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Students‟ Development in Proof: A Longitudinal Study 

 

Chairperson:  Bharath Sriraman 

 

Despite importance of teaching proof in any undergraduate mathematics program, many students 

have difficulties with proof (Dreyfus, 1999; Harel & Sowder, 2003; Selden & Selden, 2003; 

Weber, 2004).  In this qualitative case study, nine undergraduate students were each interviewed 

once every two weeks over the course of an academic year.  During each interview, the students 

were asked to complete, evaluate or discuss mathematical proofs.  The results of these interviews 

were then analyzed using two different frameworks.  The first focused on proof type, which 

refers to what kind of proof is created and how it came about.  The second framework addressed 

identifying each student‟s proof scheme, which “constitutes ascertaining and persuading for that 

person” (Harel & Sowder, 1998).  Using these structures as a guide, the question I sought to 

answer is: What, if any, identifiable paths do students go through while learning to prove? 

 

Unfortunately, the data from this study failed to demonstrate any identifiable path that was 

common to all participants.  In fact, only a single student made clear progress as judged by the 

criteria laid out at the beginning of this study.  Specifically, the way she attempted proofs 

changed which was reflected in a greater tendency to use a particular proof type as time passed: 

semantic.  Of the other students, six entered the study with a fairly mature view of proof that 

remained unchanged and thus had little progress to make relative to the frameworks used in the 

study.  These students were also generally successful with the proofs they attempted and were 

more likely to use semantic proofs.  The remaining two students were generally less successful 

and used semantic proofs rarely.  This seems to imply that as students become more comfortable 

with proof, they become inclined toward the semantic proof type and this coincides with 

becoming more successful with proof in general. 
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Chapter 1: Introduction 

1.1 Background 

   “Proof lies at the heart of mathematics.  It has traditionally separated mathematics from 

the empirical sciences as the indubitable method of testing knowledge which contrasts with 

natural induction from empirical pursuits” (Hoyles, 1997, p. 7).  Clearly, proof is essential in 

mathematics.  As seen the quote above, it can even be thought of as part of what defines the 

subject.  Professional organizations also recognize the importance of proof.  In the Principles 

and Standards (NCTM, 2000) it states that all students should “recognize reasoning and proof as 

fundamental aspects of mathematics” (p. 56).  More recently, in the 2004 Guidelines, the MAA‟s 

Committee on the Undergraduate Program in Mathematics stated, in the first recommendation 

that courses designed for students majoring in the mathematical sciences “should…ensure that 

students progress from a procedural/computation understandings of mathematics to a broad 

understanding encompassing logical reasoning, generalization, abstraction and formal proof” 

(Baker et al., 2004, p. 44). 

 Unfortunately, despite the importance of learning to prove in mathematics education, 

many students have difficulty (Coe & Ruthven, 1994; Senk, 1985; Selden & Selden, 2003; 

Weber, 2004).  Weber (2004) even goes on to say that “there is widespread agreement that 

students have serious difficulties with constructing proofs” (p. 1).  Since it does present such a 

difficulty for students, many researchers have identified specific troubles students have and 

looked for the underlying reasons for them (Bell, 1976; Ernest, 1984; Moore, 1994; Dreyfus, 

1999).    

 The act of proving, however, is not simply a task to be mastered by students.  Proof is 

also an important tool used by those who study mathematics (Hersh, 1993; Rav, 1999; Almeida, 

2003; Barbeau & Hanna, 2008).  Proof can be (and has been) described in many different ways.  
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This is due, at least in the past, to the diverse ways in which proof is used.  The most 

fundamental aspect of proof, however, is its ability to verify results.  “A proof is a directed tree 

of statements, connected by implications, whose end point is the conclusion and whose starting 

points are either in the data or generally agreed facts or principles” (Bell, 1976, p. 26).  When put 

this way, proof seems a dry and tedious chore.   Almeida (2003) goes even further when he 

points out that “in the current tradition, a mathematical proof is a pure thought experiment 

divorced from context: the truth of a result or statement is deduced on the basis of internally 

agreed and consistent axioms” (p.479).  However, verification is not the only aspect of proof in 

mathematics.  How these alternative features of proof are manifested depends somewhat on what 

one wants to accomplish.   

  For research mathematicians, proving can lead to new insights, generalizations and even 

new branches of mathematics (Rav, 1999).  It can also serve to systemize mathematics into a 

deductive system (Bell, 1976; Almeida, 2003).  Proof can and is also used to convince others of a 

statement‟s validity after one has convinced him or herself (Bell, 1976).  This may even have 

been part of the reason why the notion of proof was invented in the first place (Kleiner, 1994, p. 

293).    

 For mathematics educators, different aspects of proof come to the surface.  “What a proof 

should do for the student is provide insight into why the theorem is true” (Hersh, 1993, p. 396).  

Here, the emphasis is not the fact that a certain result is true or what new insights can be gleaned 

from its verification.  Instead, what is important here are the underlying reasons the result holds.  

Proofs can also be considered “bearers of mathematical knowledge” in the sense that they “have 

the potential to convey to students „methods, tools, strategies and concepts for solving 

problems‟” (Barbeau & Hanna, 2008, p. 345). 
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 Given the prevalence of proof in all aspects of mathematics, it is little wonder so much 

effort has gone into the teaching of the topic.  What may be more surprising, then, is that this 

instruction has not been more successful.  Many researchers have looked into the reasons for 

this.  Some suggest this difficulty stems from the fact that the way mathematicians view proof is 

different from the way it is portrayed in educational settings (Almeida, 2003; Bell, 1976; Hersh, 

1993).  Almeida (2003) points to the fact that the order in which proofs are created (examples – 

conjecture (i.e., theorem) – proof) is different from the order presented in classrooms (theorem – 

proof – examples).  This is not the only way the presentation of proof affects students‟ proof 

performance.  Dreyfus (1999) says that too often instruction (from teachers and textbooks alike) 

is vague about when they are convincing through visual, inductive or intuitive justification and 

when they are displaying deductive mathematical proof.  This vagueness can lead, then, to 

students not knowing what actually serves as mathematical proof.  Bell (1976) also recognizes 

this difficulty.  Others lay some of the blame on the fact that students do not see a need to prove 

and therefore give no effort to do it (Coe & Ruthven, 1994; Harel & Sowder, 2003).  On top of 

these potential roots of student difficulty, students must deal with the problem of the complexity 

of the mathematics itself (Bell, 1976; Ernest, 1984; Moore, 1994).  

 In an effort to study the ways students learn to prove, many frameworks have been 

developed.  One of the most basic frameworks (based on number of proof distinctions) is due to 

Van Dormolen (1977).  Van Dormolen recognized three levels of proof (rooted in Van Hiele‟s 

levels of geometric thinking): ground level, first level, and second level.  Van Dormolen makes 

the case that students must progress from one level to the next.  If they are forced to work at a 

level they are not ready for, they will resort to tricks and memorization to get by.   
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 Balacheff (1998) also gives a relatively concise way to characterize proofs.  His, 

however, focuses more on the ways students become convinced about the validity of a statement 

than on the student‟s level of thinking.  The classes of proof Balacheff gives are: naïve 

empiricism, crucial experiment, generic example and thought experiment.  Weber (2004) also 

gives a way to classify proof attempts.  The types he identifies are: procedural (which includes 

sub-types algorithmic and process), syntactic and semantic.  These will be discussed more 

thoroughly in the theoretical framework section of the literature review.   

 A more elaborate description of students‟ ideas about proof is provided by Harel and 

Sowder (1998).  Instead of classifying only proofs created by students, they categorize what they 

call students‟ proof schemes.  A person‟s proof scheme “consists of what constitutes ascertaining 

and persuading for that person” (Harel & Sowder, 1998, p.244).  There are three main classes of 

proof schemes, each with a number of subclasses and sub-subclasses.  The main classes are 

external conviction, empirical, and analytical.  This framework will be discussed in more depth 

later.   

 

1.2 Research problem and purpose 

 Aside from Von Dormolen‟s levels, the authors mentioned above do not explicitly give a 

hierarchy for the different categorizations given.  Also, little attention is given to students‟ 

movement between classifications.  The way in which this research fits in with existing research 

is not because there is evidence that students‟ conceptions of proof or methods of tackling them 

have changed.  The way it fits in is the longitudinal scope of the study which has allowed for the 

observation of changes that occur in post Math 305 (the transition-to-proof course at The 

University of Montana) students‟ approaches toward proof as they become more proficient (or 
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not) at proof techniques over the course of one year of taking upper division mathematics 

courses.   

 This research is of use because the students in this study were in the process of learning 

proof, but also (at the end of the research) had the ability to look back upon and take stock of the 

progression from novice to someone comfortable with proof.  Typically, in the reported research, 

snapshots of students are taken and researchers are left to figure out why the student did or did 

not have success in their proof attempt.  Also, it is conceivable that researchers‟ own memories 

of becoming competent provers has some bearing on the way they view students‟ behaviors.  In 

this study, much of that reflection is done by the students themselves while looking back over the 

course of months rather than years.   

 

1.3 Definition of terms 

 For the purposes of this study, the following definitions will be used. 

 A proof, in general, will be taken to be a mathematical “argument that convinces 

qualified judges” (Hersh, 1993, p. 391).  During the course of the study, there will be occasions 

that a participant will think that he or she has arrived at a proof when this is not the case.  When 

this happens, their constructions will still be referred to as proofs because they think they have 

arrived at an “argument that convinces qualified judges.” 

 A proof process, or proof type, refers to the way in which a participant works towards a 

proof.  At times, participants will use a variety of methods when coming to a proof.  In these 

cases, the proof given by the student will serve to determine the classification of the student‟s 

proof process.  Later, the term process is used to describe one of the sub-classes of proof 

processes.  To avoid confusion, the term proof type will be used usually often in the study.   



6 

 

 A person‟s proof scheme “consists of what constitutes ascertaining and persuading for 

that person” (Harel & Sowder, 1998, p. 244).  A proof scheme is more inclusive than proof 

process because it refers to both the way participants work to convince the reader of their proof 

and also how they become convinced themselves.  This is important because most participants 

realize the difference between what it takes to believe a mathematical result and the standards 

applied to mathematical proof. 
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Chapter 2: Literature Review 

 The purpose of this chapter is to give a review of some of the relevant existing research 

into the study of proof.  The chapter is broken up into the following sections: empirical, 

philosophical, sociocultural\histoical, pedagogical and theoretical framework.   

 

2.1 Empirical Section 

 While many of the studies done in proof are qualitative in nature this does not mean proof 

research lacks empirical research.  This section examines some such work.  The empirical 

research discussed here will focus on research reporting on student performance.   

 It has been well documented that undergraduate mathematics students often have trouble 

with proof (Senk, 1985; Coe & Ruthven, 1994; Selden & Selden, 2003; Weber, 2004).   In fact, 

“there is widespread agreement that students have serious difficulties with constructing proofs” 

(Weber, 2004, p. 1).  Results of studies will be given here, with reasons for student difficulties to 

be addressed in the literature review section dealing with pedagogy.  However, there is 

encouraging research as well.  It has been shown that students can make good progress if given 

the right instruction (Cobb et al., 1991; Fawcett, 1938/1966; Harel & Sowder, 2003; Maher & 

Martino, 1986).   

 Along with the framework which will be discussed later, Weber (2004) also gives the 

results of the students‟ proof attempts in the studies he reviewed.  In the study involving the 

abstract algebra courses, 56 proof attempts were made by 8 students.  Of those, 46 were syntactic 

in nature (with 24 successful proofs provided).  In the other 10 cases, no progress was made.  In 

the studies involving analysis students, 120 proofs were examined by 6 students.  Here, Weber 
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found much greater variety in the types of proofs attempted.  While no progress was made in 27 

cases, 48 procedural proofs were attempted, 28 were syntactic and 17 were semantic.   

 Selden & Selden (2003) found that not only did students have difficulty proving results; 

they also had trouble judging the validity of proofs given to them (at least initially).  In the study, 

eight students were interviewed.  The students were at the time enrolled in a course meant to 

transition students to upper-level, proof-based mathematics.  Of the eight students, only two were 

able to prove a statement for which all students had adequate content knowledge.  Then, in 

subsequent parts of the interview, the students were asked to judge the validity of proofs given to 

them.  They had multiple chances to make their judgments, and the interviewer was the professor 

of their transitions course.  The interviews could be described as “teaching interviews,” and the 

students‟ judgments improved as the sessions progressed.  However, the students‟ initial 

judgments were only correct 46% of the time – near chance level. 

 With the poor performance of college students in making the transition to proof, changes 

in secondary curriculum have made to help change this.  Coe & Ruthven (1994) studied a group 

of students who went through a British reform curriculum that emphasized student-generated 

mathematics.  They found that the students were able to effectively explore problems they were 

presented.  This, however, did not help them provide proofs for the conjectures they made, even 

though they had been asked to.  Of the 60 proof opportunities the researchers observed, they 

classified only 2 as an “attempt(s) at clear, logical deductive argument with reasonably explicit 

link between starting assumptions and desired conclusion” (Coe & Ruthven, 1994, p. 44).  

Among the other 58, 4 showed some attempt at explaining the underlying reason for why their 

conjectures were true and the rest of the attempts were empirical at best.   
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 Senk (1985) also gives the results of research that looks at the performance of secondary 

school students.  In that study, 1520 students who were at the time enrolled in full-year geometry 

courses were given tests in which they were required to fill in missing parts of proofs, translate 

verbal statements into “an appropriate „figure,‟ „given,‟ and „to prove‟” (p. 449) and write full 

proofs.  The tests were graded on a 0 – 4 scale.  Senk (1985) sums up the results by saying:  

 …we see that at the end of a full-year course in geometry in which proof writing is 

 studied, about 25 percent of the students have virtually no competence in writing proofs; 

 another 25 percent can do only trivial proofs; about 20 percent can do some proofs of 

 greater complexity; and only 30 percent master proofs similar to the theorems and 

 exercises in standard textbooks.  (p. 453 – 454) 

 

 As mentioned above, not all the existing research on proof is negative.  Encouraging 

results have been found at all levels of education.  For example, Cobb et al. (1991) describe a 

study in which 10 second grade classes were oriented to comply with a socio-constructivist 

theory of teaching and were then compared to 8 unchanged classes in the same schools.  The 

results of the study indicated the students in the “project” classes performed better on conceptual 

problems, very nearly as well on computational problems and had a more positive attitude 

toward mathematics when compared to the students in the “non-project” classes.   

 Maher & Martino (1986) discuss research in which students were (over the course of 5 

years, from grades 1 to 5) given problems to work at in groups.  These problems involved 

making claims and justifying them to a teacher and/or fellow students. In the article, one student 

was followed and 11 “episodes” were described showcasing her progression toward formal 

proof.  During the progression, the student recognized patterns that she later applied to similar 
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problems, displayed the desire to provide a “for all” type justification and used logical inference 

(characteristics of transformational-based proofs).   

 In the secondary education setting, Fawcett (1938/1966) performed a study whose 

purpose was “to describe classroom procedures by which geometric proof may be used as a 

means for cultivating critical and reflective thought and to evaluate the effect of such experiences 

on the thinking of pupils” (Fawcett, 1938/1966, p. 1).  The procedures were carried out with an 

experimental class as well as a control class.  Not only did the experimental class out-perform 

the control class (and two others from different schools, included to make a larger comparison) 

on a post-test covering the nature of proof, but the experimental class also performed very well 

on the standardized geometry test: the Ohio Every Pupil test.  The median class score was 52.0 

out of 80, while the statewide median was 36.5.  The experimental class median score was good 

enough to be placed between the 80
th

 and 90
th

 percentile statewide.   

 At the college level, Harel & Sowder (2003) provide principles they used in a transition 

course designed to “make proofs tangible.”  By this, they mean to make proofs concrete, 

convincing and essential.  They reported that this method did not have a drastic effect on 

students over the course of one semester.  However, findings from further observations over the 

course of several semesters of courses suggest “that the instructional treatments we employed in 

our teaching experiments are potentially effective and can advance students‟ conceptions of 

proof” (Harel and Sowder, 2003, p. 266).  

 Besides the results mentioned here, the research into proof has also helped give an 

understanding of what mathematicians and students think about proof.  These insights are in 

given the next section.   
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2.2 Philosophical Section 

 The views mathematicians have had about proof is not something that has stayed static 

over the history of mathematics (Kleiner, 1991; Moreno-Armella, Sriraman, & Waldegg, 2006).  

The ways these views have changed will be looked at in more detail in the 

Sociocultural/Historical section.  Other aspects of the philosophy of proof will be looked in this 

section.  In particular, what are some of the specific views that students have about proof and 

some conflicting philosophies of proof.   

 Before getting into the sub-sections, one ought to start with such a discussion with what 

constitutes a proof.  Hersh (1993) offers three different definitions of the word “prove”, based on 

the context in which is used.  The first, the everyday definition, is to “(t)est, try out, determine 

the true state of affairs”  (p. 391, italics in original).  The next two definitions are placed with in 

mathematics.  The first of these, what Hersh calls the “working” definition, is that a proof is 

“(a)n argument that convinces qualified judges” (p. 391).  The last definition of proof is the 

“logic” definition: “A sequence of transformations of formal sentences, carried out according to 

the rules of the predicate calculus” (p. 391).  An argument that is merely convincing would 

probably not be acceptable for publication in a research mathematics journal; however, it does 

tend be good enough for mathematicians in practice, as Hersh suggests (Weber & Alcock, 2004). 

 This distinction between working and logical definitions of proof leads to an 

inconsistency between how mathematicians view proof in practice and how they would describe 

proof to a non-mathematician, as shown by the hypothetical dialogue (Davis and Hersh, 1981, p. 

39-40) between a philosophy student and “The Ideal Mathematical.”  When asked for a 

definition of proof by the student, the I.M. first gives one similar to logic definition given above.  

After the student notes that this does not match his or her experience with proof, the I.M. 
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concedes that proof really more closely matches the working definition.  The I.M. ends the 

conversation by saying, “Everybody knows what a proof is. Read, study, and you'll catch on. 

Unless you don‟t.” (as cited in Hersh, 1993, p. 389). 

2.2.1 The proof beliefs of students 

 With such varied and ambiguous notions of proof, it is not surprising that students‟ views 

on proof are inconsistent as well.  Coe & Ruthven (1994) found that British secondary students 

had a hard time speaking explicitly about proof, and yet were able to recognize distinctions.  For 

example (not unlike Hersh‟ distinctions above), they saw a difference between “mental” proofs 

(being able to see why something works) and “formal” proof.  This led to the students recognize 

the ability of proof to not only ensure certainty but also to explain.   

 Coe & Ruthven (1994) also found that students saw the solutions to problems as more 

important than the reasons for the solutions.  Hoyles (1997) found a similar attitude among 

British students.  When presented with different proofs for the same results, the students were 

asked which proofs they would most likely give and which they thought would receive the 

highest grade from there teachers.  Students said that the proof they chose would receive the best 

score only 21% of the time (p. 12).  Unfortunately, this choice was typically based on a ritualistic 

proof scheme, since students tended to pick formal arguments (correct or not) as being the ones 

most likely to be graded highest.  In their opinions, the students usually felt that they chose for 

themselves proofs that were both explanatory and general, while they felt the proofs that yielded 

high scores were only general.   

 The students involved with the studies in preceding paragraph were British students who 

had taught using a curriculum that emphasized an exploratory approach to mathematics.  It 

should not be too surprising, then, that the students did not have what one might consider the 
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ideal perception of proof.   In his book, The Nature of Proof (1938/1966), Fawcett describes a 

high school geometry class which had the analysis of proof as a central focus.  As a result, the 

students came to understand many important aspects of proof.  For example, they learned to 

make formal deductions, identify undefined terms and see the importance of axioms and 

previous results.  This insight was lacking in a control class using traditional instruction.  Studies 

have also shown that even before high school, instruction can have an impact on student‟s ability 

to solve conceptual problems (Cobb, et al., 1991) and work toward providing formal proof 

(Maher & Martino, 1996).   

 A student‟s ideas concerning proof are not always a function of instruction, however.  

Sriraman (2004) found that gifted students shared certain characteristics with professional 

mathematicians.  Among these were the sort of argument that would or would not constitute a 

proof and overall methods for finding solutions to problems.  On the other hand, Chazan (1993) 

found that high school geometry students can have a view of proof contrary to what (in the 

researcher‟s opinion) they are likely taught: that empirical evidence is proof and deductive proof 

is merely evidence. 

2.2.2. Conflicting philosophies of proof 

 Differing philosophies of proof are grounded in differing philosophies of mathematics.  

Two main philosophies of mathematics will be discussed, along with their implications for proof.  

The first philosophy, social constructivism, as defined by Ernest (1991) views mathematics as a 

social construction.  It is based on conventionalism, which acknowledges that “human language, 

rules and agreement play a role in establishing and justifying the truths of mathematics” (p. 42).  

Ernest gives three grounds for this philosophy.  The first is that linguistic knowledge, 

conventions and rules form the basis for mathematical knowledge.  The second is that 



14 

 

interpersonal social processes are needed to turn an individual‟s subjective mathematical 

knowledge into accepted objective knowledge.  The last is that objectivity is understood to be 

social.  A key part of what separates social constructivism from other philosophies of 

mathematics is that it takes into account the interplay between subjective and objective 

knowledge.  When a discovery is made by an individual, this subjective knowledge becomes 

accepted knowledge by the community – thus becoming objective.  Then, as this knowledge is 

further spread to others, they internalize it and it becomes subjective again.   

 In her (1999), Gold offers some critiques of social constructivism as a philosophy of 

mathematics.  The first is that this philosophy fails to account for the usefulness of mathematics 

in the world.  Social constructivism does fine when explaining how mathematics can be created 

to solve practical problems.  However, it does nothing to explain mathematics created long 

before application.  Social constructivism also fails to account for cases like that of Ramanujan, 

who developed his results through interaction with mathematical objects and not a mathematical 

community. 

 Gold‟s main critique, however, is the failure of social constructivism to distinguish 

between mathematical knowledge and mathematics itself.  Mathematical knowledge is what is 

socially created and/or discovered.  She repeatedly draws on physics as an illustration.  

“(P)hysical objects either are or are not made up of atoms, and it is not the community of 

physicists that makes that true or false: it‟s the actual state of the world” (Gold, 1999, p. 377).  

While our knowledge of something may change over time, the reality of it does not.  If 

mathematics is a human creation, can the same not be said for the quarks?   

 Hersh (1993) would say that Gold is arguing in favor of an “absolutist” philosophy of 

mathematics.  Having this view of mathematics has implications for one‟s views of proof.  For 
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an absolutist, mathematics is made up of absolute truths that require complete, correct proof.  

Since many mathematical results have multiple proofs, an absolutist would be given preference 

based on brevity and generality, not on explanatory power.  On the other hand, Ernest‟s social 

constructivism would be considered “humanistic” by Hersh.  Under this philosophy, proof (like 

mathematics in general) is for us to use as we see fit.  Here, the main role of proof is explanation.  

“Proof is complete explanation.  It should be given when complete explanation is more 

appropriate than incomplete explanation or no explanation. … Sometimes a partial explanation 

suffices.  Sometimes we skip the proof, if a lemma or theorem seems clear enough on its own” 

(Hersh, 1993, p. 397).    

 In his book Proofs and Refutations, Lakatos (1976) offers another critique of the 

absolutist view of mathematics and proof.  There, he makes an argument that an overly formal 

view of mathematics (to include an absolutist view of proof) can have a negative effect on 

students‟ attitudes.  When mathematics is presented as if it is infallible knowledge handed down 

from above, it becomes easy for students to think it inflexible.  Thus, the dominance of 

formalism can take away the exploratory nature of mathematical practice.  When students are 

aware of the process that occurs when mathematics is discovered (a process embraced by social 

constructivism), they will be more likely to see mathematics as an activity in which they can 

engage. When students feel mathematics is something they can interact with (as opposed to facts 

and rules given for memorization) they are more likely to see it as something existing in the real 

world in which they too live.   

 Not only is an overly absolutist view of mathematics detrimental to the views of students, 

it is also not an accurate view of the mathematics that has existed throughout history.  Lakatos 

(1976) provides two examples (one in the main body of his book, and another in the appendix) 
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that point out that the mathematical community has had to deal with a theorem that apparently 

had been proven, and yet suffered counter-examples.  Hersh has a similar sentiment: “Intuition is 

fallible in principle; rigor is fallible only in practice” (1993, p. 395).  Social constructivists would 

point to the fallibility of proofs as evidence that mathematics is a social construct and therefore 

lacks certainty.  If the verification of mathematical facts can turn out to be false, then 

mathematical facts are subject to question as well.  Gold points out, though, that proofs are 

among the activities that concern human knowledge.  As such, they are subject to revision, as are 

theories in the physical sciences that mean to explain some physical phenomenon.  The revision 

of explanatory theory, however, does not change the physical phenomenon. 

 The views given above no doubt have been influenced by the culture of those who held 

them and the events in mathematics that came before them.  In the next section, some of these 

potential influences will be examined.   

 

2.3 Sociocultural\Historical Section 

 As will be seen, there has been much interaction between mathematics and society 

(Grabiner, 1996; Moreno-Armella, Sriraman, & Waldegg, 2006; Siu, 2008).  This interaction has 

led, in some cases, to society influencing mathematics and mathematics influencing society.  

This section will examine some of these influences, as well as some of the history of proof 

(particularly its evolution).   

2.3.1 The interaction of mathematics and society 

 When people speak of the interplay of mathematics and the “real world” (at least in the 

context of mathematics education), they are often referring to direct applications of mathematical 

ideas - usually in the form of procedures used to solve particular types of problems.  This is not 
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the type of interaction that will be dealt with here.  Here, what will be examined is how 

mathematics has been affected by the culture in which it exists and vice versa.  

 The connection between mathematics and society has long been recognized in 

mathematics education, in various forms.  Perhaps the most prominent form is that alluded to 

above: the inclusion of “story problems” and “real world” activities in mathematics curriculum.  

This is not the only way the link between mathematics and society can be viewed by 

mathematics educators.  In the book The Nature of Proof, Fawcett (1938/1966) recognizes the 

ability of mathematical training to affect change in lives of students outside mathematics.  “(T)he 

purpose of this study (is) to describe classroom procedures by which geometric proof may be 

used as a means for cultivating critical and reflective thought and to evaluate the effect of such 

experiences on the thinking of pupils” (Fawcett, 1938/1966, p. 1).  It is argued that the goals he 

describes are the goals the got geometry in secondary curriculum in the first place and this 

improvement in critical thinking should transfer beyond the geometry classroom.  Despite these 

goals being widely shared (even among high school teachers), they are rarely reached.  Many 

make the mistake of assuming “that since demonstrative geometry offers possibilities for the 

development of critical thinking, this sort of thinking is necessarily achieved by a study of the 

subject” (p. 10).  This leads to a focus of geometric facts (as evidenced by examining tests 

administered in a typical geometry class).  This new focus de-emphasizes the link that is trying 

to be established.   

 Besides the ability of proof to forge a link between mathematics and students‟ lives, there 

are other links between proof and culture.  Moreno-Armella, Sriraman & Waldegg (2006) look to 

historical examples to see how mathematical objects are related to the contexts in which they are 

created and the ways in which that operate (or are operated upon). The first example is that of the 
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concept of number held by the Pythagorean School.  The Pythagoreans held that all things could 

be studied using integers and the ratios of integers.  However, through the process of 

mathematical study they discovered the “incommensurability” of certain line segments (i.e. the 

discovery of line segments whose ratio could not be written as the ratio of relatively prime 

integers).  Because this discovery conflicted with their foundational beliefs – and therefore 

created a crisis within their belief system – it was rejected.  This example illustrates that their 

concept of number (the object) was tied to the consequences of its operations and the only ways 

to reconcile the inconsistency were to either alter the concept of number or ignore the 

inconsistency.   

 Another example is that of Euclid‟s construction of geometry.  Here, the reliance on 

postulates necessitates a reliance on the material experiences that made the postulates “self-

evident.”  This opens the door for mathematics to be based on material experiences that may be 

flawed, or at least limited.  This reveals the fact that entire mathematical systems can be tied 

irrevocably to pre-existing ideas, or common (perhaps cultural) knowledge.  This is the first 

example turned on its head: before knowledge was adjusted to fit pre-conceived ideas and here it 

is based on them.   

 Siu (2008) also points out ways in which mathematics, and proof in particular, has been 

influenced by the surrounding community.  This recognition is tied to the recognition that 

mathematics is “part of human endeavour” (p. 355) and not a stand alone technical subject.  To 

this end, Siu gives four examples that provide insight into how math fits into over-all human 

culture.  The first example examines “the influence of the exploratory and venturesome spirit 

during the „era of exploration‟ in the fifteenth and sixteenth centuries C.E. on the development of 

mathematical practice in Europe” (p. 356).  This desire to explore inspired scientists and served 
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as a model for discovery.  Some aspects of this influence were calls for the sharing of conjectures 

and exploring problems considered completed.  Among the new explorations was the 

consideration of infinitesimals. 

 The next example shows the influence of social environment of China during the third to 

sixth centuries on the work of mathematician Liu Hui.  This was a period of social turmoil that 

saw a decrease in the influence of orthodoxy belief – which meant an increasing of free thinking.  

This allowed modes of thought that differed from the traditional Confucianism, including the 

introduction of a form of deductivism.  It also led to “the predilection for rhetoric and dialectic” 

which could be proposed to be “conducive to the promotion of a notion of proof” (p. 359). 

 The third example also is set in China and looks at the influence of Daoism on 

mathematics of the time.   The attention paid to change as a characteristic of all things in Chinese 

philosophy is reflected in the mathematics of China in the fourth century B.C.E.   

 The last example examines the influence of Euclid‟s Elements on Western culture (more 

on this below) compared to that in China.  In this example, unlike the others, mathematical 

thought is shown to influence broader culture.  Translated in Chinese in 1608, the book was 

greeted by some who recognized its ability to enlighten.  However, it had little overall 

mathematical influence.  Despite this, the Elements did have influence over political figures that 

were “main figures in the futile attempt of the „Hundred-Day Reformation Movement‟ of 1898” 

(p. 360). 

 Finally, Grabiner (1998) makes a very good case for the influence of mathematics in 

general (not just Euclid) on Western thought.  Grabiner breaks mathematics‟ influence in to two 

main categories: certainty and applicability.   
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 The certainty aspect of mathematics is where The Elements is so influential.  Its influence 

is seen in two ways.  One is the Platonic idea that there is a pure, unchanging truth that exists 

somewhere and that our reality is an imperfect approximation of it.  This idea can be supported 

by citing unchanging results such as the sum of the angles of a triangle must always equal  .  

The other way in which The Elements shows its influence is through its argumentation.  Grabiner 

cites examples from other fields where thinkers start from, essentially, axioms and build 

arguments from there.  Among the examples of this kind of argumentation are Newton‟s 

“Axioms, or Laws of Motion” (“(h)is Principia has a Euclidean structure, and the law of gravity 

appears as Book III, Theorems VII and VIII.”) and in the Declaration of Independence (“We 

hold these truths to be self-evident…”) (Grabiner, 1988, p. 221). 

2.3.2 History of proof 

 Mathematicians‟ ideas of what constitutes a formal proof have evolved over time 

(Kleiner, 1991; Harel & Sowder, 1998; Almeida, 2003).  Kleiner (1991) mentions the 

Babylonians as the greatest pre-Greek mathematicians, although they had no formal notion of 

proof.  They did, however, bring mathematics to a point at which it was ready for the 

introduction of deduction.  Then, the Greeks invented proof as deduction from explicitly stated 

postulates.  Some of the potential reasons for this advancement include the need to reconcile 

inconsistent results passed down from previous mathematicians (or that developed with in Greek 

mathematics itself), the democratic Greek preference for discourse and argumentation and the 

need to get to underlying reasons for results for the purposes of teaching or philosophic inquiry 

(Kleiner, 1991).   

 This emphasis on deduction, however, did not come without a price.  The Greek‟s 

axiomatic insistence prevented them from using certain ideas (e.g., irrational numbers, infinity) 
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(Harel & Sowder, 1998, p. 239).  It also led to a long period of little rigor (Kleiner, 1991; Harel 

& Sowder, 1998).  Kleiner shares Lakatos‟ opinion when he says, “Too much rigor may lead to 

rigor mortis” (1991, p. 294).   

 The next major change in the history of proof came in the introduction of symbolic 

notation and manipulation as methods for discovery and demonstration in the 16
th

 through 18
th

 

centuries (Kleiner, 1991; Harel & Sowder, 1998).  This allowed for the general proof instead of 

specific demonstration.  It also brought mathematics within reach of more students.  An example 

of symbolic notation being conducive to discovery can be seen in Leibniz‟s discovery of the 

product rule.  It was also about this time that explicit formal proof was less than necessary 

because validity was attained through application (Harel & Sowder, 1998).   

 Mathematics saw the return of rigor, however, in the early 19
th

 century.  To illustrate this, 

Kleiner (1991) focuses on Cauchy‟s 1821 Cours de’Analyse, which provided a rigorous 

foundation for calculus.  Kleiner notes that “most of the…basic concepts of calculus were either 

not recognized or not  clearly delineated before Cauchy‟s time” (1991, p. 296).  Cauchy had not 

yet reached the level of rigor to which mathematics is accustomed to today.  For example, 

notions and definitions of important calculus concepts (e.g., limit, continuity and infinitesimal) 

were verbal in nature and there was the use of geometric intuitions in proving existence of limits.  

The first appendix in Lakatos‟ Proofs and Refutations (1976) describes an event in which the 

failure to rigorously define terms led to the proof of an incorrect theorem.  It was left, then, to 

Weierstrass and Dedekind to lay the study of analysis on a firm foundation through the rigorous 

definition of the real number system and the modern definition of delta-epsilon limit – removing 

the use of infinitesimals.   
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 In the late 19
th

 and early 20
th

 centuries, mathematics saw what Kleiner describes as the 

“reemergence of the axiomatic method.”  This was spurned on by Boole‟s The Mathematical 

Analysis of Logic in 1847 which served as the introduction of logic and highlighted the 

arbitrariness of axioms.  Thus, axioms were no longer based on observations, but became tools of 

mathematical research.  The axiomatic method developed slowly but by the early 20
th

 century, it 

was established in a number of areas of mathematics.   

 Almeida says that “in the current tradition, a mathematical proof is a pure thought 

experiment divorced from context: the truth of a result or statement is deduced on the basis of 

internally agreed and consistent axioms.”  (2003, p. 479).  While this seems likely to be true, 

strictly speaking, in the area of pure research mathematics, it is not the case in all branches of 

mathematics.  For example, Hersh (1993) points out that applied mathematics is much less 

rigorous, even publishing convincing heuristics in lieu of proof.  There are also other places the 

definition of proof is being blurred.  For example, the classification of all finite simple groups 

was accomplished my many mathematicians.  Of the proof, Daniel Gorenstein said: 

 The ultimate theorem which will assert the classification of simple groups, when it is 

 attained, will run to well over 5,000 journal pages! ... It seems beyond human capacity to 

 present a closely reasoned several hundred page argument with absolute accuracy ... How 

 can one guarantee that the "sieve" has not let slip a configuration which leads to yet 

 another simple group?  Unfortunately, there are no guarantees - one must live with this 

 reality.                                                                         As cited in Hersh, 1993, p. 392 - 393  

 

Clearly, this is a departure from what is generally considered proof.    
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 This is not the only way in which the conventional notions of proof are being challenged.  

So called probabilistic proofs are used to, among other things, determine whether or not a given 

integer is prime (Kleiner, 1991).  It has even been shown that for sufficiently large integers, the 

probability of error when using the fast methods of probabilistic proofs is smaller than the 

probability of computational error in a rigorous (and longer) proof (Hersh, 1993).  Proofs by 

computer have also spurred debate about proof.  Proofs of the four-color theorem (Kleiner, 1991; 

Hersh, 1993) and Kepler‟s conjecture (Szpiro, 2003) have recently been completed by use of 

computers.  Mathematicians give differing reasons for there resistance to accept computer based 

proofs.  Hersh (1993) provides some of them: one can not see the inner-workings of the proof, 

they are not aesthetically pleasing, one does not learn from them and introduction of the 

computer may introduce errors of which mathematicians are not aware.  To be sure, some of 

these criticisms can be leveled at traditional proofs as well.  It seems reasonable, however, to 

conclude that these are more of a cause for concern when dealing with computer proofs.  

 Because of these new found issues with proof, Hersh (1993) concludes that it is possible 

eventually more proofs will contain qualifiers.  For example, “by hand” or “by machine” may 

accompany proofs in the same way proofs today mention when and where they use things like 

the axiom of choice or the law of the excluded middle.   

 How proof fits into society and its history have important implications for how proof is 

taught and learned (Bell, 1976; Moreno-Armella & Waldegg, 1991; Almeida, 2003).  For course, 

there is much more that one must consider when discussing the pedagogy of proof, as will be 

seen the in next section.   
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2.4 Pedagogical Section 

  While it has been seen above that students often struggle with proof, improving student 

performance in proof is not a lost cause.  Fawcett (1938/1966) outlines methods that improve the 

proof abilities of high school geometry students.  Other authors have also found that students‟ 

proof performance is affected by various circumstances besides explicit teaching methods, 

including textbooks (Coe & Ruthven, 1994) and overarching curricular goals (Hoyles, 1997).  

Unfortunately, these influences are not always positive (as is seen in the two previously 

mentioned studies).  Although the following quote is referring to the lack of proof ability of 

incoming college students, it is appropriate here due to the connection between proof instruction 

and students‟ skills:  “(U)niversity coursework must give conscious and perhaps overt attention 

to proof understanding, proof production, and proof appreciation as goals of instruction” (Harel 

& Sowder, 1998, p. 275).   

 This section will look at some of the pedagogical aspects of proof.  These will include the 

uses of proof in the classroom, particular difficulties students encounter when dealing with proof 

and finally some research on the teaching of proof.  

2.4.1 Proof’s use in the classroom 

 Proofs have more to offer than simply the verification of results.  The most obvious way 

this is true is in the ability of proof to explain things.  “More than whether a conjecture is correct, 

mathematicians want to know why it  is correct” (Hersh, 1993, p. 390).  By including proof in 

classrooms, students can be shown the “why,” not just the “whether.”  “Proof and explanation 

are thus interwoven in processes of understanding” (Dreyfus, 1999, p.101).  

 This point is further illustrated by Barbeau & Hanna (2008).  There, the authors take 

Yehuda Rav‟s paper “Why do we prove theorems?” and apply it to mathematics education.  
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While the authors acknowledge that many proofs have the power to explain particular 

mathematical material, they take things a step further.  “This paper aims to show that proofs can 

also be the bearers of mathematical knowledge in the classroom in the sense proposed by Rav: 

that proofs have the potential to convey to students „methods, tools, strategies and concepts for 

solving problems‟” (p. 345).  The ways in which proofs are valuable beyond verification of 

propositions suggested by Rav include: explanation of the underlying reasons for a result holds 

true, invention of methods for problem solving, unexpected results and new areas of 

mathematics.  Beyond the uses mentioned above, Barbeau & Hanna point out that proofs can be 

put to use pedagogically.  For example, proofs can set the stage for other concepts that students 

may see in the future and give students access to generalizations, not just the results themselves.  

Also, different proofs for the same proposition bring different generalizations to light.   

 One needs to be careful, however, in the way proof is implemented.  An over-reliance on 

formalism can be detrimental to students‟ view of and performance in mathematics (Lakatos, 

1976; Kleiner, 1991).  For this reason, the ways proof is used in the classroom should vary 

depending on the class (Polya, 1954; Dreyfus, 1999).  Van Dormolen (1977) gives different 

levels students‟ understanding of proof and points out that students must progress through the 

levels sequentially.  Without this progression, students will resort to memorization and tricks to 

get by.  Of course, these methods only work for problems familiar to students and leaves them 

ill-equipped for new problems.  Polya (1954) also recognizes the need to vary the types of proofs 

given to classes.  For example, the use of delta-epsilon proofs in a freshman level calculus class 

would leave most of the students behind; in such a setting pictures, examples and analogy are 

often sufficient to convince and enlighten.  However, professors of an analysis class would be 
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doing their students a disservice by not demonstrating the delta-epsilon proofs that will be 

expected of them.   

 Because care needs to be taken when implementing proof in a class, the failure to do so 

can lead to student difficulties.  This will be seen in the next subsection. 

2.4.2 Student difficulties in proof 

 One reason that students find proving difficult has already been mentioned; that is, 

students sometimes model what they see done in their classes.  Often, especially for students just 

beginning their collegiate mathematics courses, they have seen very little in the way of formal 

proof and “have had little opportunity to learn what are the characteristics of a mathematical 

explanation” (Dreyfus, 1999, p. 91).  This in itself is not always a problem, however, as 

mentioned above.  The problem, Dreyfus says, is that distinction between formal and intuitive 

arguments is rarely given.  Teachers and textbook writers aren‟t sensitive to the need to set 

norms of mathematical behaviour.   

 In many textbooks used at the level under consideration, more or less formal arguments 

 are used, together with visual or intuitive justifications, generic examples, and naive 

 induction. Even the formal arguments are often only formal in appearance.  But more 

 importantly, students are rarely if ever given any indications whether mathematics 

 distinguishes between these forms of argumentation or whether they are all equally 

 acceptable.  (Dreyfus, 1999, p. 97) 

 

Dreyfus goes on to say that  

 explanatory discourse is more metamathematical than mathematical; it may, for example, 

 include reasons why a certain fact is significant in mathematics, something which is 
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 clearly beyond the realm of a proof. … It thus appears that, at least in some measure, the 

 task of learning and teaching mathematical justification conflicts with the pursuit of 

 learning and teaching mathematical relationships, concepts and procedures in a flexible 

 manner. (1999, p. 101 - 104) 

 

No doubt, this means that teachers will often need to walk a fine line.  The key is making sure 

that students are aware of the difference between the explanations there are given and what 

constitutes valid mathematical proof.   

 Besides the over-arching source of student difficulty mentioned by Dreyfus, other 

researchers have found particular troubles students have with proof.  For example, Ernest (1984) 

lays out six specific problems students encounter when learning how to do proofs by induction.  

They are: the dual uses of the word “induction,” the belief that you are using what is to be proven 

within the proof itself, a lack of understanding the roles of qualifiers and /or logical complexity 

of the argument itself, the view that one component of mathematical induction is not necessary 

(most often, the basis step), the belief that it is only good for certain types of problems (summing 

finite series, e.g.) and a lack of understanding the basis for the method.   

 Moore (1994) went through a similar cataloguing of student difficulties.  He found seven 

major reasons students struggle, labeled D1 – D7: 

 D1: Students unable to state definitions 

 D2: Students had little intuitive understanding of the concepts 

 D3: The students‟ concept image was inadequate for doing the proof 

 D4: Students did not generate or use own examples 

 D5: Students couldn‟t use definitions to obtain overall structure of the proof 
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 D6: Students couldn‟t understand or use mathematical notation 

 D7: Students couldn‟t begin the proof   (Moore, 1994, p. 251 – 252) 

 Much of Moore‟s article is framed around what he calls the concept-understanding 

scheme.  The concept-understanding scheme is the three aspects of a concept: definition, image 

and usage.  Concept definition is the technical, mathematical definition of a concept.  Concept 

image is the mental pictures associated with the concept, and their properties.  Concept usage 

refers to the ways one operates with the concept to generate or use examples and do proofs.  

Students with an inadequate image of a concept have trouble defining it and using it (in proofs or 

otherwise).  Students may also have trouble distinguishing between a concept‟s image and its 

definition. This can then result in a lack of formality in giving proofs although the student feels 

like he or she understands the problem.  Besides a lack of formality, the failure to differentiate 

between image and definition can cause problems because proofs, especially in transition 

courses, are often structured around definitions.  Without the definition to help students frame 

their proofs, they can experience an overload in both linguistic and conceptual difficulty.  Bell 

(1976) also recognizes complexity as a problem for students: “It often seems that this complexity 

factor interacts with the knowledge factor and the grasp of a concept that is not well understood 

is lost” (p. 34).   

 Another study that looked at student difficulty with proof was completed by Bedros 

(2003) at The University of Montana.  Specifically, that study examined post-Calculus II 

students‟ perceptions and understandings of indirect proofs.  He found that students tended to 

prefer using direct reasoning to indirect reasoning, that their understanding of indirect proof 

methods were limited to surface structure and that students generally used intuition as a guide to 

exploring a problem rather than viewing indirect reasoning as a tool at their disposal. 
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 VanSpronsen (2008) also completed a dissertation at The University of Montana which 

examined proof.  Her research sought to describe the strategies students used while completing 

proofs.  Her results indicated that students‟ strategies stayed fairly consistent across different 

questions and that some were more successful than others.  The strategies she observed were: the 

use of examples, the use of equations, the use of other visualizations and student self-regulation.  

These strategies were unique to the individual student and, as is mentioned above, remained 

static across question.  It is not too difficult to imagine that this led to student difficulties as 

different problems often lend themselves to different techniques. 

 With all the difficulties students come upon when learning proof, it is little wonder that 

much research has been done regarding ways to improve proof instruction.  Some of this 

research will be addressed in the following sub-section.   

2.4.3 Teaching Proof 

 Dreyfus (1999) mentions that one of the obstacles students have when trying to learn 

proof at the college level is that they have little proficiency in proof when they get there.  In 

Patterns of Plausible Inference (1954), Polya lays out the ways that people judge the plausibility 

of statements.  By doing so, he gives a guide for teachers to show students informed ways of 

going about exploring a problem.  “I address myself to teachers of mathematics of all grades and 

say: Let us teach guessing!” (Polya, 1954, p.158)  Improved guessing on the part of the student 

ought to enable to students to distinguish a more reasonable guess from a less reasonable one.  

The instruction in judgment on the reasonableness of guesses would inherently bring to light 

aspects of argumentation.  More informed argumentation on the part of students will leave them 

better able to differentiate valid proofs, an important skill for students in proof based classes 

(Weber & Alcock, 2004). 
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 Polya is also influential in the instruction of proof via the problem solving steps he laid 

out in his book How to Solve It (1945).  There are five steps to the plan, the first of which is 

“Understanding the problem.”  This includes verifying all terminology is understood and 

exploring the problem using pictures or examples.  The second step is “Devising a plan.”  This 

might be done by looking over notes or a textbook or revisiting similar problem that have already 

been completed.  After a plan has been created, the next step is “Carrying out the plan.”  This 

step is fairly straight forward and after it is completed, the final step is “Looking back.”  In this 

step, the solution is checked and alternative solutions are sought out.  As mentioned above, these 

steps have been influential in proof instruction.  In fact, the students who took part in this study 

used a textbook (Daepp & Gorkin, 2003) that had these steps as a focus for their Introduction to 

Abstract Mathematics class.   

 Fawcett (1938/1966) lays out some methods to improve proof instruction specific to the 

high school geometry level.  The stated goal of the methods employed involved more than 

improving student proof performance; it also included a transfer of critical reasoning skills 

outside the classroom (Fawcett, p. 1).  However, the methods did lead to students becoming 

better at proof.   

 The class began with a topic of a completely non-geometric nature (about the granting of 

special school awards).  This discussion highlighted to the students the need for clear definitions.  

Then, the class clarified the distinction between definitions and accepted rules.  After this, the 

class began to examine geometry.  The students wrote their own textbooks as they went along, so 

the class began by defining the geometric terms they were going to use for themselves.  These 

definitions were made and refined by the class.  Once a definition was agreed upon, it would be 

recorded in the textbooks.  These textbooks were available at all times to discourage  
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memorization.  Besides definitions, the class decided amongst themselves which terms would be 

used without definitions and which assumptions were to be made with out verification.   

 These definitions, undefined terms and assumptions came about through various class 

exercises in which the teacher would present the students with a diagram and ask what properties 

they were willing to accept after inspection of the (sometimes dynamic) diagram.  During the 

course of stating the properties, the need to clearly identify terms and principals in use.  If a term 

that had not been used before came up, it was either defined or placed into the undefined terms 

category.  It should be noted that a term was called undefined if it was agreed that there could be 

no confusion about its meaning.  Along with the terms, statements about the figures were also 

fodder for discussion.  Through the course of the discussions, students had the chance to add new 

assumptions or verify “implications” (theorems).  It is worth noting that the theorems were first 

conjectured by the students themselves.   

 If the pupil is to have the opportunity „to reason about geometry in his own way,‟ no 

 theorem should be stated in advance; for such a statement fixes, to some extent, the 

 direction of his thought and deprives him of discovering for himself the mathematical 

 relations whish control a situation.   (Fawcett, 1938/1966, p. 62) 

 

Also worth noting is that during the verification of implications, various students would present 

proofs.  Often, this led to students weighing the merits of such proofs.  It is here that students had 

the chance to choose between inductive and deductive proofs and preference was shown for 

deduction.   

 Another activity the class engaged in was proof analysis – identifying definitions, 

assumptions, etc.  This yielded insight into deductive proof because it forced the students to 
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consider what would happen if an assumption turned out to be wrong.  The illustration given by 

Fawcett described the teacher providing the students alternate notions of space which led to the 

questioning of their assumption of the parallel postulate.   

 This emphasis on student-created mathematics is not unique to Fawcett.  Harel (2008) 

looks at the tendency for math educators to over-emphasize “ways of understanding” (e.g. 

results, proofs, methods) while neglecting “ways of thinking” (e.g. techniques for proof and 

problem-solving, beliefs about math).  By allowing the students to create the mathematics they 

are learning, the students‟ ways of thinking are automatically taken into account.  It also allows 

the proofs to be at a level the students are comfortable with, which is also important (Coe & 

Ruthven, 1994; Van Dormolen, 1976).   

 It is also worth noting that the classroom as it is set up by Fawcett is less authoritarian 

and more closely related to the way research mathematics takes place.  This is important because 

students should have the opportunity to learn about mathematics in ways similar to how it is 

practiced (Bell, 1976; Almeida, 2003).  Also, since the students needed to convince each other, 

they saw a need for providing proofs.  Providing a need to prove is vital for teaching proof (Van 

Dormolen, 1976; Harel & Sowder, 1998).  When students see the need to verify proofs, they 

begin to focus on understanding the reasons mathematical results hold and less on simply finding 

solutions to problems (Coe & Ruthven, 1994).   

 Harel & Sowder (2003) sum up many of these goals in their “make proofs tangible” 

instructional principle.  A tangible proof has three characteristics.  First, it is concrete.  Concrete 

proofs deal with entities the students sees as mathematical objects.  Next, a tangible proof needs 

to be convincing; students must understand the underlying ideas of the proof, not just be able to  
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validate from step to step.  Lastly, tangible proofs are essential; students should see the need for 

the steps to be justified. 

 It should be noted that following these principles are not the only way students can learn 

proof.  Weber (2003) describes a way in which students can learn to do proofs via what he calls a 

“procedural route” (p. 395).  This process starts by students seeing proving as an algorithm, or a 

set of prescribed steps.  At this point, “the students were generally unaware of the overall nature 

of the procedure that they were incorporating” (Weber, 2003, p. 396).  The algorithm is only 

useful for very specific problems.  Through repeated uses of the algorithm, the students 

internalized it.  At this point the algorithm becomes process: a shorter list of more general, 

global steps (e.g., find a delta such that….vs. divide by leading coefficient…).  The process is to 

the student still more of a way to earn class credit than a valid argument, but it is now applicable 

to more problems.  Finally, through reflection, the process becomes an argument which is 

understood to be valid mathematically.  According to Weber, this reflection is what is missing 

for most students who do not progress to the point at which proof becomes an argument.   

 

2.5 Theoretical Framework 

2.5.1 Main frameworks 

Proof processes 

 In this section, four papers will be examined.  In the first, which will be used as one of 

the primary frameworks through which students‟ proofs will be described, Weber (2004) takes 

data from three previous studies on proof and uses it to build a framework that one could use to 

describe the processes students use to create mathematical proofs.  In all, 14 undergraduate 

students constructed 176 proofs.  Two of the studies used observed students in an abstract 
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algebra class and one study involved students taking real analysis.  Through the classification of 

the students‟ work, Weber identified the following types of proof productions: procedural, 

syntactic and semantic.   

 Procedural proofs are those that can be constructed by applying a procedure (such as 

mathematical induction).  These proofs may or may not have any meaning for the student 

producing the proof.  Even correct procedural proofs may lack meaning for the proof writer – if, 

for example, the proof was written by mimicking a proof completed in class or in a textbook.  

Procedural proofs are further divided into two sub-types: algorithm and process.  Algorithmic 

proofs are those completed by mechanically following explicit steps.  Process proofs are those 

that feature “a shorter list of global qualitative steps that are not highly specified manipulations, 

but rather involved accomplishing a general goal” (Weber, 2004, p. 2).  Students employing 

process proofs display an understanding of the steps involved in particular types of proof, but do 

not necessarily know why these qualitative steps form a valid mathematical proof. 

 The next type of proof, syntactic, is “a proof by manipulating correctly stated definitions 

and other relevant facts in a logically permissible way” (Weber, 2004, p. 4).  This type of proof 

may be thought of as an “unpacking” of definitions and\or a “pushing” of symbols.  This type of 

proof is a form of purely formal deduction.  These proofs, although likely closer to the sort of 

proof professors would have their students produce, still do not necessarily foster meaningful 

understanding.  This is especially true if students do not recognize the relationship between the 

symbols they are manipulating and the mathematical objects they represent.  Despite their 

potential shortcomings syntactic and procedural proofs can form foundations which can be built 

upon through reflection (Weber, 2003).   
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 The last type of proof Weber (2004) describes is semantic proofs.  These proofs are those 

that are produced when “one first attempts to understand why a statement is true by examining 

representations (e.g., diagrams) of relevant mathematical objects and then uses this intuitive 

argument as a basis for constructing a formal proof” (Weber, 2004, p. 5).  Part of the process of 

constructing proofs of this type is converting the intuitive argument (once created) into a formal 

proof.  Since these proofs are necessarily based on intuition, they are always meaningful for the 

student – which may or may not be the case for the first two proof types.   

 It is important to note here that Weber does not claim that these classifications of proof 

form either a hierarchy or a progression that students go through.  As mentioned before, the main 

purpose of this research is to see if such a hierarchy or progression can be established.   

Proof schemes 

 While Weber gives ways students‟ individual proof attempts can be categorized, Harel & 

Sowder (1998) give a more over-arching framework.  They give a classification of what they call 

students‟ proof schemes.  These proof schemes include ways students both attempt to prove and 

become convinced of the truth of a statement.  This classification is based on a one semester 

teaching experiments in a number theory class, a college geometry class, an advanced linear 

algebra class, two consecutive semester teaching experiments in linear algebra and case studies 

involving high school juniors taking Euclidean geometry and calculus.  Data were gathered by 

classroom observations, clinical interviews and the examination of homework.   

 The different proof schemes used by students are divided into three major categories: 

external conviction, empirical and analytic.  External conviction proof schemes are those used to 

convince; those employing this scheme can be either convincing themselves or others.  This type 

of conviction is divided into three sub-types: ritual, authoritarian and symbolic.  Ritual 
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conviction occurs when students‟ believe an argument that looks like a proof.  Authoritarian 

proof schemes are employed when a result is believed on the basis of some authority – typically 

a teacher or textbook.  Symbolic proof schemes are used when symbols detached from meaning 

are used.  This is characterized by a student who “divided” by a matrix to solve a problem (Harel 

& Sowder, 1998, p. 251).     

 The second major type of proof scheme is empirical.  This type is fairly self-explanatory 

and has two sub-types.  The inductive empirical proof scheme is seen when students use 

inductive evidence to convince themselves and others of the validity of a statement.  Another is 

referred to as the perceptual proof scheme.  Here, properties based on how objects appear are 

used as justifications.  For example, in a geometry class, two line segments may be taken to be 

congruent if they look like they are the same length.  This type of proof scheme is meant to 

describe how students come to hold a conjecture to be true.  It is worth mentioning is that 

students taking part in this study have already completed a transition course and generally realize 

that empiricism does not give mathematical validity. 

 The last major type of proof scheme identified by Harel & Sowder is the analytic proof 

scheme.  These are proof schemes based on logical deductions.  Again, this type of scheme has 

sub-types: transformational and axiomatic.  Transformational proof schemes are characterized 

by operations on objects and the anticipation of the results of the transformations.  This may 

include the manipulation of geometric objects or the analysis of how algebraic expressions 

change in order to justify inequalities.  Transformational proof schemes are divided into sub-

categories: internalized, interiorized and restrictive.  Internalized proof schemes are heuristics 

that “renders conjectures into facts.”  Interiorized proof schemes can be thought of as 

internalized schemes employed with a deeper level of understanding.   
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 An interiorized proof scheme is an internalized proof scheme that has been 

 reflected on by the person possessing it so that he or she has become aware of it.  A 

 person‟s awareness of a proof scheme is usually observed when the person describes it to 

 others, compares it to other proof schemes, specifies when it can or can not be used, 

 etc. (Harel & Sowder, p. 265).   

 

 The last sub-category of transformational proof scheme is restrictive, which describes 

students who have analytic proof schemes that is limited in some way.  For example, a 

contextual restrictive proof scheme is held by students who interpret conjectures, and the proofs 

that go along with them, in a particular context.  An example of this is a student who only 

considers results in terms of ℝn
 when dealing with vector spaces in a linear algebra class.  The 

next type of restrictive proof scheme is generic.  Here, the student understands conjectures in 

more generality but is only able to give proofs in particular cases.  For example, the student may 

understand that there exist vector spaces besides ℝn
, but is only able to provide proofs for ℝ3

 due 

to an inability to generalize.  Students who have the last type of restrictive proof scheme, 

constructive, are convinced by the actual construction of objects rather than simply the 

verification of their existence.  For example, students with this proof scheme tend to be 

dissatisfied with proof by contradiction.   

 Axiomatic proof schemes are held by students who “have an awareness of an underlying 

formal development” (Harel & Sowder, 1998, p. 276).  Students with an axiomatic proof scheme 

understand that “a mathematical justification must have started originally from undefined terms 

and axioms” (Harel & Sowder, 1998, p. 273) and understand the difference between defined and 

undefined terms.  Axiomatic proof schemes are further divided into more specific categories by 
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Harel & Sowder.  Intuitive axiomatic schemes show up when students understand the existence 

of axioms but can only use those that match their intuition, like those associated with the real 

number system.  Structural axiomatic schemes are held by students who are able to study classes 

of objects based on axioms.  Students in this category are able to study, for example, different 

types of groups based on their shared properties. Students with the final type of axiomatic proof 

scheme, axiomatizing, are able to study axiomatic systems themselves and the repercussions of 

altering them.  Students in this category would be able to investigate non-Euclidean geometry by 

altering the parallel postulate. 

 Harel and Sowder make a point to mention that their proof schemes are not hierarchal 

and that students can show multiple proof schemes over a brief period of time (1998, p. 277).  As 

with Weber‟s classification, part of the point of this research is to see if such a hierarchy can be 

established.   

2.5.2 Other frameworks 

 The next framework that will be discussed here is due to Van Dormolen (1977).  Van 

Dormolen gives levels of thought in proof and these levels are based on Van Hiele‟s levels of 

thinking in geometry.  The first is the ground level, where student thought is restricted to specific 

examples.  For instance, a student might see that a property holds for a prime number without 

consideration as to whether or not the property holds for all prime numbers.  Once a student‟s 

thinking is less local and can begin to discuss properties shared within a class of objects (all even 

numbers, for example), that student as reached the first level of thinking.  Students who move 

beyond this and begin to see connections between dissimilar problems have reached the second 

level of thinking.  Students who reach this second level can then begin to understand the study of 

local arguments.    



39 

 

 Balacheff (1988) classifies students‟ proof ideas from a perspective similar to Harel and 

Sowder.  He seeks to characterize the ways students come to believe a conjecture is true.  He 

offers four types of methods students use: naive empiricism, crucial experiment, generic example 

and thought experiment.   

 In naive empiricism, students become convinced by the examination of several cases.  

Crucial experiment is similar, but here the conjecture is tested by a case the student deems to be 

“not too special” (Balacheff, 1988, p.219).  The thinking goes that if a proposition holds for a 

seemingly random case, then it should hold for all cases.  On the other hand, a student becomes 

convinced by a generic example when he or she sees an argument that uses a specific object (like 

a particular number).  The argument does not use the object as empirical evidence, but as a tool 

for illustration.  The argument uses characteristic properties of the object that are taken to be 

common among the class of objects the particular object is representing.  The last classification, 

thought experiment, is where one would find formal proof.  Thought experiment is set apart 

because “it invokes action by internalising it and detaching itself from a particular 

representation” (p. 219).   

 Balacheff‟s framework is similar to Harel and Sowder‟s in that it gives a way to classify 

how students become convinced of mathematical statements.  It is not as broad as that of Harel 

and Sowder, which is why it was not used in the study.   
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Chapter 3: Methodology 

 The purpose of this chapter is to explain and justify the way this research was completed.  

Included in this chapter are sections giving the overall purpose and description of the study, the  

background and pre-study views of the researcher, a discussion of the participants involved and 

an explanation of the ways data will be collected and analyzed.   

 

3.1 Purpose and description of study 

 The study was designed to document the progress students make when going through the 

process of learning proof.  The main goal for the study is to identify what, if any, stages through 

which students progress.  Much of the existing related research identifies students‟ ideas about or 

ability with proof at a certain point in time.  Little research has been done, to the researcher‟s 

knowledge, regarding how these ideas and abilities change over time.  The scope of this research, 

which took place over the course of one academic year, is what sets it apart from the bulk of 

existing proof related studies. By repeatedly observing the same participants, a longitudinal study 

was completed which allows for a more in-depth analysis of the progress students make.     

 The research was completed using interviews in which the students take part in a variety 

of tasks and “think aloud” while doing so.  In the first type of task, students were given problems 

they had not seen before and worked through them.  This was done over the course of a long 

study so that the ways in which students attack new problems can be observed to see if a change 

occurs.  The second type of task consisted of students revisiting problems they have completed in 

the past to see what kind of progress they had made.  This past work will be in the form of exam 

questions the participants completed during a transition-to-proof class (MATH 305: Introduction 

to Abstract Mathematics).  The last type of task involved students evaluating completed proofs.  
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This type of task was meant to directly get at how students become convinced of mathematical 

results.  The ways these interviews will be recorded will be described in a subsequent section.   

3.2 The researcher 

 I completed a B.S. degree in mathematics, with a South Dakota teaching certificate, in 

2005 and a M.S. in mathematics two years later, both at South Dakota State University.  My 

teaching experience at the beginning of this research was limited to the classes taught while 

working on my degrees.  These classes include a semester student teaching in a seventh grade 

classroom and, at the undergraduate level, remedial algebra, pre-calculus and contemporary 

mathematics (a terminal class for students majoring in the humanities).  While completing my 

graduate work toward the M.S., I took primarily pure mathematics courses.  This allowed me to 

develop proficiency with proof that I could not have attained without entering graduate school.  

It was this experience that I frequently looked back on once I began coursework towards a Ph.D.  

This reflection intensified as I began readings that eventually led to the current research.  It also 

led to a desire to more fully understand how one learns proof and to add to that particular area of 

research.   

 My pre-study views of the research are influenced both by research I have read and my 

own personal experience.  I believe that students will employ many different proof techniques 

depending both on the situation and their particular proof scheme (as described by Harel & 

Sowder, 1998).  I also believe that student‟s proof schemes and abilities are dynamic and do not 

progress in a straight-forward way.  I believe that students can and will give evidence for 

different proof schemes at different times.  I think this variation will be due to both what they 

think is expected of them and what they see as their own limitations.  I also believe that students 

can and will have “good days” and “bad days.”  By this I mean that any given student will 



42 

 

sometimes struggle with a problem that they may find easy at a different time, and vice versa.  

This is part of the reason that I believe a longitudinal study is appropriate when observing 

students‟ ability.  By repeatedly observing students, one can begin to identify the good days and 

the bad and get a good feel for the students‟ true abilities and ideas.  With that said, I think that 

as time and students progress, the good days will become more frequent and the bad days less so.   

3.3 The participants 

 The participants of this study all took Math 305 in the Spring semester of 2009, a class in 

which 19 students took the final exam.  I used that class as preparation for a later teaching 

internship and so was able to get to know the students over the course of that semester.  Each 

Friday the class worked in groups on projects laid out in the textbook.  These sessions were 

supervised by me.  The researcher also helped grade a portion of the students‟ take-home 

midterm exam (some of which serves as fodder for student reflection in the interviews).  At the 

end of the semester, I described the current study and asked the class to participate.  All students 

who were willing to take part were encouraged to do so.  Initially, ten students took part in the 

study but one withdrew due to time constraints after a month.  The nine other students completed 

the study and the results of their work are included in Chapter 4.  The students involved were at 

such a level that they had had some previous work to look back on, but also not so far along in 

their undergraduate program that they have a wealth of experience with proof. 

 A number of the participants took Euclidean and non-Euclidean Geometry the semester 

following the one in which they took Math 305, a class I took as well.  The participants were 

offered assistance by me (in the geometry class and other classes that the researcher had taken) 

as an incentive to participate in the study.  It should be noted that I believe the reason for 

participation had more to do with the students‟ generosity than a desire for homework help.  
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While the study was being conducted, the participants were enrolled in a variety of courses 

including Euclidean and non-Euclidean Geometry, Ordinary and Partial Differential Equations, 

Real Analysis, History of Mathematics and Number Theory.    The individual courses the 

students were taking, and their particular major will be addressed later on a student-by-student 

basis in Chapter 4.   

 For the identification purposes during the study, the participants were asked to choose a 

two digit number to preserve confidentiality.  For the purposes of this study, I felt it was 

necessary to use names while referring to each participant.  So, I chose names based on the 

students‟ selected numbers.  I used the most popular baby name for the appropriate gender in the 

20
th

 century year that corresponded to each participant‟s number.  For example, the student who 

chose 09 as his number is referred to as “John” because that was the most popular name given to 

boys in 1909.  In the case of ties (for example, “Mary” was the most popular girl name in 1913 

and in 1917), the second most popular name in the later year was used.   

3.4 Research Design 

 This study employed the case study qualitative research approach as described by 

Creswell (2007).   Creswell defines this design as “research that involves the study of an issue 

explored through one or more cases within a bounded system (i.e., a setting, a context)” (p. 73).  

Creswell lays out five steps in completing a case study.   

 The first step in completing this type of research is to decide whether a case study is 

appropriate for the problem.  “A case study is a good approach when the inquirer has clearly 

identifiable cases with boundaries and seeks to provide an in-depth understanding of the cases or 

a comparison of several cases” (Creswell, 2007, p. 74).  This fits nicely with my intention to  
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document the progress individual students make in the area of proof over the course of an 

academic year.   

 The second step is to identify the cases in question.  In this research, the cases are the 

work completed by the participants on the provided questions over the course of the study.  The 

cases are bounded by the academic year in which the study took place (Autumn 2009 and Spring 

2010, at The University of Montana). The cases are also limited to the participants‟ responses to 

the questions asked.  The only exception to these bounds is that the students‟ answers to certain 

exam questions from MATH 305 are included for the sake of comparison.   

 The next step included in a case study according to Creswell (2007) is data collection.  

“Data collection in case study research is typically extensive, drawing on multiple sources of 

information, such as observations, interviews, documents and audiovisual materials” (p. 75).  

Data was collected for this research using all of these methods and the collection procedures are 

discussed in the next section.   

