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Trend estimation is important in many fields, though arguably the most important ap-
plications appear in ecology. Trend is difficult to quantify; in fact, the term itself is not
well-defined. Often, trend is quantified by estimating the slope coefficient in a regression
model where the response variable is an index of population size, and time is the explanatory
variable. Linear trend is often unrealistic for biological populations; in fact, many critical en-
vironmental changes occur abruptly as a result of very rapid changes in human activities. My
PhD research has involved formulating methods with greater flexibility than those currently
in use. Penalized spline regression provides a flexible technique for fitting a smooth curve.
This method has proven useful in many areas including environmental monitoring; however,
inference is more difficult than with ordinary linear regression because so many parameters are
estimated. My research has focused on developing methods of trend detection and comparing
these methods to other methods currently in use. Attention is given to comparing estimated
Type I error rates and power across several trend detection methods. This was accomplished
through an extensive simulation study. Monte Carlo simulations and randomization tests were
employed to construct an empirical sampling distribution for the test statistic under the null
hypothesis of no trend. These methods are superior over other smoothing methods of trend
detection with respect to achieving the designated Type I error rate. The likelihood ratio
test using a mixed effects model had the most power for detecting linear trend while a test
involving the first derivative was the most powerful for detecting nonlinear trend for small
sample sizes.

ii



Acknowledgements

I would like to acknowledge the many people that have helped, supported, and guided me in
writing this dissertation. I would especially like to thank Drs. Brian Steele and David Patter-
son for persevering with me as my advisors through out the time it took me to complete this
research. In addition, I would like to thank the other committee members, Drs. Jon Graham,
George McRae, and Elizabeth Reinhardt, for all their helpful comments and encouragement.
I would also like to thank Guy Shepard for his help in the computer lab. Finally, I would like
to thank my husband Tom for his unconditional support and love.

iii



Contents

Abstract ii

List of Tables viii

List of Figures x

1 Introduction 1

2 Spline Regression 5

2.1 Spline functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Interpolation Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Splines in Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Regression splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Selecting the number and location of knots . . . . . . . . . . . . . . . . 10

2.4 Smoothing Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 B-splines with difference penalty . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Regression with a B-spine basis . . . . . . . . . . . . . . . . . . . . . . . 16

iv



2.4.3 Degrees of Freedom of a smoother . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Smoothing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.5 Residual variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Penalized Regression splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Penalized splines as mixed models . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Trend Detection 25

3.0.1 Goals of trend analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Trend detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Nonparametric correlation coefficient . . . . . . . . . . . . . . . . . . . . 29

3.1.3 LOESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.5 Examining first derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.6 Test for trend using first derivatives . . . . . . . . . . . . . . . . . . . . 35

3.1.7 First derivatives for penalized spline regression using a linear mixed model 37

3.1.8 First derivatives for B-splines . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Tests for trend with autocorrelated errors . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Generalized linear regression with autoregressive errors . . . . . . . . . 41

3.2.2 Sum of the first derivatives with autocorrelated errors . . . . . . . . . . 42

3.2.3 Likelihood ratio test with correlated errors . . . . . . . . . . . . . . . . 45

v



3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Least squares regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 LOESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Kendall’s τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.4 Likelihood ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.5 Sum of the first derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Simulation Results 54

4.1 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Generated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Comparison of Type I Error Rates . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 Power results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Autocorrelation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Simulation results for autocorrelation methods . . . . . . . . . . . . . . 69

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Case Study 73

5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Random site effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



5.4 Most recent trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusions and Future Research 81

Bibliography 84

vii



List of Tables

3.1 Calculation of Kendall’s tau coefficient for the Veery data. . . . . . . . . . . . . 31

3.2 P-values for trend tests over different time periods. . . . . . . . . . . . . . . . 52

4.1 Description of generated data. Linear trend with the addition of influential
observations were examined to explore the effect of influential observations on
power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Type I error rates for 1500 simulations. Standard errors for 1500 simulations are
given in Figure 4.2. Standard errors ranged from .0055 to .0118. The methods
compared were linear regression (LIN), Kendall’s τ (Ken), the likelihood ratio
test for trend (LRT), a randomization test for trend using the sum of the
first derivatives (SUM.R), a test for trend using a locally weighted regression
(LOESS), the trend detection test using the sum of the first derivatives using
P-splines, and a test using the sum of the first derivatives using a linear mixed
effects model and distributional assumptions about the test statistic (SUM). . . 60

4.3 Estimated power for 1500 simulations. Figure 4.2 gives the standard error
for an estimated power. The methods compared were linear regression (LIN),
Kendall’s τ (Ken), the likelihood ratio test for trend (LRT), a randomization
test for trend using the sum of the first derivatives (SUM.R), a test for trend
using a locally weighted regression (LOESS), the trend detection test using the
sum of the first derivatives using P-splines, and a test using the sum of the first
derivatives using a linear mixed effects model (SUM). . . . . . . . . . . . . . . 66

viii



4.4 Estimated Type I error rates for 1500 simulations for data simulated with no
trend and linear trend. Data were simulated with φ equal to 0,.3 and .5. The
methods that are compared are a generalized least squares method (LIN.AR),
a randomization test to test the significance of the sum of the first derivatives
(SUM.AR), and a likelihood ratio test (LRT.AR). All of these methods account
for serial correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Estimated power for 1500 simulations for data simulated with linear trend.
Data were simulated with φ equal to 0,.3 and .5. The methods that are com-
pared are a generalized least squares method (LIN.AR), a randomization test
to test the significance of the sum of the first derivatives (SUM.AR), and a like-
lihood ratio test (LRT.AR). All of these methods account for serial correlation. 70

5.1 Results of linear mixed model fit for mourning dove data. The estimated pa-
rameter values and standard errors are given. . . . . . . . . . . . . . . . . . . . 78

ix



List of Figures

2.1 Carolina wren data collected on a BBS route. The graphs show linear spline
regression fits with 1-4 knots. Graph b) has one knot located at 1977. Graph
c) has 2 knots located at 1977 and 1981. Graph d) has knot locations at 1977,
1981 and 1991. Graph e) has knot locations at 1977, 1981, 1991 and 1996 . . . 9

2.2 Carolina wren data with spline regression fits of degree 1,2 and 3 with knot
locations at 1977, 1981 and 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 B-spine basis of degree 3 with knots at 1,2,3,4,5. A B-spline of degree 3 with 5
knots will have 7 B-splines. a) shows the first B-spline b) shows the second, c)
the third, and d) shows all 7 B-splines. . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Veery counts for 10 years for a route in Maryland. . . . . . . . . . . . . . . . . 30

3.2 Wolverine counts from 1752 to 1908. Five different regression fits are shown on
individual graphs: b) Least squares regression, c) locally weighted regression
(LOESS), d) cubic spline using a Bspline basis, e) a linear spline using a linear
mixed effects model, f) a cubic spline using a linear mixed effects model . . . . 47

3.3 Fitted first derivative curve for wolverine data with 95% simultaneous confi-
dence intervals. Regions for which the variability bands are positive correspond
to time intervals in which the curve is significantly increasing while regions
which the variability bands are negative correspond to time intervals in which
the curve is significantly decreasing. . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Wolverine data for certain time periods. . . . . . . . . . . . . . . . . . . . . . . 53

x



4.1 Examples of simulated data with line indicating the true function. . . . . . . . 58

4.2 Standard error of power and Type I error rates estimates for a sample size of
1500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Ninety-five percent confidence intervals for Type I error rates for n of 25. SUM
is the method that used the sum of the first derivatives and SUM.R is the
trend detection method when a randomization procedure was used to obtain
the observed significance. The tests were all performed at an α level of .05. . . 61

4.4 Ninety-five percent confidence intervals for Type I error rates for n of 50. . . . 62

4.5 Ninety-five percent confidence intervals for Type I error rates for n of 200. . . . 62

4.6 Ninety-five percent confidence intervals for power to detect linear trend for n of
25. SUM is the method that used the sum of the first derivatives and SUM.R
is the trend detection method when a randomization procedure was used to
obtain the observed significance. The tests were all performed at an α level of
.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Ninety-five percent confidence intervals for power to detect linear trend for n

of 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Ninety-five percent confidence intervals for power to detect linear trend for n

of 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Mourning dove counts at seven different BBS routes in Maryland from 1966 to
2005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Main effects curve for the mourning dove analysis. . . . . . . . . . . . . . . . . 80

xi



Chapter 1

Introduction

The purpose of my dissertation research is to develop a method to estimate and test for trend

using ecological data. There are a number of methods already in use for detecting trend in

ecological data; however, there is no consensus on the best way to quantify and test for trend

(Thomas, [37]). Trend estimation, in particular the significance of trend, may differ depending

on what estimation technique one uses. Smoothing methods have recently become popular

to describe trend (see Fewster et al. [11], James et al. [17], and Anganuzzi [1]). Smoothing

methods provide a flexible tool to describe trend because no prior information about the form

of the trend is needed. For a smoothed curve, trend is described by a sequence of smoothed

estimates rather than a single parameter such as the slope of a line (Anganuzzi, [1]). Trend

is often quantified as the difference between the fitted values of the first few observations and

the last few observations. Because this is a relatively new technique for trend detection very

little work has been done comparing different methods of trend detection using smoothing

techniques. There has been some research done comparing a smoothing method of trend

detection to parametric methods such as linear or Poisson regression (see Anganuzzi, [1] and

Peterjohn et al., [24]; however, to date there has not been a study comparing different trend

detection methods that use smoothing to model trend.

1



CHAPTER 1. INTRODUCTION 2

One can think of a model for trend as consisting of the sum of a systematic component and

a random component:

Zt = Yt + Ut (1.1)

where Zt is some population index at time t, Ut is a stochastic component, and Yt may be a

regression equation or smooth curve (Dagum and Dagum, [6]). If a population is stable over

time, then Yt is modeled as a constant term and the stochastic component, Ut, consists of ran-

dom fluctuations around the mean population index. The random fluctuations in population

indexes can be due to such things as unpredictable changes in the environment, autocorrela-

tion or sampling error. If trend is not constant over time then trend may be modeled as a

polynomial:

Yt = β0 + β1t + β2t
2 + · · ·+ βpt

p. (1.2)

A more flexible model for trend than (1.2) is

Yt = ft (1.3)

where ft is a smooth function of time. There are several options for estimating ft such as

smoothing splines, penalized spline regression, locally weighted regression and kernel smoothers

(Fewster et al., [11]). Some of these methods will be discussed later. The advantage of us-

ing the trend model (1.3) is that no assumptions are made about the form of the trend. A

smoothing parameter is often used to control the “roughness” of the fit. A very rough fit

will result in too much of the random fluctuation being modeled while a very smooth fit will

not adequately describe the underlying trend. Methods of selecting an appropriate smoothing

parameter are discussed later.

Results of my research are applicable to surveys conducted annually at different sites. Many of

the examples presented use data from the North American Breeding Bird Survey (BBS). The

BBS is a continent-wide bird survey started by Chan Robbins in 1966 [33]. The BBS currently

has over 3700 routes and covers all of North America with each route being approximately 24.5
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miles long and consisting of stops every .5 miles (Sauer et al., [33]). An observer along a route

stops every .5 miles and records all of the birds that he sees or hears. This survey is conducted

annually at the height of breeding season and the average number of years of data for a route is

25 years (Sauer et al., [33]). For many of the bird species surveyed, managers do not have any

other information about the status of the species and, therfore, many management decisions

are based on these surveys (Sauer et al., [32]). However, these surveys, unlike methods such

as mark/recapture, produce indexes instead of estimates of population size. In addition to

this, other statistical challenges include possible autocorrelation, small sample sizes, variation

in observer’s abilities and measurement error due to weather.

Methods of data analysis for the BBS with regard to trend estimation and testing have been

evolving continually since the beginning (Thomas and Martin, [36]). Although many methods

have been compared there is no consensus as to which of the methods should be used in

analyzing BBS survey data (Sauer et al., [32]). Analysis of the BBS survey data generally

falls into one of three categories. Regression techniques such as least squares regression or

Poisson regression is probably the most commonly used technique to analyze BBS data. Linear

regression methods can be applied to estimate trend for each route and then a weighted average

for routes is used as the estimate of trend. Linear regression has the benefit of producing an

estimate of a parameter that serves as the estimate of trend, the slope. However, if the

assumptions of linear regression are not satisfied then the slope parameter may be a poor

choice to represent trend. A second class of methods are rank models which calculate a

statistic based on ranks. A third class of methods are smoothing methods which have also

been used to estimate and test for trend. Unlike regression techniques, there is not one or

more parameters estimated from the model that serve as an estimate of trend; however, an

estimate of trend can be calculated by taking the differences between the fitted values of the

first few and the last few observations. These methods along with additional trend detection

methods will be introduced in Chapter 3.

There have been some extensive studies done to compare the different methods of trend de-
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tection used by the BBS. Thomas and Martin [36] compared two different regression methods

and a nonparametric rank method. The regression methods differed with respect to how

trend was estimated (Thomas and Martin, [36]). The authors concluded that “the method

of trend estimation can affect the magnitude, direction, and statistical significance of popu-

lation trends assigned to species”. Although the authors concluded that there are differences

among the three methods that they compared, they were unable to determine which method

gives the most accurate results. They suggested simulating data with known trends and then

comparing the results.

