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Abstract

Reduced alertness and high levels of cognitive fatigue due to sleep loss bring forth sub-

stantial risks in today’s 24/7 society. Biomathematical models can be used to help mitigate

such risks by predicting quantitative levels of fatigue under sleep loss. These models help

manage risk by providing information on the timing at which high levels of fatigue will

occur; countermeasures can then be taken to reduce accident risk at such critical times.

Many quantitative models exist to predict cognitive performance based on homeostatic

and circadian processes (Mallis et al., 2004). These models have typically been fitted to

group average data. Due to large individual variation, group-average predictions are often

inaccurate for a given individual. However, since individual differences are trait-like, between

subjects variation can be captured by individualizing model parameters using the technique

of Bayesian forecasting. In many cases the amount of data collected, and consequently, the

prediction accuracy, will be limited by factors such as cost and availability. However; pre-

diction accuracy may still be improved by including information from alternative, correlated

performance measures in a multivariate Bayesian forecasting framework.

When collecting data from two performance measures, we consider methods of sampling

that obtain a desired average level of prediction accuracy for minimal data collection cost.

We assess the prediction accuracy using the Bayesian mean squared error (MSE) and derive

this measure for a general Bayesian linear model. To understand how the accuracy depends

on the number of measurements from primary and secondary tasks in the simplest case, we

apply the equation to specify the accuracy for the bivariate Bayesian linear model of subject

means. For this simple model, we further assume that observations from each performance

measure have a fixed cost per data point, and use this assumption to determine the number

of measurements of each variable needed to minimize the cost while still obtaining no less

than the desired level of accuracy.

To aid the extension of the findings from the linear case to state of the art nonlinear

biomathematical fatigue models, we focus on obtaining our extended measure of accuracy

for the nonlinear case. Computing this accuracy analytically is often infeasible without re-

liance on model approximations. Model simulations can be used to compute this accuracy;

however, such simulations can be time consuming, especially for models that lack analytic

solutions and require that a system of differential equations be solved to produce model

dynamics. Much of this computational burden in assessing estimator accuracy, however,

is produced by using the Bayesian MMSE estimator, and could be reduced by taking ad-

vantage of the quicker to compute Bayesian MAP estimator. We show how for a nonlinear

biomathematical model that the accuracy assessment using repeated simulation with the
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MAP estimator yields a reasonable estimate of the accuracy obtained using the MMSE es-

timator. Still, however, for any given case, determination of whether the MMSE accuracy

can be approximated with the MAP accuracy requires these time consuming simulations.

We begin to analytically identify classes of models where the MMSE accuracy can be ap-

proximated by the MAP accuracy. We consider a class of quadratic Bayesian models, and

show by analytic approximation that for this class, the MMSE has twice the accuracy of

the MAP.
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Chapter 1

Introduction

1.1 Background

Use of models

Reduced alertness and high levels of cognitive fatigue due to sleep loss bring forth substantial

risks in today’s 24/7 society. Biomathematical models can be used to help mitigate such

risks by predicting quantitative levels of fatigue under sleep loss (Van Dongen et al, 2007).

These models help manage risk by providing information on the timing at which high levels

of fatigue will occur; countermeasures can then be taken to reduce accident risk at such

critical times.

Truck driver application

For example, biomathematical models can be used to make predictions of truck driver

performance. Driving performance is often assessed using the variance in lane position,

referred to more simply as lane variability (Forsman et al, 2012). Lane variability at intervals

can be computed from lane position, which in turn can be estimated using lane-tracking

cameras and complex video signal processing software. Once predictions of driver lane

variability have been constructed, they may be used to inform a driver alert system, or help

trucking companies or individual drivers make decisions concerning driver schedules.

1



CHAPTER 1. INTRODUCTION 2

Model biology

Performance predictions can be made by modeling the neurobiology underlying temporal

changes in cognitive fatigue. The brain’s drive for sleep and wakefulness is regulated largely

by homeostatic and circadian processes (Van Dongen & Dinges, 2005). The homeostatic

process, which is responsible for balancing the time spent awake and asleep, can be thought

of as a pressure for sleep that increases during wakefulness and decreases during sleep. The

circadian process, on the other hand, is responsible for managing the drive for wakefulness

over the course of the day. This process has been directly linked to the suprachiasmatic

nuclei, a specialized region located in the hypothalamus of the brain which is responsible

for keeping track of the time of day. State of the art fatigue models use our understanding

of these two processes to predict performance throughout the day.

Individual differences

Many quantitative models exist to predict cognitive performance based on homeostatic and

circadian processes (Mallis et al, 2004, McCauley et al, 2013). These models have typically

been fitted to group average data and have successfully been used to predict group-average

performance in operational settings. There is also demand for these models in operative en-

vironments where fewer individuals are being considered (i.e. commercial trucking.) How-

ever, for a given individual the group-average prediction can be quite inaccurate. The reason

for this inaccuracy is that the larger part of the variation in performance due to sleep loss

is due to trait-like individual differences. Therefore, we cannot rely on the group-average

model to accurately predict the absolute level of performance impairment for a given indi-

vidual. However, since the individual differences are trait-like, between subjects variation

can be captured by individualizing model parameters.

Group average advantage

Individual parameter estimates may be obtained by fitting a given model to subject-specific

performance data, as opposed to fitting the model with group-average data. However, group-

average data has certain advantages. Group data will not only help to average out noise, but

likely also be collected over a greater diversity of schedules. This schedule diversity aids the

fitting process by enabling unique identification of parameters that can only be separated

by observing performance under more extreme schedules of sleep restriction. Therefore, in

tailoring a model to an individual by fitting only subject-specific performance data, we let
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go of the noise reduction and schedule variety which otherwise would be gained from the

group.

Bayesian forecasting

To both retain the strength of group data and capture trait-like fluctuations away from

the group-average, we take on the assumption that the individual is a member of a specific

population. This assumption allows us to use data from this population to specify prior

distributions for the individual parameters. Bayesian forecasting can then be used to com-

bine the individual and group data to produce more robust estimates of subject specific

performance. Performance predictions will then naturally take on population mean values

in the absence of individual-specific data, and will converge to the best representation of

the individual at hand as more individual-specific data is obtained.

Secondary task data

With an unlimited amount of individual-specific data, performance prediction accuracy can

be maximized. Data, however, may be limited by factors such as cost and availability. For

instance, estimates of lane variability may, at times, be unavailable, as lane tracking cameras

are known to be unreliable in darkness, and when snow or sand are covering lane markers

(Forsman et al, 2012). Alternatively, each data point collected from the primary task may

be costly, and a second, more cost effective task measure may also be available for streaming.

In consideration of this range of data-limited scenarios, we pose the question: is it possible

to use other information sources, specifically secondary performance measures, to improve

the accuracy of those predictions on a primary measure?

PERCLOS

Lane variability is not the only manner in which driving performance may be assessed.

For instance, infrared cameras may be used to monitor eyelid closure. Slow eyelid closure

(“droop”), is a more effective measure of drowsiness than fast blinking. PERCLOS is one

such measure, which measures the proportion of time during a minute for which the eyelid

covers more than 80 percent of the pupil. This measurement of driving performance has

been found to correlate with lane variability. During abnormal driving conditions, it may

be possible to use PERCLOS to obtain more accurate predictions of lane variability.
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Framework for including secondary task

Secondary measures of cognitive performance can be considered under the same homeo-

static/circadian biological modeling framework. However, because the individual differences

are not the same from one task to the next, we cannot reasonably use the same model param-

eters for a secondary task. Instead, we can consider task specific model parameters, which

have some degree of between subjects’ correlation with the primary parameters. A multi-

variate Bayesian forecasting approach can then be used to combine population data from the

primary and secondary measures with new individual data on these measures. Information

collected about the performance on a secondary task measure can then be transferred to

knowledge about the primary task.

Given this multivariate modeling framework, the question remains whether the secondary

task will result in a significant improvement in performance predictions on the primary

task, and if so, how an optimal balance of data from primary and secondary tasks can be

constructed when there is some cost to collection.

1.2 Mathematical framework

Mathematical Framework

In this section, we develop the mathematical framework for obtaining individual parameter

estimates and response forecasts (i.e., performance predictions) via Bayesian forecasting.

Furthermore, we construct notation and definitions for assessing the accuracy of these pa-

rameter estimates and response forecasts. In later chapters, such a framework will be helpful

in showing how secondary tasks influence the accuracy of estimates and forecasts for a pri-

mary task.

Model specification

In this thesis, we consider Bayesian models of subject-specific performance, formulated as

yyyi = ξ (φφφi,xxxi) , (1.2.1)

where ξ represents the neurobiological performance model which may be either linear or

nonlinear in the parameters, φφφi represents a subject-specific parameter vector, and xxxi is a

subject-specific covariate vector. The subject-specific vectors are not subscripted with a

subject-specific index as might be expected, as we are assuming that the characteristics of
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the population have already been estimated, and we may now focus on making predictions

for just a single individual. We assume φφφi to be a normal random variable

φφφi ∼∼∼ N(µµµ,ΣΣΣ), (1.2.2)

where µµµ and ΣΣΣ represent population characteristics that have been estimated in the pop-

ulation stage. We use the letter f to represent probability distributions, and subscript it

with the random variable for the distribution that is represented. For instance, fφφφi will be

used to represent the prior distribution for φφφi.

Bayesian estimators

Bayes rule is used to construct the posterior distribution by combining the prior, conditional

distribution and normalizing constant as

fφφφi|yyyi =
fyyyi|φφφifφφφi∫
fyyyi|φφφifφφφidφφφi

. (1.2.3)

From this distribution, we may construct estimates of φφφi. Two estimators which are most

commonly used in Bayesian inference are the maximum a posteriori estimator (MAP) and

the minimum mean squared error estimator (MMSE). These estimators represent the max-

imum and mean of the posterior distribution, and can be constructed for both parameters

and unobserved responses. The MMSE estimate is that which minimizes the mean squared

error conditional on the observed data, whereas the MAP does not have this requirement.

We denote the MMSE estimator of φφφi with

φ̂φφ
E

i ≡ MMSE [φφφiφφφiφφφi] = Eφφφiφφφiφφφi,,,yyyi [φφφiφφφiφφφi] =

∞∫
−∞

φφφiφφφiφφφif(φφφiφφφiφφφi|||yyyi)dφφφidφφφidφφφi (1.2.4)

and the MAP estimator with

φ̂φφ
A
≡ MAP [φφφiφφφiφφφi] = argmax

φφφiφφφiφφφi

[f(φφφiφφφiφφφi|||yyyi)] . (1.2.5)

We denote the MMSE predictor of the unobserved response yyy∗i with

ŷyyEi ≡ MMSE [yyy∗i ] = Eyyy∗i ,yyyi [yyy∗i ] =

∞∫
−∞

yyy∗i f(yyy∗i |yyyi)dyyy∗i (1.2.6)

and the MAP predictor of yyy∗i with

ŷyyAi ≡ MAP [yyy∗i ] = argmax
yyy∗i

[f(yyy∗i |yyyi)] . (1.2.7)
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Accuracy assessment

To assess the accuracy of estimators for the parameter and estimators of an unobserved

response (i.e., predictors), we use the mean squared error loss function. We define the

posterior expected squared parameter loss for a single parameter φ̂i as

R
[
φ̂i

]
≡ Eφi|yyyi

[(
φ̂i − φi

)2]
(1.2.8)

where φ̂i is an estimator of the model parameter φi and depends on the observed data y.

For a parameter vector, this extends to

R
[
φ̂φφiφφφiφφφi

]
≡ tr

{
Eφφφiφφφiφφφi|yyyi

[(
φ̂φφiφφφiφφφi −φφφiφφφiφφφi

)(
φ̂φφiφφφiφφφi −φφφiφφφiφφφi

)′]}
. (1.2.9)

Furthermore, we define the posterior expected squared prediction loss of ŷi as

R [ŷi] ≡ Ey∗i |yyy
[
(ŷi − y∗i )

2
]
, (1.2.10)

where ŷi is a predictor of y∗i and depends on yyy. For a vector of predictions, we have

R [ŷyyi] ≡ tr
{
Eyyy∗i |yyy

[
(ŷyyi − yyy∗i ) (ŷyyi − yyy∗i )

′]}
. (1.2.11)

As a result of this dependence on yyyi, in the nonlinear case, we anticipate that both R
[
φ̂φφi

]
and R [ŷyyi] will also depend on yiyiyi, and will therefore vary from one dataset to the next.

To get an overall measure of the accuracy for a particular Bayesian model, we may instead

consider the average value of R
[
φ̂φφi

]
and R [ŷyyi] after integrating out the effects of y. This

quantity is termed the Bayesian mean squared parameter error for φ̂φφi and the Bayesian

mean squared prediction error for ŷyyi, and we differentiate them from R by using the tilde,

R̃
[
φ̂φφi

]
≡
∞∫
−∞

R
[
φ̂φφiφφφiφφφi

]
f (yyyi) dφφφi, (1.2.12)

R̃ [ŷyyi] ≡
∞∫
−∞

R [ŷyyi] f (yyyi) dyyyi. (1.2.13)

To compare the accuracy of the parameter estimators and predictors for a particular ob-

served data point, we define the posterior expected squared parameter loss ratio of φ̂φφ
A

i to φ̂φφ
E

i

as

P
[
φ̂φφ
A

i , φ̂φφ
E

i

]
≡
R
[
φ̂φφ
A

i

]
R
[
φ̂φφ
E

i

] , (1.2.14)
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and the posterior expected squared prediction loss ratio of ŷyya to ŷyye as

P
[
ŷyyAi , ŷyy

E
i

]
≡
R
[
ŷyyAi

]
R
[
ŷyyEi

] . (1.2.15)

Substituting the R̃ for R allows us to construct the Bayesian mean squared parameter error

ratio of φ̂φφ
A

i to φ̂φφ
E

i as

P̃
[
φ̂φφ
A

i , φ̂φφ
E

i

]
≡
R̃
[
φ̂φφ
A

i

]
R̃
[
φ̂φφ
E

i

] , (1.2.16)

and the Bayesian mean squared prediction error ratio of ŷyyA to ŷyyE as

P̃
[
ŷyyAi , ŷyy

E
i

]
≡
R̃
[
ŷyyAi

]
R̃
[
ŷyyEi

] , (1.2.17)

which are both data independent measures which we can use to compare estimator accuracy

of the MAP and MMSE. In this thesis, we formulate a modeling framework which includes

correlated random effects for subject by task.

1.3 Literature review

Kay (1993) formulates the Bayesian linear model as

x = Hθ + wx = Hθ + wx = Hθ + w (1.3.1)

where

θθθ ∼ N (µµµθ,CCCθθθ) (1.3.2)

and

www ∼ N (000,CCCw) . (1.3.3)

For this model, Kay (1993) determines the posterior variance to be

CCCθ|x =
(
CCC−1θ +HHH ′CCC−1w HHH

)−1. (1.3.4)

Furthermore, Kay (1993) determines the MMSE estimator to be

θ̂θθ = µµµθ +
(
CCC−1θ +HHH ′CCC−1w HHH

)−1HHH ′CCC−1w (xxx−−−HHHµµµθ) , (1.3.5)
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and the Bayesian MSE for the ith parameter to be

Bmse(θ̂i) = [CCCθ|x
]
ii
. (1.3.6)

In Section 3.1, we give an analogous derivation to obtain the posterior variance and Bayesian

MSE for the Bayesian linear model formulated assuming CCCw to be a diagonal matrix.

A linear model for multiple task variables may be considered under the linear Bayesian

modeling framework considered by Kay (1993) when we further specify how different task

variables will be denoted. For instance, Hall & Clutter (2004) specify a multivariate model-

ing framework to simultaneously model and make predictions of multiple measures of timber

volume. These authors consider a multivariate nonlinear mixed effects model with 3 levels

of grouping and r response variables. They let yijkl denote the lth response variable at the

kth measurement time, on the jth second-level group, and ith first-level group, f` denote

the model function, φijkl denote a random effects vector for a particular response variable a

the bottom level, and vvvijkl denote the covariate for the rth response variable at the bottom

level. Stacking the model equations for the r responses, they obtain,

yyyijk = fff (φφφijk, vvvijk) + εijk, (1.3.7)

where yyyijk = (yijk1, ..., yijkr)
′

and fff , φφφijk, vvvijk, and εεεijk are defined in a similar manner. By

defining a similar multivariate modeling framework, we may take advantage of the results

of Kay (1993) to determine the Bayesian MSE where multiple tasks are concerned.

Including secondary variables in the manner of Hall & Clutter (2004), however, is not

the only way in which they may be included. For instance, Chandler et al. (2013) es-

timated the ability to predict individual differences in cognitive impairment due to sleep

loss using data from subject-specific measures on secondary tasks and information on the

timing and duration of sleep. Sleep schedule information was captured using the Sleep,

Activity, Fatigue, and Task Effectiveness (SAFTE) model, a biomathematical model that

represents the temporal dynamics of cognitive performance impairment. The ability to pre-

dict individual performance was assessed by fitting a Generalized Linear Model (GLM) that

combined Readiness Screening Tools (RSTs) with the SAFTE model to predict individual

performance on the Psychomotor Vigilance Task (PVT). Individual performance measures

from the Flight Fit cognitive test battery and from the PMI Fit screener were considered

along with the Stanford Sleepiness Scale for inclusion in the GLM. The measures were each

individually assessed using a series of Repeated Measures Analyses of Variance (ANOVAs)

and a series of Hierarchical Linear Models (HLMs), and those measures which showed both

significant variation over time, and significant correlation with PVT were included in the
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final GLM. The final model utilized by Chandler was

PVT = −0.126FAST + 0.029rawRT + 0.03daRT +−0.242shiftAcc + 0.211SV (1.3.8)

where PVT represents lapses on the PVT, FAST represents predicted performance effective-

ness from the SAFTE model, rawRT represents reaction time on the PVT, daRT represents

divided attention reaction time, shiftAcc represents attention shifting accuracy, and SV rep-

resents saccadic velocity. It was determined that the inclusion of subject-specific measures

increased the model explanatory power form 13.8% to 35.7%.

Additionally, covariates may be included using the Kalman filter (Kay, 2013). The

Kalman filter is the sequential Bayesian MMSE estimator for a discrete time signal embedded

in noise. The estimator is derived by assuming discrete-time evolution of the state of the

system modeled by a linear state transition model embedded in process noise. Process

noise is noise which becomes recursively embedded in a state transition model as a system

updates. The observation model is then embedded in white gaussian noise to create the

observations. The Kalman filter is a sequential estimator, estimating the state at the nth

time point using only the estimate at the n−1th time point along with observations at time

n. Kay (1993) specifies the Kalman filter model as

sss[n] = AAAsss[n− 1] +BBBuuu[n], n ≥ 0

xxx[n] = hhh′[n]sss[n] + w[n]
(1.3.9)

where

uuu[n] ∼ N (000,QQQ), (1.3.10)

sss[−1] ∼ N (µµµs,CCCs) , (1.3.11)

and

w[n] ∼ N
(
0, σ2

n

)
. (1.3.12)

Secondary tasks may be used to help predict primary tasks in such a framework by letting

x[n] represent a vector of secondary tasks at time n, and s[n] represent the primary task

at time n. As we will see in the discussion section, with certain prior assumptions the

Kalman filter can be viewed as the Bayesian MMSE estimator for a special case of the

general linear Bayesian model. For this class of problems, the benefit of solving them under

a Kalman filtering framework is the ability to make estimates sequentially in time in the

most computationally efficient manner.



Chapter 2

Forecasting for Univariate

Linear Models

A demonstration of how to utilize multiple tasks to increase the accuracy of predictions for

a single task requires knowledge of how to assess prediction accuracy. In this chapter we

demonstrate how to obtain the prediction accuracy for a single parameter linear Bayesian

model by deriving the Bayesian MSE for both the MMSE and MAP estimators. This chapter

is then used as a guiding framework to follow as the accuracy of the general linear Bayesian

model obtained in Chapter 3.