 The fourth step is to analyze the data collected.  Again, this will be described in greater 

detail later in Section 3.6.  However, two main types of analysis were used: within-case analysis 

and cross-case analysis.  Within-case analysis is “a detailed description of each case” (Creswell, 

2007, p. 75) and in the present study forms Chapter 4.  Cross-case analysis is a “thematic 

analysis across cases” (Creswell, 2007, p.  75) and will be seen in Chapter 5.   

 The final step of case study research, according to Creswell (2007), is the interpretive 

phase where “the researcher reports the meaning of the case” (p. 74).  This will also be 

completed in the fifth chapter. 
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3.5 Data collection  

  The research designed involved giving students the three types of tasks mentioned 

above.  As a reminder, the tasks were to attempt to prove results new to the participants, re-

examine work completed in the past and evaluate completed proofs.  The past work came from 

the semester prior to the study and was in the form of questions the participants saw on exams in 

MATH 305.  The two exams the students had taken (a take-home midterm and an in-class final) 

were scanned and saved for this purpose.   

 The tasks were completed by students in a qualitative interview setting.  The interviews 

were audio and video recorded and then transcribed.  The video record was used as a back-up for 

the audio recording device and was used only a few times when the audio recorder failed.  

 For the first two interviews with each participant, I spoke to the students as they worked 

in order document all they were doing (in the event that they were not “thinking out loud” 

enough).  For example, if a student solved for a variable without stating so, I would say 

something like “Ok, so you‟re isolating x in order to get it in terms of y.”  However, I was 

uncomfortable with the potential that I was significantly altering how they would do on their 

work.  So for the remaining 12 interviews, I let them work as they preferred for the first 45 

minutes of the interview (unless they completed the problem or felt stuck) and the remainder of 

each interview was used as a reflection period.  It should be noted that some students did not 

prefer to work silently and so I spoke with them but tried to be as vague as possible.  Also, I 

would generally point out what I considered small mistakes if I felt like the mistake would hinder 

the participant‟s progress on the problem. 

  The reflection period generally consisted of me describing to the student the steps I 

thought I saw them complete.  During this time, I would ask the students to correct any 
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misconceptions I had about what they did.  After the participant and I were comfortable that I 

understood the actions that each had taken, I questioned each about the reasons for the steps 

taken.   

 After an interview was completed, I transcribed it and, as I did so, I kept notes in an 

electronic journal regarding that interview.  This would occur either the day of the interview or 

the next.  This way, what the student did would be fresh in my mind and the notes I kept would 

be as accurate as possible.  After each round of interviews, I read through the notes I took for 

each student while I transcribed that particular interview and took notes about each question 

overall (or the preliminary work the students did on questions that spanned two interviews, as the 

case might be).   

 Interviews were conducted at times that suited the participants‟ schedules.  I interviewed 

every student in the study once every two weeks.  There were a few exceptions to this.  Once, 

James could not make his assigned time and could not make it up before his next scheduled 

interview.  Fortunately, the interview he missed was the second one spent discussing a problem 

he had completed during the first interview.  Also, no interviews were conducted during the 

weeks of Thanksgiving vacation and spring break.  The interviews were task-based and often, 

particularly after the student completed the proof or had given up on the problem completely, 

took the form of a teaching interview.  This was primarily done to keep students from becoming 

discouraged by the problems they saw.  It should be noted that every effort was made to guide 

the students as little as possible and only after the interviewer was convinced the student would 

make no further progress on their own.   

 Eisenhart and Howe (1992) mention that research questions should drive the techniques 

and analysis of a research study.  This design is related to the question in that it is the best way I  
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can think of to consistently document the methods students used to prove.  The goal is to gain 

insight into how students‟ abilities in proof evolve through knowledge of students‟ methods (and 

how the methods change).    

3.6 Data analysis 

 The data was analyzed using what Creswell (2007) calls “the data analysis spiral…  The 

process of data collection, data analysis, and report writing are not distinct steps…they are 

interrelated and often go on simultaneously in a research project” (Creswell, 2007, p. 150).  

Creswell uses the term spiral because of this overlap.  This was indeed the case for the present 

research as the few steps of the spiral actually began as the data was being collected.   

 The first of Creswell‟s steps is data managing where researchers “organize their data into 

file folders, index cards, or computer files” (p. 150).  For me, this included keeping a physical 

folder with each student‟s written work and a computer folder with each participant‟s interview 

transcriptions and journal.   

 “Following the organizing of the data, researchers continue the analysis by getting a 

sense of the whole database” (Creswell, 2007, p. 150).  This stage is also referred to as “reading, 

memoing” (p. 151).  This was done by keeping notes of everything that seemed important while 

transcribing and then, after all students completed a particular interview, collecting these notes 

into a summary of what all participants did for that interview.  The last part of this loop was to 

then go back and review these notes and re-read the interview transcriptions before beginning the 

next part of the analysis spiral. 

 The fourth loop of the data analysis spiral is “describing, classifying and interpreting” 

(Creswell, 2007, p. 151).  “Here researchers describe in detail, develop themes or dimensions 

through some classification system and provide an interpretation in light of their own views or 
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views of perspectives in the literature” (p. 151).  The result of this portion of the spiral is Chapter 

4.  Eisenhart and Howe (1992) suggest that research should fit into existing theoretical 

frameworks.  Creswell, however, cautions that using pre-existing coding systems (like I have)  

 serve(s) to limit the analysis to the “prefigured” codes rather than opening up the codes to 

 reflect the views of participants in a traditional qualitative way.  If a “prefigured” coding 

 scheme is used in analysis, I typically encourage the researchers to be open to additional 

 codes emerging during the analysis. (p. 152)   

This is something that I ran into while analyzing the data.  Although I did not add any new codes 

to the frameworks of either Weber (2004) or Harel and Sowder (1998), I did adjust somewhat 

some of the proof scheme categories (how I adjusted them and why is discussed in the next 

section). 

 The last loop of the data analysis spiral is the presentation of data.  In case study research, 

this means that researchers should “present [an] in-depth picture of the case (or cases) using 

narrative, tables, and figures” (Creswell, 2007, p. 157).  Once the cases are presented, a cross-

case analysis can be done from which one can make “generalizations that people can learn from 

the case(s) either for themselves or to apply to a population” (p. 163).  For me, this is completed 

in both Chapters 4 and 5.  Chapter 4 will hopefully provide the reader with an in-depth 

understanding of what each participant did during each interview.  Chapter 5, on the other hand, 

will provide a cross-case synthesis and generalizations. 

3.6.1 Validation procedures and reliability 

 In addition to the data analysis spiral, Creswell (2007) addresses the validation of 

qualitative research, which he refers to as “an attempt to assess the „accuracy‟ of the findings” (p. 

206).  He also lays out eight “accepted strategies” (p. 207) that serve to validate qualitative 
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research findings.  Of the eight, Creswell recommends “that qualitative researchers engage in at 

least two of them in any given study” (p. 209).  For the purposes of this study, five of the 

strategies were used.  It is worth noting that similar suggestions are made by other authors (e.g., 

Eisenhart & Howe, 1992; Kirk and Miller, 1986). 

 The first validation strategy I used for this study is “prolonged engagement and persistent 

observation in the field” (Creswell, 2007, p. 207).  Kirk and Miller (1986) describe a situation in 

which a researcher lacked crucial information until adequate time in the field was accomplished. 

For Creswell, the purpose of this is to gain the trust of the participants and to better make 

“decisions about what is salient to the study, relevant to the purpose of the study, and of interest 

for focus” (p. 207).  As mentioned earlier, I was able to get to know the students in the study the 

semester before it started as I worked with them on their MATH 305 projects.  Also, I took 

Euclidean and non-Euclidean Geometry with six of the nine participants during the first semester 

of the study.  Despite this, the most insightful interaction with the students came from the 

fourteen interviews that occurred throughout the school year. 

 Peer review is the second validation strategy used and it “provides an external check of 

the research process” (Creswell, 2007, p. 208).  This was accomplished by asking two fellow 

graduate students to each review and code participant responses for 3 questions.  In both 

instances, there were 6 classifications to be done (one proof type and one identified proof 

scheme).  In the case of the first peer reviewer, there was agreement on 5 of the 6 classifications 

and agreement was reached between the reviewer and me on the sixth.  My description of one of 

the proof schemes led to confusion on his part, and once I described the scheme better we 

agreed.  The second reviewer and I agreed on all six classifications. 
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 The third of Creswell‟s strategies employed for this study is the clarification of researcher 

bias.  The purpose of this is to make clear the researcher‟s position and any biases that may exist 

going into the study.  In this way, the reader is aware of “past experiences, biases, prejudices, 

and orientations that have likely shaped the interpretation and approach to the study” (2007, p. 

208).  This was accomplished in Section 3.2 above.   

 The next validation strategy used was member checking.  Member checking “involves 

taking data, analysis, interpretations, and conclusions back to the participants so that they can 

judge the accuracy and credibility of the account” (Creswell, 2007, p. 208).  This was 

accomplished in two ways.  First, the reflection period of the interviews generally started with 

me relating to the student what I thought I was seeing happen as they worked.  In this way, they 

were able to correct any misconceptions I had regarding their work.  Also, two of the cases 

studied in Chapter 4 were give to the participants for their review to make sure I did not 

misrepresent what they did.  Both participants verified that their work had not been 

misrepresented in anyway. 

 The last validation strategy technique used in this study is thick, rich description.  By this, 

it is meant that the data will be described in enough detail that the readers will be able “to 

transfer information to other settings and to determine whether the findings can be transferred” 

(Creswell, 2007, p. 209).  These descriptions comprise Chapter 4 of this study and I hope to have 

provided enough detail that the reader clearly understands what happened in each interview.  

Included in each description of what each student did are pictures of their scratch work and final 

proof (where applicable) and pertinent quotes from the participants discussing what they did.   

 Creswell (2007) also mentions a few ways to address the reliability in qualitative 

research.  “Reliability can be enhanced if the researcher obtains detailed field-notes by 
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employing a good-quality tape for recording and by transcribing the tape” (p. 209).  Kirk and 

Miller (1986) also mention field-notes as a means to increase reliability (p. 51).  Transcribing all 

interviews myself allowed me to take notes at my own pace not long after the actual interview.  

This also allowed me to concentrate on what was happening during the interview without 

worrying about making notes. 

 While this helps ensure data is reliable, Creswell (2007) says that „in qualitative research, 

„reliability‟ often refers to the stability of responses to multiple coders of (transcript) data sets” 

(p. 210).  As mentioned above, two other coders categorized a portion of the data, including the 

full transcriptions and all scratch work done by the participants.   

3.7 Conceptual framework 

 As is alluded to above, the frameworks of Weber (2004) and Harel and Sowder (1998) 

were the two frameworks used to code the data.  Weber‟s framework for proof processes, or 

proof types, was used to describe the actual work each student did when they attempted to 

complete a proof.  On the other hand, proof scheme categories were used to classify how the 

participants became convinced of the truth of mathematical statements and how they try to 

convince others.  By using both frameworks, I believe a more complete picture is produced and 

more insight is provided into the participants‟ ideas of proof.  These frameworks complement 

each other in that Weber‟s gives a way to classify the students‟ final product and Harel and 

Sowder‟s gives a way to classify the conceptions of proof students display while working toward 

the final product.   

 The framework of proof processes of Weber (2004) was used without alteration.  As a 

reminder, his categories of proof processes (how students come to a proof) are procedural, 

syntactic and semantic.  Procedural proofs are those that can be completed by following a 
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procedure and may or may not be meaningful for the proof writer.  This type of proof is divided 

into two sub-types: algorithm and process.  In algorithmic proofs, students mechanically follow 

specific steps laid out for them.  In process proofs, students still follow steps.  However, in this 

case, the steps proof writers follow are “a shorter list of global qualitative steps that are not 

highly specified manipulations, but rather (involve) accomplishing a general goal” (Weber, 2004, 

p. 2).   

 Syntactic proofs are proofs that are arrived at via formal deduction and generally involve 

“manipulating correctly stated definitions and other relevant facts in a logically permissible way” 

(Weber, 2004, p. 4).  This type of proof still need not be meaningful for the participant.  In fact, 

many proofs examined in this study are labeled syntactic because the bulk of the work completed 

by the student involved rearranging algebraic expressions or equations without regard to the 

expression‟s meaning in the context of the problem.   

 The last type of proof process is semantic.  One completes a semantic proof when “one 

first attempts to understand why a statement is true by examining representations of relevant 

mathematical objects and then uses this intuitive argument as a basis for constructing a formal 

proof” (Weber, 2004, p. 5).    

 It is important to note that two different students can give very similar proofs but have 

separate classifications.  This is because how the student comes to the proof has great influence 

on the proof type.  Also, it is often the case that students will display more than one proof 

process.  When this happens the work that leads to the proof will determine the proof type.  For 

example, a student may manipulate an equation without any success, then view the equation as a 

function and gain insight into the problem by examining its behavior.  In these instances, if the  
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participant gets a proof by examining the function‟s behavior, the proof will be labeled semantic 

because the proof was produced via insight.   

 In his paper, Weber (2004) did not label incomplete proofs.  Here I did, as long as an 

attempt at a proof had been made.  In these cases, the proof types were labeled as “proof 

attempts” rather than proofs.   

 When going over the data, I realized that the proof scheme framework of Harel and 

Sowder (1998) needed far more adjustment to suit my needs than did the proof process 

framework of Weber (2004).  The first two major categories of proof scheme, external 

conviction and empirical, were used as described in the original paper.  External conviction proof 

schemes are held by students when they become convinced by source outside themselves.  This 

could be a teacher or textbook (authoritative external conviction), the misuse of notation 

(symbolic external conviction) or an argument that merely looks like a proof (ritual external 

conviction).  Empirical proof schemes can be inductive (where induction evidence is used to 

convince) or perceptual (where students are convinced something is true based on the way 

something looks, like triangles that are drawn to appear congruent). 

 The last major classification of proof scheme (analytic) is where some adjustment was 

made.  This is a proof scheme purely based on logical deduction.  Like the others, this category 

also has sub-categories, transformational and axiomatic.  Transformational proof schemes are 

characterized by operations on objects and the anticipation of the results of the transformations.  

Harel and Sowder (1998) further divide transformational proof schemes into three sub-sub-

categories, internalized, interiorized and restrictive.  It should be noted that, in this study, the 

restrictive label was not used.  The reason for this was that it is used to describe deficiencies in a 

student‟s proof scheme that were not apparent over the course of the study.  I believe this was the  
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case because the sort of difficulties this category describes would be more apparent in a 

classroom setting where material is built up over a period of time.   

 The other types of transformational proof schemes were used, however.  Internalized 

proof schemes are general heuristics that serve as proof for the participant.  Interiorized proof 

schemes can be thought of as internalized schemes employed with a deeper level of 

understanding.  For instance, a student who knows and can follow the steps required for a proof 

by mathematical induction, but does not fully understand them, would hold an internalized 

transformational proof scheme.  A student who understands induction and is able to adjust the 

steps involved as needed for a particular proof has an interiorized proof scheme.  For the 

purposes of this study, transformational proof schemes will be taken to be interiorized unless 

otherwise stated.   

 Most often, proof schemes will be labeled transformational when the participant uses 

some form of algebraic manipulation to complete their proof.  In these cases, the heuristic the 

students are using involves rearranging an expression (into a form useful to them) or an equation 

(into one that is obviously true).  Proofs by mathematical induction will generally be taken to 

represent a transformational proof scheme because they depend on the result of moving from one 

case to another (generally, n to n + 1).  Exceptions to this may occur when a student is convinced 

by the structure of a proof instead of understanding the method itself.  This would represent a 

ritualistic external conviction proof scheme.  Students who display an awareness of anticipatory 

actions will also have their proof schemes labeled transformational.  An example of this is when 

a student points out that a statement is made early in a proof only to be used later. 

 Axiomatic proof schemes are held by students who “have an awareness of an underlying 

formal development” (Harel & Sowder, 1998, p. 276).  This sort of awareness is shown by a 
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student who references axioms or undefined terms.  To Harel and Sowder, students displaying 

this proof scheme are “necessarily aware of the distinction between the undefined terms…and 

defined terms” (1998, p. 273).  Axiomatic proof schemes are further divided into more specific 

categories by Harel and Sowder (see Chapter 2).  For the purposes of this research, however, this 

level of refinement is unnecessary.  These sub-types refer to the ways in which students view 

axioms themselves, something that is not discussed in the current study.   

 For use in the current study, evidence for an axiomatic proof scheme will be taken to be 

anything that illustrates a participant‟s understanding of formal development of mathematics.  

This includes not only axiomatics but also a reliance on previously proven results or other 

aspects of mathematics beyond the scope of the particular problem at hand.  This could also refer 

to explicit mention of a proof‟s deductions from starting assumptions.  For the purposes of this 

study, this will be taken to be axiomatic due do the focus on deduction rather than mathematical 

operations. 

 The axiomatic proof schemes as described by Harel and Sowder (1998) would probably 

be more evident in a class setting, where previous results were shared between participants and 

could be used.  Asking them isolated problems definitely hinders their use of prior results.   

 When completing formal proofs, students will usually display elements of both the 

transformational and axiomatic proof schemes.  However, in most cases evidence will strongly 

point to one or the other.  In such cases, the student‟s proof scheme will be labeled as the one 

most evidently present.  Other times, the student will show strong signs of both and his or her 

scheme will draw both designations.  In still other instances, students will demonstrate a formal 

understanding of proof and yet not give any strong evidence for either sub-type of analytic proof 

scheme.  In these cases, the student‟s scheme will be labeled as analytic only. 
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3.8 Interview questions 

 This section will state and describe the questions used in the interviews, as well as why 

they were chosen and where I found the questions if I did not come up with them myself.  It 

should be noted here that care was taken to choose problems that I found interesting in the hopes 

that the participants would as well.  Not all interviews were task-based, however.  The last 

interview of each semester of the study was used as a debriefing session to talk with the 

participants about their progression in proof.   

  The questions were all chosen so that the participants were aware of all background 

material needed to complete the problem.  Specifically, all the questions could have been 

understood and worked on by students who completed MATH 305.  That being said, the 

questions were also chosen so that they could not be completed easily by the students.  Some of 

the questions took longer than the allotted time during the interview, so there were many 

instances when the students were asked to continue working on the problem between interviews 

and there were also times when two consecutive interviews were dedicated to a single question.  

This is why there were a total of twelve questions asked over fourteen interviews.   

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 The first problem I gave the participants is referred to as the Isis problem and I heard of it 

during a colloquium talk given April 13, 2009 by Brian Greer of Portland State University at The 

University of Montana entitled: "The Isis problem as a probe for understanding students' 

adaptive expertise and ideas about proof."  The problem was chosen because it was open-ended 

both in that the participants were to decide for themselves what was to be proved and also in that 

http://www.umt.edu/math/Colloq/spring09/041309.html
http://www.umt.edu/math/Colloq/spring09/041309.html
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there are a number of ways to finish the problem.  I also wanted an easily accessible problem for 

the first interview. 

Question 2a 

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9. 

 This problem and the next were both given to the participants in the second interview 

because I did not know how long it would take them to complete.  This question was inspired by 

Problem 1 in an article by Pedemonte (2008, p. 391).  Again, this problem was chosen because it 

was exploratory in nature and was able to be proved by a variety of methods.   

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6.  

 I do not recall the first place I saw this question, but I do remember that I originally saw it 

as an undergraduate at South Dakota State University.  I chose the problem because it can be 

approached from multiple ways, including fairly straightforwardly via mathematical induction.  

Because a few students wanted to apply induction to the first problem, I thought it would be 

interesting to see how many participants tried to apply that method directly.  Because not every 

student got far enough on Question 2a during Interview 2, the third interview was spent 

discussing this question in most cases (even though the students originally saw it in the second 

interview).   

Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

n ℕ: 

2
1

2

1

3

1

2

1

1

1 n
n
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 Because not every participant used induction on the previous problem, I wanted to ensure 

that every student tried it on at least one problem.  The problem came from the textbook the 

students used in MATH 305 (Daepp & Gorkin, 2003).  It is Problem 17.7 on page 216.  One of 

the reasons I picked the problem was that, once proven, it can be used to prove that the harmonic 

series diverges.  I thought that perhaps the participants would find this interesting and I generally 

pointed this out to them once they had finished working on the problem.  It was also chosen 

because it was considered to be rather difficult.  This ended up being the case and the fourth and 

fifth interviews were spent working on it. 

Question 4 

Examine the following proof by contradiction:  

Prove 01   

Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 

Prove 01   

Suppose  01  , then 01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 

 This question was chosen because it accomplished two goals.  First, it was a problem 

they had worked on for their MATH 305 midterm take-home exam the previous semester.  Thus 

it served as way to see progress from the year before.  Also, it was an opportunity for the 

students to evaluate a completed argument.  This was to be the final task-based interview for the 

semester and I wanted to make sure that I had a question that addressed both of these goals in 

each semester of the study.  This question was discussed during the sixth interview only.  
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Question 5 

How do you feel the semester has gone in regards to proof?   

Do you feel you’ve gotten better at proofs? 

What do you think led to any improvement you saw? 

What could have led to more improvement?  

What do you think it takes to have a successful proof attempt?  What helps but isn’t necessary? 

 The seventh interview was not task-based and was used to debrief the participants about 

the first half of the study.  The questions above served as a guide for the questioning, but the 

discussion was not limited to them.   

Question 6 

Prove that n ℕ,  3nn   (mod 6).  

 This question was covered in the eighth interview, the first of the second semester of the 

study.  It is question number 28 from an abstract algebra textbook (Gallian, 2002, p. 24).  I chose 

the question for a few reasons.  One, I deemed it to be not too difficult and a good way to start 

the second semester.  Also, it would allow me to see which students were familiar with modular 

arithmetic, something covered very briefly in MATH 305.  I also wanted to use the question 

before students taking Number Theory that semester saw this or a similar problems.  That it is a 

re-worded version of Question 2b was something I did not notice until I gave it to the first 

student.  This was a lucky accident, however, because it gave students who recognized this fact 

an opportunity to display an axiomatic (as I am using the term) proof scheme.  This sort of 

chance was relatively rare given the stand-alone nature of most of the questions. 
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Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 

 This question was chosen for a number of reasons.  First, it is exploratory in nature; the 

participants were not told explicitly what to prove.  Second it is a result that was not covered in 

MATH 305 but I thought they would find interesting.  It was also a useful question because there 

are a number of ways to approach it.  The best part about this question, however, is that it was 

unclear to many of the students when they had completed a proof.  The students who arrived at 

the solution 









n

k k

n

0

 often had a hard time “proving” that this solution worked.  This challenged 

their idea that a proof had to be in one of the forms they had been taught (induction, 

contradiction, etc.).  Discussion of this problem covered interviews nine and ten. 

Question 8 

Prove that the cube root of 2 is irrational using a proof by contradiction. 

 This question was chosen because the students first saw the problem on their take-home 

midterm exam in MATH 305.  Also, no question to this point had explicitly asked the students to 

complete a proof by contradiction on their own.  The participants worked on this question during 

Interview 11. 

Question 9 

Cantor‟s Diagonalization Argument 

Theorem:  

The set of real numbers, ℝ, is an uncountable set. 
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Proof:   

Will prove by contradiction.  Suppose that ℝ is countable.  Then, since every subset of a 

countable set is countable, the open interval (0, 1) is countable as well.  Then, suppose that f(x) is 

the 1 – 1 and onto function taking the natural numbers, ℕ, into the interval (0, 1).  We‟ll write 

the outputs, f(n), where n ℕ, in decimal notation as follows: 
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where      represents the i
th

 digit in the decimal expansion of f(j).  Now that we have our list, 

define the number, B, as follows:  Let B = 4321.0   , where the digits are defined by 
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 . 

Now, since f is onto,  kℕ such that f(k) = B.  However, kkk   , by definition of k .  This is 

a contradiction because the decimal expansions of B and f(k) should be the same if they are to be 

equal.  Thus, the assumption that ℝ is countable led to an absurdity.  Therefore ℝ is uncountable.   

■ 

 Question 9, like Question 4, asked the students to evaluate a completed proof.  Also, the 

fact that the real numbers forms an uncountable set is something mentioned in MATH 305 but it 

was not proved there.  For this reason, I thought the students would find it interesting.  I was also 

curious if the participants would expect to find a flaw in the proof since it was given to them in 
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the context of an interview, where they generally had to figure something out.  This question was 

discussed in Interview 12. 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.   

Example, 6/9 < 5/7 < 7/9. 

 This question came out of a discussion I had with a fellow graduate student where we 

both wondered if the result were true.  It turns out that for 10  ba  and m an integer, the 

following inequality involving mixed numbers holds: 
b

a
m

b

a
m

b

a
m

1

1





 .  The problem was 

chosen primarily because it was open-ended and I thought the students would find it interesting.  

I also was curious how the students would handle finding counter-examples.  This question was 

started in Interview 13 but since only one student finished during the first interview, it was also 

discussed during the final interview. 

Question 11 

1.  How do you feel the semester has gone in regards to proof?   

2.  Do you feel you’ve gotten better at proofs?  Do you think you improved more this semester or 

last? 

3.  What do you think led to any improvement you saw? 

4.  Have you implemented anything in your proof techniques that weren’t there at the beginning 

of the semester?  Year?   

5.  What role do you see examples playing in proof? 

6.  What could have led to more improvement?  
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7.  What do you think it takes to have a successful proof attempt?   What helps but isn’t 

necessary? 

 Interview 14 was the last interview and it was used, like Interview 7, to debrief the 

students about the study.  As can be seen from the questions, they were quite similar to the 

previous semester ending questions.  The exception to this was the question regard the use of 

examples.  This question was added because it was something that was discussed with most 

participants during Interview 7.   

3.9 Limitations 

 Because the current research is a qualitative case study, the results found are only directly 

applicable to the individuals included in the study.  It is hoped that enough detail has been 

provided to allow the reader to judge to which situations the findings might be able to be 

transferred.  The study is quite specific in that only students who had just completed MATH 305 

at The University of Montana during the Spring semester of 2009 are included.  That being said, 

the transition from algorithmic mathematics to more proof-based mathematics is common to all 

undergraduate mathematics majors.   

 The qualitative research has other inherent limitations beyond limited generalizability.  

There is also a large interpretive component to the data analysis portion of such research.  This 

allows for researcher bias to influence findings.  However, attempts to minimize this effect have 

been taken.  First, I have made all relevant biases and prior expectations clear at the outset of the 

study.  Also, data was analyzed by two peer-reviewers and my analysis was taken back to two of 

the participants to check for misinterpretation on my part.  Lastly, I used “member-checking” 

with the participants during the reflection portions of the interviews.  I did this by talking  
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through the students‟ work and giving them the chance to correct any misconceptions I had about 

it.  

 Another limitation with this type of research is the potential for the way data is collected 

to influence what happens.  For instance, the presence of an interviewer may change how the 

participant works through a problem.  This was especially the case during the first 2 rounds of 

interviews.  Not only did I interject when I thought the student was not “thinking out loud” 

enough, I was also far more liberal with hints than I was later on in the study.  This was partly 

due to my relative inexperience and partly because I wanted the first few interviews with each 

student to be as stress free as possible.  I was very careful of this while analyzing their initial 

work and noted as much as possible where I helped the students.  Beginning with the third 

interview, the students worked much more independently but the presence of someone else 

watching them work may have affected what they did.  It is hoped that the number of interviews 

raised the participants comfort level to the point where this affect was lessened.   

 Time was another limitation in the study, as we only met every two weeks and the 

interviews were limited to one hour each.  Because not every student finished each problem, they 

were often asked to work outside of the interview setting and bring back what they did.  They 

were also asked on various occasions to continue working on the same problem two weeks later 

if they did not have time between interviews or did not complete the problem between 

interviews.  This is a limitation because it allowed for some aspects of their work on a particular 

problem to be forgotten between when they stopped working and when they started again.  To 

help alleviate this problem, I asked that the students bring in all scratch work that was completed 

outside of the interview setting.  Also, if work resumed during an interview after a break, time 
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was always spent going over the previous work in detail so the participants were comfortable 

with what they had done.   

 Lastly, limiting the cases to only nine students over the course of a one academic year at 

a single university allows for the possibility of unexpected limitations to affect the study.  In 

particular, the fact that all participants took MATH 305 from the same instructor might have had 

some influence unique to the students specifically.  This type of limitation is common across 

qualitative research.  For greater generalizability of these results, further research with other 

populations is necessary. 
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Chapter 4: Analysis of Student Work 

 In this chapter, the work each student did will be examined and classified using the 

frameworks laid out at the beginning of this study.  Recall from the previous chapter that the 

coding found below was validated by two peer reviewers. 

 

4.1 John 

 This section looks at the progress John made over the course of the study.  John is a 

mathematics major who is planning on becoming a secondary mathematics teacher.  Over the 

course of the study, John took Teaching Math with Technology and Euclidean and Non-

Euclidean geometry during the Fall semester and Number Theory and History of Mathematics in 

the Spring.   

 

John’s Proof Attempts 

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 John began by setting up the equation 2a + 2b = ab and plugging in possible a values to 

find the corresponding b‟s.  It did not take long, however, for him to look outside the context of 

the problem for more meaning.  He looked for reasons outside of equation alone to see why a = 1 

did not work:  

 John: It‟s not going to work.  But I‟m wondering, if there‟s, „cause there‟s got to be sort 

 of another reason that it can‟t be 1.  I mean, is there another reason why it can‟t be 1?  I 

 mean, does it just have to do with the nature of the number? 
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He continued looking at different a values until a = 7, he finds the solutions, checking the areas 

and perimeters separately as he goes.  He then goes to the equation: 

 John: So that…um…I‟m going to try and go back and look at the original equation again 

 and see if, um…it looks like I can re-write it so that I can just set it  in terms of b…as 2a 

 over a – 2. (See Figure 1) 

 Nick: Ok. 

 J: And …so this is telling me that‟s why 1 and 2 didn‟t work…so all we have to do is, I 

 guess, is figure out that whenever I put any integer a into this form, then the result will be 

 an integer. 

 

Figure 1: John’s work on Question 1 (1 of 4) 
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At this point, he asks for guidance and I suggest looking at the graph to see many values at once.  

John draws the graph and labels the points as he mentions them (see Figure 2) 

 J: …and we know for 3, the, uh, if b is 3, then a is going to be 6, so we have 3 and 6 

 somewhere in here and the 4…equals 4…and there‟s nothing in between those two and if 

 we look at the 5, it‟s going to be on a non-integer y value.   

 N: Right.  We saw that with 10 thirds when you solved for it. 

 J: So if we look at 6, if b is 6, then a is 3. 

 N: Right 

 J: And we go back to 3 here.  And now, since the graph is decreasing…and you can not 

 have, you can not have a value of 2 or 1, I want to say that those are the only ones, but 

 I‟m not sure. 

 

Figure 2: John’s work on Question 1 (2 of 4) 
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We then talked through the different potential inputs for the function he graphed: 2 does not 

work because of denominator (x – 2), anything below 1 gives a negative output.  Moving on to 

inputs greater than 3, John says:  

 J: And I think that, yeah, it‟s definitely monotonically decreasing…so yeah, I‟m going to 

 say that these are the only values, but… Yeah.  I feel fairly convinced, but yeah, I 

 imagine that when I write it all up maybe I‟ll see something else that maybe I missed out 

 on, but… 

 

 He left the interview and brought back a written up version of the argument, shown in 

Figures 4.09.3 and 4.09.4.  In it, John makes the case that one only needs to consider integer 

values above 2, demonstrates that 3 and 4 work for b values (as does 6, by symmetry) but 5 does 

not.  He then shows that his function a(b) is decreasing by taking the derivative.  His proof 

concludes with restating that 3 is the smallest allowable side length and that a(b) < 3 for all a > 

6.   
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Figure 3: John’s work on Question 1 (3 of 4) 

 

Figure 4: John’s work on Question 1 (4 of 4) 
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 The proof John provides for this problem is semantic.  Here, the proof is based on an 

examination of the equation he obtained and its graph to understand the relationship between a 

rectangle‟s side lengths under the given conditions.  He then was able to see that if one side 

length increased, the other would have to decrease.  This led him to construct a formal proof that 

he had found the only rectangles with the given properties. 

 The proof scheme exhibited is an analytic, transformational scheme.  While he does rely 

on some previous mathematical results in his proof (e.g., decreasing functions have negative 

derivative), the heavy lifting of the proof is accomplished operating on objects (taking the 

equation and looking at it as a function) and anticipating what happens through manipulations 

(letting one side length increase and then observing the change in the other).   

 

Question 2a  

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9.  (For example, if 

a = 4 and b = 2, then 42 – 24 = 18, a multiple of 9.) 

 John began by getting the terminology straight, looked at an example and then reviewed 

some tricks for multiplying by 9.  Then, he looked at some more examples.  He hit on the pattern 

that said if you leave a the same and increase b, the difference decreases by 9.  For example, 90 – 

09 = 81, 91 – 19 = 72, 92 – 29 = 63, etc.  John then put that pattern into the formula ab – ba = 

(a)(b + 1) – (b + 1)(a) – 9, in Figure 4.   However, he does not know how to go about proving it 

will always hold.   

 J: I‟m just having a hard time thinking about this, just notation wise.  How to 

 describe, because I think I almost understand what I need to do.  Like, how [am I] 

 …going about to show that by increasing the [a and b] by increments of 1, in both 
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 directions…Like just showing that…I guess that‟s what I wrote here.  That‟s the best 

 way to write it; to verify it…I need to go … Right. So can we say that this is (ab + 1), 

 where this is the ones place and this is (ba + 10)… So that would be the verification.  

 (John rewrites a(b + 1) – (b + 1)a  as (ab + 1) – (ba + 10) = ab - ba – 9, note that here 

 the parentheses are meant to separate digits, not signify multiplication.) 

 

John left the interview after making this realization and I asked him to write up a proof.  He 

came back with a double induction-type proof in which he shows that if you start with a multiple 

of 9 and increase a or b by 1, then you still have a multiple of 9.  As above, increasing b 

decreases the difference by 9.  Increasing a has the opposite effect:  

(a + 1)b – b(a + 1) = (ab + 10) – (ba + 1) = ab - ba + 9. 

John then made the case that one could (starting at 10 – 01) get any two digit combination by the 

appropriate increase of a and\or b.  I did not include the write up because the proof is quite long. 

 

Figure 5: John’s work on Question 2a  
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 Even though John makes use of induction here (typically enough to classify a proof as 

procedural), this is a semantic proof attempt.  In the first interview he spent time looking at 

examples to find a pattern.  This pattern led him to an understanding of the problem that could 

then be turned into a formal proof.  John even verbalized this at one point:  

 J: So this was just a part of like what I went through in here, where I went through 

 and did all these examples trying to see…hoping that I could recognize a pattern…kind 

 of like rip that out of there and try to use it. 

 

 While the type of proof this qualifies as is fairly straight forward, John‟s proof scheme is 

not as straightforward.  First, he realizes that a strictly empirical proof would work for this 

problem:  

 J: I probably could have gone through and done every … 

 N: Yeah, that‟s a legitimate proof technique in this case because you can go 

 through and exhaust all combinations of b and a. 

 J: Right.  

 N: The question is if this was a homework assignment, you mess with it for the half hour 

 you‟ve messed with it, would you just say “screw it”, write it out, make the chart… 

 (laughs) 

 J: No. I mean, if I felt like teasing the professor a little bit maybe, but I‟d rather, I‟d want 

 to know why.   
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It is important to note, however, that this is not evidence of the empirical proof scheme.  John is 

not becoming convinced by examples.  Rather, he simply realizes that there are a finite number 

of cases that need to, and could be, verified.   

 John does display some evidence of the axiomatic proof scheme, however: “…like this 

was the division rule that I wrote out, hoping that it would be somewhere in there that I could, if 

I could prove that rule, then I could apply it to the question.”  Here John notes that at one point 

he thought the test for divisibility by 9 might be useful, but he must prove it if he decides to use 

it.   

 That being said, the strongest evidence of proof scheme comes from how he comes up 

with what eventually becomes his proof.  During the first interview, when he considers how the 

difference ab – ba changes when b is increased by 1, he is displaying a transformational proof 

scheme.  He is operating on an object at hand (the expression ab – ba) and working with the 

result of that transformation.  This is the hallmark of a transformational proof scheme.    

 

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6.  

 John began working on this problem between interviews 2 and 3.  He did not, however, 

bring in the work he had done and we spent then end of interview 3 talking about the things he 

had done (written out in Figure 6).  He went to induction almost immediately due to both the 

presence of the variable n and the work he had done on the previous problem:  

 J: … just seeing the n‟s in the problem especially…If it was a different letter, maybe I 

 wouldn‟t have done an induction argument, but… But yeah, that was definitely a major 

 part and then since I had just gotten out of doing an induction argument for the last proof 
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 that was also sort of a similar, I mean, different notation, but a similar number theory sort 

 of argument.   

 

The work John described here involved a few different ways of manipulating the induction 

hypothesis, (n + 1)
3
 – (n + 1), when starting with the assumption that n

3
 – n = 6c.     

 J: And I guess…basically all I was able it do, you know, assuming that this was true, then 

 n
3
 – n over 6 equals c and n

3
 – n equals 6c.  And I was hoping that if I went in, n + 1 and 

 I tried to re-write this in a bunch of different ways, so that I could substitute it in and get 

 some sort of statement where it was just these c values… 

 

Figure 6: John’s work on Question 2b (1 of 2) 
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 N: Ok, so what sort of rearranging did you do?  

 J: I just factored out the (n + 1)((n + 1)
2
 – 1)….(from (n + 1)

3
 – (n + 1) in the 

 induction step) 

 [working, simplifies his factored form of (n + 1)((n + 1)
2
 – 1) into n

3
 + 3n

2
 + 2n] 

 N: Alright 

 J: I mean I played with it for a while, but I didn‟t …the difficult part for me was that I 

 wasn‟t seeing where I could find, like, a difference…in this… 

 N: Right, you wanted to use the induction hypothesis and all you have is positives 

 at this point. 

 J: Yeah, and then I tried just cubing this and writing it out and, you know, you just 

 get…n
3
 + 3n (he meant 3n

2
 + 3n) 

 N: And you didn‟t see anything in that method either? 

 J: No, I don‟t think so. 

 

 Both of John‟s attempts to complete the inductive step of his proof failed at this point.  In 

the first attempt, John simplified correctly, but not in a way that was useful.  The other method 

ends up being useful, but he did not realize how at this point.  I sent this scratch work home with 

John and asked that he look at the problem some more.   

 When John came back for the next interview, he had a complete induction argument 

(Figure 7).  He assumed that n
3
 – n = 6c and went about investigating (n + 1)

3
 – (n + 1), making 

sure that he resisted the urge to simplify too much (thus removing the ability to use the induction 

hypothesis). 
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 J: Yeah, instead of just going through and canceling everything out right away that I 

 knew I could, I decided to keep this – n here and keep this 3n separate, so I wrote n
3
 – n + 

 3n
2
 + 3n.  And so, re-wrote this 6c, based on the induction hypothesis, we know that this 

 is a number divisible by 6. 

 N: Right 

 J: And then I had to come up with some sort of argument then, that 3n(n + 1) is divisible 

 by 6 as well.  I mean, because this is like this (box in middle of Figure 7), 6 times a 

 number plus 6 times another number is, you know, 6 times those two numbers added 

 together. 

 N: Right 

 C: And went down here and looked at it, thinking that if I could re-write this here as 6 

 times some m, an integer, and m is n(n+1)/2, and since we know that this is divisible by 

 3. 

 N: Right 

 J: Right, so we need to see if it‟s divisible by 2.  And then, so there‟s two possibilities for 

 our n, then.  If n is odd, then the n + 1 divided by 2 is an integer.  And if n is even, then it 

 itself divided by 2 is an integer.  So either way, since it‟s n(n+1)/2, is equal to our m 

 value, is guaranteed to be an integer because there‟s only two cases there. 
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Figure 7: John’s work on Question 2b (2 of 2) 

 John‟s proof was pretty straightforward once he realized he need to prove that 3n(n + 1) 

was a multiple of 6, i.e. that n(n + 1) was even.  The proof John provided was a process 

procedural proof.  It involved a few global steps that needed to be accomplished but these 

individual steps did not have prescribed ways they needed to be completed.  In particular, 

verifying that 3n(n + 1) is a multiple of 6 for all integers did not require set algebraic 

manipulations but rather some insight into how numbers become a multiple of 6.  

 Like with John‟s previous two proofs, the transformational proof scheme is shown here.  

He definitely uses valid and logical deductions from performing operations on mathematical 

objects.  At the same time, there is no evidence that John is relying on the more formalized 

thinking that is typical of an axiomatic proof scheme.   
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Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

nℕ:    

2
1

2

1

3

1

2

1

1

1 n
n

 
 

 John began this problem by performing the steps required of an induction argument.  He 

called the inequality stated in the problem his induction hypothesis and used n = 1 as his base 

case.  In moving to the inductive step, he tried to create a string of inequalities that not only 

included what he thought to be the inequality to be verified but also the induction hypothesis (see 

Figure 4.09.8).  This was unhelpful, however, because although he knew  
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he had no way of relating 
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 to any part of the above inequality other than 
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1

n
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Figure 8: John’s work on Question 3 (1 of 3) 

 This notion of comparing pieces of the inequality from the induction hypothesis to their 

corresponding pieces of the inductive step stayed with him as he continued.  Since he could 

make direct comparisons between the corresponding pieces, he deduced a property that he 

thought would help him (see Figure 9):  If ba   and byax  , then yx  .  Here, he was 

going to let 
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Figure 9: John’s work on Question 3 (2 of 3) 

However, when looking at the difference he proposed, he revealed a misconception he had 

regarding the problem.  He claimed that x – a should have been 
12

1
n

.  Leaving out the terms 
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  was a fairly common mistake for the students in this study.  Many of them 

overlooked the fact that more than one term was added to the left-hand side of the inequality 

when moving to the inductive step.  This in turn led to trouble when looking at the difference y – 

b = 
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.  In particular, John ran into the fact that 
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other way around as he had hoped.  He was not completely discouraged, however and he left that 

interview agreeing to work on the problem again and try something else.   

 Given the difficulty John ran into at the end of the first interview, he started back at the 

beginning with the problem when working on it between interviews: 

 J: Well, I started out just going through and like, you know, re-writing it and playing 

 around, …So, basically what I got from this was that I realized that it wasn‟t, for 

 whatever reason in the session I was thinking it was 
n2

1
 and there was nothing in 

 between that and the 
12

1



n

.   

 

From there, John proceeded to figure out that increasing n by 1 meant gaining an additional 2
n
 

terms in the sum.  It took some more playing around, but he eventually came to realize that the 

sum he needed to show was greater than 
2

1
 had 

12

1
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 as its smallest term.  Then, it was easy for 

him to see that 
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 .  His proof is in Figure 

4.09.10. 

 J: That was it, and I was off.  I wasn‟t sure even if it worked, I still had to write it  up, and 

 I was hoping that that would be the way to do it and it seemed like it would work out.  

 And then I just went over, and yep, it worked out really nice and the best, I thought, was 

 that I was able to then not just say that this was greater than some number over here and 

 then have to relate it over again to the 1/2, but it just came out perfect. 

 N: It was the 1/2? 

 J: Yeah.  That was the best part. 
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Figure 10: John’s work on Question 3 (3 of 3) 

 As with the last proof, John provides here a process procedural proof.  It was an induction 

proof, so there were specific steps to be completed.  However, these steps were global in nature 

and the things that needed to be accomplished along the way were not laid out for him 

completely.  As far as the proof scheme displayed here, most evidence points to a 
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transformational scheme.  The bulk of his work relies on the manipulation of mathematical 

objects within the framework of induction.   

 However, a subtle but important part of his work points to an external proof scheme as 

well.  When faced with the difficulty he ran into at the end of the first interview in which he 

worked on the problem, John said: “I mean, I have some faith in the inequality, I‟m just not 

completely sure yet.”  Due to a mistake, John reached a conclusion that was in direct conflict 

with what he needed to make his proof work.  However, he put at least as much confidence into 

the fact that he was asked to prove the result as the fact that it did not seem true.  Because an 

external authority had asked him to prove it, he did not want to throw away the result outright.  

In this case the decision to put some faith in the result was fruitful because if he had simply 

decided that it was not true, he would not have found the proof he did and he was glad for it: 

“…it was great, this was a really fun problem… It didn‟t seem that first day… Yeah, it felt good 

at the end, it feels good now, it‟s interesting.”   

Question 4 

Examine the following proof by contradiction:  

Prove 01   

Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 

Prove 01   

Suppose  01  , then  01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 
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 This was the first interview in which John was not asked to complete a proof.  This 

problem was given to him on the take home midterm he completed while taking MATH 305.  On 

the midterm, he explained that a proof by contradiction only works when there are only two 

possibilities for the object under consideration (see Figure 11).  In this case, the proof is using 

the assumption that i is either less than or equal to 0 or i is greater than 0.  The problem, then, is 

that there is a third option: that i and 0 are not comparable in the first place.     

 

Figure 11: John's previous work on Question 4 

 

In the interview, he remembered what he did on the midterm: 

 J: Well, I think what I did, if I remember, was this was part of the bigger proof that the 

 square root of -1 is not related to 0 in any of these ways. 

 N: Ok 

 J: You know what I mean?  So this is a, that itself would be a proof by contradiction.   
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 N: The combination of these 2 sub-proofs? 

 J: Yeah, using these then since both of these, since this sort of contradicts each other, 

 then you‟d kind of have, then it means that it‟s neither greater than nor less than nor equal 

 to… 

 N: Sure, ok 

 J: I mean, at least that‟s how I saw it, it‟s establishing none of these relations do hold…I 

 think that, there‟s an algebra of complex numbers and it follows the same  guidelines.  So 

 everything here seems like seems like, all this seems to work, it‟s just that these initial 

 statements are untrue, or, like we were saying, you can‟t make that comparison. 

 

 John made a point to mention that he had not run across this sort of problem too often in 

mathematics: 

 J: And this might have been, as far as my math classes go, the first time that we did a 

 math proof where the logic was sound but the conclusion was untrue…I‟m not sure about 

 that, but I mean, it just doesn‟t seem like you do very much of it…you could go through 

 your entire math career as a student and never see something like this and come out with 

 just as much proof skills, essentially.  I mean, this is like one little issue, and these people 

 who do only true proofs and don‟t see something like this, like would still have a fine 

 understanding that if you do assume something that‟s untrue then the conclusion should 

 be untrue as well, generally. 
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While he does not see confronting proofs like this as necessary to develop proof skills, John 

explicitly reveals his realization that the validity of a conclusion depends on the validity of the 

starting assumptions used to reach that conclusion.   

 It seems clear that John is exhibiting an analytic proof scheme.  He points out that the 

soundness of a proof‟s relies on the starting assumptions multiple times during the interview.  

This sort of formality is the main property required for a proof scheme to be deemed analytic.  

Because he does not create a proof, it is difficult to call this evidence for a transformational 

scheme (he performs no operations on any mathematical objects) or axiomatic (no reference to 

axioms, undefined terms or previous results).  As such, calling his proof analytic is as detailed as 

is possible in this case. 

 

Question 5 

 The next interview was the last of the semester, which was used as a debriefing session 

with John.  As such, he did not produce a proof.  He did, however, explicitly state some things 

that reinforced the observations made in earlier interviews.  In particular, he mentioned that he 

makes an effort to understand problems before trying to create a proof.  This makes sense, given 

that two of the four proofs John produced were semantic in nature.  When asked about the role of 

examples in proof, he said, “Yeah, I like to do that, but that just depends on the problem, but the 

number based problems, the examples always help. … I guess the examples in all would work 

because even in geometry, it‟s been helpful.”   

 He did not explicitly say that the examples were used to gain an intuitive understanding 

into the problem.  Instead, he said the examples were useful in seeing relations that could be used 

to construct proofs: 
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 J:  I feel like, when I want to do a proof, I might have a sketch on a paper, just to have an 

 idea, you know, have everything labeled, but I like to also pull up Geogebra and do that 

 same sketch, that way I can just see the proper relations…so that sort of stuff is sort of 

 the same as having this number theory problem and going through and checking all these 

 little answers and seeing that, maybe the possible relations.  So, yeah, I think that 

 examples are helpful and probably not necessary. 

 

When referring to Question 1, John said, “I think when we were doing the problem, you can look 

at it as a function and as soon as you graph it, that‟s when you start to understand the rest of the 

problem and doing it that way.”   

 So, while they came from a line of questioning involving what was necessary and helpful 

for constructing proofs, with an emphasis on examples, these quotes reveal the mentality that led 

John to constructing semantic proofs when not using induction. 

 John also provides evidence of an axiomatic proof scheme, again some that showed up in 

earlier interviews: 

 J: (I)n that geometry book, there‟s all these theorems where you have to say „According 

 to this theorem, this is how it works.‟  But, like, since we didn‟t do, we haven‟t been 

 saying „According to Euclid 3-12,‟ or something like that, I don‟t know all my 

 theorems. And I don‟t know where to reference them from and stuff like that. 

 

Here, John is referring to a difficulty he has (not citing previous results as he feels he probably 

should), but he does point out the fact that he realizes the reliance of what he does (especially in 

geometry) on previous results.  This is very much indicative of an axiomatic proof scheme. 



89 

 

Question 6 

Prove that n ℕ, 3nn  (mod 6) .  

 This problem was the first of the second semester of the study.  When John began the 

problem, he thought it was referring to multiplying number by three and then converting them to 

base 6.  After I cleared up this misconception, John tried a few examples but then moved quickly 

into applying the division algorithm (which he had just covered in Number Theory) to the 

problem.   

 He started this by writing n as 6(a) + b and cubing that expression.  He then did some 

rearrangement which left him with 3223 )]612(3[6 bbabaan  .  He looked at this for a bit 

and then remembered something he had written above: “It took me a moment to think about that, 

but it went, having that little inequality (b < 6) there helped.”  He remembered that the division 

algorithm allows him to restrict the remainders to natural numbers less than 6.  From there, he 

made sure he had checked all such numbers and verified that the property holds, noting “I have 

this n cubed in the form 6 times some c plus b cubed and then since b is less than 6, I just ran 

through all the cases.”  Although he did not check all cases (he forgot 0), he understood what it 

meant to have part of his new expression for n
3
 multiplied by 6: “So since this is an integer times 

6, when you take n
3
 mod 6, essentially this is kind of crossing that out, and then this b

3
 mod 6 

which is b.” 

 Here John produces a syntactic proof.  It is not semantic because, although he looked at a 

few examples, he did not turn an intuitive understanding into a proof.  In fact, when he began 

cubing his expression for n, he was not sure how it would turn out: 
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Figure 12: John's work on Queston 6 

 

 J: And once I got, I sort of, you know, I didn‟t expect it to come down to this until a little 

 while later… Once I got it all out, because I had no idea what this would end up looking 

 like at first.  I‟m just not very good with the cube.   

 

So, here John produced a syntactic proof where the objects he was working with had meaning for 

him.   
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 Based on the proof, John‟s proof scheme is a transformational one.  His proof is based on 

operating on objects and while he says he did not know how his operations would turn out, he 

does realize at the end that he had constructed a valid proof.  

 

Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 

 It should be noted that I told John to only consider finite n values.  He did not finish this 

problem in the first interview in which he worked on it, but did finish it between interviews.  A 

second interview was devoted to the problem in which John and I discussed his solution.   

 John started the problem, as most students in the study, by looking at the general case in 

which n was not fixed.  Often, students begin a problem by looking at specific examples for 

insight, but John did not: 

 J: I just thought that maybe I could go in and see like, I didn‟t think of the lattice patterns 

 right away, but doing…can I count and then get an idea of what‟s going on.  Instead of 

 seeing if n is 2, it would be this, if it were 3 it would be this… 

 

Instead of using specific examples to gain an understanding, John tried to use the general case to 

do the same thing.  He considered an n element set containing the elements 1, 2, …, n. 

 While he did not look at any specific n value, he did begin by looking at particular types 

of subsets of a set A of size n.  His first work involved looking at the numbers of subsets of 

particular sizes.  First, he found that there would be n subsets with one element, then n – 1 

subsets containing 1 and one other element, n – 2 subsets with the element 2 and one other 
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element and so on.  “Yeah and then there‟d be 1 set with n – 1 and n.  And then there‟d be n – n 

sets, so 0 sets that have n in it, following that pattern.”   

 From there, he started looking subsets of size 3.  Here, things started becoming 

complicated so he began limiting the subsets to those that were of size three and contained the 

element 1.  This led to a similar pattern, only now beginning at n – 2 subsets containing the 

elements 1, 2 and something else.  The pattern continued as before with n – 3 subsets containing 

1, 3 and an additional element and so on (see the figure below).   

 

Figure 13: John's work on Question 7 (1 of 5) 

 

 John continued with this sort of analysis but eventually tried to collect his thoughts.  In 

Figure 14, at the top, he began to try to organize the things he was seeing, but it quickly became 

too complicated.   
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Figure 14: John's work on Question 7 (2 of 5) 

 J: Then I came down here and I was thinking that I was going to write not, not write out 

 the set but right out the cardinalities… 

 N: Sure 

 J: …and see how that was working out.   

 N: Yeah, because it doesn‟t take long for this to get really complicated.   

 J: Right 
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 N: You know, a lot to really build up. 

 J: Yeah, it was pretty…oh, man… I‟d need a bigger piece of paper, I‟d imagine.  So then, 

 just doing the cardinalities with the n‟s, and it was all kind of a dead end.  I mean it 

 helped me understand, like, I felt like I had a fairly grainy but not bad picture in my mind 

 of how it all works… But at the same time, it wasn‟t until, I guess, right at the end after 

 going through all of this, for whatever reason, thinking that „Well, I should just start with 

 the n and see this pattern and go through.‟ … I mean, here, I was just thinking I should go 

 if n is 3 what‟s the cardinality…And if n is 4, what‟s the cardinality.  Do some pattern 

 recognition stuff. 

 

 John‟s initial attempts at finding the total number of subsets for a set A of sizes 3 and 4 

can be seen at the bottom of Figure 14.  During the reflection, John pointed out on his own that 

the numbers of subsets he had come up with were wrong because he was missing some subsets 

in his count.  He was also missing the empty set in his count.  This was near the end of the 

interview and pointed out the empty set to him.  I wanted to make sure he realized this because I 

had the feeling that in his work between interviews, he would take the approach of looking at the 

total number of cardinalties: “I think if I would have done…if I would, say, just find the total 

cardinality, I imagine I could see what the pattern would be by just looking at the numbers for 

the first few.”   

 When John went back to look at the problem between interviews, however, he did not go 

looking for a pattern right away in the total cardinalities.  Before he got that far, wrote out the 

subsets of a 3 element set.  In doing so, he realized that the number of subsets could be found 

using a more succinct sum than he had been working on in the last interview:  
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 J: And…realizing that this was…realizing this pattern is the sum of the different chooses, 

 so…you have n elements, yeah, if you have 3 elements, you want to find the ways you 

 can take 1 out, all the ways you can take 2 out, all the ways you can take 3 out, and then 

 add it up.  So, I ended up down here with, you know, given this n, given the size of the n 

 subsets would be nC1 all the way up to nCn.   

 

Figure 15: John's work on Question 7 (3 of 5) 

This gave John something he felt like he could work with.  Wanting to prove that the sum he had 

for n = 3, he tried to apply induction: “Just thinking if I could, because I was thinking that I 

wanted to do induction, because of the n.”  John saw the presence of the variable n, which is 

typically reserved for integers, and associated that with induction proofs.   

 You can see from the work in Figure 16 that John went to work on simplifying the 

summation in some way, because that is usually how an induction argument goes:  

 J: And wondering if I wrote it out in some form, if I could, you know, divide something 

 out and get…I was thinking there would maybe be like a geometric sum or something 
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 like that…So, played with that a while and then started thinking, like, writing it out and 

 then just, I think I just kept doing more stuff with these…this is all kind of haphazard, but 

 just, I just kept starting over and doing all this different stuff with the fact, with the 

 chooses and, you know, started looking at different stuff until I started to see this pattern.  

 If you have 1, so if you double it and add 1, double and add 1, double it and add 1… 

  N: Right 

 J: This here (Figure 16) is where I found that, that the size of your set is going to be 

 2 times the size of the set below it plus 1.   

 

Figure 16: John's work on Question 7 (4 of 5) 
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 John‟s work with the induction proof continued until he realized that the number subsets 

of an n + 1 element set was somehow related to twice the number of subsets of as n element set.  

This was an important realization and eventually served as the basis for a complete proof.  The 

thinking was that if the size of a set was increased by a single element (if A = {1,2,…,n} 

becomes B = {1,2…, n, n + 1}), then all the sets that were subsets of A would still be subsets of 

B.  Also, each of the previous subsets of A would have a corresponding subset of B with the 

element n + 1 added to it.  For example, {1,2}corresponds to {1, 2, n + 1}. 

 Eventually in Figure 17, John begins approaching induction with his idea explicitly in 

mind.  Before he could finish, though, there was one more obstacle he needed to address:  

 J: So playing with it like that, thinking you know like I was saying, if I could take that 

 out, rewrite those all in, you know in their expanded form…And something, do some sort 

 of inductive proof.  But then I saw this pattern here, the 2s, the doubling it and adding 1 

 and thought about that for a while and what basically, you know, what happened 

 eventually… 

 N: So this one (09_10e) is sort of only explicitly stating that pattern, that double it and 

 add 1. 

 J: Yeah.  And then I realized, thinking about what you told me about…because what I 

 was thinking is that if I could figure out this pattern, I‟ll just add the empty set case later.  

 Right? 

 N: Oh, sure 

 J: And that was like the major mistake, I guess.   

 N: Up to this point, not seeing the empty set? 
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 J: Yeah, well, it was nice to find this pattern of the, you know, doubling the set and 

 adding 1, but then it but, you know, once I finally figured out that it was 2, 4, 8, 16, 32, 

 right? 

 N: Right 

 J: And so when I saw that 2
n
…  And then after that I was able to write it up. 

 

 

Figure 17: John's work on Question 7 (5 of 5) 
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 John began considering the empty set a subset in its own right, and not something to 

simply be tacked on after the fact, which I believe was a remnant from working during the prior 

interview without including the empty set.  Looking towards the bottom of Figure 17, you can 

see a couple things of interest.  One is the idea that he had in Figure 16 showing up again.  

Another is that he seems to still have some misconceptions about the empty set.  In the final 

formula, he subtracts 1, saying that the set { n + 1,    } does not exist, but then adds 1 to account 

for the set {n + 1}.  During the discussion, he came to see {n + 1} as the empty set with the 

element n + 1 added in.   

 Once we discussed the process by which John came to his solution, the main item of 

interest I saw was the fact that he proceeded beyond the point at which others stopped.  

Specifically, when he had the summation formula involving the nCk‟s.   

 N: Did you ever give any thought to just sort of giving a proof by construction and saying 

 “This is where the formula comes from, this is why it works, blah blah blah” and just 

 leaving it at that? 

 J: No.  I guess I didn‟t.  I mean, it made sense to me but I guess I wanted it to be more 

 like a “proof” proof, I don‟t know… But that might be, like, a contextual thing, maybe, 

 you know. 

 N: So like…? 

 J: Since I knew I was going to come in and show you this, I mean it was just because I 

 was stuck on the induction thing, but it just didn‟t seem like I should say, you know, 

 write a little paragraph describing what you have to do to create these subsets and how 

 that sum of the nCk‟s or whatever, you know, how that relates.   
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John went on to later say:  

 J: Right, and it felt like in this study, it‟s more likely that I would be doing an inductive 

 proof, a direct proof, or a proof by contradiction, but not necessarily, you know, just a 

 convincing argument, like just talking about it… Yeah, if I wanted to explain it to 

 somebody, you know, get someone to believe it, I would show them that (the sum 

 formula).  But if I wanted to convince you to believe, I would show you this (the formal 

 induction).   

 

This mirrors something mentioned earlier, the fixation of using induction because of the use of 

the variable n.  In both instances, an idea unrelated to the problem had an affect on John‟s actions 

while completing the proof. 

 In this proof attempt, John completes a semantic proof.  While it is an induction 

argument, he begins by gaining an understanding of the mathematics involved and then turning 

that understanding into a formal proof.  Along the way, he also displays a transformational 

analytic proof scheme.  This is most evident in his consideration of the subsets of a set when an 

additional element is added to it.   

  

Question 8 

Prove that the cube root of 2 is irrational using a proof by contradiction. 

 Like Question 4, this was a problem that John had already seen on the midterm he took 

for MATH 305.  There, John appeared to have no problem with the proof.  In class, the students 

had seen the proof by contradiction that proves that 2 is irrational and that proof is easily 
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adjusted for 3 2 , which is what John did on the midterm.  The work he did on the midterm is in 

the following figure. 

 

Figure 18: John's previous work on Question 8 

 During the interview, I reminded John that when he did the problem before he likely 

based his proof on the proof for 2 .  Because of that, I suggested that he try to reproduce that 

argument if he thought he might have trouble with this one.  Initially, he worked on problem 

from the midterm.  However, he got a bit stuck and then flipped the page over and started the 

2 proof.  In doing so, he quickly realized that he remembered the problem at hand and 

proceeded to complete it without much trouble.   
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 What he needed to remember was to use the lemma that states that if 2 divides a number 

cubed, then 2 divides that number.  This is an important aspect of the proof, as it allowed him to 

eventually contradict one of his starting assumptions: that gcd(p,q) = 1 where 
q

p
3 2 .   

 

Figure 19: John's work on Question 8  

 This proof is a backtrack of sorts in that it is an algorithmic procedural proof.  This is due 

to the nature of the problem, however, because he already knew that he had done the problem 

and that completing the proof was simply a matter of remembering the steps.  However, since 
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there were specific steps that he knew he had to complete, and he set about completing them, this 

qualifies as an algorithm type proof.   

 The fact that the proof provided is not his own and he reproduced a very similar proof 

would seem to indicate that this John is displaying an authoritarian external conviction proof 

scheme.  This is not the case, however, because he made it clear in the interview that he 

understood the steps involved in the problem.  For instance, on the midterm he took the time to 

prove the lemma he used but here he did not: “I don‟t feel like I‟d need to prove it.  I think I 

understand what‟s going on.”  So, even though he is performing steps he had seen before, he is 

doing so because of his understanding of how the steps will turn out.  This is evidence for the 

transformational proof scheme.    

 

Question 9 

 Like Question 4, this problem involved having John read through a proof and evaluate it.  

The proof was a version of Cantor‟s diagonalization argument and can be seen in the Chapter 3.  

Because John did not construct a proof for this interview, there is not a proof type associated 

with this problem.  However, the interview did provide some information when considering his 

proof scheme.   

 First off, given that I told John it was an historical argument, he was inclined to believe it.  

“A lot of it probably has to do with that, going into it and knowing that this is an historical 

argument and feeling with it comfortable enough.  You know, I took it and read it, thought about 

it pretty quickly.”  So, he did not put complete faith in the problem because it was historically 

important, but he did not go looking for holes in the proof either.   
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 This same sort of thinking showed up when discussing what might be considered a 

hidden lemma within the problem: the statement that every subset of a countable set is countable.   

 J: I thought this (underlines the subsets of countable sets statement) was cool…  To be 

 able to say that, so, you know, if you assume that assume that the whole thing is 

 countable then you can just talk about the interval and set it up where you‟re talking 

 about every decimal expansion in between 0 and 1. …  

 N: So you‟re sort of ok with this statement, then, that every subset of a countable set is 

 countable, then you can narrow our focus down to the unit interval? 

 J: Yeah.  Because it‟s just an assumption that you‟re making.  Right?  Like, that‟s just 

 part of the contradiction argument. … Oh, yeah, I‟m fine with that, I mean that makes 

 sense.   

 

Here, John gives the lemma thought and considers it believable enough that it did not require 

further proof.  He did, however, realize that the proof depended on that statement but was not 

concerned with it because it made sense to him.   

 The fact that John had some faith in the proof because it was historical may be taken as 

evidence that he had an external conviction scheme while reading this.  This is not the case, 

however, as this only served to help direct his attention while reading the proof: “I went into it 

not looking for a mistake, just looking to understand it…”  Instead, John showed a 

transformational proof scheme.  Here, he uses his knowledge of what it means for a set to be 

countable and is able to see the contradiction that arises when you assume that the set of real 

numbers is countable.  He says, “if you just say that this function works, show that it doesn‟t 

work, that‟s the contradiction, that‟s enough…to say that it‟s uncountable.”  In this proof, John 
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sees the act of creating the new number B and that this creates a contradiction as the crux of the 

proof.  This is indicative of a transformational proof scheme because it shows that he is 

comfortable with using anticipatory actions (here, the creation of a new number) and using the 

results of that operation to achieve a proof. 

 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.  Example, 6/9 < 5/7 < 7/9. 

 John began working on this problem by putting it into general terms, working with 
b

a
 

and  
b

a 1
 as his rational numbers and looking for something that goes in between.  Not long 

into the process, he thought of the counter-example of 
2

0
 and 

2

1
.  These do not work because the 

only possible denominators less than 2 where 0 and 1 (I had told him to disregard rational 

numbers with a negative denominator).  This did not stop his work on the problem, though: “I 

don‟t know, I mean, it felt like this being like the low end of it, I don‟t know if this means that 

this is the only counter-example or not.”   

 John tried a few more examples, but quickly abandoned them, returning to the general 

case he had set up.  When I asked why he did that, he said:  

 J: I didn‟t think about too many specific examples, I thought I could just go through it.  I 

 didn‟t think that it would help too much because it would be…a not very, it‟s sounded 

 pretty difficult to be honest. … Like, having to come up with, just like doing that test of 
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 all these little fractions, because I mean, for a couple small numbers it wouldn‟t be 

 bad…but even past…6 or 7 it would start to be too difficult. A little much. 

 

Figure 20: John's work on Question 10 (1 of 2) 

 Here, John is still trying to come up with a way to gain insight into the problem.  

However, he is not doing so by looking at examples or some other representation of the problem.  

Instead, he looks at the equations he set up for insight:  
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 J: Yeah, I just wanted to see if there was…like if there was, like if I could somehow 

 understand it in a different, like think about it in a different way and just try to work 

 through it like…you know, see what I could do with it.  

 

Despite these set backs, John left the interview thinking he could make it work with the proper 

restrictions: “Well, I mean, it seems like there should be enough rational numbers…that it would 

work out.”  I asked that he continue working on the problem and he said that he would.   

 John‟s between interview work looked much like his work in the first interview.  He 

started by looking at a general case and then moved onto examining counter-examples.  From 

there, he did not know what to do and we continued from there during the next interview.   

 One thing that did come out of his between sessions work was a method for deciding if 

the property would hold for a pair of fractions.  What he did was, for example, start with an 

inequality such as this: 
4

5

34

4


x
.  At the time, John was considering adjusting the upper 

restriction to allow for the fractions to be equal.  This was due to the 
2

1
,
2

2
 counter-example.  

Starting with the inequality above, John simplified to see that for the property to hold there 

needed to be an integer strictly between 3 ad 3.9.  This let him know that he had found a counter-

example and he did the same thing for the pair
5

5
 and 

5

6
 (see Figure 4.09.21). 

 Although John did not complete a proof here, it is clear to me that he was trying to work 

towards a semantic proof.  Although he did not go to various alternative representations of the 

problem to gain understanding, he did make an effort to get that understanding before going to 

the proof.  He mentions that the only reason he went straight to a general case for understanding 

was because he thought the examples would get too tedious.  Also, once he saw the pattern that  
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Figure 21: John's work on Question 10 (2 of 2) 

had to be proved, his first instinct was to go to a number line or some other picture before going 

to the algebra for the proof itself.   