The contribution of this work is to develop a method that identifies changes in trend, quantifies

trend, and tests for the significance of trend. In addition to this, a comparison of different

trend detection techniques will be made by estimating Type I error rates and power under

different scenarios. Because autocorrelation is likely to exist in surveys such as the BBS,

methods will also be introduced that accommodate serial correlation.



Chapter 2

Spline Regression

This chapter gives a brief introduction to splines and the use of splines in statistics. Spline

theory has been used for many years in other areas such as computer graphics, engineering, and

automotive science (Lancaster and Salkauskas, [18]). Historically, engineering draftsman used

thin pieces of wood called splines to connect points with a smooth curve (Wegmen and Wright,

[40]). The splines were “anchored in place by attaching lead weights called ducks at points

along the spline” (Wegmen and Wright, [40]). The splines were made to pass through specific

points as long as enough ducks were used (Wegmen and Wright, [40]). Suits et al. [35] define

spline functions as “a device for approximating the shape of a curvilinear stochastic function

without the necessity of pre-specifying the mathematical form of the function.” In statistics,

spline regression presents a flexible tool for fitting nonlinear curves using standard regression

techniques and has become a widely used method. Spline regression is nonparametric in

the sense that there is no specified form to the curve but it is also parametric because linear

regression techniques are used to fit the curve once a basis is created. Thus, splines in statistics

are often referred to as a semiparametric technique. There are two different approaches to

splines in statistics: regression splines and penalized spline regression. In regression splines the

amount of smoothing is controlled by the number and placement of knots which separate the

5



2.1. SPLINE FUNCTIONS 6

spline functions. In penalized spline regression in which the amount of smoothing is controlled

by a smoothing parameter thereby making knot selection less critical. A common criterion

for deciding on the amount of smoothing is cross validation which will be discussed later.

Penalized spline regression can also be set up as a mixed effects model and the smoothing

parameter estimated by maximum likelihood methods.

2.1 Spline functions

Mathematically, splines can be defined as piecewise polynomials of a certain degree connected

at join points called knots (Lancaster and Salkauskas[18]). Consider an interval [a,b] and

points t1, t2, ..., tn such that a < t1 < t2 < · · · < tn < b. A function, f , is a cubic spline

if within each interval (a, t1), (t1, t2), ..., (b, tn), f is a cubic polynomial and f , f ′ and f ′′ are

continuous at t1, t2, ...tn (Green and Silverman, [13]). In addition, a cubic spline is a natural

cubic spline if the two intervals, (a, t1) and (b, tn), are linear instead of cubic (Green and

Silverman, [13]). Thus, a natural cubic spline has the restriction of being linear before the

first knot and after the last knot.

2.1.1 Interpolation Splines

Generally in statistics one seeks to describe the underlying pattern of data without modeling

too much random fluctuation due to noise. The use of splines in statistics stems from the

theory behind interpolating splines. Suppose we have observation pairs (t1, z1), ..., (tn, zn) and

the goal is to find a function, f(t), that passes through all of these points. There are clearly

many ways to do this, the simplest being to connect the points with straight lines. This

may be undesirable because the derivatives at these points will be discontinuous. Suppose

we restrict f(t) to be a smooth curve with continuous first and second derivatives. There

are still many possible curves that will will pass through all points. One solution to finding
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an optimal function that interpolates the points is to find the “smoothest” curve that passes

through all of the points. A common measure of smoothness is the integrated squared second

derivative of f(t),
b∫
a

f ′′(t)2dt (Green and Silverman, [13]). Green and Silverman [13] state

that the integrated squared second derivative of a curve is a “global measure of roughness

that has considerable computational advantages”. It can be shown that the curve that mini-

mizes
b∫
a

f ′′(t)2dt is a natural cubic spline, and this natural cubic spline is unique (Green and

Silverman, [13]).

2.2 Splines in Statistics

The role of spline theory in statistics is to provide a class of functions from which to choose

a curve to fit to paired data. The curve should display the primary features of the relation-

ship without reflecting too much of the random fluctuation of the relationship. Smoothing

techniques are considered semiparametric in the sense that there is some unspecified smooth

function that is estimated from the data whereas a fully parametric technique assumes that

the true relationship between two variables follows a specific form (Ruppert et al., [29]). One

application of splines in statistics has been to fit smooth spline curves to data using standard

regression techniques by creating design matrices whose columns are bases for a vector space.

2.3 Regression splines

Regression splines are piecewise polynomials that connect at join points called knots (Green

and Silverman, [13]). Choice of the number and location of knots is an important decision

in spline regression. Once the number and location of the knots have been determined, then

maximum likelihood techniques can be used to fit the curve. Given K knots, the regression
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model of degree one can be represented as follows:

f(x) = β0 + β1x +
K∑

k=1

bk(x− κk)+ (2.1)

where κ1, κ2, ..., κK are the knot locations and (x−κi)+ = x−κi if x > κi and zero otherwise.

The corresponding basis for for (2.1) are the functions:

1 and x.

A design matrix may be constructed for fitting the regression:

X =


1 x1 (x1 − κ1)+ . . . (x1 − κK)+
...

...
...

. . .
...

1 xn (xn − κ1)+ . . . (xn − κK)+


where n is the number of observations. Equation (2.1) is easily extendable to p degrees as

follows:

f(x) = β0 + β1x + · · ·+ βpx
p +

K∑
k=1

bk(x− κk)
p
+. (2.2)

and the truncated power functions for (2.2) are written

1, x, . . . , xp, (x− κ1)
p
+ , . . . , (x− κK)p

+

and is known as the truncated power basis of degree p. A spline of degree three is commonly

used in statistical applications. Often, it is desirable to have continuous first and second

derivatives at the knot locations requiring polynomials of degree at least three and so parsi-

mony leads to degree 3 splines. In addition to this, a measure of roughness is the integrated

second derivative so the degree of the spline must be at least three (Green and Silverman,

[13]).

Before fitting a regression spline model, the polynomial degree, the number of knots and knot
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locations must be determined. It is apparent that these three choices leads to a huge number

of candidate models. The graphs presented in Figure 2.1 illustrate the problem with selecting

the number and location of knots for a piecewise linear spline. These data consists of counts of

the Carolina Wren (Thryothorus ludovicianus) from 1966 to 2002 at a Breeding Bird Survey

route in Maryland. The winter of 1976-1977 was severe and is thought to have reduced the

population size of the Carolina Wren in this area (Link and Sauer, [19]). For each of the

graphs, the number of knots is different. Visual inspection of the graphs does not reveal the

most appropriate number of knots to choose. In addition to the number and location of knots,

Figure 2.1: Carolina wren data collected on a BBS route. The graphs show linear spline
regression fits with 1-4 knots. Graph b) has one knot located at 1977. Graph c) has 2 knots
located at 1977 and 1981. Graph d) has knot locations at 1977, 1981 and 1991. Graph e) has
knot locations at 1977, 1981, 1991 and 1996

the degree of the polynomial must be determined. Figure 2.2 shows the Carolina wren data

with a linear, quadratic and cubic fit. The location of the three knots are 1977, 1981 and
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1991. Again, it is not obvious which graph is “best”. One can argue that the quadratic and

cubic fit are visually more pleasing than the linear fit, however; the linear fit may be adequate

for describing the association.

Figure 2.2: Carolina wren data with spline regression fits of degree 1,2 and 3 with knot
locations at 1977, 1981 and 1991

2.3.1 Selecting the number and location of knots

Selection of number and location of knots is a well-studied subject. Sometimes there may be

a reason for the placement of knots. For instance, we know that the Carolina wren suffered

through a severe winter in 1976-1977. A knot could be placed at this year to adjust for the

change in growth rate immediately following this winter. However, most times there are no

obvious reasons for specific changes in growth rate.
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Stepwise procedures are often used to select the number and location of knots. The idea is

similar to stepwise regression; however, instead of finding the “best” subset of variables we

find the “best” number and location of knots. Wand [38] gives a thorough explanation of the

stepwise procedure as well as references to other methods of knot selection. The majority of

knot selection methods are quite computer intensive due to the number of candidate models

to choose from (Wand, [38]).

2.4 Smoothing Splines

Smoothing splines circumvent the knot selection problem by retaining a large number of knots

(Wand, [38]). A smoothing penalty is imposed on the fit in order to avoid overfitting the model

resulting in too much of the random fluctuation being modeled. Consider a twice differentiable

function, f(x), that minimizes

n∑
i=1

{yi − f(xi)}2 + λ

∫ b

a
{f ′′ (t)}2dt (2.3)

where λ is a fixed constant, and a ≤ x1 ≤ · · · ≤ b. The criterion (2.3) is called the penalized

residual sum of squares (Hastie and Tibshirani, [15]). The first term in (2.3) is reduced when

f(x) falls close to the observed values, yi. The second term in (2.3) is a measure of roughness

of the fitted curve and is reduced when the curve is smooth. The integrated squared second

derivative is a measure that quantifies the roughness of the curve (Green and Silverman, [13]).

Large values of λ produce a smoother curve by forcing f ′′(x) to be very small for all x while

small values of λ result in a rougher curve. This roughness penalty is used often in smoothing

splines although other penalties could be used (Eilers and Marx, [8]).
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2.4.1 B-splines with difference penalty

The truncated power basis introduced earlier is a popular choice for the basis of a smoothing

spline because of its simplicity. B-splines are another popular choice for a basis. De Boor [2]

defines kth order B-splines as “appropriately scaled kth divided differences of the truncated

power function”. Hence, B-splines can be computed as differences of truncated power bases

(Eilers and Marx, [9]). Because the truncated power basis is not orthogonal, the B-spline basis

is more numerically stable than the truncated power basis when fitting a curve (Ruppert et

al, [29]).

A B-spline basis consists of polynomial pieces connected at join points called knots (Eilers

and Marx, [8]). B-spline bases of any order are easy to create because they can be calculated

recursively from a B-spline basis of degree zero (Eilers and Marx, [8]). Let Bj(x; q) represent

the value at x of the jth B-spline of degree q for a set of knots. A B-spline of degree zero can

be created by setting Bj(x; 0) = 1 when (j − 1)dx ≤ x − xmin < jdx and 0 otherwise where

dx = (xmax − xmin) /n′ and n′ is equal to the number of intervals between knots. Once the

B-spline bases of degree 0 is created then a recursive formula given by deBorg [2] can be used

to create bases of higher degree. The recursive formula for a basis that has equally spaced

knots is:

Bj(x; q) =
q + p− j + 1

q
Bj−1(x; q − 1) +

j − p

q
Bj(x; q − 1) (2.4)

where p = x− xmin and B0(x; q) = 0 for all values of x and q.

For example, suppose that we have observations at x = 1, 2, ...5. The number of columns of

the B-spline matrix is n′ + q where q is equal to the degree of the B-spline matrix, n′ is equal

to 4 and dx is equal to 1. With four intervals, the number of columns in the B-spline matrix

of degree zero is four. When j = 1 we have that B1(x, 0) = 1 when 0 ≤ x − 1 < 1 and zero

otherwise. Therefore we have that B1(1, 0) = 1 and B1(x, 0) = 0 for x = 2, 3, 4, 5. In a similar
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manner the remaining columns of the B-spline matrix are calculated:

B(x; 0) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1


Next, we use the recursive formula (2.4) to obtain the B-spline bases of higher degrees. For

q = 1 and j = 1, formula (2.4) gives

B1(x; 1) = xB0(x; 0) + (2− x)B1(x; 0).

Recall that B0(x; 0) is equal to zero which gives us

B1(x; 1) = (2− x)B1(x; 0).

Then

B1(1, 1) = 1B1(x; 0) = 1

and because B1(x, 0) = 0 for x = 2, 3, 4, 5 we have that B1(x, 1) = 0 for x = 2, 3, 4, 5. The

other columns can be calculated in a similar manner to obtain:

B(x; 1) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


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For q = 2, formula (2.4) is

Bj(x; 2) =
3 + p− j

2
Bj−1(x; 1) +

j − p

q
Bj(x; 1).

As an example, for B2(2, 2), p = 1 and j = 2, and is calculated as follows:

B2(2, 2) = B1(2; 1) +
1
2
B1(2; 1) = .5,

and

B(x; 2) =



.5 .5 0 0 0 0

0 .5 .5 0 0 0

0 0 .5 .5 0 0

0 0 0 .5 .5 0

0 0 0 0 .5 .5


.

Finally,

B(x; 3) =



.167 .667 .167 0 0 0 0

0 .167 .667 .167 0 0 0

0 0 .167 .667 .167 0 0

0 0 0 .167 .667 .167 0

0 0 0 0 .167 .667 .167


.

