2

2 if N

is even). Then f corresponds to integration against a continuous and bounded function with

‖f‖∞ ≤ c
∑

0≤|α|≤n

‖∂αf‖L2(RN ). (2.60)

More generally, if ‖∂αf‖L2(RN ) is finite for all α such that |α| < n + k, then there is a

continuous embedding of H n(RN ) into Ck(RN ).

In particular, we will be concerned primarily with the case when N = 2 and n = 2, from

which (2.60) reduces to

∑
0≤|α|≤2

‖∂αf‖L2(RN ) = ‖f‖L2(RN ) + ‖∇f‖L2(RN ) + ‖∇2f‖L2(RN ). (2.61)

This norm corresponds to PSFs with second order negative Laplacian, or biharmonic, regular-

ization, and Theorem 2.3.1 implies that these distributions are bounded continuous functions.

This is formally stated in the following corollary

Corollary 2.3.2. For RN ⊆ R2, suppose ‖∇2f‖L2(RN ) <∞ then f is continuous and bounded

with

‖f‖∞ ≤ c
(
‖f‖L2(RN ) + ‖∇f‖L2(RN ) + ‖∇2f‖L2(RN )

)
(2.62)
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for some real c.

This theorem is not directly applicable since it is only stated for domains Ω = Rk. Yet, if we

can appropriately extend k ∈ K n ⊂ D∗(Ω2) to a distribution on D(R2), then Corollary 2.3.2

implies that the extension corresponds to integration with a bounded continuous function.

Providing this extension rigorously is a delicate, and the work is ongoing. The goal of this

future work is to prove the following claim:

Claim 2.3.3. If k ∈ K 2 ⊆H 2(Ω2), then k is equal in distribution to a bounded continuous

function and k continuously extends to R2. Moreover, this implies that corresponding radial

profile p ∈P2 has S1/2(p) ∈H 2(Ω2), hence is equal in distribution to a bounded continuous

function on Ω1 and p can be continuously to Ω1 = [0,∞).



Chapter 3

Markov Chains and Modified Gibbs

Sampling

Observation informed estimation within a stochastic model can be analytically intractable,

especially when the model deviates from standard models for independent or systematically

sampled data. This is especially the case in many Bayesian methods, where inference is

typically drawn from a posterior distribution, usually known only up to a constant of normal-

ization. Monte Carlo methods use pseudo-random simulation methods to construct a simu-

lated sample in order to characterize and estimate statistics about the underlying intractable

probability density. This chapter is devoted to introducing Monte Carlo methods that take

advantage of a stochastic structure known as a Markov chain in order to perform inference. In

particular, we investigate modifications to the widely used Gibbs sampler, and present mod-

ifications that improve its convergence. The main tool for inference is the ergodic theorem

for Markov chains, which is stated along with its requisite hypotheses in Section 3.1. This

development will establish an important necessary condition, the invariance of the Markov

chain with respect to the target density, which is crucial to appropriately applying ergodic

based inference on the Markov chain.

42
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We derive the standard Gibbs sampling algorithm, outlined by [Geman and Geman, 1984],

and present a modification using a technique called partial collapse, which is motivated by

several recent theoretical and practical analyses [Van Dyk and Park, 2008; Agapiou et al.,

2014; Fox and Norton, 2015]. This chapter gives a full development from first principles, and

proves the assertions of invariance stated but not explicitly shown in [Van Dyk and Park,

2008]. We will also briefly review standard convergence diagnostics for comparing Markov

chain based sampling algorithms, which will establish statistical benchmarks to show that the

adapted algorithm is indeed an enhancement of standard Gibbs sampling when applied to

PSF estimation. Chapter 4 will apply this general framework to the Bayesian PSF estimation

problem.

3.1 Markov Chain Monte Carlo Simulation

In this section we give an overview of Markov chain Monte Carlo (MCMC) methods for

analyzing a probability distribution known up to a scaling constant. Statistical analysis is

based on the ergodic theorem for Markov chains, which is analogous to the central limit

theorem for independently sampled data. The theory will be briefly overviewed in the next

section. Complete treatments can be found in [Robert and Casella, 2013]. Our development

will lead to an algorithm based on Gibbs sampling that uses a technique referred to as partial

collapse. In partially collapsed Gibbs sampling, conditional densities are modified to remove

problematic dependence within steps in the Gibbs sampler. Our use of partial collapse will be

motivated by the marginal algorithm in [Agapiou et al., 2014], a similar infinite dimensional

sampler.

The development undertaken in the general setting of Gibbs sampling with potential mod-

ifications to the hierarchical model in mind. In [Howard et al., 2016], they observed potential

sensitivity to the uninformative hyper-prior parameters in a similar hierarchical Bayesian es-
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timation problem. A possible extension that may alleviate the sensitivity would be to impose

a prior on these parameters, forming an additional level of hierarchy to allow flexibility to

sample each of these parameters. Additionally, the analysis of the partially collapsed Gibbs

samplers presented in [Van Dyk and Jiao, 2015; Van Dyk and Park, 2008] does not provide

an argument that the resulting Markov chains remain invariant, and the following discussion

fills that gap in the literature.

3.1.1 Markov Chains

This subsection is devoted to developing the preliminary notions of Markov chains and the

prerequisite theory for using Markov chains for Monte Carlo estimation. We assume a prob-

ability (measure) space (Ω,F ,P) where Ω is the set of outcomes, with F a sigma-algebra of

events from Ω and P a measure on F into [0, 1]. We will often be concerned with sampling an

m component (each component possibly multivariate) random variable

X = (X1, . . . , Xm) : Ω→ RM , (3.1)

so that the measure µx on RM (known as its law), induced by X by taking pre-images of

Borel sets in RM is absolutely continuous with respect to Lebesgue measure. This means that

events corresponding to zero Lebesgue measure sets in RM have zero probability. Hence, the

law corresponding to X has a Radon-Nykodym derivative with respect to Lebesgue measure

on RM , which we refer to as its density, denoted by

πx(x) = πx(x1, . . . , xm), (3.2)

where xi ∈ Rki such that
∑m

i=1 ki = M characterize the range of each component of X. Note

that the support of the density contains all sets corresponding to non-zero probability events.

We will also occasionally consider random variables whose ranges are fixed, finite, and
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discrete sets {ω1, . . . , ωs} ⊂ R with corresponding probabilities {α1, . . . , αs} summing to 1,

i.e.,

P(X = ωi) = αi. (3.3)

In this case, the associated law is no longer absolutely continuous with respect to Lebesgue

measure since finite discrete sets have zero Lebesgue measure, so X does not have a real

valued density function. However, we can use a finite linear combination of Dirac distributions

translated to ωi with coefficients αi as a notion of a density where, for consistency of notation,

we denote the action of the Dirac distributions with

P(X ∈ A ⊂ {ω1, . . . , ωs}) =

∫
A

(α1δω1 + · · ·+ αsδωs) dx. (3.4)

When two or more of the variables (X1, . . . , Xm) are considered together, referred to as

blocking, the resulting variable is given in boldface, although each component may be itself

multivariate. For a complete development of the measure-based probabilistic formulation of

random variables see [Durrett, 2010; Billingsley, 2008]. When the density is clear from context,

we will omit the subscript on π(x). For any subset {ji}ki=1 ⊂ {1, . . . ,m}, let x ĵi denote the

vector with each of the jith components removed, then the marginal distribution is

π(x ĵi)
def
=

∫
xj1

. . .

∫
xjk

π(x1, . . . , xm)dxjk . . . dxj1 , (3.5)

and the conditional distribution of (xj1 , . . . , xjk) is

π(xj1 , . . . , xjk |x ĵi)
def
=

π(x)

π(x ĵi)
. (3.6)

A family of probability densities K(x, ·) is a transition kernel, if for all x ∈ RM , K(x, ·), it
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defines a probability measure given by

∫
A
K(x,x′)dx′ = P (X ∈ A) , (3.7)

and K(·,x′) is absolutely integrable. For a transition kernel, the corresponding transition

operator acts on an absolutely integrable π by

K[π](x′) =

∫
K(x,x′)π(x)dx. (3.8)

Note that K : L1(RK)→ L1(RK) is a linear operator such that ‖Kf‖L1 ≤ ‖f‖L1 since K(x, ·)

is a probability measure, i.e.,
∫
|K(x,x′)|dx′ = 1.

A Markov chain is a stochastic process {X0,X1,X2, . . . , } with Xk : Ω → RM defined on

a common probability space such that for a given transition kernel K,

P
(
Xk+1 ∈ A|Xk = xk, . . . ,X0 = x0

)
= P

(
Xk+1 ∈ A|Xk = xk

)
=

∫
A
K(xk,x′)dx′ (3.9)

for all events A, i.e., the random variable Xk+1 depends only on the previous realization

Xk = xk, and subsequent densities of the elements in the Markov chain are given by the

action of the transition operator.

In order to establish intuition with many of the notions of Markov chains, we will often

provide examples of them on finite discrete state Markov chains, from which many of these

concepts were initially developed [Billingsley, 2008]. Suppose Xk ∈ {ω1, . . . , ωs} for all k, then

all probability densities are finite linear combinations of Dirac measures as in (3.4), where the

coefficients are the probabilities of transitioning to that state, i.e.,

∫
A
K(ωi, x)dx = P(Xk+1 ∈ A ⊆ {ω1, . . . , ωn}|Xk = ωi) =

n∑
i=1

ki,j

∫
A
δωidx, (3.10)

where K(ωi, ωj) = ki,j and
∑n

j=1 ki,j = 1. Taking the states {δω1 , . . . , δωn} as basis vectors,
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the probability densities form a finite dimensional vector space, and transition operators

correspond to multiplication by a transition matrix K with entries kij . To see this, note the

action of K on a given density π = α1δω1 + . . . αnδωn is

K(α1δω1 + . . . αnδωn) = α1K(ω1, x) + . . . αnK(ωn, x)

= [δω1 . . . δωn]



K(ω1, ω1) K(ω1, ω2) . . . K(ω1, ωn)

K(ω2, ω1)
. . . . . .

...

... . . .
. . .

...

K(ωn, ω1) K(ωn, ω2) . . . K(ωn, ωn)




α1

...

αn


= [δω1 . . . δωn]Kα. (3.11)

Now, consider the joint density π(x0, . . . ,xN ) for the truncated chain {X0, . . . ,XN} with

π0(x) the density for X0, then the definition in (3.8) implies

π(x1) =

∫
x0

π(x1,x0)dx0

=

∫
x0

π(x1|x0)π(x0)dx0

=

∫
x0

K(x0,x1)π(x0)dx0

= K[π0](x1) (3.12)

π(x2) =

∫
x1

∫
x0

π(x2,x1,x0)dx0dx1

=

∫
x1

π(x2|x1)

∫
x0

π(x1,x0)dx0dx1

=

∫
x1

K(x1,x2)

∫
x0

π(x1,x0)dx0dx1

= K
(
K[π0](x2)

)
(3.13)

...

π(xN ) =

∫
xN−1

. . .

∫
x0

π(xN ,xN−1, . . . ,x0)dx0 . . . , dxN−1

=

∫
xN−1

. . .

∫
x0

π(xN |xN−1)π(xN−1, . . . ,x0)dx0 . . . dxN−1
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=

∫
xN−1

K(xN−1,xN ) . . .

∫
x0

K(x0,x1)π(x0)dx0 . . . dxN−1

= KN [π0](xN ). (3.14)

So, the Nth marginal density of the Markov chain is given by the Nth composition of the

transition operator K on the initial density π0. In some sense, all of the information of

the Markov chain up to XN is embedded in the transition operator K, since each marginal

density and all conditional probabilities are encoded into K(x,x′). Furthermore, we see that

it is natural to think of a Markov chain evolving as N increases, with the evolution given

by successively iterating K. With this in mind, two natural questions arise, “How does the

initial state effect the chain and what is its end behavior?” These notions are encapsulated

by irreducibility and stationarity, respectively.