 Over the course of working on this problem, John displayed a transformational proof 

scheme.  The majority of the work that John involved operating on the inequalities he wrote, 

both in general and when examining specific examples.  Considering what happens when 
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operating on mathematical objects is the defining characteristic of a transformational proof 

scheme. 

 

Question 11 

 The second interview in which John worked on Question 10 was the last interview of the 

semester, so it also served as a debriefing session like last interview of the first semester of the 

study (Question 5).  As such, there was no proof attempt by John and so there will be no proof- 

type classification for this question.   

 John did reinforce, though, some of the things described above.  For example, in referring 

to the last problem he worked on, John said:  

 J: Yeah, and looking back now, I mean, maybe if I had a little bit, just had done a few 

 examples maybe I would have been able to see those, like the differences in there and 

 why those restrictions need to be in place. …But I was hoping to find that stuff just from 

 doing the algebra and I should have done some examples. 

 

Here, John is referring to his failed attempt at gaining an intuitive understanding into the problem 

via algebra.  This line of thought was also evident later in the interview when I asked him what 

helps when trying to complete a proof: “Diagrams, like pictures, different, depending on the 

different type of problem.  Examples, stuff like that, knowing…like picking a method that I‟d 

want to use, like deciding if I‟d want to just do a straight deduction…”   

 John also alludes to the two types of proof schemes that showed up most often over the 

course of the study.  When I asked him what he thought led to any improvement in proof he saw 

over the course of the study, John said: “…just all the, you know, whatever info, like new little 
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pieces of information I get it always helps because it‟s just another way to think about it.  So 

yeah, I‟ve got, I‟ve gotten, like, an improved tool kit.”  I think that John is referring to different 

methods of handling varied situations that may come up, in other words different methods of 

operating on mathematical objects: evidence of a transformational proof scheme.   

 John‟s proof scheme is not limited to this, however.  He sees these new methods as taking 

him only so far. 

 J: And it‟s just stuff like that where you kind of…I don‟t know, I feel like it‟s good for 

 that class, but as far as, I mean all the information, it certainly does build on itself and it 

 kind of, it fits all together, but sometimes certain things like that don‟t always add 

 new…methods that I can take to every aspect of the math class I‟m taking. 

 

When he refers to information building on itself, John presents evidence of an axiomatic proof 

scheme.  This is even more evident in the following quote.  When asked what is necessary to 

complete a proof, John said, “A sound, a valid logical argument with true assumptions, I guess, 

or assumptions that are as true as to be, or are accepted or something like that.”  Here, John talks 

about the fact that in order to have a correct proof, it has to be based on some “true” and 

“accepted” assumptions.  That John does not stop at „true” likely alludes to the fact that some 

things can not be verified; only agreed upon.  This understanding is a sure sign of an axiomatic 

proof scheme. 

 

John’s progression 

 Below is a chart of each question and the type of proof John used and the proof scheme 

displayed: 
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Question Type of proof Proof scheme 

1 Semantic Transformational 

2a Semantic Transformational, Axiomatic 

2b Process Transformational 

3 Process Transformational, Authoritarian 

4 N\A Analytic 

5 N\A Axiomatic 

6 Syntactic Transformational 

7 Semantic Transformational 

8 Algorithm Transformational 

9 N\A Transformational 

10 Semantic (attempt only) Transformational 

11 N\A Transformational, Axiomatic 

Table 1: Summary of John's work 

 

 When looking at the chart it does not seem like John had made much progress at all.  In 

fact, this is true.  The reason for this is that John did not have much progress to make.  The 

proofs he provided were generally the sort that one would hope their students provide.  The types 

of proofs he produced were usually semantic unless the structure of the problem dictated it be 

otherwise.   

 Also, his proof scheme was very consistent.  In every interview, he provided evidence for 

an analytic proof scheme.  As can be seen, he showed signs of either a transformational or 

axiomatic proof scheme, or both.   

 With that said, John still feels like he has more improvement to make.  He feels like he 

could practice more, but also keep building his tool box: “I mean, because I sort, I still feel like 

I‟m pretty limited in…really it feels like there‟s only a couple different ways I can go about 

trying to prove something.”   
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4.2 Mary 

 This section looks at the progression made by Mary over the two semesters of the study.  

Mary was a mathematics major and her future plans include being a secondary mathematics 

teacher.  During the first semester of the study her only math class was MATH 301, Teaching 

Mathematics with Technology and during the second semester, she took Number Theory and 

History of Mathematics. 

  

Mary’s proof attempts 

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 Mary began this problem by drawing a rectangle and writing out the properties she knew 

rectangles to have.  Her original labeling was erased, but she initially labeled the rectangle as a 

general quadrilateral with side lengths A, B, C and D.  When she wrote out the equations for area 

and perimeter, I suggested she change B to A and D to C for ease of calculation.  After she had 

the basics down, she set the equations for area and perimeter equal to each other so that, as she 

said, “so we can work with them being equal to each other.”  Her work can be seen in the figure 

below, moving down the left hand column.  After she did this, she said “I got - C
A

A






2

2
.  So 

I‟m redrawing the rectangle and instead of doing, I‟ll do it all in A.” 

 At this point, Mary got stuck and asked for a suggestion of how to continue the problem.  

I gave her the following hint:  
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 Nick: And, um, you know that if [you] pick a variable for A, you know, you‟ll…things 

 would work out because you‟ve set the equation to work out.  So I‟d try a few values of A 

 and see what you come up with.  

 Mary: So I‟m going to do A = 2 first because there‟s a lot of 2‟s in the problem. 

 (working) 

 

 M: -4 over 0…undefined 

 

.  

Figure 22: Mary's work on Question 1 (1 of 3) 
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Mary then continued on with the examples, tying A = 3 and A = 1.   

 M: … 6, so two of the sides would be 6 and the other two would be 3…And 3 times 6 is 

 18 and 3 + 6 + 3 + 6 is also 18.  So now I‟ll try with A = 1.  -2 over 1 which equals -2… 

 N: So you tried 1.. 

 M: I tried 1 and I got a negative number which would be really difficult to have a 

 negative length…So that doesn‟t work as well. 

 

Mary then proceeded to try A =  8 because “it‟s not close to the lower numbers but still small 

enough to make the multiplication [easy to handle]…”.  She gets a corresponding C value of 
3

8
 

and needed to be reminded that the problem asked for integer side lengths only.   

 Mary continued her systematic checking of examples with A = 6, reasoning that “3 

worked, then would it be multiples of 3 that worked? …[I‟ll] try to find the pattern that way.”  

She saw that 6 worked and then tried 5 to see if being odd had anything to do with why 3 

worked.  It did not and then she moved on to A = 9 to see if the multiples of 3 pattern continued 

to hold.  Reflecting on the work she had done so far, Mary says: 

 M: So that doesn‟t work….there‟s something that 3 and 6 have in common that may have 

 in common with other numbers, but not with 5, 8, or 9…Pretty much, you‟re going to 

 need the denominator, which is 2 – A, to be a multiple of the numerator.  Or vice…I‟m 

 trying to think of if there‟s another way to rewrite the C value -2A over 2 – A… So I have 

 2 – A equals -2A times an unknown I‟ll call E.   

 

 Next, Mary completed the algebra in the right column of Figure 22.  Once she got to the 

end, she realized that she had not gotten any new information:  
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 M: Which is the exact same as this except… 

 N: Solved for A and calling E C, exactly. 

 M: And the positive are now negatives and the negatives are now positive…Which 

 doesn‟t really…help much (laughs) 

 

Mary and I then discussed the fact that this happens because one can switch the roles of A and C 

and it essentially rotates the rectangle by 90° but does not change the area and perimeter.  This 

leads Mary to say: “So pretty much if I look and find one [a number that works], then the number 

I find would also work.”  This notion of paired numbers shows up later in the interview. 

 Feeling somewhat stuck, Mary goes back to trying examples.  She tries A = 7, 10, 12 4, 

finding that only 4 works.   

 M: Ok.  So -2 times 4 over 2 -4 is -8 over -2 which is 4 which would give you the  square 

 that it works for…Which would also prove that I have them all.  There would only be the 

 two, wouldn‟t it, because if 4 is switched and it‟s still four, wouldn‟t that be the middle 

 part?   

 N: What do you mean the middle part? 

 M: If you think of it as a time line.  Or a number line I guess… 

 N: Can you draw what you‟re talking about? 

 M: Yeah.  So like I know when you‟re factoring out something, you do, like say you were 

 factoring out 6, 1 2 3 6.  (See Figure 23) 

 N: Ok 

 M: And then like if you were doing, like, 9 it would be 1 3 and 9.   

 N: Ok 
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 M: So like this 3 is the middle part for 9 and every number on one side of 3 has a match 

 on the other side.   

 N: Oh, ok. 

 M: But that doesn‟t work for this… For 6 the factors are 1 2 3 and 6.  So the middle part 

 is right here between 2 and 3…And so everything on this side has a match on this side.  

 So like we found that 3 4 and 6 works.  4 works for the 4….So that would be the mirror 

 part and 3 goes to 6 and because we know 2 doesn‟t work because it gives a 0 in the 

 denominator, and the 1 doesn‟t work because it gives a negative…But I don‟t know 

 because it might be possible to have a number, like where both the numbers are bigger 

 than 6.   

 

Figure 23: Mary's work on Question 1 (2 of 3) 



117 

 

 After this discussion, Mary tries one more example, A = 101 which she found to not 

work.  She used 101 (a prime number) because it came up in relating the method she was talking 

about to a way to check if a number is prime (one only has to check the integers up to its square 

root for divisibility). At this point, I suggested she try looking at the examples she had tried in 

decimal form.  She did so, collected the numbers in the chart in Figure 23.  This leads her to 

conclude that she had found a proof: 

 M: So that would also help prove that I have them all… It keeps going down…And so, 

 because at 12 we‟re at 2.4 and 2 can‟t show up on the a list…In order to get to get lower, 

 like even at 101, it‟s above 2, but a very small amount so it‟s like approaching 2…And 

 therefore we know that the 2 can‟t show up on the a list…because it would have an 

 asymptote at 2.   

 

 I asked Mary if she could remember the proof, write it up and bring it in for the next 

interview and she said she could.  The proof she brought, however, did not match this line of 

reasoning.  The proof she brought can be found in the next figure. 

 

Figure 24: Mary's work on Question 1 (3 of 3) 

 Mary either had forgotten the proof she came up with in the previous interview or she 

was no longer convinced of it.  However, there was a hint of what she had done in the last 
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interview.  She mentioned when discussing her proof that “you have pairs and so one side‟s 

going down while the other side‟s going up.  So they overlap.”  She is making use of the 

decreasing nature of the function 
A

A
C






2

2
, if C were taken as a function of A.  This decreasing 

nature is something she noticed last time.  Because C decreases as A increases, increasing A 

above 4 means that C must be less than 4.  Thus, there can be no pair where both numbers are 

greater than 4.   

 Mary‟s proof is not complete, but when combined with what she mentioned in the last 

interview one can see what she means.  This is a semantic proof because used examples, and 

algebraic manipulations get gain an understanding of the problem.  She then used this 

understanding to give a proof, albeit a partial one.   

 Mary provides evidence for a couple different proof schemes here.  First, using the 

decreasing nature of the function indicates that Mary has a transformational proof scheme.  This 

reasoning is based on anticipating the result of increasing one of the variables in the equation.  

That being said, Mary also demonstrates an empirical proof scheme.  She becomes convinced of 

the decreasing nature of the function based on the examples she looks at.  In the first interview 

she makes the point that checking examples alone does not give a proof: “Without just plugging, 

and checking and with infinity it doesn‟t work.”  However, she does not recognize that this sort 

of reasoning is used in the proof she provides.  Even though she does not realize it, she did 

become convinced by inductive reasoning and thus reveals an empirical proof scheme.   

 

Question 2a  

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9.  (For example, if 

a = 4 and b = 2, then 42 – 24 = 18, a multiple of 9.) 
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 Mary began this problem by asking what I meant by “multiple of 9.”  “But, does 0 times 

9 work?”  I told her that for our purposes, that 0 would work as a multiple of 9 because 0 could 

be written as 9 times another integer.  I also told her that would allow for negatives to be 

considered multiples of 9.   

 After getting the terminology straight, she began the problem by looking at examples: 

“So, I‟m going to go through and plug in some of them, not all of them because that would take 

for ever.”  Initially, I had thought this meant that Mary had the idea that there were infinitely 

many pairs of a and b to check.  However, later in the interview she said “I‟m trying to think of a 

way I could do it without numbers... because I could do all of them and it still wouldn‟t be a real 

proof.”  This told me that she did realize that all of the combinations could be checked.  To her, 

however, that would not count as a proof. 

 So, Mary began checking some examples.  See Figure 25.  After a few examples were 

tried, Mary noticed the pattern: “Is it always, or a coincidence that the multiplier is pretty much 

the difference between the numbers a and b?”   I told her that was for her to decide and that is 

when she made the statement above about finding “a way to do it without numbers.”   

 Mary then proceeded to set up the algebra in the right hand column in Figure 25. 

 M: So if you have ab – ba, that would equal 9 times x where x is the multiple and x 

 would also be a – b…And so by plugging a – b in for x, you have ab – ba = 9(a – b). 

 

 After rearranging this last equation for a bit, Mary decides to take a different approach: 

“So I‟m taking the a out of the ab – ba… So I broke it up where it‟s a times 10 plus b…And I 

did the same for ba.”  From there it did not take Mary long to complete the problem: 
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Figure 25: Mary's work on Question 2a 

 M: But then if you take the a times 10 minus a, that equals a times 9…And b minus b 

 times 10 equals negative 9, b times -9.  And you have a times 9 and b times – 9 equals 

 9(a – b), right? … Which equals 9(a – b) as a quantity.  So you get 9(a – b) = 9(a – b)… 

 But that also proves that that would be a multiple of nine… 

 N: So, is a – b going to be, so you‟ve proven that ab – ba is going to equal 9(a – b), right, 

 so have you proven that ab – ba is equal to nine times an integer? 

 M: If a and b are non-negative integers, then it works. 
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 The proof Mary provides is a bit difficult to classify.  On the one hand, she began 

working on the problem by looking at examples, typically something one does to get a handle on 

the problem.  And this exploration did lead her to finding a pattern that she was eventually to 

prove holds.  Usually, this change of events would constitute a semantic proof due to the effort 

made to understand the problem before starting the proof.  However, just because Mary had a 

pattern she thought might hold does not mean that she had an understanding of why it held.  The 

operations she performs to arrive at the proof could have easily been accomplished without 

seeing the pattern beforehand.  In fact, the key to solving the problem was when she decided to 

separate the variable a from the rest of the expression in ab – ba.  I feel this has little connection 

to the pattern she had found.  Having the pattern in mind was important, however, in that she 

knew she was done once she derived it.  Because she did not turn an intuitive understanding of 

the problem into a proof, Mary‟s proof is a syntactic one.   

 Mary displays a transformational proof scheme with this proof.  She makes a point to 

avoid an empirical argument (“…I could do all of them and it still wouldn‟t be a real proof.”) 

even though it would have been valid in this case.  Instead, Mary relies on mathematical 

operations performed on the expressions involved to arrive at her proof.   

  

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6.  

 Mary began this problem like she did the previous one.  She started with examples and 

made sure to note the “multiplier” (for example, if n = 2 the multiplier is 1 because 6•1 = 2
3
 – 

2).  Her work can be seen the figure below. 



122 

 

 

Figure 26: Mary's work on Question 2b 

 N: So if you just stepped back for a second, you‟d say that you‟re overall goal is to find a 

 pattern in the multipliers again? 

 M: Yeah 

 N: Because it worked for the last one or is that just sort of a general strategy you have? 

 M: A little bit of both…I might be missing something but I‟m not really seeing the 

 pattern. 

 N: Ok. 

 (thinking, starts writing the n = 7 case) 

 N: So you thought about trying another one and kind of decided that it probably wouldn‟t 

 help? 
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 M: Kind of…I‟m also kind of looking at the difference between the result, the multiplier 

 that I got for 6 and the multiplier that I got for 5 and 4 and stuff…But 3 being 3 and 4 

 being 10 kind of messes with it, because I was noticing that the 35 and 20 is a difference 

 of 15, 20 and 10 is a difference of 10.   

 N: Sure.  Oh, so you kind of expected a difference of 5 before that. 

 M: Yeah, but that‟s also kind of just a small one because it doesn‟t really fit.   

 

 Unable to see a consistent pattern, Mary goes back to the original expression: “If I just 

factor, if I went back to the n•n•n – n equals 6 times x, I could factor out an n…That is the 

difference of squares, right?  …So that is n(n – 1)(n + 1) = 6x.”    After not seeing anything 

particularly useful, she considers some algebraic manipulation but does not see anything that 

would help.  “Pretty much, I just don‟t really know what to do from here because I was to bring 

the 6 over, it would equal the multiplier, but it still wouldn‟t really get me anywhere, right?”  

After some more thought, she goes back to finish the n = 7 example she began earlier:  

 M: I‟ll try 7 just to see if we get a 5 out of it, because it looks like after 4 we do.  

 N: Ok.  So it looks like after 4, there‟s a factor of 5 in the multipliers. 

 M: Yeah. 

 N: So you want to try seven…336, if you divide that by 6, you get 56. 

 M: And that doesn‟t have, is not divisible by 5. 

 (thinking) 

 M: I‟m drawing a blank. 

 



124 

 

 At this point, the interview was over and I asked Mary to look at the problem some more 

between interviews.  She said that she would.   

 She did not bring in any work the next time we met, but it was not because she neglected 

to work on the problem.   

 N: So did you go back, did you write anything up for the second one, or did you not 

 really look at it? 

 M: I didn‟t because I couldn‟t figure out a pattern. 

 N: But you did look at it a little bit, but there just wasn‟t really anything worth writing? 

 M: Yeah, I just went around in circles, kind of like I did in here a little bit.  Because I 

 remember I was working at factoring and stuff like that and it was just circle after circle. 

 

The rest of the interview was spent rehashing what she did with the problem the previous 

interview.  At the end of the interview, I gave Mary a chance to continue working on the problem 

but she declined: “Yeah, I don‟t really know a path to take.”   

 Although Mary did not complete a proof, it is possible to classify her work with a proof 

type because she was working towards creating a proof.  Mary used her method from the 

previous problem to try to come up with a proof for this question as well.  Although she tried the 

same techniques with the same motivations, Mary‟s proof attempt here is classified as semantic 

rather than syntactic.  The reason this gets a different categorization is that she is trying to gain 

an understanding into the problem.  While she made this same effort in the last question, 

understanding alone did not lead to the proof she presented.  In this case, the fact that she does 

not come up with a proof prevents this switch in proof type.  
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 Mary‟s proof scheme, however, is unchanged from the last question to this.  Like with the 

last problem, her proof scheme is still characterized by operations performed and the anticipation 

of their results.  This is the main feature of the transformational proof scheme. 

 

Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

n ℕ: 

2
1

2

1

3

1

2

1

1

1 n
n

 
 

 Mary started this problem like one would with any induction problem: with a base case.  

She began with a base case of n = 2, but she did not say why.  From there, she wrote out her 

induction hypothesis and the moved to the inductive step (see Figure 27).  “Ok, so we‟re 

assuming that 
3

1

2

1

1

1
  all the way up to 

n2

1
 is greater than or equal to 1 +

2

n
.  And we‟re to 

prove that 
3

1

2

1

1

1
  all way up to 

12

1
n

is greater than or equal to 1 +
2

1n
.”  Mary ran into a 

little trouble in that she simplified a little too much on the right hand side of the inequality, but 

she quickly realized that in order to use the induction hypothesis she would need to have things 

separated out: 

 M: So this part is the same as up here.  And since we‟re assuming that, then if I break this 

 side up again, instead of having it under the common denominator, it‟s 1 + 
2

1

2


n
…  
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Figure 27: Mary's work on Question 3 (1 of 2)  

 M: (continued) So the 
3

1

2

1

1

1
  to 

n2

1
is greater than or equal to 1 +

2

n
, so we can 

 take it out and  we‟re left with 
12

1
n

is greater than or equal to
2

1
.  Which, this is 

n2

1
 

 times 
2

1
, which is greater than or equal to 

2

1
 because 

n2

1
, where n is a natural number is 

 always, like is a multiplier to
2

1
, always has to be bigger than or equal to because if n is 

 1, then it‟s 1…Like, 2
1
, is 

2

1
, which is still a multiplier. 
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 N: Ok 

 M: And, except that would be a quarter, which is less than a half. 

 

Mary had momentarily thought she had completed the problem until she realized that 

multiplying by 
n2

1
would actually make a number (in this case one half) smaller.  She saw that 

she had reached a trouble spot, the fact that 
n2

1
 is not greater than or equal to 

2

1
.  However, she 

did not take this to mean she had done something wrong up to this point.  Instead, she attempted 

to rearrange the inequality to get it to work out the way she would like.  “I‟m just looking to see 

if there‟s another way I can write the 
12

1
n

 is greater than or equal to the 
2

1
.  Because this way 

seems to just make it go backwards, not true.”  Her attempts at making the inequality true via 

algebraic manipulations can be seen on the bottom of Figure 27.  Eventually, Mary ends her 

attempt: “I don‟t know any other way to re-arrange it to get it to where it‟s not getting to a dead 

end at this point.”   

 At that point, it was time to begin the reflection portion of the interview and eventually I 

asked Mary what she thought might be the problem: “One part I thought it might come from 

would be where it, the 
n2

1
to the 

12

1
n

…there might be a term in between that I‟m missing or 

something.”  Mary reasoned that there was more going on than she had thought because “the 

three 








3

1
 is kind of difficult to get with 2 as a base.” Mary realized that the sum on the left 

contained more than simply powers of 2 in the denominator.  From there, Mary left the interview 

intending to look at the problem some more between interviews. 
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 Mary worked on the problem between interviews and made some progress but did not 

complete the problem.  The work Mary completed betweens interviews can be seen in the 

following figure: 

 

Figure 28: Mary's work on Question 3 (2 of 2) 
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 Mary began the problem as she had before, but now she made a point to include the terms 

in the sum she had been missing before.  The trouble was, she did not use them as she should 

have to finish the problem: 

 M: And then I broke it down to proving that just one of the terms, and I chose the  
12

1
n

is 

 greater than or equal to 
2

1
, because I figured if we can prove that, because we‟re just 

 adding on to that, then it would be true. 

 

So, Mary got herself right back to where she had been before with the problem.  She did not try 

only algebraic methods this time, however.  As can be seen in the figure, she attempted to 

complete this problem with another induction argument: “And so I tried it for a base case, and it 

worked and so I assumed it and tried to do another proof by induction, but absolutely nowhere 

that was true.”  At that point Mary quit working on the problem.  We then spent the rest of the 

interview talking through the problem together.   

 As with the last question, Mary did not complete the problem.  However, like before, one 

can still classify the type of proof she is attempting.  Because this is an induction argument, it is 

classified as a procedural proof.  Of the sub-types of procedural proofs, this is considered a 

process proof because there are a few global steps to be completed.  An algorithmic proof would 

have had every step laid out exactly.  Here, the completing the inductive step required more than 

straight forward algebra operations.   

 This proof provides evidence that Mary has a transformational proof scheme.  She uses 

operations on expressions to try to arrive at a proof.  Also, while it is true that Mary does not 

completely understand the process of induction (she does not use the proper base case), she does 
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seem to have an otherwise adequate knowledge of the procedure.  Since she does not understand 

the process completely, her proof scheme can be labeled as an internalized proof scheme. 

 

Question 4 

Examine the following proof by contradiction:  

Prove 01   

Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 

Prove 01   

Suppose  01  , then  01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 

 This problem was on Mary‟s midterm exam that she completed the semester before the 

study began, while she was taking MATH 305.  The solution Mary provided on the midterm can 

be seen in Figure 29.  Notice that Mary basically says that the proof provided is not working 

because it reaches contradictory results.  She finds potential algebraic flaw in the proof but 

concludes that it would not change the outcome of the proof.  (The copy of the proof on the 

midterm contained a mistake that had been corrected for the study.) 

 Initially during the interview, Mary mentioned the same flaw as before: that contradictory 

conclusions had been reached. 

 M: The proof by contradiction isn‟t working because when you try a proof that it‟s less 

 than or equal to 0, you get that it‟s true because the other thing‟s absurd…And then when 
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 you‟re trying to prove that the square root of negative one is greater than 0, you get that 

 as well in proof by contradiction and it can‟t be… 

 

 

Figure 29: Mary's previous work on Question 4 

I then pointed out to Mary that the question is really asking is what is allowing for those 

contradictory conclusions to be reached.  From there she proceeded to go over both sub-proofs in 

detail, trying to find a flaw. 

 One of the potential flaws she considered was the fact that in the second sub-proof, 

something was getting squared: 

 M: It was, I know that it was squared properly, but I don‟t know if that was the right 

 approach to take. 
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 N: I see, ok. So why might‟ve it been not the right approach to take, just because it‟s 

 leading to something so strange?  Or is there something else about it that you‟re not ok 

 with? 

 M: It just seems like it would missing a lot of information, I don‟t know if information 

 would be the right word. 

 N: Sure 

 M: It‟s just like, you could take -3 times -3 and you would get 9, which is greater than 0. 

 N: Right 

 M: But it doesn‟t really say anything about the original. 

 

After some thought, however, she decided that perhaps trying to come up with a proof on her 

own might help her see the problem: “Now I‟m just trying to figure out another operation or 

something that you can do to come up with a proof if you didn‟t square it…Just to see if that 

would help show it is a flaw or whatever.”  This leads Mary to consider the possibility that the 

proof is not actually contradicting itself: 

 M: It‟s kind of like saying, you can say the cat is black and look at the cat and say „Yeah, 

 it‟s black‟ but if it‟s black and white you can say that cat is black but somebody else 

 could say the cat is white and they‟re both saying the same thing, but…But then it‟s a 

 hard thing because it has the whole number line is where the square root of -1 could be.  I 

 mean it could fall anywhere in there.   

 N: Ok 

 M: And I know that the square root of -1 is i and we tend to use that not as a variable but 

 as a constant. 
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 Mary is back to facing the fact that the proof is indeed contradictory.  She thinks that i 

should be at some fixed point on the real number line and that point is either to the left or right of 

0.  Mary spends the rest of the interview looking back over the proofs trying to find flaws.  By 

the time we needed to start the reflection period, Mary still had not found a flaw although she 

thought there must be one: “I think that there is a flaw but to say exactly where it is…”    

 Due to the nature of this question, there is no proof attempt to classify.  However, some 

of the things Mary and I spoke about did give some insight into her proof scheme.  First of all, 

she spends a lot of time analyzing the individual steps of the two sub-proofs and is concerned 

with the implications of those steps.  This is typical of the transformational proof scheme.  

 

Question 5 

 The next interview was the last of the semester and served as a debriefing session for the 

first half of the study.  Since Mary did not attempt a proof, there is nothing to classify.  However, 

some of her comments did support some of the observations made earlier in the semester.  For 

example, when I asked Mary what she thought was necessary for completing a proof, the first 

thing she mentioned was:  

 M: First of all knowing all of the terms and what the question‟s asking…That‟s the 

 biggest part, I think. 

 N: Ok 

 M: And knowing kind of what your solution should look like, or have sort of game plan 

 of how to get there, or a path or something. 
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 N: So, do you think that path would come from other proofs that have been completed 

 and are similar, or just really understanding the hypothesis, the statement of whatever 

 you‟re proving? 

 M: A little bit of both because you need the prior techniques and stuff like that as well as, 

 like, knowing the individual problem. 

  

This matched what happened in the interviews because in at least half of the interviews, they 

began with Mary and I talking about terminology and other concepts related to the problems.  

Also, at least with Questions 2a and 2b, Mary spent a good amount of time trying to figure out 

what patterns she was dealing with in order to work towards it.  The business of having a plan 

and purposely moving toward a goal are characteristics of a transformational proof scheme, 

which showed up in every one of Mary‟s proof attempts.   

 When I asked what was helpful but not necessary for completing a proof, the first thing 

Mary said was “Not messing up on your algebra, stuff like that…”  The fact that this was the first 

thing she mentioned tells me that Mary finds the particular steps performed in a proof to be 

important.  Again, this meshes with a transformational proof scheme.   

 Later in the conversation, while we were still talking about things that help while proving 

but are not necessary, I mentioned the fact that she would often try examples when beginning a 

proof.  To this she replied: “It helps me to start the problem and make sure I have an 

understanding of it before I start trying to prove it for everything.”  This is refers reminiscent of 

the semantic proof attempts Mary completed earlier in the study (for Questions 1 and 2b).   

 While this interview did not yield any new insights into Mary‟s ideas about proof, it did 

support some of the observations made earlier in the analysis. 
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Question 6 

Prove that n ℕ, 3nn  (mod 6).  

 Mary and I began this interview by discussing modular arithmetic, something she had not 

seen too often.  To begin the problem on her own, Mary verified that the result holds for n = 7.  

 

Figure 30: Mary's work on Question 6 (1 of 2) 



136 

 

Mary sees that it works for 7 and notices that it would also work to compare 7
2
 and 7.  She then 

decided to try it for a different number to see if it would still work: 

 M: So now I‟m trying it out with 10, again, just to see, like… 

 N: Ok, see if it‟s going to keep going. 

 M: Yeah, first to make sure that n and n
3
 are congruent and then I was going to check 

 the n
2
 just to see if it was with the 7 or what. 

 

As can be seen in the figure, if 10
2
 is also congruent to 10 and 10

3
.  Mary does not pursue this 

line of inquiry, however.  Instead, she shifts her focus to the fact that she is working modulo 6: 

 M: I was just looking at 6 which is, like, I was trying to figure out because I know 2 can 

 go into it and 3 can go into it…And so I was, like, factoring it out thinking whether it had 

 something to do with the mod 6 or…Or whether if it was mod 5 if it would still 

 work…Or if mod 6 made it so it where it‟s specifically for n
3
 and n… But nothing was 

 really popping out at me, like „Oh, well, this makes sense‟ or… 

 

 From there, Mary goes back to the notation she had for the examples at the top of the 

page and uses it in the general case: “So I have n = 6a + x.  Where a would just be any multiplier 

…and x would be what‟s remaining…And then, n
3
 is…that whole thing cubed.”  After cubing 

that out, she realizes that the problem boils down to comparing x and x
3
.   

 M: So then you pretty much have to prove that x is similar to x
3
 where it could have a 

 number that‟s, like, divisible by 6 that would give you the remainder…So like x
3
 should 

 be in the form of a number times 6 plus the original x…in order to get it congruent.   
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Mary had basically returned herself to the original problem but with one difference: the values 

for x were now limited to 0 – 6, which could be checked.  She did not realize this at the time, 

however, and continued: 

 M: So then x
3
 – x would be 6 times a number.  I was just rewriting it to see if something 

 popped out, or…So then I factored it out to x(x – 1)(x + 1) which is still equal to 6 times 

 the number. 

 

At this point, Mary gets a little confused and relates this last equation to find the zeros of a 

polynomial:  

 M: So I just went through and found what the zeros where be of the x(x – 1)(x + 1). 

 N: Ok 

 M: So it‟s like x could equal 6 times the number or x – 1 is 6 times the number, or x 

 would be 6 times the number + 1. 

  

Mary did not see much hope in this method either, because she moved on from it and went back 

to some previous work on the next page (Figure 31): 

 M: I feel like it should be, like, popping out at me…So I just copied down real quick 

 what I got for 7 and 7
3
…So I just wrote out x times x times x for x

3
…equals x + 6 times 

 the number, which is what, kind of what I was going over on the back, on the other side. 

 

She then also tried n = 3: “So then I‟m using 3 just to see, for like a number less than 6, it‟s just 6 

times 0 plus that number.”  At this point, she felt like she had reached the end of what she could 

do: “I kind of feel like I hit a wall at this point.”   
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Figure 31: Mary's work on Question 6 (2 of 2) 

 At this point, I began talking Mary through to the end of the problem.  I did this because 

she was one of the last participants to work on the problem and most of the other students 

completed it so I knew I would not be spending time talking about it during the next interview.  

Also, Mary did not get the chance to complete Question 2b, which was identical to the remaining 

portion of this problem.   

 The advice I gave Mary was to try individual numbers into the factored form of x
3
 – x.  

She tried x = 8 first and I asked her if she could verify that the product was a multiple of 6 

without actually multiplying it out.  She was also able to apply the reasoning when x = 14.  
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“Then you‟d have 13 times 14 times 15, and you‟d get the 2 from the 14 and the 3 from the 15.”  

When asked to explain what she was doing, Mary said: “Because for any 3 consecutive integers, 

which is what you have, then you can always, one of them will always be even…and because it‟s 

3, one of them will always be divisible by 3.”   Mary also realized that this finished the problem 

for her. 

 As with Questions 2b and 3, Mary did not complete the proof on her own and so I will be 

classifying her proof attempt only.  The main thing to notice about Mary‟s work is that she tried 

numerous methods to gain an understanding into the problem.  When talking about the things she 

tried during the reflection, Mary said “…I figured doing it this way if it was something to do 

with the squared, it would come out” and “I was just trying to think, like with a graph or 

something like that, that would be where the intercept is, see if that had anything to do with it” 

and finally “That was just to see if there was any connection, like, between the multiplier…the 

connection between the 10 and the 7, I didn‟t really see anything…between the 57 and the 166.”  

In all these instances, Mary is working with various representations of the problem to gain an 

understanding that can be turned into a proof.  This is indicative of a semantic proof attempt.   

   As with Mary‟s other work, she displays a transformational proof scheme here.  She is 

definitely working towards a deductive proof, which shows she has an analytic proof scheme.  

However, her work shows no reliance on previous results, axioms or undefined terms.  

 

Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 
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 We spent the first part of the interview reviewing some basic concepts with sets.  Like 

with most of the problems she worked on in the study, Mary started this problem by considering 

a specific example: 

 M: Ok, so if there‟s n elements, then…there‟s going to be more than n possible subsets 

 because each, like for the {a, b, c}, {a} would be a subset of the {a, b, c} set…And then 

 you would also have, like all of them that would include 2 of them, so like {a, b} would 

 be a subset of {a, b, c} and {b, c} and {a, c}…I‟m trying to think, like, of how…that‟d 

 be n over 2…or, 2n…or n
2
 – n actually.  Because then you could have the first 

 number…it could be any of them and then the second number would be any of them 

 except for the first. 

 

Mary sees that there are n
2
 ways to arrange 2 out of n things, but n of those arrangements involve 

the same thing twice.  Since Mary needed a refresher on sets and subsets earlier in the interview, 

I felt it was necessary to mention something that did not come up at the beginning of the 

interview: 

 M: So then you have n times n – 1 and get n
2
 – n.   

 N: Ok, so one thing I would say is that the…order doesn‟t matter in a set, so like {a, b, c} 

 is the same set as {b, c, a}. 

 

This triggered a memory for her and got her thinking about counting principles: 

 M: Right now I‟m trying to remember, like when the order doesn‟t matter, where it could 

 be {a, b} or {b, a} is the same thing.  I‟m trying to remember how we did that, like to 
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 find it with like the n and the n – 1…I remember we divided by something.  And I‟m 

 trying to remember whether it was…like what is was that we divided by for that.   

 

She asked for the formula for combinations, which I gave her, and she quickly applied it to the 

problem: “So for this, for just figuring it out where there‟s 2, n would be just n, the number of 

elements in the set, and then k would be 2 because we‟re choosing 2 of the elements…So…that 

would be, instead of the n
2
 – n, it would be n! over 2! times (n – 2)!”  This is the first work that 

can been seen in Figure 32. 

 

Figure 32: Mary's work on Question 7 (1 of 3) 
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 Next, Mary applied this reasoning to subsets of different sizes, not just size 2: “And so 

then that would go up, like it would be n, which is pretty much nC1…And then nC2, nC3, all the 

way up to nCn.”  To test her new formula, she went back to the example she had been 

considering: “So I‟m going through and list out the possible subsets of the {a, b, c}.”  She listed 

out the subsets and I mentioned the fact that the empty set is a subset, which is something she 

had not considered.  

 M: So now, because I have the {a, b} and {b, c} and all that, I‟m trying to go through and 

 figure it out using the combinations, like with the nCk. 

 (working) 

 M: So then it would pretty much be 3 + 3 + 1 then + 1 for the empty set.  Which is 8, 

 so…I got the same number listing them out as I did mathematically.   

 N: Ok 

 M: Which I was just double checking to make sure, like… 

 

She was now convinced that her summation method would work and shifted her attention to how 

to prove that she had the correct formula. 

 M: And now I‟m trying to think of the different proofs that I can do.   

 N: Ok 

 M: Like induction, or…I was thinking proof by contradiction, but that would be…I don‟t 

 know exactly how I would go about that.   

 N: Ok 

 M: Because I would be proving that, or I would be trying to prove that that‟s not the 

 number… 
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 N: Right 

 M: …that just sounds like it would get messy. 

 N: Ok 

 (thinking) 

 M: I‟m going to try induction just because that‟s the only thing I can think of that would 

 help. 

 

During the reflection, Mary added: “And usually when it deals with numbers, induction‟s the 

thing that pops into my head.” 

 Mary begins the induction by claiming that the n = 3 case would serve as her base case 

and laying out the necessary steps her induction argument.  She quickly saw that she needed to 

relate her summation back to the induction hypothesis somehow: “I broke it down to 1 + the 

summation as i goes from 1 to n of (n + 1)Ci, but I took out the (n + 1)C(n + 1) case…And I‟m 

trying to think of how to get the (n + 1)Ci just into nCi.”   

 To see how to compare (n + 1)Ci to nCi, Mary began looking at the examples in the 

bottom right of Figure 32.  Through this work, she felt confident that she had found the correct 

relation: “So it appears that (n + 1) choose the number is, which the number would be k there, 

equals nCk multiplied by the quantity (n + 1) divided by the quantity (n – k + 1).”   Armed with 

this new relationship, Mary went back to the summation formula she had come up with and 

rewrote it.  She was unsure what to do from there: “So I plugged the thing I just found in for (n + 

1)Ci.  So when I‟m multiplying within this summation, can I break it up, or no?”  I told her that 

was for her to decide and she tried her formula a few different ways with n =2, in Figure 33, to 

decide. 
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Figure 33: Mary's work on Question 7 (2 of 3) 

 Because she does not get the same results from both ways of computing her sum, Mary 

concludes that she can not simply separate it out as she hoped.  At this point in the interview, it 

was time to stop working and begin the reflection.  I asked Mary to continue working on the 

problem between interviews and she said she would.   

 Outside the interview, Mary did not make much progress: 

 M: So I knew that I had to get, like, the n case, which was the part that I was assuming 

 and then another part but the other part couldn‟t, like, rely on k or i…so I would be able 

 to take it out of the summation…and it‟s pretty much like as far as I got and I still hit like 

 a wall and I couldn‟t figure out how to get the k out of there.   

  

She did, however, verify more formally the identity she had been using during the previous 

interview, that 
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145 

 

 

Figure 34: Mary's work on Question 7 (3 of 3) 

While Mary used general algebra to verify what she has been using, she still tried some examples 

to convince herself that what she was doing was alright: 

 M: So I could get the 1 out of there and so then I went through I went through a couple of 

 trials to make sure that still worked, that what I was doing was legit, not… 

 N: Right 

 M: …and stuff.  So that allowed me to take out the n! over k! times (n – k)! ...  

 

Finding the expression was important to Mary because she felt it would allow her to use her 

induction hypothesis.   
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 M: And I was still just trying to figure out a way to isolate the k so I could get that away 

 from the extra little part...And then I just got it down to like where the extra part was n + 

 1 over n + 1 – k.   

 

Because Mary was unable to get the k isolated from the rest of her induction hypothesis, she was 

stuck.  I asked Mary if she had considered whether an explanation of the formula could serve as 

a proof.  She said: 

 M: Well, I considered the fact that it would sort of have listed out here, how it would 

 include all of that (the {a, b, c} stuff in Figure 33), but I didn‟t know to prove that 

 that was it, it was completed.   

 N: So, like, that‟s all that‟s included you mean, or…? 

 M: Yeah 

 N: Ok.  So you don‟t know how to proof that this (the sum) gets everything, kind of? 

 M: Yeah.   

 N: Ok 

 M: Like how to prove that it‟s getting everything that you want, so yeah. 

 

This was not the only potential issue Mary had with calling an explanation a proof.  She went on 

to tell me about an experience she had in one of her classes:  

 M: I know like, I‟ve known in the past I‟ve been really good, especially after like one of 

 the problems where it was the 3 consecutive integers.  And then I had that thing in my 

 number theory class…And I hand-wrote out everything that I, like, because you have (the 

 product of) n, n + 1 and n + 2, that has to be divisible by 3 because one of them is 
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 divisible by 3 because it‟s 3 consecutive.  And he was, like the teacher said “Well, you 

 need to show it as a proof, you can‟t just explain it in paragraph form.”  So that‟s kind of 

 … 

 

Mary had been told by a professor that and explanation did not suffice for a proof in a different 

setting and she then assumed that it would apply to this setting as well.  Mary did not know what 

she would do next, so we spent the rest of the interview going over a few different solutions to 

this problem.  

 Because Mary tried to give an induction argument, this qualifies as a procedural proof 

attempt.  However, Mary did not follow specifically laid out steps, so this does not fall under the 

heading of algorithm but instead process. Mary knew of a few global steps that needed to be 

completed but did not follow explicit steps to complete them.  Also, since she did not complete 

the proof on her own, this qualifies as an attempt only.   

 Mary shows some evidence of a couple proof schemes here.  First, and probably most 

prominently, is the empirical proof scheme.  A couple times during the course of her work, Mary 

uses empirical evidence to decide for herself what she can and can not do algebraically.  She did 

so both to verify what she had done (in Figures 33 and 34) and also to decide what expressions 

should look like in the first place (Figure 32).   

 Mary also shows that she has an external proof scheme a couple ways.  One, when she 

uses n = 3 as a base case for her induction argument, she is showing that she does not completely 

understand the method of induction.  She uses it anyway because it has been established as an 

accepted way to proof something.  This is evidence of a ritual proof scheme.  Also, she is 

reluctant to use an explanation for her formula as a proof because a professor told her that an 
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explanation would not work for a different problem.  Here, she is relying on an outside authority 

to decide for her what can be considered a proof.  This is indicative of an authoritarian proof 

scheme.   

 

Question 8  

Prove that the cube root of 2 is irrational using a proof by contradiction. 

 This problem was on Mary‟s midterm exam when she took MATH 305.  On the test, 

Mary did not provide a correct proof.  Her midterm response can be seen below. 

 

Figure 35: Mary's previous work on Question 8 

 Mary seems to make the case that assuming 3 2  is rational leads to a contradiction 

because initially a can be either even or odd.  Then one deduces that a must be even, 

contradicting the fact that it could be either or odd.  Mary did not express this idea entirely, but it 

is an argument that others in the study provided and matches what she actually wrote.  Therefore, 

I feel confident in saying that this is what she actually meant. 
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 In the interview, I mentioned to Mary when she tried this problem on the midterm, she 

had access to the argument that 2  is irrational and that if she wanted, she could try that proof 

first.  She declined however, reasoning that she did not know how to do either and they seemed 

to be equally difficult: 

 M: Like I tried to figure out in my head which way would be the easy, which way might 

 give me more insight, or whatever, but I was like, “Well, if I go this way, I‟ll hit a block 

 here and if go this way, I‟ll hit a block there, so…‟ 

 N: Ok, so you sort of figured they‟d be about the same difficulty? 

 M: Yeah 

 

 Unlike most interviews, Mary did not need any help going over the concepts involved 

with this proof.  She was able to get started straight away: 

 M: So the cube root of 2, in order to prove by contradiction that it‟s irrational, you‟re 

 going to try to prove that the cube root of 2 is rational.   

 N: Ok 

 M: And so a rational number can be written as some p over q, where p and q are just 

 integers, or… 

 N: Ok 

 (thinking) 

 M: So that‟s saying x
3
 equals 2. 

  

Introducing this new variable did not seem to help much, though, so Mary quickly restarted the 

problem: “So I went back to the cube root of 2 can be written as p over q, so it equals some 
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number p over q.  And then I multiplied both sides by q to get rid of the fraction.”  She does 

some manipulation, realizes that p
3
 must be greater than q

3
 for the expression to hold and tries to 

do something with that.  See Figure 36. 

 

Figure 36: Mary's work on Question 8 (1 of 2) 

This new variable (y) did not help much either, unfortunately: 

 M: In order to get a number that‟s bigger than one, since 2 is bigger than one. 

 N: Right 
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 (thinking) 

 M: And in order to get it where it‟s a whole number, you‟d have to have it where q
3
 

 goes evenly into p
3
.   

 N: Ok 

 M: So… 

 (working) 

 M: So then I just put that p
3
 equals q

3
 times some number y.   

 N: Ok 

 (finds that y = 2) 

 M: That didn‟t really work.  So I plugged the q
3
 times y in for p

3
… 

 N: Ok 

 M: ..and so then I got 2 equals, or the quantity q
3
 times y all over the quantity q

3
.  Which 

 then would, the q
3
‟s would cancel out and that gives you y equals 2.   

 

 Mary then goes back to the beginning of the problem: “So I‟m going back and looking at 

different ways to write, like, the p
3
 equals 2q

3
…Just to try and see, like, is there a way that way 

that I can get the contradiction to fall out.”  Mary then starts working on the algebra seen in 

Figure 36.  She keeps running into the same problem, though, saying at various times “And that 

pretty much would bring me around again to going through and, like, all of the steps that I did up 

above were I…were we worked out pretty much that p
3
 equals 2 times q

3
.” and “So now I‟m just 

trying to look back through, like, all my work and see if something pops back out at me where I 

could re-write it where it wouldn‟t necessarily go back around in a circle.”   

 Eventually Mary thinks she might have come to a contradiction: 
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 M: And so I got the 3 4  equals  3 22 …I think it‟s a contradiction, but I would have to 

 do more to figure out, like make it more where you could see exactly. 

 N: Sure.  So one way I suggest you might be able to do that is with fractional exponents. 

  

She takes my suggestion and sees that this equation is in fact true.   

 At that point it was time to reflect on what she had done.  As she left the interview, I 

suggested that she go back to her notes from MATH 305 and look at the proof that 2  is 

irrational, because she had that proof available during the midterm, to see if that would help. 

 In between interviews, Mary did look up the proof I referred her to and she said it 

“helped out a whole lot.”  This is clear, because she brought me the proof that can be seen in 

Figure 37.  As she notes in her proof, she did not look up the proof in her notes or on the 

midterm exam, but rather from her MATH 305 textbook.   

 At the time, I failed to notice that Mary found her contradiction in the fact that both p
3
 

and q
3
 were even, not that p and q were both even.  After having Mary explain the proof she 

provided, I asked her about one of the steps: 

 N: So the only thing I wanted to ask about then is the statement here that since p
3
 is even, 

 p has to be even.  Did you give any thought to verifying that?  Or is it just so obvious that 

 you write it, or…? 

 M: Well, I just figured, I thought about it as an even times an even times an even…And 

 that would always be an even, it‟s really hard to get an odd out of that. 
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Figure 37: Mary's work on Question 8 (2 of 2) 

 Although Mary does not provide a correct verification for the fact that p
3
 is even implies 

p is also even,  her response did tell me that she had considered making backing up that step.  

This is important.  Because she based this proof so closely off the proof for 2 , this proof 

qualifies as an algorithmic type procedural proof.  There were precise steps that needed to be 
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completed, and Mary completed them.  Generally one would associate an algorithmic proof with 

an external proof scheme.  However, this is not the case here because Mary makes sure that she 

is validating the steps herself.  She does not consider the proof valid because she follows the 

steps provided or because it simply looks like a proof.  Instead, she understands the operations 

taking place (or at the very least thinks she does) and uses the results of the operations to validate 

her proof.  Thus, Mary is displaying a transformational proof scheme here.   

 

Question 9 

 This question involved asked Mary to evaluate a version if Cantor‟s diagonalization 

argument.  Thus, Mary did not complete or attempt a proof and therefore there will be no proof 

attempt to classify.  During the course of the interview Mary did give some insight into her proof 

scheme, which will be discussed. 

 At the beginning of the interview, Mary and I spent a few minutes discussing what it 

meant for a set to be countable or uncountable.  She had seen the topic briefly during MATH 305 

the previous year, but not since then.  After getting the definition straight, Mary read through the 

proof silently and when she was finished, I asked her to explain how it worked.   

 M: So it starts off by saying they‟re going to prove it by contradiction, so they‟re 

 assuming that it is countable. 

 N: Ok 

 M: And then they broke it down where instead of looking at the whole thing, they‟re 

 going to look at one small interval because if the whole thing is countable, then the small 

 interval would also be countable. 

 N: Ok 
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 M: And, so from there they figured out a way to like number, or list the numbers in the 

 interval. 

 N: Sure 

 M: And then…from there they, like, picked out a number. 

 N: Ok 

 M: And that was the B. 

 N: Right 

 M: And they defined the digits of it, of that number…and then from there to, from there 

 they went through and it‟s like „Well, βk is not equal to αkk.‟   

 N: Right 

 M: And that was, like that was the main point to proving the contradiction, like getting 

 the contradiction.   

 

I asked her to elaborate on this and it took her a bit to collect her thoughts, but eventually she 

was able to explain it:  

 M: And the other one, like, B is supposed to be in that list of functions.   

 N: Right, ok. 

 M: And so if you have the list, like the function list or whatever… 

 N: Yeah 

 M: …and it‟s, you find a number that‟s not included in that… 

 N: Right 

 M: …then it‟s hard to, then you can‟t prove that it‟s countable because it‟s not included. 

 N: Right, ok. 
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 M; And then if you assume that it‟s included and then it shows that it‟s not, then your 

 assumption is wrong.   

 

 Eventually, Mary was able to put the proof into her own words which led me to believe 

she understood the proof.   

 N: So you think it‟s true?  Or do you think there‟s a hole in the logic or some [missing] 

 detail or something like that? 

 M: I can‟t really think of anywhere where there could be a hole.   

 N: Ok.  So you would say that this is a valid proof? 

 M: Yeah…I had a little bit of an expectation to find a hole, but…I tried to go into it with 

 an open mind but kept an extra look out for…holes. 

 

 This exchange tells me that Mary is not showing an external proof scheme here.  She is 

not convinced by the form of the proof or the fact it came from a mathematics authority figure 

(be it interviewer or the fact that it is a named proof).  Instead, she works to understand the proof 

to determine its believability.  It was simply a matter of Mary being able to sort through the 

notation and everything to understand the proof.   

 More evidence that Mary does not have an external proof scheme came from when I 

asked if she saw any hidden lemmas in the proof: 

 N: Is there anything like that in here that might need separate proof outside this proof? 

 M: Maybe a little bit with the subset, saying that‟s countable. 

 N: Ok 
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 M: Like if you think about it, it kind of seems like it‟s commonsense, but you have to 

 take a little bit of time to really think about it and be like „Well, ok, I understand that.‟    

 

When she was confronted with a statement she was not completely comfortable with, Mary did 

not just take it for granted.  Instead, she thought about it until she felt like she understood it and 

then moved on with the proof.    

 Because Mary wants to insure that she understands the proof before she makes a 

judgment about its validity, she is displaying an analytical proof scheme.  However, her 

reasoning shows no signs of her understanding the axiomatic structure of mathematics.  Instead, 

she is relying on the operations performed on and relationships between mathematical objects.  

Thus, this interview reveals that Mary has a transformational proof scheme. 

 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.   

Example, 6/9 < 5/7 < 7/9. 

 Mary was able to dive right into the proof with this question, without needing to go 

through any terminology or anything.  Since she was comfortable with the concepts involved, 

Mary went straight to the general case: 

 M: So I‟m going to start off by naming the rational numbers for, that share common 

 denominators, so like you could have a over b and c over b…And so then it‟s saying that 

 a + 1 equals c…And so we‟re trying to prove or disprove that between a over b and c 
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 over b there‟s another rational number that has, like that could be d over e…where e is 

 less than b.   

 

 Mary mentioned later in the interview, during the reflection, that she had no preconceived 

ideas about whether or not the statement would be true: “I just kind of figured, like if I started 

and went through, then it would either fall out one way or the other…I wasn‟t really going into it 

strictly to prove it or strictly to disprove it.”  Mary just figured that if she could manipulate the 

inequality in the right way, the need to verify or refute the statement would take care of itself.  

 The manipulations Mary performed can be seen in Figure 38.  Mary made her way down 

the column on the left of the figure, then to the work in the top right of the page and then down 

to the bottom right of the figure.  At various times, Mary saw that she was at a dead end, so she 

tried to move back within the problem to try a different path.   

 M: I was just trying to look up through my work to see if that will help me…So I‟m 

 looking at rewriting e as b – n where n can be any number between 1 and b. 

 N: Ok 

 M: Because if it was 0, then it would be b – 0 which is b which is not strictly less than b. 

 N: Yeah 

 M: And if it‟s b, then it‟s 0 which is strictly less than b but it‟s 0 and 0 in the denominator 

 doesn‟t work. 

 

Mary sums up her efforts by saying: “I‟m just kind of like trying to manipulate it to see if 

something really, truly like spits out at me or…”   
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Figure 38: Mary's work on Question 10 (1 of 3) 

 Because nothing seems to be working, Mary goes back to the very beginning of the 

problem to start fresh. 

 M: Nothing‟s really sticking out to me, so I‟m going to try, like you give an example 6/9 

 is less than 5/7 which is less than 7/9…So I‟m just going to try like a couple more 

 examples just to see, like …if anything pops out where, “Well, it doesn‟t work for this 

 case”, or stuff like that. 
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Mary begins by trying a = 3 and b = 5 and she sees that this example works.  She then moves on 

to a = 3 and b = 2.  This time, however, she is not so lucky. 

 M: So then I‟m looking for a fraction between whose decimal value is between 1.5 and 2. 

 N: Yeah 

 M: Because 4 over 2 is 2. 

 N: Right 

 M: And I need y to be less than 2.  And the only number that would be less than 2 that 

 would work in the denominator would be 1.   

 N: Right 

 M: And there‟s no whole numbers strictly between 1.5 and 2. 

 

Mary wonders if the fact that this example did not work had to do with the fact that 3/2 is greater 

than 1: “So now I‟m going to try a = 5, b = 4 just to see if it was that case or see if another one 

over, where the fraction‟s greater than 1.”  After going through the possible denominators, Mary 

finds that 4/3 meets the criteria she is looking for.  The leads her to conclude that: “So because I 

just found a fraction that worked there, then that shows me that it does work for most numbers 

over 1.”  

 At this point, it was time to begin the reflection.  I began by asking about whether she 

thought the result was true: 

 N: So, so you said, you found one example of rational numbers greater than 1 where it 

 doesn‟t work and one where it does.  But yet you said it works most of the time over 1, 

 why did you say most of the time when you had one that works and one that doesn‟t? 
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 M: Because I was just thinking, like, for the one that didn‟t work, I used a really low 

 denominator. 

 N: Ok 

 M: And so there‟s a lot numbers higher than 2.   

 

Mary had created some additional restrictions on the statement without mentioning it: 

 N: Ok, so then, so then you found this example where it didn‟t, doesn‟t work, so how did 

 that fit in with the original statement, this example where a is 3, b is 2? 

 M: It kind of showed me, like…for a denominator, it has to be greater than 2, so… 

 N: Right, ok.  So yeah, but I mean, I guess I‟m just meaning, specifically in relation to 

 the prove or disprove part.   

 M: That would be more towards, like, the disproving part, so… 

 N: Yeah, so would you say it‟s been disproved or not? 

 M: Yes, by 1 example.  So unless you were to put the limitations of…the denominator 

 having to be greater than 2 and… 

 

 Because she did not finish the problem, I asked that she try to work on it between 

interviews and she said she would.  When Mary came back for the next interview, she brought 

the work that is shown in Figures 39 and 40.  Besides a few changes in how she labeled the 

quantities in the inequality, her approached did not change much.  One thing that was new was 

that instead of working with the double inequality, she broke it up into its right-hand and left-

hand sides.  Also, when she got stuck, she checked her work with an example she knew to work. 
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Figure 39: Mary's work on Question 10 (2 of 3) 

 

Figure 40: Mary's work on Question 10 (3 of 3) 
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 Mary reached a stopping point with the problem when she checked the right hand side 

and found that it did not hold true with the example she expected to work.   

 M: And c is 5 and d is 7.  And then I went through and it worked for the left hand side I 

 got 7 < 10, but on the right hand side I got 7 < 5, which is a contradiction.  So I don‟t 

 know if that was, I tried to go back over my algebra and stuff like that, and that took a lot 

 of time and I just couldn‟t find it, so… 

 

The reason Mary ran into trouble was because when she divided by (c – a – 1) in Figure 39, she 

neglected to consider what would happen if this quantity was negative.  It happens to be in the 

case Mary tried.   

 At this point, Mary did not know what to try next.  In an effort to save time for the 

debriefing session that was also to take place that interview, I guided Mary through a proof of the 

problem given the proper restrictions. 

 Mary did not provide a complete proof, but it is possible to classify her proof attempt.  

While Mary spends some time looking at examples, the bulk of her time spent on performing 

algebraic manipulations.  As such, she makes no overt effort to gain an understanding of the 

problem that might be turned into a proof.  Thus, this is a syntactic proof attempt.  As might be 

expected, the proof scheme Mary shows here is a transformational one.  Her potential proof is 

based on performing operations that she hopes will lead to a proof.  She is not relying on any 

external or empiric evidence, which means an analytic proof scheme is at play.  Since her proof 

attempt relies on no previous results besides algebra properties, this proof shows that Mary had a 

transformational proof scheme.   
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Question 11 

 The last interview of the study was used to talk to Mary about the study overall as well as 

tie up the loose end of Question 10.  During the interview, Mary mentioned a few things that had 

changed over the course of the study.  One of them had to do with examples: “I noticed that I 

kind of quit doing examples right at the beginning (of problems).”  When I asked if she knew 

why that was, she was not sure:  

 M: Not really, I just, like if I get stuck I‟ll use them. 

 N: Yeah 

 M: But, a lot times when I was reading through the problem I would think of a way that 

 would come to me to try out, like, to try out or something.  Like while I‟m reading it or 

 whatever, I‟ll be like „Oh, well I can do this‟ or „I can do it that way‟ and so… 

 N: So you sort of feel like you have less of a reliance on them? 

 M: Yeah 

 

This was something that I had also noticed about Mary‟s attempts over the course of the study.  

It is also something I felt like had hindered her while attempting some of the proofs, question 10 

in particular.   

 Another thing that came out of the interview that matched something I noticed during the 

study was that Mary always made sure she understood a problem completely before she started 

it.  This came up when I asked her what was necessary to complete a proof.  The first thing she 

said was:  

 M: I think you definitely need an understanding of the problem for sure, like… 

 N: Ok 
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 M: And if it‟s a problem where you‟re trying to, like, prove something with mod or 

 something like that have a good understanding for that mathematically, like… 

 N: …the operation of modular arithmetic or whatever‟s being dealt with? 

 M: Yeah 

 

For most of the interviews, Mary and I would spend the first few minutes going over the 

terminology and concepts involved in the problem.   

 The last thing Mary mentioned reinforced what was observed when she looked at 

completed proofs during the study.  When I asked if she had implemented anything new into her 

proof techniques over the course of the study, she said: 

 M: Like, a lot of the problems where it was like prove or disprove or whatever I go into it 

 with an open mind, I don‟t really try to like go at from one angle expecting to prove it or 

 expecting to disprove it or anything, just… 

 N: Oh, ok.  And that‟s kind of a change because before you were just expecting to prove 

 it maybe? 

 M: Kind of, yeah 

 

This was something she mentioned while going over Cantor‟s diagonalization argument.  It also 

shows that Mary has an analytic proof scheme.  She does not give credence to a proof simply 

based on what it looks like, who gave it to her or who supposedly wrote it.  This is evidence for 

Mary‟s transformational analytic proof scheme because at no point in the study does she refer to 

the axiomatic nature of mathematics.   
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Mary’s progression 

 Below is a chart containing the classifications for Mary‟s various proof attempts and the 

proof schemes she displayed throughout the study. 

Question Type of proof Proof scheme 

1 Semantic Transformational, Empirical 

2a Syntactic Transformational 

2b Semantic (Attempt) Transformational 

3 Process (Attempt) External (Ritual) 

4 N\A Transformational 

5 N\A Transformational 

6 Semantic (Attempt) Transformational 

7 Process (Attempt) Empirical, External(Ritual & Authoritarian) 

8 Algorithm Transformational 

9 N\A Transformational 

10 Syntactic Transformational 

11 N\A Transformational 

Table 2: Summary of Mary's work 

 When looking at the chart, it seems like Mary did not make steady progress in either the 

types of proof she produced or in her proof scheme.  The proof scheme she displayed was fairly 

consistently transformational.  This is good because it shows that she has a deductive view of 

proof for the most part.  However this view is not ubiquitous.  Even relatively late in the study, 

Mary demonstrates signs of both an empirical and external proof scheme.  Also, Mary does not 

ever display evidence that she understands the role of axiomatics in mathematics.  Of course, this 

does not mean that she lacks this understanding.  However, I think such an understanding would 

be beneficial for a student in her position. 

 It is unclear how much of an impact her proof scheme had on her individual proof 

attempts.  The type of proof attempts she provided varied and was often dependent on the type of 

problem at hand.  It is also unclear whether her proof scheme had any influence on whether or 

not Mary happened to be able to provide a correct proof.  In the cases where Mary was unable to 

complete a proof, it was usually a matter of her either not making use of the proper relevant facts 

(for example, Question 3) or not trying enough examples to give her a pattern to work with 
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(Question 10).  In either case, it seems unlikely to me that a more axiomatic view of mathematics 

would have led to successful proofs in these circumstances. 
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4.3 Will 

 This case study looks at the progress that Will made throughout the course of the study.  

Will majored in Physics.  During the first semester of the study, Will‟s mathematics classes were 

Euclidean and Non-Euclidean Geometry and during the second semester he took Partial 

Differential Equations.   

 

Will’s Proof Attempts 

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 Will started this problem by going directly to the equation lwwl  22 .  From there, 

before trying any examples, he started manipulating the equation:  

 Will: Well, actually, I‟m just kind of playing with it…is what I‟m doing when I don‟t 

 know what I‟m doing.  I like to play with the equations if I can‟t really think of where to 

 go next.  …Because if you‟re playing with it, at least you‟re doing something. 

 

From there he starts considering whether the equation can ever be satisfied in a non-trivial way:   

 Will: Well, I‟m just sort of trying to think a case where it‟s true…so far all I have is

 zero (laughs)…Oh!  Can I use a calculator to graph this? 

 Nick: Yeah, absolutely. 

 W: Awesome.  Then, I‟m going to solve for l. 
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 Will had already set the equation equal to 0, a standard method of solving an equation in 

one variable.  This reliance on established algebraic techniques was also evident as he moved on 

with the problem: 

 W: Ok…That‟s not really giving me anything… 

 N: So did you get it to graph? 

 W: I got it to graph...but… 

 N: Ok…do you notice anything about it? 

 W: Well it‟s only got one zero (x-axis) intercept which is at 0.  

 

 Again, Will is using a typical algebra method to solve an equation: he is looking at the 

graph of the function and trying to find its roots.  He found the lack of roots discouraging and 

began looking mentally checking examples of squares to see if any of those worked:  

 W: I kind of expected the zeros to be there so I could just play with them, so…Right now, 

 um …I don‟t know.  It seems like …zero is the only one because anything larger than 

 zero, I mean I‟ve tried, one is even 1 1 1 1 is 4, 1 times 1 is 1.  2 2 2 2 is 8, 2 times 2 is 4.  

 …3 3 3 3 is 12, 3 times 3 is 9 – I‟m getting closer…Like 4 is 4 4 4 4 , uh is 16.  4 times 4 

 is 16.  That‟s it!  It works. 

 

From there, I asked if the solution he had found had anything to do with the graph.  “4? Um, no, 

not really… I mean it‟s just kind of on the downward slope…Yeah, the graph is not giving me 

anything on that.”   

 After a little more work trying some examples with the equation, I directed Will‟s focus 

back to the graph:  
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 W: The pair 4 4 works.  I‟m just having trouble finding another one that works. 

 N: Ok, so let me, um, just for the sake of time, so the pair 4, 4 makes this equation true, 

 right?  

 W: Right.   

 N: So does that tell you anything about the point (4, 4), like whether or not it should be 

 on the graph? 

 W: Well…it should…hit the graph, right? … Oh, I could just do an input…input output 

 table, right? 

 

Will then proceeds to create a table which displays only integer inputs.   

 W: So the table start at 1 and have it go up by 1 so that…should give me a list of all 

 integers for x…and we‟ll have positive integers…so we‟ll have 1 and -2 but that…That 

 makes the equation true, but -2 can‟t be a length…So, uh, 3 and 6, 4 and 4, 6 and 3, of 

 course… 

 N: Ok so you skipped 5, didn‟t mention 5, why not? 

 W: Well because it doesn‟t have…it doesn‟t work…it‟s got a decimal, so that‟s not an 

 integer length. …So, unless this approaches 2… Maybe I can prove there‟s an asymptote 

 at 2…that‟ll show that I‟ve shown all possible solutions.   

 

From there, Will took the limit of the equation 
w

w





2

2
 as w approaches infinity and saw that the 

limit was 2 (in his written work he wrote 2w as the numerator, but mentioned -2w when 

discussing what he was doing).   



171 

 

 W: So, this goes to 2, so I know that it‟ll approach 2 but never cross it, so…Yeah, so, 

 looks like that pretty much proves it….but I mean, I could write down more of a proof, 

 but…I mean that pretty much shows that, um, I‟ve got the only two answers, 4 and 4 and 

 2 and 6, I mean, 3 and 6. 

 

He brought a completed proof to the next interview in which he provided pretty much the same 

argument.  In it, he did not go through the work of showing that l = 2 is an asymptote but he did 

mention it.  See Figure 41 below.   

 

Figure 41: Will's work on Question 1 
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 The proof Will provides is a semantic proof.  Although the methods he employs are 

rather typical algebra arguments, he mentions early on that his proof will come from an 

understanding of the problem.  When I asked if he had any ideas of how to start the problem, 

Will says: “Yeah, I‟ve got an idea…proving it, uh I don‟t know how much of a proof you want, 

but… I can tell you, just try to figure it out first.  And then prove it from there.”  This can be seen 

in the proof also.  It was not until Will had an understanding of the problem that he provided a 

proof.   

 The proof scheme Will displays here was a transformational proof scheme.  He operated 

on the equation by solving for one of the variables and treating the equation as a whole as a 

function of the other.  He finished the problem by them considering how that function behaved 

as the input changed, specifically as it approached positive infinity. 

 

Question 2a 

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9. 

 Will spent the first few minutes working on the problem going through the details of 

what the problem was really asking.  Since he was the first person to attempt the problem, the 

statement he saw did not make clear the fact that “ab” was meant to describe the two digit 

number with a in the 10‟s place and b in the 1‟s place rather than a times b.  Also, he went 

through a justification of why one only needs to consider the case when a is greater than b.   