A B-spline of degree 3 with 5 knots will result in a basis matrix with 7 columns (the number

of intervals plus the degree) because the B-spline polynomials overlap with neighbor polyno-

mials. An illustration of the B-spline basis of degree three is shown in figure 2.3. Figure 2.3a

represents B1(x, 3) for 1 ≤ x ≤ 5. Notice that the value for y is .167 (B1(x, 3)) at x=1 and is

equal to zero when x=2. Figure 2.3b represents B2(x, 3) and Figure 2.3c represents B3(x, 3)

for 1 ≤ x ≤ 5. Finally, Figure 2.3d shows all seven B-splines calculated using formula (2.4)

for 1 ≤ x ≤ 5.
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Figure 2.3: B-spine basis of degree 3 with knots at 1,2,3,4,5. A B-spline of degree 3 with 5
knots will have 7 B-splines. a) shows the first B-spline b) shows the second, c) the third, and
d) shows all 7 B-splines.
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2.4.2 Regression with a B-spine basis

Eilers and Marx [8] proposed using B-splines with a difference penalty instead of the integrated

second derivative as a smoothing criteria. Eilers and Marx [8] termed the combination of B-

splines with a difference roughness penalty “P-splines”. They proposed using the following

objective function on which to base a smooth curve:

S =
n∑

i=1

yi −
m∑

j=1

ajBj(xi)

2

+ λ

m∑
j=κ+1

(
∆kaj

)2
. (2.5)

where Bj(xi) is a B-spline basis and the aj ’s are the m coefficients. The ∆kaj ’s are the

kth order differences of the coefficient aj . If k = 1, then ∆aj = aj − aj−1 and for k = 2,

∆2 = ∆∆aj = aj − 2aj−1 + aj−2 and so forth for larger values of k. Typical values of k are 2

or 3 (Eilers and Marx [8]).

Once the B-spline basis is established then maximum likelihood techniques are used to calcu-

late the coefficients of the smoothed curve. The fitted curve is

ŷ = Bâ (2.6)

where the elements of B are bij = Bj (xi, q) and â are the estimated coefficients. For P-spline

regression (B-splines with a difference penalty), the following equation is minimized:

S = ‖y −Ba‖2 + λDT
k Dka (2.7)

where Dk is the matrix representation of the difference operator ∆k. Taking the first derivative

with respect to a = (a1, a2, . . . , am)T we have

∂S

∂a
= −2BTy + 2BTBa + 2λDT

k Dka.
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Setting the above equation equal to zero and solving for a:

â =
(
BTB + λDT

k Dk

)−1
BTy. (2.8)

When λ is equal to zero, equation (2.8) reduces to linear regression least squares estimate

with design matrix B. When λ is greater than zero, equation (2.8) has the same form as

the ridge regression estimate of the coefficients. Ridge regression was developed by Hoerl

and Kennard [16] as an alternative to eliminating regressors when explanatory variables are

highly correlated (Ryan, [31]). In least squares regression, the conventional estimator for the

coefficients, β, is

β̂ =
(
XTX

)−1
XTy. (2.9)

Then it can be shown (see Myers and Milton, [23]) that the estimator (2.9) is both unbiased

and has minimum variance. However, when there are many correlated predictors, the variance

of β̂ will be large (Marquardt and Snee, [22]). Hoerl and Kennard [16] proposed an estimate

for β that focused on reducing the mean squared error as the relevant criterion rather than

restricting the estimator to be unbiased. The resulting ordinary ridge regression estimator is

β̂ =
(
XTX + kI

)−1
XTy (2.10)

for k ≥ 0. Values of k, the ridge parameter, between zero and one are explored to find the

value that most reduces the mean square error (Marquardt and Snee, [22]).

2.4.3 Degrees of Freedom of a smoother

At first glance it appears that the fit for a smoother is over-parameterized because there are

so many parameters. For spline regression with a B-spline basis there will be m estimated

parameters, the number of columns of the B-spline matrix. However, a large value of λ has

the effect of shrinking the coefficients toward zero (Harrell, [14]). Hastie and Tibshrirani
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[15] define what is called the equivalent degrees of freedom which “gives an indication of the

effective number of parameters used in estimation of a fitted curve.” In linear regression the

degrees of freedom is equal to the number of parameters being estimated (Ruppert et al.,

[29]). The hat or projection matrix in linear regression is defined as

H = X
(
XTX

)−1
XT

so that the vector of fitted values is ŷ = Hy and X is the design matrix. In least squares

regression, the trace of the hat matrix is equivalent to the number of parameters being esti-

mated. Hastie and Tibshirani [15] define the degrees of freedom of a smoother to be

df = tr(Sλ) (2.11)

where Sλ is the smoother matrix for a given value of λ. For P-splines the smoother matrix is

Sλ = B
(
BTB + λDT

k Dk

)−1
BT (2.12)

which is akin to X
(
XTX

)−1 XT in ordinary least squares regression, and the equivalent

degrees of freedom of the fit is equal to

tr(Sλ) = tr
[
B
(
BTB + λDT

k Dk

)−1
BT
]
. (2.13)

2.4.4 Smoothing Parameter

The choice of the smoothing parameter determines the amount of smoothing of the fitted curve.

Of course, one can choose the amount of smoothing subjectively; however, a less subjective

approach is usually desired. A common technique to determine the smoothing parameter

is cross validation, a technique used frequently for model selection. The idea behind cross

validation is to examine how well the model performs in predicting observations that are
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not used in creating the model. Leave-one-out cross validation involves creating n models,

i = 1, . . . , n, where for each model the ith observation is left out. Each model is then used to

predict the observation which was left out in the model formulation. Let f̂−i(xi;λ) be equal

to the fitted curve at observation xi for smoothing parameter λ. Then the cross validation

statistic is calculated as

CV (λ) =
n∑

i=1

(
yi − f̂−i (xi;λ)

)2
. (2.14)

The value of λ for which equation (2.14) is smallest,λ̂, is considered the optimal value of λ for

the model.

2.4.5 Residual variance

Estimation of the residual variance, σ2
ε = Var =

[
y − f̂

(
x; λ̂

)]
, can be obtained by calcu-

lating the variance of the sum of squares of the residuals around the fitted curve (Green and

Silverman, [13]). For parametric regression, the residual sums of squares is divided by the

degrees of freedom of the errors (Green and Silverman, [13]). For smoothing splines the resid-

ual sum of the errors is divided by the equivalent degrees of freedom as defined in a previous

section

dfres = tr
[
In −B

(
BTB + λDT

k Dk

)−1
BT
]

= n− tr
[
B
(
BTB + λDT

k Dk

)−1
BT
]
.

As the value of λ increases, dfres will increase giving a smoother fit.

2.5 Penalized Regression splines

The difference between regression splines and smoothing splines is that for regression splines

the number and location of knots must be selected while for smoothing splines a large number
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of knots are retained and smoothing is controlled by a smoothing parameter. An advantage

of regression splines is that there are far fewer parameters to estimate once the knot locations

have been established. However, selecting the number and location of knots can be quite

computer intensive (Ruppert, [30]). Penalized regression splines combine regression splines

and smoothing splines. Penalized regression spline methodology invokes a smoothing param-

eter which has the effect of shrinking the coefficients toward zero; however, unlike smoothing

splines not all of the knots are retained. Once the number of knots, K, is determined then

the knots are placed at equal quantiles throughout the range of x (Ruppert et al., [29]). Via

simulation studies, Ruppert [30] concluded that the number of knots is not a crucial decision

as long as a sufficient number of knots is chosen. Ruppert [30] showed that once enough knots

were used to model the major features of the data then additional knots did not improve

substantially the fit of the model.

Consider again the truncated power basis of degree 3:

f(x) =
3∑

j=0

βjx
j +

K∑
k=1

β1k(x− κk)3+ (2.15)

where K is equal to the number of knots and κi, i = 1, . . . ,K, are the knot locations. In

fitting the above model via least squares we would minimize the sum of squares of the residuals.

However, equation (2.15) will be overparameterized with even a moderate number of knots.

Similar to smoothing splines, a roughness penalty is added to the usual residual sum of squares.

Thus, we find the curve that minimizes

S(β) =‖ y −Xβ ‖2 +λβT Dβ (2.16)

for some λ > 0 where D is a (K+p+1) diagonal matrix with zeros in the first p+1 diagonal

positions and 1’s in the remaining diagonal positions representing the knots (Ruppert et al.,

[29]). The effect of the penalty is that the coefficients shrink toward zero according to the

value of λ, the smoothing parameter (Ruppert et al., [29]). The quantity in equation (2.16)
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is minimized by finding the first derivative with respect to β, setting the it equal to zero and

solving for β as follows:

∂S (β)
∂β

= −2yTX + 2XTXβ + 2λDβ.

Setting ∂S(β)
∂β

∣∣∣∣
β=β̂

= 0 leads to

−2yTX + 2XTXβ + 2λDβ

∣∣∣∣
β=β̂

= 0

⇒ β̂ = (XTX + λD)−1XTy (2.17)

and the fitted values,

ŷ = Xβ̂ = X(XTX + λD)−1XTy.

The value for the smoothing parameter, λ, can be selected cross validation.

2.6 Penalized splines as mixed models

Although penalized spline regression does not eliminate the need to select the number and

location of knots, it makes the decision less critical as long as there are enough knots to

adequately cover the range of the data (Ruppert et al., [29]).

Consider the truncated power basis of degree 3:

y = β0 + β1x + β2x
2 + β3x

3 +
K∑

k=1

βk(x− κk)3+ + ε (2.18)

where κk, k = 1, . . . ,K, are knot locations. We can fit the above model using ordinary least

squares regression. However, too many knots results in modeling too much of the random

fluctuation of the data. The solution to reducing the number of knots is to use penalized
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spline regression after choosing a smoothing parameter via cross validation. Wand [39] argued

that equation (2.18) can be expressed as a mixed effects model

y = β0 + β1x + β2x
2 + β3x

3 +
K∑

k=1

uk(x− κk)3+ + ε (2.19)

where the uk, k = 1, . . . ,K, are independent N
(
0, σ2

u

)
, εi, i = 1, . . . , n are independent N(0,σ2

ε )

and the {uk} and {εi} are mutually independent. Hence the random coefficients, uk, are

assumed to have constant variance, σ2
u, and a normal distribution assumption placed on the

coefficients. Therefore, the variables u1, u2, ..., uK are constrained to be small, thereby leading

to a smooth fit. We can rewrite equation (2.19) in matrix form as

y = Xβ + Zu + ε (2.20)

where  u

ε

 ∼ N


 0

0

 ,

 σ2
uIK 0

0 σ2
ε In


 ,

β =
[

β0 β1 β2 β3

]T

,

u =
[

u1 . . . uK

]T

,

X =


1 x1 x2

1 x3
1

...
...

...
...

1 xn x2
n x3

n

 ,

and

Z =


(x1 − κ1)3+ . . . (x1 − κK)3+

...
. . .

...

(xn − κ1)3+ . . . (xn − κK)3+

 .

The fitting for model (2.20) involves the estimation of β, σ2
ε and σ2

u, and the prediction of
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u. Estimation of β, σ2
ε , and σ2

u is achieved using maximum likelihood methods while the

prediction of u involves best linear unbiased prediction (BLUP).

The log-likelihood of (β,σ2
ε ,σ

2
u) is

l (β,V) = −1
2
{n log (2π) + log |V|+ (y −Xβ)T V−1 (y −Xβ)} (2.21)

where V ≡ Cov(y) = σ2
uZZT + σ2

ε I. Differentiating with respect to β we get

∂l (β,V)
∂β

= −2XTV−1y + 2XTV−1Xβ. (2.22)

Setting (2.22) equal to zero and solving for β gives us

β̂ =
(
XTV−1X

)−1 (
XTV−1y

)
(2.23)

and is the same form as the generalized least squares estimator. The profile log-likelihood for

V can be obtained by substituting (2.23) into (2.21) for β:

lP (V) = −1
2
{n log (2π) + log |V|+

(
y −Xβ̂

)T
V−1

(
y −Xβ̂

)
}

and estimates of V can be found by maximizing over σ2
ε and σ2

u (Ruppert et al., [29]). In

most cases iterative methods are used to solve for the parameter estimates that maximize

lP (V). The Newton-Raphson algorithm is used to maximize the likelihood function in S-plus

(Demidenko, [7]).

The BLUP for the random coefficients, u, can be shown (see Robinson [28]) to be

ũ = σ2
εZ

TV−1
(
y −Xβ̃

)
.
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It can be shown (see Robinson [28]) that the BLUP for (β,u) can be expressed

 β̃

ũ

 = (CTC + λD)−1CTy

where C = [XZ], λ = σ2
ε

σ2
u

and D = diag(0, 0, 0, 0, 1, . . . , 1).

Hence λ serves as the smoothing parameter in the mixed model framework. The variance

components, σ2
ε and σ2

u, are estimated iteratively by using an algorithm such as the Newton-

Raphson algorithm.

The number and placement of knots must be decided for the mixed model approach to smooth-

ing. Wand [39] gives the rule of thumb for the number of knots, K, as

K = min
(

1
4

x number of unique xi, 35
)

.

Knots are then located at the Kk, k = 1, . . . ,K, sample quantile of the unique xi where

Kk =
(

k + 1
K + 2

)
.

One benefit to using the mixed effects representation of the smoothing spline is that maximum

likelihood methods can be used to determine the smoothing parameter. Thus, there is no need

for a smoothing parameter selection criterion such as cross validation. Furthermore, the mixed

model methodology can be used to handle situations such as autocorrelation and measurement

error [39].



Chapter 3

Trend Detection

This chapter discusses the importance of trend detection in ecology, examines some of the

common methods used for detecting trend, and introduces some new methods.