For a given measure λ, a Markov chain is λ-irreducible if for every event A with λ(A) > 0,

there exists an N such that
∫
AK

N (x,x′)dx′ > 0 [Robert and Casella, 2013]. This means

that every event that can be measured by λ has a positive probability of being reached by

the Markov chain in a finite number of steps. When the number of steps is 1, the chain is

called strongly irreducible, and this holds for transition kernels with full support, that is, the

probability distribution associated with K(x, ·) has a range that is positive over the range of

each Xk. For the continuous densities of interest to us, which are derived from Gaussian and

gamma distributions, this condition is satisfied [Liu, 2008].

A Markov chain with transition operator K is stationary with an invariant density π if

K[π(x)](x′) = π(x′). (3.15)

Note that an invariant distribution π is an eigenvector for the transition operator K corre-

sponding to the eigenvalue 1. Since transition operators consist of probability densities, then∫
|π(x)| ≤ 1 implies all eigenvalues are bounded in modulus by 1.
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When the Markov chain has a finite and discretely supported transition kernel, there is

an interesting connection with the concept of stationary and the power-iteration method

for finding leading order eigenvalues and corresponding eigenvectors. In the power-iteration

method, the sequence given by the recursive relation αk = Kαk−1/‖Kαk−1‖Rn can be shown

to converge to the leading order (in modulus) eigenvector, and when αk correspond to finite

discrete probability densities, the normalization is not required. Hence, in the discrete finite

case, the invariant density has coefficients such that limk→∞αk = limk→∞K
kα0. One of the

main results of the ergodic theorem for Markov chains is to extend this notion to continuous

probability densities.

There are two last technical conditions that must be defined in order to establish the hy-

potheses of the ergodic theorem for Markov chains, known as Harris recurrence and aperiod-

icity. To illustrate aperiodicity, we will define it first for finite discrete Markov chains. The

period of a state ωi is the greatest common divisor of the set {k ≥ 1 : Kk(ωi, ωi) > 0}; that

is, if ωi is d-periodic, then returns to state ω occur in multiples of d. For example, the simple

deterministic two state Markov chain associated with the transition matrix

K =

0 1

1 0

 (3.16)

jumps between two states with probability 1 and has period 2. A chain is aperiodic if each

state has period 1. To extend this definition to continuously supported Markov chains that

take values in RM , see the analogous notion in [Robert and Casella, 2013, Chapter 6.3].

Defining aperiodicity precisely for continuous state Markov chains requires probability theory

that is beyond the scope of this work, but can be thought of informally as a Markov chain

whose transition kernel has orbits (with respect to iteration) that do not get trapped into

cycles and visit enough of the support of the invariant density, regardless of the initial density

π0, to asymptotically approximate π. Verifying rigorously the requirement of aperiodicity

for continuous Markov chains is technical, and again we cite [Liu, 2008] who states that
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transition kernels associated with Gibbs sampling with Gaussian and gamma conditionals

and Metropolis-Hastings sampling with Gaussian proposals are aperiodic, and the algorithms

presented in this work are compositions of such transitions. See [Robert and Casella, 2013]

for the complete definition and details.

The other technical condition that must be addressed to state the ergodic theorem is Harris

recurrence. This condition ensures that a Markov chain re-enters events often enough to ‘fill-

out’ π. Formally, for a Borel set A ⊆ RM and its indicator function IA, the average number

of passages of (Xk) in A is the random variable (possibly infinite valued)

ηA
def
=

∞∑
k=1

IA(Xk), (3.17)

and a Markov chain is Harris recurrent if P(ηA =∞|X0 = x) = 1 [Robert and Casella, 2013].

Again, verifying this condition is beyond the scope of this work, and we cite [Liu, 2008] who

ensures that transitions from Gaussian and gamma densities associated with Gibbs sampling

and Metropolis-Hastings sampling with Gaussian proposals are Harris recurrent.

We now state the main theorem that allows for the end behaviour Markov chains to be used

as tools for estimating statistics of a given probability distribution:

Theorem 3.1.1. [Tierney, 1994] Suppose K defines a stationary Markov chain with invariant

density π. If the chain is π-irreducible and Harris recurrent, then π is unique for π-almost all

x. Moreover,

(i) Almost surely with respect to π, for any integrable h

lim
N→∞

1

N

N∑
n=1

h(Xn) =

∫
h(x)π(x)dx. (3.18)
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(ii) If in addition, the chain is aperiodic, then

lim
N→∞

‖KNπ0 − π‖TV = 0, (3.19)

where ‖π‖TV denotes the supremum of
∫
A π(x)dx over all Borel sets A.

Equation (3.18) of the ergodic theorem is analogous to the Law of Large Numbers for in-

dependent samples and allows us to use chain averages to estimate statistics about π. Equa-

tion (3.19) justifies using the ‘late stages’ of the chain as approximate samples of π.

The goal of MCMC methods is to simulate a Markov chain designed so that it has π as its

invariant density. In the context of our Bayesian hierarchical model, this will be the discrete

approximation to the posterior density. A widely used method, known as Gibbs sampling,

can be easily implemented when sampling from full conditional distributions is available and

is presented in the next section.

3.1.2 Gibbs sampling

The origin of the Gibbs sampler is relatively recent (despite its eponymous relation to the

19th century physicist Josiah Gibbs) and has its origins in computational imaging. In [Geman

and Geman, 1984], they modeled the spatial structure of pixels in an image via the Gibbs

distribution, which originally arose from modeling particles in a lattice system [Ising, 1925].

They developed a simulation algorithm for approximating the mode of the posterior of the

Gibbs distribution. Because of its ease of implementation and ubiquitous application, the

Gibbs sampler has become the workhorse of the MCMC world [Robert and Casella, 2013], and

arguably, its fame has overtaken that of its namesake. When the Gibbs sampler is applied to

hierarchical Bayesian posteriors, it is sometimes referred to as the hierarchical Gibbs sampler,

as is the case in this work.
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The following algorithm outlines Gibbs sampling for simulating the transition of a general

m-component Markov chain:

Algorithm 1 Gibbs sampler

Given xk−1 = (xk−1
1 , . . . , xk−1

m ), simulate

1. Xk
1 ∼ π(x1|xk−1

2 , xk−1
3 , . . . , xk−1

m )
2. Xk

2 ∼ π(x2|xk1, x
k−1
3 , . . . , xk−1

m )
. . .
m. Xk

m ∼ π(xm|xk1, xk2, . . . , xkm−1)

Algorithm 1 simulates outcomes from the transition kernel

K(x,x′) = π(x′m|x′1, . . . , x′m−1) . . . π(x′2|x′1, x3, . . . , xm)π(x′1|x2, . . . , xm). (3.20)

Note that we can view the action of the transition in iterated integrations since subsequent

conditional densities factor out of antecedent integrations, i.e.

K[π0](x′) =

∫
K(x,x′)π0(x)dx

=

∫
xm

. . .

∫
x1

π(x′m|x′1, . . . , x′m−1) . . . π(x′2|x′1, x3, . . . , xm)π(x′1|x2, . . . , xm)π0(x)dx1 . . . dxm

=

∫
xm

π(x′m|x′m̂)

∫
xm−1

π(x′m−1|x′m̂,m−1
xm) . . .

∫
x1

π(x′1|x 1̂)π0(x1, . . . , xm)dx1 . . . dxm.

(3.21)

Each integration in (3.21) can be thought of as a composition of sub-transitions on π0(x1, . . . , xm);

that is, given (x1, . . . , xi−1, xi+1, . . . , xm), let

Ki[π0(x)](x′)
def
=

∫
xi

π(x′i|x′1, . . . , x′i−1, xi+1, . . . , xm)π0(x)dxi, (3.22)

then we can express K = KmKm−1 . . .K1. Note that, functionally, each operator Ki depends

on (x1, . . . , xi−1, xi+1, . . . , xp) being given, and that only after successively integrating each

sub-transition is the operator uniquely defined. For example, K1 depends on (x2, . . . , xp),

K2K1 depends on (x3, . . . , xm), etc., until the full composition in K does not depend on x.
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In this form, it will be easy to see that the Gibbs sampler is invariant with respect to π,

and the technique used in the proof by characterizing sub-transitions (alluded to in [Robert

and Casella, 2013], but not carried out in full detail) will be useful for designing and verifying

the stationarity of algorithms that modify the Gibbs sampler in the following sections.

Proposition 3.1.2. The transition kernel associated with Algorithm 1 produces a Markov

chain that is invariant to the density π.

Proof. Observe that given (x2, . . . , xm),

K1[π(x)](x′) =

∫
x1

π(x′1|x2, . . . , xm)π(x1, . . . , xm)dx1

=

∫
x1

π(x′1, x2, . . . , xm)π(x1, . . . , xm)

π(x2, . . . , xm)
dx1

= π(x′1, x2, . . . , xm). (3.23)

Moreover, for a fixed (xi+1, . . . , xm), the assumption thatKi−1 . . .K1 = π(x′1, . . . , x
′
i−1, xi, . . . , xp)

implies

Ki . . .K1[π(x)](x′) =

∫
xi

π(x′i|x′1, . . . , x′i−1, xi+1, . . . , xm)π(x′1, . . . , x
′
i−1, xi, . . . , xm)dxi

=

∫
xi

π(x′1, . . . , x
′
i, xi+1, . . . , xm)π(x′1, . . . , x

′
i−1, xi, . . . , xm)

π(x′1, . . . , x
′
i−1, xi+1, . . . , xm)

dxi

= π(x′1, x
′
2, . . . , x

′
i, xi+1, . . . , xm). (3.24)

By induction, K[π(x)](x′) = Km . . .K1[π(x)](x′) = π(x′1, x
′
2, . . . , x

′
m). Hence π is invariant.

In fact, the argument above proves more than invariance with respect to π. The partial

composition Ki . . .K1 is invariant with respect to π(x1, . . . , xi|xi+1, . . . , xm). To see this,

when (xi+1, . . . , xm) are given, then π(x)/π(xi+1, . . . , xm) = π(x1, . . . , xi|xi+1, . . . , xm) and
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since each integration does not depend on (xi+1, . . . , xm), by (3.24)

Ki . . .K1[π(x1, . . . , xi|xi+1, . . . , xm)](x′) =
π(x′1, . . . , x

′
i, xi+1, . . . , xm)

π(xi+1, . . . , xm)
= π(x′1, . . . , x

′
i|xi+1, . . . , xm).

(3.25)

Viewing Gibbs sampling as composed conditional sub-transitions allows for the flexibility to

design and analyze algorithms that modify each sub-transition step. That is, if an intermediate

step in the Gibbs sampler is modified, say with K̃i, then in order to prove invariance, we need

only show that K̃iKi−1 . . .K1 is invariant with respect to π(x1, . . . , xi|xi+1, . . . , xm). We state

this result formally:

Corollary 3.1.3. Suppose K = Km . . .K1 is the transition operator for Algorithm 1, and

K̃i given x î is an operator such that K̃i
[
π(xi|x î)

]
= π(x′1|x î), then Km . . . K̃iKi−1 . . .K is

invariant with respect to π.

Proof. Using (3.24) twice, we have

(
Km . . . K̃i

)
Ki−1 . . .K1π = Km . . . K̃iπ(x′1, . . . , x

′
i−1, xi, . . . , xm)

= Km . . . K̃iπ(xi|x′1, . . . , x′i−1, xi+1, . . . , xm)π(x′1, . . . , x
′
i−1xi+1, . . . , xm)

= Km . . .Ki+1π(x′i|x′1, . . . , x′i−1, xi+1, . . . , xm)π(x′1, . . . , x
′
i−1xi+1, . . . , xm)

= Km . . .Ki+1π(x′1, . . . , , x
′
i, xi+1, . . . , xm)

= π(x′1, . . . , x
′
m). (3.26)

The previous result will be important for showing that embedding alternative simulation

techniques (such as a Metropolis-Hastings step) will maintain invariance with respect to π.

In Section 4.1, we will define a discretization, p, for the PSF p and a corresponding three

component discrete posterior density π(p, λ, δ|b). As will be seen in Chapter 4, the Gibbs
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sampler will produce good Monte Carlo estimates for p and λ, a parameter determining the

measurement noise level. However, the δ component of the chain exhibits poor convergence,

and hence, the asymptotic application of the ergodic theorem for Markov chains for the joint

density π(p, λ, δ|b) is not available. In fact, [Agapiou et al., 2014] give theory showing that

for general linear inverse problems, the infinite dimensional hierarchical Gibbs sampler for

linear inverse problems with λ known and a Gaussian prior whose precision operator is a

power of the negative Laplacian will always exhibit degenerate convergence in δ when the

discrete representation of the unknown approaches the infinite dimensional representation.