The results of this chapter give the accuracy of the MAP and MMSE estimators, as mea-

sured using the Bayesian MSE. For the model considered, the MMSE and MAP estimators

are equivalent, and therefore, so are their corresponding marginal mean squared parameter

and prediction errors. The Bayesian MSE is first obtained by deriving the parameter pos-

terior distribution and using it to obtain the response posterior distribution. We continue

by showing that the parameter and response MMSE and MAP estimators are equivalent,

and the posterior posterior expected squared loss can be taken as the variance of the cor-

responding posterior distribution. Finally, since this result is independent of the data, we

find the Bayesian MSE to be the same as the posterior expected squared loss for this case.

10



CHAPTER 2. FORECASTING FOR UNIVARIATE LINEAR MODELS 11

2.1 Univariate linear Bayesian model of subject means

Model formulation

Suppose that yik is the kth experimental observation for individual i measured at time tk

from performance outcome y. We first consider the model

yyyi = bi + εεεi, (2.1.1)

where yyyi is a vector of mi observed responses for a particular individual. Furthermore, bi is

a random effect used to model the mean response for a particular individual, and is assumed

to arise from a normal distribution with mean µ and variance δ2, both independent of the

individual,

bi ∼ N
(
µ, δ2

)
. (2.1.2)

Lastly, εεεi is a vector of additive measurement errors, which are independently and identically

normally distributed with mean zero and variance σ2,

εεεi ∼ N
(
0, σ2III

)
. (2.1.3)

Posterior parameter distribution

We can explicitly write the prior and conditional distributions as

f (bi) =
1√
2πδ

exp

[
− (bi − µ)

2

2δ2

]
(2.1.4)

and

f (yyyi|bi) =

(
1√
2πσ

)mi
exp

[
−

mi∑
k=1

(yik − bi)2

2σ2

]
. (2.1.5)

The posterior distribution for bi can be obtained using Bayes Theorem:

f (bi|yyyi) =
f (yyyi|bi) f (bi)∫
f (yyyi|bi) f (bi) dbi

= c0f (yyy |bi ) f (bi) , (2.1.6)

where c0 does not depend on bi. Including the exact distributional forms allows us to specify

f (bi|yyyi) = c0 exp

[
−1

2

[
mi∑
k=1

(yik − bi)2

σ2
+

(bi − µ)
2

δ2

]]
. (2.1.7)
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To show that the distribution is normal and determine the mean and variance, we expand

the squares and collect the coefficients of the powers of bi. We determine that

f (bi|yyyi) = c0 exp

[
−1

2

[∑mi
k=1 y

2
ik

σ2
−

2bi
∑mi
k=1 yik
σ2

+
mib

2
i

σ2
+
b2i
δ2
− 2biµ

δ2
+
µ2

δ2

]]
= c0 exp

[
−1

2

[
b2i

[
mi

σ2
+

1

δ2

]
− 2bi

[∑mi
k=1 yik
σ2

+
µ

δ2

]
+

[∑mi
k=1 y

2
ik

σ2
+
µ2

δ2

]]]
.

(2.1.8)

We define the coefficients,

c1 =
mi

σ2
+

1

δ2
, (2.1.9)

c2 =

∑mi
k=1 yik
σ2

+
µ

δ2
, (2.1.10)

c3 =

∑mi
k=1 y

2
ik

σ2
+
µ2

δ2
, (2.1.11)

factor out the coefficient from bi, and complete the square to get the expression into the

form of a normal distribution, from which we can determine the mean and variance. This

is done as

f (bi|yyyi) = c0 exp

[
−1

2

[
b2i c1 − 2bic2 + c3

]]

= c0 exp

−1

2

[
b2i − 2bic2

c1
+ c3

c1

]
c−11



= c0 exp

−1

2

[
b2i − 2bic2

c1
+
(
c2
c1

)2]
+ c3

c1
−
(
c2
c1

)2
c−11


= c0 exp

−1

2

[
bi − c2

c1

]2
c−11

 exp
[
−c4c1

2

]
,

(2.1.12)

where

c4 =
c3
c1
−
(
c2
c1

)2

. (2.1.13)

The last exponential on the right does not depend on bi and we include it in the constant

c0 without changing the notation for c0. Substituting in the coefficients c1, c2, c3 allows us

to determine that

f (bi|yyyi) = c0 exp

−1

2


(
bi −

[∑m
k=1 yik
σ2 + µ

δ2

]
/
[
mi
σ2 + 1

δ2

])2[
mi
σ2 + 1

δ2

]
−1


 , (2.1.14)
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from which it follows that (Kay, 1993, p. 319)

bi|yyyi ∼ N
([∑mi

k=1 yik
σ2

+
µ

δ2

]
/

[
mi

σ2
+

1

δ2

]
,

[
mi

σ2
+

1

δ2

]
−1
)
. (2.1.15)

As we will consider further in Chapter 4, the normality of the posterior distribution does

not generalize to the nonlinear case.

Posterior response distribution

From the posterior distribution for b, we can move to the posterior response distribution for

responses yyy∗ that have yet to be observed. As E[ε] = 0, the mean of the posterior response

distribution will be the same as that of the posterior for b. The variance is computed by

adding the error variance to the posterior variance. The posterior response distribution is

thus,

yyy∗i |yyyi ∼ N
([∑mi

k=1 yik
σ2

+
µ

δ2

]
/

[
mi

σ2
+

1

δ2

]
,

[
mi

σ2
+

1

δ2

]
−1 + σ2

)
. (2.1.16)

Parameter MMSE

As it is our eventual aim to estimate b and, subsequently, the unobserved responses yyy∗, let

us consider two estimation options and assess the accuracy of the estimates. As determined

in Kay (1993, p. 319), the MMSE is found to be simply

b̂Ei = Ebi|yyyi [bi] =

[∑mi
k=1 yik
σ2

+
µ

δ2

]
/

[
mi

σ2
+

1

δ2

]
. (2.1.17)

Parameter MAP

The MAP estimator is defined as

b̂Ai = argmax
bi

[f (bi|yyyi)] . (2.1.18)

Since for this model, the posterior is normal and, thus, achieves a maximal value at the

mean, we find that the MAP and MMSE are equivalent (Kay, 1993, p. 358),

b̂i ≡ b̂Ai = b̂Ei . (2.1.19)

As will be considered in Chapter 4, this property does not, in general, extend to the nonlinear

case.
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Response MMSE

As for bi, the MMSE estimate of unobserved response values yyy∗i can be found from its

relevant posterior, yielding

ŷyyEi = Eyyy∗i |yyyi [yyy∗i ] =

[∑mi
k=1 yik
σ2

+
µ

δ2

]
/

[
mi

σ2
+

1

δ2

]
. (2.1.20)

Since in this case, the mean of the parameter posterior is the same as that of the posterior

response distribution, we find that

ŷyyEi = b̂i. (2.1.21)

This also will not hold in the nonlinear case.

Response MAP

Again as for bi, the MAP estimate for the response will be

ŷyyAi = argmax
bi

[f (yyy∗i |yyyi)] , (2.1.22)

and due to the normality, it is equivalent to the MMSE, or more concisely,

ŷyyi ≡ ŷyyAi = ŷyyEi . (2.1.23)

Parameter MMSE and MAP accuracy

We next consider the accuracy of the estimators, as measured by the posterior expected

squared loss. Using the variance computing formula, we find that

R
[
b̂i

]
= Ebi|yyyi

[(
b̂i − bi

)2]
= Varbi|yyyi

[
b̂i − bi

]
+ Ebi|yyyi

[
b̂i − bi

]2
.

(2.1.24)

Furthermore, we note that since bi|yyyi is normally distributed as given in (2.1.15), it will

have mean b̂i ≡
[∑mi

k=1 yik
σ2 + µ

δ2

]
/
[
mi
σ2 + 1

δ2

]
. Therefore, Ebi|yyyi

[
b̂i − bi

]
= 0. This allows us

to determine that

R
[
b̂i

]
= Varbi|yyyi

[
b̂i − bi

]
. (2.1.25)

Finally, as noted in Kay (1993, p. 320), since b̂i is fixed for yyyi given,

R
[
b̂i

]
= Varbi|yyyi [bi] . (2.1.26)

Therefore the posterior expected squared parameter loss is equivalent to the variance of the

posterior distribution. This result holds true for the nonlinear case.
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Parameter MMSE and MAP accuracy over data

Sometimes, our interest is not in the evaluation of an estimator for a specific dataset, but

instead in the evaluation of an estimator over all datasets generated by a certain modeling

process. To accomplish this, we compute the Bayesian MSE. This can be computed using

iterated expectations as

R̃
[
b̂i

]
= Ebi,yyyi

[(
b̂i − bi

)2]
= Eyyyi

[
Ebi|yyyi

[(
b̂i − bi

)2]]
= Eyyyi

[
Varbi|yyyi [bi]

]
. (2.1.27)

Finally, as shown in Kay (1993, p. 320), since for this model Varbi|yyyi [bi] is independent of

yyyi,

R̃
[
b̂i

]
= Varbi|yyyi [bi] . (2.1.28)

Thus, the Bayesian MSE for the MMSE and MAP estimators is the same as the posterior

expected squared loss. In summary, this comes back to the following ideas: the posterior

is normal, and so the MAP is equal to the MMSE. The MMSE estimator is unbiased, so

the posterior expected squared loss of the MMSE estimator is just the posterior variance.

Finally, the posterior variance does not depend on the data values, but rather, just the

number of data points, and so taking the expectation over yyy has no effect. This result does

not hold in the general nonlinear case, as the variance can depend on the data.

Response MMSE and MAP accuracy

We repeat the same procedure to determine the accuracy of the predictors. Using the

variance computing formula, we find that

R [ŷyyi] = Eyyy∗i |yyyi

[
(ŷyyi − yyy∗i )

2
]

= Varyyy∗i |yyyi [ŷyyi − yyy∗i ] +
(
Eyyy∗i |yyyi [ŷyyi − yyy∗i ]

)2
= Varyyy∗i |yyyi [yyy∗i ] +

(
Ebi|yyyi

[
b̂i − bi − εεεi

])2
= Varyyy∗i |yyyi [yyy∗i ] .

(2.1.29)

Therefore the posterior expected squared prediction loss for the MAP and MMSE estimators

is equivalent to the variance of the posterior response distribution.
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Response MMSE and MAP accuracy over data

Taking the expectation over yyyi, we find that

R̃ [ŷyyi] = Eyyy∗i ,yyyi

[
(ŷyyi − yyy∗i )

2
]

= Eyyyi

[
Eyyy∗i |yyyi

[
(ŷyyi − yyy∗i )

2
]]

= Eyyyi
[
Varyyy∗i |yyyi [yyy∗i ]

]
.

(2.1.30)

Since for this model Varyyy∗i |yyyi [yyy∗i ] is independent of yyyi, we find that

Eyyy∗i |yyyi

[
(ŷyyi − yyy∗i )

2
]

= Varyyy∗i |yyyi [yyy∗i ] . (2.1.31)

Thus, the Bayesian MSE of the MMSE and MAP response estimators is the same as the

posterior expected squared loss for any given dataset.

Summary

For Bayesian forecasting scenarios which can appropriately be explained by the simple model

from this section, (2.1.16) and (2.1.31) can be used to solve for the number of data points

required to obtain a certain level of accuracy. Specifically,

m = σ2

(
R̃−1 − 1

δ2

)
, (2.1.32)

where R̃−1 represents the desired level of risk as measured by the Bayesian MSE.

In this chapter, we have demonstrated how to assess the accuracy of the predictions and

determine the number of data points required to obtain a fixed prediction accuracy for a

single task for the univariate linear Bayesian model of subject means. This chapter will be

used as a guiding framework to follow for future chapters.



Chapter 3

Forecasting for Multivariate

Linear Models

In the previous chapter, we demonstrated how to assess prediction accuracy for the response

MMSE and MAP for a univariate linear Bayesian model with pre-specified priors, given per-

formance data for a single individual on a single task. In this Chapter, we include secondary

tasks and reassess the prediction accuracy on the primary task with such secondary tasks

included. In Section 3.1 we introduce the general linear Bayesian model and demonstrate

how to assess the accuracy of predictions for multiple task variables. This model differs

from that formulated previously not only in allowing for multiple task variables, but also

in that it includes fixed effects and arbitrary design matrices, which for simplicity were not

yet included in the last chapter. In Section 3.2, we consider a special case of this model

which includes only fixed subject means and random subject-specific, task-specific means,

and solve for the accuracy assessment in a manner that reduces the dimensionality of the

required matrix inversion. In Section 3.3 we examine how task variance components (i.e.

the task specific between subject variances, the between subjects correlation, and the error

variance) influence prediction accuracy, in order to enable informed decisions when selecting

particular task variables. We also consider how prediction accuracy depends on primary and

secondary task sample size in Section 3.3 and, in Section 3.4, how to use this information

to minimize the cost of data collection for a desired level of prediction accuracy.

17
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3.1 General linear Bayesian model

Here we formulate the general linear mixed model and demonstrate how to assess the ac-

curacy of predictions, following the framework of the last section. With reference to the

nonlinear cases in chapters to follow, we focus on both MMSE and MAP estimators. Our

results give the Bayesian MSE of the MMSE and MAP, which we find to be equivalent

again.

Let yijk be the kth observation for an individual i measured on performance task j,

where performance tasks range from j = 1, .., s, and nested measurement times range from

k = 1, ..,mij. The total number of measurements for the individual is mi =
∑s
j=1mij. Let

us consider the subject-specific model

yyyi = XXXiβββ +ZZZibbbi + εεεi, (3.1.1)

where βββ is a p×1 vector of effects which are estimated in the population stage of estimation

and do not vary over individual. The remaining terms are subject-specific. XXXi is the

design matrix specifying the relationship between βββ and the response vector, bbbi is a q ×
1 parameter vector, ZZZi is the design matrix specifying a linear relationship between the

Bayesian parameters and the response vector, and εεεi represents the measurement error.

The individual response vector, yyyi, is of length mi and is ordered such that time is varied

first, and task second. To illustrate, for (mi,mi1,mi2) = (2, 2, 3) this would result in the

response vector

yyyi =



yi11

yi12

yi21

yi22

yi23


. (3.1.2)

For model (3.1.1) we make two distributional assumptions. First, we assume a normal

distribution on the random effects,

bbbi ∼∼∼ N (000,DDD), (3.1.3)

where DDD is assumed positive definite. This assumption is made without loss of generality,

since an indefinite model can always be reformulated as a positive-definite model with lower

dimension (Pinheiro & Bates, 2009, p. 58). This distributional assumption allows us to
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write the probability distribution for bbbi as

f (bbbi) =
exp

[
− 1

2bbbi
′′′DDD−1bbbi

]
(2π)q/2|DDD| 12

. (3.1.4)

Secondly, we assume a normal distribution on the errors,

εεεi ∼∼∼ N (000,ΛΛΛi), (3.1.5)

where ΛΛΛiΛΛΛiΛΛΛi is also assumed positive definite. The distribution of the responses given the

random effects is normal:

yyyi|||bbbi ∼ N (XXXiβββ+++ZZZibbbi,ΛΛΛi), (3.1.6)

which implies

f (yyyi|||bbbi) =
exp

[
− 1

2 (yyyi −XXXiβββ−−−ZZZibbbi)′ΛΛΛ−1i (yyyi−−−XXXiβββ−−−ZZZibbbi)
]

(2π)mij/2|ΛΛΛi|
1
2

(3.1.7)

where ΛΛΛi is the symmetric, positive definite correlation matrix for the errors.

The posterior distribution for bbbi can be obtained using Bayes Theorem, from which we

know that

f (bbbi|||yyyi) = c0 · f (yyyi|||bbbi) f (bbbi) , (3.1.8)

where c0 is the normalization constant which does not depend on bbbi. Including the exact

distributional forms allows us to specify

f (bbbi|||yyyi) = c0 exp

[
−1

2

[
(yyyi−−−XXXiβββ−−−ZZZibbbi)′ΛΛΛi−1 (yyyi−−−XXXiβββ−−−ZZZibbbi) + bbbi

′′′DDD−1bbbi
]]
. (3.1.9)

which can be expanded to yield

f (bbbi|||yyyi) = c0 exp

−1

2

 (yyyi−−−XXXiβββ)
′
ΛΛΛi
−1 (yyyi−−−XXXiβββ)− bbbi′′′ZZZi′′′ΛΛΛi−1 (yyyi−−−XXXiβββ)

− (yyyi−−−XXXiβββ)
′
ΛΛΛi
−1ZZZibbbi + bbbi

′′′ZZZi
′′′ΛΛΛi
−1ZZZibbbi +++ bbbi

′′′DDDi
−1bbbi

 .
(3.1.10)

Noting that bbbi
′′′ZZZi
′′′ΛΛΛi
−1 (yyyi−−−XXXiβββ) is a scalar allows us to determine that it is equal to its

transpose

bbbi
′′′ZZZi
′′′ΛΛΛi
−1 (yyyi−−−XXXiβββ) = (yyyi−−−XXXiβββ)

′
ΛΛΛi
−1ZZZibbbi, (3.1.11)

and therefore,

f (bbbi|||yyyi) = c0 exp

−1

2

 (yyyi−−−XXXiβββ)
′
ΛΛΛi
−1 (yyyi−−−XXXiβββ)− 2 (yyyi−−−XXXiβββ)

′
ΛΛΛi
−1ZZZibbbi

+ bbbi
′′′ZZZi
′′′ΛΛΛi
−1ZZZibbbi +++ bbbi

′′′DDDi
−1bbbi

 .
(3.1.12)
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The term (yyyi−−−XXXiβββ)
′
ΛΛΛi
−1 (yyyi−−−XXXiβββ) is constant w.r.t. bbbi and can therefore be absorbed

by the constant c0, so that

f (bbbi|||yyyi) = c0 exp

[
−1

2

[
bbbi
′′′(((ZZZi

′′′ΛΛΛi
−1ZZZi +++DDD−1)))bbbi−−− 2 (yyyi−−−XXXiβββ)

′
ΛΛΛi
−1ZZZibbbi

]]
. (3.1.13)

Using results from Appendix B and noting that since the inverse of a symmetric matrix

is itself symmetric, ΛΛΛi
−1 is symmetric, we find (as noted in Kay (1993, p. 328)) that the

posterior distribution is normal,

f (bbbi|||yyyi) ∼ N
(
β̃ββi, D̃DDi

)
, (3.1.14)

where

β̃ββi = D̃DDiZZZ
′

iΛΛΛi
−1 (yyyi−−−XXXiβββ) (3.1.15)

and

D̃DDi =
(
ZZZi
′′′ΛΛΛi
−1ZZZi +DDD−1

)−1. (3.1.16)

In (3.1.14) we found the distribution of bbbi. However, it is often the case that we are

interested only in those elements of bbbi that will be used in making predictions for certain

tasks. We will assume that the data have been organized so that we wish to predict only

tasks 1...a, a ≤ s. To partition the model, we define a matrix PPP to extract the first qa out

of q rows of a matrix. We let

PPP =
(
IIIqa 000qa×(q−qa)

)
, (3.1.17)

where qa is the number of random effects used to model the first a tasks, and 000q×(q−qa) is

a qa × (q − qa) matrix of zeros. Then the parameters of interest for making predictions are

bbbia = PbPbPbi. Using results from Appendix B, we find that the marginal posterior for bbbia is

normal:

bbbia ∼ N
(
PPPβ̃ββi,PPPD̃DDiP

′P ′P ′
)
, (3.1.18)

where the mean and variance are directly extracted from the first qa rows of β̃ββi, and from

the first qa rows and qa columns of D̃DDi.

From the posterior distribution for bbbia, we can move to the posterior response distribution

for responses yyy∗i that have yet to be observed. We let XXX∗i ,ZZZ
∗
i be the design matrices for yyy∗i .