Trend assessment is an important goal of many ecologists. Interest may lie in assessing the

effect of a management decision on some environmental variable or in deciding whether an

endangered species has recovered to the point where that species can be taken off the en-

dangered species list. Some goals of an environmental monitoring program include: assessing

long-term environmental change, observing responses to changes in management decisions,

and recording the rate of change of a population (Goldsmith, [12]). My research focuses on

trend estimation and testing using spline regression methods. In particular, I will be develop-

ing methods of trend detection that will be useful for studies similar to the North American

Breeding Bird Survey (BBS).

Before discussing methods of estimating and detecting trend we must first define what is meant

by “trend”. Esterby [10] defines trend as “general direction and tendency” and leaves it to

the researcher to provide a more specific definition of trend. Link and Sauer [19] state that

the Breeding Bird Survey analysis has been complicated by a failure to define exactly what is

25
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being estimated. They give a definition of trend as the “average rate of change over a specific

time interval.” Definitions of trend generally fall into two categories: to describe variation

from a constant population over time and to describe the numeric change in population over

a specific time period (Link and Sauer, [20]). Link and Sauer [20] suggest reserving the word

“trajectory” for describing a pattern of population fluctuation and using the word “trend” to

describe an average rate of change over a specific time interval. Trend will be defined for each

of the tests that are introduced in this chapter.

One of the goals of my research is to compare different smoothing methods for trend detection.

Although different tests for trend have been developed, very little work has been done to

compare different trend detection methods that use smoothing techniques to fit the data. The

methods currently used to test for trend focus on comparing confidence intervals from the

beginning of the time period and end of the time period as a means to test for trend. Other

methods exist that could be used to detect trend and may be an improvement over current

methods. In addition to this, new methods will be introduced that may perform better than

current methods of trend detection in certain situations.

3.0.1 Goals of trend analysis

Some possible goals when analyzing a time series would be the following:

1. Detection of trend

2. Estimation of the magnitude of trend

3. Identification of time periods when change is the greatest

4. Identification of time periods in which there was substantial trend and times in which

there was negligible trend.

5. Prediction or forecasting of trend
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Because my research focusses on methods that can be applied to the BBS, a trend detection

method should also be able to accommodate serial correlation as well as small sample sizes.

My research focuses on finding optimal or near-optimal methods for trend detection when the

observations across time are not necessarily linear. To accomplish this I compared different

methods of trend detection via simulation. A successful method of trend detection should ad-

here to the correct Type I error rates and have high power to detect trend. In addition to this,

the method for trend detection should have power similar to the power of an appropriate least

squares regression approach when the assumptions for least squares regression are satisfied.

Because both linear regression and nonparametric correlation coefficients for trend detection

are commonly used, these methods will be used as a standard against which to judge other

methods. A goal of this research is to find trend estimation methods based on smoothing

splines and penalized spline regression that perform comparably to linear regression estima-

tion methods when linear regression is appropriate and perform better than linear regression

when linear regression assumptions are not satisfied. In addition to this, the methods should

also be easily extended to more complicated situations such as autocorrelated time series.

3.1 Trend detection methods

The remainder of this chapter discusses the trend detection techniques that will be compared.

Some of the methods have been used in the past for trend detection, while others are original

applications.

3.1.1 Linear Regression

As previously mentioned, linear regression is the simplest and, perhaps, the most popular

method to estimate trend when trend is defined as the growth rate of a population. Hence, a



3.1. TREND DETECTION METHODS 28

short description of least squares linear regression is given. Let yi denote the response variable

observed at time, ti. A conventional linear regression model for trend analysis is

yi = β0 + β1ti + εi (3.1)

where εi ∼ N(0, σ2
ε ) are independent for i = 1, . . . , n. The parameter β1 represents the rate

of change of yi with respect to time. The least squares estimater is

β̂ =
(
XTX

)−1
XTy

where

y = [y1, . . . , yn]T ,

β̂ =

 β̂0

β̂1

 ,

and

X =



1 t1

1 t2
...

...

1 tn


.

A t-test of the null hypothesis H0 : β1 = 0 versus the alternative hypothesis Ha : β1 6= 0 can

be obtained from the ratio
β̂1

SE
(
β̂1

) .

The standard error of β̂1 is given by

SE
(
β̂1

)
=

√√√√√∑(
yi − β̂0 − β̂1ti

)2

(n− 2)
∑

(ti − t̄)2
.
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It can be shown that

t =
β̂1

SE(β̂1)
(3.2)

has a t-distribution with n-2 degrees of freedom when β1 = 0.

3.1.2 Nonparametric correlation coefficient

Kendall’s τ correlation coefficient is a nonparametric correlation coefficient that is often used

when distributional assumptions of the residuals are violated or when there is a nonlinear

association between two variables. For this test, trend is defined as a tendency for counts to

increase or decrease over time (Thomas, [37]). The null hypothesis, H0 : τ = 0, versus the

alternative hypothesis, H1 : τ 6= 0 can be tested by calculating the test statistic

z =
τ√

2 (2n + 5) /9n (n− 1)
.

When n is large, z is approximately normal in distribution and, for small n, statistical tables

are used to interpolate a p-value [34].

A small example using BBS data illustrates the calculation of τ . The data consist of index

counts (y) collected annually (t) for the bird species Veery (Catharus fuscescens) over a ten-

year period. Figure 3.1 is a scatterplot of count versus year. Table 3.1 gives the data and

demonstrates the calculation of Kendall’s τ .

To calculate Kendall’s tau coefficient, the paired data {(t1, y1) , . . . , (tn, yn)} are ordered with

respect to one of the variables. For a time series, the data are already ordered by the variable

time. Let Pi be the number of observations which exceed the value for, yi, located to the right

of yi in Table 3.1. Let Qi equal the number of observations to the right of yi in Table 3.1
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Figure 3.1: Veery counts for 10 years for a route in Maryland.
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Year (t) 1 2 3 4 5 6 7 8 9 10
Count (y) 29 49 22 12 23 15 7 4 9 13

P 1 0 1 3 0 0 2 2 1
Q 8 8 6 3 5 4 1 0 0

P-Q -7 -8 -5 0 -5 -4 1 2 1

Table 3.1: Calculation of Kendall’s tau coefficient for the Veery data.

which are less than yi. S is then defined as

S =
n−1∑
i=1

(Pi −Qi) = −25.

Kendall’s τ is calculated as

τ =
2S

n (n− 1)
=
−2× 25
10× 9

= −.556

The test statistic, z is

z =
τ√

2 (2n + 5) /9n (n− 1)
= −2.24. (3.3)

The p-value is .028 and can be obtained by using statistical tables if the sample size is small

as in this case.

3.1.3 LOESS

A method that is currently used to analyze breeding bird survey data is a moving least squares

regression smoother (LOESS) developed by Cleveland [4]. The LOESS method finds a fitted

value for an observation yi at ti by using the values of t that are within an appropriate range

of ti (Ryan, [31]). A least squares regression line is fit within this range and the result is a

smooth curve.

James et al. [17] developed a method of testing for trend that is currently used to analyze

trend for BBS data. LOESS smoothers are fit to each route for a given species and the trend,



3.1. TREND DETECTION METHODS 32

∆, is estimated for each route as the difference between the average of the first three fitted

observations and the average of the last three fitted observations (James et al, [17]). Given

some region of interest with M routes, a test for trend is obtained by estimating the regional

trend, computing

z =
∆̄

SE
(
∆̄
) ,

whose SE
(
∆̄
)

is an estimate of the standard deviation of the route estimates of ∆ (James et al.,

[17]). James et al. [17] states that z can be approximated by a standard normal distribution.

For estimates of trend at a single route, resampling is done using bootstrap techniques to

calculate a 95% confidence interval, and the null hypothesis of no trend (H0 : ∆ = 0) versus

the two-sided alternative (H1 : ∆ 6= 0) is rejected if the confidence interval does not include

zero. The bootstrap procedure is conducted as follows:

1. Estimate ∆ from the observed data.

2. Resample the observed paired data with replacement and estimate ∆ using these data.

3. Repeat step 2 many times.

4. Calculate the bootstrap standard deviation as the standard deviation of the estimates

obtained in step 3.

Assuming the bootstrap distribution for ∆̂ is approximately normal, a 95% confidence interval

is obtained by computing

∆̂± 1.96 (Bootstrap standard deviation) . (3.4)
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3.1.4 Likelihood Ratio Test

Recall from Chapter 2 the linear mixed effects model used for smoothing

y = Xβ + Zu + ε

where  u

ε

 ∼ N


 0

0

 ,

 σ2
uIn 0

0 σ2
ε IK




and

Z =


(t1 − κ1)+ . . . (t1 − κK)+

...
. . .

...

(tn − κ1)+ . . . (tn − κK)+

 .

Recall that ε ∼ N
(
0, σ2I

)
and u ∼ N

(
0, σ2

uI
)
. The above model can be written

y = Xβ + ε∗

where ε∗ = Zu + ε and cov (ε∗) = V = ZTZσu + σεI. Because y ∼ N (Xβ,V), the log

likelihood is as follows:

l (β,V) = −1
2
{n log (2π) + log |V|+ (y −Xβ)T V−1 (y −Xβ)}. (3.5)

Consider the model

f(t) = β0 + β1t +
K∑

k=1

uk (t− κk)+ . (3.6)

Ruppert et al. [29] suggest a test for an association between two variables using the above
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model. The null and alternative hypotheses are

H0 : β1 = σ2
u = 0

versus

H1 : β1 6= 0 or σ2
u > 0.

The likelihood ratio test statistic is

−2 log LR(y) = −2
{
l
(
β̂0,0, 0, 0, σ̂2

ε,0;y
)
− l
(
β̂0, β̂1, σ̂

2
u, σ̂2

ε

)
;y
}

(3.7)

where
(
β̂0,0, σ̂

2
ε,0

)
minimizes−2l

(
β̂0, 0, 0, σ̂2

ε,0;y
)
, and

(
β̂0, β̂1, σ̂

2
u, σ̂2

ε

)
minimizes−2l

(
β̂0, β̂1, σ̂

2
u, σ̂2

ε ;y
)
.

Under the null hypothesis

σ̂2
ε,0 =

∑n
i=1 (yi − ȳ)2

n

and

β̂0 = ȳ.

If the test statistic is in the upper tail of the null distribution then we can conclude that

E(y) is not constant with respect to t. Ruppert et al. [29] report that standard asymptotic

assumptions on which such likelihood tests are commonly based are not met and suggest

using Monte Carlo simulations to approximate the null distribution of the likelihood ratio

test statistic. The reason standard asymptotic assumptions fail is because for mixed effects

models, y cannot be partitioned into independent subvectors (Ruppert et al, [29]). In the

Monte Carlo simulations, a large number of data sets are generated with the parameters

equal to their estimates under the null hypothesis. For each simulation, the likelihood ratio

statistic, formula (5.1), is computed to create an approximation of the null distribution. The

observed trend is judged to be significant if the likelihood ratio test statistic is in the upper

tail of the approximated null distribution. This test can be used to detect departures from a

constant mean. Therefore, this test may yield significant results even if the fitted values are
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similar between the beginning of the time period and the end of the time period and trend

can be defined as variation from a constant mean.

3.1.5 Examining first derivatives

For simple linear regression an estimate for trend is the slope coefficient. When the rate of

change is constant then the slope suffices as a measure of trend; however, more often the rate

of change is not constant. For the case where the rate of change is not constant, examination

of first derivatives of a fitted curve can yield useful information about trend. For instance, if

trend is not constant, then it may be useful to identify periods in which the rate of change

has increased or decreased.

Recall that trend can generally be defined two ways: to describe variation from a constant

population over time and to describe the numeric change in population over a specific time

period (Link and Sauer, [20]). The benefit of looking at first derivatives is that one can address

both definitions. A test that quantifies the change in population size can be developed by

looking at some numeric summary of the derivatives. In addition to this, if there are times in

which the first derivative is significantly different from zero then one can conclude that there

is variation from a constant population at those times.

3.1.6 Test for trend using first derivatives

Examining first derivatives can be used as a method to quantify the magnitude of the change

in growth of a population as well as test the significance of this change. I propose a test

statistic that uses the sum of the first derivatives over each time interval as an estimator of

trend.
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Consider the least squares estimate of the curve

f̂(t) = Xβ.

Then an estimate of the first derivative of f(t) with repsect to t is

f̂ ′(t) = X′β̂ =


0 1
...

...

0 1

 β̂.

Let

jT =
[

1 1 . . . 1

]
.

Then the sum of the first derivatives with respect to t is

n∑
i=1

f̂ ′ (ti) = jTX′β̂ = nβ̂. (3.8)

The variance is calculated as

var
(
jTX′β̂

)
= var

(
jTX′ (XTX

)−1
XTy

)
(3.9)

= σ2
ε j

TX′ (XTX
)−1 (

jTX′)T (3.10)

Let (
XTX

)−1
=

 c00 c01

c10 c11

 .

Then

var
(
jTX′β

)
= σ2

ε n
2c11

and

t =
nβ̂1√

n2σ̂2
ε c11

=
β̂1

σ̂ε
√

c11
=

β̂1

SE
(
β̂1

) .
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This t is the same as the test statistic when testing H0 : β1 = 0 versus H1 : β1 6= 0.