They presented an algorithm that ‘marginalizes’ the dependence of the unknown with δ. This

process, known as partial collapse, can be carried out in general and is presented in [Van Dyk

and Park, 2008], but must be done with care. In their paper, they showed various examples of

improperly partially collapsed Gibbs samplers that lead to Markov chains that are no longer

invariant with respect to the target density π. They also presented theory that when partial

collapse is possible, it improves convergence; however, they did not give an explicit argument

that shows that partial collapse maintains the invariant density π. We outline this process for

the Gibbs sampler presented above, and show explicitly that it maintains π as an invariant

density in the next section.

3.1.3 The partially collapsed Gibbs sampler

The partially collapsed Gibbs (PCG) sampler we present in this section is based on the work

of [Van Dyk and Park, 2008; Van Dyk and Jiao, 2015], where they outlined how the algorithm

arises naturally from trying to improve the convergence of the standard Gibbs sampler. In

both [Van Dyk and Park, 2008; Van Dyk and Jiao, 2015], they highlight that partial collapse

must be done prudently, else the resulting Markov chain may no longer be invariant with

respect to π, and thus statistics derived from the chain will not converge to those of the

distribution of interest. They even give some examples in the literature where partial collapse

was implemented improperly and resulted in incorrectly estimated parameters. They carefully
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outline methods for ensuring that the pitfalls of improper sampling are avoided, although they

did not formally prove the invariance of the resulting Markov chains. In this section, we give

rigorous novel arguments that show the Markov chains associated with proper partial collapse

are indeed invariant.

Consider modifying Algorithm 1 by simulating an additional component

X̃
k

= (Xk
1 , . . . , X

k
m−1, X̃

k
m, X

k
m) (3.27)

by taking a ‘redundant’ sample of X̃p from the joint conditional π(xm−1, xm|xk1, xk2, . . . , xkm−2)

at step m-1. The resulting algorithm is described in Algorithm 2.

Algorithm 2 m-Conditioned Gibbs sampler

Given x̃k−1 = (xk−1
1 , . . . , x̃k−1

m , xk−1
m ), simulate

1. Xk
1 ∼ π(x1|xk−1

2 , xk−1
3 , . . . , xk−1

m )

2. Xk
2 ∼ π(x2|xk1, xk−1

3 , . . . , xk−1
m )

...

m-1. (Xk
m−1, X̃

k
m) ∼ π(xm−1, xm|xk1, xk2, . . . , xkm−2)

m. Xk
m ∼ π(xm|xk1, xk2, . . . , xkm−1)

The corresponding transition operator to Algorithm 2 is

K̃π0 = K̃mK̃m−1 . . . K̃2K̃1π0 (3.28)

where K̃m−1 is integration with respect to (xm−1, x̃m) against the transition kernel

K̃m−1(x̃, x̃′)
def
= K̃m−1(x̃′)

def
= π(x′m−1, x̃

′
m|x′1, x′2, . . . , x′m−2), (3.29)

and every other K̃i acts the same as in Algorithm 1 on m+1 component densities. Algorithm 2

produces a Markov chain with m+1 components by drawing (Xk
m−1, X̃

k
m) jointly at step m-1.
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Note that the transition to the next state does not depend on previous values of X̃m. This

lack of dependence is crucial for partially collapsing components out of the sampler, else the

resulting transition kernel will not produce a Markov chain invariant with respect to π.

Proposition 3.1.4. The Markov chain associated with the transition kernel corresponding to

Algorithm 2 is invariant with respect to π̃(x̃)
def
= π(x)π(x̃m|x m̂).

Proof. Denote the transition operator associated to Algorithm 2 as K̃, then

K̃
[
π(x)π(x̃m|x)

]
(x̃′)

= KmK̃m−1Km−2 . . .K1

[
π(x)π(x̃m|x)

]
(x̃′)

=

∫
xm

π(x′m|x′m̂)

∫∫
x̃m,xm−1

K̃m−1(x̃′)

∫
· · ·
∫

xm−2,...,x1

. . . π(x)π(x̃m|x)dx1 . . . dx̃mdxm

=

∫
xm

π(x′m|x′m̂)

∫
xm−1

K̃m−1(x̃′)

∫
· · ·
∫

xm−2,...,x1

. . . π(x)dx1 . . . dxm (3.30)

where we used Fubini’s theorem to integrate first in x̃m for which each kernel Ki does not

depend. Since
∫
π(x̃m|x)dx̃m = 1, and each of the inner m− 2 integrations express the action

of the first m − 2 steps of the standard Gibbs sampler, continuing from (3.30) and using

Corollary 3.1.3, we have

K̃
[
π(x)π(x̃m|x)

]
(x̃′) =

∫
xm

π(x′m|x′m̂)

∫
xm−1

K̃m−1(x̃′) ·
(
Km−2, . . . ,K1[π(x)](x′)

)
dxm−1dxm

=

∫
xm

π(x′m|x′m̂)

∫
xm−1

π(x′m−1, x̃
′
m|x′1, x′2, . . . , x′m−2)·

. . . π(x′1, . . . , x
′
m−2, xm−1, xm)dxm−1dxm (3.31)

= π(x′m|x′m̂)π(x′m−1, x̃
′
m|x′1, x′2, . . . , x′m−2) · π(x′1, . . . , x

′
m−2)

=
π(x′)π(x′1, x

′
2, . . . , x

′
m−1, x̃

′
m)

π(x′m̂)

= π(x′)π(x̃′m|x′m̂). (3.32)
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Note that it is essential that each sub-transition does not depend on x̃m, else the initial

integration in x̃m would involve products of kernels depending on x̃m with π(x̃m|x m̂). In the

language of [Van Dyk and Park, 2008], this would correspond to subsequently sampling the

auxiliary variable, which they’ve shown can result in the loss of invariance.

Also, the placement of the conditioned variable at the last step is crucial for the argument to

work. It can be shown that for a kernel with a different placement of the conditioned variable,

a density of the form π(x)q(x̃) with
∫
x̃i
q(x̃)dx̃ = 1 will not be invariant. In practice, this has

no practical effect on an implementation that cyclically permutes the steps in Algorithm 2,

since it can be viewed as a Markov chain with the same transition kernel, only that it has

a different initial distribution, and that at the last step, the transition kernel has partially

completed.

In some sense, this algorithm is artificial, as we do not need to sample the auxiliary variable

X̃m. Moreover, if we integrate the invariance condition K̃π̃ = π̃ in x̃′m, then

∫
x̃′m

K̃[π̃(x̃)](x̃′) =

∫
x̃′m

K̃[π(x)π(x̃m|x m̂)](x̃)dx̃′m = π(x′)

∫
x̃′m

π(x′m|x′m̂)dx′m = π(x′).

(3.33)

This results in a transition kernel whose action is the same as the standard Gibbs transition

kernel, except at step m− 1, the kernel for the transition is

Km−1(x̃, x̃′)
def
=

∫
x′m

π(x′m−1, x̃
′
m|x′1, x′2, . . . , x′m−2) = π(x′m−1|x′1, x′2, . . . , x′m−2). (3.34)

Note that this is exactly the action given in (3.31), and by (3.33), the corresponding Markov

chain is invariant with respect to π, and Algorithm 3 simulates this chain.

The effect of this process is that we have removed conditioning of Xk−1
m = xk−1

m from the
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Algorithm 3 m-Partially Collapsed Gibbs sampler

Given x̃k−1 = (xk−1
1 , . . . , x̃k−1

m , xk−1
m ), simulate

1. Xk
1 ∼ π(x1|xk−1

2 , xk−1
3 , . . . , xk−1

m )

2. Xk
2 ∼ π(x2|xk1, xk−1

3 , . . . , xk−1
m )

...

m-1. Xk
m−1 ∼ π(xm−1|xk1, xk2, . . . , xkm−2)

m. Xk
m ∼ π(xm|xk1, xk2, . . . , xkm−1)

simulation of Xk
m−1. Note that the first m − 2 steps of the algorithm can be permuted with

the appropriate re-labeling with respect to k without changing the transition kernel. We can

generalize the partial collapse process by removing the conditioning on either Xm−1 or Xm on

Xm−2. Without loss of generality, Xm−2 can be chosen from X1, . . . , Xm−2 by permuting and

relabeling. Hence, Xm can be partially collapsed out of any number of proceeding variables,

and subsequently, Xm−1, etc.

In practice, one starts with the standard Gibbs sampler, and observes convergence of each

component. If a component exhibits poor convergence (see Section 3.2), see if any conditioned

variables can be partially collapsed. This choice is likely not obvious, unless guided by the

specific situation (as is the case for the hierarchical Gibbs sampler for sampling δ). If it is

possible to sample the density with one of the conditioned variables collapsed out, re-order the

sampler so that the collapsed component is last and each of the poorly converging variables

directly precedes it. The theory presented in [Van Dyk and Park, 2008] guarantees that the

convergence of (Xk) will be improved. If some components still exhibit poor convergence,

continue by removing the conditioning of one of the previous m− 1 variables. See [Van Dyk

and Park, 2008] for examples and a further discussion of the general process of partially

collapsing variables.

There is one last modification to the transition kernel that will be required. In many cases,

as will be the case for PSF reconstruction, a simulation from π(xm−1|x1, . . . , xm−2) may not
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be directly available. In the standard Gibbs case, when a full conditional density is difficult to

simulate, a compromise suggested first by [Müller, 1992] and outlined in [Robert and Casella,

2013] is the so-called ‘Metropolis-within-Gibbs’ method. The idea is to replace a direct sample

of the conditional density with a Metropolis-Hastings transition. In the next section, we give

a brief overview of the random walk Metropolis-Hastings method, and show that directly

substituting a Metropolis-Hastings transition into the m-partially collapsed Gibbs sampler

remains invariant with respect to π.

3.1.4 Metropolis-Hastings within partially collapsed Gibbs

The Metropolis-Hastings algorithm [Metropolis et al., 1953] has been studied extensively as an

MCMC method, and over the last half-century, has been generalized and adapted to encompass

a large class of MCMC algorithms for simulating samples for a large class of problems. In

fact, Gibbs sampling can be viewed as successive Metropolis-Hastings transitions [Robert and

Casella, 2013]. We will focus on Metropolis-Hastings algorithms with symmetric proposals

and how they can be incorporated into the partially collapsed Gibbs sampler. Again, see

one of the books [Calvetti and Somersalo, 2007; Liu, 2008; Robert and Casella, 2013] and

references there for a complete description of the Metropolis-Hastings algorithm.

Consider the following algorithm for simulating a transition for a univariate Markov chain

(X1, X2 . . . ):
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Algorithm 4 Reversible Metropolis-Hastings

Given Xk = xk, and proposal density such that ρ(y|x) = ρ(x|y).

1. Simulate Y k ∼ ρ(y|xk)

2. Set

Xk+1 =


Y k with probability α(xk, Y k)

xk with probability 1− α(xk, Y k)

where α(x, y) = min

{
1,
π(y)

π(x)

}
.

The simulation Y k ∼ ρ(y|xk) is called the proposal transition. The idea of the Metropolis-

Hastings method is: first generate a ‘proposal’ from a given transition operator, ρ(y|x), that

describes the probability of transitioning to y, given your current state is x. Then, if your

guess improves how likely the transition is from the desired distribution π, then move there,

otherwise stay put [Calvetti and Somersalo, 2007]. At first glance, this algorithm might not

seem useful since it requires a computation involving π, which may not be completely known,

but that it appears as a ratio is what makes the method useful – we need only know π up to

a constant of proportionality since it cancels in the ratio.

To see formally that Algorithm 4 defines an invariant Markov chain for π, we will need a

general result from Markov chain theory known as detailed balance.

Theorem 3.1.5. Suppose that a Markov chain with a transition kernel K satisfies the detailed

balance condition

K(x, x′)π(x) = K(x′, x)π(x′). (3.35)

Then, the corresponding Markov chain is invariant with respect to π.
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Proof. The corresponding transition operator has

K[π](x′) =

∫
K(x, x′)π(x)dx =

∫
K(x′, x)π(x′)dx = π(x′) (3.36)

since K(x′, ·) is a probability density.