Then (3.1.1) becomes:

yyy∗i = XXX∗iPβPβPβ+++ZZZ∗i bbbia + εεε∗i , (3.1.19)
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which allows us to determine the expected value and variance as follows:

E [yyy∗i ] = E [X∗i PβPβPβ+++ZZZ∗i bbbia + εεε∗i ]

= E [XXX∗iPβPβPβ] + E [ZZZ∗i bbbia]

= XXX∗iPβPβPβ+++ZZZ∗iE [bbbia]

= XXX∗iPβPβPβ +ZZZ∗iPPPβ̃ββi,

(3.1.20)

Var [yyy∗i ] = Var [XXX∗iPβPβPβ+++ZZZ∗i bbbia + εεε∗i ]

= Var [ZZZ∗i bbbia] + Var [εεε∗i ]

= ZZZ∗iVar [bbbia] (ZZZ∗i )
′
+ ΛΛΛ∗i

= ZZZ∗iPPPD̃DDiP
′P ′P ′(((ZZZ∗i )))

′′′+++ ΛΛΛ∗i .

(3.1.21)

Thus, the posterior distribution for the unobserved responses is

f (yyy∗i |yyyi) ∼ N
(
XXX∗iPPPβββ+++ZZZ∗iPPPβ̃ββi,ZZZ

∗
iPPPD̃DDiP

′P ′P ′(((ZZZ∗i )))
′′′+++ ΛΛΛ∗i

)
. (3.1.22)

Before moving to the estimators, we obtain the joint distribution of (yyy∗i , bbbia|yyyi). The

motivation is that in the non-linear case (to be discussed later), we find that this distribution

is easy to maximize, and we want to obtain the linear case equivalence to f (yyy∗i |yyyi). We first

note that since we have assumed the errors and Bayesian parameters to be normal and

independent of one-another, we know that(
εεε∗i

bbbia

)
∼ N

((
000

PPPβ̃ββi

)
,

(
ΛΛΛ∗i 000

000 PPPβ̃ββi

))
. (3.1.23)

Using results from Appendix B, we can construct the vector of interest through the linear

transformation (
yyy∗i

bbbia

)
=

(
IIImia ZZZ∗i

000a×mia
IIIa

)(
εεε∗i

bbbia

)
+

(
XXX∗iβββ

000a×a

)
. (3.1.24)

We then know that (
yyy∗i

bbbia

)
∼ N (µ,Σµ,Σµ,Σ), (3.1.25)

where

µµµ =

(
IIImia ZZZ∗i

000a×mia
IIIa

)(
ΛΛΛ∗i 000

000 PPPβ̃ββi

)(
IIImia ZZZ∗i

000a×mia
IIIa

)
. (3.1.26)

and

ΣΣΣ =

(
IIImia ZZZ∗i

000a×mia IIIa

)(
ΛΛΛ∗i 000

000 PPPβ̃ββi

)(
IIImia

ZZZ∗i

000a×mia IIIa

)′
. (3.1.27)
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As it is our eventual aim to estimate the parameters or new responses, let us consider

two estimation options and assess the accuracy of the estimates. The Bayesian MMSE

parameter estimate minimizes the squared error loss function, and is found to be simply

b̂bbia ≡ b̂bbEia = PPPβ̃ββi. (3.1.28)

As the distribution is normal, the MAP and MMSE are equal (Kay, 1993, p. 358),

b̂bbAia = b̂bbEia. (3.1.29)

Note also that the MMSE for estimating the full random effects vector would be

b̂bbAi = β̃ββi (3.1.30)

and

b̂bbi ≡ b̂bbAi = b̂bbEi . (3.1.31)

Therefore,

b̂bbia ≡ PPPβ̃ββi = PPPb̂bbi, (3.1.32)

so the estimate of b̂bbia is just the extraction of the first a rows of b̂bbi.

As for bbbia, the MMSE estimate of unobserved response values, yyy∗i , can be found from its the

posterior of yyy∗i ,

ŷyyi ≡ ŷyyEi = XXX∗iPβPβPβ +ZZZ∗iPPPβ̃ββi. (3.1.33)

Since the posterior response distribution is normal,

ŷyyi ≡ ŷyyAi = ŷyyEi . (3.1.34)

Note that

ξ
(
βββ, b̂bbia,xxxi

)
= XXX∗iPβPβPβ +ZZZ∗i b̂bbia

= XXX∗iPβPβPβ +ZZZ∗iPPPβ̃ββi

= ŷyyi,

(3.1.35)

which tells us that the estimator for the posterior response is equal to the model function

evaluated at the estimate for the random effects. Concerning the joint MAP of (yyy∗i , bbbia),

we can determine this by maximizing f (yyy∗i , bbbia|yyyi). Since this distribution is normal, it will

yield a maximum value at(
IIImia

ZZZ∗i

000a×mia IIIa

)(
000

PβPβPβ

)
+

(
XXX∗iPβPβPβ

000a×a

)
=

(
XXX∗iPβPβPβ +ZZZ∗iPPPβ̃ββi

PPPβ̃ββi

)
=

(
ŷyyi

b̂bbia

)
. (3.1.36)
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Therefore, maximizing f (yyy∗i , bbbia|yyyi) will yield the same estimates as separately maximizing

f (yyy∗i |yyyi) and f (bbbia|yyyi).
We next consider the accuracy of the estimator of bbbia, as measured by the expected

squared loss. We define

Ex[g(x)] ≡
∫ ∞
−∞

g(x)f(x)dx, (3.1.37)

where f(x) is the probability distribution function for x, and

Varx[g(x)] ≡ Ex
[
(g(x)− E[g(x)])2

]
. (3.1.38)

The posterior expected squared loss is

R
[
b̂bbia

]
= tr

{
Ebbbia|yyyi

[(
b̂bbia − bbbia

)(
b̂bbia − bbbia

)′]}
. (3.1.39)

Using the standard formula for computing the variance, we have that

R
[
b̂bbia

]
= tr

{
Varbbbia|yyyi

[
b̂bbia − bbbia

]
+ Ebbbia|yyyi

[
b̂bbia − bbbia

]
Ebbbia|yyyi

[
b̂bbia − bbbia

]′}
. (3.1.40)

Noting that

Ebbbia|yyyi

[
b̂bbia − bbbia

]
= Ebbbia|yyyi

[
b̂bbia

]
− Ebbbia|yyyi [bbbia] = b̂bbia − Ebbbia|yyyi [bbbia] = b̂bbia − b̂bbia = 0, (3.1.41)

we find that

R
[
b̂bbia

]
= tr

{
Varbbbia|yyyi

[
b̂bbia − bbbia

]}
= tr

{
Varbbbia|yyyi [bbbia]

}
,

(3.1.42)

since b̂bbia is fixed for yyyi given. Taking the expectation over all datasets and using iterated

expectations we find that:

R̃
[
b̂bbia

]
= tr

{
Ebbbia,yyyi

[(
b̂bbia − bbbia

)(
b̂bbia − bbbia

)′]}
= tr

{
Eyyyi

[
Ebbbia|yyyi

[(
b̂bbia − bbbia

)(
b̂bbia − bbbia

)′]]}
= Eyyyi

[
tr

{
Ebbbia|yyyi

[(
b̂bbia − bbbia

)(
b̂bbia − bbbia

)′]}]
= Eyyyi

[
R
[
b̂bbia

]]
= Eyyyi

[
tr
{

Varbbbia|yyyi [bbbia]
}]

= tr
{
Eyyyi

[
Varbbbia|yyyi [bbbia]

]}
.

(3.1.43)
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Applying (3.1.42) and noting that by (3.1.18) Varbbbia|yyyi [bbbia] is independent of yyy we find that

(as given in Kay (1993, p. 391))

R̃
[
b̂bbia

]
= tr

{
Varbbbia|yyyi [bbbia]

}
= R

[
b̂bbia

]
.

(3.1.44)

Thus, the Bayesian MSE of b̂bbia is the same as the posterior expected squared loss.

We repeat the same procedure to determine the accuracy of the predictors of yyy∗i . Using

the variance computing formula, we find that

R [ŷyyi] = tr
{
Eyyy∗i |yyyi

[
(ŷyyi − yyy∗i ) (ŷyyi − yyy∗i )

′]}
= tr

{
Varyyy∗i |yyyi [ŷyyi − yyy∗i ] + Eyyy∗i |yyyi [ŷyyi − yyy∗i ]Eyyy∗i |yyyi [ŷyyi − yyy∗i ]

′}
.

(3.1.45)

The expectation on the right is zero, since Eyyy∗i |yyyi [yyy∗i ] = XXX∗iPβPβPβ +ZZZ∗iPPPβ̃ββi = ŷyyi. As such,

R [ŷyyi] = tr
{

Varyyy∗i |yyyi [yyy∗i ]
}
. (3.1.46)

Therefore the posterior expected squared loss is equivalent to the trace of the variance of

the posterior response distribution. Taking the expectation over yyyi and using (3.1.46), we

find that

R̃ [ŷyyi] = tr
{
Eyyy∗i ,yyyi

[
(ŷyyi − yyy∗i ) (ŷyyi − yyy∗i )

′]}
= tr

{
Eyyyi

[
Eyyy∗i |yyyi

[
(ŷyyi − yyy∗i )

2
]]}

= Eyyyi

[
tr
{
Eyyy∗i |yyyi

[
(ŷyyi − yyy∗i )

2
]}]

= Eyyyi [R [ŷyyi]]

= Eyyyi
[
tr
{

Varyyy∗i |yyyi [yyy∗i ]
}]
.

(3.1.47)

Since for this model, Varyyy∗i |yyyi [yyy∗i ] is independent of yyyi, we find that

R̃ [ŷyyi] = tr
{

Varyyy∗i |yyyi [yyy∗i ]
}
. (3.1.48)

Thus, the Bayesian MSE ŷyyi is the same as the MSE for any given dataset.

3.2 Multivariate Bayesian model of subject means

In the last section we analytically determined the Bayesian MSE of both the MMSE and

MAP estimators over datasets for the general linear Bayesian model and found that these

expressions require matrix inversion. In certain special cases, the dimensions of the matrix
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that must be inverted can be reduced in size. In this chapter, we consider such a special

case, and reformulate the Bayesian MSE of both the MMSE and MAP estimators with the

reduced size matrix inversion.

The model of subject means can be defined as

yijk = βj + bij + εijk, (3.2.1)

where βj is a fixed effect to differentiate tasks, bij is a random effect for individual i and

task j, and εijk is the additive measurement error, where k indexes time.

To apply the results of Section 3.1 to this model, we specify it as a subset of the General

Linear Multivariate Mixed Model (3.1.1), where we make certain stipulations on the design

and error variance matrices.

We make those stipulations using the direct sum. Such notation is used to describe the regu-

lar structure of the error covariance and design matrices so as to keep algebraic computations

as simple as possible.

The direct sum is defined as a diagonalization of matrices,

n
⊕
j=1

AAAi =


AAA1 000 . . .

000 AAA2
. . .

...
. . .

. . .

 , (3.2.2)

where each of the AAA′is represent a unique matrix of arbitrary dimension. We also use the

notation IIIs to represent the s × s identity matrix, 111mij to represent the mj × 1 vector of

ones,

111mij
=


1

1
...

 . (3.2.3)

The model of subject means is constructed by specifying in (3.1.1) the fixed effects design

matrix, random effects design matrix and covariance matrix as:

XXXi =
s
⊕
j=1

111mij
, (3.2.4)

ZZZi =
s
⊕
j=1

111mij , (3.2.5)

and

ΛΛΛi =
s
⊕
j=1

σ2
jIIImij

. (3.2.6)
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To illustrate the case where s = 2,mi1 = 2,mi2 = 3, the fixed effects, random effects and

error covariance design matrices are constructed as

XXXiXXXiXXXi =
2
⊕
j=1

111mij
=



1 0

1 0

0 1

0 1

0 1


, (3.2.7)

ZZZiZZZiZZZi =
2
⊕
j=1

111mij
=



1 0

1 0

0 1

0 1

0 1


, (3.2.8)

and

ΛΛΛi = ⊕2
j=1σ

2
jIIImij

=



σ2
1 0 0 0 0

0 σ2
1 0 0 0

0 0 σ2
2 0 0

0 0 0 σ2
2 0

0 0 0 0 σ2
2


. (3.2.9)

The full model (3.1.1) then becomes

yi11

yi12

yi21

yi22

yi23


=



1 0

1 0

0 1

0 1

0 1


(
β1

β2

)
+



1 0

1 0

0 1

0 1

0 1


(
bi1

bi2

)
+



εi11

εi12

εi21

εi22

εi23



=



β1

β1

β2

β2

β2


+



bi1

bi1

bi2

bi2

bi2


+



εi11

εi12

εi21

εi22

εi23


.

(3.2.10)

As can be seen from the rows of (3.2.10), model (3.1.1) simplifies to (3.2.1), the usual

form of the Subject Means Model. From (3.1.18) and (3.1.16), we know the posterior

distribution is normal with covariance matrix

PPPD̃DDiP
′P ′P ′ = PPP(((ZZZ ′iZZZ

′
iZZZ
′
iΛΛΛ
−1
i ZZZi +DDD−1)))−1P ′P ′P ′. (3.2.11)



CHAPTER 3. FORECASTING FOR MULTIVARIATE LINEAR MODELS 27

Applying (3.2.4) and (3.2.6), we can write

ZZZi
′′′ΛΛΛ−1i ZZZi =

(
s
⊕
j=1

111mij

)′(
s
⊕
j=1

σ2
jIIImij

)
−1
(

s
⊕
j=1

111mij

)
. (3.2.12)

Using properties from Appendix A yields:

ZZZi
′′′ΛΛΛ−1i ZZZi =

(
s
⊕
j=1

111mij

)′(
s
⊕
j=1

1

σ2
j

IIImij

)(
s
⊕
j=1

111mij

)
(3.2.13)

Using property (A.0.1) allows us to combine the direct sums to find that

ZZZi
′′′ΛΛΛ−1i ZZZi =

s
⊕
j=1

[
111
′

mij

1

σ2
j

IIImij
111mij

]
=

s
⊕
j=1

[
1

σ2
j

111
′

mij
111mij

]
=

s
⊕
j=1

mij

σ2
j

. (3.2.14)

Therefore, we find the posterior variance to be

PPPD̃DDiP
′P ′P ′ = PPP(((

s
⊕
j=1

mij

σ2
j

+DDD−1)))−1P ′P ′P ′. (3.2.15)

Furthermore, the posterior mean is

PPPβ̃ββi = PPPD̃DDiZZZ
′

iΛΛΛi
−1 (yyyi−−−XXXiβββ)

= PPP(((
s
⊕
j=1

mij

σ2
j

+DDD−1)))−1
(

s
⊕
j=1

111mij

)′(
s
⊕
j=1

1

σ2
j

IIImij

)
(yyyi−−−XXXiβββ) .

(3.2.16)

Using results from Appendix B, we find that

PPPβ̃ββi = PPP(((
s
⊕
j=1

mij

σ2
j

+DDD−1)))−1

(
s
⊕
j=1

1

σ2
j

111mij

)′
(yyyi−−−XXXiβββ) . (3.2.17)

In the previous section, determination of the Bayesian MSE of the MMSE and the MAP

required matrix inversion of ΛΛΛi, which had dimensions s ×mij. By analytically computing

the matrix ZZZi
′′′ΛΛΛ−1i ZZZi, we have reduced the maximum size of the matrix inversions required

to s.

3.3 Bivariate Bayesian model of subject means

In Section 3.1, we constructed a general formula for assessing the accuracy of the MMSE and

MAP estimators for a general linear Bayesian model. In Section 3.2, we showed that further

specifying the model to include only fixed subject means and random subject-specific, task-

specific means allowed us to reduce the dimensionality of the matrix inversion required
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to assess the estimator accuracy. In this section, we aim additionally to understand the

relationship between the task variance components and the prediction accuracy.

Comprehending how variance components influence prediction accuracy is difficult for the

multivariate linear Bayesian model with an arbitrary number of task variables. In addition,

analytic minimization of the data collection cost for this model requires optimization of a

matrix system of arbitrary size. To simplify analytical calculations and understanding of

results, we therefore choose to further specify a bivariate version of the multivariate Bayesian

model of subject means before considering the effect of the task variance components and

minimizing the data collection cost.

We restrict the multivariate Bayesian model of subject means in equation (3.2.1) by

mandating that the task subscript j can take on values j = 1, 2, where j = 1 represents the

primary task for which we are interested in enhancing predictions, and j = 2 represents a

secondary task. We now write the primary task extraction matrix as

PPP =
(

1 0
)
. (3.3.1)

Furthermore, we may specify the between-subjects covariance matrix as

DDD =

(
δ21 ρδ1δ2

ρδ1δ2 δ22

)
, (3.3.2)

where ρ represents the correlation between tasks 1 and 2, and δ2j represents the task-specific

variance. Finally, we may specify the the error variance matrix as

ΛΛΛ =
2
⊕
j=1

mij

σ2
j

=

 mi1

σ2
1

0

0 mi2

σ2
2

 , (3.3.3)

where mi1 is the number of observations for an individual on task 1, mi2 is the number of

observations for this individual on task 2, σ2
1 is the error variance associated with task 1,

and σ2
2 is the error variance associated with task 2. An example of the bivariate specification

is given in (3.2.10).

Using (3.2.15) and (3.3.3), we determine the the posterior variance of bbb for the bivariate

linear model of subject means to be

PPPD̃DDiP
′P ′P ′ = PPP(((

2
⊕
j=1

mij

σ2
j

+DDD−1)))−1P ′P ′P ′. (3.3.4)

The inverse of the prior covariance matrix is

DDD−1 =

 1
δ21(1−ρ2)

−ρ
δ1δ2(1−ρ2)

−ρ
δ1δ2(1−ρ2)

1
δ22(1−ρ2)

 . (3.3.5)
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The posterior variance of bbbi1 (3.2.15) simplifies to

PPPD̃DDiP
′P ′P ′ =

(
1 0

) mi1

σ2
1

+ 1
δ21(1−ρ2)

−ρ
δ1δ2(1−ρ2)

−ρ
δ1δ2(1−ρ2)

mi2

σ2
2

+ 1
δ22(1−ρ2)

( 1

0

)
. (3.3.6)

Taking the inverse and multiplying by the matrices PPP and P ′P ′P ′ (defined in (3.1.17)) from left

and right, respectively, to extract the upper left element, we find that the posterior variance

is

PPPD̃DDiP
′P ′P ′ =

mi2

σ2
2

+ 1
δ22(1−ρ2)(

mi1

σ2
1

+ 1
δ21(1−ρ2)

)(
mi2

σ2
2

+ 1
δ22(1−ρ2)

)
− ρ2

δ21δ
2
2(1−ρ2)

2

, (3.3.7)

for 0 ≤ ρ < 1. In the limit as ρ→ 1, this simplifies to

PPPD̃DDiP
′P ′P ′ =

1

mi2
δ22
δ21σ

2
2

+ mi1

σ2
1

+ 1
δ21

. (3.3.8)

In this form it is difficult to compare the accuracy gain from the two tasks. We can refor-

mulate (3.3.7) by working with the precision instead of the variance, which yields certain

intuitive properties. We define the precision η of a random variable zzz as

η(zzz) = Var[zzz]−1. (3.3.9)

It follows that the posterior precision of bbbi1 is

η (bbbi1|yyy) =
(
PPPD̃DDiP

′P ′P ′
)
−1. (3.3.10)

Since PPPD̃DDiP
′P ′P ′ is a scalar, the precision is simply the reciprocal of the variance:

η (bbbi1|yyy) =
1

PPPD̃DDiP
′P ′P ′
. (3.3.11)

We rearrange (3.3.7) (see Appendix C) and show that the posterior precision can be written

as

η =
m1

σ2
1

+
1

δ21
+ λi, (3.3.12)

where

λi =
mi2

ρ2

δ21(1−ρ2)

mi2 +
σ2
2

δ22(1−ρ2)

. (3.3.13)

This formulation is more suitable for interpretation as it readily simplifies to the posterior

precision of a single task (see (2.1.15)) when ρ = 0. It is not difficult to show that the Fisher
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Information for the mean of a normal distribution from which m observations are taken is
m
σ2 , which is the first term in (3.3.12). Next, the precision of the marginal prior

bbbi1 ∼ N
(
0, δ21

)
(3.3.14)

is 1
δ21

, which is the second term in (3.3.12). Finally, the term λ is a component of the

posterior precision that depends on the number of observations from the second task.