3.1.7 First derivatives for penalized spline regression using a linear mixed

model

Consider again the fitted mixed model representation of the penalized spline regression of

degree 3:

f̂ (t) = β̂0 + β̂1t + β̂2t
2 + β̂3t

3 +
K∑

k=1

ûk (t− κk)
3
+ . (3.11)

The first derivative with respect to t is:

f̂ ′ (t) = β̂1 + 2β̂2t + 3β̂3t
2 + 3

K∑
k=1

ûk (t− κk)
2
+ . (3.12)

Let

X′ =


0 1 2t1 3t21
...

...
...

...

0 1 2tn 3t2n


and

Z′


3(t1 − κ1)2+ . . . 3(t1 − κK)2+

...
. . .

...

3(tn − κ1)2+ . . . 3(tn − κK)2+

 .

Then the fitted first derivatives are calculated as

f̂ ′ = X′β̂ + Z′û.

Let C′ = [X′ Z′], then

f̂ ′ = C′

 β̂

û

 = C′
(
CTC +

σ̂2
ε

σ2
u

D
)−1

y.



3.1. TREND DETECTION METHODS 38

where C = [X Z] and D is a (K+4) x (K+4) matrix, diag (0, 0, 0, 0, 1, . . . , 1). Ruppert et al.

[29] give the variance of estimated coefficients as

ĉov

 β̂

û

 = σ̂2
ε

(
CTC +

σ̂2
ε

σ̂2
u

D
)−1

The sum of the first derivatives with respect to t can be expressed as a linear combination of

y:
n∑

i=1

f̂ ′ (ti) = jTC′

 β̂

û

 = jTC′
(
CTC +

σ̂2
ε

σ̂2
u

D
)−1

CTy. (3.13)

If normally distributed errors are assumed then the test statistic

z =
jTC′

(
CTC + σ̂2

ε
σ̂2

u
D
)−1

C ′T y

σ̂ε

√
jTC′

(
CTC + σ̂2

ε
σ̂2

u
D
)−1

(jTC′)T

(3.14)

is asymptotically normal in distribution with mean of 0 and variance of 1. For small sample

sizes, the distribution of z can be estimated by a t-distribution with degrees of freedom equal

to the residual degrees of freedom.

3.1.8 First derivatives for B-splines

De boor [2] gives the following formula for the first derivative of a B-spline curve, b (t), for a

given value of t :

b′ (t) =
∑

j

ajB
′
j+1(t; q) =

∑
j

4aj+1Bj(t; q − 1) (3.15)

where the aj ’s are the B-spline coefficients, q is the degree of the B-spline, 4aj+1 = aj+1− aj

and Bj(t; q) is the value at t of the jth B-spline of degree q.

Equation (3.15) gives us a simple way to calculate the first derivatives using first order differ-
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ences of the estimated coefficients. Recall that B is defined such that the elements of B are

bij = Bj(ti, q). Let B−1 be defined as Bj(t, q − 1) which is the B-spline matrix of degree q-1.

Then using formula (3.15), the sum of the first derivatives with respect to t of a fitted curve

of degree q is calculated as
n∑

i=1

f̂ ′ (ti) = jB−14â (3.16)

where 4â is the vector of âj differences. Define

A1 =



−1 1 0 . . . 0

0 −1 1 0 . . .

...
. . . . . . . . .

...

0 . . . . . . −1 1


.

Then 4â = A1â. Recall from Chapter 2 that

â =
(
BBT + λDT

k Dk

)−1
BTy

where Dk is the matrix representation of the difference operator ∆k (Eilers and Marx, [8]).

If it is assumed that the errors are independent and normally distributed with mean 0 and

variance σ2
ε , then y ∼ N

(
Ba, σ2

ε I
)
. The sum of the first derivatives with respect to t can be

expressed as

S (t) = jTB−1A1â = jTB−1A1

(
BBT + λDT

k Dk

)−1
BTy (3.17)

Because (3.17) is a linear function of y, we have that

jTB−1A1a ∼ N
(
jT B−1A1, var

(
jTB−1A1a

))
. The estimated variance of S(t) is calculated as

v̂ar
(
jTB−1A1â

)
= jTB−1A1v̂ar(â)

(
jTB−1A1

)T
(3.18)

= σ̂2
ε j

TB−1A1

(
BTB + λDT

k Dk

)−1 (
jTB−1A1

)T
.

A test statistic for the null hypothesis that H0 : S(t) = 0 versus H1 : S(t) 6= 0 is calculated
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as

z =
jTB−1A1â

σ̂ε

√
jTB−1A1

(
BTB + λDT

k Dk

)−1 (jTB−1A1)T
. (3.19)

Because the sum of the derivatives is a linear combination of y which is asymptotically normal,

z is asymptotically N(0,1) under the null hypothesis. For small sample sizes, the distribution

of z can be estimated by a t-distribution with degrees of freedom equal to the residual degrees

of freedom.

Randomization tests

The assumptions that have been made with respect to the distribution of the test statistics

obtained from either smoothing splines or spline regression fits have relied on the notion

that the smoother matrix is a linear function of the data vector y. However, the smoother

matrix depends on y through a smoothing parameter that must be estimated (Ruppert et

al., [29]). Ruppert et al. [29] state that “it is common practice to pretend the data-based

smoothing parameter is fixed, and, as an approximation, to treat the smoother as linear.”

For this reason, a randomization test procedure is used for the test involving the sum of

the first derivatives. A randomization test is a nonparametric method used to compute the

significance of a test statistic when distributional assumptions about the test statistic are

not known (Sokal and Rohlf, [34]). Randomization methods allow a researcher to provide

an empirical sampling distribution of a statistic, and then determine an observed significance

assuming the null hypothesis is true (Manly, [21]). This allows one to test whether the observed

trend is consistent with the null hypothesis of no trend.

The randomization test procedure is conducted with the following steps:

1. Calculate the observed test statistic for the paired observations {(t1, y1) , . . . , (tn, yn)}.

2. Randomly permute the order of yi, i = 1, . . . , n while retaining the original order of
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t1, . . . , tn to obtain a new set of observation pairs.

3. Refit the model including the estimation of the smoothing parameter, λ. Calculate the

test statistic for the paired observations obtained in step 2.

4. Repeat steps 2 and 3 a large number of times and construct an empirical sampling

distribution for the test statistic under the null hypothesis.

5. If the observed value of the test statistic (from step 1) is above the .975 or below the

.025 percentile, then it is concluded that there evidence of an association between t and

y. The size of this test is .05.

3.2 Tests for trend with autocorrelated errors

Independence of errors is an important assumption for all of the methods that have been

considered. It is often the case when analyzing time series data that errors close in time tend

to be more similar than errors further away in time.

3.2.1 Generalized linear regression with autoregressive errors

Reinsel et al. [27] developed a generalized linear regression method that assumes the error

structure follows an autoregressive process. We will consider only the AR(1) process here.

For an AR(1) process, the model for the residuals, εi, i = 1, . . . , n, is

εi = φεi−1 + ξi (3.20)
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where φ ∈ [0, 1) is an autocorrelation parameter, and ξi are iid N(0, σ2
ε ). Maximum likelihood

estimates of the regression coefficients are

β̂ =

 β̂0

β̂1

 =
(
XT R̂−1X

)
XT R̂−1y (3.21)

where

R̂ =
σ̂2

ε

1− φ̂2



1 φ̂ . . . φ̂n−2 φ̂n−1

φ̂ 1 φ̂ . . . φ̂n−2

...
...

. . . . . .
...

φ̂n−1 φ̂n−2 . . . φ̂ 1


. (3.22)

The standard error of β̂1 is estimated by the square root of the (2,2) entry of the estimated

covariance matrix:

ĉov


 β̂0

β̂1


 =

(
XT R̂−1X

)−1
. (3.23)

A 95% confidence interval for β1 is

β̂1 ± z.975

√
V̂ar

(
β̂1

)
.

If 0 is not contained in the interval then the null hypothesis of H0 : β1 = 0 is rejected in favor

of the alternative hypothesis H1 : β1 6= 0.

3.2.2 Sum of the first derivatives with autocorrelated errors

An advantage of using the linear mixed effects model for smoothing is the ease with which

serial correlation can be incorporated into the error structure. Recall the linear mixed effects

model discussed in Chapter 2:

y = Xβ + Zu + ε (3.24)
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where  u

ε

 ∼ N


 0

0

 ,

 σ2
uIK 0

0 σ2
ε In




and

Z =


(t1 − κ1)+ . . . (t1 − κK)+

...
. . .

...

(tn − κ1)+ . . . (tn − κK)+

 .

I propose modifying equation (3.24) to model AR(1) errors if evidence of serial correlation

exists. If an AR(1) model is assumed, the residuals follow the model given by equation (3.20).

The linear mixed effects model with correlated errors is

y = Xβ + Zu + ε (3.25)

where  u

ε

 ∼ N


 0

0

 ,

 σ2
uI 0

0 R




where

R =
σ2

ε

1− φ2



1 φ . . . φn−2 φn−1

φ 1 φ . . . φn−2

...
...

. . . . . .
...

φn−1 φn−2 . . . φ 1


. (3.26)

Variance components, σ2
ε and σ2

u, and the autocorrelation parameter,φ, are estimated using

maximum likelihood methods (Coull et al., [5]). See Chi et al. [3] for details on estimating

the linear mixed effects model with AR(1) errors. The test of the null hypothesis H0 :∑n
i=1 f ′(ti) = 0 versus the alternative hypothesis H1 :

∑n
i=1 f ′(ti) 6= 0 is easily modified to

accommodate serial correlation in the error structure in the linear mixed effects model. The
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fitted first derivatives are calculated as

ŷ′ = X′β̂ + Z′û.

Ruppert et al. [29] give the variance of estimated coefficients as

ĉov

 β̂

û

 =
(
CT R̂−1C +

1
σ̂2

u

D
)−1

The sum of the first derivatives is calculated

n∑
i=1

f̂(xi) = jTC′

(
CT R̂−1C +

1

σ̂2
u

D

)−1

R̂−1y,

and

var

(
n∑

i=1

f̂(xi)

)
= jTC′

(
CT R̂−1C +

1
σ̂2

u

D
)−1 (

jTC′)T
The test statistic for the sum of the first derivatives with AR(1) errors is

z =
jTC′

(
CT R̂−1C + 1

σ̂2
u
D
)−1

C′T R̂−1y√
jC′

(
CT R̂−1C + 1

σ̂2
u
D
)−1 (

jC′)T (3.27)

A randomization test will be used to determine the significance of the test statistic (3.27).

The randomization test procedure is conducted with the following steps:

1. Calculate the observed test statistic.

2. Randomly permute the order of yi, i = 1, . . . , n while retaining the original order of

t1, . . . , tn to obtain a new set of observation pairs.

3. Fit the model and estimate parameters using maximum likelihood methods.

4. Calculate the test statistic.
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5. Repeat steps 2 through 4 a large number of times and construct an empirical sampling

distribution for the test statistic under the null hypothesis.

6. If the observed value of the test statistic (from step 1) is not bracketed by the .975 and

the .025 quantiles, then it is concluded that there is evidence of an association between

t and y. The size of this test is .05.

3.2.3 Likelihood ratio test with correlated errors

The likelihood ratio test for the null hypothesis H0 : β1 = σ2
u = 0 versus the alternative

H1 : β 6= 0 or σ2
u > 0 can also be extended to accommodate serially correlated errors. The

model for the likelihood ratio test is a linear mixed effects model:

y = Xβ + Zu + ε.

The likelihood ratio test statistic for trend detection in the presence of autocorrelated errors

is

−2 log LR(y) = −2
{
l
(
β̂0,0, 0, 0, σ̂2

ε,0, φ̂0,0;y
)
− l
(
β̂0, β̂1, σ̂

2
u, σ̂2

ε , φ̂;y
)}

(3.28)

where
(
β̂0,0, σ̂

2
ε,0, φ̂0,0

)
minimizes −2l

(
β̂0,0, 0, 0, σ̂2

ε,0, φ̂0,0;y
)

and
(
β̂0, β̂1, σ̂

2
u, σ̂2

ε , φ̂
)

minimizes

−2l
(
β̂0, β̂1, σ̂

2
u, σ̂2

ε , φ̂;y
)
.

If we assume y ∼ N (Xβ,V), then the log likelihood is:

l (β,V;y) = −1
2
{n log (2π) + log |V|+ (y −Xβ)T V−1 (y −Xβ)}. (3.29)

where

V = σ2
uZZT + R.

The errors εi, i = 1, . . . , n, are assumed to follow an AR(1) process and R is defined as in
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equation (3.26). Monte Carlo simulations will be used to calculate the observed significance

of the test statistic given in (3.29). The Monte Carlo simulation procedure is conducted using

the following steps:

1. Calculate the observed likelihood ratio test statistic using formula (3.29).

2. Data are then simulated by fixing the parameters equal to their specified values under

the null hypothesis and estimating the model for these data. The parameters β1 and σ2
u

are set to zero and the other parameters are set to the estimated values.

3. The likelihood ratio test statistic is calculated for step 2.

4. Repeat steps 2 and 3 numerous times and construct an empirical sampling distribution

for the test statistic under the null hypothesis.

5. The observed value of the test statistic is significant at the α-level of .05 if it falls in the

upper 95 percentile of the distribution constructed in step 4.

