
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2013

Abstracted primal-dual affine programming Abstracted primal-dual affine programming

Tien Chih

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Chih, Tien, "Abstracted primal-dual affine programming" (2013). Graduate Student Theses, Dissertations, &
Professional Papers. 10765.
https://scholarworks.umt.edu/etd/10765

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F10765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/10765?utm_source=scholarworks.umt.edu%2Fetd%2F10765&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

ABSTRACTED PRIMAL-DUAL AFFINE PROGRAMMING

By

Tien Chih

B.A. University of Hawaii at Hilo, 2007
M.A. The University of Montana, USA, 2009

Dissertation

presented in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in Mathematics

The University of Montana
Missoula, MT

December 2013

Approved by:

Sandy Ross, Associate Dean of the Graduate School
Graduate School

Dr. George McRae, Chair
Mathematical Sciences

Dr. Kelly McKinnie
Mathematical Sciences

Dr. Jennifer McNulty
Mathematical Sciences

Dr. Thomas Tonev
Mathematical Sciences

Dr. Ronald Premuroso
Accounting

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3624605
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3624605

Chih, Tien Ph.D., December 2013 Mathematics

Abstracted Primal-Dual Affine Programming

Committee Chair: George McRae, Ph.D.

The classical study of linear (affine) programs, pioneered by George Dantzig and Albert
Tucker, studies both the theory, and methods of solutions for a linear (affine) primal-dual
maximization-minimization program, which may be described as follows:

“Given A ∈ Rm×n,~b ∈ Rm,~c ∈ Rn, d ∈ R, find ~x ∈ Rn such that A~x ≤ ~b, and ~x ≥ 0, that
maximizes the affine functional f(~x) := ~c · ~x − d; and find ~y ∈ Rm such that A

⊥

~y ≥ ~c, and
~y ≥ 0, that minimizes the affine functional g(~y) := ~y ·~b− d.”

In this classical setting, there are several canonical results dealing with the primal-dual as-
pect of affine programming. These include: I: Tucker’s Key Equation, II: Weak Duality Theo-
rem, III: Convexity of Solutions, IV: Fundamental Theorem of Linear (Affine) Programming,
V: Farkas’ Lemma,VI: Complementary Slackness Theorem, VII: Strong Duality Theorem,
VIII: Existence-Duality Theorem, IX: Simplex Algorithm.

We note that although the classical setting involves finite dimensional real vector spaces,
moreover the classical viewpoint of these problems, the key results, and the solutions are
extremely coordinate and basis dependent. However, these problems may be stated in much
greater generality. We can define a function-theoretic, rather than coordinate-centric, view
of these problem statements. Moreover, we may change the underlying ring, or abstract to
a potentially infinite dimensional setting. Integer programming is a well known example of
such a generalization. It is natural to ask then, which of the classical facts hold in a general
setting, and under what hypothesis would they hold?

We describe the various ways that one may generalize the statement of an affine program.
Beginning with the most general case, we prove these facts using as few hypotheses as possible.
Given each additional hypothesis, we prove all facts that may be proved in this setting, and
provide counterexamples to the remaining facts, until we have successfully established all of
our classical results.

ii

Acknowledgements

I would like to give special thanks for my advisor, Dr. George McRae. His perspective,

knowledge and experience has forever changed the way I think of and do Mathematics. His

patience, guidance and support, coupled with his insight and expertise, has made completing

this project possible, although his influence throughout my PhD work extends far beyond that.

I would also like to thank my committee: Dr. Kelly McKinnie, Dr. Jenny McNulty, Dr.

Thomas Tonev, and Dr. Ron Premuroso, for going above and beyond to continuously sup-

porting me, providing me with help and advice, and for their making available their knowledge

and expertise. Their continued support throughout this process has been invaluable.

I would also like to thank the Department of Mathematical Sciences at the University

of Montana. In particular I would like to thank my masters advisor Dr. Nikolaus Vonesson

for continuing to be someone I could run to for help, even after the conclusion of our work,

and Dr. Eric Chesebro for his advice and help critiquing this document. I would also like to

thank the Associate Chair of Graduate Studies, Dr. Emily Stone for her continued diligence

and support during this entire process.

I would also like to thank all of the graduate students for sharing my passion of mathe-

matics, and giving me their unique insights into a shared field we all love. I would like to give

special thanks to all the graduate students who assisted in editing this document. Addition-

ally, I would like to thank former graduate student Dr. Demitri Plessas has being especially

willing to act as a sounding board during my entire time as a graduate student.

I would also like to give special thanks for my family for their personal support through

these years and all years prior.

Finally, I would like to thank Tara Ashley Clayton for her ongoing and continuous sup-

port through the entire schooling process, even as she attends to her own schooling as well.

Her ability to understand and cope with the odd and sometimes aggravating lifestyle of a

PhD student is immeasurable, and her emotional support during the more trying times of this

process is invaluable. To her I give my love and everlasting gratitude.

iii

Notation and Conventions
R a ring, typically a (ordered) (division ring) . 57 (58) (29)

X a left R module (vector space), space of solutions 57 (29)

Y a left R module (vector space), space of constraints 57 (29)

HomR(X,Y) collection of left homomorphisms from X to Y . 57

X∗, Y ∗ HomR(X,R),HomR(Y,R) . 57

A an element of HomR(X,Y) . 57
~b element of Y , upper bound of primal problem . 57

c element of Homr(X,R), primal objective . 57

�⊕ the non negatives of � . 67

X̂ collection of spanning maps when X a vector space 84

Ŷ collection of spanning maps when Y a vector space 84

X the image of 1R under the induced inclusions (basis of X) 84

Y the image of 1R under the induced inclusions (basis of Y) 84

αi the row-like projection map ŷi ◦A, ŷi ∈ Ŷ . 85

A collection of all row-like projection maps {αi} . 85

M an oriented matroid defined on a set E . 131

α̂i the map defined on X ⊕R to simulate bi − αi in OM program 155

X the α̂i that forms a vector(circuit) . 155

Y the α̂j induced byA\X 155

B B : Y → {+,−, 0}, records coefficient of f for α̂j 155

C C : X → {+,−, 0}, records coefficient of α̂i as summand of g 155

A A : X × Y → {+,−, 0}, records coefficient of α̂i as summand of α̂j 155

iv

Contents

1 Introduction: Primal-Dual Affine Programs, Classical and Abstract 1

1.1 The Goal . 1

1.2 Classical Affine Primal-Dual Programs . 2

1.2.1 An Example of a Classical Affine Primal-Dual Program 2

1.2.2 Introduction to Classical Affine Programming 6

1.2.3 Basic facts . 10

1.2.4 Results regarding Order . 11

1.2.5 Facts using R . 19

1.2.6 Simplex Algorithm . 24

1.3 Generalizations . 42

1.3.1 Generalizing the Ring of Scalars . 42

1.3.2 Generalizing the Dimension or Rank . 46

v

1.3.3 Generalizing the Cones . 47

1.4 General Framework . 48

1.5 Results . 49

1.5.1 Results about affine maps . 49

1.5.2 Results about Duality . 50

1.5.3 Results Classifying Solutions . 50

1.5.4 Results about Structure: Tucker Tableaux and Oriented Matroids . . . 51

1.5.5 Results about Optimal Solutions: The Simplex Algorithm 53

1.6 Potential Difficulty in an Abstract Situation . 53

1.7 Summary of Results . 54

2 Ordered Rings and Modules 56

2.1 Introduction . 56

2.2 General Rings . 57

2.3 Some Properties of Ordered Rings and Modules 59

2.3.1 Properties of Ordered Rings . 59

2.3.2 Modules and Cones over Ordered Rings 65

2.4 Results with Cones and Programs . 68

vi

2.4.1 Feasibility . 68

2.4.2 Weak Duality . 71

2.4.3 Convexity . 72

2.4.4 Partial Results . 78

2.5 Counterexamples . 80

2.6 Conclusions . 83

3 Cones 84

3.1 Introduction . 84

3.2 Counterexamples . 84

3.3 Orthant Cones . 87

3.3.1 Definition of Orthant Cone . 87

3.3.2 Satisfying Feasibility Conditions . 88

3.3.3 Non-Orthant Cones . 91

3.4 Conclusion . 92

4 Farkas’ Lemma and Generalizations 94

4.1 Introduction . 94

vii

4.2 Tools . 95

4.3 The Farkas’ Lemma . 100

4.4 Conclusion . 119

5 Theorems of the Alternative and Duality Results 121

5.1 Introduction . 121

5.2 Theorems of the Alternative. 122

5.3 Duality Results . 126

5.3.1 Partial results for the Existence-Duality Theorem 126

5.3.2 Complementary Slackness and Strong Duality 128

5.3.3 Counterexamples to Generalizations of Classical Results 130

5.4 Conclusion . 135

6 An Oriented Matroid Solution 136

6.1 Introduction . 136

6.2 Oriented Matroids . 137

6.3 Oriented Matroid Programming . 143

6.4 The Existence Duality Theorem . 147

viii

6.5 Conclusion . 150

7 Oriented Matroid Programs as Tucker Tableaux and the Simplex Algorithm151

7.1 Introduction . 151

7.2 The Tucker Tableau . 152

7.3 Tucker Pivot . 157

7.4 Tucker Tableau with entries in R . 160

7.5 The Simplex Algorithm . 163

7.6 Conclusion . 171

8 Future Direction 172

ix

List of Figures

1.1 A Tucker Tableau . 7

1.2 Line segment in Z2 . 13

1.3 Lumbermill Primal-Feasible Region . 16

1.4 Lumbermill Dual-Feasible Region . 17

1.5 A Tucker pivot . 28

1.6 Origin infeasible tableau . 29

1.7 Origin infeasible, feasible region . 30

1.8 Origin infeasible pivot . 32

1.9 Origin infeasible, End of Phase I . 33

1.10 Lumbermill tableau . 34

1.11 Lumbermill Primal-Optimal Solution . 37

1.12 Lumbermill Dual-Optimal Solution . 37

x

1.13 Lumbermill 3-space diagram . 38

1.14 General Tucker tableau . 49

2.1 Affine Maps of a General Affine Program . 58

7.1 Oriented matroid Tucker tableau . 157

7.2 Oriented matroid Tucker pivot . 158

7.3 Generalized Tucker Tableau . 162

7.4 Generalized Tucker Pivot . 163

xi

List of Tables

1.1 Lumbermill Resources . 3

1.2 Lumbermill Values . 5

xii

Chapter 1

Introduction: Primal-Dual Affine

Programs, Classical and Abstract

1.1 The Goal

The goal of this dissertation is to develop generalizations and abstractions of the mathematical

features and structures of the systems of traditional affine primal-dual programming situations

over finite dimensional real vector spaces. The traditional descriptions are very coordinate

and basis intensive descriptions where the goal is to develop a coordinate-free and basis-free

approach.

The classical study of the theory and applications of the canonical primal maximization

and the dual minimization affine optimization problems have been well studied over the last

hundred years. This traditional study has been very basis and coordinate dependent, as is

natural for the applications to real world settings.

In this proposed research we want to abstract and generalize these situations in several pos-

1

sible directions. In particular, with a focus on a “basis-free” and “coordinate free” approach,

similar to the coordinate-free approach to geometry done by John von Neumann [vN98]. By

doing so, we hope to reveal the underlying mathematical features. Some of our questions

include:

¿ How much of the classical theory generalizes to linear and affine (possibly continuous)

transformations for arbitrary dimensions (e.g. Banach Spaces)?

¿ How much of the classical theory generalizes to (ordered) ground rings of scalars (e.g.

Integers, Rationals, Hyperreals)?

¿ How much of the Rockafeller-Bland oriented matroid approach can be generalized to

these settings?

In this chapter, all classical results and definitions of linear or affine programming can be

found in [NT93], unless specifically stated. Similarly, standard results and definitions about

algebra may be found in [DF04], analysis results and definitions may be found in [Roy10], and

results and definitions regarding oriented matroids may be found in [BLVS+99].

1.2 Classical Affine Primal-Dual Programs

1.2.1 An Example of a Classical Affine Primal-Dual Program

Consider the following classical example two affine optimization problems. One problem is a

maximization (or primal) problem and the other (the dual) is a minimization problem.

Problem 1.2.1 (The Lumbermill Production Problem). Suppose a lumber mill produces

three products: 2 × 4 small lumber, 2 × 10 large lumber, and particle board. This mill uses

two inputs: large logs and small logs. The small lumber sells for $3 per unit, large dimensional

2

sells for $2 per unit and the particle board for $4 per unit. The small lumber requires 1 and

2 large and small logs to produce a unit. The large lumber requires 3 large logs and 1 small

log to produce a unit, and the particle board requires 2 large logs and 1 of the large and small

logs respectively. The total materials consist of 10 large logs and 8 small logs. There is also

an initial setup cost of $5. How much of each type of lumber should be produced to

maximize revenue?

We place this information in the following data table:

Table 1.1: Lumbermill Resources
Resource Small lumber Large lumber Particle board Total Resource

Large Logs 1 3 2 10

Small Logs 2 1 1 8

Revenue: $3 $2 $4 -$5

With this table, given some quantity of small lumber, large lumber and particle board, we

may easily compute both how much resources are used, and how much revenue is earned. The

constant $5 is the “fixed cost” of operating the mill. By allowing x1, x2, x3 to be the quantities

of small lumber, large lumber, and particle board respectively, we may phrase the problem as

the following row systems of inequalities:

Maximize: f(x1, x2, x3) := 3x1 + 2x2 + 4x4 − 5,

subject to: x1 + 3x2 + 2x3 ≤ 10

2x1 + x2 + x3 ≤ 8

x1, x2, x3 ≥ 0.

Which has a natural linear algebraic formulation:

3

Let A :=

1 3 2

2 1 1

 ∈ R2×3,~b := [10, 8]

⊥

∈ R2,~c := [3, 2, 4]

⊥

∈ R3, d := 5 ∈ R. Find

~x ∈ R3 such that:

Maximize: f(~x) := ~c

⊥

~x− d,

subject to: A~x ≤ ~b

~x ≥ 0.

One may take the information in this original problem, and formulate an entirely new

problem:

Problem 1.2.2 (The Same Lumbermill - The Insurance Problem). Consider the information

given in Problem 1.2.1. The Vice President in charge of finance wishes to insure the raw

materials used in the production of lumber. In order to do this she needs to assign a valuation

to each of the raw materials used. Since the cost of insurance is proportional to the value of the

insured materials, she wishes to minimize this valuation, and yet be adequately compensated

should these materials be destroyed in some accident. How much should the large and

small logs be valued, to minimize cost, while making sure that the value of any

destroyed materials meets or exceeds the value of the products they would have

produced?

We again place this information in a table:

With this “transposed” table, given some evaluation of large and small logs, we may easily

compute both the evaluation of each product compared to their actual value, and the total

evaluation of the material. By allowing y1, y2 to be the values of the large and small logs

respectively, we may phrase the problem as follows:

4

Table 1.2: Lumbermill Values

Product Large logs Small logs Total Value

Small lumber 1 2 3

Large lumber 3 1 2

Particle board 2 1 4

Value: $3 $2 -$5

Minimize: g(y1, y2) := 10y1 + 8y2 − 5,

subject to: y1 + y2 ≥ 3

3y1 + y2 ≥ 2

2y1 + y2 ≥ 4

y1, y2 ≥ 0.

It is convenient and efficient to consider this minimization system as a column system of

inequalities. This system also has a has a natural linear algebraic formulation:

Let A :=

1 3 2

2 1 1

 ∈ R2×3,~b := [10, 8]

⊥

∈ R2,~c := [3, 2, 4]

⊥

∈ R3, d := 10 ∈ R. Find

~y ∈ R2 such that:

Minimize: g(~y) := ~y

⊥

~b− d,

subject to: ~y

⊥

A ≥ ~c

⊥

~y ≥ 0.

Thus given the information about total resource (~b) revenue per product (c) a linear re-

5

lation between goods and products (A) and an initial cost, we were able to formulate both

a maximization problem and a minimization problem. The Lumbermill Production problem

(the row system) is the primal maximization problem and the Insurance problem is the dual

minimization problem (the column system).

1.2.2 Introduction to Classical Affine Programming

Here, we reiterate the basic definitions and goals of an primal-dual affine programming prob-

lem. The classical affine primal-dual optimization problem can be described as follows [NT93] :

Given the data A,~b,~c, d, where A is a linear transformation A : Rn → Rm, in other words,

A ∈ Rm×n, together with its transpose (or adjoint), A

⊥

: Rm → Rn, ~b,~c are two constant

vectors, ~b ∈ Rm and ~c ∈ Rn, and d ∈ R is a fixed scalar. We note that all algebra done here

is with respect to standard matrix multiplication, and all vectors are assumed to be column

vectors. With this data, define an affine function f : Rn → R (called the primal objective

function) by the scalar equation:

(F) f(~x) = ~c

⊥

~x− d for ~x ∈ Rn.

Then define a vector variable ~t ∈ Rm (called the primal slack variable) by the vector equa-

tion (a “row” system):

(P) ~t = ~b−A~x for the vector variable ~x ∈ Rn.

6

Simultaneously, define the dual objective function as the affine functional g : Rm → R by

the vector equation:

(G) g(~y) = ~y

⊥~b− d for ~y ∈ Rm.

Then define a vector variable ~s ∈ Rn (called the dual slack or surplus variable)by the vector

equation (a “column” system):

(D) ~s

⊥

= ~y

⊥

A− ~c

⊥

for a vector variable ~y ∈ Rm.

Here, we might notice (as Albert Tucker pointed out in the 1960’s) that the information in

these four equations from the row system and the column system can be captured in what is

called a Tucker tableau (but what Tucker called a “condensed” tableau):

Figure 1.1: A Tucker Tableau

� ~x

⊥

-1

~y A ~b = −~t

−1 ~c

⊥

d = f

= =

�

~s

⊥

g

Example 1.2.3. Recall the Lumbermill Problem 1.2.1. The primal maximization program

can be entered into the following tableau:

7

� x1 x2 x3 -1

y1 1 3 2 10 = −t1

y2 2 1 1 8 = −t2

−1 3 2 4 5 = f

= = = =

�

s1 s2 s3 g

We can easily recover the original primal maximization program by looking at each row

of this tableau, with the first 2 rows recording inequalities (≤) and the last row recording

the objective function. Thus the primal problem is sometimes referred to as the row system.

Similarly, if we look at the first 3 columns as inequalities (≥), and the last column as an

objective function, we recover the dual minimization program. Thus, the dual program is

sometimes referred to as the column system.

Also here, we might immediately observe that

(Tucker Duality Equation) g − f = ~s

⊥

~x+ ~y

⊥

~t.

In terms of the Tucker tableau, Tucker thought of this equation as: the inner product of

the top and bottom marginal labels equals the inner product of the left and right marginal

labels. He called this the “key” equation.

To get the classical optimization problems, we need to require non-negativity constraints.

The classical primal maximization affine problem (or “program”) is:

“FIND ~x ∈ Rn that maximizes the primal objective affine functional f = ~c

⊥

~x − d subject

to the constraints:

8

(P) A~x−~b = −~t.

and

(NN-P) ~x ≥ 0,~t ≥ 0 (i.e. ~x,~t are in the respective non-negative cones).”

The slack variable ~t measures the “difference” between the bound ~b and A~x, and so we see

that ~t ≥ 0 implies each entry of ~b − A~x is non-negative. Thus, the above condition is often

stated as: “FIND ~x ∈ Rn that maximizes f subject to A~x ≤ ~b and ~x ≥ 0.

Similarly, the classical dual minimization affine program is:

“FIND ~y ∈ Rm that minimizes the dual objective affine functional g = ~y

⊥~b − d subject to

the constraints:

(D) ~yA− ~c

⊥

= ~s

⊥

.

and

(NN-D) ~y ≥ 0, ~s ≥ 0 (i. e. ~y,~s are in the respective non-negative cones).”

As in the primal case, we may suppress mention of the slack variable ~s and state this con-

dition as: “FIND ~y ∈ Rm that minimizes g subject to ~y

⊥

A ≥ ~c and ~y ≥ 0.

The two conditions (P) & (NN-P) say that the affine transformation in (P) takes the non-

negative orthant of the domain to the non-negative orthant of the co-domain. Similarly,

(D) & (NN-D) show that the affine transformation in (D) takes the non-negative cone of its

domain to the non-negative cone of its co-domain.

9

1.2.3 Basic facts

Using only the definition of the objective functions and slack variables, as affine functionals

or variables, we are able to prove two basic facts.

Proposition 1.2.4 (Classical Fact I: Tucker’s Key Equation). Given A ∈ Rm×n,~b ∈ Rm,~c ∈

Rn, d ∈ R, and f, g, ~s,~t described above by only (F), (P), (G), (D) (and not necessarily (NN-P)

or (NN-D)), we have that:

~x

⊥

~s+ (−1)g(~y) = ~y

⊥

(−~t) + (−1)f(~x).

Proof. We note that:

~x

⊥

~s+ (−1)g(~y) = ~x

⊥

(A~y − ~c)−~b

⊥

~y + d

= ~x

⊥

A~y − ~x

⊥

~c−~b

⊥

~y + d.

= ~y

⊥

(A~x−~b)− ~c
⊥

~x+ d

= ~y

⊥

(−~t) + (−1)f(~x)

Albert Tucker described what he called the “Key Equation” as: “ The sum of the dot

products of the upper and lower marginal labels, is equal to the sum of the dot products of

the left and right marginal labels.” [JGKR63]

As a corollary, we have:

Corollary 1.2.5 (Tucker’s Duality Equation). Given A ∈ Rm×n,~b ∈ Rm,~c ∈ Rn, d ∈ R, and

f, g, ~s,~t described above (using only (F), (P), (G), (D)), we have that:

g(~y)− f(~x) = ~s

⊥

~x+ ~y

⊥

~t.

10

Proof. By Theorem 1.2.4, we have:

~x

⊥

~s+ (−1)g(~y) = ~y

⊥

(−~t) + (−1)f(~x)

g(~y)− f(~x) = ~s

⊥

~x+ ~y

⊥

~t

1.2.4 Results regarding Order

Using the ordering of the real numbers, we can prove some additional results about affine

primal dual programming.

Theorem 1.2.6 (Classical Fact II: Weak Duality). Given A ∈ Rm×n,~b ∈ Rm,~c ∈ Rn, d ∈ R,

and f, g described above (using (F), (P), (G), (D) and (NN-P), (NN-D), and that R is an

ordered ring of scalars), we have that:

g(~y) ≥ f(~x)

for feasible ~x, ~y.

Proof. Using that R is an ordered ring of scalars; and since ~x, ~y are feasible, each entry

~xi, ~yj ≥ 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Moreover, the same is true for ~si,~tj . Thus

~s

⊥

~x =
n∑
i=1

~si~xi ≥ 0

and

~y

⊥

~t =

m∑
j=1

~yj~tj ≥ 0.

11

Thus:

g(~y)− f(~x) = ~s

⊥

~x+ ~y

⊥

~t ≥ 0

g(~y) ≥ f(~x).

Corollary 1.2.7. Given the hypothesis above (Proposition 1.2.6), if there is a feasible pair of

solutions ~x ∈ Rn, ~y ∈ Rm such that f(~x) = g(~y), then ~x, ~y are both optimal solutions.

Proof. Suppose that ~x is not an optimal solution. It follows that there is a feasible ~x′ ∈ Rn

such that f(~x′) > f(~x). But then f(~x′) > g(~y) which contradicts Corollary 1.2.5. Thus ~x is

optimal. Similarly, ~y is optimal as well.

This gives us a certificate of optimality.

Another notion that may be introduced along with the ordering of the real numbers is the

notion of line segments and convexity in the vector spaces Rn,Rm or Qn,Qm.

Definition 1.2.8. Let R ∈ {R,Q}. Given ~v, ~w ∈ Rn, the line segment, denoted [~v, ~w], with

endpoints ~v, ~w is the set:

[~v, ~w] := {λ · ~v + (1− λ) · ~w : λ ∈ R, 0 ≤ λ ≤ 1}.

The open line segment, with end points ~w,~v is the set:

]~v, ~w[:= {λ · ~v + (1− λ) · ~w : λ ∈ R, 0 < λ < 1, λ ∈ R}.

Here, we also describe a generalization of this concept to finite dimensional free modules

12

over Z,Q or R. This generalization is due to the author. Note that we will later generalize

this definition even further to all ordered rings.

Definition 1.2.9. Let R ∈ {Z,Q,R}. Let ~v, ~w ∈ Rn. Let S be the collection of vectors ~z

such that there is a r~z ∈ R, r~z > 0 where ~w = r~z · ~z + ~v. Then the generalized line segment

with endpoints ~v, ~w is:

[[~v, ~w]] :=
⋃
~z∈S

⋃
a∈R,0≤a≤r~z

~v + a · ~z.

Example 1.2.10. Consider (0, 0), (6, 12) in Z2. We note that S = {(6, 12), (3, 6), (2, 4), (1, 2)},

with values for r~z : 1, 2, 3, 6. So the generalized line segment with endpoints (0, 0) to (6, 12) is

[[(0, 0), (6, 12)]] := {(0, 0), (1, 2), (2, 4), (3, 6), (4, 8), (5, 10), (6, 12)}.

Figure 1.2: Line segment in Z2

y1

y2

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

∗
∗
∗
∗
∗
∗
∗ (6, 120)

Proposition 1.2.11. For Rn, or Qn, and scalars from R or Q respectively, a line segment

with endpoints ~v, ~w, and a generalized line segment with the same endpoints are the same.

Proof. If ~v = ~w, then we are done. otherwise, since ~w − ~v and 1 is a valid choice for ~z and

r~z, we have that [~v, ~w] ⊆ [[~v, ~w]]. Conversely. given any choice ~z, r~z, a ∈ [0, r] the point

~v+ a · ~z = ~v+ (ar~z) · (r~z · ~z). Since 0 ≤ a
r~z
≤ 1, ~v+ a · ~z is a point in the standard line segment.

Thus [~v, ~w] = [[~v, ~w]].

13

Remark 1.2.12. We note that for these examples in R ∈ {Z,R,Q}, it turns out that the line

segment [[~v, ~w]] is the standard line segment [~v, ~w] ⊆ Rn, intersected with Rn. Thus it may

seem unnecessary to define such a complex definition. However, we show in Example 2.4.16

that this is not always the case, thus requiring such a definition.

Definition 1.2.13. Given a set C ⊆ Rn, we say that C is a convex set if given ~w,~v ∈ C, the

line segment with endpoints ~v, ~w is contained in C.

With these notions, we may make some statements about the solutions of affine programs.

Lemma 1.2.14. Let R ∈ {Z,Q,R} and A : Rn → Rm, be a linear transformation, ~b ∈

Rm,~c ∈ Rn. Let Cn ⊆ Rn, Cm ⊆ Rm be convex sets. Then the following hold:

1. A−1(Cm) is a convex set.

2. Cn + ~c, Cm +~b are convex sets.

3. The intersection of convex sets is convex.

Proof. Let λ ∈ [0, 1].

1. Let ~w,~v ∈ A−1(Cm), and consider ~x := A(~v) and ~y := A(~w). Then [[~x, ~y]] ⊆ Cm. So

consider any ~z such that there is an r ∈ R, r > 0 where~w = v + r · ~z, and let 0 ≤ a ≤ r.

Then consider ~v + a · ~z ∈ [[~v, ~w]], it follows that

A(~v + a · ~z) = ~x+ a ·A(~z).

Since ~x+r ·A(~z) = A(~v)+A(r ·~z) = A(~w) = ~y, it follows that A(~v+a ·~z) ∈ [~x, ~y] ⊆ Cm.

Thus ~v + a · ~z ∈ A−1(Cm).

2. Let ~v, ~w ∈ Cm, and consider [[~v+~c, ~w+~c]] ⊆ Cm. Then consider ~v+~c+a·~z ∈ [[~v+~c, ~w+~c]],

14

where ~z is a vector such that there is a r ∈ R, r > 0 such that r · ~z + ~v +~c = ~w+~c, and

0 ≤ a ≤ r. Then it is clear that ~v + a · ~z ∈ [[~v, ~w]] ⊆ Cm and so ~v + a · ~z + ~c ∈ Cm + ~c.

3. Let D ⊆ Rn be a convex set, then consider D ∩ Cn. It follows that [[~v, ~w]] ⊆ Cn, D and

so [[~v, ~w]] ⊆ Cn ∩D. Thus Cn ∩D is a convex set.

Definition 1.2.15. Given A ∈ Rm×n,~b ∈ Rm,~c ∈ Rn, d ∈ R, ~x ∈ Rn is primal feasible if

~x ≥Rn 0 and A~x ≤Rm
~b. Similarly a ~y ∈ Rm is dual feasible if ~y ≥Rm 0 and ~y

⊥

A ≥Rn ~c

⊥

.

Then, the primal feasible region is the collection of all primal feasible ~x ∈ Rn and the dual

feasible region is the collection of all dual feasible ~y ∈ Rn.

Corollary 1.2.16 (Classical Fact III Part 1: Convexity of feasible region). The feasible

regions of a the primal and dual affine programming problems are convex sets.

Proof. The feasible region of the primal problem is the set Rn⊕ ∩ A−1(~b − Rm⊕), which is the

intersection of convex sets, and so is convex. (We use Rn⊕ to denote the vectors with non-

negative entries in Rn).

The feasible region of the dual problem is the set Rm⊕ ∩(A

⊥

)−1(~c+Rn⊕), which is also convex.

Example 1.2.17. Recall the Lumbermill Problem 1.2.1. The feasible region of the primal

maximization program is the collection of vectors that satisfy:

15

x1 + 3x2 + 2x3 ≤ 10

2x1 + x2 + x3 ≤ 8

x1, x2, x3 ≥ 0

which may be illustrated by Figure 1.3.

Figure 1.3: Lumbermill Primal-Feasible Region

x

y

z

0

2

4

6

8

10

12

0
2

4
6

8
10

0

2

4

6

8

10

x1
+ 3x2

+ 2x3
≤ 10

2x
1
+
x
2
+
x
3 ≤

8

Similarly, the dual feasible region, bounded by the following inequalities:

2y1 + y2 ≥ 3

3y1 + y2 ≥ 2

2y1 + y2 ≥ 4

y1, y2 ≥ 0

can be show in Figure 1.4.

16

Figure 1.4: Lumbermill Dual-Feasible Region

y1

y2

0 1 2 3 4
0

1

2

3

4

2y
1 +

y
2 ≥

3

2
y
1
+

y
2
≤

5

3
y
1
+

y
2
≤

2

Corollary 1.2.18 (Classical Fact III Part 2: Convexity of optimal solutions). The set of

optimizers for an affine programming problem is convex.

Proof. If the set of optimizers is empty, then it is vacuously convex. Otherwise, let ~x ∈ Rn

be an optimizer for the primal programming problem. Consider that f(~x) is a singleton and

thus is convex. Then f−1(f(~x)) is convex, and the intersection of this set with the feasible

region is also convex.

Similarly the optimizers of the dual problem are convex.

Here we introduce a new concept.

Definition 1.2.19. Given a convex set C ⊆ Rn, an extreme point of C is a point that is not

contained in any open line segment contained in C.

Definition 1.2.20. Given ~x, ~y ∈ Rn, a point ~z is a convex combination of ~x, ~y if it lies on a

line segment with end points ~x, ~y. If it lies on an open line segment with end points ~x, ~y, it is

called a proper convex combination.

17

Theorem 1.2.21 (Classical Fact IV: Fundamental Theorem of Affine Programming). Let P

be the feasible region of a primal (or dual) affine program, and let ` : Rn → R be a non-

constant linear (or affine) functional. Then if there is a point ~x ∈ P that is a maximizer (or

minimizer), then there is a point ~x′ that is a maximizer (or minimizer) that is an extreme

point of P

Proof. It suffices to show that no interior point of P is an optimizer of `. Let ~x be in the interior

of P . Then there is an ε > 0 such that B(~x, ε) ⊂ P . Let ei be a basis vector such that `(ei) 6= 0,

and without loss of generality, suppose `(ei) > 0. Then `(~x − ε
2ei)~x) < `(~x) < `(~x + ε

2ei).

Thus ~x cannot be an optimizer of `.

Definition 1.2.22. Let A : Rn → Rm, be a linear transformation, ~b ∈ Rm,~c ∈ Rn, d ∈ R

define a primal-dual affine program. If for each s ∈ R there is a primal feasible ~x ∈ Rn such

that f(~x) ≥ s, then the primal program said to be unbounded. Similarly if there is a dual

feasible ~y such that g(~y) ≤ s then the dual program are said to be unbounded.

Theorem 1.2.23 (Small Existence-Duality Theorem). Let A : Rn → Rm, be a linear trans-

formation, ~b ∈ Rm,~c ∈ Rn, d ∈ R define a primal-dual affine program. Then the following

hold:

1. If the solution values to the primal program are unbounded, then the dual program is

infeasible.

2. If the solution values to the dual program are unbounded, then the primal program is

infeasible.

Proof. I the dual program is feasible, there is a feasible ~y ∈ Rm. Thus for any feasible

~x ∈ Rn, by Theorem 1.2.6, f(~x) ≤ g(~y) and the solution values for the primal program are

bounded. Similarly, if the primal program is feasible, the solution values to the dual program

are bounded.

18

1.2.5 Facts using R

Using the properties of the real numbers, that it is an Archimedean, least upper bound closed

field, we may prove the following classic result, the Farkas’ Lemma. This fact is used to prove

several powerful primal-dual programming results.

Theorem 1.2.24 (Classical Fact V: The Farkas’ Lemma). Let A be a m × n matrix, and

~c ∈ Rn, then exactly one of the following is true:

1. There is a ~x ∈ Rn such that A~x ≤ 0 and ~c

⊥

~x > 0.

2. There is a vector ~y ∈ Rm,≥ 0, that is, each entry non-negative, such that A

⊥

~y = ~c.

Proof. Suppose that (2) does not hold. Let S be the set of non-negative linear combinations

of the rows of A, a1, a2, . . . am, S := {A

⊥

~y : ~y ∈ Rm, ~y ≥Rm 0} ⊆ Rn. Since (2) does not

hold, ~c 6∈ S. Since S is the non-negative combination of a finite collection of vectors in Rn,

it may be expressed as the finite intersection of half-spaces in Rn, and as such it is closed

and convex. Thus, we may find a separating hyperplane H, defined by a ∈ R, ~v ∈ Rn, where

H = {~w ∈ Rn : ~x

⊥

~w = a}, and

~v

⊥

~c > a > ~v

⊥

~s, for each ~s ∈ S.