 W: And a and b are not equal?...Well I guess it‟s 0 times 9, so I guess that is fair.  Um, 

 gosh, this is kind of uh…Well, I suppose if you flipped the order, like, 27 – 72, is 

 negative, make it 72 – 27...I could may be say the absolute value of the difference is 

 equal to some positive integer n times 9.   
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 After getting those ground rules straight, Will begins working on the problem.  He starts 

by looking at the subtraction ab – ba in general terms.   

 W: I‟m not really used to working with numbers like that, so…I‟m trying to kind of break 

 up the subtraction so I can say, um, oh, wait, if b is smaller than a, then you‟re going to 

 have to make a substitution, so this is going to be, um, a – 1 minus b is going to be you‟re 

 first digit, we‟ll call it c… And then b minus a is going to be d…this is b plus 10 right 

 here…minus a.  And a – 1 – b so I want to prove that, um, ok I know that there‟s a rule 

 that for every multiple of 9, the sum of c and d has to be 9.   

 

 Will is referencing a rule for checking a number for divisibility by 9 (a number is 

divisible by 9 so long as it‟s digits add up to a multiple of 9).  He then takes the expressions he 

had for c and d, adds them together and sees that the result is always 9:  

 W: Shoot, the a‟s cancel out and the b‟s cancel out. And I get 10 – 1, 9 equals 9.  And 

 that‟s an equation that works, but it says that a and b are irrelevant  here…Which I guess 

 is kind of what I want to say, right?... No matter what a and b are, you get this equation 

 and it works.   

 

Figure 42: Will's work on Question 2a 
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Will was a little unsure that he had actually solved the problem at this point.  However, it did not 

take him long to decide he had solved it, “…assuming that this rule works, which I‟ve sort of 

explained does, so yeah.  We‟re getting 9 = 9, that‟s a true statement.”  It should be noted that 

Will did not really explain why the divisibility rule worked, but he did display confidence that it 

does.   

 There were still a few issues for Will to consider.  First, c + d did not equal 9 in the case 

of a = b.  However, this case was easy to check.  Will had also earlier made the case that all 2 

digit multiples 9 had digits that summed to 9, with the exception of 99.  However, he pointed out 

that this could be dismissed because no combination of a and b had a difference of 99.   

 This proof is a syntactic proof.  While it does rely on Will‟s understanding of place value, 

he does not use any sort of representation to gain understanding into the problem which is then 

turned into a proof.  He does, however, manipulate expressions in a logically permissible way to 

construct his proof. 

 Will gives evidence for the presence of both types of analytic proof schemes here.  The 

bulk of the proof points to a transformational proof scheme because the bulk of the proof is 

manipulating algebraic expressions.  However, Will demonstrates that he understands the 

reliance of his proof on the divisibility rule when he says “assuming that this rule works…”  This 

also might be construed as evidence for an external proof scheme because he never actually 

provides adequate verification of the rule.  Although that is the case, Will does not find the 

divisibility rule to be valid because he has been told by an authority figure.  He believes the rule 

holds because he believes he understands why the rule holds.  It is possible that he has faith in 

the rule simply because he has seen it work ever since he learned it.  If this is the case, that 
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would constitute an empirical external proof scheme.  There is no evidence that this is the case, 

however likely it might seem. 

 

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6. 

 Will started by discussing different ways to go about it.  He mentioned graphing n
3
 – n 

and 
6

3 nn 
 together to see what happens (he did not try this because he said his calculator was 

not working right) and also trying to do a proof by contradiction (he said he could not make 

sense of saying something was not a multiple of 6).  Not knowing how to go about solving the 

problem, Will mentioned he was not even sure if it were true: “Yeah, I‟m not convinced that‟s a 

fact, I kind of want to see why it‟s like that before I try to say, well, this is why, so…Yeah, so I‟ll 

try to figure this out…” 

 To do this, he tried to think if there were any quick multiplication tricks that could be 

used in this problem.  He also mentioned that the difference of multiples of 6 would be a 

multiple of 6 also.  This led him to consider induction: 

 W: So…let‟s say n
3
 and…n and n + 1 are my two integers…Oh!  I can do this by 

 induction!  Cause if I can prove that every step is a multiple of 6, by one step is a 

 multiple of 6 and find some base case, where it‟s a multiple of 6, then I can prove that… 

 that it‟s true for all….(n^3 – n) minus (n + 1)^3 – (n + 1)… 

 

The choice Will made for the 2 integers lead him to think of induction, but the idea that led him 

there did not go away, even if it was not the way induction needed to be applied to the problem.  

He continued to look at the difference (n + 1)^3 – (n + 1) minus (n^3 – n) and was confused with 
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what he was trying to show and what he was assuming (for example, he placed n with 6q in one 

expression even though he had assumed n^3 – n = 6q, see Figure 43).   

 

Figure 43: Will's work on Question 2b (1 of 2) 

 Eventually, through his algebraic manipulations, he factored n^3 – n in an effort to isolate 

n: 

 W: I factored it to…n
2
 – 1 is (n + 1)(n – 1)…I know the roots to make this zero, 

 but…this hasn‟t really helped me to show it‟s a multiple of 6, does it? 

 

At this point, Will asked for a hint and I suggested he look at this latest expression with a 

particular number plugged in.  He then tried n = 4 and n = 3, realizing that this gave him 3 

consecutive integers.  After that, he replaced n(n + 1)(n – 1) with (n + 1) (n + 2)(n +3) to make 

this more apparent.  He thought that this new form might be more conducive for induction and 

left the interview with that idea in mind.  When Will came to the next interview, he had the 

problem figured out.   
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 W: So for this one, as soon as you realize that these are three consecutive integers, 

 you know that you have … one of the integers has to be a multiple of 3…Because 

 in any of these over here, in any interval of 3, there‟s always a multiple of three.  You can 

 see it here (see Figure 44) I didn‟t really go into much of a proof for that, but… 

 

Will also provided a written up version of this argument.  In his write up, he treated the numbers 

as if the multiple of 2 and multiple of 3 were always different numbers.  He did not consider the 

case where one of the three is both.   

 

Figure 44: Will's work on Question 2b (2 of 2) 

 This is a semantic proof attempt.  Although most of Will‟s time is spent working towards 

an induction proof, the proof he actually presents comes about only after he understands the form 

of the numbers in question.  Once this was understood, it was turned into a (fairly) formal proof. 
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 Through his work on this problem, Will displayed a transformational analytic proof 

scheme.  He performed operations on the algebraic expressions at hand (via factoring) and used 

the results of those operations to prove the result.   

 

Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

n ℕ: 

2
1

2

1

3

1

2

1

1

1 n
n

   

 Will had little trouble starting this problem.  The one issue that did come up was that he 

used a base case of n  = 2 instead of n = 1.  This was a common issue with the students in the 

study.  Other than that, Will performed the necessary steps of induction quite well.  He started 

with the right–hand side of the inductive step, re-writing it as 

2

1

2

1

3

1

2

1

1

1

2

1

2
1

2

1
1 




n

nn
 . 

From there, however, he got a little stuck in comparing this new right-hand side to  

12

1

3

1

2

1

1

1



n

 . 

 W: So…now I‟m just trying to see what the other side is, the 
2

1

1

1
  da da da + 

12

1
n

.  

 Basically, I want to show that the difference from 
n2

1
 to  

12

1
n

 is less than 
2

1
, I 

 think…right?  Or is greater than 
2

1
.   
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Will had arrived that the difficult part of the problem.  He first needed to address what was going 

on between the terms 
n2

1
 and  

12

1
n

:   

 W: So, the integer gap from 1 to 
n2

1
, is going to be the same as the integer gap from 2

n
 to 

 2
n + 1

.  So…I still haven‟t showed that second gap is greater than 
2

1
.  How do I do that in 

 general?  (see Figure 45) 

 

Figure 45: Will's work on Question 3 (1 of 2) 

 Will left that interview knowing what he needed to do to complete the problem.  He just 

did not know how he was going to do it: “And then I just have no idea where to go, how to do 

that sum in general terms.  I mean, without finding a least common denominator and multiplying 

everything together, which is not going to be pretty.” 



180 

 

   In between interviews, Will did not get a chance to look at the problem.  He picked up 

where he left off the nest time we met.  Because he did not work on it since the last interview, he 

began where he said he would.  Specifically, he looked at taking the least common denominator 

of the left-hand side of  

2

1

2

1

32

1

22

1

12

1
1








 nnnn
  

for simplification purposes.  During the reflection, Will said, “I was looking for something I 

could pull out or get rid of and throw away and just have something there that was neat.  I was 

kind of looking for neatness, is what my motivation was.”  He did not see anything that made the 

sum any simpler and asked for assistance completing the problem.  We then talked through the 

problem together to finish it.  See Figure 46. 

 Because this was an induction problem, the proof attempt is of the procedural type.  Of 

the sub-types, this attempt was a process proof.  Here, Will did not complete strictly laid out 

steps, but rather attempted a few global ones.  He performed a base case, made his induction 

hypothesis and applied it to an inductive step.  The characteristic that really separates this from 

an algorithmic procedural proof is that completing the inductive step did not have a set algorithm 

that would guarantee success.   

 Will shows some evidence of a couple different proof schemes here.  First, since he is 

adhering to the method of mathematical induction, it may seem that he has a ritualistic external 

conviction scheme.  However, this scheme is reserved for those that become convinced of a 

proof because of the steps being complete look as if it is a proof.  However, here Will 

understands the steps being completed.  This is a type of transformational proof scheme (what 

Harel and Sowder call an “interiorized proof scheme,” p 264).   
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Figure 46: Will's work on Question 3 (2 of 2) 

 More evidence for a transformational scheme can be seen when Will tries to simplify  

12

1

32

1

22

1

12

1









 nnnn

 in order to get it more comparable to 
2

1
.  When explaining 

this, he said “Yeah and I mean, in physics, if you have 2 really complicated, ugly things, you can 

usually you know, work them down, simplify them out a little bit and you‟ll find terms that‟ll 

drop out.”  Will is speaking of performing operations and anticipating the results of the 
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operations.  This method did not work this time, but it does show what he thinks it takes to 

complete a proof. 

 

Question 4 

Examine the following proof by contradiction:  

Prove 01   

Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 

Prove 01   

Suppose  01  , then 01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 

 This problem was first given to Will on his midterm exam when he took MATH 305.  On 

the midterm, he made the case that using a proof by contradiction makes the assumption that 2 

things are related somehow.  In the case of this problem, the number i is not on the real line and 

thus not relatable to 0 in the sense required: since “i is not in the domain of real numbers…it 

cannot be compared to 0 on a real scale.”   
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Figure 47: Will's previous work on Question 4 

 Will remembered his answer and did not change it in the interview: “I think the argument 

I made for this one is that… it‟s an imaginary number and it‟s outside the set of the reals, so the 

comparison to the reals was not working.” The interview setting did allow me to go into more 

depth with the question than was seen on the midterm.  I asked Will what his answer meant for 

the rest of the argumentation provided.  His response: 

 W: Well, I guess it just kind of says that…I mean, you can make this argument, 1  is i, 

 by definition, so what you‟re saying is i is less that or equal to 0, i is greater than 0, I 

 mean, you can say that all you want, but that doesn‟t mean anything…if there is no 

 interpretation for what i > 0 is, then it‟s a completely irrelevant argument.  So even 

 though this looks fine written out here, it just, you‟re not saying anything… 

 

 Because Will did not attempt a proof, there is no proof type to be dealt with here.  

However, he does reveal an analytic proof scheme.  When talking about what to make of the 

proof provided, Will was aware that it was meaningless because it was based on something that 

was meaningless.  Because Will recognizes this dependence on starting assumptions, he is 

displaying an axiomatic proof scheme. 
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Question 5 

 The following interview was the last interview of the first semester of the study and 

served as the first of two debriefing sessions.  Like the last interview, Will did not attempt a 

proof so there is nothing to classify as a proof type.  However, Will did mention something that 

has shown up while classifying previous proof attempts.  When I asked if he felt like he had 

improved over the course of the study, Will said “I think it‟s just knowing what I‟m actually 

doing and being able to make that plan rather than just jumping in and „that didn‟t work,‟ do 

something else „that didn‟t work.‟.”  This attitude towards how to go about starting a proof is 

evident by the number of his previous proofs that were semantic in nature.   

 Will also provides evidence for the proof scheme that showed up most often during the 

first half of the study: the transformational analytic proof scheme.  When discussing his 

improvement, Will said: 

 W: I have a better idea of how to start on a proof…And what kind of, I mean, I‟m still 

 doing the same things I‟ve always done but now I have more of an idea of what I have 

 and I can think about it a little bit better and plan it a little bit better.  

 

This is evidence for the transformational scheme because he feels like he has gotten better at 

anticipating the results of the things he does while completing a proof.   

 He also provides some weak evidence for an axiomatic proof scheme.  While discussing 

the sorts of proofs he does in his physics classes, Will says that they start with basic principles, 

like Newton‟s laws, and work from there: 
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 W: So you‟ll have to take stuff, fundamental blocks in physics and you‟ll need to use 

 those to build up into the bigger equations. …Take what you have, put it together and see 

 what, see if works, see if you can see something that shows why this happens. 

 N: Yeah.  And I think that serves as kind of a nice analogy for math also, except on 

 the math side of it, those fundamental blocks of physics knowledge are kind of 

 replaced with axioms and you kind of deduce from there. 

 W: Yeah 

 

I called this weak evidence because Will merely agreed with something I said; he did not 

articulate it himself.  However, I do think that he really does see this parallel between 

mathematics and physics.  For this reason, I feel Will is displaying the axiomatic proof scheme. 

 

Question 6 

Prove that n ℕ, 3nn  (mod 6) .  

 Will needed a review of modular arithmetic before getting started on this problem.  He 

also worked a long division problem to help re-familiarize himself with the roles of the divisor, 

quotient and remainder.   

 W: So n over 6 is going to be some integer m + a, let‟s say, if that‟s remainder 

 a…remainder is what doesn‟t get taken out…[tries 16 divided by 5 for reference]  

 So I have one fifth.  Ok, so I‟m dividing by 6 so I‟m going to have some a over 6, is 

 going to be my…Ok, so n over 6 is going to equal to some other integer m plus a over 6.  

 So now I want to prove that n
3
 over 6 is going to be equal to some other integer p plus a 

 over 6.  So let‟s take this m plus a over 6 and cube it… 
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Will then proceeds to cube m+
6

a
, his expression for 

6

n
, in the hopes that the expanded version 

of 

3

6










a
m will be comparable to m+

6

a
.  As he said, “That doesn‟t help as much as I hoped…”  

(See Figure 48). 

 From there, Will takes a step back and, after some thought, says: 

 W: I haven‟t shown that this works yet, so let‟s try 2.  Or, let‟s try something greater than 

 6, let‟s try 7.  It equals 1…So, it‟s 343 over 6, it‟s 30, it‟s 5…7 and 1.  So r is 1.  So yeah, 

 I get the same remainder for that one.  57 plus one sixth. … So it works. 

 

Working this example makes Will realize that a different characterization of the problem would 

work better: 

 W: Uh oh.  I just cubed n over 6 instead of just n.  I don‟t want to do that.  So this…I 

 need to try again.  Ok, so n over 6 equal to m plus a over 6.  So n is equal to 6m + a.  

 Now that‟s what I want to cube.   
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Figure 48: Will's work on Question 6 (1 of 2) 

Will goes about doing this and gets to the middle of page 14_8b (Figure 49). 

 After performing the cubing, Will divides each side by 6.  He realizes that many of the 

terms are divisible by 6, so he collects those together and labels them p.  He sees that the a
3
 over 

6 term is not what he needs and he addresses that by adding and subtracting a over 6.  “So a
3
 

over 6 minus a over 6 is an integer and I‟ll have my a over 6 remainder.”    
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Figure 49: Will's work on Question 6 (2 of 2) 

To show that 
66

3 aa
  is an integer, he does a little simplifying and says:  “So I need to show that 

somehow a times a
2
 – 1 is a multiple of 6.”    Next, he tries some examples, sees that it is 

working and proceeds to do the induction argument on the left side of Figure 49.  He gets a bit 

stuck: “a
3
 – a is already 6k from up here…I need to show that this (3a

2
 + 3a) is some integer 

multiple of 6…Now if a is even, that‟s easy.  But a‟s not necessarily even…”  Eventually, Will 

factors the terms he is worried about and realizes that everything is fine in the case that a is odd 

as well: 

 W: Oh, then I get an even number anyway (from the a + 1 factor).  So, is equal to 

 some…and I‟ll use r because I‟m running out of numbers.  And that is what I set out to 
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 prove in this little part.  I really hope that there is a little easier way to go about this than 

 the one I did.  Ok, so I had to show that this right here is a multiple of 6, a
3
 – a is a 

 multiple of 6.   

 

 This is a syntactic proof.  Will began the interview by making sure he understood 

modular arithmetic, but this is separate from trying to gain an intuitive understanding of the 

problem itself (which would have classified the proof as semantic).  Once he had straight the 

concepts necessary to attack the problem, it was a matter of manipulating the expressions at hand 

to verify that the identities held true.   

 As is typical with syntactic proofs, this proof reveals that Will has a transformational 

proof scheme.  This is definitely a proof based on logical deductions, but the deductions do not 

show the reliance on previous that would be needed for this proof to be evidence for an 

axiomatic proof scheme.   

 

Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 

 When Will first read this problem, he immediately thought it would be related to Pascal‟s 

triangle: “Ok.  So you‟re going to have…so it‟s probably going to be related to Pascal‟s triangle 

at some point.”  During the reflection, I asked why he thought this and he said: “you know, it‟s 

going to keep getting bigger and bigger the more and more subsets you take.”  It turns out that 

Will was more correct about this assumption than he realized at the time.  It did not take long, 
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however, for him to abandon this.  After drawing the triangle in Figure 50, Will said: “I don‟t 

know, the triangle‟s probably not the best place to start this.” 

 

Figure 50: Will's work on Question 7 (1 of 4) 

 After this, Will gives the problem some thought and attempts to go straight to a formula: 

 W: So, if take A and divide it into your n elements, you‟re going to get n subsets and then 

 you can group, you know, 2 of them together.  And you can do that, so then you‟re going 

 to have n – 1 elements that way, and…you‟re going to have n – 1 of those…and then, 

 similarly for n – 2…all the way down to n – (n – 1), or 1.  So…now I have to prove it…Is 

 a picture proof ok?  

 

This leads him to draw the rectangle of boxes in Figure 50.  This attempt is also quickly 

discarded.   
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 In an attempt to restart the problem, Will begins to write out the concrete example of a set 

with 3 elements: {1, 2, 3}.  “Let‟s just start easy.…So you have n, 3, plus n – 1 times n – 1, 

so…2 times 2, so 4…oh, no, you don‟t. …Turns out this doesn‟t work after all.”  Will tried to 

extrapolate what he thought he was seeing in the example to a general formula.  At this point, I 

asked him to explain the notation he was using: 

 W: Oh, I‟m just grouping 1, 2 and 3 into subsets.  I‟ve got 1 2 3 and then I‟ve got 1 2 and 

 3.   

 N: So is this supposed to be one subset of the set 1, 2, 3? 

 W: No, this says, you know, 1, 2, 3; this [(1, 2, 3)] is a subset of 1, a subset of 2 and a 

 subset of 3.  This [(1 2, 3)] is a subset of 1 2 and a subset of 3.   

 

Here, instead of simply listing each subset, Will is listing all the ways he can think of 

partitioning the set {1, 2, 3}.  This will lead to trouble as he continues with the problem.   

 Will then moves on to a set of size 4 and again writes out what he thinks are the all the 

ways to partition the set {1, 2, 3, 4}.  At this point, Will thinks he sees a pattern: “There should 

be 4 of these…So here I have 1 3 1, 1 4 4 1, this is starting to look vaguely like Pascal‟s triangle 

but not quite.”  Will sees that when he made his list for the 3 element set, there was 1 collection 

of subsets with 1 element each, 3 partitions of the set involving a subset of size 2 and 1 other 

element and 1 subset with 3 elements (1 2 3).  Then in the column with the partitions of {1, 2, 3, 

4}, there is 1 collection of 1-element subsets, 4 partitions each where the largest subset is size 2 

and 3, and 1 subset containing all 4 elements.  He then says: “So I‟m going to posit that my next 

one, if I do 5, I‟m going to get 1 5 8 5 1.  That‟s just a guess, but…Let‟s find out.”   
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 Will begins to partition the 5 element set, but stops because he realizes that he forgot 

some partitions in the case of the 4 element set.  “Oh crap.  I forgot about additional groups.  

Because here I can do 1 2 3, and then 4 5…”  What Will realized is that the subset {1, 2, 3} can 

be joined with the subset {4, 5} or the pair of subsets {4} and {5} to complete partitions of {1, 2, 

3, 4, 5}.   This led him to go back up to the 4 element case and add on some additional partitions 

in number only (as can be seen in Figure 50).   

 W: Ok, alright…let‟s go back to 4, make sure I can get all my set‟s out of 4…+1, +1, +1, 

 so for each of these I have one more because I can group the two remaining sets together.  

 And for this one, it‟s actually correct.  This is the 1 2 3 4 and the 2…(counts the sets 

 written out) …29. 

 

 Will then shifts his method again and starts using the choose function to count out 

subsets: 

 W: What do I have here, 10, 15, 24, 25… one more, 26 but not 29.  The reason I was 

 thinking the choose would work is because initially you have n, well in this case we‟ll 

 say that we have 4 elements.  So if you to pick, you could do 4 C 4 is going to be 

 choosing all 4 in one set.   

 

Will realizes that nCk will give you the number of ways to start with n things and choose k of 

them to place in a subset.  However, he is still stuck with his notion that all the elements of the 

superset need to be accounted for when writing out the subsets.  This accounts for the 3C2, 3C1, 

and so on that appears at the bottom of Figure 50.  This is even more evident in the following 

figure: 
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Figure 51: Will's work on Question 7 (2 of 4) 

Will explains what he‟s doing here: 

 W: So actually…this is 4 2…ok, and then for each of these I can additionally do, group 

 the remaining 2 into a set, which is actually 3 choose 2…3 2 will cover the sets 1 2 3 …4 

 and 1 2 3 4, so both ways I could choose 2 from here… 

 

 Will is using the multiplication principle of counting.  He sees that there are 4C2 ways to 

form a 2 element subset of a 4 element set and then adds the step of arranging the 2 additional 

elements into the partition in some way, which he believes to have 3C2 options.  He concludes 

that the (4C2)(3C2) also accounts for the 3 element subsets:  “Yeah, for every 1 2 and 3 4 there 

are 3C2 ways to group these into 2 additional sets, so 1 2 3 and 4 and 1 2 4 and 3 and then 1 2 

and 3 4.”  All that remains, then, is to add 4C4.  He mistakenly adds the 4C2 = 6 when he says: 

“10, 28, 29…So the plus side is I just got 29.  The down side is I don‟t think that‟s the number I 
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want anymore.”  According to his method, he should have added 4C1 + (4C2)(3C2) + 4C4 = 23.  

He then wrote out his formula for a general n.   

 At that point it was time to end the work portion of the interview and start the reflection.  

During the reflection, Will mentioned that he was skeptical about his method: “This doesn‟t 

really make sense to me…the whole 4 2, 3 2 [4C2 and 3C2].”  We also discussed that the method 

he was using was flawed in that it allowed for repeats.  I asked Will to work on the problem 

between interviews and he said he would. 

 Between interviews, it was clear that Will had made some progress: 

 W: Well, after your hint from last time, where I was counting sets repetitively, I 

 basically just came up with, right away, this new expression  where it was the sum of nCi 

 from i is 1 to n…Basically, this is the number of ways you can take a single element and 

 call that a subset and then, you know, subsets of 2 elements would be nC2…And then 

 you do all the way to nCn where you take the entire  set as a subset…So, I basically just 

 came up with that and I was like „This is awesome, this should work perfectly.‟  And it 

 does, if I plug it in for the set 1, 2, 3, it‟s got 3 elements, 7 subsets…and then when you 

 actually do this calculation, you get 3C1, 3C2, 3C3 is 3, 3 3 and 1, 7 hooray. 

 

It should be noted here that I intentionally did not mention the empty set as a subset until later in 

the interview.  Will then proceeded to try to prove his new formula by induction.  To do this, he 

tried a number of algebraic manipulations, as can be seen in the following figures. 
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Figure 52: Will's work on Question 7 (3 of 4) 
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Figure 53: Will's work on Question 7 (4 of 4) 

 Will had come to a formula that he was comfortable with, he just was not sure how he 

was going to prove it:  

 W: So it works.  Then I tried to do an induction by taking n + 1 and trying, you know, to 

 get something that looks like n choose, or (n + 1)Ci trying to get to get something that 

 looks like nCi.  I kept making stupid mistakes. 
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Will knew that he had made a mistake along the way (by the time he reached the bottom of 

Figure 53) because his formula gave him an answer of 29 when he was expecting 15 (not 

counting the empty set).   

 I asked Will if he had considered the possibility that induction was unnecessary:  

 N: So did you ever give any thought to the fact that maybe this formula maybe just 

 sort of inherently was a proof?  

 W: Well, logically, it works.  It‟s built out of logic. 

 N: Right 

 W; I kind of built it that way so...I don‟t know.  It works, it‟s pretty clear why it works.  I 

 understand very well why it works.  I was trying to use one of these proof techniques to 

 show it works.  But, no I didn‟t really want to consider that a proof. 

 

 I then asked Will about the fact that he did not really know what he was supposed to end up with 

at the end of his inductive step: 

 W: Yeah…I don‟t know, that was something I was noticing, that I wasn‟t really going 

 anywhere with this.  And that‟s kind of what I was getting down here (bottom of Figure 

 51), from working on this, I realized that I didn‟t really know what I was looking  for…I 

was just looking for, just hoping that something would fall out and I‟d have one of  those 

aha moments… 

 N: Sure, right 

 W: But I guess that never really happened and I ended up like just kind of flailing around 

 a little but until finally, „Screw it.‟…Just kind of gave up, you know? 
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Next, I asked Will what he would he would turn in if this were a homework problem:   

 N: So, just like a hypothetical, if this was a homework assignment, you know, you go 

 through this flailing around a little...would you just eventually say “Ok, I have to turn 

 something in, let me explain where this comes from”? 

 W: Yeah, that‟s pretty much what I do on my homework assignments.  I work it as much 

 as I can and then I look at the clock, I‟ve got 5 minutes to turn this in, so I just say „This 

 is my work.  Partial credit?‟  Thank God for partial credit.    

 

From this statement, I gathered that Will was still confident that he had the correct formula, but 

not that he‟d be able to provide a proof.  We spent the rest of the interview looking at alternative 

ways to solve the problem. 

 Although Will did not provide a proof, per se, the work he does on this problem does 

constitute a semantic proof attempt.  The first interview working on this problem was spent 

trying to figure out the structure of the problem.  Between interviews, he got to a point where he 

felt like he understood the structure of the problem and then tried to turn that understanding into 

a formal proof.  This is why his proof (or at least proof attempt) is classified as semantic. 

 His proof scheme, however, is less straightforward.  He tries to use induction, which is 

evidence for a transformational scheme given how well he understands the method of induction 

(as with Question 3).  However, the fact that Will does not take his justification for the 

summation formula and use it to provide a proof gives support for a ritualistic external 

conviction scheme.  Ritualistic proof schemes are generally schemes held by those who become 

convinced by something that simply looks like a proof.  Applying the contrapositive of this 

definition, we see that it applies to Will because he thinks that his argument is not a proof 
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because it does not look like one: “I mean I probably could have written something out that made 

logical sense and called that a proof, but…if you can‟t prove it numerically, it‟s kind of hard to 

say that it‟s proven.”  

 

Question 8 

Prove that the cube root of 2 is irrational using a proof by contradiction. 

 This problem was on the midterm that Will completed when he took MATH 305.  It was 

meant to help gauge any progress Will might have made since the middle of that class.  On the 

midterm, Will made the mistake of proving that the square root of 2 was irrational, not the cube 

root.  He initially made the same mistake during the interview, as we will see.  Other than this 

mistake, Will had no issue with the problem on the midterm.  See the figure below: 

 

Figure 54: Will's previous work on Question 8 

 Will did have more trouble, at least initially, when working on the problem during the 

interview.  As I said above, Will began the problem by working to show that the square root of 2, 

not the cube root, was irrational.  See Will‟s work in Figure 55: 
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Figure 55: Will's work on Question 8 (1 of 2) 

 Will started the problem fine in that he assumed that 2 is a rational number and trying 

to derive a contradiction from that.  The first thing he attempted was looking at a list of squares 

and trying to get his contradiction from that:  

 W: And the difference appears to be, between each consecutive square appears to be the 

 series of odd integers, 3, 5, 7, 9, 11. … From that, I‟d imagine that there‟s no way you 
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 can have a square that‟s double another square…Because any…I don‟t know…Right 

 now what I‟m trying to do is show that is no way that you can have a square and another 

 square that‟s double that.   

 

He abandoned that fairly quickly and moved on to considering what would happen if 2b
2
 and a

2
 

were treated as functions: 

 W: If I broke this (2b
2
 = a

2
) into a transcendental equation, and set each side equal 

 to…Yeah, I think, I don‟t think there‟s any intersection here.  Where 2b
2
 would equal to 

 a
2
 except for at 0.  So 0 over 0 is 0 and square root of 2 is not equal to 0.  So, therefore, 

 square root of 2 cannot be equal to that ratio.   

 

I pointed out to Will that just because the graphs he is referring to only intersect at the origin 

does not mean that 2b
2
 cannot equal a

2
:  

 N: I agree with you that the equation y = 2x
2
 and the equation y = x

2
 only agree where x is 

 0…But you can find sort of separate a values and b values that can  make that true…like 

 if you had b is 2  and a is 2, then this would be fine… You know, you just sort of tried 

 to make the claim that 2b
2
 could never be a

2
. 

 

After a little more discussion, Will moved on to another potential method: 

 W: I mean…I don‟t know, would it be out of line to actually calculate of few digits or say 

 something along the lines of, you know, 1
2
 is 1, or the square root of 1 is 1, the square 

 root of 4 is 2, so…the square root of 2 must be somewhere in between there?   
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 I: Um, yeah, well, I mean, I‟m not sure it would get you anyway because, let‟s just 

 pretend right now for the sake of argument right now that the square root of 2 is 1.5.  So, 

 1.5 is definitely between 1 and 4, right? 

 W: Right 

 N: But a being 3 and b being 2 would satisfy that equation, then, right? 

 W: Oh yeah.  Shoot… So, it would actually come back to this one (2b
0
 = a

2
).  How could 

 I show that? 

 

From there Will had one more method he wanted to try: “So, what I just did was I split my 2b
2
 

into b
2
 + b

2
 …and I subtracted one of the b

2
‟s from the a

2
.  I got  

b
2
 = (a – b)(a + b). 

And I‟m not seeing how this is helping me either.”   

 Normally I would not have given Will as much help as I did.  However, this question was 

presented to see what progress he had made since taking MATH 305.  Since he had been given 

the proof that 2  is irrational in that class and was then asked to adapt it to 3 2 , I gave him the 

argument for 2  at this point.  This can be seen at the bottom of Figure 55.  From that point on, 

Will had no problem at all providing a proof for the irrationality of 3 2 .  See his proof in Figure 

56: 
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Figure 56: Will's work on Question 8 (2 of 2) 

 The proof Will provided for this problem (once he had seen the argument for the 2  

case) is a algorithmic procedural proof.  There where specific steps that needed to be completed 

and he accomplished those steps by modifying the steps from a similar proof.  That being said, I 

do believe the steps were meaningful for Will; I do not think he was simply blindly following 

along.  I believe this to be the case because he had no problem explaining the gist of the problem: 

“I said a and b are therefore both even numbers so there will be reduction, but we assumed above 

that a over b was already reduced, so there is a contradiction.” 
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 Because Will had a good idea of the steps he was completing, he reveals an analytic 

proof scheme here.  Had he merely completed steps, seemingly not knowing what he was doing, 

then that would have constituted an authoritarian external proof scheme.  As it is, Will performed 

operations he understood well and used their outcomes to complete his proof.  The proof relied 

heavily on algebraic manipulation and the anticipatory action of assuming a and b are relatively 

prime.  Thus, Will is displaying a transformational proof scheme here. 

 

Question 9 

 Like Question 4, the next interview involved showing Will a proof and having him 

evaluate it.  The proof was a version of Cantor‟s Diagonalization Argument and can be seen in 

the appendix.  Since Will did not complete a proof for this problem, there is no proof to classify.  

As before, however, discussing this proof gave some evidence for Will‟s proof scheme. 

 As is to be expected, Will spent the first portion of the interview getting used to the 

notation in the proof: 

 W: It‟s a number…ok.  αji represents the ith digit in the decimal expansion of f(j)… βj is 1 

 if αjj equals 2…So…B is another number and…so that‟s where the diagonal comes in?  

 The αjj and the βj?  So B is just the numbers in the diagonal?  The functions, or the 

 numbers…if you have a function of β, it‟d just be the α‟s that are in the diagonal‟s? 

 N: Well, sort of, the individual numbers in B are sort of dictated by what is in that 

 diagonal.  So yeah, I mean, that diagonal you just circled is where the term 

 diagonalization comes from. 

 W: Ok.  So, if α11 is equal to 2, then β1 is equal to 1.  So this is just a string of 1‟s and 2‟s.  

 So since f is onto, there exists a k such that, or k a subset (element) of ℕ such that f(k) is 
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 equal to B…However, if βk is not equal to αkk, by definition of βk, because…it always has 

 to be…yeah….Oh, ok.  So B is the list of β‟s, so there‟s some function k…or B… 

 

After getting this all straight, Will gave the proof overall some more thought and decided that he 

understood most of the proof: “Ok, so I‟m fine up until this last paragraph.”  We then discussed 

what the proof was saying there and Will started to understand:  

 W: Yeah, ok, yeah.  So…but it‟s still saying that B has to lie somewhere on 

 this…one of these horizontals…Yeah, ok.  So, but... βk is not equal to αkk, so…f of …So 

 b of some digit, some number, some β, is not equal to α there, so…so that‟s bad.  

 (thinking) …Ok, so f(k) is defined as B.  That determines where B is in this list.  This is 

 kind of like a βk, or whatever.  f(k) is equal to B, but βk is not equal to αkk, so whatever 

 function is already there…your βk, one of the digits is guaranteed not to match, therefore 

 they can‟t be the same.  So…how does the countable assumption lead to the absurdity?  

 

Will then goes back through the proof and makes some more progress towards understanding it: 

 W: Ok…so write the outputs as, ok, that now makes a lot more sense…So, it has to be, it 

 is a problem with 1 – 1, isn‟t it?  Because suddenly you have 2 functions, you know, for k 

 and n, even though k is equal to n, you have 2 different decimals. 

 N: So, say that again. 

 W: So, basically, it‟s established that you‟re, if you let your k equal to B, and there‟s 

 some B in this list that since k is a subset (element) of ℕ and we‟re taking all the n that 

 are a subset (element) of ℕ, there has to be some n out there that is equal to k. 

 N: Right 
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 W: So when you take that decimal expansion, you should get the same decimals 

 because, I mean they‟re the same, they‟re 1 – 1. 

 N: Well, they‟re the same number, yeah. 

 W; Yeah.  So, but you‟re going to get different one‟s because B is not equal to 

 whatever f(n), because that αjj is not going to be able to be equal to βj.   

 N: Yeah 

 W: So, you‟ve shown right there that they can‟t be 1 – 1, it has 2 different numbers and 

 therefore the set is not countable. 

 

 Will is displaying some confusion about function terminology.  The contradiction he is 

explaining does not violate the fact that f is supposed to be one-to-one, but the fact that f is a 

function in the first place.  Besides this error, Will understands the proof. 

 This interview displays that Will has a transformational proof scheme.  His understanding 

of the proof depended on his understanding of the relationships between objects developed over 

the course of the reading through the proof.  He also recognizes that the validity of the proof 

depends on outcomes of the operating on objects at hand (in this case, taking the number B and 

relating it back to the list).   

 It is worth noting that Will is only convinced up to a point.  When I asked him if saw any 

holes in the proof, he responded by saying: 

 W: You want me pointing out holes now? ...As far as my level of understanding goes, I 

 can‟t really say that there‟s no holes, I mean… If I had 5 minutes to answer the question, 

 I‟d probably say “No it‟s fine.” 
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Will did not go into the evaluation of the proof looking to debunk it.  This might make one think 

that he expected it to be true.  If this was the case, that would be evidence for some sort of 

external conviction scheme.  However, the fact that he qualifies his conviction with “As far as 

my understanding goes” tells me that he is relying on his understanding alone (and not the 

structure of the proof or some other authority) to decide whether or not to believe the proof is 

valid. 

 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.   

Example, 6/9 < 5/7 < 7/9. 

 Will started this problem by going straight to a general formula:  

 W: So…you have a over b and c over b and between those, oh, there we go … less than d 

 over e … less than c over b … whose denominator is less than that of the pair…I would, 

 what happens is you take the average of those 2…(thinking)…Ok…Oh, numerators differ 

 by 1, so this (c) is a + 1 over b. 

 

Will seems to have a number of ideas regarding the problem as he begins.  He first writes down 

an inequality involving general rational numbers, 2 of which share a denominator, and then 

realizes that he can say more that this: that c = a + 1 due to the restrictions given in the problem.  

In between, he has the thought that maybe using the average of the 2 outer numbers might given 

him what he needs.  After a little more thought, Will discovers a counter-example: 
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 W: Oh, wait a second what about 1/2 + … I guess 2 halfs, doesn‟t really work does it?  

 Because that‟s 1. … I don‟t know is that legitimately…I guess 2/2 works.  I don‟t know 

 what‟s between those, just 1/3…Ok, well 1/3 isn‟t less…that would say that there has to 

 be an integer between there.  There‟s no integer between 1/2 and 1….So there‟s a 

 contradiction. 

 

I asked Will what that meant for the problem and he said:  

 W: It means that it must be disproved because 1/2 and 2/2 are both rational numbers that 

 numerators differ by one and they have the same denominator.  However, the only 

 number less than 1, or less than 2 that can go in there is 1. 

 

From there, I asked Will if he could place any restrictions on the problem that would make the 

statement true.  “I suppose maybe if I said so long as the denominator is greater than 2, maybe, 

because 1/3 and 2/3 is 1/2.  What about 0 and 1/3, there‟s nothing in there…” 

 Will did not let these counter-examples stop him from considering the problem.  To 

investigate what was going on, he laid out some numbers to see if he could notice anything about 

what was going on.   
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Figure 57: Will's work on Question 10 (1 of 4) 

 Will quickly moved on to an improved version of his diagram:  “So, let‟s say I have 0 

and then…1/3, 2/3, 1.  In here there‟s nothing, 1/2, nothing.  So…you have 0, 1/2, 1, you‟re 

going to get, well actually let‟s build this the other way around.” 

 

Figure 58: Will's work on Question 10 (2 of 4) 
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 W: So we‟re going to start with 0, 1/2, 1, there‟s nothing in between there, though.  I go 

 down to 1/3, though, I have 0, 1/3, 2/3, 1.  So 1/2 lies between then.  I go to fourths, I 

 have 0, 1/4, 1/3, I have 2/4, 3/4, 1.  This is 1/2, so that doesn‟t really help much, but yeah, 

 I have 1/3 and 2/3 in between there.  So this is…I‟ll call this 0
th

 order, 1
st
 order, 2

nd
 order, 

 so here we have 1, here we have 2, here we have 0, that‟s why I chose those for my 

 orders (the number of solutions for each line is the “order”).  I‟m just going to keep going 

 for a bit.  0 to 1/5, 2/5, 3/5, 4/5 and 1.  So yeah, third order, you‟re going to have 3. So 

 the pattern that seems to be emerging here is that for an n
th

 order…denominator, the 

 denominator is going to be n+2…and so long as your numerator is… greater than 1 and 

 less than…n +2, it looks like you‟re going to have something there…greater than 0, less 

 than or equal to 1.  Should I prove that? 

 

Will is basically saying that the property holds so long as you neglect the parts of the unit 

interval from 0 to 
n

1
 and 

n

n 1
 to 1.   

 When I asked Will to prove this, he said “So…call that a base case…trying to think of 

how to do this.  The n‟s kind of suggest that it should be an induction proof, but…”  He proceeds 

to then set up the inductive step, where he is going to induct on the value of the denominator (see 

Figure 58).   

 W: So…call this n‟ (the new numerator that‟s going to be between in the inductive step).  

 This is, I want to show that there‟s some n‟ in between (script) n and (script) n + 1 over 

 this (n + 2).  So…show that from (script) n defined up here over … less than n‟ over, call 

 it n + 3, (script) n + 1 over n +2.  I don‟t think I‟m going to be able to prove that by 

 induction. 
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 He then gets a new sheet of paper and draws a diagram similar to the one he had before, 

only this time he uses tick marks instead of numbers: “I‟m going to look at this pictorially.  So 

this is my 0th order case.  I‟ve just divided this in 2, so this is 1/2.  Divided into thirds…and this 

into fourths…it‟s a little off…but hopefully there will be something really illuminating.” 

 

Figure 59: Will's work on Question 10 (3 of 4) 

 W: Gosh I just don‟t know how to prove this…statement here.  I mean this picture proof 

 almost does it because you‟re always going to have this…this boundary expanding and, I 

 mean, you can clearly see that there‟s always something in between here. … But I‟m not 

 happy with that as a proof…It‟s kind of frustrating. 

 

Will continues his restart of the problem by going back to a general inequality as can be seen in 

the figure.   
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 W: Ok, this is kind of a throw back to this (crossed out work in Figure 58), but I‟m 

 just going to write a over b and then a+1 over b and then c over d where d is less than 

 b…Just going to see if writing it in terms like this helps me see anything…this gets me 

 nowhere. 

 

At this point, I began the reflection portion of the interview.  As we talked through the work he 

had complete, I referred to the pattern that had begun to emerge in his drawing in Figure 59.  

“Yeah, you kind of get a…shell of available values that‟s like … (draws outer-curves in the 

diagram) you know, 0 to 1, you‟re going to get something like this.”   

 I mentioned to him that he seemed pretty convinced by the pattern he saw and I asked if it 

might be enough to serve as a proof for someone else: 

 W: I just don‟t think that that‟s rigorous enough to call a proof.  And I suppose if I took 

 the time to sit down here and write these functions (the ones that would define the outer-

 curves of the shell), this function, you know, this function (draws in inner-shells)…And, 

 you know, I‟m sure something might fall out of this…Yeah and as far as just an 

 illustration, that…doesn‟t really…convincing, but not satisfying. 

 

 The other main question I had for Will was regarding the fact that he had only worked in 

the unit interval up to that point.  He said that he had not thought about anything outside that, but 

quickly saw that once he had that figured out, the rest would be easy:  

 W: I wasn‟t really thinking about that when I did this, I don‟t know why I decided to do 0 

 to 1, but it would work because if you can find solutions in this interval, you can find 
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 solutions in any interval you…any interval higher than that…Yeah, all you‟re doing is 

 adding some integer. 

 

At the end of the interview, I asked if could find some time to try to prove the pattern he found, 

and he said he would try.   

 Will did not get a chance to look at the problem between interviews.  Because it was the 

last interview of the study, I wanted to make sure that I had time to conduct the debriefing part of 

the interview.  So, Will and I talked through the solution of the problem, starting with me making 

explicit the pattern he saw the last time we met: 

 N: (Referring to the diagram in Figure 58)…for example, between 2/5 and 3/5, what 

 number, what rational number that‟s going to fit the criteria is going to be in there? 

 W: 1/2 

 N: Ok, what about between 1/5 and 2/5? 

 W: 1/4 

 N: Yeah, ok, what about 1/4 and 2/4? 

 W: 1/3 

 N: Right, so do you sort of see any pattern sort developing from there?  Any 

 relationships? 

 W: Well, it looks like your denominator is just going down by 1 every time you step 

 over.   

 

Once Will saw this he went about setting this pattern up in a general way.  He set up 2 

inequalities.  To show the left side of 
n

a

n

a

n

a 1

1





 , Will set up the inequality on the top of 
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Figure 60: “Yeah, because if this distance minus this distance…”  He is referring to showing that 

the distance between 
n

a
 and 

1n

a
 is less than the distance between 

n

a
 and 

n

a 1
, which is 

exactly 
n

1
.  He then set up the right-hand side of the inequality in a more straightforward manner 

and worked with that one, as can be seen in the figure.  Note that Will only works on the second 

of these sub-inequalities, something that neither of us noticed during the interview. 

 

Figure 60: Will's work on Question 10 (4 of 4) 

When working on the right-hand side, Will talks through the final bit of justification: 

 W: So that‟s…yeah, an – a + n – 1.  So…take an out.  Can I just say that…n – a – 1.  Ok, 

 well…I know that a is less than n…and what were the restraints I put on what a can be?  

 It had to be greater than 0 and less than n, right?  Yeah…so I know that 0 is less than n – 

 a – 1…Oh yeah, because a has to be less than n…minus 2…Yeah, so I was right, this is 

 true.  n – a – 1 is greater than 0, ok…Yeah, that does it…. That‟s what I set out to prove.  

 

 The proof Will has constructed constitutes a semantic proof attempt.  He does not finish 

his proof on his own, and it‟s complete, so it is considered an attempt only.  However, it has the 
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tell-tale signs of a semantic attempt.  Through a few starts and restarts, Will eventually uses a 

pair of diagrams that he hopes will give him insight into the problem.  He tries to convert this 

insight into a proof, getting nearly all the way there once I make the pattern he saw on his own 

more explicit.   

 As with most of the questions over the course of the study, Question 10 provides 

evidence that Will as a transformational proofs scheme.  The proof he provides is logically 

deduced and does not rely on empirical evidence or external verification.  It also depends on 

operations carried out on mathematical objects, not previous results, for its validity.  Producing 

this type of proof attempt places demonstrates that Will has a transformational proof scheme.  

 

Question 11 

 The final interview of the semester concluded with a debriefing session in which Will and 

I discussed how he felt the semester went with regards to proof.  He did not produce a proof, so 

there won‟t be a proof to classify.   

 While Will did not provide a proof, he did reinforce some of the things observed over the 

course of the study.  For example Will often, especially early in the study, would try to gain an 

understanding of the proof instead of trying to go straight to it.  When I asked him about the role 

of examples in proofs, Will responded: “I guess seeing that the proof (result) actually works 

somewhere is a good first step…Because if you can‟t find, you know, an example of where the 

proof (result) works, then it‟s kind of a crappy proof (result).”  Besides just giving reassurance 

that a result holds, Will points out that examples can also help while constructing a proof: 

 W: If I have nowhere else to go, it never hurts to look at the example and just see what‟s 

 there, I mean…If it‟s not like you can just sit down and write the proof instantly…staring 
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 at the proof for a while and just trying to understand, staring at the example, excuse me, 

 for a while and just trying to figure it out…Figure out what‟s going on in the example, 

 what you can take away from that, what you can use from that. 

 

This attitude towards understanding a problem before trying to provide a proof is why Will had 

so many proof attempts classified as semantic over the course of the study.   

 Will‟s tendency to hold off on a proof until he had an understanding did not show up in 

every question over the course of the study.  For example, in Questions 7 and 10, Will made 

some attempt to go straight to the proof and these were the Questions that Will was least 

successful with.  Will saw the classes he had been taking as having a role in his proving: 

 W: I‟d say if anything my proofs wanted to be more construction proofs…. Yeah, but like 

 the classes I have now, it‟s not so much contradiction proofs and induction proofs, it‟s 

 like “Show that this is true”….or “Carry out this integral to show that this is actually 

 equal to this.”… Yeah, I think it‟s kind of like what kind of math you‟re exposed to… If 

 you looking at what kind of thinking you‟re going to do in a given time interval, 

 you…it‟s probably going to be related to whatever you‟re expected to do in other classes 

 and what not. 

 

In the classes Will took during the second half of the stuffy, Will was presented problems that 

could be approached in a straight forward manner.  This led him to try more direct proofs during 

the second part of the study.  When he ran into trouble he was still able to take a step back and 

look for that intuitive understanding, but that served as a fallback option when his direct proof 

attempt failed.   
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 Like with his preferred proof type, Will also highlighted the proof scheme that showed up 

most often over the course of the study.  When I asked him what he thought it took to have  a 

successful proof attempt, Will said, “Patience.  A little creativity.  Do something clever once in a 

while… A little outside the box thinking.”  I think Will is referring to the need to manipulate the 

objects involved with the problem he is working on.  As such, Will is displaying a 

transformational proof scheme.   

 

Will’s progression 

 Below is a chart of the proof types Will provided along with the proof schemes he 

displayed over the course of the study: 

Question Type of proof Proof scheme 

1 Semantic Transformational 

2a Syntactic Transformational 

2b Semantic Transformational 

3 Process Transformational 

4 N\A Axiomatic 

5 N\A Transformational, Axiomatic 

6 Syntactic Transformational 

7 Semantic (Attempt) Transformational; Ritualistic 

8 Algorithm Transformational 

9 N\A Transformational 

10 Semantic (Attempt) Transformational 

11 N\A Transformational 

Table 3: Summary of Will's work 

 When looking at the chart it does not seem like Will displayed much change over the 

course of the study.  This is true, as both the type of proof provided and proof scheme displayed 

did not change much.  However, while most students felt like they had improved over the course 

of the study, Will did not. 

 Will had noticed the fact that he did better overall with the questions from the first 

semester (since there were 2 problems that he did not complete on his own the second semester).  

When I asked how he thought he did with proofs semester, Will said “I think I‟ve kind of slipped 
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a little bit.  I‟m out of practice since I don‟t have a class I‟m taking that‟s just strictly, you know, 

writing proofs and reading proofs and stuff.”   

 While Will felt like his proof ability had regressed, it did not show up in the classification 

of his proof types or proof schemes.  This reinforces point that student‟s conceptions of proof 

can not always be seen by observing their work alone (Stylianides & Stylianides, 2003; 

Stylianides & Al-Murani, 2010).   
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4.4 Helen 

 This section focuses on the progress made by Helen from the beginning of the study to 

the end.  First, I will briefly describe each of her proof attempts and their classifications.  Then, I 

will discuss changes in Helen‟s understanding of proof and proof structures based on this and the 

reflection portions of our interviews.  Helen majored in art and was also working on a minor in 

mathematics.  During the first half of the study, Helen took Euclidean and non-Euclidean 

Geometry and Ordinary Differential Equations and during the second semester, Helen took 

Number Theory and History of Mathematics. 

 

Helen’s proof attempts 

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 Helen began the problem by writing out the formula 2l + 2w = lw and trying a some 

examples (see Figure 61).  She tried a few examples that didn‟t work and then hit on the solution 

where l = w = 4.  She then mentioned that she wanted to try induction because “it‟s what we 

spent a lot of time on last semester.”  As this was still early in the study (before I let the 

participants work independently before reflection), I pointed out the reasons for not using 

induction and suggested she solve her equation for a single variable.  From there, she solved for 

w and plugged in various l values to see which gave integer solutions.  This led her to finding the 

solution l = 3 and w = 6 as well as confirming the 4x4 square she found earlier.   
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Figure 61: Helen's work on Question 1 (1 of 2) 

 After finding an l value that did not give an integer (l = 5), she went back to the equation 

2

2




l

l
w  and discussed what it would mean for l – 2 to divide 2l.  It was at this point that I 

suggested looking at the given equation as a function and she proceeded to look at the graph.  

We discussed what the asymptotes of the graph meant for the problem at hand.  She was able to 

see that asymptotes at y = 2 and x = 2 implied that all solutions had indeed been found.   

 Helen: Yeah, it looks like it has …has a vertical asymptote at (two) and it looks like it‟s 

 got another one… 
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 Nick: A horizontal one at … 

 H: It never actually …it starts heading towards 2… 

 N: Yeah, you have like a minute and a half right now, so I‟m going to sum things up, if 

 that‟s ok.  So it looks like it‟s heading towards 2, right? 

 H: Uh huh. 

 N: Is it ever going to get to 2? 

 H: No… 

 N: So what does that tell you? 

 H: That those are the only two. 

 

 I asked her to then write up a formal proof for the problem and bring it to the next 

interview.  She did (Figure 62) and showed the examples that worked and provided a verbal 

description of the graph and why it meant there were no more solutions.  This is a syntactic 

proof.  However it was based on understanding from help, not intuition.  This excludes the proof 

from classified as semantic.  Also, the proof did not involve prescribed steps laid out elsewhere 

and therefore can not be considered procedural.  This is also evidence that Helen has a 

transformational analytic proof scheme.  The proof involves operations on objects (the function 

discussed) and the anticipation of the results of the transformations (how the outputs of the 

functions change as the inputs approach 2 from the left and infinity).  
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Figure 62: Helen's work on Question 1 (2 of 2) 

 

Question 2a 

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9.  (For example, if 

a = 4 and b = 2, then 42 – 24 = 18, a multiple of 9.) 
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 As before, Helen began by looking at examples.  Here, though, she took the examples a 

bit farther by organizing them based on the difference between the a and b values.  For example, 

she made a chart in which one column had a = 5, b = 3 and a = 6, b = 4 because a – b = 2 in 

both cases.  The chart, in Figure 63, was organized in this way because she had noticed from her 

examples that ab – ba = 9(a – b).    

 H: It seems like there‟s lots of patterns and none of them help. 

 N: Ok, so what are some of the patterns that you‟ve noticed besides the multiplier being a 

 - b? 

 H: That you would have 7 and 3 and 6 and 3 and 8 and 3, they‟re all multiples 3, 4, 5 so 

 that‟s 27, 36 and 45. 

 

Figure 63: Helen's work on Question 2a (1 of 2) 
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Helen was actually referring to different manifestations of the same pattern. 

 From there, she began her attempt at proving this equation would always hold.  She then 

rewrote the equation in those terms and set 9(a – b) =  cd.  She saw that this was new, but did not 

see how she was any closer to proving it.  This brought her to realizing that in ab – ba having the 

numbers a and b locked in their respective places was a problem.  I prodded her to realize how 

take 42 and write it as 4*10+2.  She was quickly able to put this idea in general terms and 

completed the algebra with ab – ba = 10a + b – 10b – a = 9(a - b).   

 

Figure 64: Helen's work on Question 2a (2 of 2) 
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 Again, I would classify this attempt as a syntactic proof because there are no prescribed 

steps, and the argument is not based on her intuition.  However, she is “using definitions and 

other facts in logically permissible ways” (Weber, 2004, p. 4).   This is also more evidence that 

Helen possess a transformational analytic proof scheme because she is using operations on 

algebraic expressions to justify claims.   

  

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6.  

 This is the first problem in which Helen deviates from a syntactic proof attempt.  She 

applied the method of induction to this problem, which is an algorithm proof.  She completed 

this proof attempt on her own between interviews.  Because we had spent so much time on the 

previous question, we merely discussed what she had done outside the interviews.  We could 

have spent more time on the problem because she did not complete it correctly, but I wanted to 

make sure that she stayed caught up with the rest of the students in the study.   

 She began the problem as she had the previous two, by looking at examples.  Prior 

examples had other influence as well, however.  Like in the last problem, when looking at the 

examples, she focused on the multiplier (the m in n^3 – n = 6m).  However, this didn‟t yield a 

pattern she felt she could work with as before.  So from there she provided what she thought may 

have been an induction argument.  Helen‟s work from the interview is in Figure 65. During the 

discussion, she mentioned that she wasn‟t sure if it served as a valid proof.  She began the proof 

correctly, but then replaced n + 1 with x in the inductive step and said that since (n + 1)
3
 – (n + 1) 

= x
3
 – x.  Since this final expression had the same form as n

3
 – n, she reasoned it must be  
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a multiple of 6 as well.  She admitted when discussing this point that “I‟m not entirely sure that‟s 

how induction works”.   

 

Figure 65: Helen's work on Question 2b 

 While this is a procedural (algorithm) proof attempt, there are some elements of what 

could have been a semantic attempt.  She began by looking at examples hoping to gain insight 

into the problem (potential for semantic).  She never came to any understanding that she tried 

turning into a proof, so this is not a semantic attempt.  By instead relying on the process of 

induction, she also reveals that facets of her proof scheme are external.  She places some trust in 

the induction process, even though she is not sure how it works:   

 H: And then I decided that induction, I don‟t really understand it, because if you put the n 

 + 1 case cubed, and if you set a number, x = n + 1, it‟s the same thing, so that should say 

 that it works, but then I don‟t know if that‟s how that works.     
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Not only is she not sure how induction works, she is not sure if she has completed the steps 

properly.  Because this is the closest thing she presents to a proof, she is displaying a ritualistic 

external conviction proof scheme.   

 

Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

n  ℕ: 

2
1

2

1

3

1

2

1

1

1 n
n

 
 

 Here, since the problem explicitly asks for the use of induction, Helen‟s attempt used 

induction and is classified as a procedural proof.  She showed one misconception with induction.  

She chose a base case of n = 3 instead of 1 (she also made an arithmetic mistake at this point, but 

more on that later).  This was because she believed the higher number would lead to more insight 

into the problem without being too unwieldy.  She did not realize that even with a correct 

induction proof from there she would not have verified the property for n = 1 and 2.  This was 

the only difficulty she displayed with the process of induction itself.   

 The mathematics involved with completing the steps of induction, however, did provide 

difficulties.  Initially when working with the inductive step, she simplified without regard to 

when or how the induction hypothesis would be used – showing a reliance on old habits.   

 H: I went from 1 + (n + 1)/2 to (3 + n)/2, because that‟s what that simplifies into, but 

 that‟s not what you‟re supposed to do with induction, you‟re supposed to get it so that 

 you have the n case plus the n + 1 case, so I went back up here so that it separated out so 

 that you have 1 + n/ 2 + 1/2, which is what this breaks done into. (See Figure 66) 
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Figure 66: Helen's work on Question 3 (1 of 3) 

She then broke up the problem to use the induction hypothesis, but this revealed another 

misconception she had: when she moved to the n + 1 case, she added only a single term to the 

sum on the left.  Instead of adding all the numbers 
12

1

12

1



 nn

 , she simply added 
12

1
n

 to 

the existing sum from the induction hypothesis.  This led to trouble in that 
2

1
 was being added to 

the right hand side and she knew that for 
2

1

2

1
,1 

n
n .  This prompted her to re-evaluate the 

proof overall and she found an arithmetic mistake from earlier.  This error led her to thinking that 

it wasn‟t true for the base case. She didn‟t pay attention to the numbers initially because she 

assumed it would work out.  “Yeah, well, the problem is to prove that it is true, so I assumed that 

the base case was going to be true, so I just wrote down the numbers without actually looking at 

them.”   

 When I asked about it, she realized that she would be done at that point because one 

counter-example is enough to disprove something.  I pointed out the mistake she made (that 8 = 
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2
3
, not 2

4
) and that gave her confidence in the result again.  She left the interview thinking that 

the left hand side in the induction hypothesis would be big enough to make up the deficit created 

due to 
12

1
n

 being less than or equal to 
2

1
.   

 In between interviews, she tried more examples, and came to the question of how the n + 

1 case differed from the n case.  In the examples, she used her mistaken notion of how things 

changed.  However, noticing that the next number in the series with n = 3, 
9

1
, was not in the 

form of 
n2

1
 lead her to question how the sequence was acting and that‟s where she quit working.  

See writing directly under “another question” in the figure below. 

 

Figure 67: Helen's work on Question 3 (2 of 3) 
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 Part of her decision making process was trying the different interpretations to see which 

one made the example true (
9

1
 and 

16

1
 were too small to be bigger than 

2

1
).  She continued from 

there in the next interview.  She ends up deciding through examples that correct interpretation is 

the right one (see figure below).   

 

Figure 68: Helen's work on Question 3 (3 of 3) 
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She then considers the series 
12

1

12

1



 nn

  and asks about ways to decide if it‟s increasing, 

converges or goes to infinity.  She then works a bit more and realizes that increasing n by 1 

doubles the terms in the series and I talk her through the rest of the proof. 

 Although this is an algorithmic proof attempt, it still reveals some things about her proof 

scheme.  For example, when discussing her attempt, she says “Well, as far as the induction goes, 

I‟m pretty sure that I did this part right, that this is the actual way to do induction.”  However, 

not much later in the interview she asks “Did I do the induction right?”  So, while she largely had 

the induction set up properly, she still wanted verification from an authority figure.  Combining 

this with the fact that she did not use the correct base case reveals that she has not yet 

interiorized the method of mathematical induction.  Thus, she is displaying an internalized 

transformational proof scheme.   

 This is not the only proof scheme Helen shows, however.  The fact that she asked if she 

did the induction correctly goes with her disregard of her base case (she assumed it was true 

without verification) and points to an authoritarian proof scheme.  She also displays an empirical 

proof scheme by checking her various interpretations of how to perform the inductive step by 

checking examples.   

 

Question 4 

The following interview involved the evaluation of the following proof: 
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Examine the following proof by contradiction:  

Prove 01   

Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 

Prove 01   

Suppose  01  , then  01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 

 This problem had been given to Helen the previous semester on her mid-term exam.  As 

she was not asked to complete a proof on her own, this interview can not be classified using 

Weber‟s criteria.  However, evidence of proof scheme does exist.  The proof she gave on the 

midterm is below. 

 

Figure 69: Helen's previous work on Question 4 

 During the interview, Helen finds a few different problems with the proof presented.  

First, she mentions the problem of applying real number properties to imaginary numbers.  

“So…can it be, since it goes against everything that that all the real numbers…are?  By being the 
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square root of a negative number, maybe it can‟t be held to the same rules.”  Here, she is saying 

that a problem rests in the fact that operations are being performed on objects to which they do 

not apply.  This presents evidence of an analytic proof scheme because she is stating that the 

conclusion has not been deduced properly.    

 When I asked whether she would have believed the proof if only the top half had been 

given, she said:  

 H: Yeah, I think that this original statement here (first inequality that says „Prove‟) has a 

 problem because that would be mapping it to a real number space and it doesn‟t belong in 

 that same space. 

 N: Ok, so you‟re saying that somehow making this comparison makes the square root of  

 -1 a real number? 

 H:  It compares it to a real number. 

 N: Right 

 H: And I‟m not sure that you can do that.   

 N: Ok 

 H: Can you do that? 

 N: Well, that‟s kind of all part of this and I‟m asking you.   

 H: I think that even without the 2
nd

 one, that I would have a problem (with that).  

 

This implies that Helen is not relying on the fact that contradictory results had been attained and 

still harbors the doubts she had when she did it on the midterm.  She also seems prepared to 

accept my word on whether the comparison can be made.  However, since Helen does not 

actually do this, I will stop short of calling this evidence of an authoritarian proof scheme.   
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 Helen‟s display of an analytic proof scheme is hard to pin down into a sub-type 

(transformational or axiomatic).  Her reasoning above has transformational elements to it (the 

involvement of operations and anticipation of results).  However, there is not enough evidence to 

say for sure.  Instead, there is clear evidence that she is thinking deductively.  She says that when 

you do not have a real number you don‟t know…  

 H: …technically, where that is in comparison to 0. 

 N: Ok, so location somehow plays a role in this? 

 H: Yeah.  Because saying a number is less than or greater than 0 is like drawing out a 

 number line… 

 N: Ok, and seeing if it‟s on the right or left of zero.   

 H: Yeah 

 

This also matches what she said on the midterm.  It emphasizes that she sees the need for certain 

conditions to be satisfied before deductions can be made.   

 She also sees the combination of the 2 provided proofs as a proof of what she‟s saying, 

that i is not on the number line: “And I think that the two of them together maybe proves that‟s 

not on the line.  Because you can‟t be both greater than and less than and equal to 0.”  This 

shows, possibly without her knowing, that she has a grasp of how proof by contradiction works.   

 

Question 5 

 The next interview was a debriefing session that occurred at the end of the first semester 

of the study.  In it, we discussed how Helen felt the semester had gone in regards to proof.  

Again, since she did not produce a proof, Weber‟s classification will not apply.   
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 The first thing she mentioned was moving way from the view that all proofs are 

procedural proofs: 

 H: Last semester it (proving) seemed very strict.  Like, a proof was a certain way, and it 

 had to be a certain way and it had to be very rigid.  And that‟s maybe not the case.  It 

 seems a little more…so it started out, in here especially, where you would give me a 

 problem and then I would only look at those certain ways of doing it, like the steps he 

 made us go through to do things that certain way.  And it never ever worked until that 

 problem where you set it up to specifically use induction. … (In the proof writing class) 

 they focus on, like, three things.  And then they put you into these little boxes and then it 

 gets really hard to get out of them. 

 

This shift in view implies to me that Helen is beginning to take on more of an analytic proof 

scheme and away from an external ritual proof scheme.  She goes on to say: 

 H: I think, being able to think, to see the patterns, but not always being confined to what 

 you already know. … Because I know that was my problem a lot.  Just looking at it and 

 trying to apply what I already know to it instead of reading what it says and then… 

 N: Ok, so kind of like, if you have one equation that talks about, that says something 

 about the problem maybe, I don‟t know if it‟s the case for you, but some people would 

 keep manipulating that one equation, hoping that something would come out of doing 

 that. 

 H: Yeah 
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An example of what she‟s referring to occurred in Question 2a.  There, she recast ab – ba =    

9(a – b) as ab – ba = cd, then cd = 9(a – b).  Here, she is not actually doing anything new with 

the problem.  What she needed instead was a transformational analytic approach where she 

rewrote ab – ba as 10a + b – 10b – a.  This sort of transformation would have needed the 

anticipation that isolating the individual digits was necessary for finishing the problem.  This 

anticipation is a hallmark for the transformational analytic proof scheme.   

 The discussion also included whether she thought she improved over the course of the 

semester:   

 H: I think that‟s a really, really hard question to answer.  Because the more, I noticed 

 this in this class and in here, that the more I work with them, the more problems I have 

 with them…Yeah, I think I might have gotten better, but then I find new problems that I 

 don‟t know how to answer…Like, I think that I‟m doing better, but then, I guess more 

 knowledge of what I‟m doing points out more problems with it. 

 

Another topic included was what led any improvement she did see: “Do it more.  And more. … 

and then knowing more kinds of proofs… Like, understanding that there‟s more than one way to 

prove something, like you can‟t prove everything through induction.”   

 

Question 6 

Prove that n ℕ, 3nn  (mod 6). 

 This was the first problem of the second semester and it was a recasting of sorts of the 

problem that was 2b.  Helen did not recognize this, however, until I pointed it out in the 

reflection.  Like earlier problems, she started by looking at a few examples and then began a  
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proof by induction.  When asked why she tried induction, she said “(b)ecause all the other ideas I 

had didn‟t seem to work.  Like I didn‟t know how to prove it by contradiction with the congruent 

part…I didn‟t know how you would say that n is not congruent to n
3
.”   

 In this attempt, she set up the induction properly and performed the steps properly.  She 

used the induction hypothesis after multiplying out (n + 1)
3
.  After subtracting 1 from each side, 

this left her to show that 3n
2
 + 3n was congruent to 0 (mod 6).  She made this deduction from the 

applying the division algorithm that she had recently learned in number theory (knowing that 

congruent to 0 (mod 6) meant r = 0).  From there, she factored out the 3 and reasoned via cases 

(n even and n odd) that n
2
 + n was in fact an even number. 

 

Figure 70: Helen's work on Question 6 
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 This is a procedural proof, as it makes use of induction.  It is not algorithmic, however, 

because she does not follow prescribed steps throughout.  She had to adapt and come up with her 

own technique when completing the inductive step.  Since this proof does not typical of the 

induction arguments she saw before (where the inductive step involves only algebraic 

manipulations to verify an identity), the proof she gives is a process procedural proof.  This 

differs from the other induction proofs Helen has attempted and shows that some progress has 

been made. 