The Metropolis-Hastings kernel is designed to satisfy detailed balance and [Calvetti and

Somersalo, 2007] present the development of the Metropolis-Hastings algorithm with that

perspective. We summarize that discussion to give an explicit description of the transition

kernel corresponding to Algorithm 4 and show that it satisfies the detailed balance condition.

Proposition 3.1.6. The Markov chain generated by Algorithm 4 has a transition kernel that

satisfies the detailed balance condition for π; hence it is invariant with respect to π.

Proof. Let Xk = xk be given and U be a binomial random variable such that U = 1 if the

proposal is accepted and U = 0 otherwise. Then, for any event A

P
(
Xk+1 ∈ A|Xk = xk

)
= P

(
Xk+1 ∈ A and U = 1|Xk = xk

)
+ P

(
Xk+1 ∈ A and U = 0|Xk = xk

)
= P

(
Y k ∈ A and U = 1|Xk = xk

)
+ P

(
Y k ∈ A and U = 0|Xk = xk

)
. (3.37)

The mixed continuous/discrete density for (Y k, U |Xk = xk) satisfies π(y, u|xk) = π(u|y, xk)ρ(y|xk)

by the definition of conditional density. Moreover, π(u = 1|y, xk) = α(xk, y) and

π(u = 0|xk) =

∫
π(u = 0, y′|xk)dy′ =

∫
π(u = 0|y′, xk)π(y′|xk)dy′ =

∫
(1−α(xk, y′))ρ(|y′−xk|)dy′.
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Continuing from (3.37),

P
(
Xk+1 ∈ A|Xk = xk

)
=

∫
A
α(xk, y)ρ(y|xk)dy + IA(xk)

∫
(1− α(xk, y′))ρ(y|xk))dy′ (3.38)

where IA denotes the indicator function for the set A. Note that IA(x) =
∫
A δx(y)dy, where

δx is the Dirac probability density, so the transition kernel for Algorithm 4 is

K(x, y) = α(x, y)ρ(y|x) + δx(y)

(
1−

∫
α(x, y′)ρ(y′|x)dy′

)
. (3.39)

In order to show that K(x, y) satisfies the detailed balance equation, it suffices to show it

for each term in (3.39). If π(y) ≥ π(x) then α(x, y) = 1 and α(y, x) = π(x)/π(y) implies

α(x, y)ρ(y|x)π(x) = ρ(x|y)π(x) =
π(x)

π(y)
ρ(x|y)π(y) = α(y, x)ρ(x|y)π(y). (3.40)

Moreover, for any integrable function f , we have (in the distributional sense)

f(x)

∫
A
δx(y)π(y)dy = f(x)IA(x)π(x) = π(x)

∫
A
δx(y)f(y)dy (3.41)

for all events A. Thus taking f(x) = 1−
∫
α(x, y′)ρ(y′|x)dy′ proves that K(x, y) satisfies the

detail balance condition, and hence the Markov chain for Algorithm 4 is invariant with respect

to π.

A Metropolis-Hastings sub-transition can be used to sample any component of the standard

Gibbs sampler, since we were able to decompose it into conditionally invariant sub-transitions

as in Corollary 3.1.3. For the collapsed sampler, we consider the last two steps together

as a sub Metropolis-Hastings transition, where the acceptance depends only on the m − 1

component.
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Algorithm 5 Metropolis Hastings within m-Partially Collapsed Gibbs sampler

Given x̃k−1 = (xk−1
1 , . . . , x̃k−1

m , xk−1
m ), simulate

1. Xk
1 ∼ π(x1|xk−1

2 , xk−1
3 , . . . , xk−1

m )

2. Xk
2 ∼ π(x2|xk1, xk−1

3 , . . . , xk−1
m )

...

m-1. Simulate Xk
m−1 from Algorithm 4 for π(xm−1|xk1, xk2, . . . , xkm−2)

m. Xk
m ∼ π(xm|xk1, xk2, . . . , xkm−1)

One implementation question remains concerning whether to iterate step m-1. to obtain

‘better’ simulations from π(xm−1|xk1, xk2, . . . , xkm−2). That is, we can insert any number of

Metropolis steps before step m., and the resulting sampler will still be invariant by Corol-

lary 3.1.3. That is, by Proposition 3.1.6 each of nmh Metropolis draws resulting from the sub-

transition in Algorithm 4 at state m-1. is invariant with respect to π(x′m−1|x1, x
k
2, . . . , x

k
m−2),

hence their composition is also invariant, thus, Corollary 3.1.3 implies the invariance of the full

transition with respect to π of Algorithm 5. We state this formally in the following theorem.

Theorem 3.1.7. The transition kernel associated with Algorithm 5 where at step m−1., nmh

iterations of Algorithm 4 are taken, generates a Markov chain that is invariant with respect

to π.

When implemented in standard Gibbs sampling, [Robert and Casella, 2013] recommend

only one simulation, but in [Van Dyk and Jiao, 2015], they recommend that iterating the

Metropolis step may improve the convergence rate. As is the case for PSF estimation, gener-

ating the proposal for Algorithm 4 may be computationally expensive, and the improvement

in convergence may not be worth the computational expense since the less expensive but

slower to converge scheme can be run for longer. These issues are problem dependent, and in
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Section 3.2, we will develop tools to address them explicitly.

3.2 Evaluating Convergence

In these last sections, we briefly address estimators for evaluating the convergence of the

MCMC algorithms. As has been mentioned, convergence can be addressed theoretically by

direct analysis as in [Agapiou et al., 2014], or by analyzing the spectrum of an operator

associated with the transition operator as is done in [Agapiou et al., 2014; Van Dyk and Park,

2008]. We take an empirical approach, that estimates convergence based on real and simulated

data.

In this section, we give a brief overview of two statistical estimators that can be used to

verify this convergence given a realization of an MCMC algorithm. Both estimators address

issues that inform how long to run the MCMC algorithm in order to effectively analyze the

chain as a robust sample for the PSF posterior.

The first issue is concerned with how close the Markov chain is to the target invariant

density. The realizations from the initial density of the Markov chain may correspond to low

probability events of the target distribution. This is acutely the case for the prior parameter

δ in PSF posterior estimation, as its meaning in the model is quite subtle. Nevertheless,

the ergodic theorem guarantees that a valid MCMC algorithm will produce realizations from

densities that converge to the target. The MCMC simulations that occur from the beginning

of the chain until empirical convergence is observed are called the burn-in portion of the

Markov chain, and we will briefly overview a statistical test in the next section on how to

estimate it.

The second practical convergence issue is related to the correlation of subsequent steps

of the MCMC algorithm. We employ a method from time-series analysis that estimates
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the correlation of a realized Markov chain from an MCMC algorithm. This will result in a

parametric measurement for ‘how far’ the simulated samples are from an ideal independent

sample and how long the chain must be run in order to obtain, in some sense, an equivalent

estimator to one derived from independently sampled data.

3.2.1 Estimating the burn-in

One method for estimating the burn-in stage of the chain is to visually inspect the realizations

of the MCMC algorithm and identify the portion of the chain that appears to settle over the

support of the invariant density. This is somewhat subjective, and an alternative statistically

motivated approach, initially suggested by [Geweke, 1991], uses the convergence diagnostic

test to evaluate the test hypothesis that the joint mean value of the early portion of the

Markov chain is equal to the joint mean value of the latter.

Formally, for a given partial Markov chain {X1, . . . , XN}, let Nm denote the mth percentile

ofN , µm to be the mean of {X1, . . . , XNm} and µm′ the mean of {XNm′+1, . . . , XN}. Following

[Geweke, 1991], we choose the 10th and 50th percentiles. Estimators for µ10 and µ50′ are

X10 =
1

N10

N10∑
k=1

Xk, and X50′ =
1

N −N50′

N∑
k=N50+1

Xk. (3.42)

For the test H0 : µ10 = µ50′ , [Geweke, 1991] shows the corresponding convergence diagnostic

test statistic satisfies

RGeweke
def
=

X10 −X50′√
Ŝ10(0)/N10 + Ŝ50′(0)/N50

d−→ N (0, 1), as N →∞, (3.43)

where Ŝ10(0) and Ŝ50′(0) denote consistent spectral density estimates for the variances of

{X1, . . . , XN10} and {XN51 , . . . , XN}, respectively. These can be estimated via a periodogram

estimator, and in our results, we use a Danielle window of width 2π/(0.3p1/2) as recommended
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by [Geweke, 1991].

3.2.2 Autocorrelation and essential sample size

When the burn-in has been identified, the later portion of the chain can be empirically assumed

to be identically distributed by the invariant density via the ergodic theorem. However, the

MCMC samples are not independent; hence standard sampling theory does not apply. The

notion of autocorrelation from time-series analysis provides a tool for controlling for this

correlation. The idea is to estimate how many steps are required in the Markov process to

‘forget’ the state where you came from; specifically, to be empirically uncorrelated. This

is referred to as the integrated autocorrelation time. To develop this notion formally, we

summarize the arguments in [Sokal, 1997]. Suppose {X1, X2, . . . } is a correlated, identically

distributed stochastic process with individual variance σ2. Then for the estimator XN =

1
N

∑N
k=1X

i, the Monte Carlo error is

Var(XN ) =
1

N2

N∑
k=1

Var(Xk) +
1

N2

N∑
k 6=l

Cov(X l, Xk)

=
1

N2

(
Nσ2 + 2N

N−1∑
k=1

(
1− k

N

)
Cov(X1, X1+k)

)

=
σ2

N

(
1 + 2

N−1∑
k=1

(
1− k

N

)
Cov(X1, X1+k)

σ2

)
. (3.44)

Note that we’ve divided the Monte Carlo error into a contribution from the inherent variance

of (Xk) and the contribution of its correlation at step l with all other steps in the chain. For

the full stochastic sequence {X1, X2, . . . }, define for k ∈ Z

ρ(k)
def
=

Cov(X1, X |k|)

σ2
, (3.45)
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which is referred to as the normalized autocorrelation function (ACF) in time-series analysis.

Hence, the Monte Carlo error for {X1, . . . , XN} when N is large, is approximately

Var(X) ≈ σ2

N

∞∑
k=−∞

ρ(k). (3.46)

When (Xk) are independent, σ2/N is the variance of the estimator XN . The approximation

in (3.46) shows that, asymptotically, the Monte Carlo error is scaled by the factor

τint
def
=

∞∑
k=−∞

ρ(k). (3.47)

The parameter τint is referred to as the integrated auto corresponding time. So, for a given N ,

an independent sample with equivalent sample variance has

NESS
def
= N/τint (3.48)

samples. We refer to this quantity as the essential sample size (ESS), and we think of it as

the number of effectively independent samples, and note

σ2

N
τint =

σ2

NESS
. (3.49)

To estimate these parameters, [Sokal, 1997] gives the following unbiased estimator for the

normalized autocorrelation function,

τ̂int =

N∑
k=−N

ρ̂(k), (3.50)

where N < N − 1 is some window length, and ρ̂(k) is the empirical normalized covariance
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estimator over that interval. That is,

ρ̂(k)
def
= Ĉ(k)/Ĉ(0), where Ĉ(k) =

1

N − k

N−k∑
i=1

(Xi −XN )(Xi+k −Xk). (3.51)

The choice suggested by Sokal [1997] for the window size is the smallest integer such that

N ≥ 3τ̂int. Finally the ESS is estimated as

N̂ESS = N/τ̂int. (3.52)



Chapter 4

Discrete Bayesian Posterior PSF

estimation

We return to the problem of PSF estimation, and apply the theory and methods outlined in the

previous chapters for carrying it out on a computer. At the end of Chapter 2, we established

the theory for defining the inverse problem in an infinite dimensional Hilbert space. In both

the variational and the infinite dimensional Bayesian formulation, the development led to

defining the functional Φ : P × G(P)→ R

Φ(p; b, λ, δ) =
1

2

(
λ‖Gp− b‖2L2(R) + δ (p,Lnp)P

)
, (4.1)

where G : P → L2(R) is the operator that takes a radial profile, p, to a line-out of a blurred

image of an edge, b, with L the induced negative radial Laplacian. We also showed that Ln was

trace class for all n ≥ 2 in P. In ??, we modeled the problem with the infinite dimensional

Bayesian perspective which results in a posterior Gaussian random variable taking values in

P, determined indirectly by the functional in (4.1).