3.3 Example

To illustrate the trend detection methods, an example using Wolverine (Gulo gulo) data

is given. The data were obtained from the website, http://cpbnts1.bio.ic.ac.uk [26]. The

wolverine count data were collected from 1752 to 1908 by the Hudson’s Bay Company. Figure

3.2 shows a scatterplot of these data along with five different regression fits. A least squares

regression fit is clearly not appropriate to describe the association between time,t, and count,y.

The other smoothing techniques appear to fit the data adequately. The linear regression spline

fit via a linear mixed effects model appears to be adequate in describing the overall tendency

of the relationship.
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Figure 3.2: Wolverine counts from 1752 to 1908. Five different regression fits are shown on
individual graphs: b) Least squares regression, c) locally weighted regression (LOESS), d)
cubic spline using a Bspline basis, e) a linear spline using a linear mixed effects model, f) a
cubic spline using a linear mixed effects model
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3.3.1 Least squares regression

The null and alternative hypothesis for trend in least squares regression are

H0 : β1 = 0

versus

H1 : β1 6= 0.

The estimated value for β1 was 6.42 with a standard error of the estimate of .861. The p-

value for this test was <.0001, giving strong evidence in favor of the alternative hypothesis

and indicating positive trend. A 95% confidence interval for β1 is (4.72,8.12).

3.3.2 LOESS

The method of trend detection that is currently in use for BBS data analysis is

H0 : ∆ = 0

H1 : ∆ 6= 0

where ∆̂ is calculated by taking the difference of the first three fitted values and the last three

fitted values of the LOESS fit. The standard error for ∆̂ is calculated by bootstrapping the

data as described in section 3.1.3. For the wolverine data, ∆̂ was 166.5 (SE=123). A 95%

confidence interval for the difference between the last three fitted values and the first three

fitted values is (-37.13,457.67). Because the 95% confidence interval includes zero, we have no

evidence in favor of the alternative hypothesis.
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3.3.3 Kendall’s τ

The test involving the nonparametric correlation coefficient, Kendall’s τ , is

H0 : τ = 0

H1 : τ 6= 0.

For the wolverine example, τ̂ was .310. The p-value was <.0001 which gives us strong evidence

for the alternative hypothesis and indicates positive trend.

3.3.4 Likelihood ratio test

The null and alternative hypotheses for trend with the likelihood ratio test are

H0 : β1 = σ2
u = 0

H1 : β1 6= 0 or σ2
u > 0.

The likelihood ratio test statistic for the above test was 163.3 which gives us strong evidence (p-

value<.0001) for the alternative hypothesis. The significant results reflect that the wolverine

counts are not constant with respect to time but do not necessarily imply an upward or

downward trend over the time period.

3.3.5 Sum of the first derivatives

The test involving the sum of the first derivatives is carried out using a smoothing spline with a

B-spline basis (P-spline) and, also, the linear mixed model for spline regression. One difference

between these two methods is the choice of the number of knots, K, and the placement of
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knots. However, because n is fairly large for this example, a reduced number of knots is used

for both fits. The other difference between the two methods is the estimation of the smoothing

parameter, λ. P-splines use a difference penalty and cross-validation to determine the amount

of smoothing of a fitted curve (Eilers and Marx, [9]). The spline regression fit using the

linear mixed effects model estimates the smoothing parameter as σ̂2
u

σ̂2
ε
, and maximum likelihood

methods are used to estimate the variance components (Ruppert et al., [29]). Because no

closed-form solution is available, an algorithm such as the EM algorithm must be used to

estimate the variance components in the linear mixed effects model. For the wolverine data,

the fit for the smoothing curve and the cubic spline regression curve appear similar. For both

methods, the null hypothesis and alternative hypothesis are

H0 : S(t) = 0 versus H1 : S(t) 6= 0

where S(t) =
∑n

i=1 f ′ (ti) and f ′ (ti) is the first derivative of the fitted curve at ti, i = 1, . . . , n.

For P-splines, Ŝ (t) was -474.96 (SE=649.52). The p-value for this test was .466 which gives

no evidence for H1, that the sum of the first derivatives is not equal to zero. For the spline

regression method using the linear mixed effects model, Ŝ (t) was 7.47 (SE=240.1). Again,

this gives us no evidence in favor of the alternative hypothesis of trend.

3.3.6 Discussion

This example illustrates the differences between the trend detection methods. Both linear

regression and Kendall’s τ were highly significant and had positive trend estimates. Because

the association is nonlinear and not monotone, this example is not appropriate for either

linear regression or Kendall’s τ . Due to the large number of species and routes in surveys

such as the BBS, a trend detection method should be appropriate even when the trend is

nonlinear and not monotone. The smoothing methods introduced in this chapter appear

to provide a reasonable fit to these data. The LOESS method of trend detection and the
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Figure 3.3: Fitted first derivative curve for wolverine data with 95% simultaneous confidence
intervals. Regions for which the variability bands are positive correspond to time intervals
in which the curve is significantly increasing while regions which the variability bands are
negative correspond to time intervals in which the curve is significantly decreasing.

method that calculates the sum of the first derivatives provided similar results for trend

detection. The insignificant results reflect that the starting and ending counts are similar

for the wolverine data. The likelihood ratio test provided strong evidence for an association

between t and y. The significant results for the likelihood ratio test reflect that the wolverine

counts are not constant with respect to time but do not necessarily imply an upward or

downward trend. Figure 3.3 shows the estimated first derivative curve with simultaneous 95%

confidence intervals. Examining the first derivative curve with 95% confidence intervals allows

a researcher to explore whether count, y, is constant over time, t. Time intervals for which

the confidence intervals do not include zero represent periods that the growth rate is different

than zero. This example illustrates the need to not only look at trend throughout the entire
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test 1888-1908 1868-1908 1838-1908
Linear Regression .0009 <.0005 .0155

Kendall’s τ .0019 <.0005 .0116
Sum of first derivatives .0002 .0222 .0055

LOESS <.0005 <.0005 <.0005
LRT <.0001 <.0001 <.0001

Table 3.2: P-values for trend tests over different time periods.

time period but also interval specific trend. Figure 3.4 shows the wolverine data over specific

time intervals. Table 3.2 gives the p-value of the test for trend over specific time periods.

The time periods reflect the most recent counts. The p-values for the different tests of trend

are all no larger than .0222. Excluding the likelihood ratio test for trend which does not

indicate direction, all tests gave evidence of a negative trend over the time periods considered.

The wolverine data show periods of positive trend, negative trend, and no trend. The first

derivative curve is helpful to identify these periods.
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Figure 3.4: Wolverine data for certain time periods.



Chapter 4

Simulation Results

This chapter compares the trend detection methods introduced in Chapter 3. Data were

generated with known trend to compare the Type I error rate and power among the different

methods. A trend detection method should adhere to the designated type I error rate while

having high power when trend is either linear or nonlinear. Ideally, the smoother should

have power close to the power of methods based on least squares regression when the trend

is linear. When the trend is nonlinear, smoothing methods should have larger power than

methods based on linear regression.

Data were simulated for sample sizes ranging from 25 to 200. Data were simulated according to

models with iid normally distributed observations, non-normal errors, and serially correlated

errors.

A total of seven different trend detection methods will be compared. For detailed descrip-

tions of the trend detection methods please refer to Chapter 3. Least squares regression and

Kendall’s tau coefficient are the trend detection methods that do not involve smoothing. These

methods are used as a standard against which to judge other methods. A short description

of the different smoothing methods for trend detection is now given.

54
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Likelihood ratio test for trend: The null and alternative hypothesis for the likelihood ratio

test are:

H0 : β1 = σ2
u = 0

H1 : β1 6= 0 or σ2
u > 0.

The linear mixed effects model for the above test is

f(t) = β0 + β1t +
K∑

k=1

uk (t− κk)+ + εt (4.1)

where uk are iid N(0,σ2
u) and κk, k = 1, . . . ,K, are knot locations. Monte Carlo simulations

are used to test the significance of the likelihood ratio statistic.

LOESS: A moving least squares regression (LOESS) is used to test the hypotheses

H0 : ∆ = 0

H1 : ∆ 6= 0

where ∆ is equal to the difference of the mean of the first three fitted values and the mean of

the last three fitted values. A bootstrap procedure is used to calculate the standard error of

∆̂.

P-splines: A B-spline matrix with a difference penalty is used to fit a smooth curve to the

simulated data. The null and alternative hypothesis for the test using the P-spline fit are

H0 : S(t) = 0

H1 : S(t) 6= 0

where S(t) =
∑n

i=1 f ′(ti) and f ′(ti) is the first derivative of the fitted curve at ti, i = 1, . . . , n.

In Chapter 3 it was argued that for small sample sizes, the test statistic for testing the above
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hypotheses can be approximated by a t-distribution.

Penalized spline regression: The null and alternative hypotheses are:

H0 : S(t) = 0

H1 : S(t) 6= 0

where S(t) =
∑n

i=1 f ′(ti) and f ′(ti) is the first derivative of the fitted curve at ti, i = 1, . . . , n.

The fitted model for testing the above hypotheses is

f̂ (t) = β̂0 + β̂1t + β̂2t
2 + β̂3t

3 +
K∑

k=1

ûk (t− κk)
3
+ . (4.2)

The fitted first derivative curve of (4.2) is calculated as:

f̂ ′ (t) = β̂1 + 2β̂t + 3β̂2t + 3
K∑

k=1

ûk (t− κk)
2
+ . (4.3)

In Chapter 3 it was argued that for small sample sizes, the test statistic for testing the

above hypotheses can be approximated by a t-distribution because the smoother matrix is a

linear function of y. However, because the smoothing parameter is estimated, the smoother

matrix depends on y through a smoothing parameter (Ruppert et al., [29]). For this reason, a

randomization test will also be used to judge the significance of the test statistic for this test.

4.1 Simulation Procedure

Data were generated according to a specified model and the performance of each method using

these data was compared by estimating Type I error rates and power. A variety of sample

sizes and trend forms were examined. The Type I error rate is defined as the probability that

a particular test statistic is contained in the rejection region when, in fact, the null hypothesis
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is true. Power is defined as the probability that a particular test statistic is contained in the

rejection region when the null hypothesis of no trend is false. All the tests used an α-level of

.05 as the boundary for the rejection region.

4.1.1 Generated data

Data were generated using sample sizes of 25, 50, and 200. For each scenario, 1500 data sets

were generated and the proportion of times the null hypothesis was rejected at α = .05 was

observed.

For scenarios that included serially correlated errors, errors were generated that followed

an autoregressive process of order 1, (AR(1)). Specifically, errors, εi for each time, ti for

i = 1, . . . , n, were generated such that

εi = φεi−1 + ξi

where φ is the true serial correlation of the errors, and ξi ∼ N (0, 1). Serially correlated errors

with φ equal to .3 and .5 were generated to examine the effects of serial correlation on Type I

error rates. Table 4.1 summarizes the different scenarios in which simulations were performed

and Figure 4.1 shows some examples of generated data for a n of 25. The true trend is shown

on each graph.

4.1.2 Comparison of Type I Error Rates

Table 4.2 gives the results of the simulations when the null hypothesis of no trend is true.

The proportion of instances the null hypothesis was rejected at α=.05 is tabulated in Table

4.2. Standard errors for the estimated Type I error rates ranged from .0055 to .0118. Figure

4.2 gives standard error calculations for a sample size of 1500 for estimated Type I error rates
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Figure 4.1: Examples of simulated data with line indicating the true function.
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Sample size Description Equation Generated errors
25,50,200 No trend y = ε ε ∼ N (0, 1)

25,50,200 No trend y = ε ξ ∼ N (0, 1)
where εi = φεi−1 + ξi

25 Linear y = .1t + ε ε ∼ N (0, 1)

50 Linear y = .03t + ε ε ∼ N (0, 1)

200 Linear y = .004t + ε ε ∼ N (0, 1)

25 Linear y = .1t + ε ε ∼ CAU(0, 1)

50 Linear y = .03t + ε ε ∼ CAU(0, 1)

25 Linear y = .1t + ε ε ∼ POI(t)

50 Linear y = .03t + ε ε ∼ POI(t)

25 Logistic y = 10
1+e−.5t + ε ε ∼ N (0, 1)

50 Logistic y = 25
1+e−.1t + ε ε ∼ N (0, 5)

200 Logistic y = 100
1+e−.075t + ε ε ∼ N (0, 20)

25 Exponential y = 2e.0275t + ε ε ∼ N (0, 1)

50 Exponential y = 10e.005t + ε ε ∼ N (0, 1)

25 Cyclic y = .1x + 10 sin
(
5π (.02t)1.3

)
+ ε ε ∼ N (0, 2)

50 Cyclic y = .2x + 10 sin
(
5π (.02t)1.3

)
+ ε ε ∼ N (0, 5)

25 Influential y1 = 6,y2 = 5,
yi = .1t + εi for i = 3, . . . , 25 ε ∼ N (0, .5)

50 Influential y1 = 8,y2 = 7,y3 = 6,y4 = 5
yi = .1t + εi for i = 5, . . . , 50 ε ∼ N (0, 1)

Table 4.1: Description of generated data. Linear trend with the addition of influential obser-
vations were examined to explore the effect of influential observations on power.
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Sample size φ LIN Ken LRT SUM.R LOESS P-spline SUM
25 0 .049 .048 .050 .048 .069 .068 .066

25 .3 .155 .145 .178 .165 .160 .163 .166

25 .5 .251 .230 .270 .277 .279 .232 .228
50 0 .051 .052 .048 .049 .065 .062 .060

50 .3 .132 .138 .123 .164 .165 .161 .170

50 .5 .256 .245 .240 .235 .246 .248 .296
200 0 .053 .049 .051 .057 .059 .068 .067

200 .3 .118 .126 .172 .128 .159 .159 .128

200 .5 .265 .250 .270 .194 .268 .245 .194

Table 4.2: Type I error rates for 1500 simulations. Standard errors for 1500 simulations are
given in Figure 4.2. Standard errors ranged from .0055 to .0118. The methods compared
were linear regression (LIN), Kendall’s τ (Ken), the likelihood ratio test for trend (LRT), a
randomization test for trend using the sum of the first derivatives (SUM.R), a test for trend
using a locally weighted regression (LOESS), the trend detection test using the sum of the
first derivatives using P-splines, and a test using the sum of the first derivatives using a linear
mixed effects model and distributional assumptions about the test statistic (SUM).

and power.