As all three terms represent sources of information about bbbi1, and all terms are included

in the posterior precision in the same manner, we will hitherto refer to each of these terms

as sources of information.

As such, we may loosly interpret mi1

σ2
1

to be the information obtained about bbbi1 from the

primary task data, 1
δ21

to be the information obtained about bbbi1 from its marginal prior,

and λ to be the information obtained about bbbi1 from the secondary task data. The total

information gain is the sum of information gained from the primary task, the secondary

task, and the prior.

To obtain a better understanding of the information gain from the secondary task, we

continue by looking at the univariate effects of the sample size and prior covariance terms

on λ.

To show how the information on bbbi1 from yyyi2 is affected by the secondary task sample size,

we define the constants

λmax =
ρ2

δ21 (1− ρ2)
(3.3.15)

and

m̃h =
σ2
2

δ22 (1− ρ2)
, (3.3.16)

so that

λ (mi2) =
mi2λmax

mi2 + m̃h
. (3.3.17)

We find that the information gained through the secondary task is a nonlinear growth

function of the number of data points observed from the task.

The information obtained from the secondary task increases at an approximately con-

stant rate of λmax

m̃h
= ρ2σ2

2
δ22
δ21

per measurement for small values of mi2, it reaches half of its

maximum when mi2 = m̃1/2 and at larger values of mi2 tends asymptotically to a maximum

information content value of λmax. To better understand λmax, we can decompose it as

follows:

λmax =
ρ2

δ21 (1− ρ2)
=

1

δ21 (1− ρ2)
− 1

δ21
. (3.3.18)
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We then note that 1
δ21(1−ρ2)

is the precision of

bbbi1|bbbi2 ∼ N
(
ρ
δ1
δ2
bbbi2, δ

2
1

(
1− ρ2

))
, (3.3.19)

and δ21 is the precision of the marginal prior.

Therefore, we find that the information added by the secondary task is

λmax = η (bbbi1|bbbi2)− η (bbbi1) . (3.3.20)

Now that we have assessed how the information gained from the secondary task depends

on the number of data points, we move to considering how this information is influenced by

the correlation ρ between the primary and secondary tasks. Note that the term ρ always

appears as ρ2 in λi. We may interpret ρ2 as the proportion of the prior variance in the

marginal prior of bbbi1 that can be explained by bbbi2. To see this, note that the variance from

(3.3.19) is the variance in bbbi1 unexplained by bbbi2, and the prior variance can be found in

(3.3.14). The variance that can be explained with bbbi2 can then be computed as

ExplainedVariance = TotalVariance−UnexplainedVariance

= δ21 −
(
1− ρ2

)
δ21

= ρ2δ21 ,

(3.3.21)

and the proportion of the variance that can be explained with bbbi2 is indeed

ExplainedVariance

TotalPriorVariance
=
ρ2δ21
δ21

= ρ2. (3.3.22)

We can rewrite (3.3.13) as

λ
(
ρ2
)

= αmin
ρ2

(1− ρ2) + αmin

αmax

, (3.3.23)

where

αmax =
δ22
δ21

mi2

σ2
2

, (3.3.24)

and

αmin =
1

δ21
. (3.3.25)

Thus, we see that the information is a rational function of the squared correlations. We

can use this function to assess how different levels of correlation between the primary and

secondary task would affect the improvement in the accuracy of the primary task parameter

estimate.
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Next, let us consider how σ2
2 affects the information obtained from the secondary task.

We can rewrite (3.3.13) as

λ
(
σ2
2

)
=

λmax

1 +
σ2
2

γ1

, (3.3.26)

where

γ1 = δ22
(
1− ρ2

)
mi2. (3.3.27)

We find that as the error variance gets small, the information converges to λmax, and when

the error variance gets large, the information converges to 0.

Next, let us consider how δ22 affects the information obtained from the secondary task:

λ
(
δ22
)

= λmax
δ22

δ̃1/2 + δ22
, (3.3.28)

where

δ̃1/2 =
σ2
2

(1− ρ2)mi2
. (3.3.29)

We find that for small values of the prior variance for the secondary task, the information

obtained is approximately linearly proportional to the prior variance, with coefficient

λmax

δ̃1/2
=
ρ2mi2

δ21σ
2
2

. (3.3.30)

As the prior variance for the secondary task goes to zero, the information added by the

secondary task goes to zero, and as the prior variance for the secondary task goes to infinity,

the information added goes to λmax.

Next, let us consider how δ21 affects the information obtained from the secondary task,

λ
(
δ21
)

=
γ2
δ21
, (3.3.31)

where

γ2 =
mi2ρ

2

(1− ρ2)
(
mi2 +

σ2
2

δ22(1−ρ2)

)
.

(3.3.32)

We find that for non-zero mi2, ρ, as the prior variance for bbbi1 gets small, the information

about the primary task from the secondary task goes to∞. As the prior variance gets large,

the information about the primary task from the secondary task goes to zero.

Figure 3.1 summarizes the effect of each of the parameters on the information gained

from the secondary task.

We showed that for the Bayesian bivariate model of subject means, the precision can

be written as the sum of terms related to various sources of information. This property



CHAPTER 3. FORECASTING FOR MULTIVARIATE LINEAR MODELS 33

motivates us to suggest that the precision is an easier and more intuitive measure of accuracy

than the MSE. Using the precision as a measure of accuracy, we obtained an analytic form for

the precision of the Bayesian bivariate model of subject means. We continued by describing

the influence of the number of data points from the secondary task, a result which we

will build on in Section 3.4. To inform the choice of which tasks will result in maximal

information gain for a primary task, we also described the influence of the various task

variance components. In scenarios where a group means model is relevant, these can be

used to quickly choose the task which will be best suited to give increase accuracy.

3.4 Cost minimization for the bivariate linear Bayesian

model of subject means

In Section 3.3 we detailed how the accuracy of the parameter MMSE and MAP estimators

for the primary task depend on the sample sizes for the bivariate Bayesian model of subject

means. We now continue by using this result to minimize the cost of data collection for a

simple example. We consider two tasks which are modeled by the Bayesian bivariate model

of subject means, and assume that each measurement from task 1 costs c1 to collect and

each measurement from task 2 costs c2 to collect, resulting in the total cost of

ct = c1mi1 + c2mi2. (3.4.1)

We then aim to answer the question: how many observations should we measure on the

primary task variable and how many observations should we measure on the secondary task

variable to minimize the total cost, assuming we pursue a fixed precision ηi on the primary

task, where combining equations (3.3.12) and (3.3.17) yields

ηi =
mi1

σ2
1

+
1

δ21
+

mi2λmax

mi2 + m̃h
. (3.4.2)

We can solve for mi1 as follows:

mi1 = σ2
1

(
ηi −

1

δ21
− mi2λmax

mi2 + m̃h

)
. (3.4.3)

Substituting into the cost equation, the total cost is

ct = c1σ
2
1

(
ηi −

1

δ21
− mi2λmax

mi2 + m̃h

)
+ c2mi2. (3.4.4)



CHAPTER 3. FORECASTING FOR MULTIVARIATE LINEAR MODELS 34

0 5 10 15

0
1

2
3

4
5

6

m

λ

λmax

mh

0.0 0.4 0.8

0
10

20
30

40

ρ2

λ

αmin

αmax

0 5 10 15 20

0
1

2
3

4
5

6

σ2
2

λ
γ1

λmax

0.0 1.0 2.0 3.0

0
1

2
3

4
5

δ1
2

λ

γ2

0.0 0.5 1.0 1.5

0
1

2
3

4
5

6

δ2
2

λ

λmax

δh

0 2 4 6 8 10

0
1

2
3

4
5

m

λ

0.0 0.4 0.8

0
10

20
30

40

ρ2

λ

0 2 4 6 8 10

0
1

2
3

4
5

σ2
2

λ

0 2 4 6 8 10

0
5

10
15

20

δ1
2

λ

0 2 4 6 8 10

0
1

2
3

4
5

δ2
2

λ

Figure 3.1: The first row shows an example of the effect of the number of datapoints from

a secondary task (m), the squared correlation between the primary and secondary tasks

(ρ2), the error variance of the secondary task (σ2
2), the between-subjects variance of the

primary task (δ21), and the between-subjects variance of the secondary task (δ22) on the

additional information obtained from the secondary task (λ). The fixed parameter values

are m2 = 10, ρ = 0.75, δ21 = 0.25, δ22 = 1.0, σ2
1 = 1.0, σ2

2 = 1.0. All parameters except the

ones represented on the x-axis are held at their fixed values. The second row shows a range

of effects each of the primary and secondary task variables may have on λ. On the bottom

row from left to right, the first plot shows λ vs. m, where where mh=2.28,0.1,25,2.28 and

λmax=5,5,5,10, the second plot shows λ vs. ρ2, where amin=4,20,4,20 and amax=40,40,4,4,

the third plot shows λ vs. δ21 , where λmax=5,5,1, and γ1=100,4,4, the fourth plot shows,

γ2=2,10, the fifth plot shows, λmax=5,5,5,3, and δh=0.04,0.5,100,0.5.
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To minimize the total cost, we take the derivative of the total cost with respect to mi2

and set it equal to zero,

∂ct
∂mi2

= c1σ
2
1

(
mi2λmax

(mi2 + m̃h)
2 −

λmax

mi2 + m̃h

)
+ c2 = 0. (3.4.5)

We then solve for mi2 to find the number of observations of the secondary task needed to

minimize the cost:

m̂i2 = ±σ1
√
c1
c2
λmaxm̃h − m̃h. (3.4.6)

There are two solutions; the only possible solution is the one for which

m̂i2 = σ1

√
c1
c2
λmaxm̃h − m̃h

= σ1

√
c1
c2

ρ2

δ21 (1− ρ2)

σ2
2

δ22 (1− ρ2)
− σ2

2

δ22 (1− ρ2)

=
σ2

δ1δ22 (1− ρ2)

(√
c1
c2
δ2σ1ρ− δ1σ2

)
.

(3.4.7)

The corresponding number of measurements for the first task is

m̂i1 = σ2
1

(
ηi −

1

δ21
− m̂i2λmax

m̂i2 + m̃h

)

= σ2
1

ηi − 1

δ21
−

σ2

δ1δ22(1−ρ2)

(√
c1
c2
δ2σ1ρ− δ1σ2

)
ρ2

δ21(1−ρ2)

σ2

δ1δ22(1−ρ2)

(√
c1
c2
δ2σ1ρ− δ1σ2

)
+

σ2
2

δ22(1−ρ2)


= σ2

1

ηi − 1

δ21
−

(√
c1
c2
δ2σ1ρ− δ1σ2

)
ρ2

δ21(1−ρ2)(√
c1
c2
δ2σ1ρ− δ1σ2

)
+ δ1σ2


= σ2

1

ηi − 1

δ21
−

(√
c1
c2
δ2σ1ρ− δ1σ2

)
ρ2

δ21(1−ρ2)√
c1
c2
δ2σ1ρ


= σ2

1

ηi − 1

δ21
− ρ2

δ21 (1− ρ2)
+
δ1σ2

ρ2

δ21(1−ρ2)√
c1
c2
δ2σ1ρ


=

(
ηi −

1

δ21 (1− ρ2)

)
σ2
1 +

√
c2ρσ1σ2√

c1δ1δ2 (1− ρ2)
.

(3.4.8)

The optimal sample size on the secondary task will only be greater than zero if

δ1σ2 <

√
c1
c2
δ2σ1ρ, (3.4.9)
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which can be rearranged to read

c2
c1
<
δ22/σ

2
2

δ21/σ
2
1

ρ2. (3.4.10)

The optimal solution for the sample size on the primary task will only be greater than zero

if (
ηi −

1

δ21 (1− ρ2)

)
σ2
1 +

√
c2ρσ1σ2√

c1δ1δ2 (1− ρ2)
> 0, (3.4.11)

which can be rearranged to read

ηi >
1

δ21 (1− ρ2)

(
1− ρ

√
c2
c1

δ1/σ1
δ2/σ2

)
. (3.4.12)

Inequality (3.4.10) tells us whether any measurements from a secondary task will be re-

quired to obtain the fixed accuracy ηi for minimal cost. We find that whether measurements

from the secondary task will be useful is not dependent on the level of accuracy that we

require. If this inequality is not met, then no measurements should be collected from the

primary task, and a total of

m̂i1 = σ2
1ηi −

σ2
1

δ21
(3.4.13)

measurements should be collected from the primary task. Inequality (3.4.12) tells us when

data from the primary task will be needed in obtaining the fixed accuracy ηi for minimal

cost. If this inequality is not met, then no measurements should be collected from the

primary task, and a total of

m̂i2 = m̃h

(
ηi − 1

δ21

)
λmax − ηi − 1

δ21

(3.4.14)

measurements should be collected from the secondary task.

We note that for a given scenario, the optimal sample sizes m̂i1 and m̂i2 will likely not

be integer values. The suggestion we give for such scenarios is to consider values of m̂i2 that

are both rounded down and rounded up. For m̂i2 rounded down, round m̂i1 up and add to

m̂i1 until the desired level of accuracy is met. For m̂i2 rounded up, again round m̂i1 up, but

this time remove from m̂i1 until the desired accuracy is just met. Use the cost equation to

determine the cost of these two scenarios, and choose the scenario that minimizes the cost.



Chapter 4

Forecasting Accuracy for

Nonlinear Models

In this thesis, we have been investigating the individualization of biomathematical models of

performance over multiple task variables. We consider a multivariate Bayesian framework

for combining population information with data on a new individual to make parameter

estimates and performance predictions. In the previous chapter, we demonstrated how

to assess the accuracy of predictions in a general linear Bayesian model for multiple task

variables and showed how to determine which tasks to collect data from to obtain a fixed

accuracy with minimum cost. In order to demonstrate how to utilize multiple tasks to

increase the prediction accuracy for a model that is not necessarily linear, we next consider

the problem of assessing the accuracy of predictions in the nonlinear case.

In Section 4.1, we formulate the general nonlinear Bayesian model, and consider compli-

cations that arise in this case as we apply Bayes rule to determine the posterior distribution.

We show that in general the accuracy in the nonlinear case must be assessed numerically,

and detail a way to do this more quickly via repeated simulation using the MAP estimator

as opposed to the MMSE. In Section 4.2, we apply the suggested accuracy assessment pro-

cedure to a nonlinear model describing performance dynamics over 88 hours of total sleep

deprivation and find that the procedure quickly obtains a reasonable approximation of the

Bayesian mean squared prediction error. Finally, in Section 4.3 we consider analytically

separating classes of nonlinear models by whether or not the accuracy of the MMSE esti-

mator may be reasonably assessed with the MAP estimator. We illustrate this separation

37
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by considering a class of quadratic Bayesian models.

4.1 Nonlinear multivariate Bayesian model

We now extend the general Bayesian linear model (3.1.1) to the general Bayesian nonlinear

model,

yyyi = ξ (φφφi,,,xxxi) + εεεi, (4.1.1)

where the model parameters φφφi are linear functions of the fixed effects βββ and random effects

bbbi,

φφφi = AAAiβββ+++BBBibbbi... (4.1.2)

Furthermore, xxxi is the covariate vector for subject i and ξ is assumed nonlinear with respect

to the model parameters φφφi. As before, we assume that the random effects are normally

distributed,

bbbi ∼ N (0, D0, D0, D), (4.1.3)

which implies

f (bbbi) =
exp

[
− 1

2bbbi
′′′DDD−1bbbi

]
(2π)q/2|DDD| 12

. (4.1.4)

We also assume that the errors are normally distributed,

εεεi ∼ N (000,,,ΛΛΛi) , (4.1.5)

from which we find

yyyi|||bbbi ∼ N (ξ(AAAiβββ+++BBBibbbi,,,xxxi),ΛΛΛi), (4.1.6)

which implies

f (yyyi|||bbbi) =
exp

[
− 1

2 (yyyi − ξ (AAAiβββ+++BBBibbbi,,,xxxi))
′
ΛΛΛ−1i (yyyi − ξ (AAAiβββ+++BBBibbbi,,,xxxi))

]
(2π)mij/2|ΛΛΛi|||

1
2

. (4.1.7)

Following of Bayes Theorem, the prior and conditional distributions are multiplied to specify

the posterior up to a constant c0,

f(b|yb|yb|y) = c0 exp

[
−1

2

[
(yyyi − ξ (AAAiβββ+++BBBibbbi,,,xxxi))

′
ΛΛΛ−1i (yyyi − ξ (AAAiβββ+++BBBibbbi,,,xxxi)) + bbbi

′′′DDD−1i bbbi
]]
.

(4.1.8)

In the linear case we were able to show that the exponential term in the posterior (3.1.9)

was quadratic in bbbi, and hence, normal. In the nonlinear case, the exponential term will
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generally not be quadratic, and hence the posterior will not be normal. Specific nonlinear

cases may result in distributional forms that exhibit normal conjugacy; however, without

further specification of the model, we are not able in general to make such determination.

Therefore, we are generally unable to analytically compute the normalizing constant required

to specify the posterior distribution and obtain the MMSE estimator (Kay, 1994, p. 317).

Analytical derivation of the MAP also depends on the specific nonlinear function, and

in general will not have a closed form. In all cases, however, we can obtain the MAP and

MMSE estimates numerically.

The MMSE estimate can be obtained by first using the Metropolis algorithm to obtain

samples from f (bbbi|||yyyi), and then averaging the samples. Subsequently, a sample from the

posterior response may be constructed by simulating measurement errors εεε from (4.1.5) and

evaluating (4.1.1) for each sample of bbbi. The response MMSE can then be obtained by

taking the mean of yyy∗i over samples. For more information on

We may compute the MAP estimate of bbb as

b̂bbi = argmin
bbbi

[
(yyyi − ξ (AAAiβββ+++BBBibbbi,,,xxxi))

′
ΛΛΛ−1i (yyyi − ξ (AAAiβββ+++BBBibbbi,,,xxxi)) + bbbi

′′′DDD−1bbbi
]
, (4.1.9)

which is straight forward to compute with the Gauss-Newton algorithm. Note that b̂bbi is the

maximum of the joint posterior for all bbbi and should be differentiated from b̂bbia, the maximum

of the marginal posterior for only the parameters associated with the primary task. As a

result of the normality of b|yb|yb|y, the MAP estimate of bbbia may be easily obtained in the linear

case by extracting the first a parameters of b̂bbi. In the nonlinear case, b̂bbia cannot necessarily

be extracted from b̂bbi. In general, obtaining b̂bbia requires numerical integration, in which case

we may as well obtain the more accurate MMSE estimate. Concerning the response, we

can obtain the joint MAP of (yyy∗i |bbbi) by first using the definition of conditional probability

(B.0.3) to show that

f (yyy∗i , bbbi|||yyyi) = f (yyy∗i |bbbi) f (bbbi|||yyyi) . (4.1.10)

In the linear case, both f (yyy∗i |bbbi) and f (bbbi|||yyyi) are normal, and so by normal conjugacy,

f (yyy∗i , bbbi|||yyyi) will be jointly normal. As a result, the MAP of yyy∗i can be obtained as a partition

of the MAP of (yyy∗i , bbbi). In the nonlinear case, we again cannot construct the MAP of yyy∗i

without the use of a numerical integration technique. However; we can obtain the joint MAP

of (yyy∗i , bbbi) without numerical integration. Obtaining this MAP requires that the partial

derivatives with respect to yyy∗i and bbbi will be zero at the maxima. We take the derivative of
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−2 log f (yyy∗i , bbbi|||yyyi) as

∂ [−2 log f (yyy∗i , bbbi|||yyyi)]
∂yyy∗i

=
∂ [−2 log [f (yyy∗i |bbbi) f (bbbi|||yyyi)]]

∂yyy∗i

=
∂ [−2 log f (yyy∗i |bbbi)]

∂yyy∗i
− ∂ [−2 log f (bbbi|||yyyi)]

∂yyy∗i

=
∂ [−2 log f (yyy∗i |bbbi)]

∂yyy∗i

= −2
∂

∂yyy∗i

− 1

2
(yyy∗i − ξ (AAA∗iβββ+++BBB∗i bbbi,,,xxx

∗
i ))
′

ΛΛΛ−1i (yyyi − ξ (AAA∗iβββ+++BBB∗i bbbi,,,xxx
∗
i ))− log

[
(2π)mij/2|ΛΛΛ∗i |||

1
2

]


=
∂

∂yyy∗i

[
(yyy∗i − ξ (AAA∗iβββ+++BBB∗i bbbi,,,xxx

∗
i ))
′
ΛΛΛ−1i (yyy∗i − ξ (AAA∗iβββ+++BBB∗i bbbi,,,xxx

∗
i ))
]

= (yyy∗i − ξ (AAA∗iβββ+++BBB∗i bbbi,xxx
∗
i ))
′
ΛΛΛ∗−1i .