 Her proof scheme has not changed much here.  She asked a few different times through 

the course of the proof attempt whether she was allowed to perform certain operations.  She was 

satisfied when I told her which were allowed with modular arithmetic (for example, subtraction 

is but division is not).   

 H: How does the congruent, this part work?  With like operations. 

 N: So, what do you mean? 

 H: Could you subtract across it, could you … 

 N: Um, yeah, so you can subtract across it, you can add across it, I think you can multiply 

 as well, but you can‟t divide. 

 H: „K 

  

This points to the authoritarian external conviction proof scheme because she was comfortable 

taking my word without seeing proof.   

 Helen did complete a proof by induction, so there is evidence of the transformational 

scheme as well.  Because she does not write up a formal argument (and because I did not think to 

ask at the time), it is not clear whether or not Helen views an example she tried as the base case 
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for her induction argument or if she tried n = 1 mentally.  Because of this ambiguity, I will 

refrain from labeling this an internalized transformational proof scheme.   

 It is worth noting that during the reflection, when I pointed out that this is really the same 

as a problem she‟s seen and she said: “This one‟s way easier. … I‟m excited about the idea that 

maybe I‟m just smarter.”  

 

Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 

 Helen started the problem by looking at examples of sets of size 4 and 5.  She initially did 

not consider the empty set a subset, which became important as she moved along.  She 

proceeded by counting up the numbers of subsets of each size, but not adding these numbers to 

come up with the number of subsets of a set of size, say, 4.  She thought that the total number of 

subsets would not help her.  Instead, she was looking for a pattern that would give the number of 

subsets of a given size of a superset of different given size, for example, how many 3 element 

subsets there are for a set of size 4.  She would then check to see if that formula would give the 

number of subsets of size 3 for a superset of size 5.  This was based on a guess for the number of 

subsets of size 2, which she thought was (n – 1) + … + 2 + 1, due to not including the empty set.  

Her reasoning was there were n – 1 things to pair with the first element, n – 2 ways to create a 

new 2 element subset with the second element and so on.  (See Figure 71.)  

 Once she began finding the total number of subsets, I told her about the empty set and 

this led her to guess the 2
n
 formula.  From there she started noticing the numbers she was finding 

for subsets of particular sizes matched rows in Pascal‟s Triangle.  She left the first interview with 
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this in mind and I told her that she could use the fact that the rows of Pascal‟s triangle sum to 2
n
 

because it was proven in 305.   

   

Figure 71: Helen's work on Question 7 (1 of 2) 

 In between interviews, she tried thinking back to her probability class.  Eventually, she 

realized that the number of subsets of size k of a superset of size n was nCk.  Also, she 
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remembered the results from Pascal‟s triangle.  Helen put these ideas together but thought she 

needed to somehow prove more and gave consideration to using induction. 

 H: Well, it says to prove that you‟re correct, that that‟s the number of subsets of A.  But 

 then, like I guess the reason that I didn‟t just go through with all of the induction is that, 

 like I don‟t…I don‟t see how going through all of the induction would really help prove 

 that. 

 N: Why is that? 

 H: Well, nCr, is the way to find a number of subsets of a larger set with a certain 

 number of things in it. 

 N: Right 

 H: And that‟s…I guess, like, that was kind of a stopping point for me because that‟s just 

 how you do it.   

 N: Ok 

 H: So I didn‟t see how induction would really make it more true than it already is. 

 

Figure 72 shows the work she did between interviews, including the work she did while going 

beyond her “stopping point”.  Helen realized that since the total number of subsets was the sum 

of the number of subsets of each particular size and because nCk gave the coefficients in Pascal‟s 

triangle, she could use the result from 305 that gave the number of subsets to be 2
n
.  Helen was 

also able to verbalize what her proof would look like if she were asked to turn one in for 

homework. 

 H: I think if I wrote it out the way that I was thinking about it, I would then (be 

 comfortable calling what I did a proof).   
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 N: If you wrote out your reasoning or just wrote out what… 

 H: From beginning to end, like stating that this is an unordered pick of r numbers out of n 

 things without replacement.   

 N: Right 

 H: Like, that‟s exactly how to find the set that it‟s asking for, the subsets that it‟s asking 

 for. 

 N: The number of subsets of a particular size. 

 H: Yeah.  And so that‟s all the subsets of that size in that set. 

 N: Right 

 H: And then that goes directly into this that says 2
n
 is the total number of subsets in that 

 size of a set. 

 

 This is a semantic proof.  Helen uses her understanding of the purpose of the choose 

function to come up with a formula that is self-explanatory and therefore is proof.  This proof 

displays an axiomatic proof scheme due to her reliance on previously proven results (the work 

done in 305 in particular) and her knowledge that she would have to prove the result if it had not 

been proven already. 



243 

 

 

Figure 72: Helen's work on Question 7 (2 of 2) 

 

Question 8 

Prove that the cube root of 2 is irrational using a proof by contradiction. 

 Like Question 4, this question was a repeat from Helen‟s mid-term exam in 305.  Her 

response on the midterm is in the figure below.   
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Figure 73: Helen's previous work on Question 8 

 Unlike Question 4, Helen made some progress here because she was not successful on 

the mid-term.  She had seen the proof for the 2  in class shortly before the mid-term so at the 

beginning of the interview, I suggested that she attempt that proof first if she was unsure of how 

to complete this one.  She spent the first interview in which this problem was discussed doing 

that other proof.  See Figure 74 for this work. 

 She did not have trouble setting up the contradiction in either setting (interview or on the 

mid-term).  She started the problem properly, assuming that ba2  where a and b are integers 

and getting to the point of a
2
 = 2b

2
, where she assumed (from memory) that a and b had no 

common factors.   

 H: I think, are you supposed to say something about a and b being the smallest numbers 

 possible and that‟s where the contradiction was? 



245 

 

 N: It‟s possible.  I mean, I‟m being purposefully non-committal here.  If that‟s what you 

 think it might be, try to get something out of it.  Does that make sense? 

 H: Yeah…I think my problem is I don‟t know where I would go with that. 

 

Figure 74: Helen's work on Question 8 (1 of 2) 

 She thought that she deduced a contradiction from there.  Her argument (down the right 

side of the figure) was that this last equation implied that a was even, although it need not be 

from the starting assumptions.  I explained that she didn‟t finish and she accepted the fact that 

she didn‟t reach an absurdity because a being an integer allowed for it to be even.   

 She then picked up work using the deduction that a
2
 (and thus a) was even.  She deduced 

that a was even via contrapositive.  She finished the argument for 2  when I reminded her of 

the definition of an even and asked her what it would look like to use that.  She then deduced that 
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b must be even as well.  I reminded her of the starting assumptions and she realized that it was a 

contradiction.  She was happy with her argument because she knew it had to use the fact that a 

and b were assumed to have no common factors.  She left the interview knowing how to finish 

the 2  case, and returned with the cube root case written out nicely.   

 Once she understood the 2 case, the 3 2 case was straightforward (see Figure 75).  In 

fact, she remarked that she had finished it on the bus ride home after the initial interview.  

Because the 3 2  case is so similar to the 2  case, and that was where the real work was, this is 

the proof that I will address.  This was a process proof attempt.  While this distinction is 

generally reserved for induction proofs, this proof fits the criteria as well.  The main reason for 

this is that she had a general idea in her head of the steps required and the work was in 

completing them.  She knew that she was to assume the opposite and an additional assumption: 

 H: I was fairly sure that this needed to be said (“where a and b are reduced”). 

 N: Ok 

 H: Like, I remember that being important in the proof. 

 N: Right 

 H: But I didn‟t know…like how this was going to… 

 

She needed help completing the required steps, but she definitely had a global goal that needed 

to be accomplished in mind while attempting the proof.   
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Figure 75: Helen's work on Question 8 (2 of 2) 

 Although this was a process proof, Helen was using a transformational proof scheme.  

While she followed general steps in completing the proof, she did not rely on seeing those steps 

alone as validation for the proof.  She understood the implications of the operations performed 

(even if she needed prodding to perform the correct ones).  Once those operations where 

performed, she saw the starting assumption that was violated, completing the proof by 

contradiction.  While her proof relies heavily on operations, Helen realizes that the proof hinges 

on the anticipatory act of assuming a and b are relatively prime.  This is kind of action is a tell-

tale sing of a transformational proof scheme. 

 

Question 9 

 This question was another time in which I asked Helen to evaluate an argument.  

Therefore, I will not be using Weber‟s classification system here.  For this problem, I gave her a 
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version of Cantor‟s diagonalization argument.  The reader is referred to the Chapter 3 to see the 

proof, as it is quite long.   

 Helen needed to be reminded about some terminology (including natural numbers, real 

numbers and countable sets) before reading the proof.  She also had trouble with the concept of 

talking about a function when she did not know how it was defined.  Once she was comfortable 

with the fact that the function was just saying where each number was in the list, she was 

comfortable with the argument as a whole.  Initially, she related the notion of countable to the 

well-ordering principle, which she had seen in her number theory course.  This led her to say that 

she had not seen a proof like this go “past the list part”.  She mentioned that it took reading 

through it a few times, but that she understood the proof.   

 When I asked if she saw any hidden lemmas, she mentioned the statement that every 

subset of a countable set is countable.  She did not give much the statement thought while 

reading the proof because “(i)t seems silly to think that…if the bigger thing is countable then the 

smaller thing isn‟t.”  This brought out a different misconception, however, because she went on 

to say, “Well, it seems kind of absurd that if an infinite set is countable that some small finite 

part of it wouldn‟t be countable.”  This is shows that a couple things.  First it pointed out her 

belief that every subset of an infinite set is finite.  After a brief discussion, she seemed 

comfortable with the fact that this is not the case.  Her statement also implies that she thought 

that (0,1) was a finite set as well.  I believe she did not make that connection, however, because 

she did not object to the idea that every decimal had a corresponding natural number later in the 

proof.  She seemed to be alright with the statement regarding subsets of countable sets because 

oftentimes in proof assertions are made that aren‟t backed up.   
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 H: Well, like for most of these proofs I notice that there‟s a lot of places that 

 happens…Where you‟re like working through the proof and you get to a point where, at 

 no point on that piece of paper, what you‟re saying has been proven…So if you‟re just, 

 like if someone who didn‟t know anything about it were looking at it, you would just be 

 making random claims…about how things work. 

 

In this case, the assertion made was alright because “(w)ell, like, in ℝ you‟re already assuming 

that everything is countable.  Like, everything is countable and then you‟re taking this teeny tiny 

section, comparatively, of ℝ and saying that it is countable.  So that just makes sense.”  Of 

course, this development opened up the possibility that she didn‟t understand the proof as well as 

she thought.  However, at that point I was confident that she did. 

 In this interview, Helen displayed an axiomatic proof scheme.  She understood that the 

proof relied on definitions and previous results, even if her conceptions of the definitions and 

results involved were shaky at times.  There are shades of a ritualistic proof scheme in that she 

related this proof to that the reals are not well-ordered.  However, this was mentioned in passing 

and had little bearing on whether or not she found the proof to be valid.   

 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.   

Example, 6/9 < 5/7 < 7/9. 
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 Helen didn‟t finish this problem in the first interview.  In her proof attempt, she labeled 

the numerators and denominators in the inequality with variables, 
a

b

c

n

a

b


1
, and then tried 

various re-arrangements (Figure 76).  I was surprised that she did not try more examples as she 

had in the past.  She mentioned a few as they came to her as she was doing the algebraic 

manipulations.  However, these were lower numbers (denominators of 1 and 2) and led her to 

questioning whether the result was true.  The low denominators also led her to considering 

negative denominators, but I told her to disregard those.     

 H: And I made that [the inequality mentioned above] and I started messing with it, so I 

 got rid of all the denominators and put them up on top…And that‟s this (second row of 

 manipulations in the figure).  And then…like you can move that around a bunch of 

 ways. … But, like, it‟s still the original statement. 

 

Figure 76: Helen's work on Question 10 (1 of 2) 
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 Helen sees the relative futility in what she‟s doing, but she doesn‟t know what else to do.  

She considered other courses and they seemed less fruitful.  Helen mentioned considering 

induction and also that part of her manipulations were made in an attempt at a proof by 

contradiction, but there was no evidence of either from her work.   She left the first interview 

knowing it was not true in all cases and I asked if she could find some restrictions that would 

make it true.   

 In her out-of-interview work, she looked at some examples and came up with the 

necessary restrictions but made no attempt to prove it (see Figure 77).  She got the restrictions by 

using circles to represent the unit interval.   

 H: So, I went through one by one.  1 doesn‟t work and 2 doesn‟t work, I found that out 

 when I was here last time. 

 N: Yeah 

 H: So I tried 3 (for the denominator) and…half of it works (the line for 1/2 in the circle 

 falls between 1/3 and 2/3). 

 N: Ok 

 H: I didn‟t check any of them between 0 and 1 and then the last one and 1 because it 

 makes sense that there wouldn‟t be any in between those. 

 N: Right 

 H: Because they‟re the smallest pieces, nothing is smaller than that because that‟s the 

 smallest piece so far. 

 

She didn‟t consider fractions outside the unit interval on paper.  She also looked at many 

numerical examples, but did not focus on the pattern that would have led her to a proof.  She did 
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see a pattern in a few examples in which the numerators increased by moving left to right, but 

only after the numbers were put into reduced form.  “Well, like for something to be in between, 

like this is 1/2, this is 2/3, this is 3/4.”  From there, I pointed out and proved for her the pattern 

that works to save time.   

 In this proof attempt, Helen is showing signs of both a syntactic and semantic proofs.  I 

use both classifications because neither part of her work can be considered her “main” attempt.  

During the first interview, she resorted to symbol pushing when she saw no other recourse 

(syntactic attempt).  Between interviews, however, she used diagrams to gain an intuitive (at 

least partially) understanding of the problem but failed to convert this understanding into a 

formal argument (semantic attempt).  The proof scheme being displayed here is the 

transformational scheme.  In both the initial work and her work outside the interview, she is 

performing operations on mathematical objects.  There is no real reliance on previous results 

(besides real number properties) which would imply an axiomatic proof scheme. 
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Figure 77: Helen's work on Question 10 (2 of 2) 

 

Question 11 

 Like Question 5, this interview was a debriefing session that concluded the semester.  

This was the last interview I had with Helen.   

 Helen said that she definitely felt as though she had improved at proving over the course 

of the year, and this semester in particular:  

 H: I feel much more comfortable with it.  I think that last semester I was all like “Oh my 

 goodness, induction”, like everything, I was like “how do I do induction with this?”   

 N: …(W)hat do you think led to the improvement you saw? 

 H: Practice 
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 N: Practice? 

 H: Practice that leads to different kinds of proofs. 

 N: Ok 

 H: Where it‟s absolutely impossible to use whatever you used last time… I think it was a 

 combination of the class that I‟m in (number theory) and just how many how many we‟ve 

 done.  

 N: …Ok, so yeah, so you think you saw a lot of, you saw and were forced to use a lot of 

 different methods in number theory, along with just sheer practice. 

 H: And I think that that was something that hadn‟t really been dealt with a lot, like proofs 

 that didn‟t really follow like some strict set of rules, like this is how you do a proof step 

 by step. 

 

 She also mentions that taking the time to understand a problem before attempting the 

proof has helped her comfort level with proofs. 

 H:  (L)ooking (at a problem) without immediately applying some rigid form 

 of…structure…Just looking at how it works first.   

 N:  Instead of just plowing through and… 

 H: …trying to force it into some little box. 

  

To this end, she said of examples: “I think they‟re kind of huge.  They show you where the 

patterns are.”  This matches the fact that both of the times she attempted semantic proofs came 

later on in the study.   
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 When asked what was necessary to complete a proof and what was helpful but not 

necessary, Helen said that examples are necessary, as is an understanding of the problem and the 

language of math (notation) and how to manipulate it (rules).  Also, in some circumstances, 

taking a break is necessary:  

 H: I think that the taking a break is helpful but I kind of think it‟s also necessary.   

 N: Ok 

 H: Because like with the last problem, if you just sit there and you go over it and over it 

 and over it, I would never have seen the… 

 N: …pattern that helps? 

 H: Yeah.  But if you walk away from something you can get a fresh perspective… 

 N: Right 

 H: ..and look at it new and refreshed.   

 

 Like in the other semester ending interview, Helen talks about moving away from a 

ritualistic proof scheme to an analytic one.  This matches her latest attempt in which she went 

looking for understanding in how the problem was working in hopes that it would lead to a 

proof.  This also occurred while she was working on Question 7.   

 

Helen’s progression 

 Below is a chart of each question and the type of proof Helen used and the proof scheme 

displayed: 
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Question Type of proof Proof scheme 

1 Syntactic Transformational 

2a Syntactic Transformational 

2b Algorithm (Attempt) Ritual 

3 Algorithm (Attempt) Trans. (Internalized); Authoritarian; Empirical 

4 N\A Analytic 

5 N\A Analytic  

6 Process Transformational; Authoritarian 

7 Semantic Axiomatic 

8 Process Transformational 

9 N\A Axiomatic 

10 Syntactic; Semantic (Attempt) Transformational 

11 N\A Analytic 

Table 4: Summary of Helen's work  
 On the face of things, it may not look like Helen made much progress in proof at all.  The 

type of proof employed varied with the problem at hand and there is no evidence she gravitated 

toward any particular proof type as she got more comfortable with proof.  Syntactic proofs (or 

attempts) were used in 3 of the 8 opportunities that Helen had to complete a proof.  Procedural 

proofs were also common ( 4 of 8) but, again, were mostly a by-product of the fact that induction 

was used often, especially early in the study. 

 Where Helen showed the most progress, however, was in the proof schemes she 

displayed while working on the problems.  Although the various proof schemes do not follow a 

set progression (e.g., evidence of a transformational analytic scheme early in the study), she does 

move to the point where the second half of the semester she displays almost exclusively one of 

the 2 types of analytic proof schemes.  This also comes up in both debriefing sessions, where she 

mentioned that her view of proof has changed over the course of the study.  Originally, Helen 

saw the act of proving as being rigidly set with prescribed steps that need to be accomplished to a 

view where proofs can go many different directions and knowing which direction to take 

depends on an understanding of the problem at hand.  This realization even influenced what she 

thought could have led to an even greater improvement on her part.  Besides simply doing more 

proofs to improve, she said forcing the issue of figuring out what steps to take would help: 
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 H: Maybe a 305 class that made you actually think about what you needed to do instead 

 of just giving you a problem and telling you how you needed to do it… Because, like 

 everything we did with induction, we were told to do induction.  Everything we did with 

 contradiction, we were told to do contradiction…And we weren‟t, like there was no way 

 to find out like what would work in what situation better. 

 

On one hand, I believe she is referring to a necessary evil, so to speak, of the introduction to 

abstract mathematics class.  Until students are comfortable with methods like induction and 

contradiction, I feel it is unreasonable to ask them to decide which method to use.  On the other 

hand, Helen sees that eventually students are going to have to branch out on their own to make 

those decisions.  She also sees that being forced to do so leads to progress in proof in general.  
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4.5 Barbara 

 This section documents Barbara‟s progress over the course of the study.  Barbara was a 

Mathematics major who planned on becoming a secondary teacher.  During the first semester of 

the study, Barbara took Euclidean and Non-Euclidean Geometry, Linear Algebra and Statistics 

and Probability.  During the second semester, she took Number Theory and History of 

Mathematics.   

 

Barbara’s proof attempts 

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 Barbara started this problem by trying a square of side length 1 and saw that it did not 

work: “But that doesn‟t work if you have … if each side equals one that would be perimeter 4, 

which obviously isn‟t the area.”  I then asked about a few more squares and she saw that they did 

not work either, until we got to side length 4.  After finding that a square worked, Barbara moved 

on to a non-square rectangle (1x2) and saw that it did not work.    

 After this, Barbara and I went back to discussing the case dealing with squares.  We 

talked about the fact that for the squares with sides shorter than 4, the perimeter was greater than 

the area.  We also noted that for a side length of 5, the area is larger.  I asked if this observation 

would help with deciding whether or not any more square solutions exist, and Barbara said: 

 Barbara: Yeah, because the area would just keep getting bigger.  Right? 

 Nick : Sure, it will, but the perimeter will get bigger too.   
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 B: Well yeah, but it‟ll stay bigger, I think…Where the 4x is just limited to 4 times the 

 number, but the number times the number, as it gets bigger would get even bigger. 

 

Figure 78: Barbara's work on Question 1 (1 of 2) 

 I then mentioned that we look at the derivates of 4x and x
2
, the formulas for perimeter and 

area, to see that the area does indeed continue to grow faster than the perimeter.  Barbara was 

confident that we had the square cases covered and then we moved on to rectangles.  When I 

asked how she would proceed, Barbara said: “It‟s probably not the easiest way, I guess but…I 

don‟t know, I would just start with, I would just start plugging in numbers.  I would, like, say, x 

is 1 and y is 1 and then start increasing y.”  The result of Barbara‟s trials can be seen in Figure 

78.  She does not stick strictly to her method too long, as she begins to increase the x values as 

well as the y values after just a few trials.   
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 Eventually, she decides that she has checked enough: “Yeah, we were trying to look for it 

but it doesn‟t look like there‟s a rectangle.”  I asked Barbara if she could verify that and she 

began to look at ways to generalize what she had been doing. 

 B: Well, y would equal 1 over x…right? In one of them?  And then…y equals… 

 N: Well, y is one plus x, right? 

 

Putting this new plan into action, Barbara said: “So you‟d end up with, if y equals x plus one, 

then it would be x
2
 plus x versus 4x plus 2…Which obviously is bigger because that one‟s 

squared.”  Barbara proceeded with this method, trying the case where y is 2 more than x: 

 B: So this time I kind of added both sides together so I got x
2
 + 2x = 2x + 4.   

 N: Ok. 

 B: Because when they would equal would be when it would be true. 

 N: Oh, that‟s a good idea. 

 B: I got x
2
 – 2x – 4 = 0 … and the only thing I could come up with is not an integer 

 answer so… if an answer at all.   

 

Barbara needed encouragement to continue with this method because as she said: “Well, there 

wouldn‟t be a stopping point.  You‟d have to keep going.”  I suggested trying one more, because 

I knew she would find another rectangle soon: 

 B: Sure (laughs) 

 N: What‟s that?   

 B: Well, I‟m pretty sure you can factor that one…x equals, well x equals -2.  So, you get 

 x equals 3…So, when one side‟s three, the other side‟s 6.   
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 N: Ok, so does that work? 

 B: Yeah.  3 times 6 is 18 and 6 and 6 and 6 is 18.   

 

Barbara realized that the negative answer did not yield anything meaningful.  She tried a few 

more examples and eventually noticed a pattern developing.  She was able to predict what 

polynomial she would end up with if y = x +7: “x
2
 + 3x – 14..Well, you get 7x minus 4x…and 

then 2 times 7.  On this side you‟d have 7x and on this side you‟d still have -4x.”   

 We had reached the end of the interview and I asked Barbara to continue to work on the 

problem and she said she would.  The work she brought back can be seen in the following figure. 

 

Figure 79: Barbara's work on Question 1 (2 of 2) 

 As she states, Barbara does not know how to verify that she has found all the rectangles 

that fit the criteria.  She is, however, convinced that she there are no more to be found: “I feel 
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like it‟s obvious that it‟s not going or factor anymore…But that doesn‟t mean that I‟m not 

wrong.” 

 Barbara does not provide a proof here and does not even attempt to, strictly speaking.  

When presenting her between interview work, Barbara says: “But I don‟t know, I wasn‟t really 

thinking about how I would prove it as much as just trying to find another one.”  However, this 

does not mean that Barbara is not trying to work towards a proof.  When talking about her 

method during the first interview, I reminded her of what happened when looking at the case of 

squares: 

 N: Remember when you tried the squares something sort of happened that made you 

 realize that you didn‟t have to go any further. 

 B: Yeah. 

 N: So, I‟m guessing if you keep messing with these polynomials something eventually 

 will happen to let you know that you don‟t have to go any further. 

 B: Ok. 

 N: And if that happens, then you‟re done.   

 B: Right.  Ok, that makes me happy. 

 

So, even though Barbara says that she is trying to find another solution (even when she‟s sure 

she will not), she is also hoping for something to happen that will let her know that she can stop.  

In other words, she is looking for some break through in understanding that will lead to a proof.  

Because she is looking for understanding could be turned into a proof, this attempt is classified 

as semantic.   
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 Barbara‟s proof scheme is complicated.  On one hand, she states that she is personally 

convinced by empirical evidence a couple different times.  One example of this is when she says 

it is “obvious” that no more of her polynomials will factor.  It also happened a few times in the 

first interview.  After trying the case when one side length is 1 longer than the other (y = x + 1) 

and I asked about the case where y = x + 2, she said:  

 B: I still don‟t, I feel like it‟d still be the same, like there wouldn‟t be one, but. 

 N: Ok, so what are you basing that on? 

 B: Because we didn‟t find one that was 1 bigger. 

 

So, on a personal level, Barbara displays an empirical proof scheme.  However, it is also clear 

that she realizes that this would not suffice for a full-fledged proof.  This can be seen in her work 

from between interviews and in the fact that she is discouraged by her method‟s need to check all 

the possible difference in side in lengths: : Well, there wouldn‟t be a stopping point.  You‟d have 

to keep going.”  This implies that Barbara has an analytic proof scheme as well.  From her work, 

we can see that none of reasoning is based on the axiomatic nature of mathematics.  Instead, her 

work is based on operating on mathematical objects and the results of those operations.  This is 

indicative of a transformational proof scheme. 

 

Question 2a 

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9.  (For example, if 

a = 4 and b = 2, then 42 – 24 = 18, a multiple of 9.) 

 After Barbara initially read through the problem, she mentioned how she generally starts 

with examples: “Well, I don‟t know, like I wrote in my thing (write-up from previous interview) 
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I always start with plugging the numbers in.”  The first example she looked at, (a = 1 = b) led her 

to ask about the definition of multiple.  I told her that we would take a multiple of 9 to be a 

number that could be written as 9 times an integer.  She was then comfortable with the fact that 

11 – 11 = 0 was a multiple of 9, as was her next example: a = 1, b = 2.  It did not take Barbara 

long to find a pattern: 

 B: Well, it just looks like it‟s b – 1, right? 

 N: Well, technically, it‟s 1 – b, right? 

 B: Right, because it‟s negative. 

 (does more examples) 

 N: … So now you did 2 and 5 and got  – 27.  

 B: Oh, so that‟s, well, that would be b – a times 9… But if I did 5 and 2 then it would be 

 a – b times nine.   

 

After finding the pattern, Barbara and I talked about whether that was a proof: 

 B: So that‟s the answer? 

 N: What‟s the answer? 

 B; Well, (a – b) times 9. 

 N: So that proves that you always get a multiple of nine? 

 B: Well, no, it‟s a formula, I guess, for what we‟re trying to prove. 

 

 Barbara and I then talked about her options for proving her formula was right.  We 

briefly talked about some methods and she mentioned that she felt like she was lacking in the 

content knowledge to use them: 
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 B: See that‟s the thing, I forget, like, what the heck is an integer?  Or what is a multiple, I 

 have to have, like, a list that I have to look at to say, like, what is a multiple, like what‟s 

 the definition of it.  So when you say induction, like I don‟t even remember what that is. 

 

Barbara also mentioned that she would not know how to go about using a proof by contradiction.  

Eventually, she says: “I don‟t know what I would do with this.  There‟s nothing in my tool box.” 

 Eventually, Barbara is able to pinpoint the main difficulty she is having with the problem: 

“I think I‟m getting caught up in the fact that you‟re not multiplying the numbers.”  What she is 

saying is that she is not used to seeing a pair of variables written next to each other and having 

that mean anything but multiplication.  I then told her that might be something for her to focus 

on, suggesting she start with her last example (52 – 25) and move on to something more general 

from there.  When I asked what she thought she could do with that, she said: 

 B: Well, the 52 would have to be the 5 and you can‟t 5 out of 52.  And you can‟t get 2 out 

 of 25. 

 N: What do you mean by that? 

 B: Well, I‟m thinking dividing.  (See figure below) 

 

Figure 80: Barbara's work on Question 2a 
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 At this point, Barbara was frustrated and ready for help completing the problem.  I began 

to point out the place values of the digits and Barbara quickly was able to see where I was going: 

 N: Ok, can you write 52 as a sum that makes it clear what‟s in the 10‟s spot? 

 B: Well, it‟d be 50 + 2, right? 

 

From there, Barbara was able to adapt the argument to the general case and complete the proof.   

  Because Barbara did not complete the proof on her own, this episode constitutes a proof 

attempt only.  This proof attempt is a syntactic proof attempt.  While Barbara did not try too 

many different things to work towards her pattern, what she did try involved algebra, i.e., symbol 

pushing, which is a major characteristic of syntactic proofs.  It should be pointed on that on the 

surface of things, this proof attempt does not look to be too different from Question 1 and yet it 

is classified differently.  Both featured Barbara looking through examples and being unable to 

develop anything into a proof.  There is a key difference between the attempts, however.  The 

difference is that in Question 1, she was looking through examples hoping that something (some 

form of insight) would come to her that could be turned into a proof.  Here, she used the 

examples to find the pattern and once she found it its verification became her focus.  She did not 

purposefully use examples to give her understanding that could be turned into a formal proof, 

thus making this attempt syntactic.   

 Like with the last question, Barbara displays a couple proof schemes here.  First, after a 

few examples, she becomes convinced that her pattern will hold.  This supports an empirical 

proof scheme.  The evidence is not a strong as with the previous question (when explicitly 

mentioned her certainty), but she does work with the pattern exclusively once she finds it.  This 
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implies that she believes it is true.  Once she found the pattern, she tried using algebra techniques 

to verify it.  This is typical of a transformational proof scheme.   

  

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6.  

 Barbara started this problem like she had the previous 2, by looking at examples.  She 

tried n values of 1 through 6 before looking back to see if she could find a pattern (see Figure 

81): 

 B: I guess I‟m trying to go through in my head, any kind of links in the numbers.  To try 

 to come up with the formula … 

 N: Ok, so you‟re trying to come up with a formula to try to come up with, to go from 2 to 

 6, from 3 to 24, or a link to go from three to four? 

 B: Both.   

 N: So it‟s kind of like last time, you looked at examples, found a pattern.  Now you‟re 

 looking at examples… 

 B; And trying to find a pattern.  That‟s my method.   

 

Figure 81: Barbara's work on Question 2b (1 of 2) 
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 After thinking a bit and not seeing anything useful, I asked Barbara if there was anything 

she thought she might want to try.  The first thing she mentioned was induction, so she decided 

to give that a try.  Because she had tried examples that could serve as her base case, Barbara 

went directly to the inductive step, deciding whether or not    11
3

 nn  is a multiple of 6 

when assuming pnn 63  .  After multiplying the expression out, Barbara simplified things: 

 B: n^3 + 3n^2 +2n. Now I want to factor it. 

 N: Just because that‟s sort of standard practice? 

 B: Yeah, so first I take the n out and I get n
2
 + 3n + 2.  That‟s n(n + 1)(n + 2), right? 

  

Barbara needed to be reminded that if she was going to construct an induction argument, she 

need to make use of the fact that pnn 63  at some point.  That is when she went back and got 

down to the last line on the bottom right in Figure 81.  She then knew that it was left to show that 

3n(n + 1) is a multiple of 6.  This was at the end of the interview, but we discussed what it would 

take for that to happen: 

 B: Well, 3 times any number is going to be… 

 N: Ok, so 3 times 4 is 12, that gives you a multiple of 6.  3 times 5 is 15 that… 

 B: That‟s not a multiple of 6.  So, even numbers. 

 

She left the interview knowing that what was left to show is that n(n + 1) is an even number. 
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Figure 82: Barbara's work on Question 2b (2 of 2) 

 Barbara did not take long to finish the problem at home.  I had written up a summary of 

the things she had done and what was left to do and she took it from there.  At home, she tried a 

couple examples and saw that for all n values, either n or n + 1 would be an even.  Her work can 

be seen in Figure 82.   

 The proof Barbara provides is an algorithmic procedural proof.  It involves performing 

prescribed steps to complete her proof.  The amount of guidance Barbara needs to complete the 

proof is what prevents her proof from being simply a process proof.  Not only did Barbara need 

to be reminded the steps required in an induction argument, she needed to be reminded to make 

use of the induction hypothesis – an essential component of a proof by induction. 

 B: Just trying to form a pattern by plugging in the numbers to see how it was working 

 out.  And then it was, so I was like I‟ll try induction… 

 N: So you didn‟t really consider anything else, you just kind of went straight to it because 

 it was something you were comfortable with?   
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 B; Something, I guess yeah, something I was comfortable with, even though I didn‟t 

 really know how to do it…I mean I knew it was tool … I guess I picked that because I 

 knew it was a tool.   

 

 This is also evidence of Barbara‟s proof scheme: internalized transformational.  She is 

not convinced of the proof‟s validity simply because of the way it looks (which would be 

evidence for a ritualistic scheme).  At the same time she does not display the thorough 

understanding of the process of induction necessary of a typical transformational scheme.  This 

sort of episode reinforces the idea that deductive proofs need not be meaningful for those 

completing them (Weber, 2004).   

 

Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

n ℕ: 

2
1

2

1

3

1

2

1

1

1 n
n

 
 

 Barbara worked began this problem by doing a base case of n = 2 because, as she said, “n 

= 1 is just simple.”  In Figure 83, it shows that Barbara made a mistake when filling out the 

inequality, which will be discussed more later.  (She crossed out the extra fractions later.) 
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Figure 83: Barbara's work on Question 3 (1 of 3) 

After writing out the inequality, she said:  

 B: Well, I‟m not going to add those up, but I‟m not concerned about it…(laughs) 

 N: So you‟re confident it works as is.   

 B; Well, yeah, because 1/3 and 1/4 is greater than 1/2, which would mean that it‟s greater 

 than 2.   

 

She noticed that only the fractions that should have been there were needed to make the 

statement true.  After that, she moved on with the induction argument:  

 B: So I‟m saying the base case is true, now it‟s the n + 1 case… I‟ll just start on the right 

 side to simplify it…So the right side is saying that 1 and 1/2 plus n/2.  So you‟re just 

 adding a half.  But it has to be greater than… 

 

She then moves on to the left hand side of the inequality and rewrites 
12

1
n

 as 
122

1

n
.   

 At this point, Barbara got stuck and said:  
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 B: I guess this is the part of induction that I don‟t quite understand, is the using what 

 you‟re trying to prove… I guess I just don‟t know how to use it.  I‟m pretty sure this is 

 where I would want to use it.   

 

 It was not clear to me at the time, but Barbara did not have a clear understanding of how 

the inequality changed when n was changed to n + 1.  To her, the expression on the left stayed 

the same, but for the last term which changed.   

 B: So it‟s just this extra one half that it has to be greater than or equal to.  And then on the 

 left side, when you have the 
12

1
n

, you get the 
2

1

2

1


n
…I guess the problem that I‟m 

 trying to figure out is that when you times something by one half, it‟s going to get 

 smaller.   

 N: Uh huh 

 B; I just, now I‟m going to work on another base case.  Because if I had n = 1, then it‟d 

 be 1 + 1/2 greater than 1 + 1/2.  And that‟s why you have to say that it‟s the equal 

 to…because otherwise the left side would be greater.  

 

 At this point, Barbara was stuck so we began the reflection.  It was going back through 

her work that we realized that she had made a mistake with the initial trail of n = 2.  She was fine 

simply crossing out the extra terms because, as she said, the reasoning she used before still 

applied.  It did not, however, help with the problem she mentioned earlier: 

 B: Well, I mean, if it was times 2, then it would be “Well, ok, then it‟s going to be 

 bigger.” 

 N: Sure 
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 But because you‟re dividing it, how can you say that it‟s going to be bigger when you‟re 

 making something smaller…Because basically, this is like saying, like if it was the n + 3 

 case it would be, or n = 3, it would be saying that you‟re dividing this by a 1/2, right?   

 N: To go from the n = 2 case to the n = 3 case?  Because, kind of, that‟s what you did 

 here, if you stop at 1/4, that‟s the n = 2 case but you‟ve written out, so it‟s kind of a lucky 

 accident because you can kind of see what happens here, right?   

 B: Yeah… 

 N: Yeah.  And so this (the right hand side) goes up by that one half that you found here, 

 and this, the last term does get smaller, the last term was 1/4, becomes 1/8 but you‟re 

 adding this other stuff. 

 B: Oh, I see…I guess I was looking at this and not understanding, because the way that 

 you just said it, was like you‟re changing this by one half to get to the third case, which is 

 true.  And then you‟d add these ones.   

 N: Right.  So it kind of sounds like you were looking at this left hand side as staying the 

 same except for the last term. 

 B: Yeah. 

 

I asked Barbara to look at this problem more between interviews, so she did.  Unfortunately, 

between interviews, she basically repeated the things she had done in the previous interview.  

See Figure 84:  
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Figure 84: Barbara's work on Question 3 (2 of 3) 

When I asked Barbara to explain what she had done, she said:  

 B: Basically, I did 2 examples of a base case, n = 2 and n = 3, and obviously it was true in 

 those cases.  So I went on to the induction part, which is n + 1, so I was that was plugging 

 that in, n + 1 for n.  I worked on the right side and tried to work on the left side and got 

 stuck again. 

 N: Ok 

 B: Which is where I got stuck last time, and then you said something that made it click 

 and then I left and that was it. 

 

 After talking about what she did between interviews, I let her review what she had done 

during the last interview and that reminded her of what we talked about at the end: “The bottom 

number‟s…the last number of this one and the last number of this one…that‟s half of that…Now 

I remember what I was thinking.” With the reminder in mind, started up the problem again, in 

Figure 85.   
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Figure 85: Barbara's work on Question 3 (3 of 3) 

Barbara saw the mistake at the top of Figure 83 and it reminded her that she needed to add a 

number of new terms to make up for the fact that the last one was being reduced each time n was 

increased.  She also was able to articulate the sort of reasoning that would eventually solve the 

problem, even though she was not able to apply it to the general case without help.   

 B: Well, I know that this is greater than 1/2.  These numbers (1/5 – 1/8, underlined) are 

 greater than 1/2…and these numbers (1/3 and 1/4, above and underlined) are greater than 

 1/2, which is really what we needed to show.  I guess it‟s using the hypothesis. 

 

Even though she has an understanding of what she is supposed to do, she does not know how to 

do it in the general case: “Well, I, it‟s like, the point where I need to use the hypothesis, but I 

don‟t know how to, like, say it.”   
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 At that point, Barbara said she was stuck and asked that help her finish it.  We then talked 

through generalizing her reasoning.  This work was completed below the 
2

1

2

1
  in the middle of 

Figure 85.   

 Barbara did not complete the proof on her own, so I will be classifying her attempt only.  

Although she did not complete this proof, Barbara did show some growth when this attempt is 

compared to her work on Question 2b.  Specifically, she has a much better grasp on the process 

of induction.  After she was done working on the last question, we talked through induction and 

it seemed like that brief refresher was all that was needed for her to understand induction.  That 

shows up here as well.  The difficulty she had with this problem was due to the question itself; 

the process of induction was never the issue.  In fact, this was something she noticed: “Yeah, I 

know how it works in theory, just trying to apply it to a problem is where I get stuck.”  Because 

Barbara did not try to follow a number of specific steps, but rather a few global ones, this is not 

an algorithmic proof attempt, but rather a process procedural proof attempt.   

 This new, better understanding of induction does not change her proof scheme, however.  

While she does know more about induction in comparison to when she worked on the last 

question, her understanding is not complete: in her attempts, she still uses improper base cases.  

She clearly still is under the impression that showing the property holds for any n will suffice.  

Because she lacks this thorough understanding, her proof scheme is the same as it was before: 

internalized transformational.   

 

Question 4 

Examine the following proof by contradiction:  

Prove 01   
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Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 

Prove 01   

Suppose  01  , then 01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 

 This question was first given to Barbara on the take home midterm exam she completed 

in MATH 305.  Her midterm response can be seen in the figure below.  The main flaw she sees 

is based on a misconception regarding real numbers: she claims that –3
2
 = –9.  I think she has 

made this mistake due to trying it on her calculator without realizing that her calculator sees –3
2 

as –(3
2
).  Because of this, she says that the second part of the proof should have read 01  

instead of 01  which would mean that a contradiction was not reached.   
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Figure 86: Barbara's previous work on Question 4 

 Her “possibly better answer” is indeed better, if incomplete.  If one takes the statement 

“You cannot take the square root of a negative number” to mean “you cannot take the square 

root of a number and expect it to be on the real number line” then she has gotten it. 

 Barbara said as much in the interview.  It did not take her long to remember her “better 

answer”: “The fact that you‟re trying to say that, because the square root of -1 is imaginary, 

trying to put it in a number line is impossible.”  From there, I asked Barbara about what that 

meant for the individual steps:  

 B: Well, you can do whatever you want to it, it‟s not going to make it have order…Well, 

 following the steps there‟s no flaw, but what you‟re trying to prove is absurd, so it 

 doesn‟t matter what the proof is or what you‟re answer is. 
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Barbara realizes that if you start with something that makes no sense the subsequent steps will be 

meaningless as well, even if they look fine.    

 Because Barbara did not attempt a proof, there is no proof to classify.  However, this 

does give evidence that Barbara has an analytic proof scheme.  Although we do not discuss the 

axiomatic nature of mathematics in general, she does show that she understands that the 

mathematics depends on deducing from starting assumptions, at least on a small scale.  This is 

evidence for an axiomatic analytic proof scheme.  

 

Question 5 

 The next interview was a debriefing session in which Barbara and I talked about the 

progress she had made over the first half of the study.  She did not attempt a proof, so there will 

be nothing to classify with a proof type.  However, the interview did provide support for some of 

the things observed in the proceeding interviews. 

 For example, when I asked Barbara how she thought the semester had went proof-wise, 

she singled out induction as something she improved on: “I don‟t know…I feel like I learned 

something from coming here…I have a general idea of how to do induction now.”  This matches 

the progress seen between Question 2b and Question 3.  This also matches something she said 

later in the interview.  I asked her to compare the progress she made while taking MATH 305 to 

the progress she made during the first half of the study.  She said that she felt like she made 

progress during both semesters, but that the type of progress was different: 

 B: But it‟s not, I really didn‟t know any proof techniques and stuff like that before.  So 

 obviously, I did make an improvement last semester, but it was more like gaining 

 knowledge of what proofs are and techniques to do them. 
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 N: I see. 

 B: And this semester was more like actually using those techniques and learning how to 

 use them to prove something.   

 

She felt like the difference was one semester was spent filling up her proverbial tool box and the 

next was learning to use them: “I have all the definitions; I just need to apply them.  All the tools 

and using them.”   

 Another way in which this interview reflected what was seen earlier in the study was 

when I asked Barbara what she felt was necessary to complete a proof.  Her first response was: 

“Just making logical steps with stuff that‟s true.”  She sees the formality in necessary in proof, 

but recognizes that that is not the whole story when it comes to seeing a proof to the end:  

 B: Well, yeah, it‟s using the right steps to get where you need to go.  If you need to go 

 left and you‟re going right…but in the same sense it‟s, you know, I can make up a bunch 

 of rules, but they have to be valid rules.  

 

This statement reflects her ideas about Question 4: that one can make any statement they like, 

but if it is not valid, it is meaningless.   

 I also asked Barbara about what was helpful, but not necessary, in completing a proof.  

For this she mentioned a couple different things that boil down to coming to an understanding of 

the problem at hand: 

 B: It would just be trying the wrong ways. 

 N: Ok 

 B: I think is what my answer would be to that. 
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 N: Ok 

 B: It‟s just, obviously you don‟t need the wrong ways, but it helps you, it probably helps 

 you get in the right direction. 

 N: Yeah, I mean, for me anyway, I think you get a lot of insight and it‟s very useful. 

 B: Like I did a lot of examples when we were trying to work the other proofs.  It‟s just 

 you have to see kind of where it‟s going so you have a better educated guess. 

 

Barbara mentions examples as helpful, which definitely matches her behavior while working on 

the problems this semester.   

 Because so much of this interview matched what she said and did during the first half of 

the study, it is not surprising that she also reinforced the proof schemes she displayed earlier on.  

Her focus on the necessity of logical steps highlights the axiomatic scheme she displayed while 

working on Question 4.  Also, she mentions that being able to take the time to go through 

problems thoroughly led her to a better understanding of induction.  This is the sort of process 

that Harel and Sowder (1998) describe when a student‟s internalized transformational proof 

scheme becomes an interiorized transformational scheme.  This is also something observed with 

Barbara, although the process is not complete (at least in the case of induction). 

 

Question 6 

Prove that n ℕ,  3nn   (mod 6).  

 This interview started with Barbara and I reviewing what modular arithmetic was and 

how it work.  Barbara then began working on the problem as she had many in the first semester: 

by trying examples.  After seeing the property hold a couple times, she moved considering how 
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she would prove the problem.  She considered contradiction, but settled on induction because she 

knew how to start it.  During the reflection, we talked about this decision: 

 N: So by this point (when she cubed out n + 1, see Figure 87) you had already 

 considered contradiction and deemed it unworthy to try? 

 B: Yeah 

 N: And again, that, the reason for that was what?  You just didn‟t know where to go with 

 it? 

 B: Yeah 

 N: So you did have kind of a feeling of where to go with induction? 

 B: Yeah, well yeah, it‟s just n + 1. 

 

Figure 87: Barbara's work on Question 6 

 After Barbara had simplified things down, we talked about the operations she was 

allowed to perform.  These questions on her part were related both to the use of modular 

arithmetic and with the process of induction: 

 B: But induction, you‟re not supposed to move things around, are you? 
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 N: You can… 

 B: Like on, to either side? 

 N: You can as long as what you‟re doing is, like an equivalent, you‟re trying to show that 

 some statement is true.  And as long as you keep coming up with equivalent statements, 

 everything‟s ok.  You know, you can‟t just say, “Well, let me add 9 to this side but not 

 that side.” 

 B: Well yeah.  But I mean, like these 1‟s would cancel out. 

 N: Ok 

 B: So I can do that? 

 N: Yeah, sure. 

 

At this point Barbara was stuck and I, as I had done with previous induction arguments, asked 

her about using the induction hypothesis: 

 N: So what would it look like in this situation to use the induction hypothesis? 

 B: I have no idea. 

 N: Ok 

 B: This is the part I always get stuck at. 

 N: Ok.  So since n and n
3
 are the same thing… 

 B: Yeah, I can put n in for this. 

 

Eventually, this led Barbara to conclude “So then it would be n is congruent to n + 3n
2
 + 3n” 

and, after canceling, nn 330 2  .  I then asked her what it would mean for something to be 
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congruent to 0 (mod 6) and she said: “Divisible by 3, or 6.”  She then factored the expression on 

the right and considered what would happen for n values of 1 and 2.   

 N: Ok, so if it‟s 1 or 2, it works. 

 B: And then it will keep going. 

 N: Ok, so… 

 B Because either this‟ll be even or this will be even.   

 N: Right, ok.  So then… 

 B: I‟m done. 

 

Barbara had finished the problem using the same reasoning she had in Question 3.  I pointed out 

during the reflection that this was in fact the same problem as Question, something she said she 

noticed but did not mention.   

 This is a process procedural proof, as were the most recent induction proof that Barbara 

provided (Question 3).  The proof required a few global steps that Barbara knew were to be 

completed (even if she did not know how to complete them without help).   

 Barbara‟s proof scheme has not changed much either.  Again, Barbara has no problem 

with the steps required to complete an induction argument.  She does have some issues with how 

to complete them.  For example, she needed help talking through how to use the induction 

hypothesis but she knows it needed to be used.  Also, she had the misconception that one was not 

“supposed to move things around” when dealing proving the inductive step.  While the first issue 

I mention is problem specific (how to use the induction hypothesis varies from problem to 

problem), the second issue reveals a limited view of induction.  She is used to seeing induction 

problems in which two expressions are set equal to each other and one or both is simplified to the 
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point that they obviously agree.  This issue, combined with the fact that she still seems to think 

that any n value serves as a valid base case, shows that Barbara has not yet completely 

interiorized the method of mathematical induction.  Thus, Barbara‟s proof scheme here is 

internalized transformational. 

 

Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 

 Barbara and I began this interview going over some details, as usual.  We briefly talked 

about what it meant for a set to be a subset and the fact that for the sake of this problem, we were 

only going to look at finite sets.  Barbara mentioned that she did not know how to start this 

problem. 

 N: Ok.  So are there things that you generally do when you don‟t know how to get started 

 with a proof? 

 B: Well yeah, I use examples of how it works.  But this isn‟t one of those cases were you 

 can do that. 

 N: Why not? 

 B: Well, there‟s no number, there‟s no formula. 

 

Eventually, Barbara decided that she could look at some small sets to serve as examples (see 

Figure 88): 

 B: So, I‟ve written out a set that has 3 in it.  And that came with 6 possibilities, and… 

 N: Ok 
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 B: 4 had 10 possibilities.   

 N: Ok 

 B: I mean, what I‟m thinking is that it‟s a kind of factorial thing.   

 

Figure 88: Barbara's work on Question 7 (1 of 2) 

 From there, Barbara spent most of the rest of the interview deriving an equation that 

would give her the number of subsets of a given size, given a particular n value.  It did not take 

her long after she started this process to see that she had missed some subsets in her lists: the 3 

element subsets in the case that n = 4 and the empty and the set itself in both cases.  

 Her progress in deriving the formula she was looking for (eventually she arrived at the 

formula for the nCk) was slowed down somewhat by that fact that an incomplete expression 

almost yields the proper results in the case of n = 3.  Her method began with 
!

!

k

n
 where n is the 

number of things in the superset and k is the number of elements in the subset.  As one can see in 

the figure, this formula nearly works for n = 3, she had mistakenly wrote that 
!1

!3
= 3 initially and 
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discovered the mistake when looking back at that example for guidance while working with the n 

= 4 case.   

 Eventually, by looking at the numbers she needed to get out of her expression and trail 

and error, Barbara arrived at the proper formula (which can be seen directly above the crossed-

out line in the figure).  At that point, I pointed out that she had figured out the choose function. 

 B: I didn‟t really figure it out… 

 N: Well sure you did. 

 B: ...more like slowly remembered. 

 

 Whatever the case was, Barbara had a formula she was comfortable with and she then 

asked: “So now I have to prove something, right?”  To Barbara, the next step was to state her 

formula in general (her attempt is the crossed-out line in the figure). 

 B: I don‟t know.   

 N: So what don‟t you know about? 

 B: I don‟t know this formula. 

 N: You don‟t how to get… 

 B: I don‟t know this nCk thing and like how, what the formula is for that. 

 

It was near the end of the interview, so I gave Barbara the general formula for nCk and asked 

what she would try next.   

 B: I‟m thinking induction. 

 

 N: Yeah?  So why induction? 

 

 B: Because it has the next case…and I know how to do it now. 
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Barbara had done an induction proof successfully in number theory, so her confidence level was 

high with the method.  Also, I think her next step would have been to try her formula in the case 

that n = 5 (an approach she used in the past).  This also reminded her of induction: “Because 

you‟re going to the next number, so why not plus 1 it.”  With that, Barbara left the interview 

agreeing to work on it again between interviews. 

 She did not work on it between interviews, though, and so we spent the first few minutes 

of the next interview going over what she had done in the previous one.  After we talk about her 

work, I ask her how she thinks she would go on from there: 

 B: I guess it‟s just like, I want to pull out a tool or something but… 

 N: Oh, ok.  So what sort of tools are you considering?   

 B: Induction. 

 

Earlier in the interview, she had mentioned that one of the problems with trying to prove the 

general formula is that there are two variables.  I think this was a deterrent to her trying 

induction, as was the perceived complexity of the nCk formula.   

 B: So now I‟m thinking to pull out contradiction…I don‟t know how that would apply, 

 though…Maybe a direct proof?   

 

When I asked why she did not want to try contradiction, she said:  

 B: I wouldn‟t, I mean, because it‟s some number, it‟s not, like…it‟s not like n or k or 

 something, it‟s … some number irrelevant so I can‟t say this is not the number of sets.   

 N: Oh, ok.  So you would say you‟d try to come up with some sort of contradiction and 

 then…ok.  So would be fair to say that you wouldn‟t have something to compare it 
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 against, at some other, some point down the line because you don‟t know what the 

 subsets would be without using this. 

 B: Yes 

 

 Barbara also discussed what it would look like to do what she called a direct proof: 

“Like, I would write n!, 0!, (n-0)!.”  At the time, I misunderstood what she was talking about and 

said that she could use the notation for nCk instead of writing out the formula every time.  She 

responded: “I don‟t know how I would do a direct proof without…”  She was referring to 

simplifying the formula in some why that might help.  This is the work she did in Figure 89. 

 

Figure 89: Barbara's work on Question 7 (2 of 2) 

 About this work, Barbara said: “I guess I was hoping it would help because, but then it‟s 

(n - 1) (in the denominator), I was thinking it was relating to the n + 1, which would be … like n! 

and …but it‟s minus 1, not plus 1.”  This made me think that she had gone back to trying an 

induction proof: “No, no… I was hoping to like, simplify this, I guess…But you can‟t pull n! out 

of (n – 1)!.”  At this point, Barbara was out of ideas and said “I don‟t know how I would prove 

this.” 

 At this point, I asked her if maybe the formula she had could serve as a proof: “I guess I 

feel it‟s kind of like saying „Duh, this works. So it‟s true‟.”  When I asked what she would do if 
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this had been a homework assignment, Barbara said: “Well, I would probably say how I got to it 

for some kind of partial credit, but definitely not as, like, an answer to a proof.”  I then told 

Barbara that I thought what she did could serve as a proof as long as the explanation was airtight.  

She seemed alright with it at that point, saying: “I guess in a sense, it‟s kind of a proof by 

definition.  Because you‟re defining your formula.”   

 Because Barbara did not provide what to her seemed like a proof, this work is classified 

as an attempt.  The bulk of her work was spent trying to use her examples to formulate an 

expression for nCk.  However, she I did not get the impression that she was using her examples 

for insight.  Rather, she was using the examples to confirm or rule out her guesses about what the 

formula should look like.  Once she had the formula, she mentioned a few things to try to proof 

that she had the correct one.  The only thing she tried, however, was algebraic manipulation 

before giving up.  Her proof attempt is syntactic because, although she does not see it through to 

what she thinks is a proof, her focus is on the expression and manipulating it and not an 

understanding of the problem itself. 

 Because Barbara‟s focus is so skewed to getting a pliable expression she can deal with, 

the main proof scheme she displays here is transformational.  In the little work she did do in an 

attempt to verify the formula, she also referred to algebraic simplification as the goal she was 

working towards.  She also gives evidence for an empirical proof scheme, however.  When she 

was working on finding the expression for nCk, she became convinced after seeing it work for 

both n = 3 and n = 4.  In fact, this is evident later on as well.  When discussing whether or not an 

explanation of her summation formula worked as a proof, Barbara said: 

 B: I understand what you‟re saying, it‟s just choosing the right words to explain it 

 because, like, I did these 2 examples and I was like “Ok, it works”  or like I plug numbers 
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 to make sure the formula works and then it‟s proved to me.  I don‟t feel like I have to do 

 induction to prove it for all cases.  It‟s like “Oh, it works for these few, so it probably 

 works for all of them.” 

 

Barbara is referring to the difference between what convinces her and what would constitute a 

proof to others.  While she knows there are higher levels of rigor, to her seeing it work for a few 

examples is good enough, verifying that she does have an empirical proof scheme. 

 

Question 8 

Prove that the cube root of 2 is irrational using a proof by contradiction. 

 This is a proof that Barbara saw on her midterm take-home exam that she took while in 

MATH 305.   Barbara‟s work from the midterm can be seen in Figure 90.  As one can see, 

Barbara had no problem completing the problem on the test.  At the time, she had recently seen 

the proof that 2  is irrational and her proof on the midterm is an adaptation of that.   

 In the interview, Barbara was not as successful.  She began the problem just fine, 

knowing how to set up a proof by contradiction.  From there, however, she relied on algebraic 

manipulations of the equation you get out of assuming that the cube root of 2 is rational.  This 

work can be seen in the right column of her work in Figure 91.   
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Figure 90: Barbara's previous work on Question 8 

 

Figure 91: Barbara's work on Question 8 (1 of 2) 

 When she got to the bottom of that column, she was stuck and did not know where to go 

from there.  She told me that if she was to work on the problem at home at all, she would 



293 

 

“straight to my notes.” I thought that it would be more fruitful for the study if I gave her a hint so 

that I could see what she did from there.   

 N: This equation right here, 2b
3
 = a

3
? 

 B: Yeah 

 N: That tells you that, what kind of number is a^3? … 

 B: I have no idea. 

 N: Since a
3
 is equal to 2 times b

3
 … 

 B: Oh, it‟s even. 

 

 This insight led her to complete all the work in the left hand column of Figure 91.  She 

got to the bottom of that column and knew she was onto something: “I remember using that, but 

I don‟t remember where that went.”  She thought about her conclusion for a while and eventually 

said: “Well, it‟s just like it‟s this idea, I‟m just supposed to, like, I end up saying a is odd or 

something, right?  I‟m just not to the point of seeing it to the end.”  I felt that telling her to start 

with the assumption that a and b were relatively prime would be too much of a hint, so we ended 

the interview.  I asked her to think about the problem some more before she looked at her notes 

and she said she would.  

 At the beginning of the next interview, Barbara brought the work that is in Figure 92.  

She did look at her notes to finish the problem, but she was close.  Barbara asked me about the 

issue she mentions at the bottom of the figure.  She does not understand why a/b would have to 

be reduced based on the assumption that 3 2  is rational.  I explained that she was right, it would 

not have to be but it could be and that additional assumption was made in order to reach the 

contradiction.  She seemed alright with the idea at that point.   
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Figure 92: Barbara's work on Question 8 (2 of 2) 

 The proof Barbara provides here is a procedural proof.  She is given specific steps to 

follow (either by me in the interview or from the analogous argument regarding 2 ) and she 

follows the proofs to complete her proof.  Of the 2 types of procedural proofs, this is an 

algorithmic proof because for the most part, she is following very particular steps.  The 

classification of process proof is reserved for proofs that follow “a shorter list of global 

qualitative steps” (Weber, 2004, p. 2).  This is not the case here. 
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 Barbara‟s proof technique is transformational.  While she does not come up with the 

steps she completes entirely on her own, she does understand then as she goes.  This rules out an 

authoritarian or ritualistic proof scheme.  Also, these steps involve algebraic manipulations and 

the results of them.  These are characteristics of a transformational proof scheme.   

 

Question 9 

 During the next interview, I asked Barbara to read and evaluate a version of Cantor‟s 

diagonalization argument.  Barbara did not work on a proof so there is no proof or proof attempt 

to classify, but the interview did reinforce some of the things seen in previous interviews and 

gave insight into Barbara‟s proof scheme.   

 The interview began with making sure Barbara knew all the terminology involved, which 

she did.  From there she read through the problem and had the same issue as she did with the last 

question. She said, “I guess I just don‟t understand why you would define B like this.”  Barbara 

is referring to the fact that she does not understand why one would take the action the proof 

writer did.  This is similar to her issue with the proof for Question 8 where she did not 

understand why someone would make the decision to assume that a and b were relatively prime.  

Again, I explained that this was not necessary but that it helped with the proof.   

 This led Barbara and I into a conversation of the last paragraph of the proof.  Like with 

all participants her understanding of this part required some discussion, mostly to get used to the 

notation and to get everything straight.  Once she felt comfortable with what was going on, she 

was able to sum up what was happening with the proof: 

 B: Umm…because the…because there has to be a function of some k that equals B, but 

 in our definition of the B, it‟s never equal to k. 
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 N: Right 

 B: So it, like, jumps around rather than going straight there in a sense.   

 N: So, what do you mean by that? 

 B: I don‟t know, I guess it‟s just like the onto, like, every number has to go to the same 

 number, or, like, it can‟t go to 2 different numbers. 

 

She is actually referring to the definition of a function, not onto, but she gets the idea.   

 At that point, I began to ask Barbara if she believed the argument because she seemed on 

the fence about it.  This led her to become suspicious: 

 B: It seems to flow to me. 

 N: Ok.  But you‟re unsure of it, right?  

 B: Well, you‟re making me unsure.  I guess it‟s like a teacher tells you something and 

 you just assume that it‟s true.   

 N: Ok 

 B: I mean, going through it, seems like it would be true.  There‟s nothing missing.   

 

This is evidence that Barbara has an authoritarian external proof scheme.  She mentions her 

tendency to believe statements that come from a teacher.  She may be referring to believing the 

proof because of the way it was presented.  It is also possible that she is reacting to my line of 

questioning regarding the proof‟s validity.  This would be similar to episodes in classrooms 

where a student rethinks his or her response when a teacher questions it rather than simply 

moving on.  In either case, Barbara is using the actions of an authority figure influence her belief 

in the proof. 
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 The interview also provided some evidence that Barbara has an axiomatic proof scheme.  

During the reflection portion of the interview, I asked her if she thought the proof needed any of 

its statements verified or not.  She said: 

 B: I think it‟s all pretty self-contained… I mean, I just like, it could.  Sometimes when 

 you see proofs, like to try and point out, like, “this is a lemma” when they don‟t say it 

 because…you‟re like “Oh, I know that‟s true, so…” 

 

I pointed out that the statement “since every countable subset of a countable set is countable” 

might be something that required proof.  When I asked why she did not think that needed a 

lemma, she said “I guess I just…I guess it‟s just because I....I knew it was true, I assumed it was 

true.  Kind of give and take between those two.”   

 This exchange is weak evidence of an axiomatic proof scheme because she is 

acknowledging the reliance of proof on other results.  In this particular case, she decides that the 

verification of this other result does not need to be provided.  In a broader sense, though, she 

points out that this reliance occurs in other proofs, even if not explicitly stated.   

 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.   

Example, 6/9 < 5/7 < 7/9. 

 Barbara began this problem by looking at examples.  She tried all the examples in Figure 

93 before moving to the general case in the left hand column in the figure.   
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Figure 93: Barbara's work on Question 10 

After the examples and writing the inequality with the variables, Barbara did not know where to 

go. 

 B: Now I‟m stuck. 

 N: Now you‟re stuck? 

 B: Yeah, I tried to come up with a line that… 

 N: Ok…Let‟s see so you have x/n less than b/a where b is less than n, and less than x + 1 

 over n.  So it looks like you‟re after…you‟re try to prove it. 

 B: Right 
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I asked Barbara about what she had done at that point: 

 N: So did you look at those examples to decide for yourself whether or not it was true or 

 did you do it to try to get some insight into the problem?  Or both? 

 B: Mostly insight. 

 N: Ok 

 B: I was mostly assuming that it was true…because, I mean, the basic idea that there‟s a 

 rational number in between them is definitely true. 

 N: Yeah 

 B: But to say that there‟s one that‟s just with a denominator less than that…the example 

 was true and so I was like „Ok‟.   

 

 At this point, Barbara was fairly sure the result held, but she did not know how to go 

about proving it.  I then suggested that there was a pattern in the examples that she could use, but 

that not all of the examples fit it.  Eventually, I pointed out which examples I was referring to 

and she was able to see the pattern:  

 B: It‟s (the middle number) always one less in the denominator…when they‟re (the 

 middle and left numerators in the inequality) equal.  Then the denominator is the 

 numerator in the next one. 

 N: So let‟s just pretend for a second that that always worked.  Ok? 

 B: Ok 

 N: Would you be done? 

 B; Well, you have to show that it always works. 
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 So, she believes the result holds but she knows that she has not provided a proof even 

though she has an algorithm developed to find the number she is looking for.   She goes onto 

apply this method to the general case (moving down the left hand column in the figure).   

 B: I just multiplied it all out so I had the same denominator…and if the center one is xn, 

 the one below it is less than that because you‟re minusing x and this one‟s going to be 

 bigger because…you‟re adding stuff…but you‟re subtracting stuff too. 

 

To finish, she uses a property that holds in the examples she based the pattern on but does not 

hold in general.  During the interview, I did not notice this either.  The fact she used was that the 

numerator on the right equaled the denominator of the middle number (x + 1 = n – 1).  Applying 

this supposed equality allows Barbara to arrive at 1 xnxnnxn , which she deems to be 

true.   

 I then pointed out some potential problems with this by having Barbara examine counter-

examples.  I suggested that she look at the pairs 5/6, 6/6 and 0/2, 1/2.  This led her to conclude: 

“It can‟t be 1 or 0.”  She was referring to the fact that neither of the bounds could be either 0 or 1 

for the property to hold (if x = 0 or n = x + 1).  We then discussed how these cases affected the 

general inequality she had and the fact that the property holds when these restrictions are 

satisfied.  We also talked about how one could also look at rational number outside the unit 

interval so long as one treated them as mixed numbers and dealt with their fractional parts only.   

 Barbara‟s proof is not semantic despite the fact she used examples to gain insight into the 

problem.  The insight she gained eventually came in the form of a pattern that could be turned 

into a proof.  It is an important distinction to realize that her examples did not lead her to an 

understanding of how the problem was working.  Instead, they led Barbara to an expression she 
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could verify through algebraic manipulations.  Although she needed help turning that pattern into 

a proof, she did eventually get there (in her mind).  Remember, some of the details of the proof 

were based on the faulty identity x + 1 = n – 1.  Despite this, she could have used relationships 

that come from the restrictions to correctly complete her proof.  Because her proof is largely 

made up of operating on her expression, it is a syntactic proof.    

 While she used examples for “mostly insight” she also used them to convince herself that 

the result was true.  However, this was accomplished fairly early in the process.  The following 

exchange occurred when I was asking Barbara about how she decided if she would try to prove 

or disprove the property: 

 N: So, do you sort of, was it just sort of an intuition that told you that it was true, that 

 made you not look for a counter-example? 

 B: I guess it was just seeing that the first example was true and so I was like „It‟s true for 

 something.‟   

 N: And why would I ask… 

 B: Well, it‟s not so much that „Why would he…‟ 

 N: Oh, ok 

 B: …and give me an example that worked?‟ But, it was just more like „Well, it‟s true, 

 so…it‟s at least true for something.‟ 

 

So, seeing it work once along with her reasoning that it would certainly work without the 

restriction on the denominator led her to believe it was true.  Because she was convinced via 

examples, Barbara displays an empirical proof scheme.   
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 Barbara also displays a transformational scheme.  She knows that while she has become 

convinced by examples, they do not serve as proof.  Because the proof she provides relies on 

logically valid mathematical operations and the outcomes of those manipulations.   

 

Question 11 

 The next interview was the last of the study.  Barbara spent it discussing the progress she 

felt she had made over the course of the study.  Due to the nature of the interview, there was no 

proof or proof attempt to classify. 

 The interview helped to highlight some of the observations made earlier in the study.  For 

example, when I asked Barbara if she thought she had improved with proofs over the course of 

the study, she singled out induction as something she improved on: “Definitely because I 

actually knew how to do an induction proof on a test.”  This was something that she had 

mentioned earlier, although before she referred to a quiz.  She even mentioned later that she had 

tried to use induction more because she had gotten better at it.  “Well, I mostly learned how to do 

induction.  And so I was able to use that.” 