Since ~0 ∈ S, we may assume a > 0. Thus for any ~y ∈ Rm, ~y ≥ 0, we have (~yA)

⊥

∈ S, by

definition of S. Thus for

a > (~x

⊥

(~yA)

⊥

)

⊥

= ~yA~x =

m∑
j=1

~xj(A~v)j .

It must be the case that each (A~x)j ≤ 0, else we may select ~w with wj sufficiently large, so

that ~yj(A~x)j > a, and wi = 0 when i 6= j. Thus for this ~x, A~v ≤ 0. Moreover ~x

⊥

~c > a > 0.

19

Example 1.2.25. Suppose A :=

3

5

 ,~c =

(
10

)
. Then, by the Farkas’ Lemma, either (a)

there is a x ∈ R1 such that

3

5

x ≤

0

0

 and 10x > 0, or (b) there is a ~y ∈ R2 such that

(
3 5

)y1

y2

 = 3y1 + 5y2 = 10, yi ≥ 0.

Clearly 3x, 5x ≤ 0 if and only if x ≤ 0. But for such x, 10x ≤ 0. Thus (a) does not hold.

By the Farkas’ Lemma, (b) does hold, and we see ~y =

10
3

0

 is a non-negative vector, such

that

10
3

0

(3 5

)
= 10.

However, suppose we define A′ :=

−1

−1

, ~c =

(
10

)
. Given any non-negative y1, y2,

(
−1 −1

)y1

y2

 = −y1 − y2 6= 10. Thus, (b) does not hold, and by the Farkas’ Lemma, (a)

holds. We note that if we let x = 1,

−1

−1

 (1) =

−1

−1

 ≤
0

0

, but 10(1) > 0.

We note that the proof of this result is highly dependent on the existence of a separating

hyperplane, which is a property of the real numbers. If we wish to extend the Farkas’ Lemma

to a more general case, then one may need to provide an alternative proof to this result.

Corollary 1.2.26. Let A be a m× n matrix, and ~b ∈ Rm, then the following are equivalent:

1. A~x ≤Rm
~b has no solution.

2. There exists a ~y ∈ Rm such that ~y ≥Rm
~0, ~y

⊥~b < 0, and A

⊥

~y ≥Rn
~0.

20

Proof. Define A′ ∈ Rm×n+1, where A′ = [A| −~b]. Then A~x ≤ ~b has a solution if and only if

A′~x′ ≤ 0 has a solution where ~x′n+1 > 0. Define ~c′ ∈ Rn+1 where ~c′i = δi,n+1. If A~x ≤ ~b has

no solution, then it must be the case that when A′~x′ ≤ 0, then ~c′

⊥

~x′ ≤ 0. Thus condition

(1) of the Farkas Lemma does not hold. It follows that condition 2 holds, and there is a

~y ∈ Rm, ~y ≥ 0 such that ~y

⊥

A′ = ~c′

⊥

, and thus ~y

⊥

A = ~0, ~y

⊥

(−~b) = 1 and ~y

⊥~b < 0.

Definition 1.2.27. Let A : Rn → Rm, be a linear transformation, ~b ∈ Rm,~c ∈ Rn, d ∈ R

define a primal-dual affine program. Then the feasible decision variables ~x, ~y and induced

slack variables ~s,~t are complementary slack if for each i, 1 ≤ i ≤ n, and each j, 1 ≤ j ≤ m:

1. ~xi 6= 0 =⇒ ~si = 0.

2. ~si 6= 0 =⇒ ~xi = 0.

3. ~yj 6= 0 =⇒ ~tj = 0.

4. ~tj 6= 0 =⇒ ~yj = 0.

Here, we state an another definition

Definition 1.2.28. Let A : Rn → Rm, be a linear transformation, ~b ∈ Rm,~c ∈ Rn, d ∈ R

define a primal-dual affine program. Then the feasible decision variables ~x, ~y and induced

slack variables ~s,~t are complementary slack if ~s

⊥

~x = ~y

⊥

~t = 0.

Proposition 1.2.29. Let A : Rn → Rm, be a linear transformation, ~b ∈ Rm,~c ∈ Rn, d ∈ R

define a primal-dual affine program. Then the definitions given in Definition 1.2.27 and Def-

inition 1.2.28 about decision variables ~x, ~y and induced slack variables ~s,~t are complementary

slack, are equivalent.

21

Proof. We note that ~s

⊥

~x =
n∑
i=1

~si~xi. Since ~x, ~y are feasible, each ~xi, ~yj , ~si,~tj ≥ 0. Thus

n∑
i=1

~si~xi = 0 if and only if each ~si~xi = 0, which is true if and only if:

• ~xi 6= 0 =⇒ ~si = 0

• ~si 6= 0 =⇒ ~xi = 0.

Similarly, ~y

⊥

~t =
m∑
j=1

~yj~tj , which is 0 if and only if:

• ~yj 6= 0 =⇒ ~tj = 0

• ~tj 6= 0 =⇒ ~yj = 0.

We may then state the following characterization of optimal solutions:

Theorem 1.2.30 (Classical Fact VI: Complementary Slackness Theorem). Let A : Rn → Rm,

be a linear transformation, ~b ∈ Rm,~c ∈ Rn, d ∈ R define a primal-dual affine program. Then

the feasible decision variables ~x, ~y are optimal solutions if and only if ~x, ~y and induced slack

variables ~s,~t are complementary slack.

Proof. Suppose ~x, ~y,~s,~t are complementary slack. Recall that g(~y) − f(~x) = ~s

⊥

~x + ~y

⊥

~t by

Theorem 1.2.5. Then since these variables are complementary slack, g(~y) − f(~x) = 0. Thus

g(~y) = f(~x) and by Theorem 1.2.6, both solutions are optimal.

Conversely, suppose that ~x∗, ~y∗, are optimal with slack variables ~s∗,~t∗. By the Farkas’

Lemma 1.5.2, either (2) we may find a ~y′ ∈ Rm such that A

⊥

~y′ = ~c, ~y′ ≥ 0 or (1) there is a

~x′ ∈ Rn such that ~x′

⊥

A ≤ 0, ~c

⊥

~x′ > 0.

22

We notice here that A~x ≤ ~b, ~x ≥ 0 if and only if (A,−In)~x ≤ (~b, 0). Similarly A

⊥

~y′ ≥ ~c if

and only if there is a ~w ∈ Rn such that A

⊥

~y′− In ~w = c. Thus we may let A′ := [A| − In], and

~b′ := [~b|0]

⊥

.

If (2) holds, then given any feasible ~y, and non-negative real number r ∈ R⊕, A(~x+ r~x′)

⊥

≤

A~x ≤ ~b, since A(r~x′) ≤ 0. Thus ~y + r~y′ is feasible. But f(~x + r~x′) = ~c

⊥

~x + r~c

⊥~x′ − d. Since

~c

⊥~x′ > 0, this can be made arbitrarily large by choice of r, and so by Theorem 1.2.23, the

dual program is infeasible, a contradiction.

Thus, it follows that we may find a ~y′ ∈ Rm+n such that A

⊥

~y′ = ~c, ~y′ ≥ 0. We claim that

there is such a ~y′, such that ~y′j = 0 whenever ~t∗j 6= 0.

Let J := {j : 1 ≤ j ≤ m,~t∗j 6= 0}. We note that given any feasible ~x ∈ Rn, we may write

~x := ~x∗ + ~x′ where ~x′ := ~x− ~x∗. Let ~b′ ∈ Rm be the vector such that ~b′j := ~bj − A~x∗j for each

1 ≤ j ≤ m. Let AJ be the matrix whose rows are (AJ)j = Aj , j ∈ J , ~0

⊥

otherwise. Let AI be

the matrix consisting of the remaining rows of A, i.e. (AI)i = Ai, i 6∈ J , ~0
⊥

otherwise.

We want to show that AI~x
′ ≤ ~0 =⇒ ~c

⊥

~x′ ≤ 0. Suppose this is not true, and that there

is a ~x′ such that AI~x
′ ≤ 0, ~c

⊥

~x′ > 0. Then consider that for some ε > 0, AJε~x
′ < ~b′, Since

AI~x
′ ≤ 0 , AIε~x

′ ≤ 0 as well, and Aε~x′ ≤ ~b′. Thus ~c

⊥

ε~x′ ≤ 0, else ~x∗ + ~x” is an improved

solution to the primal problem.

Thus ~c

⊥

~x′ >≤ 0, contradicting the existence of such a ~x′. It follows that AI~x
′ ≤ ~0 =⇒

~c

⊥

~x′ ≤ 0, and so by Theorem 1.5.2 ~c = A

⊥

I ~y
′ for some ~y′ ≥ 0. WLOG, we may assume that

~y′j = 0 whenever j ∈ J . Then

~c

⊥

~x = ~y′

⊥

A~x = ~y′

⊥

~b.

So by Theorem 1.2.6, this ~y′ is optimal, and ~x∗, ~y′,~t∗ and ~s′ := AT~y′ − ~c are complimentary

slack.

23

Since ~y∗ is also optimal, it follows that ~y∗

⊥

~b = ~y′

⊥

~b, and thus g(~y∗) − f(~x∗) is also 0, and

~x∗, ~y∗ and induced slack variables ~s∗, ~t∗ are complementary slack.

Theorem 1.2.31 (Classical Fact VII: Strong Duality). Let ~x∗ ∈ Rn, ~y∗ ∈ Rm be a pair of

feasible optimal solutions for the primal and dual programs respectively. Then

f(~x∗) = g(~y∗).

Proof. Recall that by Theorem 1.2.5

g(~y∗)− f(~x∗) = ~s

⊥

~x+ ~y

⊥

~t.

By Theorem 1.2.30, ~s

⊥

~x+ ~y

⊥

~t = 0, so f(~x∗) = g(~y∗).

1.2.6 Simplex Algorithm

Given the initial data that defines a primal dual affine program (A ∈ Rm×n,~b ∈ Rm,~c ∈

Rn, d ∈ R), it is also possible to formulate an algorithm, where the input is a primal feasible

affine program, and the output is either the primal-dual optimal solution, or a statement that

the primal program solution values are unbounded.

Consider a Tucker tableau:

24

� ~x

⊥

-1

~y A ~b = −~t

−1 ~c

⊥

d = f

= =

�

~s

⊥

g

The top and right variables are called independent variables (primal and dual respectively),

and the bottom and right variables are the dependent variables (primal and dual respectively).

This tableau records a primal “solution” where each of the primal independent variables xi

are 0. The values of the primal dependent variables (−tj) are then exactly the values of −bj ,

or tj = bj . We can think of this as been the solution that corresponds to the intersection of

all the hyperplanes xi = 0 in Rn. Similarly, this tableau also records a dual solution where

each one of the dual independent variables yj are 0, and the dual dependent variables si are

exactly the −ci. Finally, the tableau records the solution values of f(~x), g(~y), and since all

independent variables are set to 0, the solution is simply −d.

What then determines if such a tableau describes an optimal solution? An equivalent

condition to a decision variable being feasible, is each independent and dependent coordinate

is non-negative. Thus ~x = ~0 is feasible if each tj ≥ 0, since each xi = 0 and thus xi ≥ 0.

Similarly, a dual variable is feasible if each si ≥ 0. If both the primal and dual solutions are

feasible, by construction they yield the same solution value: −d. Thus by Theorem 1.2.6, the

Weak Duality Theorem, both solutions must be optimal. However, if there is a xi such that

ci > 0 but for each j, 1 ≤ j ≤ m such that aji ≤ 0, then for each j, we have that:

aj1x1 + aj2x2 + . . .+ ajixi + . . .+ ajnxn ≤ bj .

25

Since each aji ≤ 0, for any value r ∈ R+ x1 = 0, x2 = 0, . . . , xi = 0, . . . , x+ n = 0 is feasible.

Then the objection solution value is ci · xi − d > −d. We see that by making r arbitrarily

large, that the ci · xi − d is arbitrarily large. Thus the primal solution values are unbounded.

Definition 1.2.32. A Tucker tableau is primal feasible if ~b ≥ ~0. A Tucker tableau is dual

feasible ~c ≤ ~0. If the tableau is both primal and dual feasible, then it is optimal.

Remark 1.2.33. How then, does one obtain an optimal Tucker tableau from a primal feasible

one? The intuition behind this process follows from the underlying geometry. Both the

decision variables xi, yj and the slack variables si, tj , represent a “slack” or distance from

a bounding hyperplane: either a hyperplane of the form −xi = 0, yj = 0 or of the form

Aj~x = bj , A

⊥

i = ci. Thus a primal solution can be obtained by selecting n of the primal

decision or slack variables to play the role of the original ~x, that is to be set equal to 0. This

selection corresponds to an intersection of n of the bounding hyperplanes.

We then discuss the process of obtaining a new feasible Tucker tableau from a feasible

Tucker tableau. When we consider the primal program, we note that a feasible Tucker tableau

corresponds to the following system of affine equalities:

a11 · x1 + a12 · x2 + . . .+ a1n · xn − b1 = −t1

a21 · x1 + a22 · x2 + . . .+ a2n · xn − b2 = −t2
... =

...

am1 · x1 + am2 · x2 + . . .+ amn · xn − bm = −tm

c1 · x1 − c2 · x2 + . . .+ cn · xn − d = w.

Where w is a placeholder variable representing the value of f(~x) associated with this tableau.

As discussed above, if we wish to replace one of the xi with one of the tj to represent a new

26

solution, we could do so by simply solving for xi in the affine equality containing tj , and

replacing all instances of xi with the appropriate expressions.

For example, without loss of generality, we may replace x1 with t1. We note that:

a11 · x1 + a12 · x2 + . . .+ a1n · xn − b1 = −t1

−a12 · x2 − . . .− a1n · xn − t1 + b1 = a11 · x1

1

a11
· t1 +

a12

a11
· x2 + . . .+

a1n

a11
· xn −

b1
a11

= −x1.

We then consider the affine equality:

aj1 · x1 + aj2 · x2 + . . .+ ajn · xn − bj = −tj

aj1 ·
(
− 1

a11
· t1 −

a12

a11
· x2 − . . .−

a1n

a11
· xn +

b1
a11

)
+ aj2 · x2 + . . .+ ajn · xn − bj = −tj

−aj1
a11
· t1 +

(
aj2 −

aj1a12

a11

)
· x2 + . . .+

(
ajn −

aj1a1n

a11

)
· xn +

(
aj1b1
a11

− bj
)

= −tj

Finally, we may also rewrite the objective value:

c1 · x1 + c2 · x2 . . . xn · xn − d = w

c1 ·
(
− 1

a11
· t1 −

a12

a11
· x2 − . . .−

a1n

a11
· xn +

b1
a11

)
+ c2 · x2 + . . .+ cn · xn − d = w

− c1

a11
· t1 +

(
c2 −

c1a12

a11

)
· x2 + . . .+

(
c2 −

cna1n

a11

)
−
(
d− c1b1

a11

)
= w

What happens to the dual variables in this case? We may consider the dual decision variables

yj to be weights placed on the hyperplanes defined by

aj1 · x1 + aj2 · x2 + . . .+ ajn · xn = bj

27

and the dual slack variables si to be weights placed on the hyperplanes

−xi = 0.

Notice that if a feasible primal solution is optimal, then it should still be optimal if one were

to remove the other hyperplanes that do not define this point (the slack hyperplanes) Thus a

dual solution should exist that is an linear combination of the affine functionals which define

the non-slack hyperplanes. (This was made explicit by Theorem 1.2.30)

Thus, for the initial Tucker tableau, the associated primal feasible solution is one where

each xi = 0, and the hydroplanes aj1 · x1 + aj2 · x2 + . . .+ ajn · xn = bj are slack. Thus each

yj was also set to 0. When one exchanges xi for tj , one then exchanges si for yj .

It can be illustrated in Figure 1.5

Figure 1.5: A Tucker pivot

x
y p∗ k = −t

q w

=

s

7→

t

s 1
p

k
p = −x

− q
p w − qk

p

=

y

Where other labels are unchanged.

Such an exchange of variables (as described above) is called a Tucker pivot.

It then suffices to describe a set of rules on how Tucker pivots are selected. This leads to what

is referred to as the Two Phase Simplex Algorithm. Here we discuss each phase of the

simplex algorithm and the steps involved. We also make the assumption of non-degeneracy.

Definition 1.2.34. The associated solution of a Tucker tableau is considered degenerate if

any entries in the ~b column are 0. Equivalently, More than n of the defining hyperplanes

intersect at that solution.

28

A program with no degenerate solutions is non-degenerate.

We will assume for now that our given programs are non-degenerate. Later we will address

the case of degeneracy. Phase I: Phase I of the Simplex algorithm takes a tableau describing a

primal problem with non-empty feasible region and returns a tableau that is feasible. Typically

if the origin is a feasible primal solution, then this step is not necessary and in fact Phase

I will return the same tableau as an output. However it may be the case that the solution

associated with a given initial tableau is not primal feasible.

Example 1.2.35. Consider the following primal maximization problem:

Find x1, x2 ≥ 0 such that

f(x1, x2) = x1 + 5x2 is maximized, subject to:

x1 + x2 ≥ 1

2x1 + x2 ≤ 5

We note that the inequality x1 + x2 ≥ 1 may be re-written as −x1 − x2 ≤ −1. Thus the

associated Tucker tableau for this problem is:

Figure 1.6: Origin infeasible tableau

� x1 x2 -1

y1 −1 −1 −1 = −t1
y2 2 1 5 = −t2
−1 1 5 0 = f

= = =

�

s1 s2 g

We see that the associated solution x1, x2 = 0 is not feasible, since −0− 0 6≤ −1. Moreover,

we may observe this fact geometrically.

We see that the origin is not within the feasible region.

29

Figure 1.7: Origin infeasible, feasible region

x1

x2

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

x
1
+
x
2 ≥

1

x
1
+

2
x
2
≤

5

Thus we need to select pivots such that the result is a tableau whose associated solution is

feasible, or is unbounded:

1. Select b` such that ` is the largest index where b` is negative. If not such b` exists then

the associated solution is feasible. STOP

2. Select a`i be any negative entry in this row. If each a`i is non-negative, then the original

primal problem is infeasible. STOP.

3. For a`i and for each positive entry aki, k ≥ `, form the quotient bk
aki

. Select bk
aki

to be the

smallest of these quotients.

4. Pivot on aki.

5. Goto 1.

We now sketch the proof that this process returns a feasible tableau:

Proof. When the pivot is made, for each z ≥ ` there are several cases:

30

1. If k = `, z = k, `, then b` is replaced with b′` := b`
a`i

, since b`, a`i < 0, b′` > 0.

2. If k = `, z 6= k, `, then bz is replaced by b′z := bz − b`azi
a`i

. If azi < 0, then b′z > 0 since

bz > 0 and b`, a`i < 0. Otherwise:

b`
a`i

≤ bz
azi

b`azi ≥ bza`i, since both azi > 0, a`i < 0,

bza`i − b`azi ≤ 0

bza`i − b`azi
a`i

≥ 0 since a`i < 0.

3. If k > `, z = k, then bz is replaced with b′z := bz
azi

, and since aki > 0, the sign of this

entry is preserved, and since bz > 0, b′z > 0.

4. If k > `, z = `, then bz is replaced with b′z := bz − bkazi
aki

. Since z = `, it follows that

azi < 0, similarly since k > `, aki, it follows that bk > 0. Thus − bkazi
aki

> 0, and b′z > bz.

5. If k > `, z 6= k, `, then

bk
aki

≤ bz
azi

bkazi ≤ bzaki, since both azi, aki > 0,

bzaki − bkazi ≥ 0

bzaki − bkazi
aki

≥ 0.

We see by cases 2, 3, 5 where z 6= `, that b′z is a non-negative (thus positive by non-

degeneracy) value. Thus this process always preserves the positivity of entries bz, z > `.

In case 1, b′` is positive and so now the largest index j such that bj < 0 is strictly bounded

above by `. In case 4, we move from an infeasible intersection of hyperplanes to a (also po-

tentially infeasible) intersection of hyperplanes. But in doing so we strictly increase the value

31

of the entry b`. Since there are at most n + m hyperplanes, the number of possible vertices

are also finite, and only a finite number of infeasible vertices. Thus this process cannot be

infinite and in some iteration, b′` > 0.

Thus, in a finite number of steps, we can strictly lower the largest index with a negative

entry. Then since this index is itself finite, we can iterate this process until no negative entries

are left.

Example 1.2.36. Recall Example 1.2.35:

� x1 x2 -1

y1 −1 −1 −1 = −t1

y2 2 1 5 = −t2

−1 1 5 0 = f

= = =

�

s1 s2 g

By our rules, we note that the first row is the only row where the entry in the ~b column is

negative. Let us select the second column to be the picot column. Then, by our rules, the first

row is our pivot row: Since both entries of the ~b column are non-negative, this is a feasible

Figure 1.8: Origin infeasible pivot

� x1 x2 -1

y1 −1 −1∗ −1 = −t1
y2 2 1 5 = −t2
−1 1 5 0 = f

= = =

�

s1 s2 g

7→

� x1 t1 -1

s2 1 −1 1 = −x2

y2 1 1 4 = −t2
−1 −4 5 −5 = f

= = =

�

s1 y1 g

32

tableau. We note that the solution associated to this tableau (1, 0) is in fact feasible:

Figure 1.9: Origin infeasible, End of Phase I

x1

x2

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

x
1
+
x
2 ≥

1
x
1
+

2
x
2
≤

5

∗
(1, 0)

Phase II: Here, we assume that Phase I is complete and that the given tableau is feasible.

It then suffices to devise rules to select a pivot that will lead to a tableau where the associated

solution is optimal, or the described program is unbounded. That is, no entry bj is negative,

and by the non-degeneracy assumption, each bj is in fact positive.

1. Select a ci, where ci > 0. If each ci ≤ 0, then the current tableau is optimal. STOP.

2. For each positive entry aji, compute
bj
aji

. If there are no positive entries aji, then the

primal program is unbounded. STOP.

3. Let aki be the entry where the ratio bk
aki

is the smallest amongst all valid entries. Pivot

on aki.

4. Go to 1.

Here we again include a sketch of the proof that this algorithm terminates.

33

Proof. We first note that for each z 6= k, b′z := bz − bkazi
aki

. But as before, either azi ≤ 0, in

which case, − bkazi
aki
≥ 0, since bk, aki > 0. Thus b′z ≥ bz > 0. Otherwise, if azi > 0:

bk
aki

≤ bz
azi

bkazi ≤ bzaki, since both azi, aki > 0,

bzaki − bkazi ≥ 0

bzaki − bkazi
aki

≥ 0.

Thus b′z > 0. We also observe that b′k := bk
aki

> 0, since bk, aki > 0. Thus the resulting

tableau is feasible.

We also notice that d′ := d− cibk
aki

, since ci, bk, aik > 0, d′ < d. Thus each such pivot strictly

improves the solution. Since the result of each such pivot is an improved solution, no vertex

can be visited more than once by this method. Since again there are only finitely many

vertices, this process must terminate.

Example 1.2.37. Recall the Lumbermill Problem 1.2.1. The primal and dual programs were

encapsulated in the following tableau:

Figure 1.10: Lumbermill tableau

� x1 x2 x3 -1

y1 1 3 2 10 = −t1
y2 2 1 1 8 = −tm
−1 3 2 4 5 = f

= = = =

�

s1 s2 s3 g

34

Let us pick c1 to be the pivot column, then the second row must be our pivot row:

� x1 x2 x3 -1

y1 1 3 2 10 = −t1

y2 2∗ 1 1 8 = −t2

−1 3 2 4 5 = f

= = = =

�

s1 s2 s3 g

7→

� t2 x2 x3 -1

y1 −1
2

5
2

3
2 6 = −t1

s1
1
2

1
2

1
2 4 = −x1

−1 −3
2

1
2

5
2 −7 = f

= = = =

�

y2 s2 s3 g

We then select c2 to be the pivot column which forces row one to be the pivot row:

� t2 x2 x3 -1

y1 −1
2

5
2

∗ 3
2 6 = −t1

s1
1
2

1
2

1
2 4 = −x1

−1 −3
2

1
2

5
2 −7 = f

= = = =

�

y2 s2 s3 g

7→

� t2 t1 x3 -1

s2 −1
5

2
5

3
5

12
5 = −x2

s1
3
5 −1

5
1
5

14
5 = −x1

−1 −7
5 −1

5
11
5 −31

5 = f

= = = =

�

y2 y1 s3 g

Now c3 is the only choice for pivot column, with row one been the only choice for pivot row.

35

� t2 t1 x3 -1

s2 −1
5

2
5

3
5

∗ 12
5 = −x2

s1
3
5 −1

5
1
5

14
5 = −x1

−1 −7
5 −1

5
11
5 −31

5 = f

= = = =

�

y2 y1 s3 g

7→

� t2 t1 x3 -1

s2 −1
3

2
3

3
5 4 = −x2

s1
8
15 −1

3 −1
3 2 = −x1

−1 −2
3 −5

3 −11
3 −17 = f

= = = =

�

y2 y1 s3 g

Since each entry in the ~c row is non-positive, we have achieved optimality. Thus the primal

solution is (2, 0, 4) and the dual solution is (5
3 ,

2
3). We can illustrate these solutions:

36

Figure 1.11: Lumbermill Primal-Optimal Solution

x1

x2

x3

0

2

4

6

8

10

12

0
2

4
6

8
10

0

2

4

6

8

10

x1
+ 3x2

+ 2x3
≤ 10

2x
1
+
x
2
+
x
3 ≤

8

(2, 0, 4)∗

Figure 1.12: Lumbermill Dual-Optimal Solution

y1

y2

0 1 2 3 4
0

1

2

3

4

2y
1 +

y
2 ≥

3

2
y
1
+

y
2
≤

5

3
y
1
+

y
2
≤

2 ∗ (5
3
, 2
3
)

In fact, we may represent the feasible region of each of these spaces, the primal and dual

variables, and the solutions, with the following diagram:

37

Figure 1.13: Lumbermill 3-space diagram

x1

x2

x3
0 2 4 6 8 10 120

2

4

6

8

10

0
2

4
6

8
10

-20

-10

0

10

2012

y1

y2

0 1 2 3 4
0

1

2

3

4

f

g

Example 1.2.38. Consider the following tableau (due to E.M.L. Beale [Bea55]):

� x1 x2 x3 x4 -1

y1
1
4 −8 −1 9 0 = −t1

y2
1
2 −12 −1

2 3 0 = −t2

y3 0 0 1 0 1 = −t3

−1 3
4 −20 1

2 −6 0 = f

= = = = =

�

s1 s2 s3 s4 g

Then consider the following sequence of pivots:

� x1 x2 x3 x4 -1

y1
1
4

∗ −8 −1 9 0 = −t1

y2
1
2 −12 −1

2 3 0 = −t2

y3 0 0 1 0 1 = −t3

−1 3
4 −20 1

2 −6 0 = f

= = = = =

�

s1 s2 s3 s4 g

7→

� t1 x2 x3 x4 -1

s1 4 −32 −4 36 0 = −x1

y2 −2 4∗ 3
2 −15 0 = −t2

y3 0 0 1 0 1 = −t3

−1 −3 4 7
2 −33 0 = f

= = = = =

�

y1 s2 s3 s4 g

7→

38

� t1 t2 x3 x4 -1

y1 −12 8 8∗ −84 0 = −x1

s2 −1
2 −1

4
3
8 −15

4 0 = −x2

y3 0 0 1 0 1 = −t3

−1 −1 −1 2 −18 0 = f

= = = = =

�

s1 y2 s3 s4 g

7→

� t1 t2 x1 x4 -1

s3 −3
2 1 1

8 −21
2 0 = −x3

s2
1
16 −1

8 − 3
64

3
16

∗
0 = −x2

y3
3
2 −1 −1

8 −21
2 1 = −t3

−1 2 −3 −1
4 3 0 = f

= = = = =

�

s1 y2 y1 s4 g

7→

� t1 t2 x1 x2 -1

s3 2∗ −6 −5
2 56 0 = −x3

s4
1
3 −2

3 −1
4

16
3 0 = −x4

y3 −2 6 5
2 −56 1 = −t3

−1 1 −1 1
2 −16 0 = f

= = = = =

�

s1 y2 y1 s2 g

7→

� x3 t2 x1 x2 -1

s1
1
2 −3 −5

4 28 0 = −t1

s4 −1
6

1
3

∗ 1
6 −4 0 = −x4

y3 1 0 0 0 1 = −t3

−1 −1
2 2 7

4 −44 0 = f

= = = = =

�

s3 y2 y1 s2 g

7→

� x3 x4 x1 x2 -1

s1 −1 9 1
4 −8 0 = −t1

y2 −1
2 3 1

2 −12 0 = −t2

y3 1 0 0 0 1 = −t3

−1 1
2 −6 3

4 −20 0 = f

= = = = =

�

s3 s4 y1 s2 g

But we see that the entries of this final tableau is identical to the first tableau, up to a

rearrangement of columns. Such behavior is referred to as cycling.

However, a result by Robert Bland [Bla77] insures that we may choose pivots in such a way

39

such that cycling does not occur.

Theorem 1.2.39 (Bland’s Anticycling Rule). When choosing Tucker pivot’s, if one selects the

column with smallest index of all valid column choices, and one selects the row with smallest

index of all valid row choices, then the Simplex algorithm will terminate.

Theorem 1.2.40 (Classical Fact XI: Simplex Algorithm). The two phase Simplex Algorithm,

along with Bland’s Anticycling rule terminates.

Knowing that the simplex algorithm is guaranteed to terminate gives us alternative proofs

to one of our previous results.

Alternative proof to Strong Duality 1.2.31. Suppose that there exists optimal solutions to both

the primal and dual problem. Run the simplex algorithm. Since an optimal primal solution

exists, the algorithm terminates, where the output is a tableau whose associated primal and

dual solutions are optimal.

Thus, a dual solution is found, and by construction it has the same objective value as the

primal solution. Thus all dual optimal solutions must have the same objective value.

We can also now finally prove a powerful classification result about primal-dual affine pro-

grams.

Theorem 1.2.41 (Classical Fact VIII: Existence-Duality Theorem). Given a primal-dual

affine program, exactly one of the following hold:

1. Both the primal and dual programs are infeasible.

2. The primal program is infeasible and the dual program is unbounded.

3. The dual program is infeasible and the primal program is unbounded.

40

4. Both the primal and dual program achieve an optimal solution.

Proof. Consider the following cases:

• If the primal program is infeasible, and the dual program is also infeasible, then we

satisfy (1) .

• Otherwise, suppose the primal program is infeasible and there is a feasible ~y′ ∈ Rm. Note

that the primal program being infeasible is equivalent to Corollary 1.2.26(1) (recall the

discussion in the proof of Theorem 1.2.30). Thus by Corollary 1.2.26, there is a ~y ∈ Rm

such that A

⊥

~y ≥Rn 0 but ~y

⊥~b < 0. Thus, given r ∈ R+, ~y′ + r~y is feasible, but by

choosing r to be arbitrarily large, g (~y′ + r~y) = (~y′ + r~y)

⊥

~b is arbitrarily small, thus the

dual program is unbounded and (2) holds.

• If the primal program is feasible, then then by Theorem 1.2.23, the dual program cannot

be unbounded. If the dual program is infeasible, then Theorem 1.5.2(1) does not hold

(recall the discussion in the proof of Theorem 1.2.30). Thus, Theorem 1.5.2(2) holds,

and there is a ~x′ such that A~x′ ≥Rm 0, but ~c

⊥

~x < 0. Let ~x = −~x′. Then given any

feasible vector ~x′′, we note that ~x′′ + r~x is feasible for any choice of r ∈ R+. But by

allowing r to be arbitrarily large, f (~x′′ + r~x) = ~c

⊥

(~x′′ + r~x) − d is arbitrarily large.

Thus the primal program is unbounded (3).

• Otherwise both the primal and dual program are feasible, and by Theorem 1.2.6, both

programs are bounded. Since the primal program is feasible and unbounded, when we

run the Simplex algorithm on it, it will return an optimal primal and optimal dual

solution (4).

41

1.3 Generalizations

This basic framework for affine programming models a particular type of affine optimization

problems. However, there are certain types of problems which do not fall under this framework,

and as such, we would like to be able to generalize this set-up.

1.3.1 Generalizing the Ring of Scalars

We notice that the notions of feasibility and optimality described above do not depend on

the Archimedean or least upper bound properties of real numbers, only it’s order. Thus, it is

reasonable to believe that these notions may be generalized to an ordered ring R, rather than

the real numbers R.

Definition 1.3.1 (Ordered Ring [Lam01]). A ring R is ordered (sometimes called trichotomy

ordered), if there is a non-empty subset P ⊂ R called the “positives” with the following

properties:

1. R can be partitioned into the disjoint union: P t{0}t−P (this is called the trichotomy

property).

2. Given a, b ∈ P , then a+ b ∈ P .

3. Given a, b ∈ P , then ab ∈ P .

We say that a ≥ b if a − b ∈ P ∪ {0}. We also say that a > b if a − b ∈ P . We will also use

R⊕ to denote P ∪ {0}, (“the positives and zero”).

A well known modification of affine programming is to change the underlying ring of scalars

from R to Z [Sch86]. A famous example is the “Knapsack Problem” [Num55].

42

Problem 1.3.2. Suppose there were a knapsack capable of holding W weight. In it, we wish

to place some of n items, each of which has weight wi (> 0) and value vi. We wish to find the

quantities of each of the n items, quantities x1, . . . , xn, xi ∈ Z such that:

Maximize: f(x1, . . . , xn) :=
n∑
i=1

vi · xi

subject to:
n∑
i=1

wi · xi ≤ W

xi ≥ 0

We see that this is exactly an affine programming problem as described before, except R is

replaced with Z, A ∈ Z1×n, A1i = wi,~b = [W] (a 1× 1 matrix), ~c = [v1, . . . , vn]

⊥

and d = 0.

Integer programming problems play a great role in modeling and solving real-world prob-

lems, and so are a well studied field of optimization. However, integers are not the only ring

over which one may wish to do affine programming. Another ring is the hyperreals:

Remark 1.3.3 (A discussion of the Hyperreals ∗R). A classical example of a non-standard

ordered ring is an extension of the Real numbers called the Hyperreals (denoted by ∗R).