70
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Of course, to carry out numerical estimation, the data and the estimate for the PSF must

be represented by a finite set of numbers on a computer. In the framework of [Stuart, 2010],

one would design an algorithm that samples the infinite dimensional posterior. This ap-

proach was undertaken in [Agapiou et al., 2014] for linear inverse problems with powers of

a Laplacian precision operator and a hierarchical gamma prior for δ, with a fixed value for

λ. They analyzed an infinite dimensional Gibbs sampling algorithm, and showed that it had

deficiencies in sampling δ that exacerbate as the discretization converges. They then intro-

duced two modifications to the algorithm that alleviate this issue. Although their analysis is

not directly applicable to PSF reconstruction (our prior is the negative radial Laplacian), it

is closely related and we take cues from their work to design the algorithm for exploring a

discrete approximation to the infinite dimensional posterior density. Also, by discretizing at

this stage, we will be able to develop an algorithm that allows for the noise precision λ to be

estimated. We follow the general development outlined in [Bardsley, 2012], which has been

adopted successfully in many other applications of linear inverse problems related to imaging

[Howard et al., 2016; Bardsley and Luttman, 2016; Fowler et al., 2016; Bardsley and Luttman,

2015; Bardsley et al., 2013]. We then derive all of the necessary probability densities for car-

rying out the algorithms in Section 3.1. The discrete representations correspond to numerical

discretizations of the linear operators defined in Chapter 2. Since each operator is linear, the

corresponding numerical approximations will also be linear and can be effectively implemented

with an appropriate matrix multiplication. We then develop the discrete probability spaces

associated with the matrix-operators defined in Section 4.1, which will serve as our discrete

approximation of the infinite dimensional posterior defined in ??. In this development, we

will add prior assumptions for the parameters λ and δ, forming a hierarchical Bayesian model.

From there, the discrete posterior distribution can be expressed in terms of conditional dis-

tributions in such a way so that Markov Chain Monte Carlo sampling techniques (e.g., Gibbs

sampling) can be applied to provide estimates and quantification of uncertainty.
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4.1 From the continuum to the discrete

Transitioning from the model on the continuum to a discrete representation is a delicate

process for which error is introduced at many levels. For example, we do not even have

full access to all of R, since a computer must represent a real number with a floating-point

approximation corresponding to a binary integer from a finite set (although, this error is

not addressed in this work). This approximation provides a good analogy for how we will

use smooth functions as approximations for p and b. The formal notions of p and b are

as functionals that act on compactly supported smooth functions, which have many levels

of abstraction beyond a point-wise definition, and we will attempt to briefly address the

approximation at each of these levels.

4.1.1 Discretization methods

Our primary tools for discretization will be finite-differencing for the regularizing differential

operator L and numerical quadrature for the integral operator G and integral inner products

associated with P. Both methods ensure point-wise convergence to known evaluations on a

discrete grid. The error analysis associated with these methods is based on Taylor expansions

of a function that is at least twice differentiable at each point in the interior of their domain

and that the second derivatives are uniformly bounded in order to obtain error O(h), where

h is the width between grid points. This analysis is not directly applicable for p ∈ P since

point-wise convergence is not applicable to distributions. In fact, any element with discrete

support in P is equivalent to 0. Yet, we justify our use of quadrature methods by recalling

from Chapter 2 that smooth functions are dense in P. Since the proof of that theorem is

constructive, in theory, one could use it to construct a smooth approximation, then apply

quadrature on the approximation in order to explicitly control the error. Such an analysis

is beyond the scope of this work, and we discretize each operator assuming that they act on
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smooth functions and that the data and computational grids are sufficiently fine so that second

order methods introduce errors at a scale so that the aggregate error of these approximations

is negligible.

We mention that there are other methods that are theoretically more appealing which use

a truncation of orthonormal bases, sometimes referred to as Gelerkin methods. It can be

shown that a class of Bessel functions are an orthonormal set of eigenvectors for the negative

radial Laplacian where the eigenvalues are the first positive root of the corresponding Bessel

function; hence elements of P can be easily represented in that basis. However, proceeding

with this method requires estimation of roots, as well as evaluation of the forward operator

on Bessel functions which are both analytically difficult.

We assume that the domain of b is scaled so that data are collected on equally spaced points

in xi ∈ [−1, 1], with xi = i
N for −N ≤ i ≤ N . Let b ∈ R2N+1 with entries bi

def
= b(xi) and

h
def
= 1

N l This enforces an assumption that the data has an odd number of points with b(0)

corresponding to the Nth element of b. Note that the point-symmetry of the operator implies

that for N point estimates of p, a full line-out of data will have 2N + 1 points (the extra

estimate is for b(0)). In what follows, we define acos(t) on all of R by taking the convention

that acos(t) = 0 if |t| > 1. Figure 1.3 is useful for visualizing the following arguments.

Recall in (1.22), the integral kernel for G was

g(x, r) =


0 x < −r

2(π − acos(x/r)) |x| ≤ r

2π x > r

. (4.2)

For a fixed xi < 0, we have

[Gp](xi) =

∫ −xi
0

p(r)2(π − acos(xi/r))r dr. (4.3)
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As in [Bardsley, 2012], we discretize the integral using midpoint quadrature which guarantees

a second-order integration method. Because the upper bound in (4.3) depends on xi, {rj} are

placed at midpoints of {|xi|}, hence, rj
def
= j − h

2 for j = 1, . . . N .

When xi ≤ 0, then i ≤ 0, and using acos(t) = 0 for t < −1,

[Gp](xi) ≈
|i|∑
j=1

p(rj)2(π − acos(xi/rj))rjh

=

N∑
j=1

p(rj)2(π − acos(xi/rj))rjh. (4.4)

When xi > 0, then i ≥ 0 and using acos(t) = 0 for t > 1,

[Gp](xi) = 2π

∫ xi

0
p(r) rdr +

∫ ∞
xi

p(r)2(π − acos(xi/r)) rdr

=

∫ xi

0
p(r)2(π − acos(xi/r)) rdr +

∫ ∞
xi

p(r)2(π − acos(xi/r)) dr

≈
N∑
j=1

p(rj)2(π − acos(xi/rj))rjh. (4.5)

Now, let p be the N × 1 column vector with entries pj = p(rj), then using (4.4) and

(4.5), if we define the matrix G with entries Gij
def
= 2(π − acos(xi/rj))rjh, the quadrature

approximation can be expressed by the matrix-vector multiplication Gp. Finally, we use

‖f‖L2(R) ≈ h‖f‖R2N+1 to approximate the L2 norm of f , where elements of f are point-wise

evaluations of the continuous approximation to f . Combining these approximations, we have

for the first term in (4.1),

λ‖b− Gp‖L2 ≈ λh‖b−Gp‖R2N+1 . (4.6)
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The negative radial Laplacian L : P →P operates on continuous functions by

[Lp](r) = −r−1 d

dr

(
r
d

dr
p(r)

)
. (4.7)

Observe that

〈p,L2p〉H1 = 2π

∫ ∞
0

p(r)[L2p](r) rdr

= 2π

∫ ∞
0

p(r)

[
d

dr

(
r
d

dr

)]2

p(r) r−1dr. (4.8)

The discretization of (4.8) will occur in two steps. We will use quadrature to estimate the

integral in (4.8), and use finite differencing to estimate the differential operator d
drr

d
dr . We

then square that estimate, and combine it with the quadrature estimate of the integral.

We use the differencing scheme outlined in [Morton and Mayers, 2005]. Let rj±1/2
def
= rj± h

2 ,

then [
d

dr
r
d

dr
p

]
rj

≈ 1

h

([
r
d

dr
p

]
rj−1/2

+

[
r
d

dr
p

]
rj+1/2

)
. (4.9)

The center difference approximation of the first term is

[
r
d

dr
p

]
rj−1/2

≈ rj−1/2
pj−1 − pj

h
(4.10)

and of the second term is [
r
d

dr
p

]
rj+1/2

≈ rj+1/2
pj − pj+1

h
. (4.11)

Summing these gives for 1 < j < N ,

[Rp]j
def
=

1

h2

(
rj+1/2(pj+1 − pj)− rj−1/2(pj − pj−1)

)
. (4.12)
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The matrix stencil for the interior of R is thus

1

h2


−(rj−3/2 + rj−1/2) rj−1/2 0

rj−1/2 −(rj−1/2 + rj+1/2) rj+1/2

0 rj+1/2 −(rj+1/2 + rj+3/2)



pj−1

pj

pj+1

 . (4.13)

Recall the assumption that rp(r) → 0 as r → ∞ and that the scale of the domain of p is

such that p(1 + δ) ≈ 0 for all δ > 0. Hence, the discretization of R has a zero right boundary

condition, so pN = 0 implies

[Rp]N = rN−1/2 pN−1. (4.14)

Since p(r) is a radial profile, the implicit symmetry implies that d
drp(r) = 0, i.e. a Neumann

left-boundary condition. Since p1 = p(h/2), this implies p1 ≈ p0 and

[Rp]1 = r1/2p0 − (r1/2 + r3/2)p1 + r3/2p2

= r3/2p1 + r3/2p2. (4.15)

Observe that R is a symmetric tridiagonal matrix.

We then take L
def
=
(

diag(r−1)R
)2

where diag(r−1) denotes the N × N diagonal matrix

whose diagonal entries are (r−1
j ). Note that since 0 < rj < 1, the matrix diag(r−1/2)R is

strictly diagonally dominant, hence is positive definite [Golub and Van Loan, 2012, Theorem

3.4.3]. This is not surprising since it is a discretization of a positive definite operator. Finally,

we approximate the integral in (4.8) with

〈p,L2p〉H1 ≈ 2πh〈p,Lp〉RN . (4.16)

So the complete approximation to (4.1) is

Φ(p; b, λ, δ) ≈ λh‖Gp− b‖2R2N+1 + δ2πh〈p,Lp〉RN . (4.17)
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Since λ and δ will be stochastically modeled and estimated from the discrete hierarchical

posterior, we absorb the constants h and 2πh into them, and define

F (p; b, λ, δ)
def
=

1

2

(
λ‖Gp− b‖2R2N+1 + δ〈p,Lp〉RN

)
. (4.18)

4.1.2 The discrete hierarchical posterior distribution

As in [Bardsley, 2012], we employ a hierarchical model for λ and δ that employ independent

prior distributions that form a natural conjugacy so that the resulting full conditional den-

sities will be known up to a proportionality constant. In deriving this density, we will use

a technique sometimes referred to as ‘completing the square,’ which in addition to showing

that the posterior density for p is Gaussian, will allow us to marginalize the full conditional

densities of the parameters λ and δ. This will be important for implementing the partially

collapsed Gibbs sampler. In the following computations, 〈·, ·〉 and ‖ · ‖ refer to the standard

Euclidean inner product and norm on the appropriate finite dimensional subspace and should

be clear in context. Moreover, we will not strictly adhere to the convention of capital letters

corresponding to random variables since it conflicts with capital letters representing matrices,

and again, this should be clear in context.

By the preceding discretization arguments, we have the following approximations for the

prior, likelihood, and posterior densities,

π(p|δ) = (2π)−N/2|det δL|1/2| exp

(
−δ

2
〈p,Lp〉

)
, (4.19)

π(b|p, λ) =

(
λ

2π

)−(2N+1)/2

exp

(
−λ

2
‖Gp− b‖2

)
, (4.20)

and

π(p|b, λ, δ) ∝ exp
(
− F (p; b, λ, δ)

)
. (4.21)
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Taking the Bayesian perspective, the unknown parameters λ and δ are modelled as indepen-

dent prior random quantities. We assume a hierarchical structure so that the prior p|δ, λ is

independent of the noise parameter λ (given δ) and that the measurement likelihood b|p, λ, δ

is independent of the prior parameter δ (given p and λ) , i.e.