Linear regression, Kendall’s τ , the likelihood ratio test and the randomization test for the

sum of the first derivatives all achieved the stated Type I error rate (see Figure 4.3 - Figure

4.5). The LOESS, P-spline and first derivative sum with linear mixed model test failed to

meet the Type I error rate of .05. A 95% confidence interval for the true Type I error rate for

the LOESS smoothing method was (.0563,.0817). The P-spline smoothing technique and the

technique using the sum of the first derivatives had 95% confidence intervals of (.055, .081)

and (.053,.079), respectively.

All of the methods were sensitive to the effects of serially correlated errors. For instance,

the type I error rate for the likelihood ratio test increased from a .050 (SE=.0056) to .178
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Figure 4.2: Standard error of power and Type I error rates estimates for a sample size of 1500.

Figure 4.3: Ninety-five percent confidence intervals for Type I error rates for n of 25. SUM
is the method that used the sum of the first derivatives and SUM.R is the trend detection
method when a randomization procedure was used to obtain the observed significance. The
tests were all performed at an α level of .05.
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Figure 4.4: Ninety-five percent confidence intervals for Type I error rates for n of 50.

Figure 4.5: Ninety-five percent confidence intervals for Type I error rates for n of 200.
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(SE=.0099) with a φ of .3. When serial correlation was present in the error structure, none

of the methods maintain the Type I error rate of .05.

In summary, it was discovered that the smoothing methods which rely on distributional as-

sumptions about the test statistic all failed to meet the designated Type I error rate for a

sample size of 25. For n of 200, the P-spline test for trend and the penalized spline regression

test for trend still failed to achieve the Type I error rate of .05. The violation of Type I error

rate is most likely due to variability in estimation of the smoothing parameter. Ruppert et

al. [29] state that it is common practice to ignore this source of variability. The consequence

of doing so is obtaining slightly inflated Type I error rates. Both the likelihood ratio test and

the randomization test for trend achieved the designated Type I error rate for all sample sizes

when no serial correlation was present in the errors.

4.1.3 Power results

Table 4.3 compares the estimated power of each method when data were simulated with a

specified form. Standard error estimates for a given estimated power can be extracted from

Figure 4.2. The likelihood ratio test had the greatest power for detecting linear trend com-

pared to the other smoothing methods. The estimated power of the likelihood ratio test was

approximately equal to the power of Kendall’s τ for the sample sizes considered. This method

was superior for detecting linear trend compared to the other smoothing methods (see Figure

4.6- Figure 4.8). Ninety-five percent confidence intervals for the difference between the power

of linear trend and the likelihood ratio test method for a n of 25, 50 and 200 are: (.013,.053),

(.016,.068) and (.008,.056). Ninety-five percent confidence intervals for the difference between

the estimated power of linear trend and the estimated power of the randomization test for n

of 25, 50, and 200 are: (.099, .145), (.109,.165), and (.057, .109).

The randomization test using the sum of the first derivatives had the lowest estimated power
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Figure 4.6: Ninety-five percent confidence intervals for power to detect linear trend for n of 25.
SUM is the method that used the sum of the first derivatives and SUM.R is the trend detection
method when a randomization procedure was used to obtain the observed significance. The
tests were all performed at an α level of .05.

for detecting linear trend for n of 25 and 50. Ninety-five percent confidence intervals for

the difference between the estimated power of linear trend and the estimated power of the

randomization test for n of 25, 50, and 200 are: (.099, .145), (.109,.165), and (.057, .109).

Ninety-five percent confidence intervals for the difference between the estimated power of the

likelihood ratio test and the randomization test for the sum of the derivatives for n of 25, 50,

and 200 are: (.064,.114), (.066,.124), and (.024, .078).

The LOESS method had an estimated power similar to the likelihood ratio test for a sample

size of 25 for detecting linear trend, however, had significantly lower estimated power than

the likelihood ratio test for a sample size of 50. When the sample size was 200, the LOESS

method had the lowest estimated power for detecting linear trend of all the methods.

The smoothing methods were superior to linear regression and Kendall’s τ test for detecting

logistic trend for n of 25. The tests that involve the sum of the first derivative had higher

estimated power than either the likelihood ratio test or the LOESS test for trend for this

logistic case. The P-spline method had the highest estimated power of .917 (SE=.0071) for

detecting logistic trend followed by the randomization test with a power of .906 (SE=.0075).
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Figure 4.7: Ninety-five percent confidence intervals for power to detect linear trend for n of
50.

Figure 4.8: Ninety-five percent confidence intervals for power to detect linear trend for n of
200.
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Trend n LIN Ken LRT SUM.R LOESS P-spline SUM
Linear 25 .934 .905 .901 .812 .888 .891 .834

Linear 50 .871 .843 .829 .734 .752 .804 .789

Linear 200 .884 .869 .852 .801 .711 .801 .806

Linear (Cauchy) 25 .428 .909 .415 .330 .246 .435 .300

Linear (Cauchy) 50 .527 1.0 .505 .449 .678 .522 .503

Linear(Poisson) 25 .819 .858 .800 .720 .724 .756 .736
Logistic 25 .761 .614 .831 .906 .713 .917 .900

Logistic 50 .989 .95 .969 .979 .961 .91 .946

Logistic 200 .992 .977 .997 .999 .997 .98 .999
Influential 25 0 .937 .974 .999 0 1.0 .999

Influential 50 .844 1.0 1.0 1.0 .05 .931 1.0
Exponential 25 .802 .774 .764 .700 .766 .744 .705

Exponential 50 .758 .722 .677 .678 .721 .677 .685
Cyclic 25 .0127 .0687 .0987 .097 .028 .937 .099

Cyclic 50 .416 .352 .998 .531 .608 .796 .550
Catastrophic 25 .007 .236 .994 .603 .435 .952 .450

Catastrophic 50 .204 .596 .996 .84 .996 .856 .852

Table 4.3: Estimated power for 1500 simulations. Figure 4.2 gives the standard error for an
estimated power. The methods compared were linear regression (LIN), Kendall’s τ (Ken), the
likelihood ratio test for trend (LRT), a randomization test for trend using the sum of the first
derivatives (SUM.R), a test for trend using a locally weighted regression (LOESS), the trend
detection test using the sum of the first derivatives using P-splines, and a test using the sum
of the first derivatives using a linear mixed effects model (SUM).
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The LOESS method of trend detection had the lowest estimated power of .713 (SE=.0117) of

the smoothing methods for this sample size. For larger sample sizes of 50 and 200 there were

no significant differences between the power of the trend detection methods for logistic trend.

Least squares regression is sensitive to the effects of influential observations. Influential ob-

servations were added to simulated data with linear trend (see Table 4.1). As expected, least

squares regression performed poorly in detecting trend. The LOESS test for trend also had

low power for detecting trend in the presence of influential observations. All other methods

had a large estimated power in the presence of influential observations.

For the simulation that resembled a catastrophic event, the likelihood ratio test and the test

using P-splines had significantly higher power than the other methods for a sample size of

25. The estimated power of the likelihood ratio test was .994 (SE=.002) compared to the

estimated power for linear regression of .007 (SE=.002) or the estimated power of Kendall’s

τ of .236 (SE=.011).

In summary, the likelihood ratio test performed the best of the smoothing methods for de-

tecting linear trend for all sample sizes considered. For nonlinear trend such as logistic or ex-

ponential, the randomization test using the sum of the first derivative had a larger estimated

power than the likelihood ratio test in some cases. The LOESS method of trend detection had

significantly less power for detecting logistic trend for n equal to 25. In addition, for large n,

the LOESS method had significantly less power for detecting linear trend.

4.2 Autocorrelation methods

Independence of errors is an important assumption for all of the methods that have been

considered. It is often the case when analyzing time series data that errors close in time tend

to be more similar than errors further away in time. The type I error rates when the errors
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were serially correlated were well above the designated α-level of .05 for all of the methods.

In Chapter 3, three methods were introduced that incorporate serial correlation into the error

structure. Generalized linear regression was developed by Reinsel et. al. [27]. This method

assumes the error structure is modeled by an autoregressive process of order 1. Generalized

linear regression is then used to estimate the regression coefficients.

An advantage of using the linear mixed effects model for smoothing is the ease with which

serial correlation can be incorporated into the error structure. The linear mixed effects model

with correlated errors is

y = Xβ + Zu + ε (4.4)

where  u

ε

 ∼ N


 0

0

 ,

 σ2
uI 0

0 R




where

R =
σ2

ε

1− φ2



1 φ . . . φn−2 φn−1

φ 1 φ . . . φn−2

...
...

. . . . . .
...

φn−1 φn−2 . . . φ 1


. (4.5)

Both the likelihood ratio test and the test involving the sum of the first derivatives can be

modified to account for serial correlation in the error structure (see Chapter 3 for details). For

the likelihood ratio test, Monte Carlo simulation procedures are used to calculate the observed

significance of the test statistic. For the sum of the first derivatives test, a randomization test

is used to calculate the observed significance of the test statistic.
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Trend Sample size φ slope LIN.AR SUM.AR LRT.AR
No trend 25 0 0 .053 .049 .042

No trend 50 0 0 .052 .049 .048

No trend 200 0 0 .052 .062 .051
No trend 25 .3 0 .072 .061 .051

No trend 50 .3 0 .072 .051 .049

No trend 200 .3 0 .053 .047 .052
No trend 25 .5 0 .09 .07 .056

No trend 50 .5 0 .074 .059 .056

No trend 200 .5 0 .048 .040 .044

Table 4.4: Estimated Type I error rates for 1500 simulations for data simulated with no trend
and linear trend. Data were simulated with φ equal to 0,.3 and .5. The methods that are
compared are a generalized least squares method (LIN.AR), a randomization test to test the
significance of the sum of the first derivatives (SUM.AR), and a likelihood ratio test (LRT.AR).
All of these methods account for serial correlation.

4.2.1 Simulation results for autocorrelation methods

Table 4.4 shows the results of the test methods that incorporate serial correlation into the

error structure. Errors, εi for each time, ti for i = 1, . . . , n, were generated such that

εi = φεi−1 + ξi

where φ is the true serial correlation of the errors and ξi ∼ N (0, 1).

The generalized linear regression method with autocorrelated errors failed to meet the desig-

nated Type I error rate for small sample sizes. A 95% confidence interval for the true Type

I error rate of this method with n equal to 25 is (.058, .085) when φ is .3 and (.076,.104)

when φ is .5. For an n of 50, the Type I error rates again failed to achieve the specified value

of .05. A 95% confidence interval for the true Type I error rate when n is 50 is (.058, .085)
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Trend Sample size φ slope LIN.AR SUM.AR LRT.AR
Linear 25 0 .1 .909 .723 .810

Linear 50 0 .03 .851 .697 .822

Linear 200 0 .004 .886 .779 .805
Linear 25 .3 .1 .68 .466 .524

Linear 50 .3 .03 .573 .400 .496

Linear 200 .3 .004 .645 .506 .644
Linear 25 .5 .1 .486 .308 .364

Linear 200 .5 .004 .384 .224 .340

Table 4.5: Estimated power for 1500 simulations for data simulated with linear trend. Data
were simulated with φ equal to 0,.3 and .5. The methods that are compared are a generalized
least squares method (LIN.AR), a randomization test to test the significance of the sum of
the first derivatives (SUM.AR), and a likelihood ratio test (LRT.AR). All of these methods
account for serial correlation.

when φ is .3. For n of 200, the estimated Type I error rate when φ is equal to .3 is .053

(SE=.006). The generalized linear regression method had the greatest estimated power for

detecting linear trend. For an n of 200, this method is comparable to the likelihood ratio test

for autocorrelated errors. A 95% confidence interval for the difference in power between the

two methods is (-.033,.035) for n equal to 200.

The likelihood ratio test with autocorrelated errors achieved the stated α level of .05 for all

sample sizes considered. All 95% confidence intervals for the true Type I error rate capture

.05 for this method.