(4.1.11)

Setting the derivative of the joint posterior to zero and solving for yyyi, we obtain the MAP

estimate as

ŷyyi = ξ
(
AAA∗iβββ+++BBB∗i b̂bbi,xxx

∗
i

)
, (4.1.12)

where b̂bbi is the MAP of bbbi. Stated plainly, the joint MAP of the parameters and response

may be obtained by applying the model function to the parameter MAP. Note again that

this is not the MAP of yyy∗i alone, which would require numerical integration.

For the nonlinear Bayesian model, we propose that the accuracy of the MAP and MMSE

may be assessed by repeatedly simulating data from the model. For this simulation, we would

first choose values forDDD, βββ, and each xxxi,AAAi,BBBi, and ΛΛΛi. Furthermore, we would also specify

the prediction scenario by specifying xxx∗i , AAA
∗
i , BBB

∗
i , and ΛΛΛ∗i . For simplicity, we would usually

assume the same design for each individual xxx1 = xxx2 = . . ., AAA1 = AAA2 = . . ., BBB1 = BBB2 = . . .,

and ΛΛΛ1 = ΛΛΛ2 = . . ., and similarily assume the same design over individuals for the predictions

scenario. We would then repeatedly simulate individual parameter vectors φφφi from (4.1.3).

Applying the model function (4.1.1) to the simulated model parameters and simulating

errors εεεi from (4.1.5) for each individual, we would produce simulated responses yyyi. With

these responses, we would make use of the Gauss-Newton algorithm to obtain the joint

parameter MAP, and use the model function (this time using xxx∗i , AAA
∗
i , BBB

∗
i ) to construct the

responses at the parameter MAP. Furthermore, we would use the Metropolis algorithm to

obtain a sample from the posterior distribution, and apply the model function (using xxx∗i ,

AAA∗i , BBB
∗
i ) to each sample and again simulate measurement error (using ΛΛΛ∗i ) to obtain the
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posterior response distribution. As mentioned, taking the mean of the posterior response

distribution yields MMSE estimates. Repeating this procedure results in a distribution of

MAP and MMSE estimates. We can then take the sample MSE to estimate the Bayesian

MSE for each of the estimators.

Unlike the general linear Bayesian model of Section 3.1, the non-normality of the pos-

terior in the case of the nonlinear Bayesian model may result in unequal MAP and MMSE

estimators. Furthermore, the accuracies of these estimators may be different. In fact, in

Section 4.3, we consider a special case of the quadratic Bayesian model for which we show,

via analytic approximation, that both the estimators and their accuracies differ.

For most nonlinear modeling scenarios, however, it is difficult to find a simple approxima-

tion which makes the posterior distribution analytically computable. For a single parameter

model, when the model is nearly linear over the entire parameter region where the likelihood

is moderate, we may approximate the model as linear around a single parameter value. Such

approximation moves us to the realm of the general Bayesian linear model, where the MAP

and MMSE and their accuracies are equal. Note that if we make this linear approxima-

tion when it is not justified, we will be led to believe that the MAP and MMSE and their

accuracies are equal, when indeed, they may be quite different. Still, to reduce the time re-

quired for the accuracy simulations by an order of magnitude, we hypothesize that in many

modeling scenarios, the accuracy of the MMSE may be assessed by repeated simulation of

the MAP estimator. In the next section, we present a numerical example to motivate the

approximation of the MMSE with the MAP.

4.2 Nonlinear accuracy assessment simulation

In the last section, we reviewed differences in assessing the accuracy of predictions for

linear and nonlinear models, brought up computational time issues with the assessment

in nonlinear models, and proposed an alternative method for quicker estimation. In this

section, we consider an application where the assessment of the response MMSE accuracy

using the response MAP estimator is quicker than such assessment using the response MMSE

estimator.

The application is based on a total sleep deprivation study described in Van Dongen

et al., (2003) where subjects’ cognitive performance was measured on the psychomotor

vigilance task (PVT) every two hours over 88 hours of total sleep deprivation. Van Dongen

et al. (2007) used subjects’ performance on the PVT to estimate model parameters for an

individualizable version of the waking portion of the model of Borbély (1982). The original
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version contains a sum of sinusoids which, for the sake of simplicity and without noteably

changing the model, we replace with a single sinusoid. The modified model is written as

yij = ξi exp (−ρi (tij − ti0)) + γi sin

(
2π

(
tij − φi
τ

))
+ κi + εij, (4.2.1)

where τ is the circadian period, ρi is the subject-specific homeostatic build-up rate constant,

γi is the subject-specific circadian amplitude, κi is the subject specific basal performance

level, ξi is the initial homeostatic state, φi is the initial circadian phase, tij represents the

jth measurement time, ti0 represents the initial time, and εij represents the jth measurement

error. The random effects terms are assumed to follow normal and lognormal distributions,

ρi ∼ Log−N
(
ln (ρ0) , ψ2

)
,

γi ∼ Log−N
(
ln (γ0) , ω2

)
,

κi ∼ N
(
κ0, χ

2
)
.

(4.2.2)

Also, the error is assumed to be normal,

εij ∼ N
(
0, σ2

)
. (4.2.3)

Van Dongen et al. (2007) estimated the population parameters as:

ρ0 = 0.0350, γ0 = 4.30, κ0 = 29.7, ξ0 = −28.0, φ0 = 0.600, ψ2 = 1.15, ω2 = 0.294, χ2 = 36.2,

σ2 = 77.6.

(4.2.4)

Here we simulate performance on the PVT for 5000 hypothetical individuals every two hours

over the 88 hours of wakefulness. For each individual we obtain the MAP and MMSE esti-

mates using the first 22 data points. The joint MAP estimate for the parameters ρ, γ, and

κ is obtained using a Newton-type algorithm to maximize the posterior distribution. The

MMSE estimates are determined by first obtaining a sample from the parameter posterior

density with the Metropolis algorithm. A sample from the response posterior is then ob-

tained by evaluating the model at the simulated parameter values and simulating the errors

to produce the response vector. Simulated and estimated response values are shown for a

single individual in Figure 4.1 (a).

Calculation of all 5000 response MAP estimates took 6 minutes, whereas the correspond-

ing calculations for the MMSE estimates took 433 minutes, or 76 times as long. The MSE

was calculated using the remaining the last 22 data points for each simulated individual. A

histogram of the MSE around the MMSE estimates and a similar histogram for the MAP
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estimates are shown in Figure 4.1 (b). The estimated marginal MSE for the MAP estimate

was 95.8±0.5, whereas the estimated marginal MSE for the MMSE estimate was 94.1±0.5,

where the term after the ± represents the standard error in the mean. Therefore, we es-

timate that in this case, there was a 1.8 percent error in estimating the accuracy of the

MMSE accrued by using the accuracy of the MAP. Deeming this to be a reasonably small

estimation error, we conclude that for this modeling scenario, the MAP estimator accuracy

can reasonably be used to approximate the MMSE estimator accuracy.

This scenario, however, represents only a particular case for which a large number of

observations were used to obtain the posterior distribution, and we suggest this to be the

reason why the Bayesian MSE for the MAP and MMSE were approximately equal. In

general, as the amount of data collected increases the width of the posterior distribution

will decrease. As the width decreases, a linear approximation of the model to construct the

posterior distribution becomes increasingly accurate. Such a linear approximation will result

in a normal posterior distribution for which the MMSE and MAP will be approximately

equal.

Much of the consideration in this thesis concerns including information from a secondary

task. As we saw when considering the bivariate linear Bayesian model of subject means,

the secondary task only has a significantly large effect on the prediction accuracy when the

number of data points from the primary task is small. When considering the nonlinear case,

as more data are collected on the primary task, additional data collected on the secondary

task contribute progressively less to improving parameter estimates for the primary task.

A substantial need for the inclusion of a secondary task will only occur when data from

the primary task is sparse. To consider whether the Bayesian MSE of the MMSE could

reasonably be assessed by the MAP under such low data scenarios, further simulations of

the model of Borbély (1982) with less data points per individual than that used in Section

4.2 were conducted. Specifically, we assumed two measurements were collected on the

primary task at 0 and 2 hours after the start of the total sleep deprivation period, and

two measurements were collected on the secondary task at 24 and 26 hours. We used this

data to make predictions at 48 and 50 hours after the start of the sleep deprivation period,

and compared the predictions to the simulated responses. The estimated Bayesian MSE of

the MMSE estimator was 109 ± 7 and the estimated Bayesian MSE of the MAP estimator

was 149 ± 10. When the simulation was repeated with the secondary task measurements

removed, the estimated Bayesian MSE of the MMSE estimator was 101 ± 7 and the Bayesian

MSE of the MAP was 159 ± 12. The results suggest that nonlinear modeling scenarios with

less data are less likely to yield approximately equal MAP and MMSE accuracies with or
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without secondary task measurements.

4.3 Univariate quadratic Bayesian model

In the previous section, we showed an example in which it was reasonable to approximate

the accuracy of the MMSE estimator via repeated simulation using the MAP estimator. As

we change the model, the number and timing of the observed and predicted data points, and

the prior distributions, we would need to repeat these time consuming simulations to ensure

that the approximate accuracy was reasonable. In an attempt to address this issue, we may

identify classes of nonlinear modeling scenarios where the approximation is justified. We

begin by considering a class of Bayesian nonlinear modeling scenarios where the conditional

distribution consists of a number of distinct, high and narrow peaks on a background of low

likelihood.

We consider a simple case of this class where individual responses are modeled by a

quadratic function of a single parameter, and where the error variance is small and the prior

variance is large in comparison to the distance between peaks of the conditional distribution.

Given a single, observed data point, the conditional distribution consists of two high narrow

peaks that occur at values of the parameter where the model intersects the data point. We

analytically assess the accuracy of both the MMSE and MAP estimators and evaluate how

well the accuracy of the latter approximates that of the former by considering the ratio of

the two accuracies.

We begin this section by formulating the quadratic model, and then detail our method

of assessing the accuracy. We next show that the application of Bayes rule to assess the

accuracy leads to an intractable integral. To remedy this, we approximate the quadratic

model by a linear model at the two peaks of the conditional distribution, allowing us to

compute the posterior integral using conjugate normality. We next use the posterior to

obtain the MMSE and MAP estimators, and compute the posterior expected squared loss

for each estimator given the data. Finally, we compute the Bayesian MSE for each estimator

and determine the ratio of the accuracies.

Model formulation

Let us specify a scalar model

y = ξ(φ) + ε, (4.3.1)
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Figure 4.1: (a) Hypothetical PVT responses for a single individual from the parameterized

model given in Van Dongen et al. [2007]. MMSE and MAP predictors of performance are

determined numerically from the simulated data and plotted (dotted lines) and compared

with the response that is obtained from the individual’s true parameters (solid line). (b)

Frequency plots for the MSE of the MAP and MMSE estimators across a simulation of 5000

individuals.
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where

ξ(φ) = φ+ υφ2. (4.3.2)

Without loss of generality, we assume that the constant υ is positive. This model has a

minimum value of

y = ξmin ≡ −
1

4υ
(4.3.3)

which occurs at

φ = φmin ≡ −
1

2υ
. (4.3.4)

We assume that

φ ∼ N
(
µ, δ2

)
(4.3.5)

and

ε ∼ N
(
0, σ2

)
. (4.3.6)

The assumption of a quadratic model will result in a conditional distribution with two peaks

in the case that the observed data point y > ξmin (See figure 4.2.) We also assume that the

distance between the two peaks is much greater than the width of each peak and that the

width of the prior distribution is much greater than the width of each peak as formalized

later in (4.3.16).

Intractable integral in computing the posterior distribution

To obtain the Bayesian MSE ratio, we must (a) obtain R
[
φ̂A
]

and R
[
φ̂E
]
, (b) obtain

R̃
[
φ̂A
]

and R̃
[
φ̂E
]
, and finally (c) obtain P̃

[
φ̂A, φ̂E

]
. Analytical derivation of R

[
φ̂A
]

and R
[
φ̂E
]

requires computation of an integral containing the posterior distribution fφ|y.

As discussed in Section 4.1, we cannot analytically compute the normalization constant of

the posterior distribution for an arbitrary nonlinear function (4.3.2). We show here that

this remains the case when we specify that nonlinear function to be a quadratic function.

The posterior distribution fφ|y is found using Bayes Theorem,

fφ|y =
fy|φfφ

fy
=

fy|φfφ
∞∫
−∞

fy|φfφdφ

, (4.3.7)
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where fy represents the marginal distribution of y. It follows from (4.3.6) that the condi-

tional distribution of the data point given the parameter is

fy|φ =
1√
2πσ

e−
(y−(φ+υφ2))

2

2σ2 , (4.3.8)

and additionally from (4.3.5) that the prior distribution of φ is

fφ =
1√
2πδ

e−
(φ−µ)2

2δ2 . (4.3.9)

The integral in (4.3.7) can therefore be written as

fy =

∞∫
−∞

fy|φfφdφ =
1

2πσδ

∞∫
−∞

e−
(y−(φ+υφ2))

2

2σ2
− (φ−µ)2

2δ2 dφ, (4.3.10)

where the integral contains a quartic polynomial function of φ, and in general does not have

a closed form solution.

Peak-specific conditional approximation

One solution to the integration problem is to construct a linear approximation to the model

function around the two peaks of the conditional distribution, which we will refer to as φ`

and φr , where φ` < φr . The modes of the likelihood are found by setting the residual error

to zero, (
y −

(
φ+ υφ2

))2
= 0, (4.3.11)

and solving for φ. The solutions are

φ` = − 1

2υ
−

√
y − −14υ√
v

= φmin −
√
y − ξmin√

v
(4.3.12)

and

φr = − 1

2υ
+

√
y − −14υ√
v

= φmin +

√
y − ξmin√

v
. (4.3.13)

Let us define ξ̃x(φ) to represent the Taylor series expansion of ξ(φ) around one of the modes

of the likelihood φx ∈ {φ`, φr} , truncated at first term:

ξx(φ) ≈ ξ̃x(φ) ≡ ξ (φx) + ξ′ (φx) (φ− φx) , (4.3.14)

We define f̃xy|φ to represent the corresponding mode-specific first-order approximation to

the conditional distribution, also referred to as Laplace’s approximation, where the tilde is
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Figure 4.2: Bayesian forecasting example for the model y = φ + 0.005φ2 + ε, where φ ∼
N
(
−90, 1002

)
, ε ∼ N

(
0, 12

)
, and a single data point is observed as y = −40. Parameter

values were selected to be consistent with the constraint set of (4.3.16). (a) The solid line

represents the quadratic model in φ-space, and the dashed line represents the value of a single

observed data point y. The vertex is located at φmin = −1
2υ = −100 and ξ(φ) = −1

4υ = −50.

The values φ` ≈ 145 and φr ≈ −55 represent the values of φ where the model intersects

with the value of the single data point. (b) Plot of the likelihood, where greater likelihood

is shown with darker colors, for different values of y and φ. This plot focuses on the region

near the vertex in (a). (c) Plots of the likelihood (shown on the right side axis) vs. φ for

different values of y (shown on the left side axis).
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used to denote that it is approximating the distribution, the superscript is representative

of the neighborhood in which we assume φ to lie (left or right mode), and the subscript

identifies the probability distribution being approximated. The conditional approximation

can be written as

f̃xy|φ =
1√
2πσ

e
−(y−ξ̃x(φ))2

2σ2

=
1√
2πσ

e
−(y−ξ(φx)−ξ′(φx)(φ−φx))2

2σ2

=
1√
2πσ

e
−(ξ′(φx)(φ−φx))2

2σ2

=
1√
2πσ

e

−(φ−φx)2

2

(
σ

ξ′(φx)

)2
.

(4.3.15)

Each peak of the conditional distribution has standard deviation
∣∣∣ σ
ξ′(φx)

∣∣∣, where ξ′ (φx)

represents the derivative of the model function evaluated at φx ∈ {φ`, φr}. Due to the

exponential decrease, the kernel of the conditional distribution is only of significance in a

region of size α
∣∣∣ σ
ξ′(φx)

∣∣∣ around φx, where α is some constant of moderate size. Outside

of this region, we can approximate the kernel of the conditional distribution by zero. The

conditional approximation will be valid when the approximations of the conditional distri-

butions do not overlap. This will occur when the distance between the two mode specific

approximations is much smaller than the distance between the two modes, or(
σ

ξ′ (φx)

)2

� (φr − φ`)2 . (4.3.16)

Under this condition, we may reasonably approximate the conditional distribution as

fy|φ ≈ f̃ `y|φ + f̃ ry|φ. (4.3.17)

Approximating the posterior distribution

Our method of approximating the conditional distribution allows us to now formulate the

posterior distribution with analytically computable integrals. Substituting (4.3.17) into

(4.3.7), seperating fractions, and multiplying and dividing by
∞∫
−∞

f̃ `y|φfφdφ and
∞∫
−∞

f̃ ry|φfφdφ,
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respectively, results in

fφ|y =
fy|φfφ

fy

=
fy|φfφ

∞∫
−∞

fy|φfφdφ

≈

(
f̃ `y|φ + f̃ ry|φ

)
fφ

∞∫
−∞

(
f̃ `y|φ + f̃ ry|φ

)
fφdφ

=
f̃ `y|φfφ

∞∫
−∞

(
f̃ `y|φ + f̃ ry|φ

)
fφdφ

+
f̃ ry|φfφ

∞∫
−∞

(
f̃ `y|φ + f̃ ry|φ

)
fφdφ

=

∞∫
−∞

f̃ `y|φfφdφ

∞∫
−∞

f̃ `y|φfφdφ+
∞∫
−∞

f̃ ry|φfφdφ

f̃ `y|φfφ
∞∫
−∞

f̃ `y|φfφdφ

+

∞∫
−∞

f̃ ry|φfφdφ

∞∫
−∞

f̃ `y|φfφdφ+
∞∫
−∞

f̃ ry|φfφdφ

f̃ ry|φfφ
∞∫
−∞

f̃ ry|φfφdφ

.