π(p|λ, δ) = π(p|δ) (4.22)

and π(b|p, λ, δ) = π(b|p, λ). (4.23)

Note that both π(b|δ) and π(p|b, λ, δ) are distributions in the exponential class of densities.

As discussed in [Gelman et al., 2014], the exponential class forms a natural conjugacy, meaning

roughly that for any prior and likelihood in the exponential class, there is a ‘natural’ well-

defined posterior also in the exponential class. This convenience motivates the choice of prior

distributions for λ and δ from within the exponential class, and in particular, the gamma

distribution provides a flexible (albeit always right-skewed) family whose support is all positive

real numbers. Assuming λ and δ are independent gamma-distributed random variables, they

have probability density functions

π(λ) ∝ λα−1 exp(−βλ) (4.24)

and π(δ) ∝ δα−1 exp(−βδ), . (4.25)

As recommended by [Higdon, 2006], we use parameter values α = 1 and β = 10−4 which

provide a large prior variance (108) for λ and δ. Now, applying Bayes’ theorem and the

definition of conditional probability, the joint posterior density is

π(p, λ, δ|b) =
π(b|p, λ, δ)π(p, λ, δ)

π(b)

=
π(b|p, λ, δ)π(p|δ, λ)π(λ, δ)

π(b)

=
π(b|p, λ)π(p|δ)π(λ)π(δ)

π(b)



4.1. FROM THE CONTINUUM TO THE DISCRETE 79

∝ λ(2N+1)/2+α−1δN/2+α−1 exp

(
−λ

2
‖Gp− b‖2 − δ

2
〈p,Lp〉 − βλ− βδ

)
. (4.26)

Our primary goal for estimation and uncertainty quantification of p will be drawing inference

from (4.26). As previously remarked, all priors are in the exponential family, hence there is a

natural expression for each full conditional density that is also in the exponential family. We

proceed by deriving full conditional densities for λ, δ and p.

Observe first that

π(λ|b,p, δ) =
π(p, λ, δ|b)
π(p, δ|b)

∝ λ(2N+1)/2+α−1 exp

(
−λ
(

1

2
‖Gx− b‖2 − β

))
,

and π(δ|b,p, λ) =
π(p, λ, δ|b)
π(p, λ|b)

∝ δN/2+α−1 exp

(
−δ
(

1

2
〈p,Lp〉 − β

))
, (4.27)

each of which are proportional to gamma distributions with shifted scale and rate parameters.

Deriving the density for p is more involved and uses a technique sometimes referred to as

‘completing the square’ [Stuart, 2010] which shows that the discrete posterior π(p|b, λ, δ) is

Gaussian. Since G is a discretization of an injective operator, the matrix G has linearly

independent columns, so GTG is symmetric positive definite. Thus, the matrix

Jλ,δ
def
= (λGTG+ δL) (4.28)

is also symmetric positive definite, and hence, invertible. Define

mλ,δ
def
= J−1

λ,δλG
Tb, (4.29)

then observe

2F (p; b, λ, δ) = λ‖Gx− b‖2 + δ 〈p,Lp〉

= λ〈Gp,Gp〉 − 2λ〈Gp, b〉+ λ〈b, b〉+ δ〈p,Lp〉
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=
〈
p, (λGTG+ δL)p

〉
− 2λ

〈
p,GTb

〉
+ λ‖b‖2

= 〈p,Jλ,δp〉 − 2 〈p,Jλ,δmλ,δ〉+ λ‖b‖2

= 〈p,Jλ,δ(p−mλ,δ)〉 − 〈p,Jλ,δmλ,δ〉+ λ‖b‖2

= 〈(p−mλ,δ),Jλ,δ(p−mλ,δ)〉+ 〈mλ,δ,Jλ,δp〉

− 〈mλ,δ,Jλ,δmλ,δ〉 − 〈p,Jλ,δmλ,δ〉+ λ‖b‖2

= 〈(p−mλ,δ),Jλ,δ(p−mλ,δ)〉 − 〈mλ,δ,Jλ,δmλ,δ〉+ λ‖b‖2, (4.30)

where in the second to last equality, we used the symmetry of Jλ,δ. Hence

π(p|b, λ, δ) =
π(p, λ, δ|b)
π(λ, δ|b)

∝ exp

(
−1

2
〈(p−mλ,δ),Jλ,δ(p−mλ,δ)〉

)
(4.31)

which is proportional to a multivariate Gaussian with mean mλ,δ = J−1
λ,δλG

Tb and covariance

matrix J−1
λ,δ.

With explicit expressions for the full conditional densities, we can now explicitly state the

algorithms for posterior PSF estimation.

4.2 Sampling the PSF posterior

This section is devoted to applying the general algorithms presented in Section 3.1 to the spe-

cific PSF posterior estimation problem. The algorithms were presented generically, assuming

at each step that the corresponding conditional random variable, or proposal in the case of

Metropolis-Hastings, could be simulated on the computer. In the last section, we derived the

full-conditional densities and wrote them in a form so that they can be easily sampled using

standard algorithms for generating gamma and Gaussian random variables. These expressions

will be sufficient for the simulations in the standard Gibbs sampler, which we present in Sec-
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tion 4.2.1. The partially collapsed sampler for the problematic simulation of δ alluded to at

the beginning of the chapter will require a derivation that shows that the collapsed conditional

density is Gaussian. With this derivation, we can then present the detailed partially collapsed

Gibbs sampler for PSF reconstruction.

The general idea for random variable generation involves transforming a uniform random

variable on [0, 1] into a random variable with the desired distribution. This is known as the

probability integral transformation. In theory, this can always be done if an inverse of the

cumulative distribution function F (x)
def
= P(X ≤ x) is computationally available. For random

variables with continuous densities, F is strictly increasing onto [0, 1] and is thus invertible.

Hence, for U ∼ U([0, 1]), the variable X = F−1(U) has

P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) =

∫ F (x)

0
ds = F (x). (4.32)

So, to simulate X, one generates a pseudo-random number u from [0, 1] (see [Knuth, 1982]),

then F−1(u) serves as simulation for X. In practice, this method is usually analytically diffi-

cult, but the idea behind most algorithms is similar: generate a pseudo-random number then

transform it in some way so that the resulting random variable has the desired density. For

many common distributions these algorithms are implemented efficiently in many statistical

and mathematical computing packages, and we assume for the following algorithms that they

are available. In particular, we assume that simulated data from a uniform density U([0, 1]),

a gamma distribution Γ(α, β) for given shape and rate parameters α and β, and a standard

Gaussian N (0, 1) can each be computed.

4.2.1 Gibbs sampling the PSF posterior

Here, we describe how to explicitly obtain simulations from the full conditional densities

π(λ|b,p, δ), π(δ|b,p, λ), and π(p|b, λ, δ). The equations in (4.27) imply that both π(λ|b,p, δ),
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π(δ|b,p, λ) are gamma distributions

(λ|b,p, δ) ∼ Γ

(
(2N + 1)/2 + α,

1

2
‖Gx+ b‖2 + β

)
(4.33)

and

(δ|b,p, λ) ∼ Γ

(
N/2 + α,

1

2
〈p,Lp〉+ β

)
(4.34)

respectively, of which simulations are assumed to be available.

For simulating from π(p|b, λ, δ), let z be a vector whose entries are N independent re-

alizations from N (0, 1). Hence, z is a realization of a multivariate Gaussian N (0, IN×N ).

Recall that for z ∼ N (0, I), the linear transformation w = m + Bz results in m + Bz ∼

N (m,BBT ). So in order to sample a Gaussian random variable with given precision, we will

need to factor its inverse. An important feature of positive definite matrices, A, is that they

have an eigenvalue decomposition of the form UΛU∗ (here ∗ denotes the conjugate transpose

since columns of U may be complex valued), where the columns U∗ are mutually orthonor-

mal and that Λ is a diagonal matrix of positive eigenvalues. Therefore, there exists a matrix

M = Λ−1/2U∗, such that M∗M = A−1, where the −1/2 power is computed on the diagonal

entries of Λ. Hence, the linear transformation M∗z ∼ N (0,A−1). In practice, computing

the eigenvalue decomposition is overly expensive, but this argument establishes the existence

of such a matrix.

An efficient method for computing such an M is the Cholesky factorization, which for a

given symmetric positive definite matrix, gives a lower triangular matrix R with non-zero

diagonals such that A = MTM and can be computed in O(N3) floating-point operations

(flops) [Golub and Van Loan, 2012]. For Jλ,δ, define the Cholesky factors

RT
λ,δRλ,δ

def
= Jλ,δ. (4.35)
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With Rλ,δ in hand, it serves two purposes: first, we can solve Jλ,δmλ,δ = RT
λ,δRλ,δmλ,δ =

GTb efficiently by forward-substitution then by backward-substitution, both in O(N2) flops;

second, the computation mλ,δ+R−1
λ,δz by forward-substitution, transforms z into a realization

from π(p|b, λ, δ), since (RT
λ,δRλ,δ)

−1 = R−1
λ,δR

T
λ,δ
−1

.

Note that each time a realization from π(p|b, λ, δ) is required, we must compute a factoriza-

tion that depends on λ and δ, and this step will be the computational bottleneck for the Gibbs

sampler. We remark that for the scale of our problem, Cholesky factorizations are feasible. In

general, this may not always be the case, and [Bardsley, 2012] provides methods for sampling

that rely only on linear solves which may be implemented efficiently via an algorithm like

conjugate gradients.

With computational methods for each full-conditional density, Algorithm 6 describes Gibbs

sampling the PSF posterior.

Algorithm 6 Hierarchical Gibbs sampler for PSF posterior estimation

Given λk, δk, and pk.

1. Simulate λk+1 ∼ Γ

(
(2N + 1)/2 + α,

1

2
‖Gpk − b‖2 + β

)
.

2. Simulate δk+1 ∼ Γ

(
N/2 + α,

1

2

〈
pk,Lpk

〉
+ β

)
.

3. Compute Rλk+1,δk+1(4.35),mλk+1,δk+1(4.29),

and set pk+1 = R−1
λk+1,δk+1z +mλk+1,δk+1 where z ∼ N (0, IN×N ) .

4.2.2 Partially collapsed Gibbs sampling for PSF reconstruction

As we will see, the (δk) component of the Markov chain in the Algorithm 6 exhibits poor

convergence, hence asymptotic results from the ergodic theorem require longer runs of the

Markov chain. Taking a cue from [Agapiou et al., 2014], we remove the conditioning of δk+1

on pk by implementing Algorithm 5 on the posterior PSF estimation problem.
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As previously mentioned, this will require a simulation from the density π(δ|b, λ). To express

the kernel of this density, note (4.31) is the kernel of a Gaussian with mean mλ,δ and variance

J−1
λ,δ, thus the normalized density is

π(p, λ, δ|b)
π(λ, δ|b)

= π(p|b, λ, δ)

= (2π)−N/2| detJλ,δ|1/2 exp

(
−1

2
〈p−mλ,δ,Jλ,δ(p−mλ,δ)〉

)
. (4.36)

Dividing (4.26) by (4.36), one obtains

π(λ, δ|b) =
π(p, λ, δ|b)
π(p|b, λ, δ)

∝ λ
2N+1

2
+α−1δ

N
2

+α−1|detJλ,δ|−1/2

× exp

(
1

2
〈p−mλ,δ,J(p−mλ,δ)〉 − F (p; b, λ, δ)− βλ− βδ

)
=∝ λ

2N+1
2

+α−1δ
N
2

+α−1|detJλ,δ|−1/2

× exp

(
−1

2

(
λ‖b‖2 − 〈mλ,δ,Jλ,δmλ,δ〉

)
− βλ− βδ

)
. (4.37)

Finally,

π(δ|b, λ) =
π(λ, δ|b)
π(λ|b)

∝ δ
N
2

+α| detJλ,δ|−1/2 exp

(
−1

2

(
λ‖b‖2 − 〈mλ,δ,Jλ,δmλ,δ〉

)
− βδ

)
. (4.38)

The two terms | detJλ,δ| and 〈mλ,δ,Jλ,δmλ,δ〉 in (4.38) make the density depend in a compli-

cated way on δ, so a direct simulation is not available. Additionally, they are computationally

expensive in that they involve determinants and linear solves. Fortunately, the Cholesky

factorization Rλ,δ will allow both evaluations to be computed efficiently and the Metropolis-

Hastings step described in Algorithm 5 can be used to sample from (4.38). Since |detJλ,δ|

involves N products and 〈mλ,δ,Jλ,δmλ,δ〉 occurs in the argument of an exponential, we per-

form calculations on a logarithmic scale.
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To simplify some arguments, the following calculations divide (4.38) into terms that depend

only on expensive quantities Rλ,δ and mλ,δ. That is,

−1

2

(
λ‖b‖2 − 〈mλ,δ,Jλ,δmλ,δ〉

)
= −1

2

(
λ〈b, b〉 − 〈mλ,δ, λG

Tb〉
)

= −λ
2
〈b−Gmλ,δ, b〉

def
= −λ

2
a(mλ,δ), (4.39)

and

ln(|detJλ,δ|−1/2) = −1

2
ln(|detRλ,δR

T
λ,δ|)

= −1

2
ln(|detRλ,δ|2)

= −1

2
ln

(
N∏
i=1

|Rλ,δii|
2

)

= −
N∑
i=1

ln |Rλ,δii|

def
= −b(Rλ,δ), (4.40)

where we used the fact that Rλ,δ is lower triangular to compute the determinant. Substituting

these expressions into (4.38)

π(δ|b, λ) ∝ δ
N
2

+α| detJλ,δ|−1/2 exp

(
−λ

2
〈b−Gmλ,δ, b〉 − βδ.