The Hyperreals were originally a field constructed by Abraham Robinson in the early 1960’s

[Rob79] to do non-standard analysis, with a focus on the infinitesimal approach to calculus

(and analysis) that mimicked the original approach of Leibniz.

The Hyperreals are constructed by placing equivalence classes on sequences of real numbers.

This involves an object called an ultrafilter.

Definition 1.3.4 ([Rob79]). An ultrafilter of N is a subset U ⊆ P(N) such that:

• If S ∈ U, S ⊆ S′, S′ ∈ U . (“Closed under super sets” property)

• If S1, S2 ∈ U , S1 ∩ S2 ∈ U . (“Closed under finite intersections” property)

43

• If S ⊂ N, |S| <∞, then S 6∈ U . (“Cauchy” property)

• If S ⊂ N, then S ∈ U if and only if Sc 6∈ U . (“Ultrafilter” property)

A collection of subsets satisfying the first two properties is called a filter. The subsets in a

filter are “huge” subsets.

Then we consider the ring of real-valued sequences, RN with pointwise sums and products.

Claim 1.3.5. The set M := {ϕ ∈ RN : {n ∈ N : ϕ(n) = 0} ∈ U} is a maximal ideal of RN,

where U is an ultrafilter.

Proof. We first show that M is an ideal. Let ϕ,ψ ∈ M and consider ϕ + ψ. We note that if

ϕ(n) = ψ(n) = 0 then (ϕ + ψ)(n) = 0. Thus {n : (ϕ + ψ)(n) = 0} ⊇ {n : ϕ(n) = 0} ∩ {n :

ψ(n) = 0} ∈ U . Thus {n : (ϕ+ ψ)(n) = 0} ∈ U and M is closed under sums.

Let ρ ∈ RN, and consider ρ · ψ. We notice that {n : ρ(n)ψ(n) = 0} ⊇ {n : ρ(n) = 0} ∈ U .

Thus {n : ρ(n)ψ(n) = 0} ∈ U and ρ · ψ ∈M . We conclude that M is an ideal.

Now, we show that M is maximal. Suppose M < M ′ � RN. Let r ∈ M ′\M . Since r 6∈ M ,

{n ∈ N : r(n) 6= 0} ∈ U . Then define s : N :→ R such that

s(n) =

1

r(n) , r(n) 6= 0

0 otherwise

.

Notice that

r · s =

1, r(n) 6= 0

0 otherwise

,

and r · s ∈M ′ since r ∈M ′.

44

Then define t : N→ R by

t(n) =

1, r(n) = 0

0 otherwise

.

Notice that {n ∈ N : t(n) = 0} ∈ U , thus t ∈M ⊂M ′. Thus, r · s+ t = 1 ∈M ′, contradicting

M ′ been a proper ideal. Thus M is maximal.

Thus, we define ∗R := RN/M , and by the discussion above, ∗R is a field. Although the

ultrafilter U is not a σ-algebra, we can also think of the equivalence class induced by M to

be all sequences which agree “almost everywhere”, meaning over a set that is contained in U .

The collection of sequences which is zero “almost everywhere” then is exactly the set M .

We define the positives of ∗R to be the classes of sequences which are positive “almost

everywhere”. Formally, P := {[a] ∈ ∗R : {n : a(n) > 0} ∈ U}. We then notice that by the

complement properties of an ultrafilter, each sequence must be equal to, greater than, or less

than zero, almost everywhere.

A 2008 economics paper [Piv08], uses hyperreals to model values over an infinite time span.

For example in the lumber mill problem, the number of available large logs in year n could

be thought of as a function `L ∈ RN, which may then be identified with a hyperreal number.

The example problems 1.2.1, 1.2.2 can be then reformulated to find a sequence (or equivalence

class of sequences) of either quantities of products (primal) or valuation of resources (dual),

given a potentially ever changing resources required for each product (A), quantity of available

logs (~b), sale price of our products (~c) and our sunk (or fixed) costs (d). Each of these could

be reformulated as vectors or matrices with hyperreal entries.

Another natural ring of scalars for affine optimization problems is the ordered field of rational

functions (i.e. quotients of polynomials) in several indeterminants.

Thus, it is natural to wish to extend affine programming to ordered rings.

45

1.3.2 Generalizing the Dimension or Rank

It is also natural to extend affine programming to situations of arbitrary dimension. Consider

the scheduling problem over an infinite time horizon and non-stationary demand found in

[DeN82]:

Problem 1.3.6. Given i ∈ Z+, where i is the ith period of scheduling, we may define Ii to

be the net inventory of period i, Pi to be the net production in period i, and let di be the

demand during period i, Īi, P̄i to be the upper bound of inventory and production in time

i. Additionally, for each i we define ki, si, the costs of producing goods and storing goods in

period i respectively. We also define α be a discounting factor, representing the devaluation

of money over time. Our goal here is to minimize the cost over an infinite period of time.

Then we have:

Minimize: f(Pi, Ii)
∞
i=1 :=

∑
i∈Z+

(kiPi + siIi)α
i−1 subject to:

Ii−1 + Pi − Ii ≥ di

Pi ≤ P̄i

Ii ≤ Īi

Pi, Ii ≥ 0.

We see that the primal solution space is contained in RN, and similarly, so is the space of

constraints. Thus we may model this program by allowing the vector spaces in question to

have arbitrary dimension.

46

1.3.3 Generalizing the Cones

Given an ordered ring R and X,Y ∗ left R-modules. We would like to define the analogue to

the non-negative cone of our classical case.

Definition 1.3.7. A positive cone of a module X over an ordered ring R is a subset C ⊂ X

such that given r, s ∈ R, r, s ≥ 0, and a, b ∈ C, then r · a+ s · b ∈ C.

We also define the following specialized types of cones (C):

• If C contains no non-trivial sub-module of X, then C is said to be a pointed cone.

• If there is a x ∈ X\C and r ∈ R, r ≥ 0, such that r · x ∈ C, then we say that C is

perforated. Otherwise C is unperforated.

Notice that our classical examples of non-negative cones were the non-negative span of some

basis. However, it may be the case we wish to work more generally.

Given a topological set S, it is natural to consider the collection of functions Cn(S) (the

collection of nth differentiable continuous functions from S → R) as a vector space over R.

Then a good example for a non-negative cone is the collection of non-negative functions in

Cn(S). It is easy to check that this collection forms a cone. However, it is not necessarily the

case that these functions may be expressed as the non-negative span of some basis of Cn(S).

Thus it may be that we will wish to generalize the types of cones over which we do affine

programming.

47

1.4 General Framework

Thus, we establish the general setting over which affine programming takes place. Rather

than deal only in finite dimensional real-vector spaces, we can generalize this idea to modules

over a ring R. In order to do this, we must properly describe the appropriate features of these

problems and their data.

If we allow R to be an arbitrary ring, rather than R, then the natural analogues to Rn,Rm

would be a pair of (left) R-modules, X,Y ∗. We will focus on the left structure of these objects,

although there is no reason one cannot define the same concepts for right modules instead.

In the traditional case, A is a n×m real-matrix, or equivalently A ∈ HomR(Rn,Rm), and so

the appropriate generalization would be to let A ∈ HomR(X,Y ∗). It is clear that ~b ∈ Y ∗ is

an element of the co-domain of A, and d ∈ R as before.

Recall that in the classical case, ~c ∈ Rn. However, when we consider the role that ~c plays

in the original problem, ~c acted on ~x via inner product to obtain a value in R. Hence, the

appropriate generalization of ~c is c ∈ X∗ := HomR(X,R). Similarly, while ~x should remain

an element of the domain of A, ~x ∈ X, ~y is a vector that acts on ~b via an inner product, and

so ~y should be generalized to y ∈ HomR(Y ∗, R) =: Y ∗∗. (Recall that this also makes sense

even in the classical case. When ~b represented some quantity of raw materials, ~y represented

an evaluation of those materials, a functional from the space of materials to R, the space of

revenue).

We may then, define as before:

f : X → R, ~x 7→ c(~x)− d

g : Y ∗ → R,y 7→ y(~b)− d.

~t := −A(~x) +~b

s := y ◦A− c.

48

Which gives rise to a Tucker Tableau:

Figure 1.14: General Tucker tableau

� ~x

⊥

-1

y A ~b = −~t

−1 c d = f

= =

�

s g

1.5 Results

There are some facts about the classical affine primal-dual programming case which we would

like to describe in this generalized setting. The goal will be to describe the minimal hypothesis

necessary to prove these facts and to further specialize either the ring R, the dimension (or

rank) of the modules, and the cones of the modules, until we may establish the appropriate

generalization of these results.

1.5.1 Results about affine maps

Some of our classical results describe the property of the underlying affine maps. The classical

results Proposition 1.2.4 (the Tucker key equation) and it’s Corollary 1.2.5 are results which

rely only one the ring structure of the scalars R, and the module structure of the vector spaces

Rn,Rm. We intend to generalize these to arbitrary rings and modules.

49

1.5.2 Results about Duality

Some of our classical results describe the relationship between primal-dual solutions. Theorem

1.2.6 (the Weak Duality Theorem) is a result about primal-dual solutions that requires the

order of the real numbers and the positive orthants of Rn,Rm. We intend to generalize this

to ordered rings and cones in modules.

Theorem (the Farkas Lemma), has a proof that classically requires the least upper bound

property of the real numbers. Then Theorems 1.2.30 (the Complementary Slackness Theorem)

and 1.2.31 (the Strong Duality Theorem) have proofs that require the conclusion of the Farkas’

Lemma. We intend to generalize these to ordered division rings and their vector spaces.

1.5.3 Results Classifying Solutions

There are also a number of classical affine programming results which describe the nature

and properties of feasible or optimal solutions to the primal and dual program. Corollaries

1.2.16, 1.2.18 (the Convexity of primal and dual, feasible and optimal solutions) and Theorem

1.2.21 (the existence of extreme point optimizers) are results about the properties of feasible

or optimal solutions that require the order of the real numbers and the positive orthants of

Rn,Rm. We intend to generalize these to ordered rings and cones in modules.

Theorem 1.2.41 (the Existence-Duality Theorem) is a result classifying the possible ways

that a primal-dual program can have solutions. The proof classically requires the field prop-

erties of R as well as the finite-dimensionality of Rn,Rm. We intend to generalize this to

ordered division rings and their (not necessarily finite-dimensional) vector spaces.

50

1.5.4 Results about Structure: Tucker Tableaux and Oriented Matroids

In the late 1960’s [Roc69] R. T. Rockafellar observed that much of the results about affine

programming duality, such as the Tucker Duality Equation, the Complementary Slackness

Theorem, and the Strong Duality Theorem, could be encapsulated by statements about sign

patterns in complementary subspaces of Rn. In his paper “The Elementary Vectors of a

Subspace of Rn”, he described how the Tucker tableau representation of an affine programming

problem gives rise to a natural representation of an affine programming problem and its

equivalent tableau as an oriented matroid.

Definition 1.5.1. Given a set E (usually but not necessarily finite), a signed set or sign

vector is an ordered pair X := (X+, X−), where X+, X− ⊆ E and X+∩X− = ∅. An oriented

matroid is an ordered pair M := (E, C), where C is a collection of sign vectors such that:

1. The sign vector (∅, ∅) is not in C.

2. Given X,X ′ ∈ C such that X+ ⊆ X ′+, X− ⊆ X ′−, then X = X ′.

3. If X ∈ C, then −X := (X−, X+) ∈ C.

4. If X,Y ∈ C, X 6= ±Y , and there is an e ∈ X+ ∩ Y −, then there is a Z ∈ C such that

Z+ ⊆ (X+ ∪ Y +)\{e}, and Z− ⊆ (X− ∪ Y −)\{e}.

We call the elements of C oriented or signed circuits. We call supersets of a signed circuit a

sign vector.

What is crucial to capturing the information of a primal-dual programming problem is the

notion of duality in a matroid. Any oriented matroid M := (E, C), gives another oriented

matroid of cocircuits mathcalM(E, C∗), the dual matroid of M.

Definition 1.5.2. We say that two sign vectors X,Y are orthogonal if one of the following

hold:

51

• (X+ ∩ Y +) ∪ (X− ∩ Y −) = ∅ and (X+ ∩ Y −) ∪ (X− ∩ Y +) = ∅.

• (X+ ∩ Y +) ∪ (X− ∩ Y −) 6= ∅ and (X+ ∩ Y −) ∪ (X− ∩ Y +) 6= ∅

Definition 1.5.3. Given a (non-oriented) matroid M := (E, C), the basis B is a set B ⊆ E

such that given e ∈ E\B, B ∪ {e} contains a unique circuit e ∈ C ∈ C. We say that B is a

maximal independent set.

Proposition 1.5.4. Given an oriented matroid M := (E, C), we have the following:

1. There is a collection of cocircuits C∗, such that the pairM∗ := (E, C∗) forms an oriented

matroid.

2. Given C∗ ∈ C∗, C∗ is orthogonal to each circuit C∈C.

3. (M∗)∗ =M.

Theorem 1.5.5 (Primal-Dual Affine Program admits an oriented matroid structure). Given

the classical Tucker tableau Êdata, the collection of feasible primal solutions form a collection

of covectors, and the collection of dual solutions form a collection of vectors, which in turn

form a pair of orthogonal oriented matroids.

Example 1.5.6 (The Lumbermill Production and Insurance Matroid). Using the variable g,

we homogenize the affine functionals which define the Lumbermill Production and Insurance

Problems 1.2.1 1.2.2. This gives us the following linear functionals:

e1 := x1

e2 := x2

e3 := x3

e4 := −x1 − 3x2 − 3x3 + 10g

e5 := −2x1 − x3 − x3 + 8g

f := −3x1 − 2x3 − 4x3

g := g.

52

These 7 linear functionals live in (R4)∗ ∼= R4, and so we have the following structure: The

circuits defined on E := {e1, e2, e3, e4, e5, f, g} are collections of (vectorspace) vectors minimal

with respect to linear dependence. The non-negative vectors which contain f represent a non-

negative linear combination of the remaining functionals which sum to 0. These represent the

feasible solutions to the dual problem. Conversely, the cocircuits represent regions of R4 which

are maximal with respect to lying on the kernels of the defining functionals. A non-negative

cocircuit which contains g represents a feasible primal solution.

The goal then is to find a optimal pair of feasible primal and dual solutions.

A more detailed discussion follows in Chapter 5.

1.5.5 Results about Optimal Solutions: The Simplex Algorithm

Finally, one of the most important results of linear programming is the development of The-

orem ?? (the Simplex Algorithm) as a means of obtaining the primal and dual optimal solu-

tions. It also allows constructive proofs of the Strong Duality, and the Fundamental Theorem

of Linear Programming. We intend to generalize this result to ordered division rings, where

the co-domain is finite dimensional.

1.6 Potential Difficulty in an Abstract Situation

In the classical setting of affine programming, many of the standard results were proved

using the properties of the real numbers, including the existence of an ordering that is both

Archimedean and least-upper bound closed, and a commutative product. For example, in a

finite dimensional real vector space, a closed and bounded region of Rn is compact, and all

linear functions are continuous. Thus in such a case we are guaranteed an optimal solution.

53

The proof of the Farkas Lemma originally used the least upper bound properties of the reals

to construct a separating hyperplane, which can be extended to an infinite dimensional case

by the Hahn Banach separation theorem [Con90]. However, a general ordered ring may not

be Archimedean ordered, and thus may not admit any of these features. One then is required

to find alternative methods of obtaining these classical results.

Similarly, the non-commutative multiplication in the ring of scalars provides potential bar-

riers in finding the existence of duality gaps and application of the Simplex Algorithm. These

are all issues that must be addressed in a study of Abstract Affine Programming.

1.7 Summary of Results

Our project is the generalization from the classical setting of primal-dual affine programming

using the Tucker tableau format, to the general case still using the Tucker tableau format,

but now with a emphasis on functions and a basis free viewpoint. We also wish to generalize

the ring of scalars, to be an ordered ring. Moreover, we generalize to a possibly infinite

dimensional case. Using a generalization of the poset structure in the classical case, we show

that Weak Duality still holds in these cases (Proposition 2.4.8). Moreover, when the ring

of scalars is an ordered ring, one can show that a generalized version of the Fundamental

Theorem of Affine Programing holds (Proposition 2.4.23). We can also define a notion of

convexity in this setting, and show that our feasible and optimal solutions satisfy this notion

of convexity (Proposition 2.4.18, Corollaries 2.4.19, 2.4.20).

When the ring of scalars is not a division ring, we show that the duality gap can also exist

(Proposition 2.5.1). When we restrict to the case where the ring of sclalars is a division ring,

we exhibit a counter example to the remaining results (Example 4.3.5). We then describe a

number of hypothesis under which the Farkas’ Lemma does hold (Theorems 4.3.10, 4.3.17,

4.3.25), and under these hypothesis, the following results (Propositions 5.3.1, 5.3.2, Theorem

54

5.3.4, Theorem 5.3.7) also hold. We then show that if certain “finite-type” hypothesis hold,

then a generalization of the Exsistence-Duality Theorem also holds (Theorem 6.4.4).

Finally, we note that under these “finite-type” conditions, we may place an oriented matroid

structure on the program (Proposition 6.2.3). Moreover, if the image of the module homo-

morphism A is in fact finite dimensional, we may describe a generalization of the Simplex

algorithm that successfully terminates (Theorem 7.5.2).

55

Chapter 2

Ordered Rings and Modules

2.1 Introduction

In this chapter we begin by describing the features of affine programming which depend only

on a ring and module structure, namely the Tucker Key Equation and the Tucker Duality

Equation. Afterwards, we introduce ordered rings and some properties of ordered rings, and

describe some properties of modules over ordered rings. We then show that when we define

an affine program in this ordered ring setting, we obtain some new facts. We will prove the

Weak Duality and the convexity of feasible and optimal solution sets. We will also prove some

partial results leading up to some of our other key facts. We finally exhibit counter-examples

to generalizations of some other well-known facts. We will assume throughout that our rings

will be unital.

56

2.2 General Rings

We may define the variables and equations of affine programming in a more general context.

Rather than deal in finite dimensional real-vector spaces, we can generalize this idea to modules

over a ring R. In order to do this, we must properly describe the appropriate features of these

problems and their data.

If we allow R to be an arbitrary ring, rather than R, then the natural analogues to Rn,Rm

would be a pair of (left) R-modules, X,Y ∗, where Y ∗ = HomR(Y,R) for a (left) R-module Y .

We will focus on the left structure of these objects, although there is no reason one cannot

define the same concepts for right modules instead. In the traditional case, A is a n × m

real-matrix, or equivalently A ∈ HomR(Rn,Rm), and so the appropriate generalization would

be to let A be an R-module homomorphism, i.e. A ∈ HomR(X,Y ∗). It is clear that ~b ∈ Y ∗ is

an element of the co-domain of A, and d ∈ R as before.

Recall that in the classical case, ~c ∈ Rn. However, when we consider the role that ~c plays

in the original problem, ~c acted on ~x via inner product to obtain a value in R. Hence, the

appropriate generalization of ~c is c ∈ X∗ := HomR(X,R). Similarly, while ~x should remain

an element of the domain of A, ~x ∈ X, ~y is a vector that acts on ~b via an inner product, and

so ~y should be generalized to y ∈ HomR(Y ∗, R) =: Y ∗∗.

We may then, define as before:

f : X → R, ~x 7→ c(~x)− d

g : Y ∗∗ → R,y 7→ y(~b)− d.

~t := −A(~x) +~b

s := y ◦A− c.

57

All of which can be captured in the generalized Tucker tableau:

~x -1

y A ~b = −~t

−1 c d = f

= =

s g

X
A

//
~x→−~t ///o/o/o/o/o/o/o

s

!!C
C

C
C

C
C

C
C

C
C

C
C

C
C

c

!!CCCCCCCCCCCCCCCCCCCCCCCCCCC

f

((

�Z
�Z
�Z
�[
�[�\ �\ �] �^ �^ �_ �_ ` !a !a "b "b #c #c $d $d %e %e &f &f &f 'g 'g 'g

Y ∗ /o
R�

//

y

��
,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,, X∗

~x

�� �
�����������������

������������������
Y ∗∗

A`
oo

y→soo o/ o/ o/ o/ o/ o/ o/

−~t

||z
z

z
z

z
z

z
z

z
z

z
z

z
z

~b

||zzzzzzzzzzzzzzzzzzzzzzzzzzzz

g

vv

�D
�C
�C
�B
�B�A�A�@�@�?�?~>}=}=|<|<{;{;z:z:y9y9y9x8x8w7w7w7v6R

Figure 2.1: Affine Maps of a General Affine Program

With all of this data, we may now restate the original classical result:

Proposition 2.2.1 (Generalized Fact I: Tucker Key Equation). Given generalized Tucker

tableau data, then s(~x)− g(y) = y(−~t)− f(~x).

Proof. Consider the computations:

s(~x)− g(y) = y ◦A(~x)− c(~x)− y(~b) + d.

Corollary 2.2.2 (Generalized Tucker Duality Equation). Given the generalized Tucker tableau

58

data, then g(y)− f(~x) = s(~x) + y(~t).

2.3 Some Properties of Ordered Rings and Modules

2.3.1 Properties of Ordered Rings

From Corollary 2.2.2 the duality equation holds over variables and maps defined over any

module over any ring. In particular, it holds in the classical case of finite dimensional real

vector spaces. However, we cannot define the primal maximization and dual minimization

problem in this situation. In order to define ≤, an inequality or poset structure, for elements

in a ring R, we require that R must be a trichotomy-ordered ring. This is necessary for the

notions of “maximization” and “minimization” to be meaningful.

Remark 2.3.1. We notice some facts about ordered rings.

• Since R is partitioned into positives, the additive inverses of the positives (the negatives)

and 0, and moreover the positives are closed under sums, no repeated sum of any positive

element is 0. In other words, the additive order of any positive element, and consequently

any non-zero element, is ∞.

• Recall that given a, b ∈ R\{0}, ab is positive iff a, b are the same sign. Else ab is negative.

Consequently R is a domain, since the product of non-zero elements will be non-zero.

In particular, if the ordered ring R is unital, then Z ↪→ R in the natural universal way.

• Given a, b, c ∈ R, c, a−b ∈ P (i. e. a > b), we have that c(a−b), (a−b)c ∈ P , so ca > cb

and ac > bc. Similarly −cb > −ca, b(−c) > a(−c). We can also check a+ c > b+ c, and

a− c > b− c.

Most of the ordered rings one generally encounters are the standard Z,Q,R, and the number

59

rings Q[n1
√
a1, . . . , nm

√
am], where ai, ni ∈ Z+. However, we can construct some examples of

more general ordered rings.

Example 2.3.2. Let R[x] be the ring of polynomials over R, and let

P := {p(x) : p(x)has a positive leading coefficient}.

We first notice that polynomials with positive leading coefficients are closed under sums and

products. Moreover, each polynomial either has a positive leading coefficient, or a negative

leading coefficient, or is 0. Thus, P satisfies the conditions of being a set of positives.

The type of ordered rings one is used to working with are called Archimedean rings. These

are rings which exhibit the Archimedean Principle.

Definition 2.3.3. Given an ordered ring R, a ∈ R, we define the absolute value function

| · | : R→ R via:

|a| :=

a, a ∈ P

−a, a ∈ −P

0, a = 0

.

Definition 2.3.4 ([Lam01]). An ordered ring R is Archimedean if given any r ∈ P ⊂ R

and ring elements a, b ∈ P ⊂ R, such that a < r < b, then there are natural numbers n,m

such that n · a > r and m · r > b. Any ring that does not exhibit this behavior is called

non-Archimedean. The set of elements where {r ∈ R\{0} : n · |r| < 1R, ∀ n ∈ N} are the

infinitesimals of R. We will denote these with Rε

Similarly, the set of elements {r ∈ R : n · 1r < |r|, ∀n ∈ N} are the infinities if R, and 1R is

the unit of R. We will denote these with R∞. (Non-Infinite elements of an ordered ring are

called finite.)

Note that only non-Archimedean rings contain infinities or infinitesimals.

60

Theorem 2.3.5 ([Lam01]). Let R be an Archimedean ring. Then:

• R is commutative

• R is order isomorphic to a unique subring of R.

• The only order preserving automorphism of R is the identity map.

This shows that Archimedean ordered rings are in fact very familiar rings, both in terms

of the order property, and in terms of the algebraic structure. The difficulty arrives when

one deals with non-Archimedean rings. We next exhibit some examples of non-Archimedean

ordered rings.

Example 2.3.6. Our prior example of an ordered ring, R[x] with the leading coefficient order

is non-Archimedean. Consider xn, n > 0. Given any m ∈ N, xn −m, has a positive leading

coefficient. Thus xn > m, for each choice of m and xn is an infinite of R.

Example 2.3.7 (The Hyperreals). Recall the Hyperreals ∗R, Example 1.3.3.

We define the positives of ∗R to be the classes of sequences which are positive “almost

everywhere”. Formally, P := {[a] ∈ ∗R : {n : a(n) > 0} ∈ U}. We then notice that by the

compliment properties of an ultrafilter, each sequence must be equal to, greater than, or less

than zero, almost everywhere.

The real numbers naturally inject into ∗R by r ∈ R 7→ [(r, r, r, . . .)], which we can write as

[r] for convenience. It is clear that such an injection is an order preserving isomorphism. One

can then consider the class of a sequence

[a] := [(1,
1

2
,
1

3
, . . . ,

1

n
, . . .)].

Given any positive real number r, the entries of [r] will be greater than the entries of [n][a],

where n is a positive integer, almost everywhere. Thus [a] is an infinitesimal in ∗R. Similarly

61

the class

[b] = [(1, 2, 3, . . . , n, . . .)]

will be greater than any real number almost everywhere and [b] is an infinite of ∗R.

Example 2.3.8. Consider the ring of polynomials in several indeterminants over R, R[x1, . . . , xn],

with a lexicographical ordering, x1 > x2 > . . . > xn. Given two monomials, q1 =
∏n
i=1 x

si
i , q2 =∏n

i=1 x
ti
i , we say q1 > q2 if there is an index j such that sj > tj and si = ti for all i < j.

We define the set of positives to be the collection of polynomials whose leading monomials

have positive coefficients (leading with respect to the above ordering). This is a well defined

set of positives: Since each non-zero polynomial has either a positive or negative leading coef-

ficient, this partitions the ring into positives, negatives and 0. It is also clear that polynomials

with positive leading coefficient are closed under sums and products.

We will see that non-Archimedean rings have somewhat strange properties which are po-

tentially inconvenient for linear programming.

Example 2.3.9. Consider ∗R. Note that the set [0, 1] is compact in R under its usual topology.

However, if we equip ∗R with the order topology, i.e. with a basis B := {(a, b) : a, b ∈ ∗R},

then [0, 1] ⊆ ∗R is no longer compact.

To see this, we note that every finite hyperreal number h has a standard part, a unique real

number r such that h = r + ι, where ι is either zero or an infinitesimal. Let ε be a positive

infinitesimal, and consider the covering of [0, 1], C := {(a− ε, a+ ε) : a ∈ [0, 1]}. Notice then

that each (a− ε, a+ ε) contains at most 1 real number. Thus no finite sub-covering of C will

cover [0, 1]

In particular, the shadow function, r + ι 7→ ι is continuous on [0, 1], but does not attain a

maximum value.

62

Moreover, a non-Archimedean ring need not be commutative.

Example 2.3.10. Consider the ring R := R〈x, y〉/〈yx − 2xy〉, i. e. the ring of polynomials

over x, y with the skew-product yx = 2xy. We can establish a “lexicographical” ordering of

the monomials of R, with yn1xm1 > yn2xm2 if n1 > n2 or n1 = n2,m1 > m2. Then, we

can define the positives P of R to be the polynomials with positive leading coefficient, where

leading means greatest with respect to the above lexicographical ordering.

One can easily see that P satisfies the properties of a collection of positives, and R is

non-commutative. This is contrary to our intuition when it comes to a ring with order, as

we expect an ordered ring to be commutative. However, the order conditions force some

regularity conditions between products ab and ba

In particular, David Hilbert exhibited the first example of a non-commutative division ring

in 1903 [Hil03].

Example 2.3.11 (A Non-Commutative Ordered Division Ring). Consider R′ := R((x)), be

the Laurent series of x over R. We can define a set of positives P ′ to be the collection of all

series with positive leading coefficient. Then, define R := R((y)) to be the Laurent series of

y over R′, with the skew product xy = 2yx. We then give the monomials the lexicographical

ordering where y > x as before, and define the positives of R to be P , the collection of series

with positive leading coefficient. As before we see that R is an ordered ring.

Thus, it suffices to show that this R is a division ring. We first show that R′ is a division

ring. Let a ∈ R′. We can write a = a′xm, where m ∈ Z and a′ =

∞∑
i=0

aix
i, ai ∈ R, a0 6= 0. So

without loss of generality, let a = a′. We can then define b such that b =
∞∑
j=0

bjx
j where:

b0 = a−1
0

bj+1 = −a−1
j

k∑
k=1

akbj−k.

63

Thus, ab may be written as:

ab =

∞∑
`=0

∑
i+j=`

aibjx
`

= 1 +
∞∑
`=1

−∑̀
i=1

= aib`−i +
∑̀
j=1

ajb`−j

x` = 1.

Similarly, given a ∈ R, we can define b ∈ R, such that ab = 1. Thus R is a division ring.

Definition 2.3.12. Let R be a ring. Then the center of a ring, denoted Z(R), is the collection

of elements {z ∈ R : az = za, ∀ a ∈ R}.

Proposition 2.3.13. Let R be an ordered unital ring with set of positives P . Let a, b ∈ P ,

such that, without loss of generality, ab ≤ ba. Then there is no element z ∈ Z(R) such that

ab < z < ba.

Proof. Suppose that this were not true, then aba < za = az < aba, a contradiction.

Corollary 2.3.14. If R is a unital ring, and there are a, b ∈ P such that ab is finite and

ba ≥ ab, then ba = ab+ ε, where ε is zero or infinitesimal.

Proof. If ba were infinite, then since ab is finite, there is an m ∈ Z+ such ab < m < ba,

which contradicts Proposition 2.3.13, (recall that Z ↪→ Z(R)). Thus ba − ab is finite. If this

difference is not infinitesimal or zero, then there is a n ∈ Z+ such that nba− nab > 1. Since

nab is finite, we may find an integer m1 ≤ nab and moreover, we may find a maximum such

integer (else nba would be infinite.)

There is an integer z in between nab < z < nba, since, m1 + 1 > nab but m1 + 1 < nba.

Since z is an integer, it is central, and by Proposition 2.3.13, this is a contradiction.

64

2.3.2 Modules and Cones over Ordered Rings

Now that we have established a notion of order for the ground ring R, we want to establish a

notion of partial order for the modules X,Y ∗. In the classical case, A(~x) ≤ ~b meant each entry

of ~b− A(~x) was non-negative. Thus the collection of vectors in Rn with non-negative entries

plays a similar role to the non-negatives of a positive ring. However this set of “positives” ,

along with its additive inverses and {0} do not partition Rn the way the positives, its additive

inverses and {0} partition an ordered ring. The analogous structure in a module is a positive

(or non-negative) cone. By convention, we also assume that R will be an ordered unital ring.

In particular, this means that Z ↪→ Z(R) for each choice of R.

Recall the definition of a cone of a module over an ordered ring:

Definition 2.3.15. A positive cone of a module X over an ordered ring R is a subset C ⊂ X

such that given r, s ∈ R, r, s ≥ 0, and a, b ∈ C, r · a+ s · b ∈ C.

We also define the following specialized types of cones (C):

• If C contains no non-trivial sub-module of X, then C is said to be a pointed cone [Zie13].

• If there is a x ∈ X\C and r ∈ R, r ≥ 0, such that r · x ∈ C, then we say that C is

perforated [Fuc11]. Otherwise C is unperforated.

We can verify easily that in Rn, the collection of vectors with non-negative entries satisfy

the definition of a (unperforated) positive cone.

Definition 2.3.16. Let R be a ring, and M a (left) R-module. We say the torsion sub-module

of M is the set {m ∈M : ra = 0, r ∈ R\{0}}, we then denote this set tor(M).

Proposition 2.3.17. If R is an ordered ring, and X is a R-module with a positive cone CX ,

then tor(X) ∩ CX = {0}.

65

Proof. Let a ∈ tor(X) ∩ CX . If a 6= 0, then there is a minimal natural number n such that

n · a = 0. Consider any natural numbers n1, n2 such that n1 + n2 = n. We see that

n1∑
i=1

a ∈ CX ,
n1∑
i=1

a = −
n2∑
j=1

a =

n2∑
j=1

(−a).

This contradicts CX been a cone, and thus a = 0.

In the classical case of linear programming, we wanted all of our vectors, and the differences

between vectors, to be in their respective non-negative cones. By selecting a cone for both

X,Y ∗, we then selected appropriate cones for our programs. However, in the classical case,

X,Y ∗ are finite dimensional real spaces, so the space of their duals X∗, Y ∗∗ are isomorphic

(though not naturally) to the original spaces, and thus we may use the same cones for all

4 spaces. This may not be true generally. Thus, we want to choose cones for X,Y ∗, that

naturally give rise to cones in X∗, Y ∗∗.

Definition 2.3.18. Let R be an ordered ring, and X be a left R-module. We call a cone

of X, CX , a full cone if CX is a generating set for X. (That is, given x ∈ X, we can write

x =
∑n

i=1 ri · ci, where ri ∈ R, ci ∈ C, or in generating set notation, 〈CX〉 = X).

Proposition 2.3.19. Given an ordered ring R, and X a module over R with a pointed cone

CX . Then CX is a full cone if and only if the set CX∗ := {ϕ ∈ X∗ : ϕ(v) ≥ 0, ∀ v ∈ CX} is

a unperforated pointed positive cone of X∗

Proof. We first assume that CX is an unperforated full cone. We verify the 3 properties of

unperforated pointed cones.

• Given ϕ,ψ ∈ CX∗ , λ, µ ∈ R+ := P, and v ∈ CX , (λϕ + µψ)(v) = λϕ(v) + µψ(v). Both

ϕ(v), ψ(v) ≥ 0, by construction of CX∗ . Thus λϕ(v), µψ(v) ≥ 0, and so is their sum.