(4.3.18)

We define

f̃xy ≡
∞∫
−∞

f̃xy|φfφdφ, (4.3.19)

so that

f̃y = f̃ `y + f̃ ry . (4.3.20)

In addition, we define f̃xφ|y to be the approximate posterior probability of φ given the value

of y and assuming that φ is in the neighborhood of φx, and note that it can be written as

f̃xφ|y =
f̃xy|φfφ

∞∫
−∞

f̃xy|φfφdφ

. (4.3.21)

We then substitute f̃xφ|y into (4.3.18) to obtain an analytically computable formula to ap-

proximate the posterior distribution,

fφ|y ≈
f̃ `y

f̃ `y + f̃ ry
f̃ `φ|y +

f̃ ry

f̃ `y + f̃ ry
f̃ rφ|y. (4.3.22)
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We then simplify the notation by defining the notations

p` ≡
f̃ `y

f̃ `y + f̃ ry
(4.3.23)

and

pr ≡
f̃ ry

f̃ `y + f̃ ry
. (4.3.24)

We also find that

f̃ `y

f̃ `y + f̃ ry
=

e
−(φ`−µ)

2

2δ2

e
−(φ`−µ)

2

2δ2 + e
−(φr−µ)2

2δ2

(4.3.25)

and

f̃ ry

f̃ `y + f̃ ry
=

e
−(φr−µ)2

2δ2

e
−(φ`−µ)

2

2δ2 + e
−(φr−µ)2

2δ2

. (4.3.26)

To evaluate (4.3.22), we compute the integral from (4.3.19) using Equation (D.0.9) to be

f̃xy =

∞∫
−∞

f̃xy|φfφdφ

=

∞∫
−∞

1√
2πσ

e

−(φ−φx)2

2

(
σ

ξ′(φx)

)2 1√
2πδ

e
−(φ−µ)2

2δ2 dφ

=
1

2πσδ

∞∫
−∞

e

−(φ−φx)2

2

(
σ

ξ′(φx)

)2− (φ−µ)2

2δ2

dφ

=
1

2πσδ

∞∫
−∞

e

−
[
δ2(φ−φx)2+

((
σ

ξ′(φx)

)2
(φ−µ)2

)]

2

[
σ

ξ′(φx)

]2
δ2

dφ

=
1

2πσδ

∞∫
−∞

e

−φ2
(
δ2+

[
σ

ξ′(φx)

]2)
+2φ

[
δ2φx+

(
σ

ξ′(φx)

)2
µ

]
−δ2φ2x−

(
σ

ξ′(φx)

)2
µ2

2

(
σ

ξ′(φx)

)2
δ2

dφ

=
e
−

(
ξ
′
x

)2
(φr−µ)2

2

(
δ2(ξ′x)

2
+σ2

)

√
2πδ

√
1
δ2 +

(ξ′x)
2

σ2 σ

.

(4.3.27)

Further, we evaluate fφ|y under the conditions of (4.3.16), by determining the value of
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f̃xy in the limit as σ → 0 to be

f̃xy ≈
e−

(φx−µ)2

2δ2

√
2πδ |1 + 2υφx|

. (4.3.28)

We have thus used the approximate conditional distribution to obtain an approximation for

the parameter posterior distribution in (4.3.22). We can now use the posterior distribution

to obtain the parameter MMSE and MAP estimators.

Parameter MMSE estimator

With the posterior distribution now determined, we continue towards approximating the

Bayesian mean squared parameter error ratio P̃
[
φ̂A, φ̂E

]
by first computing the estimator

φ̂E , which is necessary to obtain R
[
φ̂E
]
. Since we will need to compute additional integrals

containing fφ|y in this chapter, we first make the following general determination. Let us

define

Exφ|y[g(φ)] ≡
∞∫
−∞

g(φ)f̃xφ|ydφ (4.3.29)

and

Varxφ|y[φ] ≡
∞∫
−∞

(
g(φ)− Exφ|y[g(φ)]

)2
f̃xφ|ydφ. (4.3.30)

We find that the expectation of an arbitrary function of φ w.r.t. the distribution fφ|y can

be approximated by a weighted sum of expectations,

Eφ|y[g(φ)] ≈
∞∫
−∞

g(φ)
(
p`f̃

`
φ|y + pr f̃

r
φ|y

)
dφ

= p`

∞∫
−∞

g(φ)f̃ `φ|ydφ+ pr

∞∫
−∞

g(φ)f̃ rφ|ydφ

= p`E
`
φ|y[g(φ)] + prE

r
φ|y[g(φ)].

(4.3.31)

To compute an analytic approximation for φ̂E , we use (4.3.31) with g(φ) = φ to obtain

φ̂E ≈ p`E`φ|y[φ] + prE
r
φ|y[φ]. (4.3.32)

To determine E`φ|y[φ] and Er
φ|y[φ], we use Appendix D, Theorem (??) to find that

Exφ|y[φ] =

(
y
σ2 +

ξ′(φx)µ−υφ2
x

(aδ)2

)(
1
σ2 + 1

(aδ)2

)−1
− υφ2x

ξ′ (φx)
. (4.3.33)
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Applying (4.3.33) under the conditions of (4.3.16), we can approximate E`φ|y[φ] and Er
φ|y[φ]

by taking the limit as σ → 0, resulting in

E`φ|y[φ] ≈ y + υφ2`
ξ′ (φ`)

= −1 + 4yυ +
√

1 + 4yυ

2υ
√

1 + 4yυ

= −1 + ξ
′

r

2υ

= − 1

2υ
− ξ

′

r

2υ

= φmin −
√

1 + 4yυ

2υ

= φmin −

√
1
4υ + y
√
υ

= φmin −
√
y − ξmin√

v

= φ`

(4.3.34)

and

Er
φ|y[φ] ≈ y + υφ2r

ξ′ (φr )

=
1 + 4yυ −

√
1 + 4yυ

2υ
√

1 + 4yυ

= −1− ξ′r
2υ

= − 1

2υ
+
ξ
′

r

2υ

= φmin +

√
1 + 4yυ

2υ

= φmin +

√
1
4υ + y
√
υ

= φmin +

√
y − ξmin√

v

= φr .

(4.3.35)
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Therefore, the MMSE can be approximated as

φ̂E ≈ p`φ` + prφr

=
e
−(φ`−µ)

2

2δ2 φ` + e
−(φr−µ)2

2δ2 φr

e
−(φ`−µ)

2

2δ2 + e
−(φr−µ)2

2δ2

.
(4.3.36)

Parameter MAP estimator

Substituting fy|φ from (4.3.7) into the definition of the parameter MAP (1.2.5), we find that

φ̂A = argmax
φ

 fy|φfφ
∞∫
−∞

fy|φfφdφ

 . (4.3.37)

Using the knowledge that the kernels described by fy|φ are seperate (i.e., for a particular

value of φ, either f̃ `y|φ ≈ 0 or f̃ ry|φ ≈ 0), we determine that the parameter MAP will be the

mean of either the left or right kernel,

φ̂A ≈ E`φ|y (4.3.38)

or

φ̂A ≈ Er
φ|y. (4.3.39)

Furthermore, using the approximation for Exφ|y given in (4.3.34), we determine that the

MAP will occur approximately at one of the values of φ where the graph of the model

function intersects the value of the data point,

φ̂A ≈ φ` (4.3.40)

or

φ̂A ≈ φr . (4.3.41)

Since fy|φ (y|φ = φ`) = fy|φ (y|φ = φr ) , whether the MAP is the mean of the left or right

peak is determined completely by the value of the prior fφ at the two intersection points.

We find that

the parameter MAP is φ` if fφ (φ = φ`) > fφ (φ = φr ) and φr otherwise. Substituting in

the prior distribution, this condition becomes

(φ` − µ)
2
< (φr − µ)

2
, (4.3.42)
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which further simplifies to

µ < φmin. (4.3.43)

Therefore, the MAP estimator is

φ̂A ≈ argmax
φ

[{
φ` ifµ < φmin

φr otherwise

]
. (4.3.44)

Posterior expected squared loss for the parameter MMSE estimator

Now that we have determined analytic approximations for φ̂E and φ̂A, we continue towards

obtaining the Bayesian mean squared error ratio P̃
[
φ̂A, φ̂E

]
by obtaining the posterior

expected squared loss R
[
φ̂E
]

for the MMSE estimator,

R
[
φ̂E
]

= Eφ|y

[(
φ− Eφ|y[φ]

)2]
≈ p`E`φ|y

[(
φ− Eφ|y[φ]

)2]
+ prE

r
φ|y

[(
φ− Eφ|y[φ]

)2]
.

(4.3.45)

To compute the unknown terms in this expression, we apply properties of variance and

expectation

Exφ|y

[(
φ− Eφ|y[φ]

)2]
= Varxφ|y[φ] +

(
Exφ|y

[
φ− Eφ|y[φ]

])2
= Varxφ|y[φ] +

(
Exφ|y[φ]− Eφ|y[φ]

)2 (4.3.46)

Therefore,

R
[
φ̂E
]
≈p`

(
Var`φ|y[φ] +

(
φ` − Eφ|y[φ]

)2)
+ pr

(
Varrφ|y[φ] +

(
φr − Eφ|y[φ]

)2)
.

(4.3.47)

We further simplify by showing that Var`φ|y[φ] = Varrφ|y[φ]. To accomplish this, first note

that ξ′ (φ`) , the derivative of the model function w.r.t. φ at φ`, is the negative of ξ′ (φr ) ,

the derivative of the model function w.r.t. φ at φr :

ξ′ (φ`) = 1 + 2υφ` = 1 + 2υ

− 1

2υ
−

√
y − −14υ√
υ

 = −
√

1 + 4yυ (4.3.48)

and

ξ′ (φr ) = 1 + 2υφr = 1 + 2υ

− 1

2υ
+

√
y − −14υ√
υ

 =
√

1 + 4yυ. (4.3.49)
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The squared derivatives are thus equal:

(ξ′ (φ`))
2

= (ξ′ (φr ))
2

= 1 + 4yυ. (4.3.50)

Therefore,

Var`φ|y[φ] = Varrφ|y[φ] =

(
(ξ′ (φ`))

2

σ2
+

1

δ2

)
−1. (4.3.51)

We can also simplify R
[
φ̂e

]
by showing that the differences,

φ` − Eφ|y[φ] ≈ φ` − (p`φ` + prφr )

= pr (φ` − φr )
(4.3.52)

and

φr − Eφ|y[φ] ≈ φr − (p`φ` + prφr )

= p` (φr − φ`) .
(4.3.53)

Substituting both simplifications in, we find that

R
[
φ̂e

]
≈

(
(ξ′ (φ`))

2

σ2
+

1

δ2

)
−1 + p` (pr (φ` − φr ))

2

+ pr (p` (φr − φ`))2

=

(
(ξ′ (φ`))

2

σ2
+

1

δ2

)
−1 + p`pr (p` + pr ) (φ` − φr )

2
=

=

(
(ξ′ (φ`))

2

σ2
+

1

δ2

)
−1 + p`pr (φ` − φr )

2
.

(4.3.54)

Under the conditions of (4.3.16),

(
(ξ′(φ`))

2

σ2 + 1
δ2

)
−1will be small compared with the other

term in the expression (4.3.54). Consequently, using (4.3.23), we find that

R
[
φ̂E
]

= E
[(
φ− Eφ|y[φ]

)2] ≈ p`pr (φ` − φr )
2

=
e
−(φ`−µ)

2

2δ2
+
−(φr−µ)2

2δ2 (1 + 2υφr )
2(

e
−(φ`−µ)

2

2δ2 + e
−(φr−µ)2

2δ2

)2

υ2

.

(4.3.55)
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Posterior expected squared loss for the parameter MAP estimator

Having now determined R
[
φ̂E
]
, we continue towards P̃

[
φ̂A, φ̂E

]
by determining the pos-

terior expected squared parameter loss R
[
φ̂A
]

of the MAP estimator:

R
[
φ̂A
]

= Eφ|y

[
(φ− φx)

2
]

= Varφ|y [φ− φx] +
(
Eφ|y [φ− φx]

)2
= Varφ|y[φ] +

(
Eφ|y[φ]− φx

)2
= R

[
φ̂E
]

+
(
Eφ|y[φ]− φx

)2
.

(4.3.56)

In the case when φ̂A ≈ φ`
(
i.e., µ < − 1

2υ

)
, we find that

R
[
φ̂A
]
−R

[
φ̂E
]

=
(
Eφ|y[φ]− φ`

)2 ≈ (p`φ` + prφr − φ`)2 = p2r (φr − φ`)2 , (4.3.57)

and

R
[
φ̂A
]
≈ pr (φr − φ`)2 =

e
−(φ`−µ)

2

2δ2 (1 + 2υφr )
2(

e
−(φ`−µ)

2

2δ2 + e
−(φr−µ)2

2δ2

)
υ2
. (4.3.58)

In the case when φ̂A ≈ φr
(
i.e., µ > − 1

2υ

)
, we find

R
[
φ̂A
]
−R

[
φ̂E
]

=
(
Eφ|y[φ]− φr

)2 ≈ (p`φ` + prφr − φr )
2

= p2` (φr − φ`)2 , (4.3.59)

and

R
[
φ̂A
]
≈ p` (φr − φ`)2 =

e
−(φr−µ)2

2δ2 (1 + 2υφr )
2(

e
−(φ`−µ)

2

2δ2 + e
−(φr−µ)2

2δ2

)
υ2
. (4.3.60)

Bayesian mean squared error for the parameter MMSE estimator

Now having found the the posterior expected squared loss for both estimators R
[
φ̂E
]

and R
[
φ̂A
]

we move to determining the Bayesian mean squared parameter errors R̃
[
φ̂E
]

and R̃
[
φ̂A
]

and the Bayesian mean squared parameter error ratio P̃
[
φ̂A, φ̂E

]
. Obtaining

R̃
[
φ̂E
]

requires computing an integral over y; however, examination of (4.3.55) suggests

that it would be easier to evaluate this integral after a transformation of variable to φr

(or φ`). We define f̃ rφ to be the approximate distribution of φr defined over the region

φr > φmin. Using the method of transforming distributions (see Appendix D), equation

(4.3.28) and equation (4.3.20), and noting that

φ` = 2φmin − φr , (4.3.61)
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we find that

f̃ rφ = f̃y

∣∣∣∣ ∂y∂φr
∣∣∣∣

=
e−

(φ`−µ)
2

2δ2 + e−
(φr−µ)2

2δ2

√
2πδ (1 + 2υφr )

(1 + 2υφr )

=
e−

(φ`−µ)
2

2δ2 + e−
(φr−µ)2

2δ2

√
2πδ

=
e−

(φr−µ)2

2δ2 + e−
(µ−(φmin−(φr−φmin)))

2

2δ2

√
2πδ

.

(4.3.62)

Having obtained the distribution of φr , we now take the expectation over the distribution

of φr to determine

R̃
[
φ̂E
]

=

∞∫
−∞

Eφ|y

[(
φ̂E − φ

)2]
dy

=

∞∫
φmin

E
[(
φ− Eφ|y[φ]

)2]
f̃ rφdφr

=

∞∫
φmin

(
e
−(φ`−µ)

2

2δ2
+
−(φr−µ)2

2δ2

)
(1 + 2υφr )

2

(
e
−(φ`−µ)

2

2δ2 + e
−(φr−µ)2

2δ2

)2

υ2

(
e−

(φ`−µ)
2

2δ2 + e−
(φr−µ)2

2δ2

)
√

2πδ
dφr

=

∞∫
φmin

(1 + 2υφr )
2(

e
(φ`−µ)

2

2δ2 + e
(φr−µ)2

2δ2

)√
2πδυ2

dφr

. (4.3.63)

Per (4.3.16), δ2 is large and

e
(φ`−µ)

2

2δ2 + e
(φr−µ)2

2δ2 ≈ 2. (4.3.64)

Therefore,

R̃
[
φ̂E
]
≈
∞∫
φmin

(1 + 2υφr )
2

2
√

2πδυ2
dφr . (4.3.65)
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Bayesian mean squared error for the parameter MAP estimator

To obtain P̃
[
φ̂A, φ̂E

]
we need also to compute R̃

[
φ̂A
]
:

R̃
[
φ̂A
]

= Eφ|y

[
(φ− φx)

2
]

=

∞∫
φmin

E
[
(φ− φx)

2
]
f̃ rφdφr

=

∞∫
φmin

e
(φx−µ)2

2δ2 (1 + 2υφr )
2(

e
(φ`−µ)

2

2δ2 + e
(φr−µ)2

2δ2

)
υ2

e−
(φ`−µ)

2

2δ2 + e−
(φr−µ)2

2δ2

√
2πδ

dφr

=

∞∫
φmin

e−
(2φmin−φx−µ)

2

2δ2 (1 + 2υφr )
2

√
2πδυ2

dφr .

(4.3.66)

By (4.3.16), δ2 is large and

e−
(φx−2φmin−µ)

2

2δ2 ≈ 1. (4.3.67)

Thus,

R̃
[
φ̂A
]
≈
∞∫
φmin

(1 + 2υφr )
2

√
2πδυ2

dφr = 2R̃
[
φ̂E
]

(4.3.68)

Therefore, for both the case φ̂A ≈ φ` and φ̂A ≈ φr , the marginal mean squared parameter

error ratio is determined to be

P̃
[
φ̂A, φ̂E

]
≈ 2, (4.3.69)

implying that the Bayesian mean squared parameter error for the MAP is twice as large as

that for the MMSE.

To analytically differentiate between cases where the accuracy of the MMSE estimator

may be reasonably assessed with the MAP estimator, we considered a Bayesian model for

a single observed response where the model is quadratic in a single parameter. Construc-

tion of the posterior distribution resulted in incomputable integrals for arbitrary values of

the error and prior variance. However, in the limiting case with small error variance and

large prior variance, we found these integrals to be approximately computable. We utilized

this special case to determine that the Bayesian mean squared error of the MAP estimator

R̃
[
φ̂a

]
was approximately twice that of the Bayesian mean squared error of the MMSE

estimator R̃
[
φ̂e

]
. Therefore, in this scenario, we have found that the parameter MAP and
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MMSE accuracies are not approximately equal.

Note that this result is equivalent to what would be readily obtained in a simpler scenario

had we taken the limit as σ → 0 initially to approximate the peaks of the conditional dis-

tribution with delta functions. Using this approach substantially simplifies the analytics,

yielding equivalent final results with more readily computable integrals.



Chapter 5

Discussion

5.1 Summary

Cognitive fatigue due to sleep loss is a major risk in today’s 24/7 society. Biomathemati-

cal models can be used to help mitigate such risks by predicting the timing at which high

levels of fatigue will occur. Due to the large degree of individual variation in performance

under sleep loss, the typically used group-average predictions are often inaccurate for a

given individual. However, since individual differences are trait-like, between subjects vari-

ation can be captured by individualizing model parameters using the technique of Bayesian

forecasting. Accuracy of predictions resulting from the individualization procedure depend

on the amount of data collected on the individual at hand. This data is often limited by

factors such as cost and availability. However, with the availability of correlated secondary

performance measures, information may be included via a multivariate Bayesian forecasting

framework to further enhance or meet required levels of prediction accuracy.

In Section 1.2, we consider the Bayesian MAP and MMSE estimators and predictors,

and formulate measures of the accuracy of these estimators. To detail the accuracy assess-

ment procedure, we derive the Bayesian MSE for the univariate Bayesian linear model of

subject means in Section 2.1. We then generalize the derivation to a linear model for an

arbitrary number of performance measures and covariates in Section 3.1. Interpreting how

the accuracy depends on the sampling strategy (e.g., the number of measurements from the

primary and secondary tasks) is difficult when this accuracy is specified in the matrix forms

seen in Equations (3.1.22) and (3.2.15). To clarify our understanding in the simplest case

that displays random effects correlation between tasks, we determine the accuracy for the

61
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Bayesian bivariate linear model of subject means in Section 3.3. For this model, we further

assume that observations from each performance measure cost a fixed price per data point,

and use this assumption to determine the number of measurements of each variable needed

to minimize the cost while still obtaining no less than the desired level of accuracy.