)
= exp

((
N

2
+ α− 1

)
ln δ − b(Rλ,δ)−

λ

2
a(mλ,δ)− βδ

)
def
= exp

(
c(Rλ,δ,mλ,δ, δ)

)
. (4.41)

We also use a logarithmic scale for the proposal, that is, a random walk on the logarithm

of δ. This means that the proposal density is ρ(δ′|δ) def
= φγ(| ln δ′ − ln δ|) = ρ(δ|δ′), where φγ

is the density of a mean-zero normal random variable with standard deviation γ. To simulate
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the proposal, draw w ∼ N (0, 1) and set δ′
def
= exp(γw + ln δ), then ln δ′ − ln δ ∼ ρ(δ′|δ). This

has the added benefit of producing proposal simulations such that δ′ > 0.

We compute the acceptance ratio on a logarithmic scale as follows: observe that accepting

with probability

α(δ, δ′) = min

{
1,
π(δ′|b, λ)

π(δ|b, λ)

}
(4.42)

is equivalent to accepting with log uniform probability

lnα(δ, δ′) = min
{

0, c(Rλ,δ′ ,mλ,δ′ , δ
′)− c(Rλ,δ,mλ,δ, δ)

}
(4.43)

since ln is increasing from (0, 1) onto (−∞, 0). To implement this, generate a uniform simula-

tion u from [0, 1], then accept if lnu > lnα(δ, δ′) and reject otherwise. All of the computational

pieces are in place to explicitly describe Metropolis-Hastings within PCG for PSF reconstruc-

tion in Algorithm 5. The full implementation is described in Algorithm 7. Note that we are

able to re-use the factorization Rλ,δ and mλ,δ to sample pk+1, so there are nmh + 1 Cholesky

factorizations per Markov iteration.

Algorithm 7 Metropolis-Hastings within PCG sampler for PSF posterior estimation

Given γ, λk, δk, and pk

1. Simulate λk+1 ∼ Γ

(
(2N + 1)/2 + α,

1

2
‖Gpk − b‖2 + β

)
.

2. Set λ = λk+1, δ = δk and compute Rλ,δ(4.35),mλ,δ(4.29), then c(Rλ,δ,mλ,δ, δ)(4.41).

For j = 1 . . . nmh

i. Simulate w ∼ N (0, 1) and set δ′ = exp(γw + δ)

ii. Compute Rλ,δ′ ,mλ,δ′ , then c(Rλ,δ′ ,mλ,δ′ , δ
′).

iii. Simulate u ∼ U([0, 1]) and

if lnu > min
{

0, c(Rλ,δ′ ,mλ,δ′ , δ
′)− c(Rλ,δ,mλ,δ, δ)

}
set δ = δ′,Rλ,δ = Rλ,δ′ ,mλ,δ = mλ,δ, and c(Rλ,δ,mλ,δ, δ) = c(Rλ,δ′ ,mλ,δ′ , δ

′)

Set δk+1 = δ

3. Simulate z ∼ N (0, IN×N ) and set pk+1 = R−1
λ,δz +mλ,δ.
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We have not addressed how to choose the proposal variance γ2. It is common to tune this

parameter so that the long-run proportion of acceptances is about 0.4 [Calvetti and Somersalo,

2007]. An alternative is to use previous values to inform γ. The resulting stochastic process

is no longer a Markov chain, but [Haario et al., 2005] have shown that the stochastic process

{X1, X2, . . . } resulting from a Metropolis-Hastings algorithm using the empirical covariance

estimate of the previous k realizations as the proposal variance at step k enjoys a similar

ergodic result as Theorem 3.1.1. The theory is not directly applicable, since we sample

jointly {(λk, δk,pk)}, and obtaining covariance estimate of the joint variable is computationally

unfeasible. A feasible computation for γk is the marginal variance for δ would be to add to

Algorithm 7

4. Set γ2 =
1

k

k+1∑
i=1

(δi − δk)2 (4.44)

where δk is the sample mean for {δ1, . . . , δk}. Although we do not directly have an ergodic

theorem for this stochastic process, it exhibits similar convergence statistics in the numerical

examples presented in Section 4.3 with much less ’tuning-effort’ as the algorithm with a tuned

γ2. From a practical standpoint, one could use the adaptive estimate of γk, then when the

chain has stabilized, fix γ to appeal to Theorem 3.1.1 for statistic estimation.

4.2.3 Blocking the sampler and a connection to marginal then conditional

sampling

We now explore one more modification of the algorithm and illustrate a connection to the

work of [Fox and Norton, 2015]. Note that the joint density in (4.26) factors in λ and δ,

and since π(λ, δ|b,p) ∝ π(λ, δ,p|b), the conditional variables (λ|b), (p, δ) and (δ|b,p, λ) are

independent. Hence, steps 1. and 2. in Algorithm 6 can be thought of as a joint sample from

π(λ, δ|b,pk). This procedure is sometimes referred to as blocking [Liu, 2008]. To accomplish

the Metropolis-Hastings step on the logarithmic scale, we derive the analogous c in (4.41), by
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using (4.25) in

π(λ, δ|b) = π(δ|b, λ)π(λ|b)

∝ π(δ|b, λ)π(λ)

= exp

((
2N + 1

2
+ α− 1

)
lnλ+

(
N

2
+ α− 1

)
ln δ − b(Rλ,δ)−

λ

2
a(mλ,δ)− βλ− βδ

)
def
= exp

(
c(Rλ,δ,mλ,δ, λ, δ)

)
. (4.45)

Applying partial collapse to the blocked Gibbs sampler results in Algorithm 8

Algorithm 8 Metropolis-Hastings within blocked PCG sampling for PSF posterior estimation

Given C, [λk, δk], and pk

1. Set [λ, δ] = [λk, δk] and compute Rλ,δ(4.35),mλ,δ(4.29), then c(Rλ,δ,mλ,δ, λ, δ)(4.45).

For j = 1 . . .M

i. Simulate w ∼ N (0, I2×2) and set [λ′, δ′] = exp(Cw + [λ, δ]T )

ii. Compute Rλ′,δ′ ,mλ′,δ′ , then c(Rλ′,δ′ ,mλ′,δ′ , λ
′, δ′).

iii. Simulate u ∼ U([0, 1]) and

if lnu > min
{

0, c(Rλ′,δ′ ,mλ′,δ′ , δ
′)− c(Rλ,δ,mλ,δ, δ)

}
set [λ, δ] = [λ′, δ′],Rλ,δ = Rλ′,δ′ ,mλ′,δ = mλ′,δ, and c(Rλ′,δ,mλ,δ, δ) = c(Rλ′,δ′ ,mλ′,δ′ , λ

′, δ′)

Set δk+1 = δ

2. Simulate z ∼ N (0, IN×N ) and set pk+1 = R−1
λ,δz +mλ,δ.

By design, simulations of (λk, δk) are conditionally independent of pk. In the language

of [Van Dyk and Park, 2008], pk has been completely collapsed, and (λk, δk) provides an

independent Markov chain invariant with respect to π(λ, δ|b). Markov chains that satisfy

this property are said to satisfy the Duality Principle [Robert and Casella, 2013, Section

9.2.3] and are related to hidden Markov models. Of course, pk is the primary quantity of

interest for estimation and uncertainty quantification, and estimating λ and δ are auxiliary

to that goal. Despite this apparent mismatch, it does suggest a strategy that can reduce the

number of required Cholesky factorizations. Consider only iterating step 1. in Algorithm 8

to obtain a Markov chain (λk, δk|b) invariant with respect to π(λ, δ|b). After this chain has
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sufficiently converged, in say N steps, we can produce a ‘thinned’ chain {pak |λak , δak , b} that

computes estimates for some sequence {ak} ⊆ {1 . . . N}. How we choose this sequence is based

on the integrated autocorrelation time of {(λk, δk)} which is defined in Section 3.2. This is

precisely the MCMC algorithm presented in [Fox and Norton, 2015] for image deblurring,

except in their case, the forward operator corresponds to a convolution, for which the discrete

Fourier transform can be applied, rather than a Cholesky factorization. Moreover, they present

several other methods for speeding up the algorithm so that the costly computations involving

determinants and linear solves can be done offline.

To see this in our situation, first note that the computation of a(mλ,δ) can be simplified as

follows; continuing from (4.39) and using (4.29) then (4.28)

a(mλ,δ) = 〈b−Gmλ,δ, b〉

=
〈
b,
(
I −GJ−1

λ,δλG
T
)
b
〉

=

〈
b,

(
I −G

(
GTG+

δ

λ
L

)−1

GT

)
b

〉
. (4.46)

The Woodbury matrix identity [Woodbury, 1950] states

(A+UCV )−1 = A−1 −A−1U
(
V A−1U +C−1

)−1
V A−1, (4.47)

so taking A = I,U = G,V = GT , and C =
(
δ
λL
)−1

gives

(
I −G

(
GTG− δ

λ
L

)−1

GT

)
=

(
I +

λ

δ
GL−1GT

)−1

. (4.48)

So the term a(mλ,δ) depends only on the ratio λ/δ and can be computed efficiently via a

linear solve. In [Fox and Norton, 2015], they perform a similar calculation and compute a

offline on a grid of λ/δ using fast Fourier transforms to avoid the costly linear solves in each

step of the Markov chain.
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Similarly,

δ−1b(λ, δ) = ln

(∣∣∣∣det

(
λ

δ
GTG+L

)∣∣∣∣) (4.49)

can also be computed offline.

4.3 Numerical Results

Finally, we implement the preceding development on synthetically derived data as well as on

calibration radiographs from a high energy X-ray imaging system. The synthetic data are gen-

erated by adding simulated independent and identically distributed Gaussian measurement

noise to the forward image of a PSF with a known analytic form. The radiographic data come

from a large-scale diagnostic imaging system at the U.S. Department of Energy’s Nevada

National Security Site. In both cases, the theoretically predicted deficiency in the δ-chain

is demonstrated using the statistical diagnostics introduced at the end of Chapter 3 in Sec-

tion 3.2. The standard Gibbs sampler is compared to both versions of the partially collapsed

Gibbs sampler derived in Chapter 4, and we investigate the trade-off between chain conver-

gence and computational complexity in terms of number of expensive matrix factorizations.

We demonstrate that even with taking into account the reduced computational complexity of

the standard Gibbs sampler, partially collapsing p in the δ component improves convergence

of the joint Markov chain.