We conclude that (λϕ+ µψ) ∈ CX∗ .

66

• Let ϕ ∈ CX∗ . Let S ⊂ CX be a minimal spanning, or generating, set of X and let s ∈ S.

If ϕ(v) = −ϕ(v) for ϕ ∈ CX∗ , v ∈ CX , then ϕ(s) = −ϕ(s) = 0 for each s ∈ S, and thus

ϕ must be the zero map.

• Given ψ 6∈ CX∗ , there is a v ∈ CX such that ψ(v) < 0. Then given λ > 0, λψ(v) < 0,

and so λψ 6∈ CX∗ .

Conversely, if CX∗ is an unperforated cone, then consider s ∈ CX . If {n · s : n ∈ Z} (CX ,

then we may find s′ ∈ CX such that the generating sets: 〈s〉 (〈s, s′〉. Thus, we may use

Zorn’s Lemma to extend {s} to a maximal set S, S ⊆ CX , and {n · s : n ∈ Z⊕, s ∈ S} = CY .

If 〈S〉 6= X, then there is a ϕ ∈ X∗ such that ϕ 6= 0, but 〈S〉 ⊆ Ker(ϕ). Thus 〈S〉 = Y and

CX is a full cone.

Example 2.3.20. Notice that the traditional positive cones in classical programming are full

cones. Let X = Rn, and consider CX := {~x ∈ X : xi ≥ 0}, i. e. CX is the set of vectors with

non-negative entries.

The vectors (1, 0, 0 . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1) form a basis (i.e. a generating

set) for Rn, and each one is in CX .

Proposition 2.3.21. Let R be an ordered ring, X an R-module, and CX be a cone in X.

Then let ι be the inclusion map ι : CX → X. Then if the following diagram commutes if and

only if ϕ = 0, then CX is a full cone.

CX
� � ι //

0 !!

X

ϕ

��
R

Similarly, if CX is a full cone, then this diagram commutes if and only if ϕ = 0.

Proof. If there is a ϕ such that the above diagram commutes but ϕ 6= 0, then since ϕ(CX) = 0

67

but there is a x′ ∈ X such that ϕ(x′) 6= 0, it follows that x′ cannot be written as a linear

combination of elements of CX , and thus CX is not full.

If CX is a full cone, then for any ϕ 6= 0, there is a x′ ∈ X such that ϕ(x′) 6= 0. Since x′ is

a linear combination of elements of CX , it follows that ϕ(CX) 6= 0. Thus the above diagram

does not commute.

2.4 Results with Cones and Programs

2.4.1 Feasibility

With cones for X,Y ∗, X∗ = HomR(X,R), Y ∗∗ := HomR(Y ∗, R) defined, we may reintroduce

the notion of feasibility.

Definition 2.4.1. Let CX be a full cone with CX∗ the associated dual cone. Define ≤X ,≤X∗

• If a, b ∈ X such that b− a ∈ CX , then a ≤X b.

• If a∗, b∗ ∈ CX∗ such that b∗ − a∗ ∈ CX∗ , then a∗ ≤
X∗ b

∗.

Similarly define CY ∗ , CY ∗∗for Y ∗, Y ∗∗

Definition 2.4.2. Given R an ordered ring, X,Y left R-modules. Let CX ⊂ X,CY ∗ ⊂ Y ∗, be

full cones, with associated dual cones CX∗ , CY ∗∗ . Then given A ∈ HomR(X,Y ∗), ~b ∈ Y ∗, c ∈

X∗, d ∈ R we may define the following:

• A primal decision variable ~x ∈ X is primal canonically feasible if −A(~x) +~b ∈ CY ∗ and

if ~x ∈ CX .

68

• Similarly, a dual decision variable y ∈ Y ∗∗ is dual canonically feasible if y◦A−c ∈ CX∗ ,

and if y ∈ CY ∗∗ .

This definition of feasible coincides with the classical notion of feasible. However, there is a

way to generalize the classical notion to a potentially more powerful version of feasibility:

Definition 2.4.3. Given R an ordered ring, X,Y ∗ left R-modules, A ∈ HomR(X,Y ∗), ~b ∈

Y ∗, c ∈ X∗, d ∈ R, with the conditions that there are non-perforated full cones CX ⊂ X,CY ⊂

Y , and appropriate dual cones CX∗ , CY ∗ we define the following:

• A variable ~x ∈ X is primal feasible if −A(~x) +~b ∈ CY .

• Consequently, y ∈ Y ∗∗ is dual feasible if y′ ◦A = c.

Notation 2.4.4. Given a ring (or module) � with a set of non-negatives (positive cone), we

denote �⊕ to be the collection of non-negatives in that ring (module).

This notation is due to Albert Tucker [NT93].

Remark 2.4.5. Let R be an ordered ring, let X,Y ∗ be left R-modules with non-negative

trichotomy cones CX , CY ∗ , A ∈ HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R).

We then define Y ′ := Y ∗ ⊕X, let CY ′ := CY ∗ ⊕ CX , A′ := A⊕−IX ∈ HomR(X ⊕X,Y ′),

~b′ := (~b, 0). This information defines a second program, namely:

Any ~x is canonically feasible for the first program if and only if it is feasible for the second.

Similarly a y is canonically feasible for the first program if and only if there is a y′ feasible

for the second program such that y′|Y ∗ = y.

To see this, we let ~x be canonically feasible for the first program, then A(~x) ≤
Y ∗

~b and

~x ≥X 0X , which happens if and only if A′(~x) ≤
Y ′
~b′.

69

Similarly, y ◦ A ≥
X∗ c, if and only if s := y ◦ A − c ∈ C

X∗ , which occurs if and only if

y′ := y ⊕ s is feasible.

This generalization of feasibility has several advantages, first of which is that we only com-

pare vectors with an inequality on Y . Thus, we only need to define a full cone for Y ∗, and not

for X. Another advantage is that the feasible solutions to the dual problem have an equality

constraint, y ◦ A = c. This makes computing the dual solutions, and determining feasibility,

much easier.

With these ideas in mind, we will now formally define a primal-dual program.

Definition 2.4.6. A program P is a ordered septuple P := (R,X, Y ∗, CY ∗ , A,~b, c, d), where

R is an (ordered) ring, X,Y ∗ are R modules, CY ∗ is a full cone for Y , A ∈ HomR(X,Y ∗),~b ∈

Y ∗, c ∈ HomR(X,R), d ∈ R.

Then P induces a primal problem: Find ~x ∈ X such that A(~x) ≤ ~b and f(~x) = c(~x)− d is

minimized.

The program P also induces a dual problem: Find y ∈ Y ∗∗⊕ (which is what we previously

called CY ∗∗) such that y ◦A = c and g(y) = y(~b)− d is minimized.

We remark here that if R,X, Y ∗, CY ∗ are understood, these entries may be suppressed for

brevities sake. Additionally, for this paper, we will generally also suppress the use of d, where

it is understood without loss of generality that d = 0.

Definition 2.4.7. Given a program P, a problem is considered feasible if there are feasible

solutions. Otherwise, the problem is infeasible.

70

2.4.2 Weak Duality

Since we have established the appropriate hypothesis to discuss ordered ring programming, we

would like to know which of the classical duality results hold. The Tucker Duality Equation

holds for any choice of rings and modules (not necessarily ordered), so it will also hold in this

setting. Using the concepts and definitions delineated above, we may introduce a consequence

of the Tucker Duality Equation, namely Weak Duality. We show that the weak duality holds

under both of our notions of feasibility.

Proposition 2.4.8. Given R,X, Y ∗, A,~b, c, d, CX , CY ∗ as above, where ~x,y are both canonical

and feasible, then g(y) ≥ f(~x).

Proof. By the duality equation, g(y) − f(~x) = s(~x) + y(~t). Since ~x is feasible, ~t ∈ CY ∗ , and

since y is feasible, s ∈ CX∗ . Then s(~x) ≥R 0 since s ∈ CX∗ . Similarly, y(~t) ≥R 0.

Thus g(y)− f(~x) ≥ 0, and therefore g(y) ≥ f(~x).

Theorem 2.4.9. Given R,X, Y ∗, A,~b, c, d, CX , CY ∗ as above. We require A(~x) ≤
Y ∗

~b, but

~x may or may not be in CX . Additionally, we require that y ∈ CY ∗∗ and y ◦ A = c. Then

g(y) ≥ f(~x).

Proof. Since y ◦ A = c, we conclude that s = 0. However, since A(~x) ≤
Y ∗

~b, we see that

~t ∈ CY ∗ . Thus

f(~x)− g(y) = s(~x) + y(~t) = 0 + y(~t) ≥ 0.

Corollary 2.4.10 (Generalized Fact II: Weak Duality). If ~x,y are such that y(~b) = c(~x),

then y, ~x are optimal solutions for their respective problems.

Naturally, we would like to know whether or not the converse of this statement is true, that

71

is, if ~x∗,y∗ are optimal solutions to their respective problems, that g(y∗) = f(~x∗). However,

we see that this is not generally the case.

Example 2.4.11. Let R = X = Y ∗ = Z. Let A = 2,~b = ~c = 1, d = 0. We see that the

optimal solution for the primal program is ~x = 0, where f(~x) = 0, but the optimal solution

to the dual is ~y = 1, with g(~y) = 1.

2.4.3 Convexity

In this setting, one may also describe a notion of convexity, and describe our feasible and

optimal solutions in terms of convexity.

Definition 2.4.12. Let R be an ordered ring. Let X be a left R module, a left skeletal line-

segment of X with end points ~x, ~y ∈ X is the set {λ ·~x+(1−λ) ·~y : λ ∈ [0, 1] ⊆ R} ⊂ X,where

[0, 1] := {r ∈ R : 0 ≤ r ≤ 1}.

The open left skeletal line-segment with end points ~x, ~y then is the set {λ · ~x+ (1− λ) · ~y :

λ ∈]0, 1[⊆ R} ⊂ X, where]0, 1[:= {r ∈ R : 0 < r < 1}.

Definition 2.4.13. Let R be an ordered ring. Let X be a left R module. A left full line

segment with endpoints ~x, ~y denoted [[~x, ~y]] is the set

⋃
ri∈R+,ai∈X
~y=~x+ri·ai

{~x+ (ri − λ) · ai : λ ∈ [0, ri]}.

The open left full line segment with endpoints ~x, ~y denoted]]~x, ~y[[is the set

⋃
ri∈R+,ai∈X
~y=~x+ri·ai

{~x+ (ri − λ) · ai : λ ∈]0, ri[}.

Proposition 2.4.14. If R is a division ring, and X is a R left vector space, then the left

72

skeletal line segment with end points ~x, ~y and the full line segment with the same endpoints,

are the same set.

Proof. We begin by noting that the skeletal line segment is always a subset of the full line

segment, as ~y − ~x, 1 are valid choices for ai, ri.

Conversely, given any choice aj , rj such that ~y = ~x + rj · aj , we note that given λ ∈ [0, rj],

r−1
j λ ∈ [0, 1]. Thus the full line segment is contained in the skeletal line segment.

Example 2.4.15. Let R = Z and X = Z2. Then let ~x = (1, 0) and ~y = (5, 0). Since [0, 1] =

{0, 1} the skeletal line segment with end points (1, 0), (5, 0) would just be {(1, 0), (5, 0)}.

However, this does not coincide with what our notion of a “line-segment” should be.

Instead, when we consider the full line segment, we see that one may write (5, 0) as (1, 0) +

2 · (2, 0) or (1, 0) + 4 · (1, 0). Thus the full line segment is:

{(1, 0), (5, 0)} ∪ {(1, 0), (3, 0), (5, 0)} ∪ {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0)}

= {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0)},

and the open full line segment is:

{(2, 0), (3, 0), (4, 0)}

Definition 2.4.16. Consider the ring R := R[x] as an ordered ring, where the positives are

the polynomials with positive leading coefficient. Consider the line segment [0, x]. Notice that

a valid choice for ri, ai is x, 1. Thus, for any λ ∈ [0, x], we have that 0 + λ · 1 ∈ [[0, x]].

In particular, [[0, x]] = R⊕ ∪ {ax − b : a, b ∈ R, a ∈ (0, 1], b ≥ 0}. The elements ax − b are

greater than any real number in the ordering of R, and thus the line segment [[0, x]] cannot

be contained in R.

73

Definition 2.4.17. Let R be an ordered ring. Given a left R-module X, a set C ⊆ Y is left

convex if given ~x, ~y ∈ C, then C contains the full line segment with endpoints ~x, ~y.

We now describe the relevance these results have to our study.

Proposition 2.4.18. Let X,Y ∗ be left R modules, with positive cones CX , CY ∗, and A ∈

HomR(X,Y ∗), then

1. The cones CX , CY ∗ are left convex.

2. The pre-image of a left convex set under A is left convex.

3. The intersection of left convex sets is left convex.

Proof. Let a r ∈ R⊕, λ ∈ [0, r].

1. Let ~x, ~y ∈ X with ~y = ~x + r · ~a. Since r − λ is non-negative, ~x + (r − λ) · ~y ∈ CX for

each ~x, ~y ∈ CX .

2. Let ~x1, ~y1 ∈ A−1(C), where C ⊆ Y ∗ is a left convex set. Suppose that ~y1 = ~x1 + r · ~a.

Then there are ~x2, ~y2 ∈ C such that A(~x1) = ~x2, A(~y1) = ~y2. Then A(~x1 + (r− λ) ·~a) =

~x2 + (r − λ) ·A(~a). Since ~y2 = ~x2 + r ·A(~a), this completes this argument.

3. Let C,D be convex sets ~x1, ~x2 ∈ C ∩D, then λ · ~x1 + (r − λ) · ~x2 ∈ C and D, and so is

in C ∩D.

Corollary 2.4.19 (Generalized Fact III Part 1: Convexity of feasible regions). The feasible

regions (primal and dual) for a canonical, or non-canonical linear programming problem is

left convex.

74

Proof. The primal feasible region for a canonical program is the intersection of the positive

cone CX and the pre-image of ~b − CY ∗ . Since each cone is convex, the pre-images of convex

sets are convex and the intersection of convex sets is convex, it suffices to show that ~b− CY ∗

is convex.

To see this, consider that given ~b− ~w,~b− ~v ∈ ~b−CY ∗ , any choice r ∈ R+ ~a ∈ Y ∗ such that

~b − ~w + r · ~a = ~b − ~v, satisfies ~v = ~w + r · ~a. Since CV ∗ contains the line segment with end

points ~v, ~w, ~b− CY ∗ contains the line segment with end points ~b− ~w,~b− ~v.

We also notice that A−1(~b− CY ∗) is the non-canoncial primal feasible region and so is also

left convex.

For the dual feasible of the canonical program, the region is the intersection of CY ∗ and

the pre image under A` of c − CX∗ . As before, this intersection is left convex. For the non-

canonical program, the feasible region is the intersection of CY ∗ and the pre-image of c under

A
⊥

, which is again left convex.

Corollary 2.4.20 (Generalized Fact III Part 2: Convexity of optimal solutions). The optimal

solutions of the primal and dual program form a left convex set.

Proof. Given a primal-dual affine program, let ~x ∈ X be an optimal solution, with objective

value o := c(~x). Then the collection of all optimizers are all feasible points that obtain

the value o. That is, the intersection of the feasible region and c−1(o). Thus the set of all

optimizers for the primal problem is left convex.

Similarly, the set of optimizers for the dual problem is also left convex.

Definition 2.4.21 (Extreme Point). Given a left R-module Y , An extreme point p of a convex

set C ⊂ Y is a point that is not contained in any open full line segment contained in C.

Theorem 2.4.22 (Generalized Fact IV: Fundamental Theorem of Affine Programming). Let

75

R be an ordered ring, X a left R-module and C ⊆ X a convex set. Let c ∈ Hom(X,R)

and ~x ∈ C be a maximizer (minimizer) for c. If ~x is contained in any open generalized line

segment contained in C, then each element of those line segments is a maximizer (minimizer)

of c as well.

Proof. Let ~v1, ~v2 ∈ C, and let r ∈ R⊕, a ∈ Y such that ~v2 = ~v1 + r · ~a. Then let ~x =

~y1 + (r − λ) · ~y2, λ ∈ (0, r). Suppose there were an ~x′ = ~y1 + (r − λ′) · ~a, λ′ ∈ [0, r] such that

c(~x′) < c(~x). Without loss of generality, let λ′ < λ. It then follows that:

c(~x)− c(~x′) > 0

c(~y1 + (r − λ) · ~a)− c(~y1 + (r − λ′) · ~a) > 0

(λ′ − λ)c(~a) > 0

c(~a) < 0.

Since λ < r, then c(~y1 +(r−λ) ·~a) = c(~y1)+(r−λ)c(~a) < c(~y1), contradicting the maximality

of ~x. Since no interior point of a skeletal line segment may be maximal, and each point in the

interior of a full line segment is contained in a skeletal line segment, no interior point of a full

line segment may be considered maximal either.

Proposition 2.4.23. Let R be an ordered division ring. Let Y be an R vector space, and

let f̂1, . . . f̂n be a collection of affine functionals (we may write f̂i := fi + bi, where fi ∈

HomR(Y,R) and bi ∈ R). Let g ∈ HomR(Y,R). Given a point ~v ∈ Y such that f̂i(~v) > 0 for

each 1 ≤ i ≤ n, ~v is an optimizer of g if and only if g = 0.

Proof. Suppose g 6= 0, then there is a ~y such that g(~y) = 1. Let ci := f̂i(~y). Then define c ∈ R

76

such that c > 0 and c < min
1≤i≤n

ci|f̂i(~y)|−1. We then notice that:

|f̂i(c · ~y)| = c|f̂i(~y)|

< ci|f̂i(~y)|−1|f̂i(~y)|

= ci.

Thus

f̂i(~v + c · ~y) ≤ f̂i(~v)− |f̂i(c · ~y)|

= ci − |f̂i(c · ~y)| > 0.

This shows that ~v + c · ~y is also non-negative when evaluated by each f̂i. But g(~v + c · ~y) =

g(~v) + c > g(~v). Thus ~v cannot maximize g, and we can use a symmetric argument to show

that ~v does not minimize g.

Theorem 2.4.24. Let R be an ordered division ring. Let X be an R vector space, and

let f̂1, . . . f̂n be a collection of affine functionals (we may write f̂i := fi + bi, where fi ∈

HomR(Y,R) and bi ∈ R). Let g ∈ Hom(X,R). If there is a ~v ∈ X such that fi(~v) ≥ 0 such

that ~v optimizes (without loss of generality maximizes) g ∈ HomR(X,R), then there is a ~v′

that optimizes g such that ~v′ is contained in a maximal intersection of Ker(f̂i), and f̂i(~v
′) ≥ 0.

Proof. We proceed via induction on n. Suppose n = 1, then by Proposition 2.4.23, no point

~v, f̂1(~v) ≥ 0 may be an maximizer of g if f̂i(~v) > 0. Thus if ~v is an maximizer of g, then

~v ∈ Ker(f̂1) and is contained in a maximal intercession of f̂i.

Otherwise suppose that this is true for a collection of n−1 affine functionals. By Proposition

2.4.23, we have that ~v must be contained in the kernel of some functional, without loss of

generality, f̂1. Let ~b ∈ Y such that f̂1(~b) = −c1. Then ~v maximizes g subject to f̂i(~v) ≥ 0 if

77

and only if ~v −~b maximizes g̃ := g + g(~b) subject to f̃i(~v) ≥ 0, where f̃i(~v) := f̂i(~v + f̂i(~b).

Thus we may assume without loss of generality, that f̂1 is linear.

Thus ~v lies in the kernel of a linear space, thus we may restrict each f̂i, 2 ≤ i ≤ n to

Ker(f̂i). By the induction hypothesis, there is a v̂′ that lies on a maximal intersection of

Ker(f̂i), 2 ≤ i ≤ n, and since ~v′ ∈ Ker(f̂1) as well, it lies on a maximal intersection of kernels.

2.4.4 Partial Results

Several of our classical results only hold under more sophisticated hypothesis than modules

over ordered rings. However, some of these classical results are stated as equivalences, and

one of the implications holds in this setting.

As a consequence of the Weak Duality, we may prove a weak version of one of our key facts.

We first require some definitions.

Definition 2.4.25. Given R,X, Y ∗, A,~b, c, d, CX , CY ∗ as above, defining an affine program,

the solution values of the primal program are unbounded if given any r ∈ R, we may find a

feasible ~x ∈ X such that f(~x) ≥ r.

Similarly the solution values of the dual program are unbounded if given any r ∈ R, we may

find a feasible y ∈ Y ∗ such that g(y∗) ≤ r.

Corollary 2.4.26 (Weak Existence-Duality Theorem). Given R,X, Y ∗, A,~b, c, d, CX , CY ∗ as

above, defining an affine program, then we have the following implications:

1. If the solutions to the primal program are unbounded, then the dual program is infeasible.

2. If the solutions to the dual program are unbounded, then the primal program is infeasible.

78

Proof. We proceed by contrapositive. If the dual program is feasible, then there is a feasible

solution y′ ∈ Y ∗. Then each feasible primal solution ~x ∈ X satisfies

f(~x) ≤R g(y′)

and thus the primal solutions cannot be unbounded. Similarly, if the primal program admits

a feasible solution, than the dual program cannot be unbounded either.

Here we state and prove one direction of a generalization of the classical Complementary

Slackness Theorem (Theorem 1.2.27).

Proposition 2.4.27. Let R be an ordered ring, X,Y ∗ left R modules, A ∈ HomRX,Y
∗,

c ∈ HomR(X,R), ~b ∈ Y ∗. Let ~t, s be the appropriate slack variables (2.2.1). Then if s(~x) =

f(~t) = 0 for feasible solutions ~x ∈ X,y ∈ Y ∗∗, then ~x,y are optimal solutions.

Proof. By the Tucker Duality Equation, Theorem 2.2.2, f(~x) = g(y) and then by the Weak

Duality, Proposition 2.4.8, both ~x and y are optimal.

Another statement which holds partially in this setting is a generalization of the Farkas’

Lemma 1.5.2. The original Farkas’ Lemma is presented as an exclusive or statement (which

may be stated as an equality of statements). Here, we state and prove one generalized direc-

tion.

Proposition 2.4.28. Let R be an ordered ring, X,Y ∗ be left R modules, A ∈ HomRX,Y
∗,

c ∈ HomR(X,R). If there is a y ∈ Y ∗∗⊕ such that y ◦ A = c, then for each ~x ∈ X such that

A(~x) ≤
Y ∗ 0, it follows that c(~x) ≤R 0.

Proof. Suppose that this does not hold. That is, there is a y ∈ Y ∗⊕ such that y ◦ A = c, but

79

there is a ~z ∈ X such that A(~z) ≤
Y ∗ 0 but c(~z) >R 0. By our hypothesis, c = y ◦ A, and

we also note that A(−~z) ≥
Y ∗ 0, so by definition of Y ∗∗⊕ , (y ◦ A)(−~z) ≥R 0, but c(−~z) <R 0,

which is a contradiction.

2.5 Counterexamples

However, not all of the nine classical facts generalize properly in this setting. Here, we exhibit

some counter-examples to our classical results.

Proposition 2.5.1. Let R be an ordered ring, but not a division ring. Then there is a primal-

dual program such that both problems are feasible, and f(~x) < g(y) for all feasible choices of

~x,y.

Proof. Let X,Y ∗ := R as modules. Then let A be right multiplication by a, a positive non-

invertible element of R. Let ~b = 1, c = idR, d = 0. The primal program then, is to maximize

x ∈ R subject to xa < 1. Conversely, the dual program is to minimize y ∈ R subject to

ay > 1. For any pair of feasible solutions x, y ∈ R, we have that xa < 1 < ay, and so by

Proposition 2.3.13 x 6= y, and thus x < y.

Example 2.5.2. Let R,X, Y ∗ be Z. Let A be multiplication by 2, and c = idR or multipli-

cation by 1, ~b = 1. For any x ∈ Z+, A(x) > 1, thus x = 0 maximizes c(x) with objective

value 0. However, yA > 1 for any feasible choice of y. Thus y1 is minimized with objective

value 1 when y = 1. Thus both primal and dual problems obtain optimal solutions that are

not equal.

Example 2.5.3. Let R,X, Y ∗ be defined to be R := S−1Z where S := {3n : n ∈ N}. Let

A,~b, c be as above. Then any feasible x, Ax < 1, since 2 is still not invertible. However, there

80

is an n such that 1
3n < 1−2x

2 . Thus x + 1
3n is non-negative, but 2(x + 1

3n) = 2x + 2
3n < 1.

Thus the primal program does not obtain an optimal solution, but all solutions are strictly

bounded above by 1
2 .

Conversely, if y is feasible, yA > 1. But, there is a n such that 1
3n < 2y−1

2 . We see that

y − 1
3n is an improved solution for the dual problem. So the dual also obtains no optimal

solution, but are bounded strictly below by 1
2 .

These examples lead us to the following characterizations

Corollary 2.5.4. Let R,X, Y ∗, A,~b, c be the same as in the proof of Proposition 2.5.1 except

that R has the property that 1R is the smallest positive. Then the primal and dual program

obtains optimal solutions, which do not give the same objective value.

Proof. Since a is positive and non-invertible, a > 1R. Thus xa > 1R for any positive choice

of x and c(x) is maximized when x = 0.

Similarly, any positive y allows ya > 1R, thus y is minimized when y = 1.

This difference g(y)− f(~x) for optimal ~x,y is called a duality gap.

This example can be used as counterexamples to two classical results. If a program admits

a positive duality gap, then this is a contradiction to the Strong Duality Theorem (Theorem

1.2.31). Otherwise, then both programs are feasible but do not admit optimal solutions, which

is a violation of the Fundamental Theorem of Linear Programming (Theorem 1.2.21).

In the classical case, it follows that the optimal solutions to a primal program falls on the

intersection of bounding hyperplanes. Consider the following example:

Example 2.5.5. Let R = Z, X = Z2, Y ∗ = Z2. Then let A =

4 6

6 4

,~b =

9

9

 , c = x1+x2.

81

Suppose we let this be a canonical program (that is to be feasible, x1, x2 ≥ 0). The primal

program is maximized when x1 = 1, x2 = 1. However, this solution does not lie on the

kernels of any of the defining affine functions, α1 = x1, α2 = x2, α3 = −6x1 − 4x2 + 9, α4 =

−4x1 − 6x2 + 9.

Additionally, in this setting, we can provide a counterexample for a generalized version of

the Existence-Duality Theorem 1.2.41:

Example 2.5.6. Let R = Z, X = Z, Y ∗ = Z2 with the standard non-negative cones. Let

A =

 2

−2

~b =

 1

−1

 , c = 0, d = 0.

We note that for a x ∈ X = Z to be feasible, 2x ≤ 1 and −2x ≤ −1, which can only occur

if 2x = 1. Since 2 is not a unit in Z, this cannot happen and thus the primal problem is

infeasible. However, we note for in the dual problem, we require that:

2y1 − 2y2 ≥ 0

yi ≥ 0

while minimizing g(~y) = y1 − y2. Clearly the feasible solution values are bounded below by

0. In fact ~y =

0

0

 is a feasible and optimal solution. Thus the primal problem may be

infeasible while the dual problem is not unbounded. This contradicts the statement of the

Existence-Duality Theorem.

Finally, we provide a counterexample to a well-used fact in classical programming, that

closed bounded intervals are compact. Although not one of our general facts, it is nevertheless

used often in the discourse of classical programming to exhibit the existence of a maximizer in

closed bounded sets. We demonstrate here that such sets may not be compact in the general

82

case, and this we must use alternative methods to exhibit maximizers (or minimizers)

Example 2.5.7. Let R =∗ R and consider [0, 1] ⊆∗ R. Let ε ∈∗ R be an infinitesimal in ∗R.

It follows that the collection of sets O := {(a− ε, a+ ε), a ∈ [0, 1]} forms a covering of [0, 1].

But, note that given distinct a, b ∈ [0, 1] ∩ R, (a − ε, a + ε) ∩ (b − ε, b + ε) = ∅, else, there

is a c ∈ (a− ε, a + ε) ∩ (b− εb + ε), and |b− a| < 2ε, which is a contradiction since both a, b

are real. Thus each subcover of O must contain (a− ε, a+ ε) for each a ∈ R ∩ [0, 1], and since

there are infinitely many such a, no finite subcover exists.

2.6 Conclusions

We show that our first generalized fact, the Tucker Key Equation (Proposition 2.2.1), can be

proved in the most general of settings, and any ring and modules over said ring. By requiring

that our rings be ordered, we are able to prove two of our generalized facts: the Weak Duality

(Proposition 2.4.8), and the Convexity of Feasible and Optimal solutions (Corollaries 2.4.19,

2.4.20). We also proved some partial versions of our other key facts such as the weak Existence-

Duality Theorem (Corollary 2.4.26), weak Complementary Slackness (Proposition 2.4.27) and

weak Farkas Lemma (Proposition 2.4.28). We also provided counter-examples to some of

our later key facts, in particular Proposition 2.5.1. Thus additional hypothesis is required to

obtain the remainder of our generalized key facts.

83

Chapter 3

Cones

3.1 Introduction

We have previously introduced the concept of a cone in a module over an ordered ring. These

cones play the role of the non-negative orthant in classical linear programming. In this section,

we exhibit some examples of cones and describe their properties. We then demonstrate some

counterexamples to classical results with respect to these cones. Finally, we introduce a specific

type of cone, the orthant cone which plays the role of the classical non-negative orthant.

3.2 Counterexamples

We first give an example of a natural choice of a positive cone.

Example 3.2.1. Let S be a set and let X be a collection of R-valued functions closed under

linear combinations. Let C := {ϕ ∈ RS : ϕ(S) ⊆ R⊕}, the collection of non-negative functions

(recall that R⊕ is the set of all non-negative real numbers). Given non-negative real numbers

84

a, b and ϕ,ψ ∈ C, a · ϕ(x) + b · ψ(x) ∈ R⊕ for each x ∈ S. Thus C is a cone.

This is a choice of positive cone which arises in many generalizations of affine programming.

Example 3.2.2. Recall the production and inventory example, Example 1.3.6. The variables

Pi, Ii could be thought of as a single variable x : Z × Z → R. Similarly, the bounds P̄i, Īi

can be thought of as a function b : Z × Z → R. Then the inequality Pi ≥ P̄i, Ii ≥ Īi can be

rewritten x− b is non-negative, or x− b ∈ C where C := {ϕ ∈ RZ×Z : ϕ(Z × Z) ⊆ R⊕}.

In some cases, one can even show that such a cone is a full cone.

Proposition 3.2.3. Let S be a set (with a topology), and let X be either C0(S) or RS. Then

C, the collection of all non-negative functions forms a full cone.

Proof. Let B be a basis of X as a R vector space. Given any b ∈ B, we note that B\b∪{b+, b−}

forms a generating set of X. Thus, we may find a generating set for X that consists of only

non-negative functions, and the collection of all non-negative functions C is a generating set

of X.

However, using these cones, we may find counter-examples to classical results.

Example 3.2.4. Let X := C0([0, 1]), the collection of all continuous real valued functions

defined on [0, 1], and Y ∗ := R[0,1]. Let A be the inclusion map, ~b be χ0, where χ0(s) :=
1 s = 0

0 s 6= 0

, and c : X → R by c(x) := x(0) for each x ∈ X. Let the cones in both X,Y ∗ be

the collection of non-negative functions. Thus we may define a canonical primal dual affine

programming problem.

Notice that x = 0 is the only feasible primal solution. For s ∈ [0, 1], s 6= 0, x(s) = 0 else

b(s)−x(s) < 0. For s = 0, if x(s) > 0, then x is not continuous (x−1(0, 2x(s)) = x(s), that is,

the pre image of an open set is closed and not open). Thus c(x) is maximized with value 0.

85

However, consider y ∈ Y ∗∗. We require that y ◦ A − c ∈ X∗⊕. Since X ⊆ Y ∗, Y ∗∗ ⊆ X∗.

Since A is inclusion, we have that y − c ∈ X∗, that is y = c + s, where s ∈ X∗⊕. Thus

y(~b) = c(~b) + s(~b) ≥ c(~b) = 1. Thus, y(~b) is minimized when y = c with value 1.

This exhibits a positive duality gap between the primal and dual solutions.

Another counterexample to classical results is when the choice of cone is not closed.

Example 3.2.5. Let R = R, and let X,Y ∗ := R2. Let A ∈ HomR(X,Y ∗) be define by the

matrix

1
2 1

2 1

, ~b =

1

2

 ∈ Y ∗, c ∈ X∗ be defined to be c

x1

x2

 := x1. Then, define CX

to be the traditional positive orthant, but define CY ∗ to be

y1

y2

 ∈ Y ∗ such that y1 = y2 = 0

or y1, y2 > 0.

Then consider the primal maximization problem. The feasible region is define by the non-

negative cone CX , and A−1(CY ∗), the union of the singleton

2
3

2
3

 with the set {

x1

x2

 ∈ X :

1
2x1+x1 < 1, 2x1+x2 < 2}. This feasible region contains the set {~x ∈ X : x2 = 0, 0 ≤ x1 < 1}.

Note that x1 6≥ 1, else x2 + 2x1 6< 2. Thus, the objective function takes on values arbitrarily

close to 1, but is not maximized at any point.

So, although the primal program is feasible and bounded, it does not admit an optimal

solution. This is a violation of Theorem ??.

Thus, in order to obtain generalizations of the classical results, one must specify the type

of cone used.

86

3.3 Orthant Cones

3.3.1 Definition of Orthant Cone

In classical affine programming, the cone one uses is the positive orthant, the non-negative

span of a basis. This then should be the analogous cone in the general case.

Definition 3.3.1 ([ML98]). Given a category and a collection of objects Oi, i ∈ I, their co-

product, is an object
∐
i∈I

Oi along with morphisms ιj : Oj →
∐
i∈I

Oi satisfying the universal

mapping propertyL i.e. given any other object Z, and morphisms fj : Oj → Z, there exists a

unique f :
∐
i∈I

Oi → Z such that fj = f ◦ ιj .

Definition 3.3.2. Let R be a ring, a free module is the module
∐
i∈I Ri, the co-product of a

collection of R, indexed by the set I.