To aid in extending the findings from the linear case to state of the art nonlinear biomath-

ematical fatigue models, we focus on obtaining the parameter estimate accuracy for the

nonlinear case. Computing this accuracy analytically is often infeasible without reliance on

model approximations. Model simulations can be used to compute this accuracy; however,

such simulations can be time consuming, especially for models that lack analytic solutions

and require that a system of differential equations be solved to produce model dynamics.

Much of this computational burden in assessing estimator accuracy, however, is produced

by using the Bayesian MMSE estimator, and could be reduced by taking advantage of

the quicker to compute Bayesian MAP estimator. We show a nonlinear modeling example

in which repeated simulation and estimation with the MAP estimator yields a reasonable

estimate of the accuracy obtained using the MMSE estimator. Still, for any given case, de-

termination of whether the MMSE accuracy can be approximated with the MAP accuracy

requires these time consuming simulations. So as to remove the need for simulation with the

MMSE, we begin to analytically identify classes of models where the MMSE accuracy can

be approximated by the MAP accuracy. We consider a class of quadratic Bayesian models,

and find that for these models the MAP and MMSE are not approximately equal.

5.2 Bayesian quadratic model

In Section 4.3, we discuss a class of Bayesian quadratic models, the motivation of which was

to obtain an analytic method for determining whether the MMSE accuracy could reasonably

be replaced with the MAP accuracy for a general Bayesian nonlinear model. To obtain an

approximation of the nonlinear model, we considered using a Taylor series expansion. The

focus on the quadratic model came out of the realization in Section 4.1 that a linear approx-

imation to the nonlinear model can result in the misleading conclusion of equal MMSE and

MAP accuracies. The quadratic model represented the simplest Taylor series approximation

that resulted in different accuracies for the MAP and MMSE.

Assessment of the accuracy of the MMSE and MAP estimators for the quadratic Bayesian

model resulted in the need to compute the integral of an exponential containing a quartic

polynomial of the parameter. Finding this integral to have no closed form solution, we
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searched instead for an approximate solution. A solution which led to the conclusion that

the MAP accuracy was approximately twice that of the MMSE was readily found when we

considered the conditions of an uninformative prior and small error variance. However; the

value of this solution is limited, as the quadratic model is utilized over a region of parameter

space of width φr −φ` , covering both peaks of the conditional distribution (see Figure 4.1).

Taylor’s theorem specifies that a Taylor series approximation will be guaranteed accurate as

we make the region of approximation arbitrarily small; however, the distance between peaks

is specified to be large in comparison to the standard deviation of the individual peaks,(
σ

ξ′(φx)

)2
� (φr − φ`)2. Therefore, the condition of a large prior and small error variance

will only be of interest in the specific case where we encounter a quadratic model with a

large prior and small error variance.

The more useful case, where the prior and error variances are of comparatively moderate

values, cannot be approximated using the same techniques as those used to solve the case

of a large prior and small error variance. Alternatively, exponential integrals containing a

quartic polynomial of the parameter can be expressed as sums of Bessel functions. Compli-

cations arise concerning the order at which to truncate these Bessel functions. Further work

could be done to determine whether approximating the exponential integrals using Bessel

functions could yield to quicker determination of whether it is reasonable to approximate

the accuracy of the parameter or response MMSE estimator with that of the MAP. Finally,

an additional possibility is as follows. When the MAP and MMSE do approximately cor-

respond with each other, it may take fewer simulations to determine that the variability

in the difference between the MAP and MMSE is small compared with the overall MMSE

variability. Therefore, a few simulations with the MMSE may be done to determine corre-

spondence, and the remainder of the simulations may be done with the MAP to assess the

MMSE accuracy. Of course, if there are no limitation on computational resources and time,

the MMSE may be repeatedly simulated to determine its own accuracy.

5.3 Random effects selection

In using a biomathematical model of performance to construct a population model, we

make a choice concerning which model parameters will be random effects. In the Bayesian

forecasting stage, the parameters designated random effects will be estimated for a new

individual using subject-specific data. These parameters will likely differ in how much indi-

vidual variation they explain over subjects on average. The ability to predict is limited by

the proportion of the individual variability explained to begin with by the chosen random
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effects. Therefore, choosing random effects that explain a substantive amount of individual

variation is an important aspect for consideration. In this thesis, we focus our attention on

accuracy of Bayesian forecasting predictions that assume an error-free, pre-specified popu-

lation model; however, this framework could be further extended to include the dependence

of Bayesian forecasting accuracy on the misspecification of random effects.

The choice of and correlation structure of random effects are specified through the de-

sign of the between-subjects variance/covariance matrix. This design is often chosen with

a stepwise selection procedure; however, there is disagreement as to how to structure of

covariance matrix to initialize the selection (Bonate, 2011). Suggestions include starting

with a fully parameterized covariance matrix, starting with a diagonal covariance matrix,

starting with only a single random effect, and motivating the initial choice using confidence

plots of parameters for separately fit subjects (Pinheiro & Bates, 2009). As the final choice

of random effects often depends on the initial covariance design, it should be noted that dif-

ferent population models may simultaneously be considered optimal by different individuals

or modeling groups.

5.4 Nonlinear sampling designs of minimal cost

For the case of the bivariate linear model of subject means in Section 3.3, we showed how

to determine the number of measurements on primary and secondary task variables that

will minimize the cost of data collection while still meeting a specified level of prediction

accuracy on a primary variable.

Additional complexities arise when assessing the accuracy of the analogous bivariate

nonlinear model with a single random effect for each task. Firstly, as discussed in Section

4.1, the nonlinearity of the model will often result in an inability to analytically compute

the prediction accuracy. The issue may be addressed in some cases by constructing one or

more linear approximations to the model at hand, and thereby analytically approximating

the prediction accuracy. Bates and Watts (1988) provide guidance on whether a linear

approximation is justified. For models where such linear approximations are not justified,

running repeated simulations may be the only way to make a reasonable assessment of the

accuracy.

A second complication arises for nonlinear models that have time-dependency. In such

cases, the accuracy of the predictions will likely depend not only on the amount of data

collected, but also on the times at which the measurements and predictions are made.
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Consequently, instead of minimizing a function of two variables to determine the optimal

sampling strategy, the minimization will need to be performed over both the number of data

points sampled from each task, and the sampling times for each of these data points.

In addressing these issues, we may reconsider the scenario as a Bayesian optimal design

problem, and then make use of results from the optimal design literature. Bayesian opti-

mal design problems are solved based on design criteria denoted by letters of the alphabet,

which represent different cost functions to optimize. Of major consideration are Bayesian D-

optimality, Bayesian A-optimality and Bayesian c-optimality. Bayesian D-optimality max-

imizes the expected Kullback-Leibler distance between the prior and posterior distribution

(Chaloner & Verdinelli, 1995), and is suggested when inference on the parameters is the

main goal of the study. In this thesis, we have considered minimizing the Bayesian MSE of

either a subset of the parameters or a subset of the predictions. For these aims, Bayesian

A-optimality and Bayesian c-optimality are most useful. Both types of criteria minimize

the expected squared loss when estimating a linear function of the parameters. Bayesian

A-optimality minimizes this loss for a function of the parameters c′θc′θc′θ, where ccc is assumed to

arise from some probability distribution. Bayesian c-optimality, is a special case of Bayesian

A-optimality, where ccc is assumed fixed. Chaloner & Verdinelli (1995) consider the linear

Bayesian model of Section 3.1 with a uniform-variance, diagonal measurement error matrix.

With respect to model (??), both Bayesian A-optimality and Bayesian c-optimality would

minimize c′c′c′(((CCC−1θ +H ′H ′H ′CCC−1w HHH)))−1ccc.

The simplest manner of deriving an optimal design comes from fixing the number of

samples which can be taken, and hence the number of rows in HHH. Chaloner (1984) defines

the Fréchet directional derivative at

M0 = CCC−1θ +HHH
′

0CCC
−1
w HHH0 (5.4.1)

in the direction

M1 = CCC−1θ +HHH
′

1CCC
−1
w HHH1 (5.4.2)

to be

Fφ (M0,M1) = lim
ε→0

[φ {(1− ε)M0 + εM1} − φ {M0}] . (5.4.3)

An equivalence theorem is then derived that gives conditions on the Fréchet directional

derivative that are necessary and sufficient for an A-optimal design. These conditions allow

us to determine whether a given covariate matrix HHH0 yields an A-optimal design. Chaloner

(1984) shows that for a convex design space X , the c-optimal criterion is reached by designs

HHH
′

0HHH0 =
∑m
i=1hhhihhh

′

i for which (((CCC−1θ +H ′H ′H ′CCC−1w HHH)))−1ccc is normal to a supporting hyperplane of
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the convex hull X at hhhi and −hhhi for i = 1, . . . ,m. Chaloner (1984) further reveals that if X
is convex, then a c-optimal design concentrated at a single point may be found. However,

designs with only a few support points are often undesirable, as with such designs it is

difficult to check for model lack of fit.

In this thesis, rather than minimizing the total number of samples, our interest has been

on minimizing the total cost of experimentation. Chaloner & Verdinelli (1995) note that

through a simple linear transformation, the problem of minimal cost can be transformed

into one of minimizing the total number of experimental observations.

For the general nonlinear case, Bayesian c-optimality may be obtained by first construct-

ing a linear approximation to the nonlinear model. Then the approximate expected utility

can be obtained using the equation

φ2(η) = −
∫
ccc(θ)′{nJ (θ, η)}−1ccc(θ)p(θ)dθ, (5.4.4)

where nJ (θ, η) represents the expected Fisher information matrix for a model with unknown

parameters θ, design η, and sample size of n. Clyde (1993) suggests that care be taken to

construct a design that will result in asymptotic normality of the posterior distribution,

since the computation of the expected utility relies on this approximation. When asymp-

totic normality is in question, Müller and Parmigiani (1996) suggest the alternative of using

Markov Chain Monte Carlo methods to estimate the expected utility. Given an apriori set

of candidate designs, we may determine which of these designs is optimal by comparing the

expected utility of each design.

5.5 Comparing accuracy with other approaches

We now compare the methods in this thesis to other methods such as the Kalman filter, and

those detailed in Chandler et al. (2013), which can also be used to include information from

secondary variables to make individualized predictions of a primary variable. Individualized

predictors may be compared using a given accuracy criterion. To compare them on the

Bayesian MSE, we must assume a Bayesian process by which the data are created. We will

hitherto refer to this set of assumptions as the process model. Individualized predictors are

constructed by applying particular population and individual estimation procedures (i.e.,

MAP, MMSE, maximum likelihood) to a model assumed for the purpose of estimation. We

will refer to this as the estimation model. Two methods of constructing individual perfor-

mance predictions may be compared in Bayesian MSE for a particular process model. The
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Bayesian MSE will depend on the process model, the estimation model, and the population

and individual estimation methods.

We first consider comparing the MMSE for the general linear Bayesian model of Section

3.1 with estimates obtained using the Kalman filter. As it happens, the two methods produce

equivalent estimates. We argue this by first noting that the Kalman filter is the sequential

MMSE estimator of a signal embedded in noise (Kay, 1994, pg. 419). We then show that

the Kalman filter model (1.3.9) can be reformulated as the general linear Bayesian model

(3.1.1). The reformulation is done as follows. First we solve the recursive equations,

s[0] = As[−1] +Bu[0] (5.5.1)

s[1] = As[0] +Bu[1]

= A[As[−1] +Bu[0]] +Bu[1]

= A2s[−1] +ABu[0] +Bu[1]

(5.5.2)

s[2] = As[1] +Bu[2]

= A
[
A2s[−1] +ABu[0] +Bu[1]

]
+Bu[2]

= A3s[−1] +A2Bu[0] +ABu[1] +Bu[2]

(5.5.3)

to find that

s[n] = An+1s[−1] +

n∑
j=0

An−jBu[j]

=
(
An+1 AnB An−1B ...

)


s[−1]

u[0]

u[1]
...

 .

(5.5.4)

Letting

s =


s[0]

s[1]
...

 , (5.5.5)

we can then put this in matrix form as

s =


A B 0 ...

A2 AB B ...

A3 A2B AB
. . .

... ...
. . .

. . .




s[−1]

u[0]

u[1]
...

 . (5.5.6)
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We have thus formulated s as a linear function of normal random variables. We know,

therefore, that the probability distribution for the vector s will be normally distributed.

Finally, we let

x =


x[0]

x[1]
...

 , H =


hhh′[0]

hhh′[1]
...

 , w =


w[0]

w[1]
...

 . (5.5.7)

We can then formulate the model as

xxx = Hθ + wHθ + wHθ + w,,, (5.5.8)

where

θθθ ∼ N (µµµθ,CCCθθθ) (5.5.9)

and

www ∼ N (000,CCCw) , (5.5.10)

which is the form of the general linear Bayesian model. We therefore conclude that properties

derived about the MMSE of a general linear Bayesian model, such as the Bayesian MSE,

will also hold for the Kalman filter.

We next compare the methods of including covariate information in this thesis with that

of the Chandler et al. (2013). Unlike the subject-specific models considered in this thesis,

the model of Chandler et al. (2013) does not capture individual differences in vulnerability

to sleep loss with subject-specific parameters. Instead, individual differences are predicted

by including secondary task variables as covariates in the GLM discussed in Section 1.3.

A major drawback to this approach is that it lacks the ability to relate information about

individual differences between different points in time. Consequently, individualized fore-

casts at particular times cannot be made in the absence of secondary data at such times,

and predictions at times where secondary measurements are collected cannot be enhanced

with secondary measurements at other times. By considering specific process and prediction

models, we may determine precisely by how much the accuracy of predictions obtained by

including a secondary variable in the manner of Chandler et al. (2013) falls short of including

a secondary variable using a Bayesian model with assumed parameter correlations.

We consider a bivariate linear Bayesian model of subject means to represent the process

model,

yi1k = φi1 + εi1k

yi2k = φi2k + εi2k
(5.5.11)
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(
φi1

φi2

)
∼ N

(
µµµ,

(
δ21 ρδ1δ2

ρδ1δ2 δ22

))
(5.5.12)

(
εi1

εi2

)
∼ N

(
000,

(
σ2
1III 000

000 σ2
2III

))
. (5.5.13)

We compare two methods of estimation via simulation. We first make use of response

forecasts that are constructed using the MMSE where the estimation model is the same

as the process model. Secondly, we consider an estimation model that uses the Chandler

et al. (2013) method of including a secondary variable by modeling the responses on the

primary task as a linear function of the primary task population mean and the secondary

task covariate,

yi1k = φ1 + βyi2k + εi1k. (5.5.14)

As in this thesis we assume that population parameters are estimated without error,

we now assume for this model that the population parameters β and φ1 are also estimated

without error (specifically, at their maximum likelihood values in the population estimation

stage using an unlimited amount of data.) We construct maximum likelihood estimates of

these population parameters from simulated data for 5000 subjects from model (5.5.11). For

each individual, we simulate two measurements on the primary task, and two measurements

on the secondary task, assuming the fixed parameters δ1 = 1.0, δ2 = 1.0, σ2
1 = 0.25, σ2

2 = 1.0,

and µµµ =

(
0

0

)
. To construct individual forecasts, we again simulate 5000 individuals.

From this simulation, we use two observations on the secondary task to construct primary

task predictions and one observation on the primary task to assess the accuracy of these

predictions.

The results showed the same accuracy between the two methods for ρ = 0. As ρ was

increased to 1, the accuracy of predictions improved for both methods, but more so for the

MMSE estimator. For this simulation, the accuracy of the Chandler method corresponded

exactly with what the accuracy of the MMSE would have been had only a single data point

been collected on the secondary task. These results suggest that for the bivariate linear

Bayesian model of subject means, the Chandler method produces the Bayesian MMSE

estimator which assumes only a single data point is collected on the secondary task. If

this is indeed the case, then the accuracy of predictions using the Chandler method, when
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forecasts are made using only observations from the secondary task will be

R [ŷi1] =

 1

δ21
+

ρ2

δ21 (1− ρ2) + σ2
2
δ21
δ22

−1 + σ2
1 , (5.5.15)

whereas for the MMSE the accuracy will be

R [ŷi1] =

 1

δ21
+

mi2ρ
2

mi2δ21 (1− ρ2) + σ2
2
δ21
δ22

−1 + σ2
1 . (5.5.16)

In the case where we assume that ρ = 1, δ1 = δ2, and δ1 is large, the prediction accuracy of

the Chandler method will be approximately

R [ŷi1] ≈ σ2
2 + σ2

1 , (5.5.17)

whereas for the MMSE the accuracy will be

R [ŷi1] ≈ σ2
2

mi2
+ σ2

1 . (5.5.18)

Therefore, for the bivariate linear Bayesian model of subject means, the Chandler method

will have accuracy that is limited by the error variance on both tasks, whereas the MMSE

prediction accuracy will be limited by the primary task only.

We have so far considered a comparison of estimators by first assuming that the data

are truely generated by the general linear Bayesian model with uncorrelated errors. The

advantages/disadvantages of using one estimation model and estimator over another, how-

ever, will depend on the underlying process model being considered. Kay (1993) considers a

general linear Bayesian model with an arbitrary error covariance matrix. Such a framework

allows us to make performance estimates that in addition to parameter correlations, account

for autocorrelation and cross correlation in the errors.

Making use of the notation of Kay (1994) detailed in Section 1.3, we now consider how

to make a comparison of the accuracy of Bayesian MMSE estimators using different error

correlation structures. Let us represent the error covariance structure of the process model

with CCCw and the reduced covariance structure with Λ. We consider the mean squared error

matrix MMM θ̂ defined as

MMM θ̂ ≡ Ex,θ
[(
θθθ−−− θ̂θθ

)(
θθθ−−− θ̂θθ

)′]
, (5.5.19)

where θ̂θθ represents the MMSE estimator made with the assumption of a reduced correlation
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structure. In Appendix E, we derive the mean squared error matrix to be

MMM θ̂ = CCCθθθ|xxx +CCCθH
′CCCθH
′CCCθH
′

((( (HCHCHCθH
′ +CCCw)−1−−− 2

(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−12

(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−12

(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1 +++

(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1 (HCHCHCθH

′H ′H ′+++CCCw
) (

HCHCHCθH
′H ′H ′+++ ΛΛΛ

)−1(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1 (HCHCHCθH

′H ′H ′+++CCCw
) (

HCHCHCθH
′H ′H ′+++ ΛΛΛ

)−1(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1 (HCHCHCθH

′H ′H ′+++CCCw
) (

HCHCHCθH
′H ′H ′+++ ΛΛΛ

)−1)))
HCHCHC′θ,

(5.5.20)

where CCCθθθ|xxx represents the minimum mean squared error matrix for the MMSE estimator

assuming the same estimation and process model with error covariance CCCw, and is given

in (1.3.4). The Bayesian MSE for each parameter can then be obtained from the diagonal

elements of this matrix. The term on the right hand side represents the additional MSE due

to assuming a reduced covariance structure for the errors. We note that when ΛΛΛ = CCCw the

term on the right dissappears. For particular, patterned correlation structures, it may be

possible to determine a scalar closed form equation for how the Bayesian MSE for a given

parameter estimate depends on the parameters of the error covariance matrix.



Appendix A

Direct sum results

Theorem A.0.1. The matrix product of two direct sums(
n⊕
i=1

Ai

)(
n⊕
i=1

Bi

)
, (A.0.1)

where C[Ai] = R[Bi], and where C[Ai] represents the number of columns in Ai and R[Bi]

represents the number of rows in Bi, is

n⊕
i=1

AiBi. (A.0.2)

Proof.

(
n⊕
i=1

Ai

)(
n⊕
i=1

Bi

)
=


A1

A2

A3

. . .




B1

B2

B3

. . .



=


A1B1

A2B2

A3B3

. . .


=

n⊕
i=1

AiBi.

(A.0.3)
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Theorem A.0.2. The transpose of
⊕n

i=1Ai is equal to the direct sum of the transposes of

the Ais.

Proof. (
n⊕
i=1

Ai

)′
=


A1

A2

. . .


′

=


A′1

A′2
. . .