4.3.1 Synthetic PSF Reconstruction

To simulate synthetic data, we reconstruct a radial profile of a two-dimensional Gaussian

kernel

p(r) = (2πσ2)−1e
−r2
2σ2 , (4.50)
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where σ = 1
15 is chosen so that the effective width of the kernel is about 20% of the image

width when scaled to [−1, 1]. Observe that in the case of a two-dimensional Gaussian, the

action of the forward operator in (1.21) is the scaled error function

b(s) =
1√
2πσ

∫ s

−∞
e−

s′2
2σ2 ds′. (4.51)

We synthetically add measurement error with noise strength that is 2% of the strength of

the signal. For the PCG algorithms, the inner Metropolis-Hastings step was computed with

nmh = 1 and nmh = 5, and the initial values of λ0 = 1 and δ0 = 1 were used for each

implementation.

The computed mean of the posterior density is shown in Figure 4.1 (right) in 2D, along

with quantiles of the radial representations (left). The true solution is also shown on the

left, showing the accuracy of the reconstruction. Note that the most uncertain region of the

reconstruction are the initial discretization points corresponding to the height of the PSF,

however, the true solution falls within the 90% quantiles at each point.

The MCMC diagnostics are summarized in Table 4.1. With the exception of the δ chain

generated by the Gibbs sampler, each method yields Geweke p-values sufficiently large to

indicate strong statistical evidence that burn-in has completed. The lack of convergence for

the Gibbs sampler δ chain is the likely cause for the mean estimate of δ being marginally

larger than the other three. The large autocorrelation in the δ chain generated by the Gibbs

sampler results in an ESS that is significantly lower than the other three algorithms. Using

#Chol/ESS as an efficiency measure, we see that PC Gibbs with nmh = 5 is the most efficient

of the four methods.

The chain autocorrelation plots in Figure 4.2 give additional insights. First, for the Gibbs

sampler, the autocorrelation of the δ chain is quite large, and the λ chain is approximately

uncorrelated, as values in Table 4.1 suggested would be the case. Note also that sampling
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Algorithm λ̂MCMC δ̂MCMC λ-pGeweke δ-pGeweke IACT ESS #Chol/ESS
(×104) (×10−8)

Gibbs 1.102 6.132 0.998 0.850 36.2 138.0 72.4
PC Gibbs 1.102 5.611 0.992 0.943 7.9 633.0 31.6

nmh = 1
PC Gibbs 1.102 5.515 0.999 0.985 1.3 3799.6 15.8

nmh = 5
MTC 1.099 5.419 0.998 0.934 11.5 473.2 21.1

Table 4.1: Statistical diagnostics for the λ and δ chains associated with the synthetic PSF
reconstruction problem. The total chain length is M = 104, with a burn-in of kburnin = 5×103.
The first column are the post-burn-in chain means of λ and δ. The maximum IACT of λ and
δ are used to calculate IACT and ESS. For MTC algorithm, d(M − kburnin)/τinte is added to
#Chol to evaluate the efficiency.

jointly in the MTC algorithm degrades the efficiency of λ. Finally, note that we also include

autocorrelation plots for the first component, x1, of p, in order to show that the p chain is

essentially uncorrelated, and hence that the correlation in the MCMC chains generated by

Gibbs and PC-Gibbs samplers is driven by the δ chain.

4.3.2 PSF reconstruction from X-ray Radiographs

Next we reconstruct the point spread function of a high energy X-ray imaging system at the

U.S. Department of Energy’s Nevada National Security Site. The real edge data is shown

in Figure 4.3 (upper left) along with a horizontal cross-section across the edge (upper right).

The mean MCMC reconstruction is shown in Figure 4.3 (lower left), along with the 10%, 25%,

50%, 70%, and 90% quantiles of the chain xk. We estimated the PSF at grid points using

the chain-wise mean after burn-in, p̂ = 2
M

∑M
k=M/2+1 p

k. Since the true PSF is unknown, we

evaluate the accuracy of the estimation by its discrepancy; i.e. we compare forward mapping

of the estimate Ap̂ with the given data b. This is shown in both linear and logarithmic scales

in Figure 4.3 (lower right). In both cases the discrepancy is quite low, except at very low

intensities where the data is dominated by the noise, which can be seen in the logarithmic

scale.
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As with the synthetic data, the PC-Gibbs algorithm with nmh = 5 results in the largest

ESS and the most efficient chain (as measured by #Chol/ESS).

Algorithm λ̂MCMC δ̂MCMC λ-pGeweke δ-pGeweke IACT ESS #Chol/ESS
(×104) (×10−10)

Gibbs 9.146 1.245 0.995 0.964 14.0 357.6 28.0
PC Gibbs 9.167 1.191 0.995 0.998 8.5 587.3 34.1

nmh = 1
PC Gibbs 9.178 1.189 0.994 0.980 1.5 3278.5 18.3

nmh = 5
MTC 9.090 1.200 0.996 0.969 12.5 432.2 23.1

Table 4.2: Statistical diagnostics for the λ and δ chains associated with the measured data
PSF reconstruction problem. The total chain length is M = 104, with a burn-in of kburnin =
5× 103. The first column are the post-burn-in chain means of λ and δ. The maximum IACT
of λ and δ are used to calculate IACT and ESS. For MTC algorithm, d(M − kburnin)/τinte is
added to #Chol to evaluate the efficiency.

4.3.3 Conclusions

The synthetic and measured data both exhibit the theoretical degeneracy derived in Agapiou

et al. [2014] for standard Gibbs sampler. We’ve also demonstrated that the issue is alleviated

by applying the partially collapsed Gibbs framework to the Gibbs sampler, yielding two re-

lated MCMC methods, neither of which have have the δ chain correlation issues. This work

provides the first, to our knowledge, successful non-parametric radial PSF reconstruction in

X-ray imaging. Moreover, the theory for the modeling and algorithms has been rigorously

derived from first principles, and may serve as a template for other symmetry-based prior

regularization schemes. The results illustrate the effectiveness of the partially collapsed Gibbs

approach, and show how a sample-based approach can be used for uncertainty quantification.
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Figure 4.1: The 10%, 25%, 50%, 70%, and 90% quantiles of the reconstructed 1D radial
representations of the synthetic Gaussian PSF (left) along with the mean 2D reconstruction
(right).
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Figure 4.2: Autocorrelation plots for PSF reconstruction for synthetic data of the chains λ, δ
and the central discretization point of p: in the upper-left are the ACF for MCMC chains of
λ, δ and central pixel of the radial profile for the Gibbs sampler; on the upper-right are the
plots for the PC Gibbs sampler with 1 inner MH step; on the lower-left are plots for the PC
Gibbs sampler with 5 inner MH steps; and in the lower-right are plots for the MTC sampler.
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the lower left corner are the central 10%, 25%, 50%, 70%, and 90% quantiles of the posterior
reconstruction of x for each pixel; in the lower right corner are plots of the forward mapped
discrepancy of the post burn-in chain mean.
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Figure 4.4: Autocorrelation plots for PSF reconstruction for the measured data of λ and δ
chains: in the upper-left are the ACF for MCMC chains of λ, δ and central pixel of the radial
profile for the Gibbs sampler; on the upper-right are the plots for the PC Gibbs sampler with
1 inner MH step; on the lower-left are plots for the PC Gibbs sampler with 5 inner MH steps;
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Lars Hörmander. The Analysis of Linear Partial Differential Operators I. Springer-Verlag,
1983.

Marylesa Howard, Michael Fowler, Aaron Luttman, Stephen Mitchell, and Margaret C. Hock.
Bayesian Abel inversion in qualitative X-ray radiography. SIAM Journal on Scientific
Computing, 2016.



BIBLIOGRAPHY 100

Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A Hadrons and
Nuclei, 31(1):253–258, 1925.

A.K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall information and system
sciences series. Prentice Hall, 1989.

J. Kaipio and E. Somersalo. Statistical and Computational Methods for Inverse Problems.
Springer, 2005.

O. Knill, R. Dgani, and M. Vogel. A new approach to Abel’s integral operator. Astronomy
and Astrophysics, 274:1002–1008, 1993.

Donald E Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, MA, 2 edition, 1982.

D. Kundur and D. Hatzinakos. Blind image deconvolution. IEEE Signal Processing Magazine,
13(3):43–64, 1996.

Jun S Liu. Monte Carlo Strategies in Scientific Computing. Springer Science & Business
Media, 2008.

L.N. Magner. History of the Life Sciences. New York: Marcel Dekker, Inc, 2002.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087–1092, 1953.

Vladimir Aleseevich Morozov and Michael Stessin. Regularization Methods for Ill-Posed Prob-
lems. CRC Press, 1993.

Keith W Morton and David Francis Mayers. Numerical Solutions of Partial Differential
Equations: An Introduction. Cambridge university press, 2005.

Peter Müller. Alternatives to the Gibbs sampling scheme. 1992.

Robert D. Richtmyer. Principles of Advanced Mathematical Physics: Volume I. Springer-
Verlag, 1978.

Christian Robert and George Casella. Monte Carlo Statistical Methods. Springer Science &
Business Media, 2013.

Walter Rudin. Functional analysis. McGraw-Hill, Inc., New York, 1991.

Havard Rue and Leonhard Held. Gaussian Markov Random Fields: Theory and Applications.
CRC Press, 2005.

Robert T Seeley. Extension of C∞ functions defined in a half space. Proceedings of the
American Mathematical Society, 15(4):625–626, 1964.

MR Showalter, MK Gordon, and D Olson. VG1/VG2 Saturn ISS processed images V1.0.
NASA Planetary Data System, 2006.



BIBLIOGRAPHY 101

A Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms.
Springer, 1997.

Robert S Strichartz. The Way of Analysis. Jones & Bartlett Learning, 2000.

Robert S Strichartz. A Guide to Distribution Theory and Fourier Transforms. World Scientific,
2003.

A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:451–559, 2010.

Luke Tierney. Markov chains for exploring posterior distributions. the Annals of Statistics,
pages 1701–1728, 1994.

A.N. Tikhonov. Regularization of incorrectly posed problems. Soviet Mathematics Doklady,
4:1624–1627, 1963.

Austin B Tomaney and Arlin PS Crotts. Expanding the realm of microlensing surveys with
difference image photometry. arXiv preprint astro-ph/9610066, 1996.

David A Van Dyk and Xiyun Jiao. Metropolis-Hastings within partially collapsed Gibbs
samplers. Journal of Computational and Graphical Statistics, 24(2):301–327, 2015.

David A Van Dyk and Taeyoung Park. Partially collapsed Gibbs samplers: Theory and
methods. Journal of the American Statistical Association, 103(482):790–796, 2008.

Curtis R. Vogel. Computational Methods of Inverse Problems. Society for Industrual and
Applied Mathematics, 2002.

Scott A. Watson. Real-time spot size measurement for pulsed high-energy radiographic ma-
chines. Proceedings of the 1993 Particle Accelerator Converence, 4:2447–2449, 1993.

Max A Woodbury. Inverting modified matrices. Memorandum report, 42:106, 1950.


	POINT SPREAD FUNCTION ESTIMATION AND UNCERTAINTY QUANTIFICATION
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Acknowledgments
	Notations
	List of Tables
	List of Figures
	List of Algorithms
	Images and Blur
	Introduction
	Organization

	Modeling blur with a PSF
	The Abel transform and a deterministic solution
	PSF reconstruction as an ill-posed inverse problem

	Radial Symmetry for Sobolev Spaces
	Distribution spaces
	The space of test functions and distributions
	L2 as a subspace of distributions
	The Sobolev space Hn()

	Radial symmetry
	The pull-back operator
	An extension theorem and a motivating example
	Radial symmetry for L2(2) and Hn(R2)

	The PSF inverse problem
	The Sobolev embedding theorem and extending to Pn([0,))


	Markov Chains and Modified Gibbs Sampling
	Markov Chain Monte Carlo Simulation
	Markov Chains
	Gibbs sampling
	The partially collapsed Gibbs sampler
	Metropolis-Hastings within partially collapsed Gibbs

	Evaluating Convergence
	Estimating the burn-in
	Autocorrelation and essential sample size


	Discrete Bayesian Posterior PSF estimation
	From the continuum to the discrete
	Discretization methods
	The discrete hierarchical posterior distribution

	Sampling the PSF posterior
	Gibbs sampling the PSF posterior
	Partially collapsed Gibbs sampling for PSF reconstruction
	Blocking the sampler and a connection to marginal then conditional sampling

	Numerical Results
	Synthetic PSF Reconstruction
	PSF reconstruction from X-ray Radiographs
	Conclusions


	Bibliography