 Barbara‟s response when I asked about the role of examples in proof also matched what 

she said and did earlier in the year:  

 B: Oh, ok, then yeah definitely, they play a very big role because, I mean even if there 

 isn‟t a pattern to notice, it still gets you to like a place of where it‟s going, and idea of 

 where it‟s going…Like how it works.   

 

 When I asked Barbara to differentiate between what is necessary to complete a proof and 

what is helpful, she again brought up examples, indirectly: “Yeah, I think it helps just to write it 
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out and, instead of just trying to see patterns in your head, like write them out on paper or…at 

least for me.”  Here, she is referring to writing out examples to see a pattern that might be helpful 

in solving the problem.   

 As far is what is necessary, she said: “Well, what‟s necessary is logical steps to…gauge 

an answer.”  I feel this matches what she said during the last interview of the first semester: “Just 

making logical steps with stuff that‟s true.”  While she often used examples to convince herself 

of the validity of a statement, she realized that formal deduction was required for something to 

be considered a proof.   

 While much of our discussion revisited some of the things that had shown up over the 

course of the study, Barbara does not give evidence for all the proof schemes she displayed 

throughout the year.  For example, she does not mention becoming convinced by examples.  

Instead, she pointed out their ability to provide insight.  Also, she does not discuss proof‟s 

reliance on previous results like she had in a few interviews.  Everything we talked about, 

though, showed that Barbara has an analytical proof scheme.  Her focus on logical steps 

reinforces that.  Since her analytic proof scheme is not axiomatic, it is transformational.   

 

Barbara’s progression 

 Below is a chart displaying the classifications of Barbara‟s proofs and proof attempts 

along with the proof schemes she had along the way. 

 

 

 

 



304 

 

Question Type of proof Proof scheme 

1 Semantic (Attempt) Transformational, Empirical 

2a Syntactic (Attempt) Transformational, Empirical 

2b Algorithm Transformational (Internalized) 

3 Process (Attempt) Transformational (Internalized) 

4 N\A Axiomatic 

5 N\A Transformational, Axiomatic 

6 Process (Attempt) Transformational (Internalized) 

7 Syntactic (Attempt) Transformational, Empirical 

8 Algorithm Transformational 

9 N\A Authoritarian, Axiomatic 

10 Syntactic  Transformational, Empirical 

11 N\A Transformational 

Table 5: Summary of Barbara's work 

 As is typical, the type of proof Barbara gives or attempts varies with the kind of problem 

she is asked to solve.  When one looks at Barbara‟s proof schemes throughout the study, one 

does not see much change.  The biggest difference Barbara shows is in her improved 

understanding of induction, although it is not evident from looking at the chart.  I presume she 

eventually got over her misconception regarding base cases, since she referred to completing two 

different problems correctly on graded work.   

 Other than with induction, though, she does not show much progress.  In both Question 1 

and Question 10, she mentions becoming personally convinced by empirical evidence.  Barbara 

does not let this affect her view of formal proof, though.  Part of the reason she seems to not 

make much progress is that she started the study with a fairly formal view of proof.  This can be 

seen both in the number of times her proof scheme is deemed transformational and also in the 

fact that her description of what is necessary for a proof does not change between the end of the 

first semester and the end of the study.  She also shows a fairly consistent reliance on examples 

throughout the whole study.  In fact, in the last interview Barbara summed up pretty well how 

she sees proof: “Everything just…just start with examples and make sure your tool box is full of 

the right tools.”    
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4.6 James 

 This case study looks at the work James did over the course of the study.  James was a 

mathematics major.  He took Statistical Methods, Probability Theory and Ordinary Differential 

Equations during the first half of the study and History of Mathematics, Statistical Methods II 

and Mathematical Statistics during the second semester.   

 

James’s proof attempts 

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 James started the problem by looking at a diagram of a rectangle “just to get an idea of 

what we‟d be looking at.”  From there he went to the equation abba  22 .   

 James: And then from there…what would I do…just trail and error, what it could be. 

 N: OK 

 J: I could…right off the bat the first one that came to mind would be let a = 4 and b = 4 

 and you‟re going to get 16 for the perimeter and 16 for the area.   

   

James then started the smaller chart shown in Figure 94.  He had found one solution but 

recognized the difficulty in using a chart to prove that he had found them all. 

 J: It‟s easy, I guess, if you look at it like it‟s squares and just do like 1 1, then you get 4 

 but an area of 1.  That doesn‟t, but then you‟d have like one 8, but then there‟s just too 

 many options to look at in a table format. 
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James then went to algebra as an alternative to using a chart.  First he isolated b and then he used  

 

Figure 94: James' work on Question 1 (1 of 2) 

his new express to replace b in his original equation.  

 N: And so, what‟d you come up with? 

 J: 0 (=) 0  
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 We then talked about the fact that he is basically plugging an equation back into itself and 

his method typically works when you have 2 equations and 2 unknowns.  James then resorted to 

looking at the partial derivatives of the equation, but realized that would not help either.  When I 

asked why he tried this, he said “Trying to do stuff I‟ve done recently because that‟s about the 

only math I can come up with right now.”   

 From there, he seemed to take a step back.  After thinking quietly for a bit, he said: 

 J: Yeah…um, I just thought of another one, though. 

 N: Thought of another what? 

 J: Um, one that would work.   

 N: Which is? 

 K: Going back, to 3 and 6.   

 

James put his new solution in the small chart above and decided that maybe a bigger table would 

not be such a bad idea: 

 J: Yeah.  I should do a table, like 0, through 10.  Just do kind of like a grid pattern. 

 N: Ok.  So, along the x and y axis, I guess? 

 J: Yeah.  And just seeing if it shoots off. 

 N: Ok 

 J: Or a pattern goes anywhere there. 

 

He then went about setting up the chart in the bottom right of Figure 94.  He began filling it in by 

working across the 1 row, and then stopped: 

 N: So, you‟ve stopped filling out the 1. 
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 J: Yeah, you can …there‟s a, a pattern emerges that, the perimeter is going up by 2 but 

 the area is only going up by 1.   

 N: Ok 

 J: But there‟s a possibility that it could also deviate from that pattern, but it‟s followed 

 that pattern for the last 6, so I‟m just going to assume that it‟s going to continue also.  

 There isn‟t really there‟s not much reason to continue there.   

 N: Ok.  So, now you‟re going across the 2 row. 

 J: Yep.  The 2 row. (filling it in) …and that one‟s holding to a pattern as well.  Each 

 one‟s going up by 2 but they‟re not, area‟s not gaining on perimeter and perimeter is 

 not… 

 

James then moved on to row 3, noting that he should find an answer there.  “But then, continuing 

on after that, the one right after that, it, area surpasses it by 1, so…Yeah, so there isn‟t going to 

be any more in that row.”  The same sort of thing happened when James moved on to row 4: 

“Another pattern, 16 and 16 and that‟s where the 4 4 came in…and then continue on, area jumps 

over it again.”  Moving on to row 5, he says: “And then the area on 5 is just going up too fast, it 

just hops over…So there isn‟t one…” 

 Upon moving to the 6
th

 row, James makes an observation that serves him well later:  

 J: And I know at 6 and 3 there‟s another one because 3 and 6… 

 N: Right 

 J: …is there, so…I know that one will be there, and can assume that property that they‟re 

 not going to be before that… 

 N: Ok, so why is that? 
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 J: Um, you can look back, we were in row 2, 2 and 6 we know that one wasn‟t, so we can 

 assume 6 and 2 won‟t be one. 

 

James noticed that the chart is symmetric about the main diagonal and eventually that 

observation would allow him to eliminate a large portion of the table.   

 He then went back to filling in the rows.   

 J: So 7 surpasses within 3 spots.   

 N: Ok 

 J: I guess it‟s just going to just keep getting quicker and quicker until it just shows that 

 you‟ll be down to one and it won‟t happen any more. 

 

James then did the remaining rows out to the third column, seeing that in each the area surpasses 

the perimeter in the third column but not before.  At that point, he thought he was done: “So you 

get 3 and 6 and 4 and 4.  I don‟t think there was any others.  Yeah, so there‟s just the two. I‟d say 

as far as saying that‟s an absolute…that‟d be a little more difficult.”   

 Generalizing what he had found up to that point, James said: “That happens after the 

last…so after 6 and 3, every column after that, in the third row, you‟re going to have area larger 

than perimeter, in the 2
nd

 row, it‟s going to be perimeter larger than area.”  James then talked 

about how that could be turned into a proof, saying: 

 J: I would like to see, I think, if you gave it to someone and were able to come up with, 

 you know, an equation for what the 2
nd

 row is going to be and what the 3
rd

 row is going 

 to be.  And they could throw in any number that they want, they can choose… 

 N: Sure 
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 J: …and it always came out like that, then… 

 

James then came up with the 2 sets of 2 equations to the left of the chart in the figure, the           

P = 2n + 4 and A = 2n pertaining to the second column and the P = 2n + 6 and A = 3n referring to 

the third.  James the talked about how the proof could be completed: 

 J: Yeah, and so, yeah, starting, say 7, you can definitely see just from there that area‟s 

 always going to be larger.  Just because…7 is larger than 6, 8 is larger than 6, 9 is larger 

 than 6, so just from looking at that formula that area‟s always going to be larger than 

 perimeter…and then…yeah perimeter is always going to be larger when you‟re looking 

 at column 2. 

 N: Ok 

 J: For 7 on.  And then it was shown, I think that… 

 N: You think that‟d do it?  Do the trick?  Basically, I‟m asking, you know, does this sort 

 of thing cover all your bases? 

 J: I think, yeah.  I could show that it would.  The fact from looking at from 7 on, you 

 could actually take the table and actually cut it down so that you only you‟re only looking 

 at the 6 by 6…section, which is quite a bit easier to show and to fill up that table with 

 values and… 

 

James‟ plan had not yet tackled the columns past 6 in rows 1 through 6, but he addressed that by 

saying: “Well, „cause you can show that from seven on the columns it won‟t work and then 

seven down in the rows…Just because, when you‟re looking at the rectangle, they‟re going to be 

interchangeable.” 
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 I then asked James to write up his proof and bring it back to the next interview.  The 

work he brought back is shown in Figure 95:  

 

Figure 95: James' work on Question 1 (2 of 2) 

The work James brings back is incomplete compared to what he did in the interview.  He does 

not mention the symmetry in chart that allows him to conclude that his search is over.  A 

thorough explanation of this would have sufficed in making this a complete proof.   

 The proof James provided in the interview is a semantic proof.  He uses the chart to 

understand the relationship between the area and perimeter and he turns that understanding into a 

proof.  James‟s proof scheme is not so cut and dry, however.  On one hand, he seems convinced 
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by empirical evidence a few different occasions when looking at the patterns in the table.  While 

he acted as if he was sure based on empirical evidence, he actually acknowledged that the pattern 

might deviate.  So, his conviction was really more of a hunch and he eventually verified his 

conjecture.  The proof scheme he actually displays here is transformational.  He operates on the 

objects at hand (in this case the relationships between the area and perimeter in each of the rows) 

by observing their behaviors as he moves down the rows.  He then makes use of the relationships 

to provide a proof.   

 

Question 2a 

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9. 

 James started this problem by looking at examples.  Like with Question 1, when he as 

dealing with the patterns in the columns, James seemed sure the pattern would hold but knew 

that was not a proof: “Yeah, 13 and 31, got -18.  45 and 54, -9.  So it definitely works, but as far 

as proving it…”  After a little more writing, James moved on to an attempt at a formal proof:  

 N: So you wrote (a + 1)(b+ 1) – (b + 1)(a + 1).  So there you‟re using the parenthesis to 

 separate one spot from the next… 

 J: Yeah, just separate them out. 

 N: So why a + 1 and b + 1? 

 J: Just hoping that induction would go somewhere.  So you could look at that and say, yes 

 it works for those values, ab and ba and if it has to be under 10, then it should work for (a 

 + 1)(b + 1) – (b + 1)(a + 1)…I don‟t see it actually taking me anyway unless we separate 

 it all out.   
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James then left that method alone for a while, going back to examining his examples for insight. 

 J: I‟m just trying to see why by switching a and b you‟re always getting a multiple of 

 nine…by taking 23 and switching it to 32…it‟s always going to be a multiple of nine.  It 

 has to do with just switching those numbers.   

 N: So you‟re thinking of how that change… 

 J: …is guaranteeing the multiple of nine.   

 

After some more thought, James restarted the problem again, this time looking at the operation 

of subtraction in more depth: 

 N: So you‟re looking at a0 – b0? 

 J: Yeah, just looking at the, just a quick way of… 

 N: …sort of examining the process of subtraction? 

 J: Yeah, I‟m just getting rid of the last a – b and…so you‟re always going to end up with 

 10, 20, or the negative as well of those (multiples of 10).  And with a and b… b – a, that 

 will just take down the (multiple of) 10 to the actual number.   

 

This work can be seen in the middle of Figure 96.  James had come up with a way to examine the 

individual place values in the subtraction ab – ba.  This consideration of place value would play 

a big role in James‟ eventual proof.   

 He did not see how his new way of writing the subtraction would help, so he went back 

to looking at examples:  
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Figure 96: James' work on Question 2a (1 of 2) 

 J: I just started looking at 91, 81, 71, just decreasing them by ten.  And then getting 72, 

 63, 54 so decreasing powers of nine.   

 N: Ok.  So you‟re decreasing the a value, right? 

 J: Yeah, decreasing the a value, b value stays constant.  Drops that a value by 10… 

 (working, does same thing with b = 3 instead of 1) 

 J: Yeah, so that pattern always holds. 

 N: Ok, so do you see a reason why, or do you just sort of believe based on these 

 examples? 



315 

 

 J: I‟m just going by the examples, I can‟t think of anything right now…But that does 

 make sense, because as the ab decreases by 10, the ba is only decreasing by one so the 

 difference will always be 9. 

 

By looking at place value in conjunction with a change in a, James was starting to see way the 

property he was proving holds.  After trying some examples in which a = 0, James quickly 

applied the same reasoning to changes in b value: “I‟m increasing b, but it‟s the same pattern as 

…It‟s just doing the opposite, you‟re still going to get a difference of nine, but it‟s just going to 

be a negative nine because the b will be larger.”   

 After writing out the generalized subtractions with 1 added and subtracted to a and b 

separately, James went on to consider how to turn his understanding into a proof: “Ok.  So 

there‟s our pattern…Would a proof, I feel like using proof by induction by…”  James is able to 

explain how the proof would work if only one variable were allowed to change, but the presence 

of 2 had him stuck. 

 J: I guess the only problem I really saw with showing it this way is that, say you start 

 with a and b, you‟re only going to be changing one variable at a time, you‟re not 

 changing both. 

 N: Yeah, so can you reconcile that, then?  If you had to change both? 

 J: Yeah, because if you looked at a plus or minus 2, b plus or minus 3, you can go 

 through the same process.   

 

To see how to handle the case when both variables change, James looks at the last example in the 

bottom right of Figure 96.   



316 

 

 J: Any of the numbers that you‟re adding on, like say let this 2 be a C and that 5 be a D, 

 then you can separate them because of addition, you can look at the ab – ba plus the cd – 

 dc, we‟ve already proved that it works … 

 N: I see, you‟ve proved that, well you need to be careful because you‟ve proved that it 

 works if you change one of the variables.  And it doesn‟t matter which one you‟ve 

 changed.  But you haven‟t, I don‟t think… 

 J: Yeah.  I see that now.  Because we haven‟t actually proved it that ab – ba… 

 

James was hoping to handle the case when both variables needed to change by pulling out the 

changed part, leaving him with ab – ba + cd – dc.  He realizes, though, that this would not work.   

 James leaves this last idea and comes up with a new one: “Wouldn‟t these two, just these 

two statements, won‟t they cover, just 1 through 9 for all the foundations?”  I asked him if he 

could use his reasoning to change cases from 00 – 00 to 25 – 52.  “Well, yeah because if you‟re 

starting out with 00 we know that‟s leaving b the same, so let‟s start out with 05 and 50 and start 

going down and get 15 and 51…”  James then draws the beginning of a chart which is the in 

lower left corner of the figure.  He reasons that it works for 00 – 00 and from there one could 

verify any possible difference by changing a values (moving up or down columns) and b values 

(moving between columns) as necessary.   

 J: Yeah, I don‟t see why, I think the hardest part that I‟m running into now is that it 

 seems verified just from me looking at it, I don‟t see what else really needs to be stated 

 by saying that, use b to get to any column, you know you get to that b, it doesn‟t matter.  

 Then with that a, the b has no effect, so you can use that to go down that column and hit 

 for every a. 
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 James was confident he could turn this argument into a proof and he say he would bring 

it back for the next interview.  The proof James brought is shown in Figure 97:  

 

Figure 97: James' work on Question 2a (2 of 2) 

As was the case with Question 1, the proof James brings back is an incomplete version of what 

he had in mind during the previous interview.  Strictly speaking, his proof only works for a 

values of 2 through 0 and b = 9 (since he did not discuss subtracting 1 from a or b).  However, 

one can see that he had his broader argument in mind because he mentions moving up, down or 

side to side as was the case with his grid idea.   

 The proof James provides is semantic.  He looks at examples to find insight into the 

problem.  Eventually that insight is found by combining observations about place value and the  

change seen in the difference ab – ba when one of the individual values changes.  Once he has 

this understanding, he turns it into a proof.  This is exactly the sort of process that constitutes a 

semantic proof.   
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 James‟ proof scheme is similarly straight forward.  He operates on the difference ab – ba 

and uses the results of this operation to complete his proof.  The fact that James uses a base case 

of 29 – 92 may lead one to conclude that he does not thoroughly understand the proof he 

provided.  However, I believe this was an oversight on his part because during the discussion that 

took place in the interview, James realized that if he was merely adding to either a or b, then one 

would start at 00 – 00.  Also, it is possible wanted to use the fact that one could add or subtract 1 

from either variable and still have it work.  In any event, James displayed understanding during 

the interview and thus he is displaying an interiorized, rather than internalized, proof scheme.   

 

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6.  

 Unlike the previous question, James did not begin this one by looking at examples.  

Instead, he tried a few different methods first.  The first thing he did was factor the expression. 

 J: Kind of broke it apart, just to see if anything comes out, so n(n
2
 – 1) and then n(n + 

 1)(n – 1) just to see if anything would come from there… 

 N: And it didn‟t? 

 J: No, didn‟t get anything from there.  Thought maybe I‟d graph it, just for fun. 

  N: And that didn’t do much for you? 

 J: Yeah, it shows that all the spots are going to be multiples of six, but that‟s not going… 

 N: Yeah, that‟s not going to show… 

 J: …to be a huge help.  So then I just started listing out, this (left side of Figure 98) is 

 the initial part, so it‟s not nearly as clear, so… 

 N: So, what is this initial part?   
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 J: This is just the same as this (middle of figure), this is just written up a little nicer so I 

 could actually see… 

 

Figure 98: James' work on Question 2b 

The work that James completed on the problem during the interview stopped at the middle of the 

page, just above the grid of values at the bottom.  He had begun to look at the successive 

differences between (n + 1)
3
 – (n + 1) and n

3
 – n, saw that they were multiples of 6 as well and 

then looked at the successive differences between their multipliers. 

 N: So you saw these successive differences are multiples of 6, so then when you divide 

 those by 6 to get the multipliers of the differences. 

 J: Yeah. 



320 

 

 N: And you saw that there was another successive difference thing going on there, 

 because the difference between those multiples was 2, 3, 4, 5. 

 J: Yep.  And then I tried looking at a way I could look at these patterns and turn them into 

 some equation, where… 

 N: Like a recursive relationship. 

 J: Yeah, so I just called the n‟s I changed them to a‟s and the b‟s for the multiples of 6 

 that were showing up.  So then, your bn, for them is going to be the previous bn + 6 

 times…Yeah, and that‟s pretty much where we stopped with those.  

 

 During the reflection, I asked why he had tried a few different things before looking at 

examples.  James said that “(f)actoring was easy, and it wasn‟t, it was more with a function, ab 

wasn‟t a function, well it was a function, but it was so simple…” He mentioned that the 

expression he started with looked like a function, which also explains why he wanted to look at 

the graph.   

 As we were talking about what he had done, he had a new idea:  

 J: I was just kind of looking at…and it‟s maybe just because…I was looking at with 5 

 you get, you know in this (factored) form, for when, you know, 5, 6, 4, so…I was just 

 trying to think with 4, that‟d be 4, 5, 3… 

 N: Ok… 

 J: Which, when you broke it had a 6 in it, but yeah, I don‟t know how you, in the  general 

 form… 

 N: So it sounds like you noticed that for all your n values, you can sort of tell what these, 

 what each of these factors is going to be, that‟s what this factored form gives to you… 
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 J: Yeah 

 

James had noticed that the factored form of the expression allowed him to see the factors that 

make it up.  It also allowed him to see that, at least in the cases he considered, there was a 2 and 

a 3 to be found once you broke it up.   

 At that point, the interview was over and I sent the paper home with him so he could 

continue to work on the problem.  When he came back, he began to look at the individual factors 

n, n + 1 and n – 1 for different n values.  This is the grid that it at the bottom of Figure 98.   

 J: Yeah, I went back to just looking, from when I split up the function to n times n + 1 

 times n – 1.   

 N: Ok 

 J: And started looking at those individually, and just wrote down the three defined 

 relationship…and, you know, a pattern emerges. 

 N: So what pattern emerges? 

 J: Just, you can start with n + 1, it‟s kind of just a re-circulating, it moves up to n, then 

 down to n – 1. 

 

This, however, was as far as he got: 

 J: Yeah, and that‟s kind of where I got stuck.  I was trying to figure out a way where, you 

 know, as you‟re moving up the number line, you‟re getting , you know, you‟re either 

 getting a 3 times a 2, or…a three times a 4 and the 5, well, you can just disregard the 

 prime and you‟ll have a 3 and 2 still.   
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James was trying to articulate that for any n, between n – 1, n and n + 1 at least one of these 

numbers would have to be a multiple of 2 and one would have to be a multiple of 3.  He just did 

not know how to prove it.  As far as he got was identifying how numbers get shifted around as 

the n value is increased.  In order to save time for the next problem, I talked James through the 

rest of the problem.   

 James does not complete a proof here, but he does provide a semantic attempt.  He looks 

at a couple different ways to represent the expression n
3
 – n in hopes that he will find something 

that leads him to a proof.  The closest he comes to a proof is the pattern he finds in the grid at the 

bottom of the figure.  It is easy to see why James was looking for such a pattern; it was finding a 

pattern that led him to his proof for Question 2a. 

 Like with the previous question, James‟ work here suggests a transformational proof 

scheme.  This is most evident in the way he observes the change in factors of n
3
 – n from one n 

value to the next.  While this method of investigation may have been borrowed from the previous 

question, it does show that James is looking at how change affects a mathematical object (in this 

case, the expression n
3
 – n).  Thus, James shows a transformational scheme. 

 

Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

n ℕ: 

2
1

2

1

3

1

2

1

1

1 n
n

 
 

 James began this problem by moving directly into the induction argument.  He worked 

silently for a few minutes and thought he had completed the problem: 

 J: So I‟m pretty sure I‟m done. 
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 N: You‟re pretty sure you‟re done? 

 J: But, there‟s just one value that‟s kind of iffy. 

 N: So, what do you mean by one value?  One statement that you‟re not sure about? 

 J: Yeah, if, when breaking up this 1/1 + 1/2 + 1/3 + and so on to 1/2
k+1

, that you can 

 break that up into 1/2
k
 + 1/2. 

 

James then looked at 1/2
k+1 

and 1/2
k
 + 1/2 for some values of k because he was unsure of his 

statement.  The values let him know that “1/2^
k+1

 is actually 1/2
k
 times another 1/2, it‟s not 

another plus 1/2.”  He erased this work (see Figure 99) but left a note of what happened.  

 At that point, he went back to work.  As he mentioned later during the reflection, James 

was working with the misconception that the only change that occurs on the right hand side of 

the inequality when moving to the k + 1 case is that the last term in the sum changes from 1/2
k
 to 

1/2
k+1

.  This, combined with accidentally changing   to   in the last line in the figure (they 

have since been switched back) led James to again think he was done.  The thinking was that 

removing the factor of 1/2 from the last term would make the sum larger and get it back to the 

induction hypothesis.  Then, he used his mistaken induction hypothesis to say the sum was less 

than 1 + k/2, which is clearly less than 1 + k/2 + 1/2.   
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Figure 99: James' work on Question 3 (1 of 4) 

 James then moved to the work in Figure 100 in order to try to justify the first step in the 

string of inequalities at the bottom of Figure 99.  He tried to do it by integrating a couple 

different functions: 1/x and 1/2
x
.  He settled on working with 1/x when the other function got to 

unwieldy.  His plan was to integrate it from 1 to 2
k
 and from 1 to 2

k+1
.  The idea was that if he 



325 

 

got a greater number out of the second integral that would show that the sum was greater when 

the final term  

 

Figure 100: James' work on Question 3 (2 of 4) 

was 1/2
k+1

.  When he was explaining his idea, he realized a couple things.  First, he realized that 

using integrals was unnecessary.   

 N: But you‟re still kind of going at it with this method, with the stringing inequalities 

 together method and you‟re just trying to work on justifying this first step. 

 J: Yeah 

 N: Ok, and that‟s what this stuff was about, this integral stuff. 

 J: Yeah, and I can definitely, I‟m actually positive now that that‟s true, it‟s just…when 

 you have this, 1/2
k
 would have, you know, the sum of all up to that, and 1/2

k+1
 is going to 

 be the sum of that, the same plus whatever else is in between, so if it‟s up to 1/8, then, 
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 that‟s 2, then the other one‟s going to be 1/16, all of this added is going to 2
k+1

.  So, it‟s 

 going to be a larger sum. 

 

James was also able to correct himself regarding his misconception: 

 N: Yeah, so I think that here, until you made that realization, it seemed to me like you 

 were treating this left side as having the same number of terms in both the k case and the 

 k + 1 case.  

 J: Yeah, because I was looking at it as timesing it by that 1/2. 

 N: And having that be the only difference between the two? 

 J: Yeah. 

 

 With a fresh perspective on the problem, James left the interview planning to work on the 

problem before coming back for the next one.  The work he brought back can be seen in Figure 

101.  

 

Figure 101: James' work on Question 3 (3 of 4) 
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James was able to successfully restart the problem and apply the induction hypothesis.  At that 

point, he said he tried a couple different algebraic manipulations that did not lead anywhere and 

he ended up erasing.   

 Despite hitting this road block, James did make a breakthrough of sorts while waiting for 

the interview to start.  This is why this new work did not show up on the page he brought in.  He 

did, however, continue working during the interview and this new work can be seen in Figure 

102.  

 

 

Figure 102: James' work on Question 3 (4 of 4) 

 J: So, then when I was kind of wandering around outside this morning because I showed 

 up early, I tried looking at, I forget what it was…So, I was just trying to think of one 

 pattern…just kind of dealing with this and separating that 1/2 into the 1/4 + 1/4.  And so 

 then, the 1/3, yeah, is greater. 
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James had considered the last thing that needed to be done with the inductive step for a particular 

k value.  He also felt that his method could be extended to prove that it works for all k values. 

 J: And I think that it‟s going to correspond out that you‟re going to have the same amount 

 of terms on each side. 

 N: Ok 

 J: And…if that pattern would continue, if the last term up here in this string would 

 always equal what this repeating term is on this side, then everything before this… 

 N: ...would definitely make it bigger, right, because those denominators are smaller. 

 J: And that the, just looking at every time k goes up, is there a, I don‟t know what the 

 terms is, so that both sides have the same amount of fractions. 

 

James knew that for any k value, he could always break 1/2 up into a sum of identical powers of 

2 that matched the last term on the left.  The trouble was making sure the number of terms on 

each side of the inequality would match up if he did.   

 To this end, he did some work, even starting beginning another induction argument.  

Eventually, though, he realized this was unnecessary: “Well, I was trying to find how many 

terms there are going to be between 2
k
 + 1 and 2

k+1
.”  It was left, then, to show that the number of 

terms between would be equal to 2
k
 (which is what you get when you divide 1/2 by 1/2

k+1
).  It 

did not take James too long, then, to verify that this is case.  I asked James if this meant that he 

had completed the problem, and he said: 

 J: But, yeah, I think that I‟ve shown that the left side is going to have the same number of 

 values as the right hand side, plus I‟ve shown that the last value, the smallest value on the 
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 left hand side is going to equal all the repeated values on the right hand side.  Everything 

 before the last, the smallest value on the left hand side is going to be larger, so… 

 N: Yeah 

 J: Seeing how there‟s the same number of values on both sides, the smallest value on the 

 left hand side equals the constant value, so the left hand side has to be larger than the 

 right hand side so that statement‟s true, combined with the initial statement (the induction 

 hypothesis, completes the proof).   

 

 The proof James provides here is a process procedural proof.  He clearly understands the 

process of induction and sees it as a few global steps rather than a complete list of instructions to 

follow.  The bulk of the work he does involves completing the inductive step, something for 

which he had little guidance.  

 His proof scheme is transformational here.  Because this is an induction proof, the proof 

relies heavy on what happens as one moves from one case to another (from n = k to n = k + 1) 

and what happens as a result of that transition.  Also, James seems to thoroughly understand the 

process of completing a proof by induction, so this is not an internalized transformational proof 

scheme. 

 

Question 4 

Examine the following proof by contradiction:  

Prove 01   

Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 
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Prove 01   

Suppose  01  , then 01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 

 This question was on the midterm exam James completed while taking MATH 305.  The 

solution he turned in on the test can be seen in the figure below: 

 

Figure 103: James' previous work on Question 4 

 James points out two different aspects of the proof here.  One is that because i is 

imaginary it has no “numerical value” and, presumably, no position on the real number line 

making a magnitude comparison impossible.  He also mentions that a different step could be 

taken that would be “more logical.”  He does not actually claim what it done is incorrect but he 

does saw that it is a flaw in the proof, as if the proof would have been improved had his step 

been taken.   
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 During the interview, James initially thought he had found an algebraic mistake: “When 

you have 0 on the 1 side, it allows you to change the left hand side in any way you want it.”  I 

pointed it that this was not quite true; one also had to flip the inequality when multiplying by a 

negative.  He quickly abandoned this and went back to this first response on the midterm:  

 J: It‟s not a real number…Yeah, that‟s what I‟m getting at with the i part, that we don‟t 

 have a numerical value.  It‟s kind of hard to compare it to something that does. 

 N: Ok.  So, what does that mean in terms of the rest of the proof, then?  I mean, you‟re 

 being asked to find the flaw in the proof. 

 J: The whole proof‟s flawed, right from the beginning. 

 

  James did not complete or attempt a proof during this interview, so there will be nothing 

to classify.  However, this interview did yield some insight into his proof scheme.  James realizes 

that the proof‟s flaw is that it starts with a faulty assumption: that i can be compared to 0 in the 

first place.  Because this is not true, the rest of the proof is bogus.  Thus, James is displaying an 

axiomatic proof scheme because he sees the dependence of mathematics on starting assumptions.  

In this limited setting, James realizes that building up from something false does not yield true 

results.  In this way, this question can be thought of as a microcosm of the axiomatic nature of 

mathematics and James understands this structure at this smaller scale at least. 

 This is not to say, however, that James is completely satisfied with his answer.  He stands 

by the flaw he finds but finds himself looking for something more:   

 J: Yeah it seems like there should be something that stands out as, you know, this is 

 wrong, but there isn‟t…there‟s some iffy things, especially on that second one, but… 

 N: Yeah, but nothing overtly incorrect? 
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 J: No.   

 (thinking) 

 J: i isn‟t a real number, that‟s the flaw. 

 

James was hoping to find some algebraic mistake that would allow him to conclude the proof 

was incorrect.  His uneasiness with the flaw he found in the proof tells me he was out of his 

comfort zone when it comes to proof.  This implies that he thinks of proof mostly (but obviously 

not completely) in terms of logical deductions from one step to the next.  So, while James does 

show that he has at least a weak axiomatic proof scheme, his desire to focus on individual steps 

demonstrates that he has a transformational scheme as well.   

 

Question 5 

 The next interview was the last of the semester, and it James spent it discussing the first 

half of the study.  There was no proof attempt, so there is nothing to classify but the interview 

reinforce some of the observations made earlier in the study.   

 First of all, it helped to highlight James‟ behavior in previous interviews.  When I asked 

James what was necessary to complete a proof, he said: “Understanding what‟s actually going 

on.”  This matches what he did in many of the interviews.  He often started with examples, charts 

or other forms of given expressions to get an understanding of the problem that could be turned 

into a proof.  This attitude should not be surprising given the number of times James produced a 

semantic proof.   

 J: I‟ve definitely learned that with proofs you have to sit down, read over it, you know, 

 maybe even go back and look at a more simple version of what‟s going on. 
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 N: Ok 

 J: Just to get an idea of where I really need to go and how to get there.   

 

This focus of knowing where he needs to go and how to get there is also typical of a 

transformational proof scheme, something that showed up in all of James‟ interviews.  

 James also displays an axiomatic proof scheme, something that he gave hints of in the 

previous interview.  James says that this view of mathematics is something he‟s noticed as he has 

moved into more advanced classes. 

 J: Now that I‟ve noticed, especially in my other class, I‟ve gotten better at 

 recognizing…and using other proofs. 

 N: Besides in induction? 

 J: Well, and then stuff that‟s already been proved to build off of. 

 N: Ok, sure. 

 J: And that‟s been the biggest thing with my other class that I‟ve had to do is that, you 

 know, taking a basic proof for a problem and you have to go back and use 2 or 3 other 

 proofs or theorems to manipulate because “We proved this in this theorem and we know 

 that that‟s true, we can apply that to this so that we can…” 

 N: Right, so you‟re starting to see how, not just how an individual proof comes together 

 but how sort of the structure of proofs and math…how it all works together a little bit. 

 J: Yeah, I‟ve noticed that the more basic proofs, it‟s easy to just say “Oh, ok, here‟s 

 induction” and boom, spit it out real quick. 

 N: Yeah 
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 J: And now, going on, the higher you get up in math, the more proofs are relying on other 

 proofs.   

 N: Yeah 

 J: That everything just kind of builds off each other. 

 N: Right 

 J: That‟s the biggest thing that I‟ve been noticing this year. 

 

So, while the evidence for an axiomatic proof scheme was weak during the last interview, it is 

strong here.  

 

Question 6 

Prove that n ℕ,  3nn   (mod 6).  

 James and I began this interview going over modular arithmetic because he had not seen 

it since he was in MATH 305.  After that, James worked silently for a while, getting down to the 

rows of numbers and their equivalents mod 6 (see Figure 104).  At that point, he felt stuck and 

we discussed what he had done.  He tried the problem for an example (n = 2) and then looked a 

couple ways to represent division: both with numbers, 9 and 183, and variables, n/6 and 

nnn  /6.  James decided to use n/6 as shorthand for the operation of division by 6.  When 

working with this notation, he made a mistake in simplifying n
3
 over 6, something he repeated 

when looking at his n = 2 example.   

 At that point, he went back to trying some examples, n = 10 and n = 3.  It was here that 

James noticed the fact that remainders cycle and so you get a repeated pattern when looking at 

numbers mod 6. 
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Figure 104: James' work on Question 6 

 N: And then…did some rehashing with that sort of stuff…looked at another example, so 

 another number and its cube.  So then you looked at a whole bunch of numbers and their 

 cubes, well, a whole bunch of numbers mod 6, not necessarily their cubes.   

 J: Yeah, just looking at, yeah, it just runs 0 through 5.   

 N: Ok 

 Yeah, that‟s what the remainder‟s going to be and it‟s just repeating… 

 



336 

 

 I then asked James if he had given any thought to which proof technique he might be able 

to apply to this problem and he said he had not gotten that far yet:  

 J: No, I was more looking more just trying to understand it. 

 N: Ok and the proof would come out of the understanding? 

 J: Yeah hopefully.  Yeah, I don‟t even know where I would end up going with it to start 

 proving it…Yeah, that‟s kind of what I always hope for.   

 N: Ok 

 J: And then, I guess, with the understanding that it would lead to one of the proof 

 methods. 

 

This discussion of proof methods led him to expand out (n + 1)
3
 to see what an induction proof 

might look like, but he did not see it going anywhere.  Seeing the expansion seemed to 

complicate matters, but he was still having trouble with how to deal with the remainder when 

dividing a variable by 6.   

 N: Right, so you‟re sort of worried about having that whole expansion… 

 J: Well, and trying to find what that remainder is going to be of just the n.  Just because 

 you not, that‟s kind of the part that I keep getting stuck at is that you‟re not showing that 

 n divided by 6 is going to equal… 

 N: Right, it‟s just the left over part. 

 J: Yeah, you can‟t show a left over part of something that‟s a variable…just n.  n doesn‟t 

 have anything left over when you divide by 6. 

 N: Well, you have no idea what it would look like, or what it would be, I guess. 
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 J: Yeah and so trying to say that, through induction, you‟d hit that spot and then say “Ok, 

 I can‟t show what this remainder should look like.” 

 N: Ok 

 J: As far as I know. 

 

This difficulty of what to do with the remainder, and the notation he developed earlier led to 

confusion and abuse of notation when looking at the equation 
66

nnnn 
 . 

 J: So…can I look at something where if I‟m multiplying both sides by 6/n, that you 

 know that on this side some remainder, whatever it is…And then you just end up with n 

 times n on the other side, which is going to be a whole number as well. 

 

In an attempt to represent the division, James got caught up in notation.  We the talked how what 

he was proposing really had no meaning because n/6 was not representing what it normally does.   

 We had reached the end of the interview and James said that he would continue to work 

on the problem between interviews.  He said that he did work on the problem but he did not 

bring anything in.  He said that he had just kept running into something he had noticed during the 

interview: “Really just how the remainders are working out, how it‟s a repeating cycle of 0 – 5 

but that makes sense because it‟s 6.”  He said he was trying to make use of that since modular 

arithmetic deals with remainders but he didn‟t know how or where to go next.  I then talked 

through a solution with James, making use of the division algorithm.  He had seen it a bit in 

number theory and took to the solution of the problem well. 

 Although James did not complete a proof, the work he does constitutes as a semantic 

proof attempt.  Instead of going straight into a proof, he first explores the problem hoping to find 
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some understanding that would lead to a proof.  He mentions explicitly that is what he is doing, 

but his actions back it up.  The fact that he gravitates to the fact that the remainders repeats also 

shows this is a semantic attempt. That is the main insight he finds and he spent his time between 

interviews trying to turn it into a proof.   

 His proof scheme here is mainly transformational.  In various attempts to understand 

what is going on with the problem, he tries to get a handle on the remainder in such a way that 

will allow him to manipulate it.  His attempted manipulation goes a bit awry  at one point when 

he tries to multiply by 6/n when he gets to the bottom of Figure 104.  The way he chose to 

represent division by 6 led him to resort back to the conventional meaning of n/6 and methods to 

manipulating that.  This abuse of notation represents a symbolic external conviction proof 

scheme.  It is not a strongly held scheme, however, and I feel he resorted to that sort of operation 

out of desperation only.   

 

Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 

 James did not take long to get into the problem, recalling counting techniques he had seen 

before: 

 J: So, I‟m trying to figure out to, how many ways we can pretty much arrange 9, or n 

 different things, right? 

 N: Ok 

 J: Would be kind of looking at it? 

 N: Sure…yeah, that‟s one way of thinking of it. 
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 J: Because I‟m just thinking of it as n!...right, since if you had n things you can arrange n 

 things n! different ways. 

 N: Right, one thing to think about is the fact that the set 1, 2, 3 is the same as the set 3, 2, 

 1.   

 J: True 

 

James then went straight to the summation formula in the right middle of the figure below: 

 

Figure 105: James' work on Question 7 
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 J: Prove that you‟re right…It has to be nC0 + nC1 + all the way up to nCn.  Now I‟m 

 just trying to think of a way that I can prove that I‟m correct. 

 N: Ok…so just saying that that‟s what it is… 

 J: Doesn‟t really work, just saying that…saying that‟s the way combinations work. 

 

At this point, James does the work that can be seen on the left side above the paragraph. 

 J: So I started looking at if you have 1, 2, 3 to n different elements in there… 

 N: Ok 

 J: …there‟s 1 way you can have those.   

 N: What do you mean have those? 

 J: Well, just have, one way that those can be in a subset all together… 

 N: Right.  So there’s 1 subset that has all the elements in the original set. 

 J: Yeah, and then if you want to remove 1 of those elements and find out how many 

 combinations are from there, then you do nC1, for how many different ways you can 

 remove 1 element from your n. 

 N: Ok 

 J: And then you can just continue down, so then you want to remove 2 of the elements. 

 N: Ok 

 J: And I looked at more of a simple, just 1 through 5. 

 N: Ok 

 Just to see, and started out by picking, you know going through and matching „Ok, so I 

 have 1 through 5, well, there‟s one way.  So now let‟s exclude 1.‟ [a single element, not 

 the specific element 1] 
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 N: Yeah 

 J: Ok, so there‟s 5 ways you can do that and then I went through and started counting 

 how many different ways you can remove 2 and saw that was just going to be the 5 C 2.  

 So I just generalized that for n. 

 

I asked James if what he had done was a proof and he said: 

 J: I think it could be refined into one, and molded. 

 N: Ok 

 You know, but…and maybe it would depend on who was going to be looking at the 

 proof, you know, how in depth you‟d go in refining it.  But I think if I would stick the 

 definition of the combinations… 

 N: Sure, and you wouldn‟t really have, like, pretty much anybody reading would know 

 what that means, so that would be ok I think. 

 

 James then wrote out the paragraph in the figure, ending by saying: “Yeah, sounds pretty 

good.”  I asked him about what he thought the proof would have been like if he was working on 

his own (and I did not tell him he did not need to justify the choose formula): 

 J: Yeah, I think I would have ended up putting a lot more into it.  I felt like I 

 needed…yeah, I would have felt I needed to go through and state, you know, what 

 combinations… 

 N: Ok 

 J: …how they work, and not really thinking about that I‟d be writing, you know, the 

 proof for people who would understand… 
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 N: Ok 

 J: …all of that. 

 

 James‟s proof is a semantic one.  Even though he goes right into the general case without 

much exploration, he arrives at his proof by examining how to calculate the number of subsets 

when no elements are removed, 1 is removed and so forth.  The result of this examination led 

him to an understanding of the problem that was eventually turned into a proof.   

 His proof scheme is almost as straightforward.  James arrives at his proof via operating 

on the set by seeing what happens when elements are removed.  This is a transformational proof 

scheme.  However, there is also a possibility of an external conviction proof scheme here.  James 

seems unsatisfied with leaving his proof as an explanation.  He talks about the fact that he might 

be inclined to include more details into his proof.  It is unclear whether this inclination is result 

of not knowing if the reader would understand the choose function or if it is because he feels if 

more mathematics needs to be included for his proof to count.  If the later is the case, it would be 

evidence for a ritualistic external proof scheme.  While I am not certain, I believe the former is 

true.  I base this on the fact that James seemed more comfortable with his proof once I told him 

that he could assume that the reader was familiar with choose.  For this reason, I conclude that 

James is demonstrating a transformational scheme only. 

 

Question 8 

Prove that the cube root of 2 is irrational using a proof by contradiction. 

 This question appeared on the midterm example James took while in MATH 305.  He 

had no issues with the problem on the midterm, as can be seen in the following figure.  
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Figure 106: James' previous work on Question 8 

 James started his work on the problem as he should have, by assuming 3 2 is rational.  He 

then set it equal to a/b and began manipulating the equation.  After a few minutes, James thought 

that he had arrived at a contradiction.  In Figure 107, one can see that James took two different 

versions of the equation 33 2ba   and substituted on into the other.   

 

Figure 107: James' work on Question 8 (1 of 2) 
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Unfortunately, James made a mistake in his substitution (he inadvertently substituted a
3 2

1
 in 

for a instead of b.  When I pointed this out, James labeled his attempt “wrong” and when back to 

work.   

 After that James worked silently, trying the rest of the work in Figure 107.  First, he tried 

to come up with an inequality that he hoped would lead to a contradiction: 

 J: Yeah, and then tried just…bounding it… 

 N: So you were, what were you hoping to do with that, then?  Anything, or just looking at 

 it? 

 J:  Kind of just looking at it, hoping that something would make sense.   

 

When James saw nothing that he could use from that, he looked at the chart on the right side of 

the figure. 

 J: Yeah, I was going to look at, because a and b would have to be integers…And so, 

 you‟re just looking at, if you looked at…like 1, 2, 3 , 1, 2, 3 just like for the a
3
 and the 

 b
3
…And then just looking the, divide them out and you‟re going to be, they‟re not going 

 to be at 2…Even though they would have to be. 

 N: So, were you hoping sort of like their ratios would go off and go in the same direction 

 and never work again? 

 J: Yeah, that would show that they‟re exponentially getting… 

 N: further away? 

 J: Yeah, which would happen really fast with cubes. 
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I then pointed out to James that no matter how big a became, there was a b whose cube would be 

roughly the half of a
3
.   

 By the time we were done talking about the things he had tried, it was time to end the 

interview.  I asked James to look at the problem some more between interviews and he said he 

would.  During that time, James recalled that he had seen a proof that 2  is irrational in his 

History of Mathematics class: “Yeah, I remembered that, the square root of 2, and so I flipped 

back through my notes and…Yeah I saw the „You can‟t have common, or they have to be in the 

lowest terms‟.”  Seeing this jogged him memory regarding the current question.  Although he 

had lost the paper that had the work he had done between interviews, he was able to quickly 

provide the work in the figure below.   

 

Figure 108: James' work on Question 8 (2 of 2) 

As he went, James explained his steps and completed the proof, although I did have to help him 

articulate the conclusion.  Earlier in the interview, James mentioned that he had not finished the 

problem but that he was close.  I think this was because he was having trouble explaining the 

conclusion. 

 The proof James provides is a procedural proof.  Because he used the proof that 2 is 

irrational as a guide, James had been given steps he used to complete this proof.  However, in the 
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interview James mentioned that he merely used the other proof to get started; he did not use it for 

step-by-step instructions.  Because of this, James‟ proof for this question is a process and not 

algorithm proof. 

 Although James needed help at the beginning and end of his proof, he still exhibits a 

transformational proof scheme.  The reason for this is because he understands the steps he is 

completing as he goes.  If he had completed his steps because he had been told to or because he 

was simply copying a different proof, that would have been evidence for an external conviction 

proof scheme.  As it was, James explained what he was doing and that understanding is what 

convinced him of the proof‟s validity.  Thus, James is not relying on an external source to tell 

him the proof is complete and so he displays a transformational scheme.   

 

Question 9 

 For the next question, I had James evaluate a version of Cantor‟s Diagonalization 

argument.  Because James did not attempt a proof there will be nothing to classify.  I was, 

however, able to use the interview to find some evidence of James‟ proof scheme. 

 Unlike most participants, James remembered what it meant for a set to be countable from 

MATH 305.  Because he had a good understanding of the idea of countability, he went right into 

reading the proof.  He found the proof confusing the first time he read it.  “Yeah, I got a little bit 

confused, you know, just with the, why they were doing the βj equaling 1 or 2 if αjj equals 2 or αjj 

doesn‟t equal 2.”    

 After reading through the proof a second time, though, he found it to be much clearer.   

 J: I understand what they did. 

 N: Alright, so what do you think of it? 
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 J: After I read through it and as long as I think I understand…it‟s a neat way of doing it.  

 I thought it was going to be a, when I first I read through it the first time I thought it was 

 a really complicated… 

 N: Sure 

 J: …way of doing it, but…after I, you know, read through the first part, made sure I 

 definitely understood what they were doing there, and then just read through this last part 

 a couple times… 

 N: Right 

 J: Yeah, it‟s a kind of neat way of doing it.   

 

James was even able to point out that the choice of comparing each αjj to 2 was arbitrary: 

 J: Because I was just kind of confused at why they picked… 

 N: The jj? 

 J: Well, and also then why they said if it equals 2 or doesn‟t equal 2.   

 N: Oh, ok 

 J: And then, I mean, as long as I‟m right, it wouldn‟t really…it wouldn‟t matter if they 

 chose something else… 

 N: Exactly 

 J: They could let it be 2 or 3 or 4. 

 

This was conformation for me that James really understood the proof as he said he did.   

 I then asked James what he thought was the biggest hang up in reading through the proof.  

He said:  



348 

 

 J: Just going through it and going over it quickly, it was just, yeah, a lot of different 

 notation in there and…reading it just all the way through that first time and not really 

 stopping to analyze what they‟re actually doing with this first part. 

 N: Ok 

 J: And then getting to the second part and, you know, having to know what was going on 

 in this… 

 N: …the first part? 

 J: Yeah, to even make sense of how they were being able to say that … 

 N: Ok 

 J: …that relationship. 

 

James is referring to the fact that he did not know why the proof writer did what he did and so he 

did not take the time to focus on what was happening earlier on in the proof.  He made a similar 

point later in the interview, saying that not knowing why things were done added to the 

confusion the first time through. 

 J: And the first time I read through that, it seems kind of like a, you‟re just throwing that 

 out there. 

 N: Oh, sure 

 J: But then when I see what they‟re doing with it I understand that that‟s perfectly 

 reasonable… 

 

 James recognized the importance of performing steps within a proof that will pay off 

later, even if they seem unmotivated at the time.  This is a key aspect of a transformational proof 
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scheme.  One of the main characteristics of the transformational proof scheme Harel and Sowder 

mentions is the “application of mental operations that are goal oriented and anticipatory” (p. 

261).  James sees that this is an important aspect of proof and reinforces that he has this proof 

scheme. 

 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.   

Example, 6/9 < 5/7 < 7/9. 

 James started this problem by going straight to a general inequality.  He began the 

problem by separating the 2 parts of the inequality and working with them individually.  It did 

not take him long to realize that he had too many variables floating around, and so he took a cue 

from the provided example, letting x = a – 2 and seeing the implications of that (see Figure 109).   

 J: Yeah, I was starting to looking adding my own little restrictions to it to see if I could 

 get there.   

 N: Ok, yeah, I noticed one thing you did, you said x had to be… 

 J: a – 2 

 N: Where did that come from? 
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Figure 109: James' work on Question 10 

 J: That came from looking at, just the…the little example that you had put up there, and 

 then stuff that I had jotted down, I was just trying to figure out if I could… 

 N: …generalize a pattern? 

 J: Yeah, if I could get a pattern that, you know, if I tried like 3 or 4 of these, could I find 

 an x that was a – 2 over something. 

 N: Right 

 J: That would work for it.  You know; if I could get a pattern going that way, then maybe 

 I could…yeah, get it to work. 

 

After looking at the algebra on the left side of the figure, James then tried a few examples to 

make sure that the restriction he had applied made sense.  It did in two of the four cases he 
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looked at, made a couple arithmetic mistakes in another and did not attempt the last, apparently 

because it would was not easy to do mentally.   

 After that, he went back to working algebraically, eventually adding a new restriction:     

c = b – 1.   

 J: So I was looking at, with c < b… 

 N: Yeah 

 J: …that, if that‟s true, then for c to actually be a whole number, then that, the largest that 

 it would be able to be, then, is b – 1.   

 

James followed through with that for a bit but that did not seem to be leading anywhere either.  

 This was at the end of the interview and I again asked James to work on the problem for 

the next interview.  He did not have time, however, so he did not work on it.  Because the next 

interview was the last of the semester with a different agenda, and because he did not want to 

work on it alone any more, we agreed to talk through the solution quickly.  

 Because James did not complete this proof, I will be classifying his attempt only.  This is 

a syntactic attempt.  James concentrated on algebraic manipulations, making few efforts to do 

much else besides imposing restrictions.  While I have no doubt that the operations he was 

performing were meaningful to him, he did not engage in much beyond “symbol pushing.”  

Proofs (and attempts) with that as a main characteristic are syntactic. 

 James‟ proof scheme here is transformational.  Like with syntactic proofs, 

transformational proof schemes are often characterized by the manipulation of mathematical 

objects.  Although the particular operations James performed did not lead to a proof in this case, 

they were carried out in hopes that they would.   
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Question 11 

 The rest of the last interview was spent discussing the study with James and the progress 

he felt he made over the course of the year.  As such, there is no proof to classify.  However, the 

discussion was used to find insight into his proof scheme and reinforce some of the observations 

made earlier in the study. 

 The biggest thing that came out of the interview was James‟ focus on understanding 

problems before trying to prove it.  This matches the proportion of semantic proofs that James 

provided.  When I asked James if he felt like he had gotten better at proofs over the course of the 

semester, he said: 

 J: Yeah instead of having to spend time making up big long lists of stuff, I still have to 

 make small lists, but not the big long lists.  You know doing little basic examples, being 

 able to sit down more and actually just work through it. 

 N: Ok, so would you say you sort of relied a little more on…like understanding the 

 problem before you sort of just start going into it? 

 J: Yeah 

 N: Ok 

 J: Yeah, you know, reading it over a bit more carefully like with the…oh, I forget which 

 one it was, the neat one. 

 N: The proof (Cantor‟s Diagonalization argument)? 

 J: Yeah 

 N: Ok 
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 J: Yeah, something like that where, just importance of reading over it and fully 

 understanding, you know, the whole thing instead of jumping in and just trying to make 

 lists or… 

 N: Right 

 J: Because yeah, it can save a lot of time because once you understand that one, it‟s “Oh, 

 perfect sense.”   

 

 This focus on understanding a proof also showed up when I asked James what he thought 

was necessary to complete a proof: 

 J: Having the, at least the basic knowledge of what the proof is trying to get to. 

 N: Ok 

 J: And then, yeah, just so you can understand it.   

 N: So the understanding is necessary also you think? 

 J: Yeah, I think, if you don‟t understand what the proof is trying to do, then there‟s no 

 way you‟re going to have a successful attempt at… 

 N: Sure, right 

 J: …trying to prove it or understanding what has been proved. 

 

This also highlights James‟ transformational proof scheme in that he recognizes the importance 

of knowing where a proof is going if one is to either complete it themselves or understand one 

completed by someone else.   

 



354 

 

James’ progression 

 Below is a chart of the proof classifications and proof schemes observed in James‟ work 

during the study. 

Question Type of proof Proof scheme 

1 Semantic Transformational 

2a Semantic Transformational 

2b Semantic (Attempt) Transformational 

3 Process Transformational 

4 N\A Axiomatic, Transformational 

5 N\A Axiomatic, Transformational 

6 Semantic Transformational, Symbolic 

7 Semantic Transformational 

8 Process Transformational 

9 N\A Transformational 

10 Syntactic (Attempt) Transformational 

11 N\A Transformational 

Table 6: Summary of James' work 

 As can be seen in the table, both the types of proofs James provides and the proof 

schemes he displays stay fairly constant over the course of the study.  That is to say, he does not 

make much progress.  One could easily argue, however, that he did not have much progress to 

make.  Of course, there is always more content that can be learned.   

 At the same time, I believe that James has a fairly mature approach to and view of proof.  

Except for one incident, which I believe occurred out of desperation, James always displays an 

analytic proof scheme.  Also, he generally works purposefully on his proofs.  Again, this has one 

exception, Question 10, where he seems to be performing the algebraic manipulations without 

knowing where it will lead.   

 So, with few exceptions, I would argue that James‟ approach to proof is exactly the one 

we would like all undergraduate mathematics majors to have.  He is thoughtful in his approach 

and knowledgeable about the axiomatic and logical nature of mathematics.  As James proves, 

lack of progress is not always a bad thing. 
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4.7 Robert 

 This section describes the work that Robert did over the course of the study.  Robert was 

a mathematics major.  During the first semester, he took Introduction to Real Analysis and 

Ordinary Differential Equations and during the second semester he took Introduction to Complex 

Analysis and Deterministic Models.   

 

Robert’s proof attempts 

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 Robert started this problem by drawing a picture to “interpret the problem.”   After he 

had a picture, he decided to look at squares first: 

 Robert: (W)ell, we could try that first just to see if a square works…So, we‟ll have 4x, so 

 4x is going to be the perimeter equal to the area, so it‟ll be x
2
… That‟s x.  It‟s equal to 4.  

 I solved for x to kind of get an idea of what it was…So, I mean, proof wise that doesn‟t 

 really prove anything, but it does help me understand that squares are going to work… 

 Cause 4 is the only…the left hand side is 4x and the right hand side is x
2
, and the only 

 time it‟s going to be 4 times 4 equal to 4 times 4 is when x is 4. 

 

 From there, Robert moved his attention to the more general case of rectangles, writing 

out the equation xyyx  22 .   

 R: Right.. I suppose I can…the only thing now is I‟m going to have to solve for y because 

 it‟s sort of … 
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 N: Sort of logical thing to do from there? 

 R: Well, I could …it just seems…I gotta try to do something, even if that‟s the wrong 

 way of going, at least I‟ll know that… 

 

Robert then solved his equation for y, as he said he would (see figure below).   

 

Figure 110: Robert's work on Question 1 (1 of 3) 

 After giving his new formula some consideration, I asked Robert what would happen if x 

= 5.  He solved to see that when x = 5, y = 10/3 and then checked that the pair solved the original 

equation as well.  It took some questioning on my part, but eventually he realized that even 

though the pair made the equation true, it did not satisfy the criteria given in the problem:  

 R: Oh, it‟s not an integer, though…10 thirds is not an integer. 
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 N: Right, so there is not rectangle with one side length 5 that has, that you know, that fits 

 the criteria. 

 R: Right.  Ok…So, y would have to be…so y has to be an integer…so now I‟ll kind of 

 work my way…so this part here I mean isn‟t this…this is sort of a clue it 

 shouldn‟t…that‟s it‟s not going to be an integer… 

 N: Well, I mean 

 R: I guess there‟s going to be some … so when 2x divided by x – 2 is an integer, then it 

 will work. 

 

At this point, Robert said: “Ok, so, I mean, maybe I could start actually just plugging in some 

numbers and see if I can get it to work” and he found the remaining solutions.   

 After trying some more values and not finding any more solutions, Robert said: “I guess 

the trouble I‟m having is I know this is supposed to be a proof.”  With that, he moved to a new 

sheet of paper and rewrote his formula, this time setting it equal to n instead of y.  See Figure 

111: 

 N: Ok, so you‟ve switched the y to an n instead, just because n is typically reserved for an 

 integer? 

 R: Yeah, and I mean, I keep thinking that…everything is too much…So now that I have a 

 new, I‟m thinking…when I had the y there I was thinking too much that it depends on x 

 and now that I have an n there, it‟s just an integer now, so …But it does depend on x, y 

 does depend on x.   
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Figure 111: Robert's work on Question 1 (2 of 3) 

This insight would eventually become important to his proof.  Although he had realized that he 

could view y as a function of x, he did not put it to use right away.  He still felt like he had only 2 

options.   

 R: Well, there are sort of the two tools that I have right now…I can rearrange the 

 equations or plug in some values…And it seems like if I do any more manipulations of 

 the equations, I‟m just going to get back to the original. 

 

 Robert knew that his first option was not a very good one so he tried more examples.  

This time, though, he recorded the values he was finding.  This still was not too helpful until I 

suggested he record the y values expressed as decimals as well as fractions. 

 R: So it looks like they‟re going down, but I guess that doesn‟t really…So the next one is 

 going to be 2…  
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 N: Ok, right, so eventually… so the hope I guess, to find another one is that, since they‟re 

 all 2 point something…eventually, if you go far enough it‟ll get down to 2, the y value 

 will be 2. 

 R: Right, then eventually get down to 1…so you could just put that in for the y. 

 

Robert then tried his idea, seeing that no x value would give y = 2.  He also saw that x would 

need to be negative for y = 1.   

 R: Well, after 1, as the x values increase, the y‟s going to go down to 0, which… 

 N: Which doesn‟t work 

 R: After that the y values are going to be negative… 

 

 Next, Robert turned his attention to making proving the function would in fact continue 

to decrease.  He realized that he could use the derivative to do this and we talked through 

applying the quotient rule to the function at hand.  After working through it, Robert seemed 

comfortable with his conclusion:  

 R: So, that‟s … so to prove… we have the 3 6 the 4 4 and the 6 3 … so there‟s really only 

 two? 

 N: Right. 

 R: Because….2 wouldn‟t work and 1 wouldn‟t work…so then…ok…so we don‟t have to 

 worry about formally proving it? 

 N: Right 

 R: Because it makes sense now…I understand that now… 
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When Robert asked about whether or not we had to “worry about formally proving it” he was 

referring to the fact that neither y = 1 or y = 2 work for this problem.  I asked Robert to write up 

a solution to the problem and he brought it to the next interview.  His write up can be seen in the 

following figure. 

  

 

Figure 112: Robert's work on Question 1 (3 of 3) 
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 The proof Robert provides here is semantic.  He uses the tools he has, examples and the 

equation 
2

2




x

x
y , until he has an understanding of the problem that can be turned into a proof.  

The understanding he eventually found was that the y values depend on the x values and that this 

function was decreasing.  He combined with that the fact that the side lengths in the rectangle 

were interchangeable to verify that he had found all the solutions. 

 Robert‟s proof is a formal one, so he is displaying an analytic proof scheme.  However, 

his proof is based on manipulating the function and anticipating what will happen as the input 

increases and not any previous mathematical results.  Thus, he is displaying a transformational 

analytic proof scheme rather than an axiomatic one.   

 

Question 2a 

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9. 

 As was typical with this problem, Robert and I began by talking about what “ab – ba” 

means in this particular problem.  Once he was comfortable with the notation, Robert began 

trying some examples.   

 R: I‟m getting kind of caught up, you said that it isn‟t multiplication, but it‟s…there‟s not 

 really an operation going on there, it‟s just like …where you would put the non-negative 

 integers. 

 N: Yeah, I mean that‟s just sort of atypical, so that‟s sort of tough. 

 R: Yeah, but it seems like it‟s going to work, though. 

 N: Yeah, because you‟ve tried three or four cases and it‟s worked so far? 

 R: Yeah….So I don‟t think you‟d be able to find a counter-example… 
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From there, Robert tried a few ways to re-characterize the problem (see the right side of Figure 

113), but he kept coming back to the crux of the problem: 

 R: So I‟m getting caught up on the digit places.  I think that seems like it‟s the… 

 N: That‟s sort of the main sticking point, or… 

 R: I mean…I just know how to define that, you know?  How I could use that to my 

 advantage.   

 

Figure 113: Robert's work on Question 2a (1 of 2) 

 At this point, Robert began using a generalized form of the subtraction algorithm he had 

learned as a child.  Eventually, he would conclude that ab – ba would result in a – 1 – b in the 

10s position and b +10 – a in the 1s place.  This can be seen in the bottom right of the figure 
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above.  Later, while reflecting on the work he had done on the problem, Robert said the idea 

“just came from…if I wouldn‟t had done a large…I think if I wouldn‟t have done 52 – 25, I 

might not have written it like that.”  Initially, he had a hard time coming to grips with what that 

subtraction would look like in general, writing a – b and b – a in the 10s and 1s place 

respectively.  “I don‟t know, I‟ll have to…like because if the a is bigger, that seems kind of 

tricky.”  He then thought about it and realized that when one “borrows” 1 from the 10s place 10 

is added to the 1s position.  He then checked his work with the example 10 – 01.   

 Next, he revisited his earlier guess, which had come to represent the case when a > b.  In 

this case, he tried 02 – 20 and saw that it did not yield what he thought it would, -18.   

 

Figure 114: Robert's work on Question 2a (2 of 2) 
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Robert revised that guess to -|b – 1 – a|a + 10 – b|, which he found to work.   

 R: Ok, so that, I think that helps me understand that…at least I kind of broke down what 

 that was.   

 N: Ok, what the subtraction looks like in general terms? 

 R: I‟ve never actually done that, that‟s kind of weird.  You know, you always just put a 

 1 there and move it over.  It‟s kind of weird to … 

 N: Realize that taking 1 from the 10s spot is really adding 10 to the 1s spot? 

 R: Right, yeah.  Ok, so I have 9, so…do multiples always add up to a 9?  They have to 

 add up, right? 

 

 Robert and I talked about the division rule for 9, which says that if the digits of a number 

add up to a multiple of 9, then the number itself is a multiple of 9.  He mentioned that he thought 

all the 2 digit multiples of 9 had digits that added up to 9.  This was based on a multiplication 

trick he learned growing up: 

 R: When I was in elementary school, when I learned how to multiply nines, it was always 

 when you had, you subtract one from this [the multiplier] and then this would have to add 

 up to nine.   

 N: Ok, so that was a multiplication rule. 

 R: Yeah, so 5 times 9, 5 – 1 is 4 and you have to add 5 to get nine.   

 

Robert began to check the two digit multiples of 9, on the left side of Figure 114.  He became 

confident that his idea was correct, with the exceptions of 0 and 99, which were easy to check.   
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 Next, Robert turned back to his generalized subtraction expressions to see how 

everything fit together.  “Well, it‟s always…let‟s see how that…When you add those guys you 

always get 9 (because the a and b cancel out in both cases), which is a multiple of 9, I mean I 

don‟t know if I could use that.”  I told Robert that he could take that rule for granted and he 

recapped what he had done: 

 R: So this statement, take two digit number, flip the digits, take the difference.  The 

 resulting two digits will add to nine. 

 N: Yeah.  That‟s proven.   

 R: And so by that rule, it will be a multiple of 9.  

 

 Here, Robert provided a semantic proof.  He used examples to get a feel for the problem 

and then turned that insight in to a general proof.  During the reflection, Robert mentioned this 

deliberate move from example to proof: “Well, I mean, I felt like you had to use this a and the b, 

you had to get it somehow involved, in general.  I think that‟s the tricky part, going from your 

examples to the general.”   

 Robert‟s proof scheme here is axiomatic.  He understands his proof depends on the 

divisibility rule that I mentioned.  He even cites the rule when summing his proof up.  Before I 

told him that he was free to assume the rule, he said: “But I don‟t know if you can use that…it 

seems like you‟d have to prove that too.”  Here, Robert is displaying an acknowledgement of the 

fact that his proof is only as valid as its parts.   

 One could make the case that Robert is also displaying an authoritarian proof scheme 

because he was willing to take my word regarding the rule‟s validity.  I am not certain this is all 

there was to it.  He checked a number of the 2 digit multiples on the page and more in his 
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calculator.  I am not sure whether or not he checked them all.  Granted, even if he checked them 

all, he actually checked only the converse of the divisibility rule.  It is also possible that he had 

some doubt regarding the rule and that is why he added “by that rule” when summarizing his 

proof.  By adding that provision, he may have been trying to transfer responsibility to me for that 

portion of his argument.  If this is the case, then he did not simply take my word for it and thus 

does not have the authoritarian proof scheme.  In any event, I am not certain of such a scheme 

here and will label as axiomatic only. 

 

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6.  

 Because this question was on the sheet that Robert saw during the second interview, he 

had worked on it before the third interview but did not bring any of his previous work.  When he 

began working on the problem in the interview, he started with examples.  It did not take him 

long, though, to remember the line of reasoning he had been working on before.  Between 

interviews, he noticed that the when n3 – n is factored, it is the product of three consecutive 

integers.  It also reminded him of something he was going to ask when he came back: 

 R: I was going to ask if there was some rule…that‟s what I was going to ask 

 about…because if n is 3, then you‟re going to have 4 and 2.    If it was a prime number 

 like 5 it‟s going to be 6 and 4.  So it has a 6 right there…If you choose an even, an even 

 number is a multiple of two and it‟s, an even number is going to be either… 

 (Robert writes 1 2 3 4 5 6 7 8 9, circles 3, 5, 7, see Figure 115) 
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 R: …the number in front of it is either going to be prime, if the number in front of it is 

 prime, then the number after it is going to be divisible by three.  I think, that‟s what it 

 was…if a number is odd and not prime, then it should be divisible by three, right? 