Definition 3.3.3. Let R be a ring, and let X be a free R module. Given a fixed index j ∈ I,

we define Ii : Ri → R to be the identification isomorphism. Then by the co-product structure

of X, we have:

X
∃!x̂j

Ri
� ?

ιi

OO

δijIi
// R

where δij is the kronecker delta. We call the collection of of x̂j , X̂ , a collection of spanning

maps.

Definition 3.3.4. Let R be an ordered ring, and let X be a free module over R. An orthant

cone is a full cone CX such that x̂i(CX) ⊆ R⊕ for each x̂i ∈ X̂ .

87

In other words,

CX
ι //

x̂i
��

X

x̂i
��

R⊕ ι
// R

commutes for each x̂i.

This is also the non-negative span of X (a basis of X).

We note that the inclusion ιi : Ri → X maps ιi(Ri) ⊆ CX , for an orthant cone CX . To

see this, suppose there were a r ∈ (Ri)⊕ such that ιi(r) 6∈ CX . Then there is a x̂j such that

x̂j(ιi(r)) 6∈ R⊕. But x̂j ◦ ιi = δijIi, and this is a contradiction. This leads us to our next

proposition.

Proposition 3.3.5. Let R be an ordered ring and X ∼=
∐
i∈I

Ri a free module over R. Then

an orthant cone of X, CX is the co-product
∐
i∈I

(R⊕)i.

Proof. Let M be a monoid and for each index i ∈ I, let fi : Ri →M be a monoid homomor-

phism. Then consider they f̂i : CX →M defined by f̂i := fi ◦ I−1
i ◦ x̂i, where x̂i is a spanning

map and Ii : Ri → R is the identification isomorphism. Then, f̂i ◦ ιi = fi ◦ I−1
i ◦ x̂iιi = fi.

Thus CX satisfies the definition of a co-product, and by the universal mapping property, it is

unique (up to isomorphism).

3.3.2 Satisfying Feasibility Conditions

With this notion of a positive cone, we state some new ways to view feasibility.

Definition 3.3.6. Given R an ordered ring, X,Y ∗ left R free-modules, and a fixed Ŷ∗,

a collection of spanning maps (Definition 3.3.3). Then each A ∈ HomR(X,Y) induces a

88

collection of row-like projections,

A := {ŷi ◦A : ŷ ∈ Y∗}.

Remark 3.3.7. Since each free module gives rise to such a collection of spanning maps,

one can always define a full cone as the collection of all elements that are non-negative when

evaluated by these spanning maps. In this thesis, we will focus primarily on such cones. These

cones are the closest analogue to the positive orthant of finite dimensional spaces.

Then, with respect to an orthant cone of Y ∗, (Y ∗⊕ := CY) we have:

Proposition 3.3.8. Let R be an ordered ring, and let X, Y ∗ be left R modules, where the

dual module Y ∗ is a free module. Let CY ∗ be an orthant cone. Then given w ∈ X, v ∈ Y ∗,

and A ∈ HomR(X,Y ∗), the following are equivalent:

1. A(w) ≤
Y ∗ v.

2. αi(w) ≤R ŷi(v).

Proof. Notice that A(w) ≤
Y ∗ v if and only if v −A(w) ∈ Y ∗⊕, then:

v −A(w) ∈ Y ∗⊕, if and only if

ŷi(v)− αi(Y ∗) ∈ R⊕, if and only if

αi(w) ≤ ŷ(v).

Proposition 3.3.9. Let R be an ordered ring, Y ∗ a left R free module. Each linear functional

u : Y ∗ → R can be defined as u =
∑
i∈I

ŷi · ui, where ui ∈ R.

89

Proof. Notice that given such a u : Y ∗ → R, there is an induced map ui : Ri → R via

µi := uιi. Any such map is a scalar of the identity map, i. e. µi = Ii · ui.

Then notice that each v ∈ Y ∗ is written as
∑
j∈I

ιi(ri), where ri ∈ Ri and only finitely many

of the ri 6= 0. It follows that:

u(v) = u(
∑
j∈J

ιj(rj))

=
∑
i∈I

u(ιi(ri))

=
∑
i∈I

µi(ri)

=
∑
i∈I

Ii(ri) · ui

=
∑
i∈I

ŷi(v) · ui.

Proposition 3.3.10. Let R be an ordered ring, Y ∗ a left R free module. A function u : Y ∗ →

R is in Y ∗∗⊕ (the non-negatives of HomR(Y ∗, R)) if and only if u =
∑
i∈I

ŷi · ui and ui ≥ 0 for

each i ∈ I.

Proof. We recall that each ŷi is an order preserving map. Thus u ∈ Y ∗∗⊕ (the non-negatives of

HomR(Y ∗, R)) if and only if
∑

i∈I ŷi(v) ·ui ∈ R⊕ for each v ∈ Y ∗⊕. So given any ŷi, ŷi(v) ∈ R⊕,

since ŷi is order preserving, thus ŷi(v) · ui ∈ R⊕ if and only if each ui ∈ R⊕. For such a

collection of ui,

u(v) =
∑
i∈I

ŷi(v) · ui ∈ R⊕

and u ∈ Y ∗∗⊕ .

Conversely, for each index i, define vi := ιi(1). That is, the element in Y such that ŷj(v) = δij

(δij being the Kronecker delta). It is clear that vi ∈ Y ∗⊕, and u(vi) = ŷi(vi)·ui, so ŷi(vi)·ui ∈ R⊕

90

if and only if ui ∈ R⊕. Since this is true for index i, each ui is non-negative.

Remark 3.3.11. We may formulate the feasibility conditions described in Definition 2.4.3.

We let R be an ordered ring, X a left BR module and Y ∗ a left R free module. We also let

A ∈ HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R), and let CY ∗ be an orthant cone of Y ∗.

Then the following statements:

• A variable ~x ∈ X is primal feasible if −A(~x) +~b ∈ CY ;

• Consequently, y is dual feasible if y ◦A = c;

may be written as:

• A primal variable ~x ∈ X is primal feasible if −αi(~x) + ŷi(~b) ≥R 0 for each i ∈ I.

• A dual variable y ∈ Y ∗∗ is dual feasible if c =
∑

i∈I αi · yi, yi := y(ιi(1R)) where ιi is

the canonical inclusion, and yi ≥R 0.

3.3.3 Non-Orthant Cones

We show here that the cones in Examples 3.2.4, 3.2.5 are not orthant cones.

Claim 3.3.12. The cone of nonnegative continuous functions in Example 3.2.4 is not an

orthant cone, when S is a compact Hausdorff set.

Proof. Let S be a compact Hausdorff space, and consider X := C0(S). Let CX be the

collection of non-negative continuous functions S → R. We will let B := {bi} be a (Hamel)

basis of X. Consider the constant function 1. We may write 1 =
n∑
i=1

ri · bi where ri ∈ R and

bi are some of the basis elements. Then let bj be a basis element, not one of these bi. Since

91

bj is continuous, we have that bj reaches a maximum on S. Let m := max
s∈S

bj(s). Then the

function

(
n∑
i=1

mri · bi−

)
bj is a non-negative function, but this function is not a non-negative

linear combination of basis elements. Since the choice of basis was arbitrary, this shows that

any basis will admit non-negative functions that are not non-negative linear combination of

basis elements, and thus CX is not an orthant cone.

Claim 3.3.13. The cone CY in Example 3.2.5 is not an orthant cone.

Proof. We first note that in Rn, orthant cones are closed. To see this, let e1, . . . , en be a basis

for Rn, and let C be their non-negative span. We note that the maps fi that send ~x to the

coefficient of ei for each basis element ei is continuous (since Rn is finite dimensional). Thus,

the half space Ci, the pre image of [0,∞) under fi are closed sets. Each Ci is precisely the

vectors where the coefficients of ei are non-negative, and so C is the intersection of all the Ci

and is closed.

We then note that the cone CY is not closed. To see this, consider the sequence {sn}, sn :=

(1, 1
n). Each sn ∈ CY , but the sn converge to (1, 0), which is not in CY , and so CY is not

closed.

3.4 Conclusion

In this chapter, we begun by examining several possible examples of cones. But we then

demonstrate that not every possible cone allows us to prove generalized versions of our classical

facts. Thus, we introduce a notion of an orthant cone, the analogue of a positive orthant in the

classical setting in Definition 3.3.4. With this cone, we also introduce the notions of row-like

projections in Definition 3.3.6. We then demonstrate that several of examples of cones that

92

were introduced here were not orthant cones, in particular, we demonstrated this in Examples

3.2.4, 3.2.5.

93

Chapter 4

Farkas’ Lemma and Generalizations

4.1 Introduction

We saw that the existence of a positive duality gap for a generalized primal-dual affine program

(Proposition 2.5.1) is largely a result of the ring and cone structures. That is, the non-

invertibility of ring elements, or a non-orthant cone, gives rise to the existence of such a gap.

In this chapter, we make the assumption that the ring of scalars R is an ordered division

ring and that all the cones are orthant cones. We then investigate the circumstances under

which the duality gap may be closed. When R is a division ring, both modules X,Y ∗ will

be vector-spaces over R. Thus, one must investigate both the dimension of X,Y ∗, and the

structure of the linear transformation A. We then investigate the circumstances under which

the Farkas’ Lemma holds.

The Farkas’ Lemma is then key to proving the remaining duality results. The original

statement was proved in 1902 by Gyula Farkas’ [Far02]:

94

Theorem 4.1.1 (Classical Farkas’ Lemma). Given A ∈ Rm×n,~c ∈ Rn, then exactly one of

the following hold:

(a) There is an ~x ∈ Rn, such that A~x ≤Rm
~0 and ~c

⊥

~x >R 0.

(b) There is a ~y ∈ Rm, where ~y ≥Rm
~0 and A

⊥

~y = ~c.

We see that the Farkas’ Lemma is a statement about primal solutions (~x) and dual solutions

(~y), and relates them to each other. Here, we will state general versions of the Farkas’ Lemma,

and prove them under various hypotheses. The original proof of the Farkas’ Lemma required

the use of the least upper bound axiom of the real numbers in order to create a separating

hyperplane. Since we do not have the same topological properties of the real numbers to rely

on here, our techniques will be purely algebraic. These proofs were inspired by David Bartl’s

paper, [Bar07]. In a 2012 paper [Bar12a], Bartl conjectured that for the Farkas’ Lemma to

hold in an infinite dimensional case, the row-like projection maps would have to be linearly

independent. We prove this, and strengthen the result.

Throughout this chapter, we will use the definition of feasibility given in Definition 2.4.3

unless otherwise stated.

4.2 Tools

In this section, we develop some of the tools necessary to discuss the Farkas’ Lemma in a

general setting. We follow loosely the structure of [Bar07], but provide original proofs unless

otherwise stated. The results in [Bar07] depend on the hypothesis that the dimension of the

co-domain dimR(Y ∗) is finite. In particular, this allows proof techniques such as induction,

and assume that Y ∗ ∼= Y . Here we attempt to avoid these conditions.

We begin with a lemma that relates the functionals c ∈ HomR(X,R) to the functionals

95

HomR(Y ∗, R).

Lemma 4.2.1 (Fundamental Lemma). Let R be a division ring. Let X,Y ∗ be left R vector

spaces, A ∈ HomR(X,Y ∗), c ∈ HomR(X,R). Then the following statements are equivalent:

(a) Ker(A) ⊆ Ker(c).

(b) There exists a u ∈ HomR(Y ∗, R) such that c = u ◦A.

Proof. Consider the following:

(b) =⇒ (a) This is clear, since if (b) holds, for each ~x ∈ Ker(A), αi(~x) = πi ◦ A(~x) = 0. Thus∑
i=1 uiα(~x) = 0.

(a) =⇒ (b) We wish to construct a map u : Y ∗ → R such that

X
A //

c
!!BBBBBBBB Y ∗

∃u
��
R

commutes. Recall by Proposition 3.3.9 that we may write u as a linear combination

u =
∑
i∈I

ŷi · ui, ui ∈ Y ∗.

In order for this to hold, we need that for each ~y an element of Y ∗, that c(A−1(~y)) =

{u(~y)}, where A−1 is the inverse image under the function A. So suppose there was an

element of Y ∗, ~y where ~x, ~x′ ∈ A−1(~y) such that c(~x) 6= c(~x′). Then c(~x − ~x′) 6= 0, but

A(~x− ~x′) = A(~x)−A(~x′) = ~y − ~y = 0. This contradicts (a). Thus (a) =⇒ (b).

In particular, by the above proof, we see that c is a (potentially infinite) linear combination of

the αi ∈ A, the collection of row-like projection maps (Definition 3.3.6). Although somewhat

96

abusive of the term linear combination, this gives us a way to think of the action that u has

on the αi and on A.

Definition 4.2.2. Let R be an ordered division ring, X a left R vector space and fi : X →

Ri, i ∈ I be an indexed collection of linear functionals, such that given w ∈ X, only finitely

many fi(w) 6= 0, and let g : X → R be a linear functional. We say that g is a (potentially

infinite) linear combination of the {fi} if there is a λ :
∏
i∈I

Ri → R such that

λ

 ∑
fi(w)6=0

fi(w)

 = g(w).

Definition 4.2.3. Let R be an ordered division ring, X a left R vector space and fi : X →

Ri, i ∈ I be an indexed collection of linear functionals, such that given w ∈ X, only finitely

many fi(w) 6= 0. This collection is linear independent if no functional may be written as a

(potentially infinite) linear combination of the others.

We can see the usefulness of this result, as it allows us to express c in terms of a composition

of maps. Since feasible solutions to the dual problem are exactly the non-negative functionals

u ∈ HomR(Y ∗, R) such that u ◦A = c, the utility of this lemma is clear.

Next, we prove a generalization of Fredholm’s Theorem [Ion27]

Theorem 4.2.4 (Generalization of Fredholm’s Theorem). Let R be an ordered division ring,

X,Y ∗ be left R vector spaces, A ∈ HomR(X,Y ∗),~b ∈ Y . Then the system

A(~x) = ~b

has no solutions if and only if:

There exists a λ ∈ HomR(Y ∗, R) : λ ◦A = 0, and λ(~b) 6= 0.

97

Proof. For the forward direction, notice that A(~x) 6= ~b for any ~x means ~b ∈ Y \A(X). Thus,

we may define a basis BX for A(X) and notice that {~b∪BX is linear independent in Y ∗. Thus,

this set can be extended to B a basis for Y ∗. We then define λ ∈ HomR(Y ∗, R) on this basis

via λ(~b) := 1, and 0 on each of the other basis elements. This is a well-defined linear map,

where A(X) ⊆ Ker(λ), and λ(~b) 6= 0.

Conversely, if λ ◦A = 0 and λ(~b) 6= 0 then ~b is not in the image of A, thus there can be no

solution to the equation A(~x) = ~b.

Proposition 4.2.5. Let R be a division ring, X,Y ∗ be left R vector spaces, A ∈ HomR(X,Y ∗),

and A be the collection of row-like projection maps induced by A (Definition 3.3.6). Then the

statements:

(a) A is surjective.

(b) The collection αi ∈ A are linearly independent.

are equivalent.

Proof. Consider the following:

(a) =⇒ (b) If A is surjective, a linear combination of the αi, can be written as

∑
i∈I

αi · ri =
∑
i∈I

(ŷi ◦A) · ri, ri ∈ R

Then we note that for each v ∈ Y , there is a w ∈ X such that A(w) = v. In particular,

we may define for vi := ιi(1R), for each index i, where ιi is the inclusion map ιi : Ri → Y ,

98

such that ŷiιi = idRi . For such a vi,

ŷi(vi) = ŷi(ιi(1Ri))

= δiiIi(1Ri) = 1.

However:

ŷj(vi) = ŷj(ιi(1Ri))

= δjiIi(1Ri) = 0,

where δij is the Kronecker delta. Thus,
(∑

i∈I αiri
)

(vi) = ri + 0. It follows that this

sum
∑

i∈I αiri = 0 if and only if each ri = 0, and thus the αi are linearly independent.

(b) =⇒ (a) Conversely, suppose that there was an ~b ∈ Y such that ~b 6∈ A(X). Then, by Fredholm’s

Theorem (Theorem 4.2.4), there is a λ ∈ HomR(Y,R) such that λ ◦A = 0 but λ(~b) 6= 0.

Notice that λ 6= 0, yet:

0 = λ ◦A =
∑
i∈I

ŷi ◦A · ui, where ri ∈ R, by Proposition 3.3.9

=
∑
i∈I

αi · ui.

Since λ 6= 0, the ui are not all zero, but
∑
i∈I

αi · ui = 0, and the αi are not linearly

independent.

99

4.3 The Farkas’ Lemma

We now have the tools necessary to prove our generalized Farkas’ Lemma. In general the

Farkas’ Lemma has a number of different equivalent statements. The one we will prove is

stated as follows:

Theorem 4.3.1 (Generalized Fact V: Farkas’ Lemma). Given R an ordered division ring,

X,Y ∗ be left R vector spaces, A ∈ HomR(X,Y ∗), c ∈ HomR(X,R). Then (under some

hypothesis) the following are equivalent:

(a) For each ~x,∈ X, if A(~x) ≤
Y ∗ 0, then c(~x) ≤R 0.

(b) The map c =
∑

i αi · ui, ui ≥R 0. Equivalently, there is a y ∈ Y ∗∗⊕ such that y ◦A = c.

Recall that by Proposition 2.4.28, we have already shown (b) =⇒ (a), and thus it suffices

to find the conditions where (a) =⇒ (b).

Remark 4.3.2. We first notice that (b) =⇒ (a) under any circumstance. If (b) holds, then

a vector ~x ∈ X satisfies A(~x) ≤Y 0 if and only if each αi(~x) ≤R 0. Then

c(~x) =
∑
i∈I

αi(~x) · ui

where each ui ≥R 0 and each αi(~x) ≤R 0, and so c(~x) ≤R 0.

Moreover, we notice that under any circumstances, if 4.3.1(a) is satisfied, then given ~x ∈

Ker(A), Notice A(~x) = A(−~x) = 0, so by (a), c(~x), c(−~x) ≥ 0. Thus c(~x) = 0,Ker(A) ⊆

Ker(c). So by the Fundamental Lemma (Lemma 4.2.1), c =
∑

i αi · ui.

Thus, when we present the proof of the Farkas’ Lemma under various hypotheses, we will

only prove (a) =⇒ (b). Moreover, we will always assume that c = λ ◦ A for some λ ∈

HomR(Y ∗, R). Equivalently, we assume that c is a linear combination of the αi.

100

With this in mind, we also note that since c is a linear combination of αi, that if any basis

element of X were in the kernel of each αi, it would also be in the kernel of c. Such a basis

element would not contribute to the problem in any way, and so without loss of generality, we

may assume that each basis element, for each basis we pick, is not in the kernel of some αi.

In other words, we may write

X = X ′ ⊕Ker(A)

and since Ker(A) ⊆ Ker(c), we can think of c = λ ◦ (A|X′). So without loss of generality, we

may assume Ker(A) = {0}.

Remark 4.3.3. This notion of the generalized Farkas’ Lemma is done with respect to the

orthant cones in X,Y ∗, and Y ∗∗. However, one could state the generalized Farkas’ Lemma in

terms of general cones in a module over an ordered ring:

Given R an ordered division ring, X,Y ∗ be left R vector spaces, A ∈ HomR(X,Y ∗), c ∈

HomR(X,R). Then the following are equivalent:

(a) If, A(~x) ≤
Y ∗ 0 for each ~x ∈ X, then c(~x) ≤R 0.

(b) The map c = y ◦A, where y ∈ Y ∗∗⊕

These inequalities can be made sensible with respect to any ordered ring and cones, but as

we have seen, may not be a true statement in a more general setting.

This statement is not true for all possible choices of Y ∗, X,A, c. We begin by presenting

the proof provided by [D. Bartl], where dimR(Y ∗) < ∞. We then show circumstances under

which the Farkas’ Lemma fails, and various hypothesis under which it holds.

Theorem 4.3.4 (Finite Farkas’ Lemma ([Bar12b])). Let R be an ordered division ring, X,Y ∗

be left R vector spaces such that dimR(Y ∗) < ∞, A ∈ HomR(X,Y ∗), and c ∈ HomR(X,R).

The following are equivalent

101

(a) For each ~x,∈ X, if A(~x) ≤
Y ∗ 0, then c(~x) ≤R 0.

(b) The map c =
∑

i αi · ui, ui ≥R 0. Equivalently, there is a y ∈ Y ∗∗⊕ such that y ◦A = c.

Proof. Notice that (b) =⇒ (a) trivially under any given hypothesis.

We proceed via induction on dimR(Y). If dimR(Y) = 1, then A : X → Y is a linear

functional. By Remark 4.3.2, if (a) holds, then we may write c = A · u for some u ∈ R. Then

since A(~x) ≤Y ∗ 0 =⇒ c(~x) ≤ 0, this u cannot be negative. Thus u ≥R 0.

Thus, we assume that (a) ⇔ (b) for Y ′,dimR(Y ′) = m and suppose dimR(Y ∗) = m + 1.

Notice that if (a) does not hold for Y ∗, (a) =⇒ (b) holds vacuously. Moreover, if αi(~x) ≤R 0

for each i ∈ [m] implies c(~x) ≤R 0, then

c =
m∑
i=1

αi · ui, ui ≥R 0

and thus

c =
m+1∑
i=1

αi · ui, ui ≥R 0, um+1 = 0,

and we are done. Thus, we may assume this does not happen, i. e. that there is a ~z ∈ X such

that

αi(~z) ≤R 0, i ∈ [m], but c(~z) >R 0.

It follows that αm+1(~z) >R 0, else (a) does not hold. Without loss of generality, we may

assume αm+1(~z) = 1.

We then define T ∈ HomR(X,X) to be

T (~x) := ~x− αm+1(~x)~z.

102

To verify that T is a linear map, given a, b ∈ R, ~x, ~y ∈ X, we get:

T (a~x+ b~y) = (a~x+ b~y)− αm+1(a~x+ b~y)~z

= a~x+ b~y − (aαm+1(~x)− bαm+1(~y))~z

= a~x+ b~y − aαm+1(~x)~z − bαm+1(~y)~z

= a~x− aαm+1(~x)~z + b~y − bαm+1(~y)~z

= aT (~x) + bT (~y).

Consider then that given any ~x ∈ X:

αm+1 ◦ T (~x) = αm+1(~x− αm+1(~x)~z)

= αm+1(~x)− αm+1(~x)αm+1(~z)

= 0.

Let βi := αi|T (X) and γ := c|T (X). Notice that since βm+1 = 0, then by (a), if for a given

~x ∈ T (X), βi(~x) ≤R 0, then γ(~x) ≤ 0. In fact, we may delete βm+1 and restrict to the m

dimensional subspace induced by ŷ1, . . . ŷm.

So by the induction hypothesis:

γ =
m∑
i=1

βi · ui, ui ≥R 0, so given ~x ∈ X,

c(~x− αm+1(~x)~z) =
m∑
i=1

αi(~x− αm+1(~x)~z) · ui

c(~x)− αm+1c(~z) =
m∑
i=1

αi(~x) · ui − αm+1(~x)

m∑
i=1

αi(~z) · ui

c(~x) =

m∑
i=1

αi(~x) · ui + αm+1

(
c(~z)−

m∑
i=1

αi(~z) · ui

)

103

But by construction, each αi(~z) ≤R 0 for i ∈ [m], and c(~z) >R 0, thus

um+1 := c(~z)−
m∑
i=1

αi(~z) · ui >R 0

and u is a non-negative linear combination of αi.

We would clearly like to be able to extend this result to an infinite-dimensional case. How-

ever, here we run into some difficulty:

Example 4.3.5 (A Counterexample to “unrestricted” Farkas’ Lemma). We, we let R = R,

and let Y ∗ = X = RN. Consider the following illustration of A, c, where we think of the nth

row as the action on the nth entry of X:

A :

α0 =

α1 =

α2 =

α3 =

...

1 1 1 1 · · · 1 · · ·

−1 0 0 0 · · · 0 · · ·

0 −1 0 0 · · · 0 · · ·

0 0 −1 0 · · · 0 · · ·
...

...
...

. . .
...

...
...

c :

(
1 2 3 4 · · · n · · ·

)
.

So, we first verify that this choice of A, c satisfy the Farkas’ Lemma. First, note that given a

~x, in order for each αi(~x), i > 0 to be non-positive, each entry xn must be non-negative xn ≥ 0.

Under these circumstances, for α0(~x) to be non-negative, each xn = 0. Thus A(~x) ≤Y 0 if

and only if ~x = 0. c(~x) = 0, and so the hypothesis to (a) is satisfied.

104

However, when we consider any non-negative linear combination of the αi

γ :=
n∑
i=0

uiαi, ui ≥R
0 :

(
γ1 γ2 · · · γn · · ·

)

We see that γi is bounded above by u0. Yet the entries of c are unbounded. Thus we cannot

express c as a non-negative linear combination of the αi and (b) fails.

Notice though that by defining ci = −i, we can express c as a linear combination of the αi.

We also note that this is not unique.

Thus, we need to show under what circumstances the Farkas’ Lemma does hold. We begin

categorizing some necessary conditions for the Farkas’ Lemma to be true, and proving it with

some additional hypotheses.

Remark 4.3.6. Recall that given anyA′ ⊆ A induces a linear transformationA′ ∈ HomR(X,Y ′),

where Y ′ ≤ Y ∗ is the subspace of Y ∗ defined by
∐
αi∈ARi. Equivalently, we may think of the

subspace of Y ∗ defined by the basis elements that the maps αi ∈ A′ project onto.

Proposition 4.3.7. Given R an ordered division ring, X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y ∗) and c ∈ HomR(X,R), then the following are equivalent:

(a) A(~x) ≤
Y ∗ 0 =⇒ c(~x) ≤R 0 for each ~x ∈ X.

(b) There is a linear transformation A′ induced by A′ ⊆ A such that A′(~x) ≤
Y ′ 0 =⇒

c(~x) ≤R 0.

Recall that A is the collection of row-like projection maps (Definition 3.3.6).

Proof. If (a) holds, then allowing A′ = A, (b) holds.

105

If (b) holds, then given any ~x ∈ X, we have that:

A(~x) ≤′
Y

0 only if

αi(~x) ≤R 0, for each αi ∈ A, which implies

αj(~x) ≤R 0, for each αj ∈ A′, which occurs only if

A′(~x) ≤
Y ∗ 0.

Thus A(~x) ≤
Y ∗ 0 =⇒ A′(~x) ≤

Y ′ 0 =⇒ c ≤R 0.

Proposition 4.3.8. Given R an ordered division ring, X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y ∗) and c ∈ HomR(X,R), the following are equivalent:

(a) A(~x) ≤
Y ∗ 0 =⇒ c(~x) ≤R 0 for each ~x ∈ X.

(b) A′(~x) ≤′
Y

0 =⇒ c(~x) ≤R 0, where A′ is induced by A′ := {αi ∈ A : αi 6= 0}.

Proof. If A(~x) ≤
Y ∗ 0, then each αi(~x) ≤R 0, in particular, for the non-zero αi as well.

Conversely, since each αj = 0 is automatically less than or equal to 0 for each ~x, A(~x) ≤Y 0

only if αi(~x) ≤ 0 for each non-zero αi.

Thus A(~x) ≤
Y ∗ 0 if and only if A′(~x) ≤

Y ′ 0, and if one implies c(~x) ≤R 0, so must the other.

Corollary 4.3.9. If given R an ordered division ring, X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y) and c ∈ HomR(X,R), the Farkas’ Lemma holds if and only if the Farkas’ Lemma

holds for A′, Y ′, where A′ is induced by A′ := {αi ∈ A : αi 6= 0}, the row-like projection maps

(Definition 3.3.6).

So without loss of generality, we may assume each αi 6= 0.

106

We will now prove some different versions of the Farkas’ Lemma. The first is the linearly

independent Farkas’ lemma, conjectured by Bartl in [Bar12a].

Theorem 4.3.10 (Linearly Independent Farkas’ Lemma). Given R an ordered division ring,

X,Y ∗ be left R vector spaces, A ∈ HomR(X,Y ∗), where the collection of induced row-like pro-

jections A(Definition 3.3.6) is a linearly independent set, and c ∈ HomR(X,R), the following

are equivalent:

(a) For each ~x,∈ X, if A(~x) ≤
Y ∗ 0, then c(~x) ≤R 0.

(b) The map c =
∑

i αi · ui, ui ≥R 0. Equivalently, there is a y ∈ Y ∗∗⊕ such that y ◦A = c.

Proof. Recall that we may assume that there is a map λ ∈ HomR(Y ∗, R) such that c = λ ◦A.

Since the αi are linearly independent, by Proposition 4.2.5 the map A is surjective. Thus

given each index i, there is a xi ∈ X such that A(xi) = vi, where vi = ιi(1R). Recall that

ŷj(vi) = δij , where δij is the Kronecker delta. Thus:

λ(vi) =
∑
j∈I

ŷj(vi) · ui

= ui.

So αi(−xi) = ŷi(A(−xi)) = −ŷi(vi) = −1 ≤R 0, and αj(−xi) = ŷj(A(−xi)) = −ŷj(vi) =

0 ≤R 0. Thus by our hypothesis c(−xi) = λ ◦A(−xi) = −ui ≤ 0, and so ui ≥ 0. Since this is

true for each index i, we have that c is a non-negative linear combination of the αi.

We then present a version of the Farkas’ Lemma under hypothesis which allow us to prove

the Farkas’ Lemma with respect to a subspace of X, then extend it with Zorn’s Lemma.

107

For the following definitions, we will abuse notation and define the following for both sin-

gletons and sets.

Definition 4.3.11. Given α ∈ A, the collection of row-like projection maps (Definition 3.3.6)

we define the support, supp(α) to be supp(α) := {x ∈ X : α(x) 6= 0}. Given A′ ⊆ A, we define

supp(A′) :=
⋃
α∈A′

supp(α).

Definition 4.3.12. Given an x ∈ X , we define the co-support, cosupp(x), to be cosupp(x) :=

{α ∈ A : α(x) 6= 0} . Given X ⊆ X , we define cosupp(X) =
⋃
x∈X

cosupp(x). Notice that this

will be finite for any x ∈ X .

Definition 4.3.13. We define the foundation, found(α), to be found(α) := {α′ ∈ A :

supp(α) ∩ supp(α′) 6= ∅}. Similarly, define found(A′) =
⋃
α∈A′

found(α).

Definition 4.3.14. Finally, we define the roof, roof(x), to be roof(x) = found(cosupp(x))

and roof(X) =
⋃
x∈X

roof(x).

Proposition 4.3.15. Let R be an ordered division ring, X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y ∗) and A be the induced collection of row-like projection maps (Definition 3.3.6).

Then, given A′ ⊆ A, where 0 6= α ∈ A′, then A′ ⊆ found(A′).

Proof. Given α ∈ A′ supp(α) 6= ∅ so supp(α) ∩ supp(α) 6= ∅ and α ∈ found(A′).

Corollary 4.3.16. Let x ∈ X , if roof(x) 6= ∅, then cosupp(x) ⊆ roof(x).

Theorem 4.3.17 (Extendable Farkas’ Lemma). Let R be an ordered division ring, X,Y ∗ be

left R vector spaces. Also let c ∈ HomR(X,R), A ∈ HomR(X,Y ∗) such that:

• |roof(x)| <∞ for each x ∈ X .

• Let X1, X2 ⊆ X , and ci = c|span(Xi) such that we may express ci to be a non-negative

linear combination of αi. Then for a fixed µ1, we may choose coefficient function µ2

108

such that µ1|X1∩X2 = µ2|X1∩X2, and

ci =
∑

αk∈cosupp(Xi)

αkµi(αk).

Then the following are equivalent:

(a) The implication A(~x) ≤ 0 =⇒ c(~x) ≤ 0 holds for each ~x ∈ X.

(b) We may write c =
∑

i∈Y ∗ αi · ui where ui ∈ R⊕.

Proof. We proceed via Zorn’s Lemma. We define a family of pairs F where the (X ′, µ′), where

X ′ ⊆ X and µ′ : cosupp(X ′)→ R⊕ such that

∑
αi∈cosupp(X′)

αi(x)µ′(αi) = c(x)

for each x ∈ X ′ ∪ {x′′ : cosupp(x′′) ⊆ roof(X ′)}.

This family has a natural poset structure. We say the pairs (X ′, µ′) ≤ (X ′′, µ′′) if X ′ ⊆ X ′′

and µ′′|cosupp(X′) = µ′. We then verify that this is a partial ordering.

• Clearly X ′ ⊆ X ′, µ′|cosupp(X′) = µ′. Thus (X ′, µ′) ≤ (X ′, µ′).

• If (X ′, µ′) ≤ (X ′′, µ′′), (X ′′, µ′′) ≤ (X ′, µ′), then X ′ ⊆ X ′′ ⊆ X ′ and X ′ = X ′′. Then

cosupp(X ′) = cosupp(X ′′) and µ′ = µ′′.

• If (X ′, µ′) ≤ (X ′′, µ′′), (X ′′, µ′′) ≤ (X ′′′, µ′′′), then X ′ ⊆ X ′′ ⊆ X ′′′, and

µ′′′|cosupp(X′) = (µ′′′|cosuppX′)|cosupp(X′)

= µ′′|cosupp(X′)

= µ′.

109

Thus (X ′, µ′) ≤ (X ′′′, µ′′′).

We also need to show that every chain in F has a maximal element. Let {(Xi, µi)}i∈I be a

chain. We claim that (X ′, µ′) is a maximal element, where X ′ :=
⋃
i∈I

Xi and µ′(α) := µj(α),

where α ∈ cosupp(Xj).

To verify that µ′ is a well defined function, given an α ∈ cosupp(X ′), and any µk, µ` such

that α ∈ cosupp(Xk) ∩ cosupp(X`), it is the case that k ≤ ` or ` ≤ k. Without loss of

generality, say k ≤ `, then

µ`(α) = µ`|cosupp(Xk)(α) = µk(α).

So given any (Xi, µi) in our chain, we see that Xi ⊆ X ′, and µ′|cosupp(Xi) = µi. Thus (X ′, µ′)

is a maximal element for the chain.

Finally, to show that F is non-empty, we let x ∈ X . Consider the roof of x, roof(x). We

may assume without loss of generality, that cosupp(x) 6= 0 for each x ∈ X, else there is an

x′ ∈ X such that α(x′) = 0 for each α ∈ A, and since c is a linear combination of the α’s,

c(x′) = 0, and we may disregard it, as x′ contributes to neither c, nor the α’s.