Table 4.5 reports the estimated power for detecting linear trend for the autocorrelation meth-

ods. The estimated power for detecting linear trend is higher than for the method that uses

the sum of the first derivatives. With 95% confidence, we can say that the likelihood ratio test

has between .022 and .094 higher power than the method using the sum of the first derivatives

when n is 50 and φ is .3. For small sample sizes, the power for detecting linear trend was
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significantly reduced compared to the methods without serial correlation in the error structure

(see Table 4.3). This is expected due to dependence of errors. The results given in Table 4.2

indicated that estimated Type I error rates are inflated due to the presence of autocorrelation,

therefore, methods that account for serial correlation in the response variable should be used

when evidence exists of serial correlation. The method with the largest estimated power for

the autocorrelation methods was the generalized least squares regression method. The esti-

mated power for detecting linear trend when n is 50 and φ is .3 was .573 (SE=.013). The

estimated power for the likelihood ratio test when n is 50 and φ is .3 was .496 (SE=.013).

4.3 Conclusions

In this chapter we examined which trend detection methods held their type I error rates

and also had high power. A trend detection method should perform well in a variety of

situations. For instance, the association between time, t and count, y, may be linear or

nonlinear. Therefore, a trend detection method that performs well when the association is

either linear or nonlinear is desired. Other issues which may occur would be instances where

a population has suffered a drastic decline due to some catastrophic event.

It was discovered that the smoothing methods did not meet the designated type I error rate

(see Figure 4.6). Although not serious violations of the designated type I error rate of .05,

methods that achieve the designated type I error rate would be preferred. The randomization

test using the sum of the first derivatives achieved the desired type I error rate; however, the

power of this method was lower than for all other smoothing methods for detecting linear

trend (see Figure 4.6). The likelihood ratio test not only achieved the designated type I error

rate but also had high power for detecting linear trend. Additionally, the likelihood ratio

test had high power for detecting trend in the presence of influential observations and when

a catastrophic event was simulated (see Table 4.3).
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Serial correlation in the error structure had the effect of inflating the type I error rates for all

of the methods. An advantage of the linear mixed effects model is the ease with which serial

correlation can be incorporated into the error structure. The methods that were developed to

accommodate serial correlation had lower type I error rates in the presence of serial correlation,

however, also lower power for detecting linear trend. The presence of serial correlation should

be examined, and if evidence of such correlation exists, one should use one of the methods

developed that incorporates the serial correlation into the model. For the autocorrelation

methods, the likelihood ratio test appears to be superior. For small sample sizes, the likelihood

ratio test achieved the designated Type I error rate. None of the estimated Type I error rates

for the likelihood ratio test were significantly different than .05 for all sample sizes examined.

In addition to this, the likelihood ratio test had significantly larger power than the test for

the sum of the first derivatives.

In conclusion, this chapter focused on comparing type I error rates and the power of detecting

trend. It was discovered that the distributional assumptions for the smoothing methods

may not be appropriate based on the fact that type I error rates are too large for these

smoothing methods. The smoothing methods that adhered to the type I error rates were the

randomization test for the sum of the first derivatives and the likelihood ratio test. Of these

two methods, the likelihood ratio test had higher power for detecting linear trend than the

randomization test using the sum of the first derivatives. Both the randomization test for the

sum of the first derivatives and the likelihood ratio test were easily extendable to accommodate

serial correlation, however, the likelihood ratio test was superior over the randomization test

in terms of both power and achieving Type I error rates.



Chapter 5

Case Study

This chapter concludes the research with some case studies and discusses some extensions to

the trend detection methods that were introduced in previous chapters. The likelihood ratio

test was concluded to be a powerful method of trend detection for both linear and nonlinear

associations. Recall the model used for this test

y = Xβ + Zu + ε.

The likelihood ratio test statistic when no evidence of serial correlation exists is

−2 log LR(y) = −2
{
l
(
β̂0,0, 0, 0, σ̂2

ε,0;y
)
− l
(
β̂0, β̂1, σ̂

2
u, σ̂2

ε ;y
)}

(5.1)

where
(
β̂0,0, σ̂

2
ε,0

)
minimizes−2l

(
β̂0, 0, 0, σ̂2

ε,0;y
)

and
(
β̂0, β̂1, σ̂

2
u, σ̂2

ε

)
minimizes−2l

(
β̂0,1, β̂1, σ̂

2
u, σ̂2

ε ;y
)
.

The null and alternative hypotheses for trend are

H0 : β1 = σ2
u = 0

H1 : β1 6= 0 or σ2
u > 0.
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Figure 5.1: Mourning dove counts at seven different BBS routes in Maryland from 1966 to
2005.

Monte Carlo simulations are used to test the significance of the observed test statistic.

5.1 Data

Data for the BBS survey can be obtained at the website, www.pwrc.usgs.gov/bbs. For the case

study presented in this chapter, Mourning dove (Zenaida Macroura) data are presented. Data

were obtained for seven different routes in Maryland from the years 1966 to 2005. Figure 5.1

shows scatterplots at each route. There appears to be a positive association between time,t,

and count y, however, the form appears nonlinear. With the exceptions of some unusual

values, all seven routes appear to have approximately the same overall tendency of positive

trend for the first ten years of the survey and no trend for the remainder of the years.
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5.2 Random site effect

The focus of my research has been to find an optimal method of trend detection for obser-

vations at a single site. If a survey covers a random sample of sites, then site should be

considered a random effect. The BBS, as well as other surveys, covers a large number of sites

(routes) across a region and interest may lie in drawing conclusions about trend at multiple

sites. The routes for the Mourning dove data can be treated as a random effect for the model

y = Xβ + Zu

where

X =



1 t11
...

...

1 t1n1

...
...

1 tm1

...
...

1 tmnm



,

Z =



1 . . . 0 (t11 − κ1)+ . . . (t11 − κK)+
...

. . .
...

...
. . .

...

1 . . . 0 (t1n1 − κ1)+ . . . (t1n1 − κK)+
...

...
...

...
. . .

...

0 . . . 1 (tm1 − κ1)+ . . . (t11 − κK)+
...

. . .
...

...
. . .

...

0 . . . 1 (tmnm − κ1)+ . . . (t1mm − κK)+


and
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u =



U1

...

Um

u1

...

uK


where

cov =

 u

ε

 =


σ2

UIm 0 0

0 σ2
uIK 0

0 0 σ2
ε In

 .

Hence, U1, . . . , Um are random intercepts for each route, and u1, . . . , uK controls the amount

of smoothing of the curve. Random intercepts for the fitted curve appear reasonable for the

Mourning Dove data. The log-likelihood is

l(β0, β1, σ
2
ε , σ

2
u, σ2

U ;y) =
(
nlog (2π) + log|V|+ (y −Xβ)T V−1 (y −Xβ)

)

where V = ZGZT + σ2I and

G =

 σ2
UI 0

0 σ2
uI

 .

The parameters β, σ2
U , σ2

ε and σ2
u are estimated by the maximum likelihood methods. There

is no closed-form solution to compute the maximum likelihood estimates so estimation is

accomplished through an algorithm such as the Newton-Raphson algorithm[25]. The test for

trend is

H0 : β1 = σ2
u = 0

H1 : β1 6= 0 or σ2
u > 0.
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The likelihood ratio test statistic for the above hypotheses is

−2logLR (y) = −2
{

l
(
β̂0,0, 0, σ̂2

U,0, 0, σ̂2
ε,0;y

)
− l
(
β̂0, β̂1, σ̂

2
U , σ̂2

u, σ̂2
ε ;y
)}

(5.2)

where
(
β̂0,0, σ̂

2
U,0, σ̂

2
ε,0

)
minimizes −2l

(
β̂0,0, 0, 0, σ̂2

U,0, σ̂
2
ε,0;y

)
and

(
β̂0, β̂1, σ̂

2
U , σ̂2

u, σ̂2
ε

)
mini-

mizes −2l
(
β̂0, β̂1, σ̂

2
U , σ̂2

u, σ̂2
ε ;y
)
.

Monte Carlo procedures can be employed to test the significance of formula 5.2. The Monte

Carlo procedures follows the steps:

1. Calculate the likelihood ratio statistic for the observed data.

2. Data is then simulated by fixing the parameters equal to their specified values under

the null hypothesis.

3. The likelihood ratio statistic is calculated for step 2.

4. Repeat steps 2 and 3 numerous times and construct an empirical sampling distribution

for the test statistic under the null hypothesis.

5. The observed value of the test statistic is significant at the α-level of .05 if it falls in the

upper 95 percentile of the distribution constructed in step 4.

5.3 Results

Figure 5.2 shows the Mourning Dove data with the main effects curve shown on the graph.

There appears to be a positive association overall, however, a tendency for the counts to stay

fairly constant after the 18th year. Table 5.1 shows the estimated coefficients and variance

components. The observed likelihood ratio test statistic was 30.62. The p-value for this

based on 10,000 simulations was less than .0001 giving us strong evidence that there is an

association between t and y.
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Parameter Estimate standard error
β0 21.89 6.807
β1 1.636 .573
σε 13.44 1.19
σU 15.77 9.80
σu .544 .664

Table 5.1: Results of linear mixed model fit for mourning dove data. The estimated parameter
values and standard errors are given.

5.4 Most recent trend

The likelihood ratio test is a powerful method for detecting both linear and nonlinear asso-

ciations. However, of interest to researchers is not only detecting trend, but also quantifying

trend. It is common to estimate trend for a smoothed curve by taking the difference between

the first few values and the last few fitted values. Although we can estimate trend in this

manner for any smooth curve, if the rate of change of the population of interest has not re-

mained constant then this estimate may not be useful as a measurement of trend. The model

for the likelihood ratio test provides a piecewise linear fit between knot locations. Therefore,

I propose to estimate the most recent trend as the slope of the linear spline between the

last knot,κK and the last observation, tn. If we redefine t to be time since the most recent

observation, then this slope can be estimated by the parameter,−β̂1. For the mourning dove

data, the estimate for −β1 is -.154 with a standard error of .577. Thus, we can conclude that

the most recent trend is not significantly different than zero. For this example, knots were

placed approximately every 4 observations. For the purpose of getting more precise estimates

of the most recent trend, we can remove the first knot. If we delete a knot, then the estimate

of the most recent trend (β1) is -.111 with a standard error of .399.
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5.5 Conclusion

This chapter concludes the research with a case study. The two issues that were addressed were

extending the linear mixed effects model for smoothing and quantifying the most recent trend.

Mourning dove count data collected at seven routes in Maryland were analyzed. Although

the likelihood ratio test for trend gave significant results, the observed trend over the last 8

years was not significantly different than zero.
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Figure 5.2: Main effects curve for the mourning dove analysis.



Chapter 6

Conclusions and Future Research

The main results of this research will be summarized in this chapter and potential future

research will be suggested.

Of the tests for trend that were compared, the tests that held the stated type I error rate were

the randomization test involving the sum of the first derivatives and the likelihood ratio test.

The tests for trend that relied on asymptotic distribution assumptions for the distribution of

the test statistic all failed to meet the stated Type I error rate of .05. This is due to the fact

that the distributional assumptions were based on a fixed smoothing parameter when in fact

the smoothing parameter is estimated from the data. The likelihood ratio test for trend had

the largest estimated power of the smoothing methods for the detection of linear trend. This

test also performed well for nonlinear trend and had large estimated power when influential

observations were added into simulations for linear trend. In addition to this, the model

was easily extendable to account for autocorrelation in the errors. Even for small sample

sizes, the likelihood ratio test achieved the stated Type I error rate when errors followed an

AR(1) process. The disadvantage of this test is that a significant result does not indicate

whether the population is increasing or decreasing only that population is not constant across

81
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time. Usually researchers are interested in quantifying trend and this test does not lend itself

to quantifying trend. However, the difference between the first and last value (or any time

interval) can be used to estimate trend if trend is quantified as the population change over a

time interval.

Because using smoothing techniques as a method for trend detection is still relatively new,

there have been few methods that use the first derivatives to quantify and test for trend (see

Fewster et al. [11]). The first derivative curve is useful for displaying interesting features of a

curve. For instance, a researcher may be interested in addressing the following questions:

1. During what time interval is trend increasing, decreasing or staying constant?

2. When does growth rate start to plateau?

3. Is the most recent trend positive or negative?

The first derivative curve with confidence intervals can address these questions. The first

derivative curve can also be used to quantify trend. My research examined using the sum

of the first derivatives as a means of quantifying trend; however, other methods such as

the median first derivative or a weighted average of first derivatives giving the most recent

first derivatives the most weight could also be used to quantify trend. The advantage of

examining the derivatives as a means of trend detection is that this method is useful in not

only quantifying trend but also addressing questions about the population trajectory across

time. In addition, serial correlation can be accommodated in the error structure using the

mixed effects model. The disadvantage of this method is that the power for detecting linear

trend for small sample sizes is low compared to other methods and confidence intervals for

first derivatives at the end and beginning of time periods tend to be very wide.

Examining derivatives has a bright future with regard to describing, quantifying, and testing

for trend. The tools introduced in this research are widely applicable to all types of monitoring
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data and will be even more useful for annual surveys such as the BBS when sample sizes

become larger. Because a mixed model is used to model the smooth curve, extensions such

as autocorrelation are easy to implement using standard software such as S-PLUS.

The penalized spline regression methods assume normally distributed errors. Often for mon-

itoring data, including the BBS, the population index is a count. Poisson regression is often

used to model count data. If a reasonable assumption is that the errors follow a Poisson

distribution, then the linear mixed effects model can be extended to accommodate Poisson

errors via a generalized linear mixed effects model (see Ruppert et al. [29]). A potential

area of research could be to examine the properties of a test for trend that assumes Poisson

distributed errors and employs a mixed effects model to model the fitted curve.
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