 N: No, well, 35, right?  It‟s composite. 

 R: Ok, never mind.  So that was the thing I was going to ask about.  That makes sense; I 

 should have gone out further. 

 (writes n = 8 case, 8(7)(9) and (2*4)(7)(3*3), circles the 2 and a 3) 

 R: At first I thought there would be different cases, because this is like you‟re looking at 

 these three consecutive numbers being multiplied. 

 

Figure 115: Robert's work on Question 2b (1 of 2) 
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Robert had been working with the assumption that an odd number was either odd or a multiple of 

3.   

 His idea was not without merit, though, and he wrote out the numbers at the bottom of 

the figure, looking at three numbers at a time and putting boxes around the numbers that 

provided the necessary factors of 2 and 3.  “Well, this…there‟s a pattern because the 2s go every 

2 and the 3s go every 3.”  Robert was eventually able to verbalize what this pattern meant to the 

problem: 

 R: So that‟s how you get your 2 and 3.  But I was just trying to break it down in here.  

 Because I did want to see what happens when you have different cases.  I drew this line 

 to look at if there was a weird spot where… 

 N: Where you could find three consecutive integers that wouldn‟t work. 

 R: Yeah. 

 N: Try to fit a group of 3 between a multiple of 3 and a multiple of 2. 

 R:  And then I just saw the 3s because I wanted to, I was curious about the 3s…it‟s weird 

 because when you think about numbers you think about them individually, when you‟re 

 thinking about „are they divisible by 3‟ but then to write them out and actually see – 3 is 

 divisible by 3 then you go 3 spots, 6, 9, they‟re going every 3 spots which makes sense 

 because you‟re adding.  It‟s like you add 3 things, then you add 3 more things. 

 

Robert had verified that a multiple of 3 would indeed show up in every group of 3 consecutive 

integers.  Applying the same reasoning to 2 would not be difficult.  Turning this into a proof was 

something that Robert did not think would be so easy: “Because it feels like the proof would 
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be…it seems like this would be hard to write this out…”  I asked him to try and bring it to the 

next interview.  The proof he brought back is in Figure 116.   

 

Figure 116: Robert's work on Question 2b (2 of 2) 

 Robert‟s proof attempt is semantic.  By looking at examples, he comes to understand the 

factored form of numbers that can be written as n
3
 – n.  He then applies his understanding of the 

integers to conclude that of the numbers n, n – 1 and n + 1 one had to be a multiple of 2 and one 

had to be a multiple of 3 (or one was both).  This understanding was eventually turned into a 

proof.   
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 Robert‟s proof scheme here is transformational.  He factors n
3
 – n and considers what 

happens to the expression (n)(n – 1)(n + 1) for different n values.  He sees that even though n 

may change, the fact that this product has a factor of 2 and a factor of 3 does not.  Because he is 

purposefully manipulating a mathematical object and it results in a proof, Robert is displaying a 

transformational proof scheme. 

 

Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

n ℕ: 

2
1

2

1

3

1

2

1

1

1 n
n

 
 

 Robert started the problem by looking at the inequality for a couple of different n values.  

He looked at n = 2 “to make sure the inequality held.”  He wrote out the case of n = 3 for a 

different reason, though: “And then I just wrote out n = 3, just to see what this side would look 

like.”  (See Figure 117.)  This was important because, unlike many participants in the study, 

Robert did not spend much time trying to decide what happens in the inductive step.  While most 

students either thought that the left hand gained a single term only, 
12

1
n

, or had its last term 

change to 
12

1
n

, Robert knew that all the terms between 
2

1
 and 

12

1
n

 were added as well.   

 After this preliminary work, Robert began to set up the induction argument.  I asked 

about his choice of base case and he said “Well, 1, 1 is equal…Well it holds, so I wanted to use 

that.”  After talking about his choice of base case, Robert said: 
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 R: And so after, that, I had set this up - didn‟t really know where to with the induction, so 

 I didn‟t really keep going with the base case, assume true, and prove that, because I 

 hadn‟t really had an idea of how I would do it yet, so I thought I should try I could, like, 

 break it apart and put it back together and stuff. 

 

Figure 117: Robert's work on Question 3 (1 of 5) 

Although Robert started to put the argument together formally, he wanted to make sure he knew 

how he was going to do it.   
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 For the remainder of the time he spent working, Robert worked with the same idea: “And 

then I wrote the other side out…the n + 1 case too, and then I sort of started to see that there‟s 

this … 1 and the 1/2, both happen on both sides…”  His focus became comparing 

12

1

4

1

3

1



n

  to 
2

n
.  He noticed that when n = 3, the right hand side was 

2

3

2

3
  and this 

made him consider writing the right hand side as the sum of fractions.  This did not lead to much 

insight, though, and Robert started fresh on a new sheet, Figure 118. 

 

Figure 118: Robert's work on Question 3 (2 of 5) 

The work on this sheet was similar to his previous work.  He tried using summation notation, but 

it did not help much either: :Yeah, and then I thought maybe it would work out nicer with this 

sort of thing, but it just got me back to …basically, it‟s summation notation, but…same thing.”  
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Next, he thought that maybe some insight could be gained by seeing how many terms were 

necessary for the inequality to hold, at least in the case of n = 2: “Yeah, and I started subtracting, 

so this is like, from up to here it doesn‟t work, but it works if you go up to 1/8, but it also works 

up to 1/7.”  With that, Robert looked at his inequality one last time and then it was time to end 

the interview.  I asked him to look at the problem more between interviews and he said he would. 

 

Figure 119: Robert's work on Question 3 (3 of 5) 

 The work Robert came back with is in Figure 119.  He started over with the induction 

argument, setting it up formally.  At first, he just added the terms he knew would come from 

moving to the inductive step.  He quickly abandoned that, however, and thought about how he 

could explicitly use the induction hypothesis.  This made him realize that the inequality in the 
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box was what he had to do to finish the proof.  Robert said that the idea to make use of the 

induction hypothesis came from looking in a different book: 

 R: Yeah.  I actually was trying to, like, actually, because I was in the library and just, 

 like, grabbed a math proof book and I was like “Oh, I should look up induction just real 

 quick,” just to make sure I was, like just for, whatever. 

 

This insight had gotten him to the heart of the problem.   

 The rest of the interview, Robert worked on finishing this part.  The remainder of his 

work is in the following figure. 
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Figure 120: Robert's work on Question 3 (4 of 5) 

 Robert first went back to looking at his new inequality for a few examples, n = 1 and n = 

2.  He did not gain the insight needed to finish the problem right away, but it can be seen in the n 

= 2 case where he replaces each term in the sum with 1/8 to compare the left hand side to 1/2.  

Part of what he did in the previous interview showed up here as well.  In addition to getting a 

common denominator in that case, he also thought that perhaps only the first 2 terms were 

needed on the left to make the inequality true.  This led to the algebra seen in the left hand side 

of Figure 120.  When he realized this would not work, he moved to the bottom right corner 

where he would eventually finish the problem. 
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 Robert returned to the expanded out form of the inequality he wanted.  He began 

manipulating the inequality by multiplying each side by 2, clearing the right hand denominator.  

For whatever reason, it was not until this point that Robert noticed that every numerator on the 

left was the same.   

 R: Yeah, and I don‟t, it must have been because I was, like, missing it up here and I was 

 thinking about, these are different and by making them the same, then I thought “Oh 

 well…” 

 N: Right, and for some reason the fact that they all were the same escaped you when they 

 happened to be 1, but when they were 2… 

 R: Yeah, and I don‟t know why. 

 

At that point, Robert thought that it would be nice if the denominators were all the same as well.  

He used ease of reduction to decide which denominator to use: “I think it was because I thought 

that, well, the 2 (2
n+1

), this is the easiest one that would cancel or something.”  After making this 

change and performing the cancellation, Robert realized that he had made the original left hand 

side smaller by what he had done.  At this point, I gave him a hint because he was very close and 

we where running out of time: 

 N: So you have, so…I kind of want to get to the reflection so I know we have enough 

 time, and you‟re so close.  So you have 2
n
 of these things, right?   

 R; Yeah, over 2
n+1

, so then greater than or equal to 1/2?   
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I did not feel too much guilt in pointing this out because it was something that Robert 

understood: “Oh yeah, well, so like the number of 1‟s…is 2
n
 because you have 2

1
 is 2 is 2 terms.  

2
2
 is 4 terms, so that‟s how…” 

 From there, Robert was able to see how the pieces would go back together and complete 

the proof.  I asked him to bring a written up version back next time and it can be seen in the 

figure. 

 

Figure 121: Robert's work on Question 3 (5 of 5) 

 Robert‟s proof is process procedural proof.  He follows a few broad goals in completing 

the proof.  If he had had all the steps laid out explicitly for him, this would have constituted an 

algorithmic proof.  However, this was not the case; completing the inductive step was especially 

difficult and required a method he had come up with on his own. 

 Robert‟s proof scheme here is transformational.  Students who understand induction 

display the interiorized transformational proof scheme (Harel & Sowder, 1998).  The fact that 
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Robert had used a base case other than 1 in the first interview made me question whether or not 

he understood the importance of the base case.  However, during that reflection, he had 

mentioned considering it but not writing it down.  Also, the 2 subsequent times Robert began his 

induction argument, he did use n = 1 as the base case.  For these reasons, I do not see enough 

evidence to call his proof scheme internalized here.  Instead, I think the mistake made in the first 

interview was an oversight. 

 

Question 4 

Examine the following proof by contradiction:  

Prove 01   

Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 

Prove 01   

Suppose  01  , then 01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 

 Robert originally saw this question on his MATH 305 midterm the semester before the 

study began.  Robert‟s response to the question on the exam is in Figure 4.51.13. 
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Figure 122: Robert's previous work on Question 4 

 Initially Robert says, basically, that the proof is not working because it is not working (it 

gives contradictory conclusions).  He goes on to say that “perhaps” the comparison can not be 

made to begin with but never concludes making this comparison is the reason for the problem.  It 

is unclear how he intended his “Side Note” to apply to the problem, but he must not view the 

mistake as too detrimental because earlier he says that there “are no errors in the logic of either 

proof.”   
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 After reading through the question in the interview, Robert tried to think back to what he 

had done on the midterm: “So, I‟m trying to remember what I did, but I think I did something 

with, just, imaginary numbers… Yeah, and then I think I might have said something about 

comparing an imaginary and a real, 0.”  He remembered the conclusion he eventually came to 

on the midterm, but vaguely.   

 He was not too convinced by it, though, because he looked back at the question and 

found what he thought was an algebra mistake.  “But what I just saw was, this part, it‟s like 

you‟re multiplying both sides by the square root of -1, right?  So the sign should have flipped, I 

don‟t know if that‟s…”  He was referring to the second sub-proof.  I reminded him that we were 

assuming that 1 was negative, so – 1  would then be positive, making the step in question 

correct.   

 After that, Robert went back to his previous argument: “Well, I think it was something 

like it‟s an imaginary number, like, it‟s not on the same, it‟s not on the real line, it‟s sort of off.”  

He even took things a step farther.  He began to see the question as a proof for what he was 

saying: “If you‟re not able to compare them, then it seems like this would happen, that you‟d 

have, sort of, that‟s why you can‟t compare a real number to an imaginary because this sort of 

thing happens.”  He expounded on this idea later in the interview: 

 R: (I)t‟s sort of like assuming that, well, you‟re not really assuming anything because 

 you‟re trying to prove it, but…it seems like these are sub-cases of “Prove that you can‟t 

 compare an imaginary to zero” or something.   

 N: So, overall, there‟s really 2 proofs by contradiction here.   

 R: Yeah 
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 N: So the combination of those two kind of form a contradiction and that is contradicting 

 the assumption that you can compare i to 0 in the first place? 

 R: Yeah, that you can compare an imaginary with 0. 

 

 Robert did not provide a proof in this interview, but we can find evidence of his proof 

scheme here.  Robert definitely shows an analytic proof scheme here.  There is no hint of either 

an external conviction or an empirical proof scheme.  Instead, he focused on the logical 

deductions in the 2 sub-proofs.  There is also no evidence for an axiomatic proof scheme here.  

At no point does Robert mention any other previous results or a dependence on starting 

assumptions during the discussion.  In fact, he mentions at one point the lack of starting 

assumptions: “you‟re not really assuming anything because you‟re trying to prove it.”  Instead, 

he views the ability to compare an imaginary number to 0 as up in the air to begin with.  Then, 

after a careful consideration of the steps in the sub-proofs, he concludes making the assumption 

that the comparison can be made is wrong. 

 R: But the contradictions come from the other one, you know, so it‟s…so that‟s, once you 

 check everything you go back and you don‟t (find an error) and it has to be the 

 comparison, you can‟t actually, you can‟t do the comparison. 

 

 Robert‟s proof scheme is transformational here because he examined the steps that follow 

from assuming i and 0 can be compared.  He then looked over the steps carefully (because he 

saw these manipulations as important) and when he found them to be sound, he knew the 

comparison was the trouble from the beginning. 
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Question 5 

 Like Question 4, Question 5 did not ask Robert to construct a proof.  Instead, the next 

interview was used as a debriefing session because it was the last interview of the first semester 

and marked the half way point of the study.  Due to the nature of the interview, there will be no 

proof attempt to classify.  Instead, the interview was used to look for clues about Robert‟s proof 

scheme and to reinforce observations made previously in the study.   

 One of the recurring things observed in Robert‟s work is that he did a number of semantic 

proofs.  Robert‟s approach to proof involves first understanding the problem and then moving on 

to the proof.  This is approach also showed up in the interview.  When I asked what he sees as 

necessary to complete a proof, Robert said:  

 R: It‟s almost, you have to, like, understand it…I guess, too, like, sometimes in the 

 inductive ones…you get down to this formula, and you can kind of plug them in and it 

 sort of works.  Then your only job is to, like, it‟s sort of like works, you have the feeling 

 that it works, but sort of need that actual, proper work laid out so it‟s sort of formal. 

 

 He also mentioned that he feels more comfortable with proof.  Over the course of the 

semester, he got more secure in exploring with a problem: “Because I think I felt like I needed to 

know what was actually going to happen before but now, it‟s just, you‟re not always going to 

know you just have to sort of…you know, get going…”  I feel also reflects his preference for 

semantic proofs.  He seems confident that even if he does not know how to approach a problem 

he can play around with it until he does.   

 Another thing Robert mentioned that mirrors his behavior in the interviews came out 

when I asked him what helps with completing a proof but was not necessary: “If you get stuck, 
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just to like, walk away, come back…”  This was especially evident with Question 3, where 

Robert restarted the problem a number of times. 

 Robert also provides some evidence for the proof schemes observed during the study.  

While discussing a proof he saw in his Real Analysis class that took two class periods to finish, 

he said: 

 R: You go through this big, long proof and sometimes it‟s like you have to prove this 

 thing on the side and then you can go back. Those proofs are… 

 N: Yeah, they‟re tough. 

 R: But once you have that, you get to use the definition (result) for another proof. 

 

Robert was referring to the axiomatic nature of mathematics where previous results can be used 

to prove subsequent ones.   

 Robert also provided evidence for the transformational proof scheme that showed up in 

earlier interviews.  When discussing the proofs he sees in Real Analysis, Robert said: 

 R: Yeah, like that, kind of came out of a proof, over all it sort of, it kind of…he starts 

 proving something and he gets to the end, and “Ok, it makes sense now,” but how he got 

 there is a little bit… 

 

He is referring to completing steps within a proof that do not have apparent motivation.  Robert 

sees that sometimes in order to prove something, sometimes one needs to be purposeful and 

anticipatory while working towards an end.  This view of proof is a characteristic of a 

transformational proof scheme. 
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Question 6 

Prove that n ℕ,  3nn   (mod 6).  

 Robert and I began this problem by discussing modular arithmetic.  It had been covered 

in MATH 305 briefly as an example of a way to partition the integers, but most students had not 

seen it since and were unfamiliar with it.  I had mentioned that 14 was congruent to 32 (mod 6) 

as an example and accidentally gave Robert more than I had intended when discussing how to 

reduce numbers: 

 R: 2 mod 6 would be 2 because that‟s… 

 N: Right 

 R: 6 would be 0, no…yeah…right? 

 N: Yeah, 6 equals 6 times 1 + 0. 

 R: You may have given me a clue there. 

 N: Did I? 

 R: Maybe 

 

I inadvertently mentioned applying the division algorithm, something a few students were able to 

use successfully for this problem.  Robert did not use it right away though.  Instead, he thought 

for a while, before saying: “I can‟t figure out this mod thing, that‟s the problem.  Because, like, 

you can‟t really do anything algebraic until you figure out how this is working, like pulling it 

apart.”  Eventually, he did try to adapt what I had said to the problem, leading to the equation 

3)(6 nnr   at the top of the figure. 
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Figure 123: Robert's work on Question 6 (1 of 3) 

 After he has completed most of the scratch work in the figure (except the 0 – 5 list on the 

left towards the bottom), Robert seemed stuck. 

 R: I‟m not really seeing much. 

 N: Ok.  Let me see what you‟ve got so far. 
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 R: Well, so I started looking at, so like…7 mod 6 would be 1, 6 goes in once, you add 

 one and you have 7.  So then I was trying to use…sort of the same thing to…yeah.  

 Because 6 times something plus (referring to 6(r) + n = n
3
)…if this is true, right?  Then 

 this remainder would be n, so I‟m just trying to, there should be something that I should 

 get to, right? 

 N: Ok, yeah, one problem you might have is that n is too big to be a remainder.  But you 

 could sort of handle that elsewhere.  You know, n might be 10.   

 R: Oh yeah 

 

After some more discussion about modular arithmetic, Robert realized that the remainders were 

limited to 0 – 5.  Still stuck, Robert started over with the problem on a new sheet (Figure 124) 

but the interview ended shortly thereafter.  He did make some progress, though, finally 

successfully applying the division algorithm to the problem.   

 

Figure 124: Robert's work on Question 6 (2 of 3) 

I asked him to continue to work on the problem between then and the next interview.  He said 

that he was not sure if he would continue with the equation he had just came up with (6m + r = n 

when n (mod 6) r .  He also that mentioned the structure of the problem reminded him of 

induction problems so he might try that as well.   
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 Between interviews, Robert did not get too far with the problem: “I felt like I kind of got 

stuck on this one I just…I don‟t know.  I just, yeah.  I got stuck and I just kind of…quit working 

on it.”  Since he did not really know where to go, we talked through a couple solutions together.  

I described roughly what it would look like to cube 6m + r = n and how that could be reduced to 

finish the problem.  I also mentioned induction and that was the solution we ended up talking 

through.  The work Robert did as we talked through the proof is in Figure 125. 

 

Figure 125: Robert's work on Question 6 (3 of 3) 

Part of the trouble Robert was having had to do with being unfamiliar with the rules of modular 

arithmetic: “So that‟s what I…I was thinking…can you just start replacing things?  I‟m just, I 

don‟t know…this whole thing is kind of like playing a game with what you don‟t really know the 

rules to, you know?”   

 Despite needing help to get there, Robert was able to finish the problem off himself:  

 N: Well, can I ask you think a second: What does it take for a number to be congruent to 

 0 mod 6? 
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 R: It needs to be…it has to be a multiple of 6, right? 

 N: Right, ok. 

 R; So you‟re trying to say that 3n(n + 1) is a multiple of 6….So this looks like it should 

 be. 

 N: Ok, why is that? 

 R: Well…because one of these is either even or odd.  It doesn‟t matter, this could be even 

 and this one‟s odd, so you could have an even number times 3 which is going to be…so 

 an even times an odd times 3 is always a multiple of 6.   

 

 Robert did not complete a proof on his own, so I will be classifying his attempt only.  As 

with his other proof attempts that did not involve induction, this is a semantic proof attempt.  The 

scratch work in Figure 123 is done with the intention of gaining an understanding of the 

problem.  When I asked Robert what he saw as the major obstacle in the proof, he said: 

 R: Just trying to understand, like, how things are working in this mod 6 and everything. 

 N: So, I mean, it doesn‟t seem like you explicitly made a proof attempt here.  You‟re kind 

 of trying to figure out how this mod stuff works while in parallel sort of trying to get a 

 feel for what the problem is really saying, is that true? 

 R: Yeah 

 N: And then once you have that understanding of how the problem‟s working, what it‟s 

 saying, then you‟ll probably go into the verification of this, the proof of it? 

 R: Yeah.  Yeah, but I can‟t really do anything until I…because I feel like I‟m still trying 

 to understand… 
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The idea of getting an intuitive understanding into the problem first and then turning it into a 

proof is typical of a semantic proof attempt. 

 Robert‟s proof scheme here is transformational for a couple reasons.  One, he becomes 

convinced of the statement via a proof by induction.  This alone is enough to classify Robert‟s as 

a transformational proof scheme.  Also, during the first interview in which he worked on the 

problem, Robert worked toward getting an expression he could “pull apart.”  In other words, he 

was looking for a way to manipulate the objects at hand in a more familiar way.  This is also 

typical of a transformational proof scheme. 

 

Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 

 Robert began this problem by writing out a general set with n elements.  After a brief 

discussion as to why the empty set is a subset, Robert looked at the elements of his set and 

started mentally constructing different subsets. 

 R: I think it‟s sort of like the null set, so each individual one in a subset, this one (a1) 

 each, you know, paired with each one. 

 N: Ok 

 R: And paired with, sort of like 2, a combination of 2 of everything.   

 N: Ok 

 R; Just, so you have a subset of this set again, right?  Isn‟t that a subset? 

 N: Yep, every subset is a subset of itself.   
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 R: Ah man, I should have paid attention in that probability and statistics class.  Would 

 have helped a lot.  Maybe not, I don‟t know.  Because I‟m thinking there‟s going to be 

 the combinations of stuff, taking a count. 

  

The idea of using combinations came from his consideration of all the different ways to construct 

2 element subsets.  Once he had that, he was able to go to the formula for the number of subsets. 

 

Figure 126: Robert's work on Question 7 (1 of 2) 

 R: Ok…Prove that you are correct.   

 N: So you‟ve gotten to the point where you‟re happy with the formula you‟ve got there? 

 R: Well, ok, let‟s talk about that.  So you‟ve got your n total things, the first little way of 

 choosing 0 is just to not…not choose anything.  If you have 1, you choose 1 so that‟s 

 going to go through all of them and just pick 1 and put all those in a subset.  And nC2 is 
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 going to take all the different combinations of…is that going to cover it, though, it‟s 

 going to take the first one, the second one, third one, fourth one?   

 N: Yeah 

 R: Does that take it into account? 

 N: Yeah, you can put some faith in the choose function, that it‟s going to work, yeah. 

 R: But I‟m just trying to see…and it‟ll just go through and we‟ll say nCn, take all of them 

 and put it into a subset.   

 

 Robert seemed fairly sure he was correct, but he did not feel comfortable calling what he 

had done a proof.  To gauge his confidence level in the proof, I asked him what he would do in if 

this had been a homework assignment. 

 R: I mean, I guess if I was going to turn this into homework, I‟d sort of write some 

 comments that like…you know, this thing sort of adds up all the different ways that we 

 can choose from choosing nothing all the way up to choosing all the n things. 

  

 I told Robert that this uneasiness was something I wanted him to struggle with and then 

come back with a proof that he would turn in for homework.  The work he brought back is in 

Figure 127.  The proof is basically as he said it would be, the summation along with some 

commentary as to where it came from.  Even though he wrote it up, he still said he was 

uncomfortable with it:  
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Figure 127: Robert's work on Question 7 (2 of 2) 

Robert then talked a little bit about the consideration he had given to using induction or 

contradiction on the problem.  He had a hard time describing the issue he had with the other 

methods so I tried to help. 

 N: So let me sort of…so the problem you have with induction I want to re-visit that just a 

 little, so the problem that I would have with induction and you can tell me if that‟s what 

 you‟re trying to get at or not, is that you don‟t really have anything to shoot for exactly. 

 R: Yeah, because you don‟t know how many subsets there are. 

 

He expressed a similar discomfort with contradiction.   

 The proof Robert provided here is semantic.  As with most of his other work, Robert 

began by trying to understand what was going on with the problem.  

 N: Ok, so yeah, you read through this and the first thing you did was list out a set, a1 to 

 an.   
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 R: Yeah, just sort of to get a feel for what it was going to be. 

 

It did not take long and he did not have to look at examples, but Robert was able to turn his 

understanding of the way different subsets are formed (by choosing which elements are in them) 

in his eventual proof. 

 Robert potentially displays a couple proof schemes here.  One is transformational.  He 

considers what happens has you try to create different subsets and lets that guide him to a proof.  

The other proof scheme Robert seems to give evidence is a ritualistic external conviction 

scheme.  Normally, one holds this scheme when they hold the opinion “if it looks like a proof, 

then it is a proof.”  Here, Robert is uncomfortable with has proof possibly because it does not 

look enough like one.  I am not sure that is the case, though, because at least some of his 

consternation has to do with the fear that he has not accounted for some possibility.  For this 

reason, I will label his proof scheme as transformational only. 

 

Question 8 

Prove that the cube root of 2 is irrational using a proof by contradiction. 

 Like Question 4, this problem appeared on Robert‟s MATH 305 midterm.  His midterm 

response is in the figure. 

 

Figure 128: Robert's previous work on Question 8 
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Robert makes a few mistakes here.  One, he attempts to prove that 2 is irrational, not 3 2 .  

Second, although he claims that “2q
2
 is always positive” I think he means to say “even.”  This is 

a mistake a number of students made in the study.  The thinking goes that p and q can be any 

integers, odd or even.  Then once one deduces that p must even, it contradicts the assumption 

that it could have been odd.   

 During the interview, Robert began the problem properly: 

 R: So, assume that it‟s rational…Assume that it‟s rational and you can write it as p/q… 

 (working) 

 R: …lowest…reduced terms or however you say it.  It‟s not…like if you had 4/2, 

 that‟s…like this is the same as 2/1… 

 

Even though Robert did not have his notes to guide him as he would have during the midterm, he 

did remember to include the assumption that p/q was reduced completely.  Later, during the 

reflection, I asked him why he made that assumption right away: “Well, I sort of, I thought there 

was something about that that I needed because...”  He was not able to give a reason, but he 

agreed that it was an idea that “nagged” at him.   

 After making his starting assumptions, Robert did the algebra work on the left side of 

Figure 129. 
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Figure 129: Robert's work on Question 8 (1 of 2) 

After getting down to the end of his first portion of work (where q
3 

is labeled “int”), Robert 

thought that he had arrived at a contradiction, but he did not know why: 

 R: So doesn‟t this mean that this (arrow labeled contradiction – the word „even‟ isn‟t 

 added yet) is where you‟re going to get you contradiction?...Because if they were in 

 reduced terms, they wouldn‟t be a multiple of …So I think that it‟s that this is violating 

 the reduced terms thing. 

 N: Ok 
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 R: When you can write it like this (q
3
 = p

2
/2)…assume it‟s rational… 

 N: So how is that violating the reduced terms thing? 

 R: I‟ll have to figure that out. 

 

 After giving it some more thought, he tried the remaining rearrangements of the 

expressions he had and the cube that is labeled with side lengths p/q.  During the reflection, he 

said of the cube he drew: 

 R: I don‟t know, I thought it might help, because I was thinking maybe it was something 

 geometrical, that I was…but I don‟t know.  But yeah, that should be the volume of it, 

 right?  2 should be the volume of the cube? 

 N: Right 

 R: And this, the length should be those, but that…I was just trying something else, just 

 to… 

 N: Ok 

 R: …maybe to try to break my head away from this business.   

 N: Yeah 

 Because for some reason I‟m stuck on it.  I feel like there‟s something about that. 

   

He was referring to the assumption that p and q were relatively prime and its relationship to the 

fact that p
3
 was even. 

 Since we had come to the end of the interview and Robert had not finished the proof, I 

asked that he go back to his notes and look up the proof that 2 is irrational because that would 
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recreate the situation he was in while completing the midterm.  The work he brought back is in 

the figure below. 

 

Figure 130: Robert's work on Question 8 (2 of 2) 

Robert did look the other proof up in the book and got some help from it.   

 R: You get here, you know it‟s (p) even, but this is where I …like, somehow the q needed 

 to be even for it to violate the lowest terms…So this was, I mean, this was the little trick 

 that…That p could be written as a different thing.   

 

 The proof Robert provides here is an algorithmic proof.  He used the proof that 2 is 

irrational as a guide for how to complete this one.  He said “It sort of follows the same way as 

the square root.”  Although he was fairly close on his own and the steps were meaningful for 

him, he followed the other proof very closely – even to the point that he let it decide for him how 
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much detail to include.  When I asked about whether he considered the deduction that p was even 

based on p
3
 being even, Robert said: 

 R: But I did, I actually did think about that a little bit but I just thought that you didn‟t, 

 from the 2  proof it didn‟t seem like it said much… 

 N: Yeah 

 R: …about that. 

 N: Ok… So it‟s the fact that you‟re just sort of mimicking the other one, by and large, 

 that and they didn‟t do much to verify it so you didn‟t feel like to verify it? 

 R: Yeah, but at the same time, it did make, it did make sense, though. 

 N: Right, yeah, no, it does.  It definitely does.   

 R: I guess I didn‟t think of verifying it because in the other one it didn‟t really. 

 

 Robert‟s proof scheme here is transformational.  The fact that he follows the steps of 

another proof does not imply that he is displaying a ritualistic proof scheme.  This would be the 

case if he believes in his proof solely because it looks a different one.  In Robert‟s case, he 

believes it because he understands it.  That he knows to assume p and q are relatively prime even 

though he does not know what he is going to do with it is the sort of anticipatory step that is 

typical of transformational proof schemes.   

 

Question 9 

 During the next interview, I gave Robert a version of Cantor‟s Diagonalization argument 

and asked him to evaluate it.  Because he did not attempt a proof, there will not be one to 

classify.  However, I did use our discussion to look for evidence of Robert‟s proof scheme. 
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 I gave Robert the proof and he spent the first few minutes reading through it.  Eventually, 

he said “I‟ve read it quite a few times, and I know kind of what‟s going on.”  Although he had a 

general feel for what was going on, Robert went back and looked through the proof another time. 

 R: “every subset of a countable set is countable.” 

 N: Ok.  You don‟t like that? 

 R: No, I do. 

 N: Ok 

 R: I think. 

 N: Oh, you‟re just sort of going through the pieces of the argument again? 

 R: Yeah 

 N: Ok 

 R: So that seems…that seems, I‟m convinced of that.  It makes sense that‟s it‟s countable, 

 but… 

 N: … So I‟ve been asking people if they can identify these hidden lemmas and you just 

 did.  Like, it seems believable but… 

 R: It probably does need proof too. 

 

Robert had found a potential hole in the proof.  After this exchange I made the mistake of telling 

him that the result was a theorem in the textbook from MATH 305, leading him to say: “Well, if 

it‟s a…if it‟s a theorem then it has a proof somewhere…I feel like that‟s something that you 

could prove but…not necessarily…It depends on how…if you want to prove it or not, I guess.”   

 After that, Robert went back to looking at the rest of the proof.  It still took a little bit for 

him to become comfortable with the argument. 
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 R: Well, like, I mean, this is just sort of, this area (definition of βj on down) …This part is 

 “Now we have our list, now da da da,” this part gets a little…this is a trick where it‟s 

 either like…if this wrong, then it‟s something in here, or if it‟s right, because I feel like 

 all this stuff (from the beginning to end of the list) was fine… Well, I‟m just, this 

 defining B, defined by this part.  It‟s a little bit… 

 N: You‟re sort of not seeing how to define the β‟s? 

 R: Well… 

 N: Is that…? 

 R: No, it seems like it changes…and it‟s changing it from…if αjj equals to 2, you  change 

 it to 1, if it‟s not 2, you change it to a 2.  And I was trying to figure out if that was like a 

 legal…can you just do that? 

 N: Oh, I see.  Well, we‟re just trying to decide what those digits are in B, right?... So 

 what, I mean, what‟s making you think it might be illegal? 

 R: Well, that seems like a little key part to what‟s going on here…To get the 

 contradiction, you have to… 

 

Robert realized that he had to make sure he understood this construction because it was where 

the contradiction would come from to make the proof work.  After a little more discussion of 

how to define B, he said: 

 R: Yeah…So it‟s saying there should be…β of k up here…Ok, so βk is up here 

 somewhere, check it with αkk and this makes, ok, this makes sure that this isn‟t the 

 same as that.  Ok, alright, I‟m cool with it now.   

 N: Alright 
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 R: So that part looks good. … And so if αkk is 2, you change this to a 1.  So that makes, 

 it‟s, if it‟s not 2, you change it to 2.  Ok.   

 

 Now that Robert had a handle on how B was defined, he turned his attention to 

understanding the conclusion of the proof.   

 R: So you say this and then you get this result ( kkk   ) from saying that because of the 

 way you defined it.   

 N: Right 

 R: So, what I‟m trying to say, then, is this legal in the first place, you know? 

 N: I see.   

 R: But, I see how you get the contradiction. 

 

Robert was concerned about the ability to define B in the first place.  I then talked through a 

summary of the proof one more time and at that point, Robert seemed comfortable with it. 

 R: Yeah, I mean, but I‟m hesitant because there might be some little… 

 N: …some little thing you‟re not thinking of? 

 R: …trick. 

 N: Yeah 

 R: So, yeah…So in this one it looks like probably…I could probably stare at it for longer, 

 but… 

 

Robert does mention a little apprehension, but only in his ability to think of all possible “tricks” 

that might not be visible to him yet.  I say he seemed comfortable with the proof because from 
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that point in the interview on, Robert was able to explain the justification for the steps of the 

proof to me rather than the other way around. 

 Robert gives evidence for both types of analytic proof schemes here.  First, when 

discussing the statement that every subset of a countable set is countable, he seems confident of 

its validity because “it has a proof somewhere.”  He is not relying on the book‟s word but rather 

the existence of a proof.  Once he is comfortable with that statement, he freely applies it to the 

proof.  This is evidence of an axiomatic proof scheme because he is acknowledge this proof‟s 

reliance on previously justified facts. 

 Robert also gives evidence of a transformational proof scheme because he is able to 

identify actions take specifically for the purposes of the proof.   

 R: Ok, so this is sort of like where the actual…so, what I‟m thinking right now is that you 

 say this (pointing to the last paragraph)… it‟s like where the contradiction‟s going to 

 happen, but you say it and then the contradiction, like you get, I see where this is 

 happening right now, like, you get this ( kkk   ) from saying that (definition of B)… 

 

Robert‟s recognition of performing anticipatory operations for the purposes of a proof is typical 

of a transformational proof scheme. 

 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.   

Example, 6/9 < 5/7 < 7/9.  
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 Robert began this problem by looking at examples, both the one provided and ones he 

tried on his own.  When he looked at finding a rational number that fit the criteria between 0/4 

and 1/4, he realized that he could not.  This revealed, however, that he was not sure what that 

meant in relation to the problem overall. 

 R: So disprove…you pretty much just have to find a counter-example.  But you could 

 also…do sort of like a proof that disproves it, right?... 

 N: Well, yeah, so like, yeah, my question was to either prove it or disprove it, so like, 

 have you disproved it? 

 R; Well, I‟m not really sure if a counter-example means it‟s disproved…So would 

 disproving…disproving would be that there‟s no...like, it would be proving that you can‟t 

 do this, right? 

 N: Well, not necessarily. 

 R: Disproving means it either works for all of them…it works for all of them, it doesn‟t 

 work for any of them, or it works for some and it doesn‟t work some… 

 N: Well, right, yeah, but like this statement, the statement that‟s there, you know, 

 between every pair blah blah blah, that‟s a statement, right?   

 R: Yeah 

 N: It‟s either true or false.  Right? 

 R: So the counter-example says that it‟s false, then. 

 

 Since Robert had decided that the statement as written was false, I asked him if he could 

place some restrictions on it so that it could be proven true.  He then started working on the 
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general inequality 
m

n

m

n

m

n 1

1

0 



  in Figure 131.  During the reflection, I asked why he set the 

middle denominator to m – 1 when all that was required was that it be less than m: 

 R: Because that, I guess I was looking at these (the examples above). 

 N: Ok 

 R: Well they…it just has to be less than, right? 

 N: Yeah.  And m – 1 certainly works as less than. 

 R: But in this case (the given example)…it‟s less by 2…Well, the reason I did it was 

 because of this (1/4, 1/3, 2/4). 

 

Figure 131: Robert's work on Question 10 (1 of 3) 

He continued working on the general algebra on another page, see Figure 132.  There is some 

erasing (on both pages) because Robert had made an algebra mistake along the way that I 

pointed out to him.  I thought the interview time would be better spent having taken care of that 

quickly.   
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Figure 132: Robert's work on Question 10 (2 of 3) 

After bringing the inequality from the bottom of the previous page, Robert broke it into its right 

and left parts and worked on them individually, seeing what value n0 would need to take on if n = 

1.  He deduced that the inequality would hold if n0 also equaled 1.  He thought he had found a 

restriction that would allow him to say that it works: 

 R: I‟m thinking that it‟s going to be when it‟s…when n is greater than 1. 

 N: When n is greater than 1? 

 R; Or equal to 1, I suppose. 

  

He was discouraged, though, because he thought that he was now going to have to check all n 

values.   

 At that point, it was time to start the reflection.  We talked about the examples he went 

through and he noticed something new about them:  

 R: You know, and there‟s something about, that I just now thought of when we went back 

 you talked about this, that thing (6/9 in the given example) reduces quite a bit.   
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 N: Right 

 R: I mean, not…it doesn‟t reduce, but…But these (the counter-examples) don‟t reduce… 

 N: Right 

 R: So… 

 N: Do you think it maybe has to reduce in order to work?  Or not? 

 R: Yeah, I mean, I‟ll have to look at it.   

 

 After the reflection, I asked Robert to work on the problem between this interview and 

the next and he said he would.  The work that Robert brought back was not a proof.  Instead, he 

came up with a method that, for a given pair of rational numbers, would find another in between 

that fit the criteria if one exists.  Robert‟s method can be seen in Figure 133. 

 Robert said that a given pair of rational numbers would define the pair n and m.  Then the 

number between them, if it existed, could be written as 
yn

xm




where x could be any integer and y 

had to be strictly between 0 and n.  In his original work, Robert used j and k instead of x and y 

but made the change when he decided to graph the inequalities.  Then he worked the two parts of 

the inequality 
n

m

yn

xm

n

m







1
to get lines that he could turn into shaded regions. 
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Figure 133: Robert's work on Question 10 (3 of 3) 

 R: And then kind of graphed it, this is kind of a rough graph of it.  But, like with this 

 restriction, the y has to be greater, it has to be less than n, so like so up here at 9, right?  

 (he is trying his method with the given example, m = 7 and n = 9) So somewhere in this 

 region.  And then when you graph these 2, you get, well, these 2 lines and then what I 
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 was thinking is that there has to be like the integer, coordinates with just integers in 

 there…Yeah, and it works because the negative 2 and positive 2 is right in there.   

 N: Right 

 R: And also the other one is like -1 and 1.  So…so like what was the n, so like 6…6/8 

 works as well… That‟s how far I got, so… 

 

Notice the heavy dots drawn in the graph he tried.   

 I mentioned to Robert that I had not seen anything like this before and I thought it was 

clever.  To this, he responded “I mean, I‟m not sure.  What I did was I found this, but I haven‟t 

proved that it actually…this is more of like a method just to like find…”  After going through his 

method, we ended the discussion of the problem by me walking him through a proof of the 

problem, given the restrictions that neither 
n

m 1
 or 

n

m
 was an integer.   

 Because Robert did not complete a proof, I will classify his proof attempt only.  This is a 

syntactic proof attempt because most of Robert‟s work involves the manipulation of algebraic 

expressions.  By the time he came up with his graphical method at least, these manipulations 

where certainly meaningful to him.  However, his work is not at all based on an attempt to use an 

intuitive understanding of the problem into a proof.  Rather, he is simply “pushing symbols” 

hoping that something useful comes from it.   

 Although he does not necessarily know where he is going with his manipulations, Robert 

does deduce logically as he works.  Thus, his proof scheme is analytic.  However, his attempt did 

not rely on previous results at all and therefore can not be considered axiomatic.  Thus, Robert is 

displaying a transformational proof scheme here.  This is not surprising given his focus on 

algebraic manipulations. 
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Question 11 

 Question 11 was in the form of a debriefing session with Robert.  The interview in which 

we concluded Question 10 also concluded the study.  Like was the case with Question 5, there 

was no proof attempt here so there will be nothing to classify but the interview did highlight 

some of the observations made during the study.   

 The first question I asked Robert was how he thought the semester has gone proof-wise.  

He said: 

 R: Well, it‟s just proof in general, it‟s like…it‟s becoming a little more comfortable, not 

 that it‟s, like there‟s still little like gray areas here and there, but it‟s…I don‟t know.  I 

 feel like, I think that I‟ve gotten this year is I feel a little more, like there‟s a little more 

 room to move at times…Like at first you kind of come into proofs and you‟re sort of like 

 “Well I could just do like, just like algebra, the regular little steps I was used to.” But 

 now you feel, you know what I mean? 

 N: Yeah and… 

 R: That was sort of not the best way to say it, but… 

 N: No, I think I get it, like you, like there‟s sort of freedom in understanding it to know 

 what you‟re allowed to do, you‟re not sort of, you know, tied down by these rules that 

 you‟ve been told work and so you know they work and you don‟t want to deviate from 

 that because you know they work and you don‟t what else might.  But now you 

 understand the proofs at maybe a deeper level and so that grants you the freedom to be 

 just a little more…flexible I guess. 

 R: Yep 
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He felt like he had grown better able to adjust proofs and proof techniques to suit his needs and 

that made him more comfortable proving.   

 When I asked him what he thought led to this improvement, he thought it was a 

combination of repetition and variety: 

 R: Probably just more exposure to proofs.  You know, just seeing more…A well balanced 

 diet of proofs.   

 N: Do you think that‟s more important than just sheer number?  Of course if you just 

 have a sheer number, eventually you‟ll have a variety, but… 

  R: I think, like, I think in the beginning, like learning induction you need like… 

 N: Set practice? 

 R: Yeah, you need like a few of them to get that to, those other things…but you know, at 

 the same time it‟s sort of, yeah you need the repetition for those, just the methods… 

 

Robert is referring to the process by which an internalized transformational proof scheme 

becomes an interiorized one.  This also matches Weber‟s assertion that students can learn 

common proof techniques by viewing them as “mechanical procedures” (2003, p. 395).  This 

also matches the number of times Robert displayed a transformational proof scheme through out 

the course of the study.   

 Robert also briefly alluded to the other proof scheme he showed during the study: 

axiomatic.  When describing the nature of the proofs he saw in one of his classes, he said they 

were “straight forward type proofs…Or like, sort of like definition heavy proofs, there‟s not 

really like „by the…whatever‟.”  He is contrasting direct proofs to those that rely on previous 

results.  By doing so, he acknowledges the axiomatic nature of mathematics. 
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 Robert also highlighted his approach to proving: to gain an understanding before trying to 

complete the proof.  I asked him if he had changed anything in the way he goes about proving 

and he said: 

 R: No, I guess, the only thing is, that‟s sort of the thing, you have to try to, like, yeah, I 

 don‟t come into every problem saying „Gotta do induction.‟ 

 N: Right 

 R: Like, I try to like, try to kind of respond to the problem in a way…I feel like whenever 

 I get a problem I kind of have to sort of check it, like just with the example or whatever. 

 N: Yeah 

 R; Just do an example first then start kind of tinkering with how you can move things 

 around…if that doesn‟t work then just sort of…add something in or, yeah. 

 N: Ok 

 R: Just start playing around. 

 N: Ok, so that, that kind of leads in pretty decently with number 5 here, “what role do 

 you see examples playing in proof?”  So it sounds like you try an example, or it‟s one of 

 the first things you look to do is an example at least. 

 R: Just like a warm up lap or something, you know.  It‟s just good to, just kind of get a 

 feel for what‟s actually going on in the problem.   

 N: Right 

 R: Because sometimes when you just stare at the algebraic expression with numbers, with 

 letters in there, it‟s like it kind of doesn‟t sink in exactly.  
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This approach was also evident when I asked Robert what was helpful and/or necessary when 

completing a proof: 

 R: What‟s helpful is like anything to sort of, well, understand what the problem‟s 

 asking… Well, just having the understanding of the methods to solve it…But I think like 

 doing like the…like rough work and you have to do, just feeling comfortable with just 

 doing this rough scratch work and then sort of refining that. 

 N: Ok 

 R: Because if you‟re trying to do, if you‟re trying to start and do like this formal proof 

 right off the bat... 

 N: Yeah 

 R: Well for me anyway, I feel like I would just sit there and stare at it…Well, to complete 

 it you kind of have to do that formal and that, I don‟t know. 

 

This matches nicely with the fact that of Robert‟s 8 proof attempts, 5 of them were semantic. 

 

Robert’s progression 

 Below is a chart of the types of proofs Robert produced over the course of the study and 

the proof schemes he displayed. 

 

 

 

 

 



413 

 

Question Type of proof Proof scheme 

1 Semantic Transformational 

2a Semantic Axiomatic 

2b Semantic Transformational 

3 Process Transformational 

4 N\A Transformational 

5 N\A Transformational, Axiomatic 

6 Semantic (Attempt) Transformational 

7 Semantic Transformational 

8 Algorithm Transformational 

9 N\A Transformational, Axiomatic 

10 Syntactic (Attempt) Transformational 

11 N\A Transformational, Axiomatic 

Table 7: Summary of Robert's work 

 As can be seen in the chart, Robert was fairly successful in his attempts.  His proof 

schemes were mostly transformational but always analytic; Robert maintained a deductive view 

of proof throughout the study.  Also, from the beginning of the study Robert displayed a good 

approach to proof.  He would explore the problems he was given hoping to find some 

understanding that he could then turn into a proof.  Also, he did not give up when he felt like he 

was stuck on a proof, instead he frequently started problems over without being discouraged.   

 As was the case with James, Robert did not show much progress.  Also like James, I 

believe that Robert has the formal view of proof that all students of mathematics would ideally 

have.  Also, his tendency to develop semantic proofs and his persistence with problems he finds 

difficult is something most would hope for from their students.  
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4.8 Michael 

 This section looks at Michael‟s proof attempts and the progress he made over the course 

of the study.  Michael major in computer science and so only took two mathematics classes 

during the study.  During the first semester, he took Euclidean and Non-Euclidean Geometry and 

Probability and Statistics.    

 

Michael’s proof attempts 

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 Michael began this problem by working on the white board, but eventually decided that 

he liked working on paper better and copied everything he did from the board to the paper in 

Figure 134. Michael started the problem by drawing a rectangle and labeling the sides as m and 

n.   

 Michael: Well, we want to find integers for m and n such that when the perimeter is 

 found and the area is computed they‟re both the same.  Is that…? 

 Nick: Yeah 

 M: It simpler to write it as an equation so, 2m + 2n = the area, which is equal to m times 

 n. 

 

After that, Michael begins to rearrange the equation into a form more useful to him (this work 

was done on the white board).  Initially, he did not like the manipulations he did and so I helped 

him isolate the variable m, following the steps in the figure.   
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 Once Michael had m isolated, I asked him what he planned to do with the equation. 

 

Figure 134: Michael's work on Question 1 

 M: If I want to, I could just graph it, probably. 

 N: Ok, and what are you graphing? 

 M: I‟m going to graph…I‟m going to convert m to y and n to x…I‟ll make life easy, I‟ll 

 just look right here. 

 

Michael was referring to using the table feature on his graphing calculator.  After discussing the 

fact that non-integers, zero and negatives would not work for this problem, Michael began 

looking at his table again and said: “Yeah, I‟m just going to pull up what I got here and … so the 

values I got here so far are 6 and 3, 4 and 4 and…where was it here…3 and 6.”   
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 I then reminded Michael that the second part of the problem asks him to prove that he 

had found all such rectangles.   

 M: Well, they‟re related to…can you give me a hint? 

 N: Sure, I would sort of examine the graph.  Because, um, … 

 M: Because the, what do you call them, the limits  

 N: Yeah, so it kind of relates to  

 M: What do you call those things? 

 N: Asymptotes? 

 M: Yeah the asymptotes.  

 

Michael identified y = 2 and x = 2 as the vertical and horizontal asymptotes, but he did not know 

how they were useful to the problem initially.  Michael seemed stuck again, and so I reminded 

him of the criteria of the points we were looking for: 

 N: And essentially we‟re looking for what kind of coordinate pairs? They have to show 

 up on that line, A, and what else?  What other criteria do they need to have?   

 M: And they‟re integers 

 N: Yeah.  So, um, like say past x value of 6.  (6,3) is on the curve, right?  So what do you 

 know about the y values after x value 6 – for the … 

 M: Oh, yeah, they‟re all between 2 and 3 because of the asymptote at 2. 

 N: Right.  So… 

 M: So therefore you cannot have a whole number between those right there.   
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Michael then mentioned that the same reasoning could apply when looking at the vertical 

asymptote.  Then, he shifted his focus back to the inputs for his function.   

 M: I‟m just messing around with the domains and seeing if…so…now I would just…I 

 would just have to show that all values that all values between 3 and 6 are the values that 

 you can use to find the … that show the perimeter and the area are the same.  All the 

 integers between 3 and 6… 

 N: So we‟ve eliminated from 6 on.  So why have you been able to eliminate everything 

 from before 3? 

 M: Before 3?  Well the asymptote is 2 and then once you get past the asymptote 

 everything goes into negatives, which you can‟t really include. 

 N: Right 

 M: And you know everything (that has x value) between 3 and 2 is not an integer, it‟s a 

 rational or irrational… 

 

Michael‟s last hurdle to clear was what it meant to look only at his restricted domain: 

 M: Well, I‟d have to show 16…or would that be it?  There‟d be 16 different ways I‟d 

 have to show it‟s …. maybe…. 

 N: Well you‟ve found …ok, so why 16? 

 M: Well for the n, you‟ve got 3, 4, 5, and 6 that you can choose from and then for m, you 

 also have 3, 4, 5 and 6 and since it‟s a rectangle it doesn‟t matter. 
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Michael had confused the fact that the sides of a rectangle were interchangeable with the idea of 

using one of the side lengths as an input for a function to find the other.  I reminded him that he 

had such a function. 

 N: Ok, so I kind of gave you this hint of considering this curve a function of x so what 

 are you going to do with that?  

 M: Just plug in all the x values. 

 N: Sure.  And see what? 

 M: And see if the y output is an integer or not. 

 N: Right, ok.  And you‟ve already done that for 4. 

 M: For 4?  Yeah, so I‟ll just do for 3, 5 and 6.   

 N: Ok. 

 (working) 

 M: That doesn‟t work.   

 N: So, what doesn‟t work?  What did you just try? 

 M: 5 doesn‟t work, that gives you an integer – you get 10 thirds. 

 N: Ok.   

 For, uh, 6… 

 

Michael used the graph of the function and its asymptotic nature to eliminate all inputs besides 3 

– 6 and then checked those cases by hand.  By doing so, he knew that he had found all rectangles 

that fit the criteria given in the problem. 
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 This was the end of the interview and I asked Michael to bring me a formal write up of 

the proof he had done.  When he came back for the next interview, he said he had forgotten to do 

it, but we talked briefly about what the proof would look like if he had.   

 M: Well, first of all, I would rewrite it again, make it more consistent, you know, linear.  

 Get one idea through, the use that idea to get the next idea.  And for this one, to find the, 

 what do you call it? 

 N: The asymptote. 

 M: Yeah, the asymptote.  I would actually show it by solving for y, you know x = 
2

2

y

y
 

 to show that it really has an asymptote there.  Then I would just be a little more detailed.   

 

Michael basically was saying that he would be more careful to be formal in his proof and justify 

all the steps he is making. 

 The proof Michael provides here is semantic.  While I help him along, he does explore 

the problem to see what is going on with it.  He observed the table and graph of the function he 

finds and then turns his understanding of its behavior into a proof.  

 When describing the proof he would write, Michael makes a point to mention that he 

would ensure that each step is used in justifying the next.  This deductive view of proof is typical 

of an analytic proof scheme.  He does not bring up, however, the use of any previous results to 

use in the construction of his proof.  Instead, he uses algebraic manipulations of the equation he 

needs to satisfy to create a function he can use to complete the proof.  This is indicative of a 

transformational proof scheme.   
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Question 2a 

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9. 

 Michael started this problem by using modular notation to write down what it meant to be 

a multiple of 9.  Although he would erase it later, he first tried the standard subtraction algorithm 

in general: 

 M: Yeah, so we could rearrange this thing to where it‟s in the kindergarten form where 

 the ab is over the ba.   

 N: Ok 

 R: Which seems like it would give you something, so… 

 N: Ok   

 R: Ok, so, but then we get a problem here because we don‟t know if a is bigger than b or 

 b is bigger than a, so… 

 

Michael abandoned this idea and turned to examples and it did not take him too long to notice 

something: 

 M: So I think I got a pattern here.  So 9 minus 1 equals 8, which 72 is divisible by 8.  But 

 this one is equal to right here, 7.  And 63 is also divisible by 7 because 7 times 9 is also 

 63. 

 N: Ok 

 M: So, show lets see for a different case that without 9 this time…So this is (45-54) 9 and 

 5 – 4 is 1… 
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 After giving this pattern some thought, he moved on to the work in the bottom of Figure 

135. 

 

Figure 135: Michael’s work on Question 2a 

 M: So a times 10 plus…So you can re-change the form of ab and ba to a times 10
1
 times 

 b times 10
0
, plus b times 10

0
, minus b times 10

1
 plus a times 10

0
…Alright, I‟ll just factor 

 out a little bit more, try to clean it up.   

 (writing) 
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 M: Put them together (a*10
1
 – a*10

0
) + (b*10

0
 – b*10

1
)…So we know that 10

0
 is 1, so 

 a(9) and so we know that 10
0
 – 10

1
 is –9, so b(-9) .  Which is 9 times a plus b times 9, 

 minus 9, sorry.  So, we have 9(a – b) = y.   

 N: Ok 

 M: So it‟s actually behaving similar to what I noticed up here, so say 29 – 92, and 

 if…you subtract 2 from 9, you get 7, then times 9 is 63.  Which is similar to the equation 

 where 9(a – b) = y.  And since, it has 9 in it, it is divisible by 9, therefore 9(a – b) mod 9 

 = 0.  Which proves it, but I feel like there‟s a part missing to it, is that right? 

 N: Well, do you have a gap that you see or is it just an overall feeling that there‟s a gap. 

 M: Yeah, I see that I proved it, but I feel there‟s a gap somewhere, because I just showed 

 right here that there‟s a, actually, no I think I just proved it.  That‟s all there is.  I proved 

 it. 

 

Michael used the nature of base 10 numbers to re-characterize ab – ba and show that it equals 

9(a – b) which is clearly a multiple of 9. 

 It might seem like the proof Michael provides is semantic due to the pattern he found by 

looking at examples.  This is not the case, however.  Although he did find a pattern, he did not 

use it to come up with a proof.  In fact, he only noticed that he arrived back at his pattern after he 

completed his work: “So it‟s actually behaving similar to what I noticed up here.”  While 

reflecting on the problem later, Michael said that his proof came about due to work he had done 

in other classes:  
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 M: Actually, this part I remember this because of computer science, actually because we 

 were converting using binary – it‟s actually really easy just to put two (to the) zero, one 

 times ten to the…if you‟re converting and everything, so ….that really helps. 

 

Since Michael gave a deductive proof that did not result from applying an understanding of the 

problem, this is a syntactic proof.   

 Michael‟s proof scheme here is transformational.  Like with Question 1, he provides a 

logically sound deductive proof that in no way depends on previous results.  Instead, it relies on 

performing operations on the mathematical objects at hand.  Thus, Michael displays evidence of 

a transformational proof scheme only.   

 

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6.  

 Michael started this problem by factoring n
3
 – n.  He then looked at applying what it 

means for a number to be a multiple of 6: 

 M: And so since it‟s also a factor, well it‟s a multiple of 6…that would give you, if you 

 divide by 6, that should also give you an integer. 

 N: Right. 

 M: Ok, so… 

 (writes n(n + 1)(n – 1) over 6 = y, thinking) 

 M: So 6y is equal to n(n
2 
+ n)… 

 N: If you need, yeah…So you‟re now… 

 Yeah, I‟m just getting stuck right now, it‟s just one of those days… 
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At this point, Michael gave up manipulating the expression n
3
 – n and looked at some examples.  

 M: So let n = 1…would be 0. 

 (tries n = 0, 1, 2, 3 on his calculator and writes down the last case, see Figure 136) 

 M: Ok, let‟s suppose, let‟s try a proof by induction. 

 N: Ok 

 M: So k
3
 – k mod 6 = 0.  So… 

 

 

Figure 136: Michael's work on Question 2b 
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 Michael moved to his inductive step on the bottom left of the figure.  Initially, he 

simplified too much and lost his ability to use the induction hypothesis.   

 M: Well, maybe I should have stayed at the very being and see…and separate out 

 another…because I have a k
3
 right here.  And then minus k, so I have the form I want.  So 

 k
3
 – k… 

 (working) 

 M: We know that k
3
 – k is true, I just showed it right here, we got that form which is right 

 here (in the induction hypothesis).  So now we got the 3k
2
 + 3k, and we just ignored the 

 1s because they canceled out and now all we need to do is show that that (3k
2
 + 3k ) is a 

 factor of 6.  And if they‟re both multiples of 6, when you add them together, you‟ll still 

 be able to divide by 6.   

 (thinking) 

 M: Well, we know that 3 divides anything that‟s a multiple of 6, 3‟s a factor of 6 so that 

 would work also.   

 N: So, yeah. 

 M: Well divides those things…I‟m kind of stuck here, can you give me a clue? 

 

I suggested Michael think back to how he knew 9(a – b) was a multiple of 9.   

 M: Because it‟s multiplied by 9. 

 N: I guess that‟s not that helpful I guess. 

 M: Well, I have a three here, but the k would have to even for it to work, see? … ?  But 

 we can‟t tell if k is an even number or not, so…that only shows it for half of the cases.  If 

 k was even, then it would be a multiple of 6.   
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 N: So, another hint is, you‟ve covered half the cases, can you do something else in the 

 case that k is odd? 

 M: In the case that k is odd…oh ok, that makes sense.  So we go 3 times k …so we have 

 3 times k, which is 6 times the odd number which is still a multiple of 6.  But if it‟s odd, 

 then 3 times k is not a multiple of 6, but it makes k + 1 become even, which then, since 

 it‟s a multiplied by 3, it‟s going to give you a multiple of 6. 

 

Although Michael did not write it out completely, he had finished the proof.   

 The proof Michael provides is a process procedural proof.  He uses induction, but does 

not follow explicit instructions every step of the way.  Instead, he knows that there are a few 

broad steps that need to be accomplished (assume it works for k and show that it works for k + 

1).  He does try to explore the problem before getting into the induction proof but, as was the 

case with the previous question, his proof is not an intuitive understanding made into a formal 

proof.    

 Michael‟s proof scheme is internalized transformational.  He did show at some points that 

he was proficient with induction.  In particular, he realized that he needed to use the induction 

hypothesis while completing the inductive step so he started over and refrained from simplifying 

the expression too much.  While seems to have a good understanding of proofs by induction for 

the most part, his use of 3 as a base case reveals that the method has not been completely 

interiorized yet.  While reflecting on the problem, Michael said: “So I let n = 3, as the base case, 

I probably could have used anything else.”  Because he does not realize that the base case needs 

to be the smallest number for which the property is supposed to hold, Michael‟s proof scheme is 

internalized here. 
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Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

n ℕ: 

2
1

2

1

3

1

2

1

1

1 n
n

 
 

 Michael drove right in with this problem.  He tried a base case of n = 1 and assumed that 

the inequality held for n = k.  It should be noted Michael‟s choice of base case.  When I asked 

him about it later, he said the reason he chose n = 1 was because “(i)t‟s the beginning.”  Then, he 

wrote out what the n + 1 case looks like, noting that kk 222 1  .   

 Michael then moved into using summation notation and made sure to write it in such a 

way as to make use of his induction hypothesis.   

 M: Yeah, and since I know that part‟s true, I can kind of throw out that equation and not 

 think about it for now. 

 N: Sure. 

 M: And then just get to this part where you have this summation is greater than or equal 

 to 1/2.   

 

Michael then explained the rest of the work he did in Figure 137: 

 M: and then, so I noticed that in this case, we know that from here...from 2
k
 + 1 and all 

 the way to 2
k+1

, it‟s basically just 2
k
 doubled, because 2

k+1
, you know, the power k + 1, is 

 just the double of the original.  So, you can also think of it the other way around, where 

 you just start subtracting until you get to the original 2
k
.   
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Figure 137: Michael's work on Question 3 (1 of 4) 

 N: Ok.   

 M: Instead of adding to get to the 2
k+1

.   

 N: Sure, ok 

 M: Which is pretty nice, because if you get to that form, you can pull out a 2.   

 

In the remaining summation he had after applying the induction hypothesis, Michael only wrote 

out a few terms.  This was a problem because in those terms, Michael saw the opportunity to 

factor out a 2 and to have only the difference of powers of 2 remaining.  He also viewed this as a 
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sum working backwards, starting at 2
k+1

 – 0 and moving “up” to 2
k+1

 – 2
k
.  Moving to a new 

sheet (Figure 138), Michael used his factorized form to cancel the 1/2 on the right hand side.   

 M: And so you can separate out the two, I guess it‟s kind of nicer not to deal with 

 fractions and all that, so you get the one on this side, and you get kind of a nicer, cleaner 

 looking form…Yeah, basically, and I wasn‟t sure I was going to get this out in that form, 

 but right here, you have this 2^k, you know, and it increments.  So, I guess the next part 

 is to show…I guess I‟ll have to think about this thing here.   

 N: So before we get too far into that, but keeping going, so what made you think you 

 were done here?  What did you notice, or what did you do to think you were done? 

 M: Well, it was, you know, it was getting the same form as the original, I don‟t know.  I 

 was thinking, you know how the original was 1/1 + 1/2 + 1/3.  

 N: Right, ok 

 M: Well, you know, it‟s incrementing in the exact same way as that, but…I was thinking 

 if there was a possible way to show the summation of all those, all the way is greater than 

 or equal to 1. 

 

Michael had gotten to end of the third line of Figure 138 and said he was finished, which 

prompted the exchange above.  He then completed the work seen in the figure below.  It is 

evident that Michael still has his mistaken conception of the way his remaining sum is behaving 

when 1/2 is factored out of each term.  This idea, though, is important to the way he was viewing 

the problem at the time: “Just kind of…probably so it would be easier to get an original value of 

k out again.” His goal was to get the sum of terms left over from applying the induction 

hypothesis into a form where it again, or as many times as necessary. 
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 M: I was trying to make it go recursive.  If it was recursive, then it‟d be pretty easy to 

 show that it just repeats over and over again.  And then if it‟s true for all the repetitions, 

 then you can just assume that‟s it‟s going to be all the way true until it … 

 

Figure 138: Michael's work on Question 3 (2 of 4) 

 Michael‟s last attempt in that interview involved the algebraic manipulation at the bottom 

of the figure.  At that point, it was the end of the interview and I asked Michael to work on the 

problem before coming back for the next interview. 

 Michael did not have time to look at the problem between interviews, so he started fresh 

again the next time we met.  The new work he did is in Figures 139 and 140.  He started out 

similarly to the last time, writing the sum on the left in two pieces to make use of the induction 

hypothesis.  As we were talking about the fact that moving to the k + 1 case doubles the number 
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of terms, he mistakenly applied the idea of doubling to the right hand side.  He quickly fixed this, 

though, lining out what this assumption would mean.   

 

Figure 139: Michael's work on Question 3 (3 of 4) 

 

Figure 140: Michael's work on Question 3 (4 of 4) 
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 After fixing this mistake, Michael came up with a new idea: “I could just show, using a 

geometric sum, where you would just find the geometric sum of 2
k+1

, subtract 2
k
 and if that is 

less than 1/2…let me see this…do you know what the equation is for a geometric sum?”  His 

idea was to apply the formula for a geometric series to both sums from i = 1…2
k+1

 and i = 1…2
k
 

and subtract the later from the former.  Then, he would be able to compare that difference to 1/2.  

Michael worked his way to the bottom of Figure 139 and said 

 M: Ok…I feel like I messed up on my algebra here back somewhere, but…it should…the 

 concept…Ok, well we know this part right here will be positive because k, (1/2)
k-1

 is 

 smaller than (1/2)^
k-2

, so…could probably write that nicer.  So that part is definitely 

 greater than 0, therefore it‟s still a positive number times…oh, wait, I guess I could factor 

 out k right here, couldn‟t I?   

 (continues from the first line down n Figure 140) 

 M: I guess I would just quit right here because I see it, but I messed up somewhere on my 

 algebra… 

 N: So let‟s see here…ok, and you‟re pretty confident (you would not get any further 

 alone)?…so what if I told you, then, that this is not a geometric series? 

 M: I guess that would be completely…oh yeah, that‟s 1 to 2 to 3, I completely forgot 

 about that. 

 N: Yeah, there needs to be a common ratio for a geometric series, so sorry about that, but 

 I just felt like I had to let you know.  So you still have 10 minutes of your time, that I said 

 I‟d let you work, I guess, so do you want to go back and look at again, or would you just 

 rather talk about it? 

 M: I‟d just rather talk about it. 
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Michael had become frustrated with the problem, so I talked him through the solution with the 

time that remained. 

 Michael did not complete a proof here, but I will classify his proof attempt.  The work 

Michael provides constitutes a process proof.  He used the method of mathematical induction so 

his attempt is clearly of the procedural type.  Of the sub-types, this attempt falls under the 

category of process because he sees induction as a few steps to be accomplished, not as explicit 

directions to be followed.  This can be seen in the variety of ways he tried to complete the 

induction hypothesis. 

 While Michael does not complete the proof, he does show some progress with induction 

when this attempt is compared to his previous proof.  The most tangible evidence that shows 

Michael knows more about induction this time is in his use of n = 1 as the base case.  Not only 

did he use the correct value, when I asked him about it he said he did so because it was “the 

beginning” not because it was the easiest to calculate or some other reason.  This shows more 

understanding of induction than Michael displayed last time.  This is not to say that Michael 

definitely learned more about induction than last time, just that he is now showing more of an 

understanding.   

 Also, when working on the last question, Michael did not look to apply the induction 

hypothesis right way.  He did do so quickly after simplifying too much last time, but there was 

no hesitation to make use of it with this question.  Because Michael shows no issues with his 

understanding of induction, he is displaying a transformational (interiorized, not internalized) 

proof scheme.   

 



434 

 

Question 4 

Examine the following proof by contradiction:  

Prove 01   

Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 

Prove 01   

Suppose  01  , then 01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 

 Michael saw this question for the first time when he took his midterm exam in MATH 

305.  The response he gave then is in the figure.  Basically, Michael says that the reason the 

proof is not working is because it is not working and that there is no other flaw in the proof. 

 

Figure 141: Michael's previous work on Question 4 

 Michael read through the proof a few times and said: “Why it‟s not working?  Let me 

see…When I first did it on the test, I just said because you‟re trying to prove something that 

was…like you can‟t…if you were trying to prove something in the imaginaries by using normal 

numbers…”  Next, he recalls some things he knows about complex numbers, specifically the 
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complex plane and what can happen to complex numbers (and their signs in particular) when you 

take them to various exponents.   