So consider roof(x) and supp(roof(x)). This induces a new program. We let X ′ be the span

of supp(roof(x)), and let Y ′ be induced by the projection maps associated with roof(x), we

let c′ := c|X′ , and A′ be induced by roof(x). Since roof(x) is finite, Y ′ is finite dimensional.

Moreover, since the implication of (a) holds for X, it also holds for each subspace of X. Thus,

we may use the finite version of the Farkas’ Lemma to state that c′ is a non-negative linear

combination of α ∈ roof(x). That is, if roof(x) = {α1, . . . αm}, c′ =
∑m

i=1 αi · ui, ui ∈ R⊕.

Notice that cosupp(x) ⊆ roof(x). Then given any β ∈ A\roof(x), β(x) = 0. Thus given any

110

linear combination γ :=
∑

αj∈A vjαj , if vj = uj for each αj ∈ cosupp(x), hence see that:

γ(x) =
∑

αi∈cosupp(x)

αi(x) · vi +
∑

αj 6∈cosupp(x)

αj(x) · vj

=
∑

αi∈cosupp(x)

xi · ui + 0

= c′(x).

If there was a y ∈ X such that cosupp(y) ⊆ roof(x), then for the same linear combinations,

c′(y) = γ(y) as well. We notice that all such y would be in the support of the roof of x.

So, define X0 to be y ∈ X such that cosupp(y) ⊆ cosupp(x). Since x ∈ X0, X0 is not empty.

For each αi ∈ cosupp(x), we define µ0(αi) := ui. Finally, we notice that given y ∈ X such

that cosupp(y) ⊆ cosupp(x),

c(y) = c′(y) =
∑

αi∈roof(x)

αi(y) · ui =
∑

αi∈cosupp(x)

αi(y) · µ0(αi).

Thus F is not empty.

So, we may use Zorn’s Lemma and suppose that (X∗, µ∗) is a maximal element of F . Also

suppose that X∗ 6= X. Let x ∈ X∗\X. If cosupp(x) ⊆ roof(X∗), then, µ∗ is already defined

for each α ∈ cosupp(x), and we may simply replace X∗ with X∗ ∪ {x}, contradicting the

maximality of X∗.

So consider x ∈ X\X∗ such that cosupp(x)\roof(X∗) 6= ∅. We once again, we to use

the finite Farkas’ Lemma to create a new maximal element, contradicting the maximality of

(X∗, µ∗).

We define X ′ to be the span of supp(roof(x)). We also define Y ′ to be the subspace of Y

induced by the projection maps associated with A′ := roof(x). We define A′ to be the map

111

induced by A′. Once again, we notice that Y ′ is finite dimensional.

Again, hypothesis (a) of the Farkas’ Lemma is satisfied, as X ′ is a subspace of X, A′ is

composed of all projections that are non-zero on X ′. Thus, given A′ = {α1, . . . , αn}, we have

that

c′ =
∑
αi∈A′

αi · ui, ui ∈ R⊕,

and c′ = c|X′ .

In fact, by the hypothesis, we have that we may select such a ui such that ui = µ∗(αi) when

αi is in cosupp(X∗). Thus, consider

µ1 : cosupp(X∗) ∪ cosupp(x)→ R

where µ1|cosupp(X∗) = µ∗ and µ1(αi) = ui for αi ∈ cosupp(x). This is well defined since we

have chosen the ui to agree on cosupp(Xi). Define c1 to be

c1(~x) :=
∑

αi∈cosupp(X∪{x})

αi(~x)µ1(αi).

This is a well defined linear map. Notice also that for any z ∈ X such that cosupp(z) ⊆

cosupp(x), z ∈ X ′ and

c1(z) =
∑
i

αi(z)µ1(αi) =
∑

αi∈cosupp(x)

αiµ1(αi) = c′(z) = c(z).

Thus (X∗ ∪ {x}, µ1) > (X∗, µ∗) which violates the maximality of (X∗, µ∗). Thus X∗ = X ,

and c∗ = c, which is a non-negative linear combination of the αi. This completes the proof

112

This provides an alternative proof of Theorem 4.3.10.

Proof. Since each αi is linearly independent of the other αj , we can choose a basis X for

X such that xi ∈ X is supported by at most one of the αi ∈ A, and by the Remark 4.3.2,

we may assume that it is supported by exactly one αi ∈ A. Thus roof(xi) = {αi}. So for

each c′ defined on X ′ < X, given a xj ∈ X , xj 6∈ X ′, we can extend c′ to xj by defining

c′′ := c′ + αj · (αj(xj)−1c).

Next we describe ways to “partition” an affine programming problems into sub-problems,

and show that the Farkas’ Lemma holds if and only if each of the sub-problems hold.

Proposition 4.3.18. Let R be an ordered division ring, let X,Y be left R vector spaces.

Then, let A ∈ HomR(X,Y), where A is the collection of row-like projection maps (Definition

3.3.6). We then let L := {αk ∈ A} such that L is maximal with respect to linear independence.

Then for each α` ∈ L, there is a x` ∈ X such that αk(`) = δ`k (where δ`k is the Kronecker

delta), and the collection of x` forms a basis for X.

Proof. We first construct the collection {x`}. Notice that for each α`, α` is linearly indepen-

dent of each αk ∈ L, k 6= `. Thus, by the Fundamental Lemma (Lemma 4.2.1) there is a

x` ∈
⋂
k 6=`

Ker(αk)\Ker(α`). Without loss of generality we may choose xi such that α`(xi) = 1.

To see that these xi are linearly independent, suppose we may write 0 =
∑

i∈L′⊆L
xi ·ri, ri ∈ R.

Then for each index k,

0 = αk(0) = αk(
∑

i∈L′⊆L
ri · xi) = rk.

Thus each rk must be 0.

113

To show that these xi span X, we then let 0 6= ~x ∈ X, and consider that αi(~x) will be non-

zero for only finitely many elements of αi ∈ A. Without loss of generality, we label α1, . . . αm

to be the elements of L where αi(~x) is non-zero.

We first note that such a collection of αi exist, else, if αk(~x) = 0 for each αk ∈ L, then since

each αj is a linear combination of the αk, αj(~x) = 0 as well, and by our convention, ~x = 0.

We then claim

~x = x′ :=
m∑
i=1

αi(~x) · xi,

where i indexes the αi, xi such that αi(~x) 6= 0. Certainly for each such αi, αi(x
′) = αi(αi(~x) ·

xi) = αi(~x). Then since each αj ∈ A is a linear combination

A(~x) = A

∑
α`∈L

α`(~x) · x`

 =

m∑
i=1

αi(~x) · vi =

m∑
i=1

αi(x
′) · vi = A(x′).

Thus A(~x) = A(x′), and by our convention, A is injective. Thus ~x = x′, and the collection

x` spans X.

Definition 4.3.19. Given any collection of vectors over R, C := {ai}, we may define an

equivalence relationship between a1 ∼ a2 if there is a subset C ′ ⊆ C\{a1} such that a2 ∈ C ′

and

a1 =
∑
ai∈C′

airi·, ri 6= 0.

To see that this is an equivalence relationship, notice that:

• a1 = a1 · 1.

• If a1 =
∑

ai∈C′ airi, then a2 = a1r
−1
2 −

∑
ai∈C′\{a2} airir

−1
2 .

114

• If a1 =
∑

ai∈C′ airi and a2 =
∑

aj∈C′′ ajrj , where a3 ∈ C ′′. Then either a3 ∈ C ′′, or

a1 =
∑

ai∈C′\{a2}

airi +

 ∑
αj∈C′′

ajrj}

 r2.

We call [a1] to be the linear dependence class of a1, and recall that these classes partition

C.

Remark 4.3.20. We notice then that given A ∈ HomR(X,Y ∗), A can be partitioned into

linear dependence classes. (Recall A is the collection of row-like projection Definition 3.3.6).

Proposition 4.3.21. Given R an ordered division ring, X,Y ∗ R-vector spaces with dimR(Y ∗) =

∞, A ∈ HomR(X,Y ∗), one can find a basis for X such that supp([α1])∩ supp([α2]) = ∅ when

[α1] 6= [α2].

Proof. Given a partition of A (Recall A is the collection of row-like projection maps Definition

3.3.6) via linear dependence classes, consider a collection L ⊆ A where L is maximal with

respect to linear independence. Such define the classes ˜[αi] = [αi] ∩ L, and define Bi :=

{xk : αk ∈ ˜[αk]}, where the xk are constructed as in Proposition 4.3.18. Since the classes [αi]

partition A, the ˜[αi] partition L, and thus the disjoint union of the Bi form a basis for X by

Proposition 4.3.18.

Thus consider any pair [αi], Bi, we claim that supp([αi]) = Bi, with respect to the basis B.

Notice that given xk ∈ Bk, there is a αk ∈ [αi] such that αk(xk) = 1. Thus Bi ⊆ supp([αi]).

Conversely, for any xj 6∈ Bi, αk(xj) = 0 for each αj ∈ ˜[αi]. Since the remaining elements of

[αi] are linear combinations of these αk, these will be zero as well, and so supp([αi]) ⊆ Bi.

We then note that distinct classes [α1], [α2] induce distinct subsets of the basis B1, B2, that

are disjoint. This completes the proof.

Remark 4.3.22. By our various conventions, we have partitioned the row-like projection

115

maps A, based on linear dependence, and in doing so induced a partition of a basis of X. We

also see that partitioning A is equivalent to partitioning the spanning projection maps of Y ∗,

or equivalently, partitioning the basis of Y .

In other words, given a map α1 ∈ A, we get a collection of linearly dependent maps [α1],

which induce both a partition of a basis of X,B1, and of spanning projection maps of the

codomains {ŷi : αi ∈ [α1]}. This allows us to deconstruct the program into a collection of

subprograms, with X1 := span(B1), Y1 :=
∐

αi∈[α1]

Ri, A1 the linear transformation induced by

A1 := [α1] and c1 := c|X1 .

Definition 4.3.23. Let R be an ordered division ring, let X,Y ∗ be left R vector spaces,

and let A ∈ HomR(X,Y) and c ∈ Hom(X,R). Label the linear dependence classes of A,

(Definition 4.3.19) Aj , j ∈ J . For each index j, we define the subprogram (X,Y ∗, A, c)j to be

(Xj , Y
∗
j , Aj , cj) described above. The collection {(X,Y ∗, A, c)j}j∈J is the linear dependence

decomposition of (X,Y ∗, A, cj).

Proposition 4.3.24. Let R be an ordered division ring, let X,Y be left R vector spaces, and

let A ∈ HomR(X,Y) and c ∈ Hom(X,R). If c = λ ◦ A for some λ ∈ HomR(Y ∗, R), then

cj = λ ◦Aj. Equivalently, cj is a linear combination of αk ∈ Aj.

Proof. If c = λ ◦ A, then given ~xj ∈ Xj , each αi(~x) = 0 for αi 6∈ Aj . Thus c is a linear

combination of the αi ∈ Aj , and so cj = c|Xj = λ ◦Aj .

Recall the Generalized Farkas’ Lemma:

GivenR an ordered ring, X,Y ∗ be leftR vector spaces, A ∈ HomR(X,Y ∗), c ∈ HomR(X,R).

Then the following are equivalent:

(a) For each ~x,∈ X, if A(~x) ≤
Y ∗ 0, then c(~x) ≤R 0.

116

(b) The map c =
∑

i αi · ui, ui ≥R 0. Equivalently, there is a y ∈ Y ∗∗⊕ such that y ◦A = c.

Proposition 4.3.25. Given X,Y ∗ be left R vector spaces, A ∈ HomR(X,Y ∗), c ∈ HomR(X,R).,

we have that condition (a) of the Generalized Farkas’ Lemma holds for (X,Y ∗, A, c), if and

only of it holds for each subprogram (Definition 4.3.23): (X,Y ∗, A, c)j. Similarly with condi-

tion (b).

Proof. Suppose (a) holds for each (X,Y ∗, A, c)j . Then given any ~x ∈ X such that A(~x) ≤
Y ∗ 0,

we may write ~x =
∑
j∈J

xj , xj ∈ Xj (with only finitely many xj 6= 0.) Then since the Aj

partition the αj , A(~x) ≤Y 0 if and only if Aj(xj) ≤Yj
0. Thus each cj(xj) ≤R 0. Then it

follows that

c(~x) =
∑
j∈J

cj(xj) ≤R 0.

If (b) holds for each index j, cj can be written as λj ◦Aj , then we define c := λ ◦A, where

λ = ⊕j∈Jλj . Since each λi maps the basis elements ιi(1) to non-negative elements of R, so to

does λ, and λ is non-negative.

Theorem 4.3.26 (Decomposable Farkas’ Lemma). Given X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y ∗), c ∈ HomR(X,R), such that the conclusion of the Farkas’ Lemma holds for each

induced subprogram (X,Y ∗, A, c)j, (that is: (a)j ⇐⇒ (b)j) then the following are equivalent:

(a) If A(~x) ≤
Y ∗ 0 for any ~x ∈ X i.e. αi(~x) ≤R 0 for a choice ~x, then c(~x) ≤R 0

(b) The map c =
∑

i αi · ui, ui ≥R 0. In other words, there is a u ∈ HomR(Y ∗, R)⊕ such

that u ◦A = c.

Proof. If, (a) does not hold for any of the subprograms of (X,Y ∗, A, c), then there is an index

k and a ~x ∈ Xk such that Ak(~x) ≤Yk
0 but ck(~x) > 0. Since Ak(~x) ≤Yk

0 only if A(~x) ≤
Y ∗ 0

117

and c(~x) = ck(~x), (a) fails for (X,Y ∗, A, c) and the implication (a) =⇒ (b) holds vacuously.

Otherwise (a) holds for each (X,Y ∗, A, c)j , and so (b) holds for each subprogram as well.

Then by Proposition 4.3.25, (b) holds for (X,Y ∗, A, c) as well.

Corollary 4.3.27. If given (X,Y ∗, A, c), each |Aj | <∞, then the Farkas’ Lemma holds.

Proof. By Theorem 4.3.4, the Farkas’ Lemma holds for each subprogram. Then by Corollary

4.3.27, it hold for the main program as well.

Corollary 4.3.28. This gives an alternative proof to Theorem 4.3.10

Notice that the converse to Corollary 4.3.27 is not true.

Example 4.3.29. We, we let R = R, and let X := RN ⊕ R2, Y ∗ := RN ⊕ R. We then define

A1 : RN → RN and c to be the the counterexample to the Farkas’ Lemma (Example 4.3.5):

A1 :

α0 =

α1 =

α2 =

α3 =

...

1 1 1 1 · · · 1 · · ·

−1 0 0 0 · · · 0 · · ·

0 −1 0 0 · · · 0 · · ·

0 0 −1 0 · · · 0 · · ·
...

...
...

. . .
...

...
...

c1 :

(
1 2 3 4 · · · n · · ·

)
.

We also define A2 : R2 → R via (w1, w2) 7→ w1−w2, and c : R2 → R via (w1, w2) 7→ w1 +w2.

We note that given A((0X1 , (1, 1))) = (0Y1 , 0), but c((0X1 , (1, 1))) = 2 Since (a) does not

118

hold, (a) =⇒ (b) is vacuously true. However, the subprogram (X,Y,A, c)1 does not satisfy

the Farkas’ Lemma.

Proposition 4.3.30. Given R an ordered division ring, X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y), c ∈ HomR(X,R), we may choose a collection of ŷi : Y → Ri, ιi : Ri → Y such

that the Farkas’ Lemma holds.

Proof. We notice that A(X) is a linear subspace of Y ∗, and thus, we may choose ŷi, ιi (or

equivalently, a basis for Y) such that a sub collection of these maps (basis elements) span

A(X). We note that by our convention, we may ignore any non-zero αi, and so with respect

to these maps (this basis), we may assume that A is onto. By Proposition 4.2.5, the αi are

linearly independent and by Theorem 4.3.10, the Generalized Farkas’ Lemma holds.

Theorem 4.3.31. Let R be an ordered division ring, let X,Y ∗ be left R vector spaces, let A ∈

HomR(X,Y), and c ∈ HomR(X,R), such that dimR(Xj), |Aj | <∞ for the each of the induced

subprograms (Definition 4.3.23). Then the Farkas’ Lemma holds for (X,Y ⊕ X,A ⊕ −I, c).

Equivalently, the Farkas’ Lemma holds when we impose a non-negative constraint on ~x.

Proof. If each dimR(Xj), |Aj | < 0, then when we consider the program (X,Y ∗⊕X,A⊕(−I), c),

we note that given any subprogram (X,Y ⊕X,A⊕ (−I), c)j , dimR(Yj ⊕Xj) <∞, and so by

Theorem 4.3.4 the Generalized Farkas’ Lemma holds for each subprogram. Thus by Corollary

4.3.27, it holds for the given program as well.

4.4 Conclusion

In this chapter, we followed the results of [Bar07], and proved some generalizations of tech-

nical results he proved in his paper. We then used these technical results to show that the

119

generalized Farkas’ Lemma 4.3.1 holds under several finite-type circumstances (Proposition

4.3.10, Corollary 4.3.27) proving a conjecture of Bartl’s as well. We also show how the Farkas’

Lemma may be extended with Zorn’s Lemma (Theorem 4.3.17). In this chapter, we assumed

nothing more about our ring structure other than that they were ordered division rings. In

particular, we did not assume the commutativity of a product.

120

Chapter 5

Theorems of the Alternative and

Duality Results

5.1 Introduction

Here, we state some consequences of the Farkas’ Lemma, which are dubbed Theorems of the

Alternative. They are named this way since historically, they deal with the circumstances

where there either exists a vector in the primal solution space X with certain properties, or a

functional in the dual solution space Y ∗ with another property, but not both. However, some

of the implications in the infinite case do not hold, or only hold with additional hypothesis.

In this section, we assume that R is an ordered division ring, X,Y ∗ be R vector spaces, A ∈

HomR(X,Y ∗), c ∈ HomR(X,R). We shall also use the convention that X∗ := HomR(X,R)

and Y ∗∗ := HomR(Y ∗, R). Moreover, we shall assume that the conclusion of the Generalized

Farkas’ Lemma holds. This section also follows loosely the structure of [Bar07].

Additionally, we will use these theorems to prove some of the duality results of affine op-

timization. In particular, we prove the generalized facts Complementary Slackness 5.3.4 and

121

the Strong Duality Theorem 5.3.7, as well as prove partial results that lead to the Existence-

Duality Theorem.

5.2 Theorems of the Alternative.

Lemma 5.2.1. Let R be a division ring, X,Y ∗ be left R vector spaces, ~b ∈ Y ∗ and c ∈

HomR(X,R). Then the system of inequalities

A(~x) ≤
Y ∗
~b

has no solution if and only if there is a λ ∈ Y ∗∗, such that λ ≥
Y ∗∗ 0, λ ◦A = 0 and λ(~b) < 0.

Proof. Let X ′ := X ⊕ R, Y ′ = Y ∗, and A′ : X ′ → Y ′, (~x, r) 7→ A(~x) − r~b. Then A(~x) ≤
Y ∗
~b

has a solution if and only if there is a solution to the system

A′((~x, r)) ≤
Y ′ 0

where r > 0.

We then define γ : X ′ → R via γ((~x, r)) = r. This will play the role of c in the Farkas’

Lemma.

Then, we suppose that A(~x) ≤
Y ∗∗

~b has no solution. By our previous observation, this

occurs if and only if any solution to A′((~x, r)) ≤′
Y

0 implies γ((~x, r)) ≤ 0.

Thus hypothesis (a) of the Farkas’ Lemma is satisfied, where A′ plays the role of A, and γ

the role of c. This implies that there is a λ ∈ Y ∗∗⊕ such that λ ◦ A′ = r. So λ(A(~x)) = 0 for

each ~x ∈ X, and λ(~b) = λ(0− (−1)~b) = −1 < 0.

122

Corollary 5.2.2. The system of equations

A(~x) = ~b

has no solutions if and only if there is a λ ∈ Y ∗∗, such that : λ ◦A = 0 and λ(~b) < 0.

Proof. Let Yi := Y ∗, and Y ′ := Y1 ⊕ Y2, and A′ := A⊕−A. Then it follows that:

A(~x) = ~b, has no solution if and only if,

A(~x) ≤
Y ∗

~b, has no solution, and

−A(~x) ≤
Y ∗ −~b, has no solution, in other words

A′(~x) ≤
Y ′ (~b,−~b), has no solution.

So by Lemma 5.2.1, there is a λ′ ∈ HomR(Y ′, R), λ′ in the induced non-negative cone of

HomR(Y ′, R) such that λ′(A′) = 0, λ′((~b,−~b)) < 0. Let λi := λ′|Yi , and let λ := λ1 − λ2. We

may verify that

λ ◦A = λ1 ◦A− λ2 ◦A = λ′ ◦ (A⊕−A) = 0,

and

λ(~b) = λ1(~b)− λ2(~b) = λ′((~b,−~b)) < 0.

Conversely, If λ ◦A = 0, λ(~b) 6= 0, then ~b 6∈ A(X).

This gives us the following useful technical result:

Proposition 5.2.3. Let R be an ordered division ring, X,Y1, Y2 be left R vector spaces. Define

123

Ai ∈ HomR(X,Yi) , ~bi ∈ Yi. Then the system of linear inequalities

A1(~x) = ~b1, A2(~x) ≤Y2

~b2

has no solution then there is a λi : Yi → R, λ2 ∈ (Y ∗2)⊕ (the non-negatives of HomR(Y2, R)),

such that

λ1 ◦A1 + λ2 ◦A2 = 0

and λ1(~b1) + λ2(~b2) <R 0.

Proof. Similarly, we consider A′ : X → Y1 ⊕ Y1 ⊕ Y2 via A′ := A1 ⊕ −A1 ⊕ A2 bounded by

(~b1,−~b1,~b2). The result then follows similarly as above.

The next result is a semi-generalization of Motzkin’s Theorem [Mot36].

Theorem 5.2.4 (Motzkin’s Theorem). Let A1 ∈ Rn1×m and A2 ∈ Rn2×m. Then the system

of linear inequalities

A1~x ≤Rn1
0, A2~x ≤Rn2

0

has no solution for any ~x ∈ Rm if and only if there are vectors λi ∈ Rn1
⊕ , λ2 ∈ Rn2

⊕ such that

λ

⊥

1A1 + λ

⊥

2A2 = 0

and λ1 6= 0.

Notice however, that this result has being partitioned into two separate implications. The

original statement of Motzkin’s Theorem presumed that the co-domain of A, Y ∗, was a finite

dimensional space, and as part of the hypothesis, that each αi(~x) were strictly less than the

co-ordinate bi. However, as Y ∗ is potentially infinite dimensional, finitely many of the αi(~x)

124

and bi will be non-zero for any choice of ~x,~b, and this hypothesis can only hold if Y ∗ is finite

dimensional as well. Thus we prove a more general version of this theorem where the two

statements are are not generally equivalent.

Theorem 5.2.5 (Generalized Motzkin’s Theorem Part 1). Let R be an ordered division ring,

X,Y1, Y2 be left R vector spaces. Let Ai ∈ HomR(X,Yi) for i = 1, 2. Then if the system of

linear inequalities

A1(~x) <Y1
0, A2(~x) ≤Y2

0

has no solution then there is a λi : Yi → R, λi ∈ (Y ∗i)⊕, λ1 6= 0, such that

λ1 ◦A1 + λ2 ◦A2 = 0.

Proof. We define Y := Y1 ⊕ Y2, A : X → Y to be A1 ⊕ A2. Then given any ~b ∈ (Y1)⊕, we

define A′ : X ⊕R→ Y, (~x, r) 7→ (A1(~x)− r~b,A2(~x)). Then the system

A1(~x) <Y1
0, A2(~x) ≤Y2

0

has no solution, only if A′((~x, r) ≤
Y ∗ 0 implies r ≤R 0.

We then define γ : X⊕R→ R via (~x, r) 7→ r. Then there is a λ ∈ Y ∗∗⊕ such that γ = λ ◦A′.

As before, λ((A1(~x)− r~b), A2(~x)) = λ((A(~x), 0)− rλ(~b, 0) +λ(0, A2(~x)) = r. Thus by defining

λi := λ|Yi , we have that λ1 ◦A1 + λ2 ◦A2 = 0, and since λ((~b, 0)) = 1, λ1 6= 0.

Theorem 5.2.6 (Generalized Motzkins Theorem Part 2). Let R be an ordered division ring,

X,Y1, Y2 be left R vector spaces. Define Ai ∈ HomR(X,Yi). Then the system of linear

inequalities

A1(~x) <Y1
0, A2(~x) ≤Y2

0

125

has no solution if then there is a λi : Yi → R, λi ∈ (Y ∗i)⊕, λ1 6= 0, such that

λ1 ◦A1 + λ2 ◦A2 = 0

and Ker(λ1) = 0. (Where (Yi)
∗
⊕ denotes the non-negatives of HomR(Yi, R)).

Proof. Suppose under these hypothesis there was a x′ ∈ X such that:

A1(x′) <Y1
0, A2(x′) ≤Y2

0

Then consider that Ai(−x′) ∈ (Yi)⊕. Thus λi(Ai(x
′)) = −λi(A(−x′)) ≤R 0, and since λ1

has Kernel {0}, and A1(x′) 6= 0, λ1(A1(x′)) < 0 and λ1 ◦ A1 + λ2 ◦ A2 <R 0 which is a

contradiction.

5.3 Duality Results

5.3.1 Partial results for the Existence-Duality Theorem

Here we can prove some facts that relate to the Existence-Duality Theorem ??.

Proposition 5.3.1 (Primal infeasible implies dual unbounded). Let R be an ordered division

ring, let X,Y ∗, be left R vector spaces, A ∈ HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R).

Then, if (P) (maximize c(~x) subject to: A(~x) ≤
Y ∗
~b) is infeasible, then (D) (minimize y(~b)

subject to: y ◦A = c) is infeasible or is unbounded.

126

Proof. Suppose (D) is feasible. By Lemma 5.2.1 (P) infeasible, or

A(~x) ≤
Y ∗ 0

has no solution only if there is a λ ∈ Y ∗∗⊕ such that λ(~b) = −a <R 0.

Then, given a feasible solution y ∈ Y ∗∗⊕ , and any r ∈ R⊕, y + λ · r ∈ Y ∗⊕, but y + λ · r(~b) =

y(~b)− a · r, and since r is arbitrary, (D) is unbounded.

Proposition 5.3.2 (Dual infeasible implies primal unbounded). Let R be an ordered division

ring, let X,Y ∗, be left R vector spaces, A ∈ HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R).

Then, if (D) (minimize y(~b) subject to: y ◦ A = c) is infeasible, then (P) (maximize c(~x)

subject to: A(~x) ≤
Y ∗
~b) is infeasible or is unbounded.

Proof. Suppose (P) is feasible. By the Farkas’ Lemma (Lemma 4.3.1), c is not a non-negative

linear combination of αi and so (b) of the Farkas’ Lemma fails. Thus (a) fails as well, and

there is a x′ ∈ X such that A(x′) ≤Y 0 but c(x′) = a >R 0. Thus given a feasible solution

~x ∈ X, and r ∈ R⊕:

A(~x+ r · x′) = A(~x) + rA(x′) ≤
Y ∗

~b.

c(~x+ r · x′) = c(~x) + r · a.

Since r is arbitrary, (P) is unbounded

Remark 5.3.3. With the above results, and the weak Existence-Duality 2.4.26, we have

established that if either the primal or dual program is infeasible, then the remaining program

must also be infeasible or unbounded, and that ether program being unbounded forces the

other program to be infeasible.

127

Thus with the current level of generalization, only the case where both programs are feasible

and bounded has yet to be addressed.

5.3.2 Complementary Slackness and Strong Duality

In order to prove a generalization of the Strong Duality theorem, we introduce a generalization

of one of our key duality results, the Generalized Complementary Slackness Theorem (Recall

the classical Complementary Slackness Theorem, Theorem ??).

Theorem 5.3.4 (Generalized Fact VI: Complementary Slackness Theorem). Let R be an or-

dered division ring, X,Y ∗ be left R vector spaces, A ∈ HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R).

Then let ~x∗ ∈ X satisfy A(~x∗) ≤ ~b. Recall that ~b =
∑

i∈I ιi(bi), bi ∈ R, with finitely many

bi 6= 0. Define then the sets I= := {i : αi(~x
∗) = bi}, I< := {j : αj(~x

∗) <~bj}.

Then ~x∗ is an optimal solution to the primal maximization problem if and only if c ∈

{
∑

i∈I= αi · ui where ui ≥R 0}.

Proof. We begin with the if statement. Suppose c =
∑

i∈I= αi · ui as above. Define y :=∑
i∈I= ŷi · ui, and notice y ∈ Y ∗∗⊕ . Recall that the slack variable ~t := ~b − A(~x∗) ∈ Y ∗ (as in

2.2.2). It is clear that for i ∈ I=, ŷi(~t) = 0. Thus y(~t) = 0. Thus by Corollary 2.4.10, both

~x∗, y are optimal solutions to their respective problems.

Conversely, we let AJ denote the transformation induced by {αj : j ∈ I<}, and again let ~x

be feasible, ~x = ~x∗ + ~x′ where ~x∗ is now assumed to be optimal by hypothesis, and ~x′ is the

appropriate vector. In other words, for any ~x′ ∈ X, A(~x∗+~x′) ≤ ~b =⇒ c(~x∗+~x′) ≤ c(~x∗). We

can rephrase this to mean if AI(~x
′) ≤

Im(AI)
0 and AJ(~x′) ≤

Im(AJ)
~bJ −AJ(~x∗) then c(~x′) ≤ 0,

where bJ :=
∑
j∈I<

ρj(bj).

128

We then want to show

AI(~x
′) ≤AI

0 =⇒ c(~x′) ≤R 0.

If AJ(~x′) ≤ bJ −AJ(~x∗) holds, then by the previous paragraph, whenever AI(~x
′) ≤ 0, c ≤ 0.

Thus, we assume that for some ~x′, this does not hold. Then consider that bj − αj(~x∗) > 0

for each j ∈ I< and moreover, I< is a finite set. Thus for some ε > 0 AJ(ε~x′) ≤ ~bJ −AJ(~x∗).

Also for the same ε~x′, AI(ε~x
′) ≤ 0 if and only if AI(~x

′) ≤ 0. Thus c(ε~x′) ≤ 0 which only

happens iff c(~x′) ≤ 0.

So by the Farkas Lemma, c =
∑
i∈I=

αi · ui where ui ≥ 0 and we are done.

Remark 5.3.5. To see how this generalizes the classical Complementary Slackness Theorem

??. We notice that by our reformed notion of feasible, there is no slack variable s, since we

require that y ◦A = c. Thus for two variables to be complementary slack, it suffices to show

that y(~t) = 0, where ~t := ~b−A(~x.

But y(~t) =
∑
i∈I

ti · yi, where yi ≥ 0. For this to be 0, then yi can only be non-zero when

ti = 0. In other words, c must be a linear combination of the αi ∈ A, where αi(~x) = bi, as

described above.

We then prove one of the most important duality results, the Strong Duality Theorem.

We will prove a result using The Complementary Slackness Theorem 5.3.4, and the Strong

Duality was a corollary.

Proposition 5.3.6. Let R be an ordered division ring, X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R). Then let ~x∗ ∈ X be feasible (i.e. A(~x∗) ≤
Y ∗
~b), such

that ~x∗ is a maximizer for c, then there is a y∗ ≥
Y ∗∗ 0 such that y∗◦A = c and y∗(~b) = c(~x∗).

Proof. By Lemma 5.3.4, we have that c =
∑
i∈I=

αiyi, i. e. c(ej) = 0, j ∈ I<. Let y∗ : Y → G

129

be defined by y∗(biei) = yibi, i ∈ I=, and y∗(bjej) = 0, j ∈ I<. Then:

y∗
(
~b
)

= y∗

(∑
i∈I=

biei

)
+ y∗

∑
j∈I<

bjej

 =
∑
i∈I=

yibi + 0 =
∑
i∈I=

yiαi(~x
∗) = c(~x∗)

since αi(~x
∗) = bi for i ∈ I=.

Theorem 5.3.7 (Generalized Fact VII: Strong Duality). Let R be an ordered division ring,

X,Y ∗ be left R vector spaces, A ∈ HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R). Then let ~x∗ ∈ X,

y∗ ∈ Y ∗ such that they are feasible optimizers of their respective programs. Then c(~x∗) =

y∗(~b).

Proof. Since (P) has an optimizer, Proposition 5.3.6 allows us to construct a y′ that is an

optimizer for (D). Thus c(~x∗) = y′(~b) = y∗(~b) for any optimizer y∗.

Remark 5.3.8. Since we use the Farkas’ Lemma, and several consequences of the Farkas’

Lemma, to prove the Strong Duality Theorem, it is natural to ask, whether or not the Farkas’

Lemma is a necessary condition for the Strong Duality to hold. The answer is actually hidden

in the proofs of Propositions 5.3.1, 5.3.2. If (a) for the Farkas’ Lemma fails, then there is a

~x ∈ X such that A(~x) ≤
Y ∗ 0 and c(~x) >R 0, and in this case (P) is unbounded. Similarly, if

(b) fails, then c cannot be written as a y ◦ A, where y ∈ Y ∗∗⊕ . Thus, both (a) and (b) need

to hold for either program to have optimizing solutions. In any case where one holds but the

other does not, at least one of these programs will not have any optimizing solutions.

5.3.3 Counterexamples to Generalizations of Classical Results

We see that the existence of an optimal solution to the primal problem results in an optimal

solution to the dual. However, we note that the converse is not necessarily true:

130

Example 5.3.9. Let R = R, X = Y ∗ = RN

A1 :

α0 =

α1 =

α2 =

α3 =

...

1 1 1 1 · · · 1 · · ·

−1 0 0 0 · · · 0 · · ·

0 −1 0 0 · · · 0 · · ·

0 0 −1 0 · · · 0 · · ·
...

...
...

. . .
...

...
...

,~b :=

1

0

0

0

...

c :=

(
1
2

2
3 · · · n

n+1 · · ·
)

We see that we can write c as a sum c =
∑
αiyi, where

y :=

1

1
2

...