 (A.0.4)

n⊕
i=1

A′i. (A.0.5)

Theorem A.0.3. The inverse of
⊕n

i=1Ai is equal to the direct sum of the inverses of each

of the Ai’s.

Proof. (
n⊕
i=1

Ai

)(
n⊕
i=1

A−1i

)
=

n⊕
i=1

AiA
−1
i

=

n⊕
i=1

Ini ,

(A.0.6)

where ni = R[Ai] = I∑ni .



Appendix B

Multivariate results

Let X,Y be continuous random variables. The conditional probability density function

(pdf) for Y given X = x is defined as

fY |X(y|x) =
fX,Y (x, y)

fX(x)
, (B.0.1)

and the marginal distribution of Y is defined as

fY (y) =

∫
x

fX,Y (x, y)dx. (B.0.2)

These definitions also have conditional versions. Let Z be another continuous random vari-

able, then the conditional probability density function (pdf) for Y given X = x conditioning

on Z = z is defined as

fY |X,Z(y|x, z) =
fX,Y |Z(x, y|z)
fX|Z(x|z)

, (B.0.3)

and the marginal distribution of Y conditioning on Z = z is defined as

fY |Z(y|z) =

∫
x

fX,Y |Z(x, y|z)dx. (B.0.4)

Let fY |X(y|x) be the posterior probability density function of the random variable Y |X
on the support −∞ < x <∞. The Maximum a Posteriori estimate is defined as

argmax
y

[
fY |X(y|x)

]
. (B.0.5)

Theorem B.0.4. (Multivariate marginal theorem) Let y ∼ N(µ,Σ), and let y =

[
y1

y2

]
,

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, then y1 ∼ N(µ1,Σ11).
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Proof. Without loss of generality, let y be partitioned as y′ = (y′1,y
′
2), where y1 is the r×1

subvector of interest. Let µ and Σ be partitioned accordingly:

y =

[
y1

y2

]
,µ =

[
µ1

µ2

]
,Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (B.0.6)

Define A = (Ir,O), where Ir is an r × r identity matrix and O is an r × (p− r) matrix of

zeros. Then Ay = y1, and by Theorem 4.41 (ii), y1 is distributed as N (µ1,Σ11).

Theorem B.0.5. Let

g (y|µ) = c0 · exp

[
−1

2
(y′Ay −By)

]
. (B.0.7)

Then y|µ ∼ N (µ,Σ), where

Σ = A−1, (B.0.8)

µ =
1

2
ΣB′. (B.0.9)

Proof. Let y be multivariate normal with pdf given by

f (y|µ) =
exp

[
− 1

2 (y − µ)
′
Σ−1 (y − µ)

]
(2π)

n|Σ|
1
2

. (B.0.10)

Expanding, we find that

= c0 · exp

[
−1

2

(
y′Σ−1y − 2µ′Σ−1y + µ′Σ−1µ

)]
. (B.0.11)

Next we let

c0 = exp

[
−1

2

(
µ′Σ−1µ

)]
(B.0.12)

be constant with respect to y. Then

f (y|µ) = c0 · exp

[
−1

2

(
y′Σ−1y − 2µ′Σ−1y

)]
. (B.0.13)

Making substitutions (B.0.8) and (B.0.9), we arrive at (B.0.7)

Theorem B.0.6. Let Yn×1 ∼ N (µ,Σ). Let A be a p×n matrix of constants, and let b be a

p×1 vector of constants. Then the p×1 random vector X = AY +b ∼ N (Aµ+b,AΣA′).



Appendix C

Bivariate model of subject

means results

Theorem C.0.7. The posterior precision is

η =
mi1

σ2
1

+
1

δ21
+ λ (mi2) . (C.0.1)

Proof. Using the variance (3.3.7) and the definition of precision from (3.3.10), we know that

η =

(
mi1
σ2
1

+ 1
δ21(1−ρ2)

)(
mi2
σ2
2

+ 1
δ22(1−ρ2)

)
− ρ2

δ21δ
2
2(1−ρ2)

2

mi2
σ2
2

+ 1
δ22(1−ρ2)

. (C.0.2)

Separating the fraction and canceling terms yields

η =
mi1

σ2
1

+
1

δ21 (1− ρ2)
− ρ2

δ21δ
2
2 (1− ρ2)

2

(
mi2

σ2
2

+
1

δ22 (1− ρ2)

)−1
. (C.0.3)

Combining fractions yields

η =
mi1

σ2
1

+
1

δ21 (1− ρ2)
− ρ2

δ21δ
2
2 (1− ρ2)

2

(
mi2δ

2
2

(
1− ρ2

)
+ σ2

2

σ2
2δ

2
2 (1− ρ2)

)−1
. (C.0.4)

Simplifying yields

η =
mi1

σ2
1

+
1

δ21 (1− ρ2)
−

ρ2σ2
2δ

2
2

(
1− ρ2

)
δ21δ

2
2 (1− ρ2)

2
(mi2δ22 (1− ρ2) + σ2

2)
. (C.0.5)

Canceling terms yields

η =
mi1

σ2
1

+
1

δ21 (1− ρ2)
− ρ2σ2

2

δ21 (1− ρ2) (mi2δ22 (1− ρ2) + σ2
2)
. (C.0.6)
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Applying a partial fraction expansion yields

η =
mi1

σ2
1

+
1

δ21
+

ρ2

δ21 (1− ρ2)
− ρ2σ2

2

δ21 (1− ρ2) (mi2δ22 (1− ρ2) + σ2
2)
. (C.0.7)

Factoring yields

η =
mi1

σ2
1

+
1

δ21
+

ρ2

1− ρ2

(
1

δ21
− σ2

2

δ21 (mi2δ22 (1− ρ2) + σ2
2)

)
. (C.0.8)

Combining fractions yields

η =
mi1

σ2
1

+
1

δ21
+

ρ2

1− ρ2

(
δ21
(
mi2δ

2
2

(
1− ρ2

)
+ σ2

2

)
− δ21σ2

2

δ21δ
2
1 (mi2δ22 (1− ρ2) + σ2

2)

)
. (C.0.9)

Expanding yields

η =
mi1

σ2
1

+
1

δ21
+

ρ2

1− ρ2

(
δ21mi2δ

2
2

(
1− ρ2

)
+ δ21σ

2
2 − δ21σ2

2

δ21mi2δ22 (1− ρ2) + δ21σ
2
2

)
. (C.0.10)

Canceling terms yields

η =
mi1

σ2
1

+
1

δ21
+

ρ2mi2δ
2
2

δ21mi2δ22 (1− ρ2) + δ21σ
2
2

. (C.0.11)

Dividing numerator and denominator by δ21δ
2
2

(
1− ρ2

)
yields

η =
mi1

σ2
1

+
1

δ21
+

mi2
ρ2δ22

δ21δ
2
2(1−ρ2)

mi2 +
δ21σ

2
2

δ21δ
2
2(1−ρ2)

. (C.0.12)

Canceling terms yields

η =
mi1

σ2
1

+
1

δ21
+

mi2
ρ2

δ21(1−ρ2)

mi2 +
σ2
2

δ22(1−ρ2)

. (C.0.13)

And finally, substituting

λ (mi2) =
mi2λ

m
max

mi2 +mh
, (C.0.14)

where

λmmax =
ρ2

δ21 (1− ρ2)
, (C.0.15)

and

mh =
σ2
2

δ22 (1− ρ2)
, (C.0.16)

yields

η =
mi1

σ2
1

+
1

δ21
+ λ (mi2) . (C.0.17)



APPENDIX C. BIVARIATE MODEL OF SUBJECT MEANS RESULTS 78

Theorem C.0.8. The Fisher Information on the mean is mi
σ2 .

Proof. The Fisher Information is given by

I(bi) = −Eyi|bi

[
∂2

∂b2i
log f(yi|bi)

]
. (C.0.18)

When yi|bi is normally distributed with zero mean and variance σ2,

f(yi|bi) =

(
1√
2πσ

)mi
exp

[∑mi
j=1(yij − bi)2

2σ2

]
. (C.0.19)

I(bi) = −E

[
∂2

∂b2i

[
log

[(
1√
2πσ

)mi]
−
∑mi
j=1(yij − bi)2

2σ2

]]
(C.0.20)

= −E

[
∂

∂bi

(∑mi
j=1 yij − bi

σ2

)]
(C.0.21)

= −E
[
−mi

σ2

]
(C.0.22)

=
mi

σ2
. (C.0.23)



Appendix D

Nonlinear results

$Failed

Theorem D.0.9. ∫ ∞
−∞

e−(ax
2+bx+c)dx =

√
π

a
e

(
b

2
√
a

)2
−c

Proof. We first prove that ∫ ∞
−∞

e−(x
2+fx+g)dx =

√
πe(

f
2 )

2−g

To do this, we complete the square, separate the exponents, and factor constants out of the

integral.

=

∫ ∞
−∞

e
−
(
(x+ f

2 )
2
+g−( f2 )

2
)
dx

= e(
f
2 )

2−g
∫ ∞
−∞

e−(x+ f
2 )

2

dx

Making the substitution y = x+ f
2 , we find

= e(
f
2 )

2−g
∫ ∞
−∞

e−y
2

dy

=
√
πe(

f
2 )

2−g

Let z =
√
ax, and substituting in for x we find∫ ∞

−∞
e−(ax

2+bx+c)dx =
1√
a

∫ ∞
−∞

e
−
(
z2+ b√

a
z+c

)
dz
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Finally, using the results from the first part of this proof we find that∫ ∞
−∞

e−(ax
2+bx+c)dx =

√
π

a
e

(
b

2
√
a

)2
−c
.



Appendix E

Comparing estimators

In this section, we derive the MSE matrix for the MMSE derived from assuming a general lin-

ear Bayesian model with correlation structure ΛΛΛ, assuming data arises from a general linear

Bayesian model with correlation structure CCCw. The MMSE estimator using the correlation

structure ΛΛΛ is

θ̂θθ̂θθθ̂θθθ === µµµθ +CCCθH
′H ′H ′(((HCHCHCθH

′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ) , (E.0.1)

and the covariance of the estimation error will be

MMM θ̂ = Ex,θ

[(
θθθ−−− θ̂θθ

)(
θθθ−−− θ̂θθ

)′]
. (E.0.2)

Using iterated expectations, we find that

MMM θ̂ = Ex

[
Eθ|x

[(
θθθ−−− θ̂θθ

)(
θθθ−−− θ̂θθ

)′]]
. (E.0.3)

Adding and subtracting E(θθθ|xxx) and expanding terms results in

MMM θ̂ = Ex

[
Eθ|x

[(
θ − E(θ|x)θ − E(θ|x)θ − E(θ|x) +++E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)(
θ − E(θ|x)θ − E(θ|x)θ − E(θ|x) +++E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)′]]

= Ex

Eθ|x[(θ − E(θ|x)θ − E(θ|x)θ − E(θ|x))(θ − E(θ|x)θ − E(θ|x)θ − E(θ|x))′] + Eθ|x

[(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)
(θ − E(θ|x)θ − E(θ|x)θ − E(θ|x))′

]
+ Eθ|x

[
(θ − E(θ|x)θ − E(θ|x)θ − E(θ|x))

(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)′]
+ Eθ|x

[(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)′]
 .

(E.0.4)
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Applying the expectations, we find that the term E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ does not depend on θθθ when xxx

is given, and the expected value of θ − E(θ|x)θ − E(θ|x)θ − E(θ|x) is just 000. Therefore,

MMM θ̂ = Ex

[
Eθ|x[(θ − E(θ|x)θ − E(θ|x)θ − E(θ|x))(θ − E(θ|x)θ − E(θ|x)θ − E(θ|x))′] + 000 + 000 + Eθ|x

[(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)′]]
.

(E.0.5)

Noting that the first term is simply the posterior covariance matrix, we have that

MMM θ̂ = Ex

[
CCCθ|x + Eθ|x

[(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)′]]
= MMME[θ|x] + Ex

[
Eθ|x

[(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)′]]
.

(E.0.6)

Since
(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)′
does not depend on θθθ when xxx is given, we find that

MMM θ̂ = CCCε + Ex

[(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)(
E(θ|x)E(θ|x)E(θ|x)−−− θ̂θθ

)′]
. (E.0.7)

Substituting in for E(θ|x)E(θ|x)E(θ|x) and θ̂θθ, we find that

MMM θ̂ = CCCε + Ex



µµµθ +++CCCθH
′(((HCHCHCθH

′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)CCCθH
′(((HCHCHCθH

′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)CCCθH
′(((HCHCHCθH

′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)

−−−µµµθ −CCCθH ′H ′H ′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)


µµµθ +++CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)

−−−µµµθ −CCCθH ′H ′H ′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

′

. (E.0.8)

Canceling the µµµθ terms yields

MMM θ̂ = CCCε + Ex

 (CCCθH ′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)−CCCθH ′H ′H ′(((HCHCHCθH

′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)
)(

CCCθH
′(((HCHCHCθH

′H ′H ′+++CCCw)))−1 (xxx−−−HµHµHµθ)CCCθH
′(((HCHCHCθH

′H ′H ′+++CCCw)))−1 (xxx−−−HµHµHµθ)CCCθH
′(((HCHCHCθH

′H ′H ′+++CCCw)))−1 (xxx−−−HµHµHµθ)−−−CCCθH ′H ′H ′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

)′
 .

(E.0.9)

Expanding terms and separating expectations results in

MMM θ̂ = CCCε + Ex

[
CCCθH

′H ′H ′(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1(x−HµHµHµθ)(x−HµHµHµθ)(x−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (xxx−−−HµHµHµθ)

)′(
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (xxx−−−HµHµHµθ)

)′(
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (xxx−−−HµHµHµθ)

)′
]]]

−−− Ex
[
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

)′
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

)′
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

)′
]]]

−−− Ex
[
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (xxx−−−HµHµHµθ)

)′
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (xxx−−−HµHµHµθ)

)′
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (xxx−−−HµHµHµθ)

)′
]]]

+++ Ex

[
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

)′
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

)′
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

(
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (xxx−−−HµHµHµθ)

)′
]]] ...

(E.0.10)
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Applying the transpose, we get

MMM θ̂ = CCCε + Ex

[
CCCθCCCθCCCθH

′H ′H ′(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1(x−HµHµHµθ)(x−HµHµHµθ)(x−HµHµHµθ)(x−HµHµHµθ)

′(x−HµHµHµθ)
′

(x−HµHµHµθ)
′(

HCHCHCθH
′H ′H ′+++CCCw

)−1(
HCHCHCθH

′H ′H ′+++CCCw
)−1(

HCHCHCθH
′H ′H ′+++CCCw

)−1HCHCHC′θ]]]

−−− Ex
[
CCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ) (x−HµHµHµθ)

′ (
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θCCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ) (x−HµHµHµθ)

′ (
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θCCCθH

′(((HCHCHCθH
′H ′H ′+++CCCw)))−1 (x−HµHµHµθ) (x−HµHµHµθ)

′ (
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ]]]

−−− Ex
[
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (x−HµHµHµθ) (x−HµHµHµθ)

′ (
HCHCHCθH

′H ′H ′+++CCCw
)−1HCHCHC′θCCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (x−HµHµHµθ) (x−HµHµHµθ)

′ (
HCHCHCθH

′H ′H ′+++CCCw
)−1HCHCHC′θCCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (x−HµHµHµθ) (x−HµHµHµθ)

′ (
HCHCHCθH

′H ′H ′+++CCCw
)−1HCHCHC′θ]]]

+++ Ex

[
CCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (x−HµHµHµθ) (x−HµHµHµθ)

′ (
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θCCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (x−HµHµHµθ) (x−HµHµHµθ)

′ (
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θCCCθH

′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1 (x−HµHµHµθ) (x−HµHµHµθ)

′ (
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ]]]

(E.0.11)

Removing terms from the expectation yields

MMM θ̂ === CCCε +CCCθCCCθCCCθH
′H ′H ′(((HCHCHCθH

′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1Ex

[
(x−HµHµHµθ) (x−HµHµHµθ)

′(x−HµHµHµθ) (x−HµHµHµθ)
′

(x−HµHµHµθ) (x−HµHµHµθ)
′
]]] (HCHCHCθH

′ +CCCw)−1(HCHCHCθH
′ +CCCw)−1(HCHCHCθH
′ +CCCw)−1HCHCHC′θ

−−−CCCθH ′(((HCHCHCθH
′H ′H ′+++CCCw)))−1Ex

[
(x−HµHµHµθ) (x−HµHµHµθ)

′(x−HµHµHµθ) (x−HµHµHµθ)
′

(x−HµHµHµθ) (x−HµHµHµθ)
′
]]]
(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ

−−−CCCθH ′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1Ex

[
(x−HµHµHµθ) (x−HµHµHµθ)

′(x−HµHµHµθ) (x−HµHµHµθ)
′

(x−HµHµHµθ) (x−HµHµHµθ)
′
]]]
(
HCHCHCθH

′H ′H ′+++CCCw
)−1HCHCHC′θ

+++CCCθH
′(((HCHCHCθH

′H ′H ′+++ ΛΛΛ)))−1Ex

[
(x−HµHµHµθ) (x−HµHµHµθ)

′(x−HµHµHµθ) (x−HµHµHµθ)
′

(x−HµHµHµθ) (x−HµHµHµθ)
′
]]]
(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ.

(E.0.12)

Evaluating the expectation results in

MMM θ̂ = CCCε+CCCθCCCθCCCθH
′H ′H ′(((HCHCHCθH

′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH

′H ′H ′+++CCCw)))(HCHCHCθH
′ +CCCw)−1(HCHCHCθH
′ +CCCw)−1(HCHCHCθH
′ +CCCw)−1HCHCHC′θ

−−−CCCθH ′(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH

′H ′H ′+++CCCw)))
(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ

−−−CCCθH ′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1(((HCHCHCθH

′H ′H ′+++CCCw)))
(
HCHCHCθH

′H ′H ′+++CCCw
)−1HCHCHC′θ

+++CCCθH
′(((HCHCHCθH

′H ′H ′+++ ΛΛΛ)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))

(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ.

(E.0.13)

Canceling terms with their inverses yields

MMM θ̂ = CCCε+CCCθCCCθCCCθH
′H ′H ′(((HCHCHCθH

′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1HCHCHC′θ

−−−CCCθH ′
(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ

−−−CCCθH ′(((HCHCHCθH
′H ′H ′+++ ΛΛΛ)))−1HCHCHC′θ

+++CCCθH
′(((HCHCHCθH

′H ′H ′+++ ΛΛΛ)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))

(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ.

(E.0.14)

Combining like terms, we find that

MMM θ̂ = CCCε +CCCθCCCθCCCθH
′H ′H ′(((HCHCHCθH

′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))−1HCHCHC′θ

−−− 222CCCθH
′ (HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ

+CCCθH
′(((HCHCHCθH

′H ′H ′+++ ΛΛΛ)))−1(((HCHCHCθH
′H ′H ′+++CCCw)))

(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1HCHCHC′θ

(E.0.15)
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and finally that

MMM θ̂ = CCCε +CCCθCCCθCCCθH
′H ′H ′(((
(
HCHCHCθH

′H ′H ′+++CCCw
)−1 − 2

(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1(

HCHCHCθH
′H ′H ′+++CCCw

)−1 − 2
(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1(

HCHCHCθH
′H ′H ′+++CCCw

)−1 − 2
(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1

+++
(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1 (HCHCHCθH

′H ′H ′+++CCCw
) (

HCHCHCθH
′H ′H ′+++ ΛΛΛ

)−1(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1 (HCHCHCθH

′H ′H ′+++CCCw
) (

HCHCHCθH
′H ′H ′+++ ΛΛΛ

)−1(
HCHCHCθH

′H ′H ′+++ ΛΛΛ
)−1 (HCHCHCθH

′H ′H ′+++CCCw
) (

HCHCHCθH
′H ′H ′+++ ΛΛΛ

)−1)))HCHCHC′θ.
(E.0.16)
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