1
n

...

.

Moreover, that this is an optimal solution, since if y0 < 1, then for some index N , cN > y0

and we cannot write cN as a non-negative linear combination of αi,N .

However, given any feasible ~x ∈ X, we can think of ~x =

(
x1 x2 · · ·

)
, with only finitely

many xi 6= 0, and
∑
xi ≤ 1. Suppose xN is the largest such index. Then

c(~x) ≤ N

N + 1
,

but

c

(
~x∗ :=

(
0 0 · · · xN+1 = 1 · · ·

))
=
N + 1

N + 2
.

Thus the primal program has no optimal solution.

131

Notice that this is also a counterexample to a generalized Existence-Duality Theorem. Both

programs are feasible, and thus bounded. However, only the dual program achieves optimality,

while the primal program does not.

We apply some more hypothesis to achieve the desired result.

Theorem 5.3.10. Let R be an ordered division ring, X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R). If y∗ ∈ HomR(Y ∗, R) is a linear map such that

, A◦y∗ = c,y∗ ≥
Y ∗ 0 and y∗(~b) is a minimizer, then there is a ~x∗ ∈ X such that c(~x∗) = y∗(~b)

and A(~x∗) ≤
Y ∗
~b, so long as |supp(y∗)| <∞.

Proof. Let y∗ be as described in the hypothesis. For each ιi, define yi := y∗(ιi(1)) then let

J+ := {i : yi > 0} and J0 =:= {j : yj = 0}. Define bi := ρi(~b). Note that by our hypothesis,

|J+| < ∞. We let Π+,Π0 denote the projections from Y onto the subspaces of Y , Y +, Y 0

induced by J+, J0 respectively.

We want to find a ~x∗ such that αi(~x
∗) = bi, i ∈ J+ and αj(~x

∗) ≤ bj , j ∈ J0. Then such a ~x∗

would have the property

c(~x∗) =
∑

αi · yi =
∑
i∈J+

αi(~x
∗) · yi =

∑
i∈J+

bi · bi = y∗(~b).

Let ~d+ := Π(~b), ~d0 := Π(~b), and let A+ be the map A◦Π+, and similarly define A0 = Π0 ◦A.

Then by Proposition 5.2.3, A+(~x) = ~d+, A
0(~x) ≤ ~d0 has no solution if and only if f there is

a λ1 ∈ Y ∗1 , and λ2 ∈ Y ∗2 , λ2 ≥ 0 (which induces a λ ∈ Y ∗, λ = λ1 ⊕ λ2) such that

λ ◦A = λ1 ◦A+ + λ2 ◦A0 = 0

and λ(~b) = λ1(~d+) + λ2(~d0) < 0.

132

Then consider y′ := y∗+λ·ε, where ε < min({−λ(ιi)
−1yi : i ∈ J+}). Notice that for such an

ε, y∗+λ·ε > 0 (as |J+| ≤ ∞). We note that y′(~b) < y(~b), and y′(~x) = y(~x)+0·ε = y(~b) = c(~x).

This contradicts the minimality of y.

Thus A+(~x) = ~d+, A
0(~x) ≤ ~d0 has a solution, and such a ~x exists.

However, as in the case of the Farkas’ Lemma, we can extend this result to certain infinite

cases.

Proposition 5.3.11. Let R be an ordered division ring, X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R). Consider the partition of A, the collection of row-like

projection maps induced by A, (Definition 3.3.6), into linear dependence classes {Aj}. Let ~bj

be Πj(~b), where Πj : Y ∗ → Yi be the projection from Y to the induced subspace. Let yj = y|Yj .

Then y is an optimal solution to (D), if and only if yj is an optimal solution to (D)j:

Minimize yj(~bj) subject to yj ∈ (Yj)
∗
⊕, cj = yj ◦Aj.

Proof. If y is optimal, suppose for some index k, yk is not optimal for it’s program, that is

∃ y′k such that y′k(
~bk) < yk(~bk), but y′k ◦Ak = ck.

Then define y′ : Y ∗ → R via y′ := yk +
∑
j 6=k

yj . This is well defined since each vector in Y

will only be nonzero for finitely many yj . Moreover,

y′(~b) = yk(~bk) +
∑
j 6=k

yj(~bj) <
∑
j

yj(~bj) = y(~b).

This contradicts the minimality of y. Hence each yk is a minimizer of their respective

program.

133

Similarly, if each yj is a minimizer of their respective programs, and y is not, then we may

take the improved solution y′, and consider their restriction to each subprogram and derive a

contradiction.

Proposition 5.3.12. Let R be an ordered division ring, X,Y ∗ be left R vector spaces, A ∈

HomR(X,Y ∗),~b ∈ Y ∗, c ∈ HomR(X,R). Consider the partition of A, the collection of row-

like projection maps induced by A, (Definition 3.3.6), into linear dependence classes {Aj}.

Let ~bj be Πj(~b), where Πj : Y ∗ → Yi be the projection from Y ∗ to the induced subspace. Let

yj = y|Yj .

If ~x is an optimal solution to (P), if and only if ~xj is an optimal solution to (P)j: Maximize

cj(~xj) subject to Aj(~xj) ≤ ~bj.

Proof. If ~x is a maximizer, then by Theorem 5.3.4, there is a minimizer y ∈ Y ∗∗⊕ , which

by Proposition 5.3.11 implies each yj is a minimizer. But if any cj(~xj) < yj(~bj), then

c(~x) =
∑

j cj(~xj) < y(~b). Thus each ~xj is a maximizer.

Similarly, if each ~xj is a maximizer, then there is a collection of minimizers yj such that

yj(~bj) = cj(~xj), and so c(~x) =
∑
j

cj(~xj) =
∑
j

yj(~bj) = y(~b). Moreover since only finitely

many of these ~bj are non-zero, this sum is well defined.

Corollary 5.3.13. Consider the partition of A, the collection of row-like projection maps

induced by A, (Definition 3.3.6), into linear dependence classes {Aj}. If each |Aj | <∞, then

(P) has an optimal solution if and only if (D) has an optimal solution.

Proof. If (P) has an optimal solution, then by Proposition 5.3.6, there is an optimal solution

to (D)

If (D) has an optimal solution, then by Proposition 5.3.11, each subprogram has an optimal

solution. Since each |Aj | < ∞, each |J+
j | < ∞. Thus by Theorem 5.3.10, each subprogram

134

has an optimal solution to (P)j , and by Proposition 5.3.12, (P) has an optimal solution.

5.4 Conclusion

In this chapter, we assume that one of the hypothesis of the generalized Farkas’ Lemma 4.3.1

holds. Using the generalized Farkas’ Lemma, we prove some theorems of the alternative,

which are largely technical results. We then use these to prove partial results to the Existence

Duality Theorem: Proposition 5.3.1, and Proposition 5.3.2. We then prove the generalized

Complementary Slackness Theorem 5.3.4. We use the generalized Complimentary Slackness

Theorem to prove Proposition 5.3.6, a result that states that the existence of a primal optimal

solution gives rise to a dual solution with equal objective value. The generalized Strong Duality

Theorem 5.3.7 follows as a consequence.

135

Chapter 6

An Oriented Matroid Solution

6.1 Introduction

Recall that out of the major linear programming duality theorems, the only one we have

not proved is that a bounded feasible program is guaranteed to have an optimal solution.

In fact, we have shown that under the hypothesis where the Farkas’ Lemma holds, this still

may not be true. In Example 5.3.9, we saw that the primal solution is feasible, and the dual

program is not only feasible but has an optimal solution, bounding the primal problem. Yet

the primal program has no optimal solution. As Example 5.3.9 represents an affine program

where A consists of a single infinite linear dependence class, a reasonable conjecture is that if

each linear dependence class is finite, a feasible, bounded program obtains an optimal primal

solution, which in turn induces an optimal dual solution by Proposition 5.3.6.

In order to proceed, we need a view of our linear programs which describes the underlying

problem independent of the algebraic and topological features R may have. Many of our

standard methods of finding optimal solutions for an affine program depend on the properties

of the real numbers such as the compactness of bounded spaces, or the commutativity of

136

multiplication. For a general division ring R, both the algebraic operations and the underlying

topology are potentially unwieldy and may lack the properties that we desire or are convenient.

However, as R is ordered, there is a natural, simple, and near-binary description of our

feasible and optimal solutions. The value of a functional is either positive or zero, or negative.

A linear combination of affine maps have either positive or zero, or negative coefficients. A

vector lies on one side of a hyperplane, or another, or on it. These facts hold independently

of any other properties of R. Thus a structure that captures these relations is the ideal lens

through which to look at these affine programs.

We propose here that oriented matroids are exactly the structure that captures the

pertinent information and relations. By reducing everything to sets and set containment, we

rid ourselves from the distracting features that our ring and our spaces may possess. We

then refer to the established theory of Oriented Matroid Programming to show that a finite

Oriented Matroid Program that is bounded and feasible has an optimal solution. Finally,

we use the decomposition established by Theorem 4.3.25 to show that any bounded feasible

potentially infinite affine program that can be decomposed into finite sub-programs has a pair

of optimal solutions, for the primal and dual problem (Theorem 6.4.2). We then prove that

under these hypothesis, we can prove the generalized Existence-Duality Theorem 6.4.4.

6.2 Oriented Matroids

Recall the definition of an oriented matroid Definition 1.5.1. Here, we describe some general

examples of oriented matroids that will be relevant to our discussion:

Example 6.2.1. Given a vector-space X over an ordered division ring R, and a collection of

vectors E := {ei} ⊆ X, we can define M := (E, C), where C is the collection of sign vectors

137

C = (C+, C−) where the following hold:

0 =

 ∑
ei∈C+

ei · ai

−
 ∑
ej∈C−

ej · aj

 , ai, aj ∈ R,Ai, aj >R 0

and moreover, M is the collection of all non-empty, minimal (with respect to containment)

such sets.

We may verify that such a collection forms an oriented matroid:

1. By construction, the empty set is not in M.

2. Similarly, the condition of minimality shows that no sign vector is contained in another.

3. Since a sign vector C corresponds to a linear combination

 ∑
ei∈C+

ei · ai

−
 ∑
ej∈C−

ej · aj

 ,

ai, aj > 0 that sums to 0, the sum

 ∑
ei∈C−

ei · ai

−
 ∑
ej∈C+

ej · aj

 , ai, aj > 0 also sums

to 0, and corresponds to −C1.

4. Given C1, C2, if e ∈ C+
1 , C

−
2 , these correspond to two separate linear combinations

a · e+
∑

ei∈C+
1 \{e}

ei · ai

−
 ∑
ej∈C−1

ej · aj

 , ai, aj , a > 0,

and ∑
ei∈C+

2

ei · bi

−
b · e+

∑
ej∈C−2 \e

ej · bj

 , bi, bj , b > 0,

both sums summing to 0. By multiplying via the appropriate scalar, we may assume

that a = b, and thus we have that

0 =

 ∑
ei∈(C+

1 ∪C
+
2)\{e}

ei · ci

−
 ∑
ej∈(C−1 ∪C

−
2)\{e}

ej · cj

 , ci, cj > 0,

138

where the ci, cj are the scalar multiples of the ai, aj , bi, bj . Since this is a linear com-

bination that sums to 0, there is some minimal collection of such vectors that do the

same, and thus there is a circuit which satisfies axiom 4.

This example is relevant since our linear dependence classes Aj are a collection of vectors,

and thus by letting E := Aj , we are able to place an oriented matroid structure on this class.

We should then also be able to place a dual oriented matroid structure on Aj as well, via

Proposition 1.5.4.

Example 6.2.2. In the previous example, we showed that given a collection of vectors E ⊂ X

a vector-space over a division ring R, that the collection of vectors minimal with respect to

linear dependence forms a collection of circuits, or an oriented matroid over E. Here, we

investigate the cocircuits of an affine program, as described in Example 6.2.1.

Consider a subset S ⊂ E := Aj that are linearly independent, such that their span has

co-dimension 1. Notice then that given any vector v ∈ E not in this span, S∪{v} is a linearly

independent set that spans X, and then given any additional vector ~x ∈ E, this collection of

vectors is now not linearly independent, and more importantly, it is minimal with respect to

this fact.

We then define the collection of cocircuits as follows: Given each subset S as above, S defines

a hyperplane, the kernel to fS , where fS is an appropriate linear functional. We then define C ′

to be ((C ′)+, (C ′)−), where (C ′)+ := {e ∈ E : FS(e) > 0} and (C ′)− := {e ∈ E : fS(e) < 0}.

We then define the collection of all such C ′ to be C∗, and show that these are cocircuits over

E.

Then take any cocircuit C ′, and circuit C. Either the support of C and C ′ do not intersect

(equivalently, the support of C is contained in the span of S). Thus C ⊥ C ′. Otherwise,

suppose that there was a v ∈ C+ ∩ (C ′)+. Hence, f(v) > 0. Moreover, since there is a linear

139

combination of elements 0 =
∑
vi∈C+

ai · vi +
∑
vj∈C−

aj · vj , ai > 0, aj < 0 associated with C, we

have that the coefficient of v in this sum, a, is positive as well. Since

f(0) = f

 ∑
vi∈C+

ai · vi +
∑
vj∈C−

aj · vj

 = 0,

there must be a ak ∈ R\{0}, vk ∈ C+ ∪ C−, such that f(ak · vk) < 0, i.e. ak < 0, vk ∈ C+ or

ak > 0, vk < 0. Either way, f(vk) 6= 0, so vk is in the span of S, and either vk ∈ C− ∩ (C ′)+

or vk ∈ C+ ∩ (C ′)−. Thus C ⊥ C ′.

Now that we have a notion of a oriented matroid, we would like to relate our affine pro-

gramming problem.

Proposition 6.2.3. Given an ordered division ring R and a R-left vector space X, then any

finite collection of linear maps αi : X → R, which are in the same linear dependence class,

gives rise to a primal and dual oriented matroid.

Proof. Let E be the collection of linear maps αi, and impose on it the circuits and cocircuit

structure we described above, since HomR(X,R), is a R-vector space.

Remark 6.2.4. Here, we note that a covector can be interpreted to be encoding “geometric”

information about a region of X. Given a x ∈ X, we can associate a sign vector S to x such

that αi ∈ S+, if αi(x) > 0 and αi ∈ S− if αi(x) ∈ S−.

We verify that our notions of co-vector correspond to this. Let g be a linear combination of

αi corresponding to the signs of a circuit C, i.e. when g is 0. Then consider g(w) = 0. If sign

vectors C+, C− do not intersect with S+, S−, then g is a linear combination of functionals

which vanish at w. So naturally their sum would be 0, and (S+, S−) ⊥ C.

Conversely, if say, α1 ∈ S+ ∩ C+, then α1(x) > 0 and the coefficient of α1 is the sum g is

positive. Thus the summand c1 ·α1(x) is positive, and there must be a ck ·αk in the sum such

140

that ck < 0, αk(x) > 0 or ck > 0 and αk < 0. Thus C− ∩ S+ or C+ ∩ S− are non-empty, and

(S+, S−) ⊥ C.

What then is a cocircuit? We previously defined it in terms of a hyperplane, the zero set

of some linear functional that was maximal with respect to not spanning X. Here then, it

would similarly be the zero set of a functional, but where that functional is determined by

evaluating at x. In other words, the kernel of Fx : αi 7→ αi(x). Thus, these must coincide

with x ∈ X such that αi that vanish on these x are maximal with respect to not spanning

HomR(X,R).

We then notice that the intersection of the kernels of αi that span HomR(X,R) would just

be 0, then the x which fit the description above form a 1-dimensional subspace of X, (a line).

This notion may be extended to collection of affine functionals. We do this by linearizing

the functionals.

Remark 6.2.5. Given a system of affine functionals {α′i : X → R}, where each α′i := αi + bi,

where only finitely many of the bi are non-zero, we can define a linear functional α∗i : X⊕R→

R, (x, f) 7→ αi(x) + f · bi. We see that this captures all of the essential information of the

system above. By fixing r := 1 We have the same system as we originally had, and by letting f

be any positive number, we obtain the same solutions of any systems of equality or inequality

up to a scalar multiple.

We can then encode the intersection of affine hyperplanes as a sign vector. We define

E∗ := {α∗i }∪{idR}. We then can describe each region of X with respect to these hyperplanes

by considering co-vectors S where f ∈ S+.

We can then consider the following problem:

Problem 6.2.6. Let E := {−α∗i } ∪ {c ⊕ 0} ∪ {−idR}. Notice that a (matroid) vector S

measures the signs of a linear combination of these functionals that sum to 0. We see that

141

g ∈ S+, S− = ∅ and f := idR 6∈ S+ ∪ S− would be a linear combination where c is a

non-negative linear combination of the αi, a feasible solution to the dual problem.

Conversely consider S to be a co-vector. By requiring that idR ∈ S+, S− = ∅ and −c 6∈

S+ ∪S−, we find a region of X such that each αi is equal to or less than its bound bi, that is,

a feasible solution to the primal problem. Moreover, by requiring idR ∈ S+, we are essentially

fixing a positive value for f , which reduces the line represented by this cocircuit to a point.

In either case, we are looking for a solution to this problem that “maximizes” one of our

given functionals. Either a region of X that maximizes c, or linear combination of functionals

that maximizes −f ·~b or minimizes ~b.

What we have shown is that our affine program gives rise to an oriented matroid program.

The goal is now to identify the appropriate circuit and cocircuit that are the optimal solutions

to their respective problems. We noted before that finding a solution to both problems is

potentially impossible if A (the collection of row-like projection maps from Definition 3.3.6)

is infinite. In Example 5.3.9, we see that the existence of a dual solution did not give rise to

the existence of a primal solution. However, in this example, A consisted of a single linear

dependence class. We have shown that a solution to an affine program can be described as

the sum of the solutions to the programs induced by the linear dependence classes. Thus,

we may show that if |A| < ∞ forces the existence of feasible primal and dual solutions to

give rise to optimal primal and dual solutions, then we will have shown that for such affine

programs, both programs feasible imply both programs are bounded, and that both programs

have optimal solutions.

These results about oriented matroid programs have been shown by Robert Bland and

James Lawrence in their respective dissertations [BLV78] [Law75]. We will outline the relevant

part of their work here, and generalize when appropriate, as their work was done with finite

dimensional real spaces in mind. We will also focus on the primal problem, as the existence

142

of the primal optimizer gives rise to dual optimizer, as seen in Proposition 5.3.6.

6.3 Oriented Matroid Programming

We begin by defining an oriented matroid program, and the geometry of the program in terms

of the oriented matroid.

Definition 6.3.1 ([BLVS+99]). Let E be a non-empty set (usually a collection of functionals)

as in Example 6.2.1).

1. An oriented matroid program is a triple (P) := (M, f, g), where M is an oriented

matroid defined on E := En ∪{f, g} where g is not a loop (a circuit that is a singleton),

f is not a coloop (a cocircuit that is a singleton) and f 6= g.

2. The dual of a matroid program is the triple (D) := (M∗, f, g).

Definition 6.3.2 ([BLVS+99]). Let En be a set of order n, and let E := En ∪ {f} ∪ {g}. Let

M be an oriented matroid defined on E, such that g is not a loop, f is not a co-loop, and

f 6= g.

• The feasible region, Fr of the primal problem is the collection of all co-vectors C ′ such

that ei 6∈ (C ′)− for any ei ∈ En, and g ∈ (C ′)+.

• The face at infinity F∞ is the collection of all co-vectors C ′ such that ei 6∈ (C ′)−, g 6∈

(C ′)+ ∪ (C ′)−.

Here, g represents c and f represents −idR from Remark 6.2.5.

We examine the motivation of these definitions. The feasible region is the collection of

points in x which are not on the “negative” side of each hyperplane, equivalently the points

143

that satisfy each of the inequalities of the original program, and g ∈ (C ′)+ forces the bound

vector (~b) to be positive, thus reflects the regional inequalities of the program. The “face at

infinity” is the equivalence classes formed by parallel planes. This is exactly the co-vectors

formed when g = 0, as each “parallel” functional, α + g · b1, α + g · b2 are the same, and any

region of X ⊕ R will fall on one side or the other, or on the plane formed by the kernel of

α+ g · b1 if and only if it does the same for α+ g · b2.

The face of infinity then represents the space of possible “slopes” or “directions” that each

of our given affine functionals can take. A co-vector in the face at infinity would be one

of minimal support, or maximal in terms of being zero (which is equated with lying on a

hyperplane) would represent points at infinity, which are the directions (or slopes) one can

take along these hyperplanes.

We then need to describe traveling in a direction in this space, in terms of our matroid:

Definition 6.3.3 ([BLVS+99]). The composition of two sign vectors C1 ◦ C2 is defined as

(C1 ◦ C2)+ = C+
1 ∪ (C+

2 \C
−
1), and (C1 ◦ C2)− = C−1 ∪ (C−2 \C

+
1). We observe that this is a

associative, but not commutative operation.

Remark 6.3.4. In the general theory of oriented matroids, the composition operator has

many uses, here we focus on the aspects that are pertinent to affine programming.

Consider a feasible co-vector C (represented by point x ∈ X) and a co-vector on the face at

infinity, D (represented by a point at infinity a). Then consider C◦D. This represents a region

of X (represented by a point x′ ∈ X) such that x′ lies on the same side of all hyperplanes as

x did. In addition it lies on the same side of all hyperplanes as a does, unless x was on the

opposite side of the same hyperplane. Then x′ may be viewed as a point on the line from x

to a, that does not cross any of the other hyperplanes represented by our ground set.

Here lies the key to verifying an optimal solution. If D is a co-vector on the face at infinity,

such that f ∈ D+, then evaluating f at the points represented by a (the appropriate inter-

144

section of the remaining hyperplanes still yields a point ~a ∈ Rn) is positive. Thus, increasing

in the direction of a (or equivalently, adding a positive scalar multiple of ~a to x) increases the

value of the objective function. This insight is how we will define our certificate of optimality.

Definition 6.3.5 ([BLVS+99]). Consider an oriented matroid program:

• The directions are the co-vectors D where g 6∈ D+ ∪ D−. A direction is increasing,

decreasing or constant if f ∈ D+, f ∈ D−, f 6∈ D+ ∪D− respectively.

• For a given feasible co-vector C, a feasible direction is a direction D such that C ◦D is

feasible.

• A feasible co-vector Co is optimal, if there are no feasible increasing directions for Co.

Again, the definition of feasible is entirely intuitive and consistent with our definitions.

We are looking for the corner point of the feasible polytope such that each direction either

decreases the objective function, keeps it constant, or takes you out of the feasible polytope.

Lemma 6.3.6 (Three Painting Lemma [BLV78] [Law75]). Given an Oriented Matroid M,

with ground set E, consider a partition of

E = B tG tR, e ∈ B

and let e ∈ B. Then exactly one of the following hold:

• There is a circuit C1 such that e ∈ C+
1 ∪ C

−
1 ⊆ B ∪G and C−1 ∩B = ∅.

• There is a cocircuit C2 such that e ∈ C+
2 ∪ C

−
2 ⊆ B ∪R and C−2 ∩B = ∅.

The proof of the Three Painting Lemma was done by both Bland and Lawrence. It is omit-

ted, as it requires many definitions and concepts of matroid theory that are not enlightening

here.

145

Corollary 6.3.7. Exactly one of the following hold:

(a) There is a cocircuit C1 such that, f, g ∈ C+
1 and C−1 = ∅, or there is a circuit C2 such

that f, g ∈ C+
2 , C

−
2 = ∅.

(b) There is a cocircuit C1o, and a circuit C2o, such that f ∈ C+
1o
, C−1o ⊆ {g}, g ∈ C

+
2o
, C−2o ⊆

{f}, and (C+
1o
∪ C−1o) ∩ (C+

2o
∪ C−2o) ⊆ {f, g}.

Proof. Suppose there exists C1 such that f, g ∈ C+
1 and C−1 = ∅, and a circuit C2, where

g ∈ C+
2 and C−2 ⊆ {f}. Then since C1, C2 are orthogonal, and g ∈ C+

1 ∩ C
+
2 , then A+ ∩ C−2

must be non empty and f ∈ C−2 . Then we let R be empty, let B = En ∪ {g} and G = {f}.

Consider e := g. The cocircuit C1 satisfies the first condition of the Three Painting Lemma,

and the circuit C2 satisfies the second, which is a contradiction. Similarly if there were a

circuit C2 satisfying (a), we use a symmetric argument.

Then, assuming neither event in (a) holds, then by the above argument, we have C1o , C2o

such that f ∈ C+
1o
, C−1o ⊆ {g}, g ∈ C

+
2o
, C−2o ⊆ {f}, and (C+

1o
∪ C−1o) ∩ (C+

2o
∪ C−2o), as both

events in (a) fail. Then by the Three Painting Lemma, if we color En blue, then no element

of En can be shared by C1o , C2o , and only f, g may be shared.

Remark 6.3.8. If C1 is a cocircuit such that f, g ∈ C+
1 and C−1 = ∅, then C ′1 defined by

(C ′1)+ := C+
1 \{g}, (C ′1)− = ∅ is an increasing direction for C1, and C1◦C ′1 = C1. Thus, we can

increase in the direction of C ′1 indefinitely and increase f so the primal problem is unbounded.

Similarly, if there exists a circuit C2 such that f, g ∈ C+
2 , C

−
2 = ∅, then the dual problem is

unbounded.

Theorem 6.3.9 (Certificate of Optimality[BLVS+99]). Let C1 be a given feasible cocircuit,

and let C2 be a dual-feasible circuit (f ∈ C+
2 , C

−
2 ∩En = ∅) such that (C+

1 ∪C
−
1)∩(C+

2 ∪C
−
2) ⊆

146

{f, g}. Then C1 is optimal.

Proof. Let C1, C2 be given as stated above. Then let Z be an increasing direction for C1.

Since Z is an increasing direction, g 6∈ Z+ ∩ Z−, f ∈ Z+. Since f ∈ Z+ ∩ C+
2 , there must

be a h ∈ En such that h ∈ Z+ ∩ C+
2 (no h ∈ En will be in C−2 , since C2 is feasible). So

h 6∈ C+
1 ∪C

−
1 , else h ∈ (C+

1 ∪C
−
1) ∩ (C+

2 ∪C
−
2). Thus, h ∈ (C1 ◦ Z)−, and Z is not a feasible

direction. Thus no increasing direction for C1 is feasible and C1 is optimal.

Putting together the last few results gives us the following final result:

Theorem 6.3.10 ([BLVS+99]). Given an oriented matroid program where both the primal

and dual program are bounded (i. e. both programs are feasible), there is a co-vector C1 which

is optimal.

To translate this back into the language of affine programing, we have found, of all corner

points formed by intersections of bounding hyperplanes, a point which is optimal .

6.4 The Existence Duality Theorem

We will now show that if a polytope is bounded by a finite number of hyperplanes, then the

feasible polytope is itself closed, the interior is exactly the points that do not lie on any of

the hyperplanes, and the boundary are exactly the points that do lie on at least one of the

hyperplanes.

We note that by the Fundamental Theorem of Linear Programming (Theorem 2.4.22), a

point can only be an optimizer if it is not contained in an open full line segment of the feasible

147

region. Thus, it suffices to consider the points maximal with respect to lying on the bounding

hyperplanes. However, these are exactly the cocircuits of the underlying oriented matroid.

Thus, we have the following result:

Proposition 6.4.1. The solution to a finite oriented matroid program is a solution to the

affine program.

Finally, we noted that by Proposition 5.3.12, given an affine program, and the resulting

decomposition into sub-programs via linear dependence classes, that the primal program has

an optimal solution if and only if each subprogram has an optimal solution. Our work with

these subprograms also made it clear that the overall problems, both primal and dual, are

feasible if and only if the sub programs are all feasible. Thus we have the following final result.

Theorem 6.4.2. Let R be an ordered division ring, let X,Y ∗ be left R vector-spaces, and let

A ∈ HomR(X,Y ∗), ~b ∈ Y ∗, c ∈ HomR(C1, R), such each linear dependence class of A (the

collection of row-like projection maps Definition 3.3.6) is finite.

Then if primal and dual programs are both feasible, there exists a ~x∗ ∈ X that is an optimal

solution to the primal problem.

Proof. Since each subprogram is finite and feasible, by Theorem 6.3.10, each subprogram has

an optimal ~x∗ ∈ Xi and thus by Proposition 5.3.12, there is an optimal ~x∗ ∈ X that maximizes

c.

Corollary 6.4.3. Let R be an ordered division ring, let X,Y ∗ be left R vector-spaces, and let

A ∈ HomR(X,Y ∗), ~b ∈ Y ∗, c ∈ HomR(X,R), such each linear dependence class of A is finite.

Then if there are feasible solutions to both the primal and dual problem, then there exists a

y∗ ∈ HomR(Y ∗, R) that is an optimal solution to the dual problem.

Proof. The existence of a primal solution gives rise to a dual solution by Proposition 5.3.6.

148

We may finally state a full generalization of one of our classical results ??, the Existence-

Duality Theorem:

Theorem 6.4.4 (Generalized Fact VIII: Existence-Duality Theorem). Given generalized

Tucker tableau data such each linear dependence class of A is finite, then exactly one of

the following hold:

1. Both the primal program and the dual program are infeasible.

2. The primal program is infeasible and the dual program is unbounded.

3. The dual program is infeasible and the dual program is unbounded.

4. Both the primal and dual programs admit optimal solutions.

Proof. Here, we use several of our previously established partial results:

1. If both programs are infeasible, we satisfy (1).

2. If the dual program is unbounded, then the primal program is infeasible by Corollary

2.4.26. Conversely, if the primal program is infeasible, but the dual program is feasible,

then by Proposition 5.3.1, the dual program is unbounded.

3. If the primal is unbounded, then the dual program is infeasible by Corollary 2.4.26.

Conversely, if the dual program is infeasible, but the primal program is feasible, then by

Proposition 5.3.2, the primal program is unbounded.

4. Finally, if both programs are feasible, then the primal program admits an optimal solu-

tion by Theorem 6.4.2, the primal program admits an optimal solution, and by Corollary

6.4.3, the dual program admits an optimal solution as well.

149

6.5 Conclusion

In this chapter we show that if each linear dependence class of A ∈ HomR(X,Y ∗) (as defined

in Definition 4.3.19) is finite then each of the sub-programs the original problem decomposes

into can be molded by a finite oriented matroid (Proposition 6.2.3). Then, using the results of

Bland and Lawrence (Thorem 6.3.10), we show that each of these oriented matroid programs

which are bounded and feasible give rise to a primal optimal solution. Then by Proposition

5.3.6, they give rise to a dual solution as well. We then combine these results, and several

results from previous chapters to prove the generalized Existence-Duality theorem.

150

Chapter 7

Oriented Matroid Programs as

Tucker Tableaux and the Simplex

Algorithm

7.1 Introduction

In his 1969 paper “The elementary vectors of a subspace of Rn”, R. T. Rockafellar [Roc69]

conjectured that Tucker Tableaux were the proper way to interpret an oriented matroid pro-

gram. In Chapter 4 of this work, we have shown how to interpret a general affine program as

an oriented matroid program. In this chapter, we will show how to encode this information

in a Tucker tableau, and how to describe a Tucker pivot and the Simplex Algorithm.

151

7.2 The Tucker Tableau

Recall that by Theorem 5.3.4, a vector ~x ∈ X is an optimal solution if and only if we may

write c as a linear combination of the αi projection functionals, where αi(~x) = v̂i(~b).

In other words, the linear functionals where equality is achieved. Additionally, the discussion

in Chapter 4 shows that we can describe a region of X in terms of the affine functionals

−αi + bi, by whether or not a point in this region evaluates to a positive number, a negative

number or 0. This information is encoded in a sign vector, where the sign vectors of minimal

support are called “co-vectors” and are the candidates for optimal solutions.

Now, a traditional Tucker tableau [NT93] is a 4 compartment array A ∈ Rm×n,~b ∈ Rm,~c ∈

Rn, d ∈ R. Each row is meant to encode a projection map Ai · ~x, bounded above by ~bi, and

the vector ~c encodes the linear functional c, and d is the affine component of f(~x) = c(~x)− d.

A given tableau then records the value of f(~0), and the associated dual solution. If the primal

program is feasible (no ~bi < 0), and each ~ci ≤ 0, then ~0 ∈ Rn is an optimal solution for this

tableau and this tableau is optimal.

The situation may then be illustrated as follows:

� x1 · · · xn -1

y1 a11 · · · a1n b1 = −t1
...

...
...

...
...

...
ym am1 · · · amn bm = −tm
−1 c1 · · · cn d = f

= · · · = =

�

s1 · · · sn g

We can interpret ~x = 0 as lying on the intersection of the hyperplanes xi = 0. In this

way, we can generalize the information captured by a traditional Tucker tableau in order to

describe an oriented matroid Tucker tableau.

152

Given the information for an affine program, (let R be an ordered division ring, X,Y ∗, be

left R vector spaces, A ∈ HomR(X,Y ∗), c ∈ Hom(X,R),~b ∈ Y ∗), it gives rise to an oriented

matroidM on E = {f ·bi−αi}∪{f, g}, (bi := v̂i(~b)) where the circuits represent collections of

linear (affine) functionals, minimal with respect to linear dependence. Recall that circuits C

where g ∈ C+ represent linear combinations of the αi that sum to c, and co-circuits C where

f ∈ C+ represent regions of the domain maximal with respect to lying on hyperplanes.

Note that we may think of E as a collection of functionals defined on X ⊕R, where f is the

projection f : X ⊕R→ R, a dummy variable. Then each bi may be replaced with f · bi. For

shorthand, we define α̂i := f · bi − αi.

Thus, we can define an oriented matroid Tucker tableau as follows:

Definition 7.2.1 (Oriented matroid Tucker tableau). Let X̄ ⊆ E\{f, g}, Ȳ = E\(X̄∪{f, g}),

where X̄ is a collection of the α̂i such that the hyperplanes associated with ˆαi ∈ X̄ is maximal.

Equivalently, there is a circuit, whose support is contained in X̄ ∪ {f, g}, which in turn is the

support of a vector. Since we view g as c which does not share support with f , this linear

dependence holds if and only if c is a linear combination of the associated αi. We then

define C : X̄ → {+,−, 0} such that C(α̂i) is the sign of the coefficient of αi in the equation∑
α̂i∈X̄

αi · ci + c = 0 (i.e. the opposite sign of ci in the equation
∑
α̂i∈X̄

α̂i · ci + f · cf + c = 0).

Then, since X̄ ∪ {f, g} is minimal with respect to linear dependence, when we fix a value

for f (without loss of generality, f = 1), this describes a region in X, (the intersection of

the kernels of affine functionals bi − αi). Let us call this intersection K. The region K can

be described by which side of each bounding hyperplane it lies on (for each α̂i, the sign of

α̂i(k, 1), k ∈ K). Recall that this describes a co-vector ofM, where f is positive. Since α̂i(k, 1)

is defined to be 0 for α̂i ∈ X̄, it suffices to record this information for Ȳ := E\(X̄ ∪ {f, g}).

We then define B : Ȳ → {+,−, 0} to record the sign of α̂j(k, 1), k ∈ K, α̂j ∈ Ȳ .

We then define A : X̄ × Ȳ → {+,−, 0} as follows: Given α̂i ∈ X̄, α̂j ∈ Ȳ , consider

153

((X̄ ∪ {f}) ∪ {α̂j}. The α`, α̂` ∈ X̄ are linearly independent, so we may either write αj

uniquely as a linear combination of the α`, or αj is independent of the α`. Let A(αi, αj) be

the coefficient of αi in the equation
∑
α̂`∈X̄

α` · c` = αj .

The tableau then is the ordered tuple (X̄, Ȳ ,A, B,C).

We now make some observations. The functions A, B,C are meant to mirror the matrix

A and vectors ~b,~c. In this way we capture much of the essential information of the Tucker

tableau. The d is suppressed in this case, as its only purpose is to record the actual value

of the optimal solution(s) which is not captured in an Oriented Matroid. In the same way

a standard Tucker tableau captures the situation where we attempt to evaluate the linear

program at the origin, this version of the Tucker tableau captures the situation where we lie

on a maximal number of bounding hyperplanes. It turns out that by Theorem 5.3.4, these

determine exactly the αi whose linear combination form c.

Then, if B is a non-negative function, the region K which is encoded by the co-vector with

support contained in Ȳ is a feasible region, since each αj(k) ≤ bk, k ∈ K, and so a non-negative

B records a feasible primal solution(s). If C is a non-positive function, then we may write

c +
∑
α̂`

α` · ci = 0

∑
α̂`

α` · (−ci) = c

as a non-negative linear combination of the αi ∈ A. Thus a non-positive C function records

a feasible dual solution. If B is non-negative and C is non-positive, then we capture a region

K, which is feasible, and has an associated feasible dual solution made up of the projections

of the constraints that K meets. Thus by Theorem 5.3.4, K is a region of optimal solutions,

and since c(k) = y ◦A(k) = y(~b), the associated dual solution is optimal as well, by the Weak

Duality Theorem.

154

Example 7.2.2 (The Lumber Mill Problem). Recall the Lumbermill Problem 1.2.1. The

primal-dual problem was be encapsulated in the following Tucker tableau:

� x1 x2 x3 -1

y1 1 3 2 10 = −t1
y2 2 1 1 8 = −t2
−1 3 2 4 5 = f

= = = =

�

s1 s2 s3 g

Then, as we see, c(0, 0, 0) = 0. Since the right hand column is non-negative, this solution is

feasible, but since ~c is a not a non-positive vector, this solution is not optimal.

However, we can consider X = R3, Y ∗ = R5 and consider the following bounds:

(−1)x1 + 0x2 + 0x3 ≤ 0

0x1 + (−1)x2 + 0x3 ≤ 0

0x1 + 0x2 + (−1)x3 ≤ 0

1x1 + 3x2 + 2x3 ≤ 10

2x1 + 1x2 + 1x3 ≤ 8.

155

Thus A is a linear transformation from X → Y ∗ such that:

α1(x1, x2, x3) = −x1 , b1 = 0

α2(x1, x2, x3) = −x2 , b2 = 0

α3(x1, x2, x3) = −x3 , b3 = 0

α4(x1, x2, x3) = x1 + 3x2 + 2x3 , b4 = 10

α5(x1, x2, x3) = 2x1 + x2 + x3 , b5 = 8.

With α̂i := f · bi − αi.

The primal problem is then maximize c, c(x1, x2, x3) = 3x1+2x2+4x3, and the dual problem

is to find y : R5 → R such that y ◦ A = c,y ≥
Y ∗∗ 0 and y(~b) is minimized. In other words,

we wish to find y1, . . . y5 ∈ R⊕ such that c =

n∑
i=1

yiαi and

5∑
i=1

yibi is minimized.

We note that c = 3α̂1 + 2α̂2 + 4α̂3, so C = +. Similarly, when we fix f > 0, the intersection

of the kernels of α̂1, α̂1, α̂1 in R3 is the origin, and α̂4(0, 0, 0) and α̂4(0, 0, 0) > 0. Thus B = +.

We have now recorded both a primal and dual solution. The primal solution is the origin of

R3 and the dual solution is y = −3α1−2α2−4α3. Since for these three αj , αj(0, 0, 0) = bj = 0,

we have written c as a linear combination of the αi.

However, although this region is a feasible region for the primal problem, it is infeasible for

the dual problem, as it not a non-negative linear combination of the αi.

156

Finally, we note that we can write α4, α5 as a non-negative linear combination of the

α1, α2, α3. This gives us the following tableau:

� α̂1 α̂2 α̂3 -1

α̂4 + + + +
α̂5 + + + +
−1 + + +

�

Figure 7.1: Oriented matroid Tucker tableau

Where X̄ = {α̂1, α̂2, α̂3}, Ȳ = {α̂4, α̂5}, and A, B,C are captured as above.

7.3 Tucker Pivot

It is natural to ask then, what plays the role of a Tucker pivot? Previously we would have

swapped one of the primal slack variables, tj with one of the primal decision variables xi. This

would have also resulted in a simultaneous swapping of a dual slack variable si, with a dual

decision variable yj .

However, with our newfound understanding, we see that this simply represents swapping

one hyperplane for another, or swapping one functional of the linear combination that forms

c for another. Recall that for any α̂i ∈ X̄, α̂j ∈ Ȳ where A(α̂i, α̂j) 6= 0, we have shown that

we may write αj as a linear combination of the α`. Thus, we may replace αi with αj in the

circuit and co-vector both. The tucker pivot then, is the induced change in A, B,C by the

change in X̄, Ȳ .

Example 7.3.1. Consider if we exchange α̂1 for α̂4, so X̄ = {α̂2, α̂3, α̂4}, Ȳ = {α̂1, α̂5}.

We first note that c = 7α2 + 2α3 + 3α4. So C = −. The region of R3 where f > 0 and

α̂2, α̂3, α̂4 = 0, is the point (10, 0, 0). Notice that α̂1(10, 0, 0) = 10 > 0, α̂5(10, 0, 0) = −12 < 0.

So B = (+,−).

157

The tucker pivot where one exchanges α̂1 and α̂4 results in the following tableau:

� α̂4 α̂2 α̂3 -1

α̂1 − + + +
α̂5 + + + −
−1 − − +

�

Figure 7.2: Oriented matroid Tucker pivot

We observe that we obtain a new primal solution, the intersection of the hyperplanes defined

by X̄, and a dual solution, defined by the linear combination of the functionals, also defined

by X̄. Since we are given α̂i ∈ X̄, C(α̂i) 6= +, we have written c as a non-negative linear

combination of the αi, and so we have a feasible dual solution. However, since B(α̂5) = −,

we have that this bound is exceeded, and this is not a primal feasible solution.

Remark 7.3.2. This gives us the essential tools for the Simplex Algorithm, defined on a

finite Oriented Matroid Program. [BLVS+99]:

Input: A feasible (B-nonnegative) tableau, T = (X̄, Ȳ ,A, B,C).

I. If T is optimal (B-nonnegative, C-nonpositive) STOP. The current tableau is optimal.

II. If T is unbounded, (there is a α̂i ∈ X̄ such that C(α̂i) = +, A(α̂i, α̂j) = − for some

α̂j ∈ Ȳ , and A(α̂i, α̂k) 6= + for any other α̂k ∈ Ȳ . STOP. The current tableau is

unbounded.

III. Choose α̂i ∈ X̄ such that C(α̂i) = +.

IV. Choose α̂j ∈ Ȳ such that the co-vector induced by Ȳ ∪ {α̂i}\{α̂j} is feasible.

V. Return to (I).

Proof. This is an adaptation of Blands Simplex Algorithm found in [BLVS+99]

158

Example 7.3.3. Recall the Lumbermill Problem and its tableau:

� α̂1 α̂2 α̂3 -1

α̂4 + + + +

α̂5 + + + +

−1 + + +

�

If we swap α̂1 with α̂5, some simple computation shows that the new tableau will be:

� α̂5 α̂2 α̂3 -1

α̂4 + + + +

α̂1 + + + +

−1 − + +

�

This corresponds to a primal solution ~x = (4, 0, 0) and dual solution

~y = (0,−1
2 ,−

7
2 , 0,

3
2). However, as our dual solution is not yet feasible, we continue to pivot.

Suppose we switch α̂3 and α̂4. We would get:

� α̂5 α̂2 α̂4 -1

α̂3 − − + +

α̂1 + − − +

−1 − − −
�

159

The region defined by the intersecting hyperplanes (when f = 1) in R3 is ~x = (2, 0, 4).

We see that α̂1(2, 0, 4) = 2, and α̂4(2, 0, 4) = 4, both positive. Moreover, we may write

c = 11
3 α2 + 5

3α4 + 2
3α5. Thus this point also corresponds to a feasible dual solution, ~y =

(0, 11
3 , 0,

5
3 ,

2
3).

We note that by Bland’s Anti-Cycling rules, one can show that the Simplex Algorithm will

terminate. [BLVS+99]

7.4 Tucker Tableau with entries in R

Here, we describe the Tucker tableau in terms of elements of the ground division ring R.

Given A : X → Y ∗,~b, c, as before, we define α̂i, X̄, Ȳ as before. We then define A, B,C as

not merely the sign of the appropriate coefficients, but the coefficients themselves. We also

define a new value D, where D is the coefficient of f in the sum:

∑
α̂i∈X̄

αi · ci + g + f ·D = 0.

Then, the Tucker pivot is exactly as described before, exchanging α̂i ∈ X̄ with α̂j ∈ Ȳ . We

note that by definition

α̂j = f ·B(α̂j)−
∑
α̂k∈X̄

α̂k ·A(α̂k, α̂j).

Suppose that A(α̂i, α̂j) 6= 0, and for shorthand, we use Aij := A(α̂i, α̂k), Bj := B(α̂j), Ci :=

C(α̂i). Then:

160

α̂j = f ·Bj −
∑
α̂k∈X̄

α̂kAkj

α̂iAij = f ·Bj −
∑

α̂k∈X̄,k 6=i

α̂kAkj − α̂j

α̂i = f ·BjA−1
ij −

∑
α̂k∈X̄,k 6=i

α̂k ·AkjA
−1
ij − α̂jA

−1
ij .

With this, we consider the tableau defined on X̄ ′ := X̄ ∪ {α̂j}\{α̂i}, Ȳ ′ := Ȳ ∪ {α̂i}\{α̂j} (

the tucker pivot discussed above). We notice that for α̂` ∈ Ȳ \{α̂j},

α̂` = f ·B` −
∑
α̂k∈X̄

α̂k ·Ak`

α̂` = f ·B` −
∑

α̂k∈X̄,k 6=i

α̂k ·Ak` −

f ·BjA−1
ij −

∑
α̂k∈X̄,k 6=i

α̂kAkjA
−1
ij − α̂jA

−1
ij

Ai`

α̂` = f ·
(
B` −BjA−1

ij Ai`

)
−

∑
α̂k∈X̄,k 6=i

α̂k ·
(
Ak` −AkjA

−1
ij Ai`

)
+ α̂j ·

(
A−1
ij Ai`

)
.

Thus we have that:

A′k` = Ak` −AkjA
−1
ij Ai`, if ` 6= i, k 6= j.

= −A−1
ij Ai`, if ` 6=, k = j.

= AkjA
−1
ij , if ` = i, k 6= j.

= A−1
ij , if ` = j, i = k.

Similarly,

161

B′` =

B` −BjA−1

ij Ai`, if ` 6= i.

BjA
−1
ij , otherwise.

We can also use this method to compute C ′:

g =
∑
α̂k∈X̄

αk(x) · Ck − f ·D

=
∑

α̂k∈X̄,k 6=i

αk(x) · Ck +

f ·BjA−1
ij −

∑
α̂k∈X̄,k 6=i

α̂k ·AkjA
−1
ij − α̂jA

−1
ij .

 · Ci − f ·D
=

∑
α̂k∈X̄,k 6=i

αk(x) ·
(
Ck −AkjA

−1
ij Ci

)
− α̂j ·A−1

ij Ci − f ·
(
D −BjA−1

ij Ci

)
.

From this, we get that:

C ′k =

Ck −AkjA

−1
ij Ci, if k 6= j,

−A−1
ij Ci, otherwise.

D′ = D −BiA−1
ij Ci.

All of this can be encapsulated in the following figure:

� α̂i α̂k −1

α̂j Aij Akj Bj
α̂` Ai` Ak` B`
−1 Ci Ck D

�

Figure 7.3: Generalized Tucker Tableau

162

� α̂i α̂k −1

α̂j Aij Akj Bj
α̂` Ai` Ak` B`
−1 Ci Ck D

�

−→

� α̂j α̂k −1

α̂i A−1
ij AkjA

−1
ij BjA

−1
ij

α̂` −A−1
ij Ai` Ak` −AkjA

−1
ij Ai` B` −BjA−1

ij Ai`

−1 −A−1
ij Ci Ck −AkjA

−1
ij Ci D −BjA−1

ij Ci
�

Figure 7.4: Generalized Tucker Pivot

7.5 The Simplex Algorithm

We make some observations, given a feasible Tucker tableau (each Bj ≥ 0 for α̂j ∈ Ȳ):

1. If each Ci ≤ 0 for each α̂i ∈ X̄, then the tableau is optimal.

2. If there is a Ci > 0, but each Aij ≤ 0, α̂j ∈ Ȳ , then the primal problem is unbounded.

(By Proposition 4.3.21, we can find a wi ∈ X for each α̂i ∈ X̄, such that αk(wi) = −δki.

Then A(−wi) ≤ 0, c(−wi) > 0, and the primal is unbounded).

For the remainder of this chapter, we will assume that A ∈ HomR(X,Y ∗), the collection of

row-like projections A (Definition 3.3.6) is finite (|A| <∞). That is, there are a finite number

of αi, and so we may number them α1 . . . , α|A|. We will also assume that the primal problem

is feasible.

We can now discuss the Simplex Algorithm.

I) Select the minimum index i such that α̂i ∈ X̄, Ci is positive. If no such α̂i exists, then

STOP. The tableau is optimal (as discussed before.)

II) Select an index j such that α̂j ∈ Ȳ , BjA
−1
ij is minimal with respect to Aij positive. If

there are multiple candidates for α̂j , pick the one of lowest subscript. Note that if each

163

Aij ≤ 0 for the given α̂i, then by our above observation the primal problem is infeasible,

which contradicts our assumption that the tableau was feasible.

III) Perform a Tucker pivot with respect to α̂i, α̂j .

IV) Return to (I) as before.

Remark 7.5.1. We observe some facts about the Simplex Algorithm.

1. First, each Tucker pivot done this way results in a feasible tableau. Suppose that it did

not. First, since Aij > 0, B′j = BjA
−1
ij ≥ 0. So suppose there is a B′` < 0. We recall

that:

B′` = B` −BjA−1
ij Ai` < 0

B` < BjA
−1
ij Ai`

B`A
−1
i` < BjA

−1
ij .

Noting that if A−1
i` ≤ 0, then B′` > 0. Thus B`A

−1
i` < BjA

−1
ij , and this is a contradiction.

2. We also notice that given any choice X̄ (equivalently Ȳ), the Tucker pivot is uniquely

determined. Thus if the algorithm does not ever terminate, it is due to cycling. Let

X̄0 denote an initial choice of X̄, and given X̄N , let X̄N+1 denote the set X̄ after a

Tucker pivot, if the algorithm does not terminate. Then, consider a X̄0 such that the

simplex algorithm never terminates. Since A is finite, there are only a finite number of

choices for X̄N . Thus, by the pigeonhole principle, there is a X̄N ,M ∈ Z+, such that

X̄N = X̄N+M . But since X̄N+1 is uniquely determined, it follows that X̄N ′+M = X̄N ′

for any N ′ > N .

3. By our choices, D′ = D − BjA−1
ij Ci, and since Bj ,A

−1
ij , Ci are each non-negative, D is

non-increasing. Thus if cycling occurs, each D in the tableau induced by X̄N ′ , T (X̄N ′)

for N ′ ≥ N must be the same.

164

In order to show that the algorithm terminates (and returns an optimal or unbounded

tableau) we require that cycling does not occur.

Theorem 7.5.2 (Generalized Fact IX: Simplex Algorithm). The Simplex Algorithm (as de-

scribed above) does not cycle.

This can be shown with an adaptation of the lexicographical perturbation rule, originally

developed by Dantzig in 1951 [Dan].

Proof. Suppose that cycling does occur. Without loss of generality, we may assume that

each α̂i both leaves and enters X̄ at some pivot. That is, we may remove all the rows and

columns that do not leave this pivot within this cycle. Since D is non-increasing , and in

each pivot the value of C and A are positive, this shows that the value for B is negative.

Thus, each α̂i leaves Ȳ and enters X̄, each B(α̂i) = 0 for some choice of X̄, and for that

choice of X̄, α̂i

 ⋂
α̂k∈X̄

Ker(α̂k)

 = 0. Since X̄ is chosen to be maximal with respect to linear

independence, and X̄ is finite, this shows that Ker(α̂i) intersects the Ker(α̂k), α̂k ∈ X̄ at

exactly the same point the α̂k intersect. (We may consider this intersection a single point by

Remark 4.3.2). We consider the existence of such a point a degenerate point. We see by the

above arguments that cycling occurs only if there exist degenerate points.

Then, by finite induction, we conclude that all the α̂i intersect at the same point. This is a

necessary condition for cycling to occur. Thus for α̂i, we may replace it with α̂i
′ := α̂i− f · εi,

where εi ∈ R+. Since the original problem contained a finite number of functionals, we may

pick these εi to be sufficiently small, and in such a way, such that no new degenerate points

are created.

We do this for each degenerate point, each such that no new degenerate points are intro-

duced. This adjusted program has no degenerate points, and so no cycling occurs. Thus this

perturbed program terminates.

165

If the perturbed program is infeasible, then there is a ~x ∈ X such that αi(~x′) ≤ 0, for each

index i, c(~x′) > 0, and a feasible point ~x, where α̂i
′(~x) ≥ 0, but α̂′i(~x) = α̂i(~x)− f · εi, and so

such a ~x is feasible for the original program as well. The existence of a feasible ~x, and a ~x′

as described above, shows that the primal program is unbounded. (See proof of Proposition

5.3.2).

Otherwise the perturbed program is optimal, and returns a collection of functionals X̄

such that we may write c as a non-negative linear combination of the αi, α̂i
′ ∈ X̄, and the

intersection of the kernels of the functionals in X̄ is feasible. But again α̂i = 0 if and only if

α̂i
′ = f ·εi. Thus this point is feasible in the original program, and the unperturbed functionals

whose linear combination form c also correspond to hyperplanes whose intersections form the

maximizer for the primal problem.

Corollary 7.5.3. We obtain an alternative proof of the Strong Duality Theorem (Theorem

5.3.7) and Theorem 6.4.2, where the collection of (non-zero) row-like projection maps A

(Definition 3.3.6) is finite.

Proof. Suppose that, by the hypothesis of Theorem 5.3.7, that the primal problem is feasible

and bounded. Then we may encode the data from this program into the Tucker tableau, and

by Theorem 7.5.2, the Simplex Algorithm terminates at an optimal tableau. Consider X̄, we

first note that we have encoded a function C such that:

c +
∑
α̂i∈X̄

α̂i · (−Ci) + f ·D = 0

c +
∑
α̂i∈X̄

(bi − αi) · (−Ci) +D = 0

∑
α̂i∈X̄

(bi) · (−Ci) = −D.

Since each −Ci ≥R 0, this represents a feasible solution to the dual problem, whose objective

166

value is −D.

Conversely, we record a region K ⊆ X that is 0 for each α̂i ∈ X̄. Then for k ∈ K,

c(k) +
∑
α̂i∈X̄

α̂i(k) · (−Ci) + f ·D = 0

c(k) +D = 0

c(k) = −D.

Thus we have a feasible primal solution k whose objective value is −D. Then, by the Weak

Duality Theorem, (Corollary 2.4.10), both of these solutions are optimal and give the same

objective value.

Example 7.5.4. We frequently model linear or affine programming problems in terms of

a constant number of resources or constraints, where the objective value relative to each

constraint is fixed as well. This however does not reflect the actual reality of a production

process. It is certainly possible that the amount of resources available fluctuates relative to

other factors, in the market place or in terms of other resources. The amount of resources

it takes to craft a product, and how much that product sells for may also fluctuate relative

to other factors. It is natural then, to consider an affine programming problem where the

coefficients are functions rather than real numbers.

So we consider (abstractly) a company who produces two products, product 1 and product

2. These are constrained by quantity of two inputs, input 1 and input 2. However, rather

than being fixed we define the quantity of these inputs to be the (rational) function of two

parameters, V , the availability of resources to the company on the market, and R the willing-

167

ness of the company to expose the workforce to risk. Moreover, the amount of input it takes

to produce these resources decreases as these factors increase.

So, let R be the ordered ring of rational functions R(V,R) as in Example 2.3.8 (note that

any commutative ordered ring can be extended to an ordered field of fractions [Lam01]).

We give this ring the lexicographical ordering V > R. Then, X ∼= R2, and since we have

two non-negativity constraints, and two input constraints, Y ∗ ∼= R4. Let c : X → R be

c(x1, x2) := 5x1 + 6x2, and let the input and non-negativity constraints be modeled by:

A :=

−1 0

0 −1

1 3

2 2

x1

x2

 ≤

0

0

R2V

RV + 10

=: ~b.

We can then define the α̂i:

α̂1 = x1

α̂2 = x2

α̂3 = f ·R2V − x1 · 1− x2 · 3

α̂4 = f · (RV + 10)− x1 · 2− x2 · 2.

If we initialize the tableau with X̄ = {α̂1, α̂2}, we have:

168

� α̂1 α̂2 −1

α̂3 1 3 R2V

α̂4 2 2 RV + 10

−1 5 6 0

�

This tableau is not optimal, or infeasible. Thus, we choose a α̂1 to be the lowest index

functional to leave X̄ and we compare RV+10
2 < R2V

1 = R2V . Both of these are positive, so

α̂4 leaves Ȳ . This gives rise to the following tableau:

� α̂4 α̂2 −1

α̂3 −1
2 2 R2V − RV

2 − 5

α̂1
1
2 1 RV

2 + 5

−1 −5
2 1 −5RV

2 − 25

�

Since 1 > 0, this tableau is not optimal. However, it is also not infeasible. Thus α̂2 is our

only candidate for leaving X̄, and when we compare RV
2 + 5 < R2V

2 −
RV
4 −

5
2 , we see that α̂1

is the functional that leaves Ȳ . We then obtain:

� α̂4 α̂1 −1

α̂3 −3
2 −2 R2V − 3RV

2 − 15

α̂2
1
2 1 RV

2 + 5

−1 −3 −1 −3RV − 30

�

169

Thus, where α̂1, α̂4 are both zero, the points x1 = 0 units of product 1 and , x2 = RV
2 + 5

units of product 2, and the revenue is maximized at:

5 · 0 + 6 ·
(
RV

2
+ 5

)
= 3RV + 30,

a function of the availability of resources, and willingness to accept risk.

There is a natural dual interpretation to this problem along the same lines as the Lumber

Mill Problem 1.2.1. Recall that the quantity of input 1 is represented by the function R2V

and the quantity of input 2 is RV + 10. As before, we would like to find values for these

resources, y1, y2 that minimize the value of our resources 2V · y1 + (RV + 10) · y2, subject to:

1 · y1 + 2 · y2 ≥ 5

3 · y1 + 2 · y2 ≥ 6

y1, y2 ≥ 0.

From the above pivots, we see that this occurs when

y1 = 0, y2 = 3.

These are exactly the coefficients of α3, α4 respectively such that α3 · y1 + α4 · y2 = c.

We verify that:

170

α3 · y1 + α4 · y2 = 0 + 3) · (RV + 10)

= 3RV + 30.

7.6 Conclusion

Here, we adapt the known algorithm for solving oriented matroid programs [BLVS+99] and

place it within a Tucker tableau. We then expand on this and develop a Tucker tableau

way of encoding an affine programming problem in a finite dimensional program over an

ordered division ring. We then describe the generalized Simplex Algorithm 7.5.2 in this

setting. Throughout this, we did not at any point require that our division rings have any

property other than ordered, in particular this means that we did not require commutativity

as one of our properties.

171

Chapter 8

Future Direction

One of the most important results of affine programming is the Farkas’ Lemma, which allows us

to prove the Complementary Slackness Theorem and the Strong Duality theorem. Moreover,

as it provides a non-constructive proof of these results, it is crucial in the study of infinite

dimensional programming, where algorithmic proofs such as the Simplex algorithm are not

viable.

Although several generalizations of the Farkas’ Lemma were proved, we have not established

a necessary and sufficient condition where it holds, nor have we exhausted all the possible hy-

pothesis under which it could hold. One possible direction of research would be to conclusively

establish all the conditions under which the Farkas’ Lemma, and in turn the Complementary

Slackness and Strong Duality theorems hold.

Another potential direction is a careful examination of cones. In Chapter 3, we discuss some

potential choices for positive cones, especially in terms of function spaces. However, we limited

the discussion to orthant cones, after providing a counter example to Strong Duality in this

setting. However, it is possible that our classical facts could in fact hold in this setting, with

the proper hypothesis. One would then ask, using non-orthant cones, under which hypothesis

172

our later basic facts may be generalized. Such a generalization would have natural applications

to subjects such as infinite coloring and matching problems in graph theory.

We have also seen finite affine programming problems can be modeled by a finite oriented

matroid. It can also be shown that over the cone of non-negative function X → R, |X| =∞,

an affine programming problem can be modeled by an infinite oriented matroid. One possible

avenue of research would be to study infinite oriented matroids and see what hypothesis must

hold in order for our generalized facts to hold. Then to study other types of positive cones,

and to see what the analogous combinatorial structure would be, and to ask when do the

generalized facts hold under these conditions.

173

Bibliography

[Bar07] David Bartl. Farkas’ Lemma, other theorems of the alternative, and linear pro-
gramming in infinite-dimensional spaces: a purely linear-algebraic approach. Lin-
ear Multilinear Algebra, 55(4):327–353, 2007.

[Bar12a] David Bartl. Farkas’ Lemma, Gale’s theorem, and linear programming: the in-
finite case in an algebraic way. Global Journal of Mathematical Sciences, 1(1),
2012.

[Bar12b] David Bartl. A very short algebraic proof of the Farkas Lemma. Math. Methods
Oper. Res., 75(1):101–104, 2012.

[Bea55] E.M.L. Beale. Cycling in the dual simplex algorithm. Naval Research Logistics
Quaterly, 2(0082187 (18,514e)):269–275 (1956), 1955.

[Bla77] Robert G. Bland. New finite pivoting rules for the simplex method. Mathematics
Operations Research, 2(2):103–107, 1977.

[BLV78] Robert G. Bland and Michel Las Vergnas. Orientability of matroids. J. Combi-
natorial Theory Ser. B., 24(1):94–123, 1978.

[BLVS+99] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M.
Ziegler. Oriented matroids, volume 46 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge, second edition, 1999.

[Con90] John B. Conway. A course in functional analysis, volume 96 of Graduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1990.

[Dan] G. B. Dantzig. Maximization of linear function of variables subject to linear
inequalities.

[DeN82] E.V. DeNardo. Dynamic programming. Dover Books on Computer Science Series.
Dover Publications, Incorporated, 1982.

[DF04] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley & Sons
Inc., Hoboken, NJ, third edition, 2004.

[Far02] Julius Farkas. Theorie der einfachen ungleichungen. Journal fur die reine und
angewandte Mathematik, 124:1–27, 1902.

174

[Fuc11] László Fuchs. Partially Ordered Algebraic Systems. Dover Publications, 2011.

[Hil03] David Hilbert. Grundlagen der geometrie. Leipzig B.G. Teubner, 1903.

[Ion27] D.V. Ionescu. Sur une classe d’équations fonctionnelles. impr. et librairie E.
Privat, 1927.

[JGKR63] Robin Robinson John G. Kennedy and Robert W. Ritchie. New Directions in
Mathematics. Prentince-Hall Inc, 1963.

[Lam01] T. Y. Lam. A first course in noncommutative rings, volume 131 of Graduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 2001.

[Law75] James Franklin Lawrence. ORIENTED MATROIDS. ProQuest LLC, Ann Arbor,
MI, 1975. Thesis (Ph.D.)–University of Washington.

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Mot36] T.S. Motzkin. Beiträge zur Theorie der linearen Ungleichungen. Buchdr. Azriel,
1936.

[NT93] Evar D. Nering and Albert W. Tucker. Linear programs and related problems.
Computer Science and Scientific Computing. Academic Press Inc., Boston, MA,
1993. With a foreword by George B. Dantzig, With 1 IBM-PC floppy disk (5.25
inch; HD).

[Num55] Dantzig, tobias. numbers: The language of science. new york: The macmillan
company, 1954. 340 p. Science Education, 39(2):182–182, 1955.

[Piv08] Marcus Pivato. Sustainable preferences via nondiscounted, hyperreal intergen-
erational welfare functions. MPRA Paper 7461, University Library of Munich,
Germany, March 2008.

[Rob79] Abraham Robinson. Selected papers of Abraham Robinson. Vol. II. Yale Uni-
versity Press, New Haven, Conn., 1979. Nonstandard analysis and philosophy,
Edited and with introductions by W. A. J. Luxemburg and S. Körner.

[Roc69] R. Tyrell Rockafellar. Combinatorial mathematics and its applications, volume
1967 of Proceedings of the Conference held at the University of North Carolina at
Chapel Hill, April 10-14. The University of North Carolina Press, Chapel Hill,
N.C., 1969.

[Roy10] Halsey Royden. Real Analysis. Pearson, 4 edition, 2010.

[Sch86] Alexander Schrijver. Theory of linear and integer programming. John Wiley &
Sons, Inc., New York, NY, USA, 1986.

[vN98] John von Neumann. Continuous geometry. Princeton Landmarks in Mathemat-
ics. Princeton University Press, Princeton, NJ, 1998. With a foreword by Israel
Halperin, Reprint of the 1960 original, Princeton Paperbacks.

175

[Zie13] Günter M. Ziegler. Lectures on Polytopes. Springer, 2013.

176

Index

Collection of spanning maps, 87
Complementary Slackness, Classical, 22
Complementary Slackness, General, 128
Convexity of Feasible Regions, Classical, 15
Convexity of Feasible Regions, General, 74
Convexity of Optimal Solutions, Classical, 17
Convexity of Optimal Solutions, General, 75
Convexity, General, 74

Existence-Duality Theorem, Classical, 40
Existence-Duality Theorem, General, 149

Farkas’ Lemma, Classical, 19
Farkas’ Lemma, decomposable, 117
Farkas’ Lemma, extendable, 108
Farkas’ Lemma, finite, 101
Farkas’ Lemma, General, 100
Farkas’ Lemma, linearly independent, 107
Feasibility, Alternative, 69
Feasibility, General, 68
Fundamental Theorem of Affine Programming,

Classical, 18
Fundamental Theorem of Affine Programming,

General, 75

Key Equation, Classical, 10
Key Equation, General, 58

Ordered Rings, 42
Orthant Cone, 87

Row-like projections, 88

Simplex Algorithm, Classical, 40
Simplex Algorithm, General, 165
Strong Duality, Classical, 24
Strong Duality, General, 130

Tucker Tableau, Classical, 7

Tucker Tableau, General, 162
Tucker Tableau, Oriented Matroid, 153

Weak Duality, Classical, 11
Weak Duality, General, 71

177

	Abstracted primal-dual affine programming
	Let us know how access to this document benefits you.
	Recommended Citation

	Introduction: Primal-Dual Affine Programs, Classical and Abstract
	The Goal
	Classical Affine Primal-Dual Programs
	An Example of a Classical Affine Primal-Dual Program
	Introduction to Classical Affine Programming
	Basic facts
	Results regarding Order
	Facts using R
	Simplex Algorithm

	Generalizations
	Generalizing the Ring of Scalars
	Generalizing the Dimension or Rank
	Generalizing the Cones

	General Framework
	Results
	Results about affine maps
	Results about Duality
	Results Classifying Solutions
	Results about Structure: Tucker Tableaux and Oriented Matroids
	Results about Optimal Solutions: The Simplex Algorithm

	Potential Difficulty in an Abstract Situation
	Summary of Results

	Ordered Rings and Modules
	Introduction
	General Rings
	Some Properties of Ordered Rings and Modules
	Properties of Ordered Rings
	Modules and Cones over Ordered Rings

	Results with Cones and Programs
	Feasibility
	Weak Duality
	Convexity
	Partial Results

	Counterexamples
	Conclusions

	Cones
	Introduction
	Counterexamples
	Orthant Cones
	Definition of Orthant Cone
	Satisfying Feasibility Conditions
	Non-Orthant Cones

	Conclusion

	Farkas' Lemma and Generalizations
	Introduction
	Tools
	The Farkas' Lemma
	Conclusion

	Theorems of the Alternative and Duality Results
	Introduction
	Theorems of the Alternative.
	Duality Results
	Partial results for the Existence-Duality Theorem
	Complementary Slackness and Strong Duality
	Counterexamples to Generalizations of Classical Results

	Conclusion

	An Oriented Matroid Solution
	Introduction
	Oriented Matroids
	Oriented Matroid Programming
	The Existence Duality Theorem
	Conclusion

	Oriented Matroid Programs as Tucker Tableaux and the Simplex Algorithm
	Introduction
	The Tucker Tableau
	Tucker Pivot
	Tucker Tableau with entries in R
	The Simplex Algorithm
	Conclusion

	Future Direction