 After this discussion, Michael said: “Maybe it‟s because they‟re thinking, see, if you 

come back to the real numbers, maybe they‟re thinking in terms of real numbers, maybe we have 

to apply new properties of imaginary numbers and not really…”  He is referring to the proof‟s 

use of real number properties on complex numbers.   

 M: (Y)ou‟re trying to prove something with the incorrect  tools which won‟t work. 

 N: Ok, and in this case the incorrect tools being … 

 M: The real numbers… 

 N: …their operations? 

 M: Yeah, they‟re trying to but all the properties of the reals onto the imaginaries, which 

 not all of them are true for the imaginaries. 

 N: Ok, but some might and some don‟t? 

 M: Like the ones for addition and subtraction will always hold true. 

 N: Ok 

 M: But for multiplication it won‟t hold true, the i will always alternate between -1… 

 N: Depending on the power of the i.  

 M: Yeah.   

 N: Ok 

 M: So that can cause problems, so if you‟re going to prove that way, you probably won‟t 

 even, it‟d probably be best to just stay away from multiplication in these proofs, actually.  

 It‟d probably be better trying another way to do it, that way I‟m not really sure…seems 

 like it‟s be better to do it that way. 
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Michael was able to put his idea more concisely when talking about this question in the 

following interview: “I think I compared it to tools, using your tools.  You know how, for 

example, you can‟t draw hyperbolic geometry using normal Euclidean tools.” 

 Michael and spent the rest of the interview discussing ideas on how one could set up a 

system to make comparisons between real and imaginary numbers.  He settled on projecting 

them onto the real line.  He also said that in any proofs involving comparisons, he would only 

use addition and subtraction.   

 Because Michael did not attempt a proof for this problem, there is nothing to classify.  

However, the interview did highlight Michael‟s transformational proof scheme.  His focus while 

talking about the proof provided was on the operations executed within it.  He is not swayed by 

the fact that the proof looks like a proper proof.  Instead, he considers the logical deductions 

performed and whether or not they should have been applied.  This focus on algebraic 

manipulations is typical of a transformational proof scheme. 

 

Question 5 

 The next interview was the last of the semester, so I used it to discuss the study with 

Michael.  He did not attempt a proof, so there will be nothing to classify.  The interview did give 

some insight into Michael‟s proof scheme and underscored some of the things observed during 

the first half of the study.   

 At one point in the interview, I asked Michael what it took to successfully complete a 

proof.  At first, he was not sure what I meant: 
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 N: So if you sit down with a proof, and you complete it, you see it all the way through to 

 the end, even if you don‟t get it all done in one sitting, say you eventually successfully 

 complete the proof.  What do you think it takes to get that done? 

 M: Well, even if I get a proof all the way through to the very end, I don‟t consider that 

 successful, even if it is correct.   

 N: Ok 

 M: I like to write the thing again nicely so it‟s readable.   

 N: Sure 

 M: I don‟t know, well, that‟s basically what a proof is, it‟s just an essay in math…You 

 have your conclusion, your body, I mean your intro, body and conclusion. 

 

 There are couple things of note here.  First, Michael‟s view of proof is like an essay 

where an argument is presented by first saying what you are going to discuss (introduction), 

provide your evidence (body) and then put your evidence together (conclusion).  This matches 

up nicely with his formal view of proof.  For each of the questions in the first half of the study, 

Michael displayed an analytic proof scheme as he does here.   

 Secondly, Michael does not consider a proof successful even if he sees it as correct.  

Additionally, a successful proof must be one that he understands: 

 M: Actually, one extra thing for that part is when it‟s successful, even if I write it up 

 nicely on paper, if I can think about it and completely visualize everything, and 

 understand it, I‟d consider it successful. 

 N: Ok, so success is not defined necessarily by a grade, but by how well you understand 

 it? 
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 M: Yeah, because there‟ve been proofs I‟ve done and it didn‟t, even though I couldn‟t 

 visualize it, the logic just pointed to that answer and I was like “Ok, I‟ll call it a good 

 proof.”   

 N: Ok.  So, but in your mind, that‟s not a successful proof because you don‟t, you didn‟t 

 get some understanding out of it? 

 M: Yeah, it didn‟t feel that satisfying.   

 N: Ok 

 M: That‟s basically, yeah, if it‟s successful, it should feel really, the satisfaction at the 

 very end. 

 

This also matches what was seen during the first semester of the study.  So far, Michael has only 

produced one semantic proof.  Thus, he is not trying to turn intuitive understandings of problems 

into proofs.  Instead, he waits for the understanding after.  If the proof leads him to 

understanding the problem, then it is a successful proof.  Then, that new understanding yields 

flexibility: “If you understand, you can usually easily put it in other proof forms without too 

much effort.”   Later, I asked Michael what was helpful in successfully completing a proof, but 

not necessary.  He said that “what helps is probably writing a bunch on paper, doodling around, 

throwing ideas around, getting the ideas out.”  I think the fact that he sees exploring a problem as 

helpful rather than necessary also fits with the work he did earlier in the study (both in what he 

thinks it takes to make a proof successful and in his willingness to start over when stuck). 

 

Question 6 

Prove that n ℕ,  3nn   (mod 6).  
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 After reading through the problem, Michael realized that he had seen this problem before: 

“That‟s weird; it looks like I‟ve already done this one before…mod 6.”  He was right, of course, 

this is Question 2b in another form.  Michael still went to work on the problem, first trying it for 

n = 1, 2, 3 and then moving into an induction argument.  

 

Figure 142: Michael's work on Question 6 (1 of 2) 

Michael got down to the bottom of his induction argument and was somewhat stuck.   

 M: So now all we have to do is prove that 3 timesed by any number or just k alone, would 

 also be 0 when you moded it by 6.  Then you‟d also have to show that 3 timesed by any 
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 number plus 1 also, the same thing, would also be 0 moded by 6… And then I get to here. 

 [3k(k + 1)]  Well, I thought to myself “Ok, yeah, I can just separate everything and do all 

 that.”  And then since it‟s 0, one of them has to be 0 if we were multiplying.  So, it was 

 just left down to kind of guess which one would be most likely to be 0.  So 3 is usually a 

 factor of 6, it was the most likely one if you were to mod it by 6, 3k mod 6, it‟s most 

 likely to be 0. 

 

 At this point, Michael showed that he had a misconception about modular arithmetic.  

When trying to decide what you get when reducing 3 (mod 6), he allowed decimals into the 

modular system.  Because you get 0.5 (with nothing left over) when dividing 6 into 3, Michael 

concluded that 03  (mod 6).  In turn, this led him to conclude that both 3k and 3(k + 1) reduced 

to 0, finishing the problem.   

 I pointed out the mistake he made and he began working on a new sheet of paper.  At 

first, he tried a few examples to see it working and then he remembered the other problem. 

 

Figure 143: Michael's work on Question 6 (2 of 2) 

 M: I‟ll probably, might, have to show that this whole number [3k(k + 1)] here would 

 always be 0 if you mod it by 6. 

 N: Ok 

 



441 

 

 M: That‟s right, I‟d probably have to show that it‟s something of 6, the value has a factor 

 of 6…Can I look back to the earlier ones?  Because I…isn‟t there one were we did where 

 you actually… 

 N: Yeah, if you want to go back to what you did before, that‟s fine.   

 M: It doesn‟t, like, because I really don‟t feel like re-thinking that one over again. 

 

Michael looked back through his old work and found what he had done to finish Question 2b 

(the citation he gives refers to the way I labeled that page of his work).   

 Seeing his old work gave Michael even more insight into the current problem: 

 M: They are almost, actually let me see…actually you could say that, see, look it, if you 

 just did that, this way around.  If you just made this 0 and moved it over here, it‟d be the 

 exact same thing.   

 N: Right.  Yeah, that‟s exactly right.  

 M: So that‟s, I could have just basically did that. 

 

During the reflection, we talked about the way he finished the problem before and it did not take 

him long to remember: 

 M: Yeah, I think I just did another little thing by induction for it or maybe not. 

 N: I don‟t remember, so… 

 M: Yeah, and then I was showing for even and odd which I‟m assuming, yeah, because 

 then if it (k) was odd, these (k and k + 1) would alternate, you know, k+1 would be even. 
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 The proof Michael provides here is a process procedural proof.  Like the other times he 

did an induction proof, it is clear that Michael understands the method well enough to see it as a 

few global steps rather than step-by-step instructions.  This is most evident by the way he 

handles the inductive step.  While other students would at times lament the fact that the problem 

they were working on did not lend itself to standard algebraic simplification, Michael is flexible 

in how he approaches the inductive step and does not simply rely on algebra. 

 Michael shows a couple different first schemes here.  First of all, he successfully 

performs a proof by mathematic induction and shows no evidence that he has anything but a full 

understanding of the method.  With this, Michael is displaying a transformational proof scheme.  

Michael also shows evidence of an axiomatic proof scheme in that he relies on a previous result 

to complete his proof.  The acknowledgement and use of previous theorems or results is a 

hallmark of the axiomatic proof scheme. 

 

Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 

 After reading over the problem and going over some terminology, it did not take long for 

Michael to know the route he was going to take:  

 M: So if I‟m thinking about this correctly, you‟re saying n elements, that‟s the n subsets, 

 right?    

 N: No, that‟s n elements.  So if you had the numbers 1 2 and 3, the set that has just 1 2, 1 

 and 2 in it is a subset of the set that has 1, 2 and 3.  

 M: Oh, ok.  I see. 
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 N: Yeah, so in that case, the set has 3 elements, so in that case n is 3.  So how many 

 subsets can you come up with? 

 M: I see what you mean.  Yeah, so it‟s going to be combinations of elements that are 

 contained within the set. 

 N: Right, yeah. 

 M: Well, then this becomes a combinatorial problem.  Because if you don‟t consider 

 order as important within sets… 

 

Michael began started to work and we went over some notation conventions and then he asked 

about the empty set. 

 M: Alright, in this one, do we consider the null subset a part… 

 N: That‟s sort of up to you. 

 M: Ok, so I‟ll just state that myself later.   

 N: Ok. Yeah, that‟s one of the things I wanted you to wrestle with: whether or not the 

 empty set is a subset. 

 

Michael took what I said to mean that it was up to him to decide whether or not to count the 

empty set a subset of a different set.  He did not initially, as one can see in the figure, but I did 

address it during the reflection.   

 Michael then went to work, completing most of what can be seen in the figure.  When he 

had finished, I asked him to explain what he had done. 

 M: Maybe I should, I‟m going to assume that the null set is not…Alright, well then, 

 based on that assumption, then I continue.  It kind of gets to a little bit of statistics, or  
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Figure 144: Michael's work on Question 7 

 what do you call it, probabilities, combinations, where it doesn‟t really matter the order 

 the numbers are in.  The set, if the set contains in a different order the same numbers that 

 are in a different set, technically they are the same set.   

 N: Right 
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 M: So I can use that right there to know that one equation I can use to find the numbers is 

 the combination right there. 

 N: Ok 

 And then I have to take another thing in mind, is that there are sets of 1 to n size within 

 A. 

 N: Ok 

 M: Therefore I can safely assume if I sum up all those combinations from 1 to n I should 

 get the number of subsets in A. 

 N: …So do you feel like you‟ve proved it, then, or do you feel like you‟ve just sort…you 

 know, do you think it requires more proof or do you think it‟s as proved as it needs to be? 

 M: I think it‟s as proved as it needs to be.  I don‟t see much more to it.  It didn‟t have any 

 other questions in it, just the number of subsets. 

 

In his work, he took the sum to go from i = 1 to i = n, again because he chose not to consider the 

empty set a subset.  Also, after he finished his explanation, I mentioned a different formula that 

could have been used which explains the rest of the work seen in the figure. 

 N: So what if I said that the number of subsets was 2
n
. 

 M: 2
n
?  Oh yeah, because that‟s what do you call it?  Pascal‟s Triangle.   

 

 Unlike many of the participants who came up with the summation formula for this 

problem, Michael was confident that explaining where it comes from is a proof.  The proof he 

provides comes from his understanding of how subsets of a given set can be formed.  Because he 

turns an intuitive understanding of the problem into a proof, this proof is semantic. 
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 Michael‟s proof attempt is transformational here.  His proof is logically deduced and does 

not rely on previous results or theorems.  Another aspect of what Michael did that is typical of 

transformational proofs is the fact that early in the proof, he set himself up for what was to come.  

When I asked him about why he chose to handle the sub-case the way he did, Michael said that 

he had an eye towards what was to come. 

 N: I‟m talking about the, when you‟re coming up with the number n.  You could have 

 just said n, right?  You could have said that there‟s n things and so if you take them one 

 at a time it‟s n.   

 M: Yeah I did that, I wanted to show that there was a function being used to find n.   

 N: Right, so you did sort of have an inkling of what was going to come?   

 M: Yeah 

 N: It wasn‟t, I was just sort of wondering if you had an intuition that said „Include this‟ 

 but you didn‟t know why yet, but it sounds like you did know why and had an idea of 

 what was going to come.   

 M: Yeah, I thought of at the beginning, did I put the combinations?  Yeah, I put the 

 combinations right there, and I had to make use of the combination function in order 

 to….early, so I could show them being summed up together.   

 N: So you had sort of a rough outline of the rest of this even at this point already? 

 M: Yeah, basically 

 

This type of anticipatory action is a characteristic of a transformational proof scheme. 

Question 8 

Prove that the cube root of 2 is irrational using a proof by contradiction. 
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 Like Question 4, the problem was on the midterm Michael took in MATH 305.  At the 

time of the midterm, Michael had already seen the proof that 2 was irrational.  The proof 

Michael did on the take-home exam is in Figure 145. 

 

Figure 145: Michael's previous work on Question 8 

In his test response, Michael apparently uses what he is trying to prove.  He states that b 3 2 is 

irrational using the fact that an irrational times an integer is irrational.   

 In the interview, Michael was not much more successful.  As he did on the midterm, he 

started the problem correctly by making the proper assumption.  He did not make the same 

mistake, though.  Instead, he tried numerous different algebraic manipulations to try to arrive at a 

contradiction.  Due to algebra mistakes, Michael did think he had arrived at a contradiction a 

couple different times.  The first time was at the end of the blocked out work in Figure 146. 

 M: Ok, so assume cube root of 2 is rational.  Therefore, in that case, if it‟s a rational, the 

 cube root would be a/b where b is not equal to 0.  Ok, so let‟s cube both sides.  2 is an 
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 element of a
3
/b

3
…let‟s make this equal, that‟d probably be a better thing to do…Well a

3
 

 in this case would also have to be a rational.  b
3
 is going to have to be a rational that‟s 

 also not 0.  Let‟s say we solve for like, let‟s say, a
3
.  So…So therefore a is equal to the 

 cube root square…b…Which in this case, we get a little dilemma because it kind of ends 

 up being recursive in a way, if I‟m correct… 

 

Figure 146: Michael's work on Question 8 (1 of 3) 

Michael was not able to fully explain what he meant by “recursive” but he apparently saw 

getting back to where he started as a problem.   
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 N: So, I guess I don‟t see why this (blocked out work) is a problem, right?  Because if 

 you‟re going to do a contradiction, you have to find a problem.  And to say that b times 

 3 2 is equal to b times 3 2 , I don‟t think that‟s a contradiction, is it?  

 M: Yeah, I guess that isn‟t contradictory, but…I was trying to see if there was a 

 contradiction forming in here (top line, on the right, in blocked out work) you know. 

 

There is also the issue of the superscript “3” in 3 2  being misinterpreted as an exponent on b.  

When Michael  thought about what I had said, he noticed this mistake.  “Ok, I see where I went 

wrong on this.  First of all, that should not be the cube root of a/b.  I‟m just going to put a line 

over this because I messed up on my algebra.”  He then finished the work in Figure 146 (at one 

point remaking the mistake he had just mentioned) and moved on to Figure 147. 

 On the new sheet, Michael continued to rearrange and substitute and simplify to come to 

an equation that was obviously untrue.  He thought he had a few times, but realized that he had 

made an algebra mistake at some point in each instance.  By the time he had completed the work 

in Figure 147, he realized that he was going in circles: “Ok…Well, I‟m making this recursive 

also, just making it go like this continuously.”   

 I asked that he continue to work on the problem before the next interview and he said he 

would.   He did not look at it by the time the next interview came around, but I showed him 

where the proof that 2 is irrational was in the MATH 305 textbook and he said he would read 

through that and come with work for the following interview.  This time, he was able to work on 

it.  He did not provide a completed proof but instead what is in Figure 148. 

 M: I didn‟t write any logic down, I just kind of wrote it down to compare it to the book. 

 N: Sure 
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Figure 147: Michael's work on Question 8 (2 of 3) 

 

Figure 148: Michael's work on Question 8 (3 of 3) 

 M: And I guess it works the exact same way the book does it, if I‟m correct, there‟s not 

 much difference at all. 

 N: Yeah 
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 M: Except the fact that everything‟s cubed instead of becoming, you know, squared.  The 

 2, 4, becomes to 8 and… 

 

The work Michael brought in was only the notes he used when following along with the proof in 

the book.  Even so, I consider this a completed proof because he understands how the proof 

works.    

 Because he followed the exact steps in the book, Michael produces an algorithm 

procedural proof.  Clearly, I do not think this means the steps were not meaningful to him.  He 

was able to recognize the differences between the two proofs but that they were similar enough 

to allow for him to transfer most ideas over.   

 Although Michael is strongly influenced by the form of a different proof, he is not 

showing evidence for an external conviction proof scheme here.  Because he understands the 

logical deductions that form the steps of the proof and how they apply to the proof he is doing, 

Michael is displaying an analytic proof scheme.  The analytic scheme is transformational he 

because it relies on mathematical operations and not previous mathematical results. 

 

Question 9 

 For this question, I had Michael evaluate a version of Cantor‟s Diagonalization argument.  

He did not produce a proof attempt to classify, but the interview was used to look for clues 

regarding his proof scheme.   

 Michael read through the proof a couple times and we discussed what was going on in the 

proof.   
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 M: Ok, so…ok, so let me understand this, ok, so B is constructed technically from this 

 kind of diagonal set right here, with all those α‟s.”     

 N: Right 

 (goes back to reading the proof) 

 M: I see, I was doing this wrong, somehow I was assuming…I was confused…. 

 (thinking) 

 M: It kind of makes sense, but at the same time I‟m kind of confused about it, so… 

 N: Ok, oh sorry, go ahead. 

 M: Alright, so you‟ve got f(k), from you contradiction, is, from what it sounds like so far, 

 it sounds like the proof is, you can‟t see any problems with it but yet…Anyway, you have 

 this set (the diagonal) right here and this… 

 N: Yeah… 

 M: …and this one right here gets kind of derived from this right here, whether it‟s 1 or 2, 

 if I‟m correct.  So that kind of should, this whole diagonal set here should map also to 

 like…β1, 2…so should also map to β4, but…supposedly when you get to βk, it‟s not equal 

 to it.   

 (thinking) 

 M: So I‟m still kind of confused, I don‟t understand why βk can not be equal to αkk.  Kind 

 of confused about that, so… 

 N: Well, it‟s because βk, right, to find out what βk is, you have to look at αkk.   

 M: But you don‟t know what αkk is, right, you have… 

 N: Well, this list, after you have this list, then you construct this βk.   

 M: Ok 
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After this discussion and some more thought, Michael began to see how the proof comes 

together. 

 M: Ok, it just made sense, I see how it works.   

 N: Ok, can you explain it a second? 

 M: Basically what you‟re saying is…ok, from this part right here, βk can never be equal 

 to αkk because if it‟s 2, then βk will have to be 1. 

 N: Yeah 

 M: But if αkk is not equal to 2, then it‟ll have to be 2.  In other words it must avoid being 

 equal to, it cannot be equal to a…βk and αkk can not be equal no matter what, so this leads 

 to the contradiction and that B and f(k) will always be off by 1 digit. 

 N: At least 1. 

 M: Somewhere done the line for infinity or beyond. 

 N: Yeah 

 M: And…basically you say they‟re equal in the first place right there, so they don‟t map 

 to the same function.  But then that leads to another thing that I could say makes this not 

 work because I could say…well, actually, this is the…actually it would still never work 

 for no matter what f(k) is, B wouldn‟t, you compare it to whatever, it still wouldn‟t be 

 part of the set.  And that would still be a real number…Yeah, it works I‟d say. 

 

 Michael‟s proof scheme he is transformational.  Most of our discussion focused on the 

notation in the problem and how objects and functions related to other parts of the proof.  Also, it 

is clear that Michael is showing an analytic proof scheme here because he waits until he 

understands the proof to decide whether or not he believes it.  He does not make this judgment 
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based on how it looks or the fact that an authority figure gives it to him.  At the same time, there 

was nothing in the interview that suggested that Michael had an axiomatic proof scheme.  Thus, 

Michael‟s proof scheme here is transformational.   

 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.   

Example, 6/9 < 5/7 < 7/9.  

 Michael began this problem by looking at a picture in which he divided what he later said 

was the unit interval to see what was going on with the problem.  He then wrote out the 

inequality for a general case.  While doing so, Michael thought of the counter-example of 1/2, 

2/2.   

 M: Well, I don‟t know if…if this would actually, I don‟t know if you have set rules for 

 this, but in this problem, would you assume 1/1, do you want to assume 1/1 is a 

 considered a fraction because there‟s a fraction, because if I use 1/2 as… 

 N: Right, I‟m talking about rational numbers in general, so if you know, it looks like 

 you‟re considering 1/1 a rational number, right? 

 M: Yeah 

 N: Yeah, so that‟s fair game. 

 M: Which, in that case would break everything.  I guess it would be an incorrect 

 assumption unless you place the fallen assumption that it can‟t be 1/1 or the fraction had 

 to be greater than, the denominator had to be … 
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I then asked Michael if there were reasonable restrictions that he could place on the problem that 

would make it true.  He decided that he would make the restriction that the denominator you start 

with (the m value) would have to be greater than 2.  From there, Michael worked silently on all 

the work in Figures 149 and 150.   

 At this point, it would be helpful to describe the order Michael completed his work.  

From the place he wrote “New Theorem,” he worked on his general inequality straight down, 

then to the right where he wrote “am = am” and the line below it.  Next, he followed the arrow 

back to the left and then wrote the last three lines in the bottom right of Figure 149.  When he got 

to the bottom of the figure, he went back up to the top to look at an example (1/4 < 1/3 < 2/4).  

He used cross multiplication to check his work and that gave him the idea to look at his general 

inequalities on a number line in integer form.   

 At some point during this work, Michael got the idea that is shown in Figure 150.  During 

the reflection, he explained what he was thinking. 

 M: Yeah, I got to a lead on something, I‟m not really sure how to prove it, but you know, 

 when you consider the fact that the denominator can only be 1 less… 

 N: Ok 

 M: It means that either the denominator, the number in between, this denominator is 

 either going to be even or odd.   



456 

 

 

Figure 149: Michael's work on Question 10 (1 of 2) 

 

Figure 150: Michael's work on Question 10 (2 of 2) 

 N: Ok 

 M: It can‟t be the same…. 
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 N: …the same parity? 

 M: Yeah, it can‟t be the same parity.   

 N: Right 

 M: And basically when you‟re dealing with fractions, it‟s, there either even or odd, 

 they‟ll never overlap, not matter what their numerator is. 

 

 I mentioned that the problem statement never said that smaller numerator had to be one 

less than the given one, but Michael realized that was ok: “Oh, you‟re right it is true, isn‟t it?  

Well, it still in a way works.  It doesn‟t say, there isn‟t any rules on how I can apply that.”  I also 

asked him why he chose to let m be even.  He said “It‟s usually easier to deal with evens than 

odds…in most cases” and that “if I can solve it for the evens, I usually just flip it around and 

make this one odd and make this one even and then…it kind of mirrors I suppose.”  During the 

reflection, Michael gave his idea more thought:  

 M: Well I guess, ok, I guess in this scenario too the numerator would have an effect too, 

 if you wanted to make sure it was between the 2.   

 N: Right 

 M: So then numerator would also have to be an odd number, probably…Well actually, I 

 could probably use both of these in here.  I could assume that, yeah, I could actually 

 somehow take this idea right here (in Figure 150) using the same formula for the 

 denominator… 

 N: Ok 
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 M: …in this and it‟d probably make my life a lot easier because I‟d only have one less 

 variable to worry about (in the inequality at the bottom of Figure 149) instead of b, 

 I‟d only have, like, q.   

 N: Ok 

 M: And that would be easier, definitely. 

 

 When we had reached the end of the interview, I asked that Michael work on the problem 

more for the next interview.  As with most of the problems I asked Michael to work on, he did 

not have time to get to this one.  During the next interview (the last of the study), I used 

examples to guide him to conjecture that 
1m

n
 would fit strictly between 

m

n
and 

m

n 1
 so long 

as neither was an integer. I then also helped him through the algebraic verification of this.   

 The work that Michael does here constitutes a semantic proof attempt.  He does spend a 

fair amount of time simply manipulating the general inequality he had written down.  However, 

he also spent time trying to gain an understanding into the problem (looking at examples and the 

number lines and boxes he drew). It was through looking at the example of 1/4 < 1/3 < 2/4 that 

he realized that lowering the denominator by 1 would guarantee that the fractions would never be 

equal.  That is, except in the case where the middle number and one other both equal 0.  It is 

seems as though Michael did not get far enough into the problem to consider this case.  In any 

event, because he tries to turn this intuition into a proof, his work on this problem constitutes a 

semantic proof attempt.   

 Like many other of his proof attempts, Michael‟s work here shows that he has a formal, 

deductive view of proof.  While working on this proof, Michael focuses on the operations he is  
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performing and the consequences of those operations.  Thus, Michael‟s proof scheme is 

transformational here.   

 

Question 11 

 The interview in which Michael and I finished discussing Question 10 was also used as a 

debriefing session in which we discussed the study as it wrapped up.  Michael did not attempt a 

proof, but the discussion was used to look for clues about his proof scheme and also reinforce 

observations from earlier in the study. 

 The first thing I asked Michael about was whether or not he felt like he had improved 

over the course of the study.  He did not think he had: 

 M: I‟m not sure, I think I feel the same as usual… 

 N: So do you think you‟ve gotten better at proofs this semester, or…it sounds like you, 

 not really but you haven‟t gotten any worse either. 

 M: Yeah, it‟s kept me at the same level. 

 

This matches what was observed during the study in that Michael was fairly consistent.  In each 

semester, there was a single problem that Michael was not able to finish on his own and, for the 

most part, his proof scheme was always transformational.   

 I then asked Michael what he thought could have lead to more improvement and I 

thought that varying his methods might have helped. 

 M: Like I said, maybe I should get my mind off that one proof type structure that I like to 

 do, by contradiction, not contradiction, induction.   

 N: Oh, ok 
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 M: Maybe I could have worked more on doing contradictions and…well, there was that 

 one square root of 2 thing, but that was kind of guided through. 

 

Michael used induction three times over the course of the study.  Nobody used induction more 

than he did, but most used induction twice so his use of the method was not inordinate.   

 I also asked Michael what role he saw examples playing in proofs.  He mentioned a 

couple things.  For one thing, he said that examples can help him understand a proof that 

someone else did. 

 M: Yeah, because there‟s sometimes some parts of the examples, it‟ll be talking about, 

 “Well what do they mean by that?” and they just kind of breeze through it.  Everything 

 makes sense and then there‟s like that one liner that‟s like “Ok, I don‟t know how you get 

 to that conclusion there.”  That‟s usually what happens with examples. 

 N: You use examples to make that leap down to that one line? 

 M: Yeah   

 

He also said that they can be useful in creating a proof: 

 M: Well, like you were doing right now…because it kind of helps think of the structure 

 of the proof quicker and see how you‟re going to prove it. 

 N: Ok 

 M: It definitely makes it a lot easier to understand. 
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That Michael sees gaining an understanding of a proof as important can also be seen in the 

number of semantic proofs he completes.  Of the eight proofs Michael attempted, half were not 

procedural in nature.  Of those four, all but one was semantic.   

 Asking Michael what he thought was necessary to complete a proof also highlighted 

some of the things noticed during the study.  The first thing he mentioned in responding to the 

problem was the understanding he talked about earlier.   

 M: Well, to have a successful proof attempt is to be able to find… 

 (thinking) 

 M: Ok, so first of all, you have to be able to understand what you‟re doing.   

 N: Ok 

 M: That‟s probably one of the main things.  Second of all you probably have to at least 

 some type of a plan. 

 

The second thing he mentioned is a plan.  This is indicative of the number of times he displayed 

a transformational proof scheme, which has anticipatory actions as one of it characteristics.  The 

next thing Michael mentioned should also not be surprising, given that he always displayed an 

analytic proof scheme. 

 M: Probably the third thing that helps is to …successful proof attempt is peer-evaluation.   

 N: Ok 

 M: Kind of, because even if I do prove something, I never really 100% sure if that 

 proof‟s correct and it‟s always nice to have somebody take a look at it and say if there‟s a 

 flaw in it…make sure there‟s no cases that were left out, or… 

 N: Oh, ok 
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 M: Yeah, or…what helps but isn‟t necessary, probably…I‟m not really sure what isn‟t 

 necessary. 

 N: Ok 

 M: I personally find that everything when combined together, the doodling and all that, 

 you know, it‟s all necessary. 

  

His focus on insuring there were no flaws in his proof reflects his analytic transformational proof 

scheme. 

 

Michael’s progression 

 Below is a table of the Michael‟s proof types and his proof schemes. 

Question Type of proof Proof scheme 

1 Semantic Transformational 

2a Syntactic Transformational 

2b Process Internalized Transformational 

3 Process (Attempt) Transformational 

4 N\A Transformational 

5 N\A Analytic 

6 Process Transformational, Axiomatic 

7 Semantic Transformational 

8 Algorithm Transformational 

9 N\A Transformational 

10 Semantic (Attempt) Transformational 

11 N\A Transformational 

Table 8: Summary of Michael's work 

 Like the last two participants discussed (James and Robert), Michael does not show much 

progress over the course of the study.  The reason for all three is the same: there was not too 

much progress to make.  Michael did show some progress in using mathematical induction, but 

not too much as he began the study with a good understanding of the method.  He also began the  

study with a formal view of proof, evident in the number of times he showed a transformational 

proof scheme.   



463 

 

 Perhaps one would hope that a student in Michael‟s position would show more of an 

understanding of the axiomatic nature of mathematics.  However, because of the nature of the 

study (as discussed in Chapter 3), it is possible that Michael has such an understanding without 

showing it.  Given that Michael never gave evidence of anything other than an analytic proof 

scheme, I believe this to be the case.   

 Although Michael did not complete every problem he saw during the study (I consider 

the two he did not finish easily the two most difficult), I think Michael did quite well from 

beginning to end.  This is not surprising considering his proof schemes shown during the 

interviews and he serves as another example of how making little progress is not necessarily a 

bad thing.   
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4.9 Chris 

 In this section, I will describe the proof attempts made by Chris over the course of the 

semester, the types of proof they represent and the proof schemes Chris displayed with his work.  

Chris was a graduate student at the time, with the goal of becoming a secondary school science 

and mathematics teacher.  During the first semester of the study, the mathematics classes Chris 

took were Euclidean and Non-Euclidean Geometry, Introduction to Probability and Statistics and 

Teaching Mathematics with Technology.  During the second semester of the study, Chris took 

one mathematics class: Number Theory.  

 

Chris’ proof attempts 

Question 1 

Find all rectangles with integer side lengths such that their perimeter is equal to their area.  

Prove that you have found all such rectangles. 

 Chris started the problem by writing out an equation, setting perimeter equal to area in a 

general triangle (2l + 2w = lw).  He did not use it directly, though, instead he began mentally 

checking different rectangles to see if they made the equation true.  After looking at a number of 

examples, Chris found a rectangle that worked. 

 Chris: (L)et‟s see what 6 and 4 is.   

 Nick: Ok 

 C: Which is going to be 24 and 10, right?  So that‟s 20.  Alright.  So how about 6 and 3.  

 Ahhh!  I got one. 

 N: You got one? 

 C: Yeah, 6 times 3, equal to 18 and that‟s 9, times two is 18.  (See Figure 151) 
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 N: Ok, so just sort of for clarification, did you have any reason to the ones you tried? 

 C: It‟s just, the way I always do it is with manual perturbation, is my first way to try it.  

 Um, figure out a case by starting at the beginning. 

 N: Ok, so what did you think of as the beginning? 

 C: Well, I started out with 1 and 2.  And then 1 and 3, so that didn‟t work because I knew 

 that 1 times 7 would never, well, 1 could never be one of the sides.   

 N: Ok 

 M: I couldn‟t happen.  So then 2, was working in the same fashion, where if 2 as one 

 of the sides, you always have 2 times 6, well, that‟s two of the sides.  So 2 couldn‟t 

 work for one of the sides. 

 N: Say that again. 

 C: Well, if you have a rectangle and 2 is one of the sides, it doesn‟t matter what the other 

 side is, you‟re perimeter is always going to be 4 greater than the area.  If you had a side 

 of 2 and a side of 6, right, your perimeter, then is going to be 16 and 6 times 2, which is 

 going to be your area, is 12.     

 

Through examining examples and his equation, he was able to eliminate all rectangles that have 

either 1 or 2 as one of its side lengths.  As he said, if 2 is one of the sides, the perimeter is always 

going to be 4 greater than the area.  Although he does not mention it here, the perimeter will also 

be greater than the area in rectangles that have 1 as a side length.   

 Chris had worked his way up to rectangles that had side length 3 and mentioned that the 

rectangle he found would be the only one that works for this case.  He did not say why he knew 
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no other side could pair with 3, but I think he was using reasoning that was began evident when 

he discussed rectangles with a side length of 4. 

 

Figure 151: Chris' work on Question 1 (1 of 5) 

 C: So, I‟m going to try and work this again.  So I know the 3‟s not going to work, so I‟ll 

 start with a base of 4 and see if any other side length will go with that. 

 N: Ok 

 C: Um…6, 6 times 4 is 24…so that doesn‟t work.  7 times 4 is 28, that doesn‟t work.  

 And I think I‟m actually farther away, „cause this 6 times 4 is.. 

 N: So, by further away you mean… 

 C: The area and perimeter are getting farther in distance, I believe, so let‟s see with 7 

 times 4…it was 4 and now it‟s 6.  So, I don‟t believe that there‟s an integer with side 4 
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 that‟s going to work.  Because 5 doesn‟t work, 6 doesn‟t work, 7 doesn‟t work and they 

 keep getting farther away.   

 N: Ok 

 C: Because of the way the relationship with perimeter and area works.  The multiplying 

 versus the adding.  So I‟m going to go…maybe there‟s one with a base 5.   

 

There are a couple things of note here.  First of all, when Chris says “3‟s not going to work” he‟s 

referring to pairing 4 and 3.  This is important because Chris realizes that he has already 

eliminated that pair when considering the case where one side was 3.  Second, it is the first time 

he explicitly mentions that he is comparing the ways in which the area and perimeters grow 

when one side of a rectangle is held constant and the other is increased.  I mentioned the fact that 

he had forgotten to check the square of side length 4.  Once he checked it, he saw that it worked 

as well. 

 Chris went on to check the cases of 5 and 6, again seeing the area grow faster than the 

perimeter.  Only this time, the area also started out greater.   

 C:  And I don‟t need to go to check the 3s and 4s and we did those.  

 N: Right 

 C: Which is why I‟m starting at the square 5 5. 

 N: Right, ok.   

 C; So we‟ll try the square 6 6.  So the area is 36, the perimeter is 24.  So 6 and 7 is 42, 13, 

 26.  Alright, are we really getting the same type of pattern again?  Am I, 6 times 8 is 48, 

 14, times 2 is 28...So these are going up in increments of 2 and these are going up in 

 increments of 6.  Right, because, that‟s 54, 15 is 30.  So it seems the farther we get away, 
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 the larger the numbers – they‟re not getting close any more...So they‟re increasing at 

 different rates, so since they‟re starting off area is above perimeter already, perimeter is 

 never going to catch up with area.  The thing that was happening in the beginning is that 

 area was below the perimeter.   

 N: Ok. 

 C: And so because, so for that reason, the area caught up with the perimeter.  And that‟s 

 when we found a point of intersection. 

 

Figure 152: Chris' work on Question 1 (2 of 5) 

 Now that Chris had found a pattern he wanted to exploit, he turn to the general formula 

he had found earlier, as can be seen in the figure.   
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 C: See, I almost want to set it to something and then use the system of linear equations, 

 because I see I have two equations here.  So, length times width has to equal something, 

 we‟ll just set it equal to n.   

 N: Ok 

 C: And 2l +2w also has to equal to n.   

 

Chris had gotten to a point where he felt like he understood the problem well enough that he tried 

to come up with a proof.  He also knew thought that continuing on his path would lead to an 

impossible proof by exhaustion.  He explained what he was trying to accomplish with the 

formula: 

 C: Yeah, I was just kind of taking that step back, seeing if I could find that ratio and then 

 maybe if that ratio would only work for a few integers, like the ones we have… 

 N: Ok 

 C: Then maybe I could come up with a proof.   

 

After that, I gave Chris a hint that I thought would help him develop the ideas he already had: 

 N: But let me ask you this, when you were doing your exhaustion, it was sort of based on 

 the fact that ok, every time I checked, the area is more than the perimeter and the area 

 grows faster, so … 

 C: Well, this almost seems like you could graph it, you know, because you have 4 times l, 

 which would be linear, and then you have l
2
 which is going to be a parabola and they 

 should, since this is always going to be a positive parabola, …I believe they should only 

 intersect at one point, other than (0,0).  Cause they‟re both going through (0,0).   
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This gave Chris the idea to compare the area perimeter graphically, which he discussed in more 

detail later (see Figure 153 below): 

 N: So let me ask you this again, with 5, explain to me way there‟s no rectangles that work 

 beyond past what you‟ve written.  So like, you started with 5 and 5, 5 and 6, 5 and 7, why 

 will 5 and 10 not work. 

 C: Well, just because here, I mean, the answer I said before is that the area is growing 

 faster than the perimeter.   

 N: Ok 

 C: Is why that won‟t work, it just has greater slope and since the area starts higher, you 

 know, you can imagine on the graph if you start at 10 and you start at 5 and the one at 10 

 grows faster than the one at 5, then they‟re never going to intersect on the right side. 

 N: Right.   

 C: In the positive. Cause rectangles, kind of stick in the positive.  

 

Figure 153: Chris' work on Question 1 (3 of 5) 
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 Chris was making the case that if you fixed a side length at l > 4 and considered 

rectangles where wl  , the area would stay greater than the perimeter because if you looked at 

the lines representing area and perimeter (the bottom graph in 153) the area line would have a 

greater y intercept and greater slope.  I asked that Chris put his reasoning into a formal argument 

to be brought back for the next interview and he said he would.  The proof he came back with is 

in Figure 154 and Figure 155. 

 

Figure 154: Chris' work on Question 1 (4 of 5) 



472 

 

 

Figure 155: Chris' work on Question 1 (5 of 5) 

 Chris does not complete his proof.  Based on the interview, he had all the pieces he 

needed to do so.  He used his graph comparing l
2
 and 4l to show that for squares of side length 

greater than 4, the area is greater than perimeter.  Combining this fact with his reasoning about 

the way area grows in relation to perimeter and the idea that one needs only start by checking 

squares as the rectangles grow (to avoid redundancy) would have completed the proof.  Because 

he did not put these pieces together, however, leaves his work as attempt only. 

 Even so, it is possible to classify Chris‟ proof attempt.  Because he began by first 

exploring the problem to gain an understanding that he tried to turn into a proof, this constitutes a 

semantic proof attempt.  Early in the interview, Chris said “…I know through our other stuff that 

at some point I have to get things in sort of general terms.  But I figure I should figure it out in 

normal terms, then I‟ll figure it out in general terms.”  This is exactly the sort of effort that 

results in a semantic proof attempt. 

 Chris‟ proof scheme here is transformational.  His work does not rely on previous results, 

but he does use formal reasoning.  At one point, when describing what he was trying to do, Chris 

said “That‟s my reasoning, I know from my last class and from my classes now that, that this 

path is proof by exhaustion, and to prove something by exhaustion, that means you have to go 

through each and every case.”  So, even though it would appear that Chris is convinced by 
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examples if one looked only the work he brings back, he actually has an analytic proof scheme.  

It is a transformational analytic proof scheme because his proof comes from a consideration of 

how changing one side length affects the relationship between area and perimeter.   

 

Question 2a 

If a and b are non-negative integers less than 10, then ab - ba is a multiple of 9. 

 Chris started this problem by looking at a couple examples.  Unsure of where to go, he 

looked at the equation, even though he did not see it being very fruitful. 

 C: I don‟t feel like with ab – ba that there‟s any equation, because it‟s not like it‟s a times 

 b minus b times a is going to equal 9 times x where I could solve and do a proof by 

 induction where it works for this case, does it work for the next case. 

 N: Ok 

 C: And obviously it doesn‟t work for anything past 10, because 108 and 810.  Which 

 would be cool if that was also a multiple of nine.  Does that not also…? 

 

Chris then tried a few examples of 3 digit numbers and saw that it works in that case as well.  

When talking about the written-up proof he eventually provides (during the following interview, 

Figure 157), Chris mentions that his proof allows for a or b to be other than single digit numbers 

and that is why it still works.   

 While inspecting the equation he had written, Chris notices something that could have 

been turned into a proof: 

 C: Does that maybe have anything to do with as I increase that (a) by 1, that increases 

 this (ab) by 10 and decreases this (ba) by 1?  And that‟s 9.   
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 N: Possibly. 

 C: And likewise if I increase this by…Does that make sense? 

 N: Oh, definitely it does.  So if increase this by 1, what you‟re saying is you increase a by 

 1 ab becomes 10 greater and ba becomes 1 fewer.  So you‟ve added 9 over all.  And if 

 you increase b by 1, so what happens then? 

 C: If I increase b by 1, that goes 1 – 10, right? 

 N: And that‟s a negative 9.  So the difference then decreases by 9. 

 C: Right.  So it just has to do with the relationship between ab – ba, then?  Not even 

 necessarily having to look at 9x?  I mean really, it‟s the fact that our numbers are base 10.  

 Again, increasing by 3 over here, that‟s 30, and that‟s minus 3 over here, so that‟s 27.  So 

 that‟s cool, at least it feel like I‟m getting somewhere…Everything‟s making it a multiple 

 of 9.  But even that, how would I prove that?  Exhaustion.  I can do 1 through 10.  Right?  

 Couldn‟t I do that by showing that if I increase a by 1 through 10, this is what it does, all 

 those got multiples of (9).  And then do the b‟s .  So if I just set out some type of chart… 

 

Chris then began the chart in the bottom right of Figure 156.   

 C: And there‟s really not that many combinations, 81. 

 N: Well, 100, but… 

 C: So for homework, if this was an assignment, that‟s what I would do. 

 N: That‟s what you would do? 

 C: Absolutely.  Just because I know I can get the right answer that way, if I do all 

 possibilities. And it really wouldn‟t be too hard, I don‟t think, I mean I already have 10 of 
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 the possibilities.  I just have to make a chart that‟s wide enough to go from 0 – 9 across 

 the top and 0 – 9 for my b‟s.  You know what I mean? 

 N: Yeah, if that‟s what you would do, I‟m not going to make you sit here and make you 

 do 100 subtraction problems. 

 C: And that‟s one of the ways of doing it and I would like to know if there‟s another way.  

 Try and work through that…I still feel like there‟s some relationship with our powers of 

 10s that goes on here. 

 

Figure 156: Chris' work on Question 2a (1 of 2) 

Chris gave that some thought and an idea came to him.   
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 C: Cause maybe, even being able to write this as 10 times a plus b minus 10 times b plus 

 a.  Right?  So that‟s –9b and that‟s –9a, so no matter what you plug in, that‟s what 

 happens.   

 N: …Ok, so that gives you a multiple of 9 how?  

 C: Well, once you factor out a nine from this and get a – b.  And so… 

 N: And that‟s always a multiple of nine? 

 C: Yeah.  So this is a true statement.  In your equation, 10a + b – (10b + a), and so I just 

 did that math and got 9 times (a – b) so no matter what a and b you plug in, it‟s going to 

 equal that times 9.  And therefore, it has to be a multiple of 9.  And then I like put a 

 little box and fill it in. 

 

This work was done on the bottom of Figure 156.  I asked Chris to write up a cleaner version of 

this argument and he did.  During the next interview, he brought back the proof in Figure 157. 

 

Figure 157: Chris' work on Question 2a (2 of 2) 

 The proof Chris provides here is semantic.  The proof he ultimately gives depends on the 

fact that our number system is base 10.  He gets this idea from considering what happens to the 
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difference ab – ba when a is increased by 1.  Once he understands the way the expression can be 

rewritten [as )10()10( abba  ], he is able to turn his understanding into a proof.  This is the 

definition of a semantic proof. 

 Like with Question 1, Chris is displaying a transformational proof scheme here.  Strictly 

speaking, nothing in his final proof is transformed for the sake of the proof.  Last time, his proof 

relied on considering what happens as one of the objects involved was changed.  Here, this sort 

of reasoning helped Chris come to his proof.  Even so, his proof depends on anticipatory 

algebraic manipulations.  This sort of formal proof that does not rely on previous mathematical 

results is evidence for a transformational proof scheme. 

 

Question 2b 

If n is a positive integer, then n
3
 – n is a multiple of 6.  

 Chris began this question by looking at examples, and it did not take him long to decide 

what method he was going to employ.    

 C: So, as I always do, I like to start with a base case (example). And if possible, man, do I 

 love doing proof by induction.  I really took to that one.  I‟ll do n = 2, 8 – 2 = 6.  I just 

 wonder if I can do a proof by exhaustion (induction).  (Chris tries n = 3, mistakenly gets 

 18.) The other thing that I‟m noticing is that our result is 6 times n.  No, 6 times n – 1, oh 

 wait, no that doesn‟t work, that‟s because I messed that up.  So that doesn‟t work.   

 

Chris tried a few more examples to see if there was a pattern in the number that 6 is multiplied 

by based on the original n.  “So, that doesn‟t seem to be leading anyway productive.  So I really 
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would like try a proof by induction for this.”  His work on this problem begins in the figure 

below.  

 

Figure 158: Chris' work on Question 2b (1 of 3) 

 Chris then proceeded to complete the induction argument.  Unfortunately, he simplified 

too much and was unable to use his induction hypothesis.   

 C: And I know that in a proof by induction I am supposed to go back and use my 

 original…typically… 

 N: So is there anyway you can see to do that here? 

 C: I mean if it did happen somewhere, I feel like it would be here at this line.  And we 

 want n
3
 – n.   
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 N: Ok 

 C: Well, if I go…back here maybe…because I‟m not getting it here.  I can see that much.  

 This was just a bust.   

 

 Next, Chris got a new sheet of paper and restarted (in Figure 159 the inductive step at the 

point he thought he would be able to use the induction hypothesis.   

 

Figure 159: Chris' work on Question 2b (2 of 3) 

 C: Nice, well this is going to be 3n
2
 + 3n.  And so I know that this (n

3
 – n) is going to be 

 a multiple of 6, I showed that by the base case.  So now I need to show that this is going 

 to be.  So if I pulled out a 3n, I got (n + 1).  But, well when n is 1, that‟s 2 and when n is 

 2, that‟s 3… So 6 times anything is obviously, 2 isn‟t the best one pick, but….this is 9, 

 times 4 and that‟s 36 which is still a multiple of 6. 

 N: So it still works of n is 3. 
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 C: Right.  If n is 4, 12…I just don‟t know why it works.  Maybe if I just back up to 3…so 

 this is where I am…[3n(n + 1)]  I‟m trying to think of any properties, anything I could 

 use.  3(n
2
 + n) is the same thing as 3n(n + 1), so obviously everything‟s divisible by 3, 

 but I have to show that it‟s also divisible by 6.  And really like to, if I could pull a 2 

 magically out of here…that would be fantastic.   

 

Chris had hit upon what it would take to finish the problem.  Knowing what he was going for 

made getting to the end fairly quick: 

 C: Well, if started…can it have to do with odds and evens, maybe? 

 N: Maybe 

 C: Because if this is, let‟s see, if n is 3, then that‟s odd and that‟s going to be an even.  

 So that‟s always… 

 N: So if n is odd, n + 1 is going to be even and you can pull a 2 out of that even.   

 C: Right, and if n is even, n + 1 is always odd, then you‟re always going to get an even, 

 right? 

 N: Yeah, if n is even, n + 1 is odd.   

 C: But no matter what, this quantity, n(n + 1) is going to be even. 

 

I asked Chris that he write up the proof formally and he did so.  His proof is in Figure 160.   
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Figure 160: Chris' work on Question 2b (3 of 3) 

 The proof Chris presents is a process procedural proof.  He completes a proof by 

mathematical induction, so Chris is following prescribed steps.  The steps he completes are not 

all laid out for him.  Rather, Chris views the method as a few broad goals:  

 C: It makes sense.  You‟re using integers, so if you can show that it works for the original 

 integer, and then show for the n + 1 term, then it‟s proven. And so that, to me, seems like 

 an easy way to do it.  If you can get that base case substituted in, is where I‟ve struggled. 
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He is able to articulate those broad goals and recognizes the difficulty that sometimes is involved 

with performing the inductive step.  If every step had been laid out for him, this difficulty would 

not exist and Chris‟ proof would have been considered an algorithmic procedural proof. 

 While Chris was able to describe the steps of induction and he had a good enough 

understanding to complete the proof, there is evidence that he had not completely interiorized the 

method at this point.  The first example of this is in his choice of base case.  Even though he 

mentions that you have to start with the “original integer,” Chris does not do so.  In fact, he 

makes this mistake first in the interview and then later in the formal write up.   

 Another place a potential misconception appeared to arise during the reflection.  When 

discussing his mistake of simplifying too far originally in the inductive step, Chris said  

 C: So instead of simplifying the 3n and the – n, I just put the n
3
 – n together and so the 

 next thing I did, I knew that that, from our base case, was 6y, or 6x I guess is what I said, 

 which was a multiple of 6.   

 

He attributes the ability to use the induction hypothesis to the “base case.”  I think it is possible 

that this was merely a slip of the tongue and he meant to say induction hypothesis.  However, I 

am not sure of this and when this is taken together with the fact that he uses n = 2 as his actual 

base case it suggests that Chris had not yet gained a complete understanding of induction.  Thus, 

the evidence implies an internalized transformational proof scheme.  
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Question 3 

Use the method of mathematical induction to prove that the following inequality holds for all 

n ℕ: 

2
1

2

1

3

1

2

1

1

1 n
n

 
 

 Chris started this problem by subtracting 1 from each side of the inequality and then 

proceeding right into the induction argument.   

 C: Right, so it‟s…ok, so my new statement, then is 1/2 +1/3 up to 1 over 2
n
 is greater 

 than or equal to n/2.  So, base case, set, just set n = 2, make life easy.  So you get 1/2 + 

 1/3 + 1/4, better be equal, greater than or equal to 2/2, which is one?  Right?  1/2 + 1/3 up 

 to 2
n
, n = 2, 2

2
, so 4.  Ok, so put them all over 12, 6/12 + 4/12 + 3/12, is absolutely 

 greater than 1, 13/12.   

 

Figure 161: Chris' work on Question 3 (1 of 5) 
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After stating his induction hypothesis, Chris began to focus on how he could use it. 

 C: .  So that, here I‟m going to get my n/2, and here I‟m going to get up to, because I 

 think I can rewrite this, 1/2
n+1

, that‟s what I have to figure out how to rewrite, because 

 this is greater than or equal to n/2 plus 1/2, and there‟s my original n/2.  So if I can get 

 this to say …ok, so I have to mess with 1/2
n+1

, figure out how to write that as a 1/2
n
 plus 

 something.  Because that‟s my original…ok… 

 

Chris saw how where the right hand side of his induction hypothesis could be found on the right 

hand side of the inductive step, but the left hand side was not working as well.  Part of the 

problem he had due to the fact that Chris was not sure how the left hand side changed as he 

moved to the n + 1 case.  He was able to fix this, though, when he looked at the difference 

between 1/2
5
 and 1/2

6
, in Figure 162. 

 C: Oh, yeah, that‟s right.  1/2
n
 times 1/2.  So, what I‟m thinking is, so the term…except 

 for it‟s 2
n
, so I‟m trying to think of what‟s the term before 1/2

n+1
, and it‟s not 1/2

n
.  

 Because, it‟s squared, so it‟s actually an odd integer in between those two.  Because if 

 this was 5, this, well, there‟s a bunch, actually, right?  Because this is, if n is 5, 

 1/2
6
…and so 1/2

5
 is quite a bit back, because this is 32 and this is 64, so there‟s a whole 

 mess of integers in between there.  1/33, 1/34 all the way up to 1/64.   

 

This new understanding led to the revised inductive step, also in Figure 162, and a clearer picture 

of what he had to do to finish the problem: 

 C: So I have that this is greater than n/2.  So I have to show that 1/(2
n
+1), not in the 

 exponent, up to 1/2
n+1

, in the exponent, is greater than or equal to 1/2.  Because I know 
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 that this term is greater than or equal to n/2 by my base case.  And that term is 1/2 up to  

 1/2
n
. 

 

Figure 162: Chris' work on Question 3 (2 of 5) 

 Chris then thought back to geometric series, which I gave him the formula for once he 

asked, but he dismissed this idea because successive terms did not have a common ratio: 

 C: Ok, not what I have… Yeah, that part doesn‟t stay fixed, at least I‟m not…1/5 times r 

 to get to 1/6, so r here is 5/6 and r
2
 is 25/36, multiply that by 1/5, just see if this 

 works…and it doesn‟t.  5/36 is not the next term.   
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 Chris finished the interview by doing a little more playing around with the sum (he 

considered reciprocating both sides of the inequality and realized he could not).  I asked him to 

continue to work on the problem and bring back his work and he said he would.  He left 

confident in at least some of what he had done. 

 C: I feel comfortable up to this step.  I feel confident that this is my new thing, that if 

 could just show that 1/(2
n
+1) up to 1/2

n+1
 is greater than or equal to 1/2, that would 

 show it.  But I just…don‟t quite see it. 

 

 The work Chris brought back is in Figure 163.  He started the problem out basically 

where he left off.  This time, once he applied the induction hypothesis, he tried to use integration 

even if he could not articulate how integration related to the problem initially.   

 C: Well, then I knew this was the function 1/x because it goes, I mean at least I thought it 

 was, like, 1/2, 1/3, 1/4, 1/5, because you‟re using those integers, that led me to believe 

 you could use the function 1/x… 

 N: Right, ok 

 C: …to explain it and then it‟s just a matter of evaluating because, you know, the area 

 under the curve will gives us this value of what is 1/x from 2
n
+1 to 2

n+1
…Yeah, I mean, I 

 guess my reasoning was…so the area under the curve, you know, I  don‟t know.  I guess I 

 had thought about it that there were just these little boxes with fixed width, you know, the 

 definition of the integral, they‟re getting smaller. 

 N: Yeah 

 C: And I just thought that…I have no good answer.   
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Figure 163: Chris' work on Question 3 (3 of 5) 
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 Regardless of why Chris chose to use integration, when he got to the point of integrating, 

he mistakenly took the derivative of 1/x.  The rest of his time out of the interview was spent 

manipulating his evaluated integral to try to show that it was greater than or equal to 1/2.  I 

pointed out to Chris that the anti-derivative of 1/x was ln x and he did the work in the next figure.   

 

Figure 164: Chris' work on Question 3 (4 of 5) 

 Chris got to the end of his work here and was not sure where to go next.  I told him that 

he could have more time to work on the problem if he liked, but he decided he would rather talk 

through the solution to the problem with me.  The work we did together is in Figure 165. 

 We set the limits of integration so that the integral would be an underestimate of the sum 

12

1

22

1

12

1






 nnn

  and hoped that it would still be greater than 1/2.  After taking the  
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Figure 165: Chris' work on Question 3 (5 of 5) 

integral and exponentiating each side, we showed that this was the case because the resulting 

function of n was strictly increasing (checked using the derivative) and already large enough 

when n = 1.  Thus the proof was complete. 

 Because Chris did not complete the proof on his own, I will classify the work he did 

alone.  The classification does not change, though, and because he was working on an induction 

proof, this is a procedural proof.  Like with Question 2b, Chris does not follow a strict set of 

procedures.  Instead, he sees the few general steps involved in induction and therefore his proof 

attempt is classified as a process procedural proof. 
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 Also similar to the last problem, Chris gives evidence that he has not fully interiorized the 

method of mathematical induction.  The most obvious support of this claim has to do with, again, 

his choice of base case.  Like last time, Chris decides to use n = 2 as his base case.   

 C: So I did my base case, n = 2, and that was 1/2+1/3+1/4, which ended up being 13/12 

 which is greater than 1, because 2/2. 

 N: Right, ok 

 C: So now… 

 N: Is there any reason why you chose 2 instead of 1? 

 C: No, I assumed 1 was going to make it equal because it‟s just 1/2 = 1/2. 

 N: Sure.  So you thought it would be just a little more interesting if you did n = 2?  

 Because equality still satisfies this right? 

 C: Right, yeah, it was more for my own… 

 

Even though Chris says he considers the n = 1 case, he still does not choose to use it as his base 

case.  He uses 2 because he thinks it may aid his understanding.  However, even after he has the 

understanding of how the sum is acting (between interviews) he still uses n = 2.  The fact that he 

sees the base case as flexible reveals that he still has an internalized transformational proof 

scheme when it comes to induction. 

 The other issue that arose last time dealt with his wording when referring to the induction 

hypothesis.  In this case, it is not a misconception but rather an example of misused terminology.  

During the reflection period of the first interview, Chris was describing his efforts to separate 

1/2
n
 from 1/2

n+1
: “Because I want this 1/2

n
, I want, I have to use my base case.”  While it appears 
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as though Chris has one misconception where he was thought to have two, he still does not 

regard the base case properly and displays an internalized transformational proof scheme.   

 

Question 4 

Examine the following proof by contradiction:  

Prove 01   

Suppose 01  , then 011  .  This implies 01 , which is absurd.  Therefore, 

01  . 

Prove 01   

Suppose  01  , then 01  .  This implies that   01
2

 , so 01  which is, again, 

absurd.  Therefore, 01  . 

Why is a proof by contradiction not working here?  Explain the flaw (if any) in the proof. 

 Chris first saw this problem on the take-home exam he completed while taking MATH 

305.  The response he gave on that test is in the figure. 

 

Figure 166: Chris' previous work on Question 4 
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Chris‟ answer is that because i is not a real number, it can not be handled with the same rules as 

real numbers.  He also confuses squaring a number with taking the square root of a number, 

saying squaring something makes it “plus or minus that something.”  

 During the interview, Chris found what he eventually came to consider the cause of the 

error he found on the midterm.   

 C: This part, this greater or equal to 0 is using the, in my mind, the real number line and 

 you have to, for the imaginary number line, to integrate the imaginary numbers into the 

 number line I think is where I would find the fault. 

 

He mentioned this before even before he read the problem.  After reading the proof, he did not 

change his tune: 

 C: Why is a proof by contradiction not working here?  Find the flaw in this proof…I 

 don‟t know if I see a flaw in the proof, but again, I would say… 

 N: Sort of mechanically you mean?   

 C: Right, the algebra, I don‟t see “Oh, this is wrong so this is why this is not…” 

 N: Right, right 

 C: So I don‟t see that. 

 

After talking through a few of the steps in the proof to make sure he understood them, Chris 

went back to the mistake he saw originally: 

 C: So to say that something‟s greater than or equal to 0, if it‟s not on the number line, 

 it couldn‟t be greater than or equal to 0.  Or less than zero because in my mind the 

 number line is deciding the greater than or equal to 0 part. 
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 N: Ok 

 C: And so because I can‟t place, you know, if you told me to put square root of -1 on the 

 x axis, I would easily be able to say it‟s greater than or less than. 

 N: Sure 

 C: But it doesn‟t (exist) on that axis, it doesn‟t exist on that line, that number line. 

 N: Right 

 C: So if you can‟t place it there, then why would it have to follow the rules of being 

 greater than or less than 0? 

 

 Because i is not on the real number line, it is not a real number and therefore need not 

follow the rules of real numbers.  Chris then traced the main flaw back to the assumption that put 

i on the real line in the first place. 

 C: Now my answer would be, you know, if I had to write down “explain the flaw” or why 

 the proof by contradiction isn‟t working, it‟s that our very first step of having to suppose 

 something is on this number line that‟s greater than 0, you know, that‟s how it‟s defined, 

 right, that a greater value has more, whatever, units I guess, to it, I don‟t know… 

 N: Yeah, more magnitude or to the right of 0. 

 C: Yeah, I like that the most, to the right of 0, but you can‟t even suppose that because it 

 doesn‟t, it‟s not placed on, even adding it to the field and using it, it still isn‟t placed on 

 our graph. 

 

 Because Chris does not create a proof here, there is no proof attempt to classify.  

However, this interview does make clear that Chris has a deductive view of proof; because the 
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beginning of the proof is flaw and the rest of the proof is deduced from that, the rest of the proof 

has no reason to be valid.  Chris does not allude to any previous results here and does not 

mention the necessity of relying on undefined terms or axioms so his scheme is not axiomatic 

here.  Also, he does not do any manipulations that would be typical of a transformational proof 

scheme.  This question did not yield evidence for the transformational or axiomatic proof scheme 

but it does support the idea that Chris has a formal view of proof.  Thus, he is displaying the 

more general analytic proof scheme here. 

 

Question 5 

 Like with the last problem, Chris did not attempt to create a proof on his own during the 

next interview.  Instead, the interview was used as a debriefing session to look back over the first 

half of the study.  Even though Chris did not complete a proof, it did serve to reinforce some of 

the observations made thus far in the study. 

 When discussing the progress he had made during the semester, Chris mentioned being 

better able to judge the level of rigor in the proofs he was attempting.   

 C: I have definitely gotten to the point this semester, where I wasn‟t at before, where 

 when before I say something in mathematics, I think about it in every case.  You know, 

 before I say that this is what it is. 

 N: Sure, yeah.  

 C: So… 

 N: I think that‟s one thing you learn when you‟re doing proofs, just how technical and 

 rigorous you need to be.   

 C: And take that step back. 
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 N: And really decide what you want to say? 

 C: Yeah, is this a true statement?  Can I do that?  Stuff like that. 

 

This meshes with the fact that in every interview so far, Chris displayed an analytic proof 

scheme.   

 Most often, the analytic proof scheme Chris showed was transformational.  One of the 

aspects of this proof scheme is the use of anticipatory actions in the completion of a proof.  It is 

clear Chris recognizes this aspect of constructing a proof in this following exchange, which 

occurred after I asked him what he thinks it takes to successfully complete a proof: 

 C: Having the skills.  Having that tool kit, I know (a professor) was always talking 

 about that, wasn‟t he always talking about a toolkit, the skills you need? 

 N: Yeah, I think he‟s talked about that.  I mean, it‟s a pretty common analogy. 

 C: Right, and I think that‟s essential for a lot of them but also having this idea of what‟s 

 the final goal.  Having different ways of solving it.  You know, like when you and I were 

 sitting down and you‟d be like “Ok, what‟s the last thing we want?”  Ok, so that‟s our 

 goal, so let‟s work backwards, how can we build up to this.  Something like that.   

 

Chris sees knowing where you are going as necessary to completing the proof because it allows 

you to perform the steps needed to get there.  In Chris‟ mind, this is not enough, however; 

understanding the problem is necessary as well. 

 C: Yeah, to get that complete, correct proof you have to have that background knowledge 

 on the subject alone, to go along with those tools, but to even, you have to know what the 

 proof is even asking. 



496 

 

 N: Sure. 

 C; And then the skills come in and those tools come in on how to get to our final goal.   

 N: Ok, so I guess I‟d kind of characterize that as tools and the thorough understanding of 

 the problem, both what it‟s starting out as saying and where you have to get. 

 C: Yeah, definitely, without that stuff, and a lot of times (a professor) would just be like, 

 he‟d seem so frustrated because we wouldn‟t know his next step and it‟d seem so straight 

 forward to him.  And maybe now looking back it was straight forward, but until you 

 know where, he knows where he‟s going.  He knows his plan.  Of course he knows his 

 next step.  But when he asks us for his next step, we‟re always like “I don‟t know, how 

 about this” or “you could try this.”  But you gotta have that plan, you gotta have that “Ok, 

 here‟s where we are, this is what I want you to show” and then it goes into “Ok, I can 

 show that because I have the toolkit to show.‟ 

 

 That Chris views gaining an understanding as necessary first also matches well with what 

he did during the first half of the study.  At this point, half of Chris‟ proofs have been semantic 

and his other attempts have featured a lot of exploration aimed at figuring out how to finish the 

problem.  When I asked Chris what helped in completing a proof but was not necessary, he 

mentioned the background to understand the problem.  The purpose for this background was to 

attack the problem.   

 C: (E)xploration is very much so why you need the background.  You can  not explore a 

 problem without knowing what the problem means and the different parts.   

 N: Ok 
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 C:  Way before you ever go towards proving it, you have to, you know, “Does this make 

 sense in my mind?” 

 

This waiting for an understanding before turning to a proof is a hallmark of a semantic proof 

attempt.  “Well, you‟ve seen, I always draw a picture, I always just try to figure stuff out for 

myself, (that) is my essential first step in everything.” 

 As I mentioned above, this interview reflects some of the observations seen earlier in the 

study.  Chris sees proofs as coming from the understanding of problems (which is why he 

provided semantic proofs) and realizes that proofs depend on taking purposeful actions towards a 

known end (echoing his transformational proof scheme). 

 

Question 6 

Prove that n ℕ,  3nn   (mod 6). 

 Chris and I began the next interview discussing modular arithmetic but he was fairly 

familiar with it from seeing it in MATH 305.  To remind himself, what it means for n and n3 to 

be congruent mod 6, he writes r
n


6
and r

n


6

3

 (see Figure 167) 

  After that, he noticed that it was similar to Question 2b.  “Ok…I don‟t know, I was just 

thinking, maybe, this n and n
3
, you know, that‟s come up before with the, if you put them on the 

same side, that n
3
 – n, we‟ve seen that before.”   

 Despite this recognition, Chris starts over with this problem: 

 C: So I guess, the way I normally, this has like, induction, for me, written all over it.   

 N: Ok 
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 C: But I don‟t know necessary whether a direct proof or whether induction would be the 

 way to go. 

 N: Ok 

 C: So if n = 2, then this would be 2 on this side…is that congruent to 2
3
, so mod 6…so 

 that would, because that‟s 2…that‟s 8, so if this is 2 and 2, then it‟s congruent mod 6.  So 

 I‟m thinking, so I guess I‟ll just do induction and see where that puts me. 

 

Figure 167: Chris' work on Question 6 

 Chris then proceeded to expand out (n + 1)
3
 and use the induction hypothesis to arrive at 

the equation 1 = 3n
2
 + 3n + 1.   



499 

 

 C: So I don‟t know if this is going to get me anywhere.  I‟m trying, I can‟t factor this… 

 So I don‟t know if this is going to get me anywhere.  I‟m trying, I can‟t factor this…No 

 matter what, we‟re multiplying 3 by an even, right, because we have 2 consecutive terms. 

 N: Right 

 C: So no matter what, this is a multiple of 6.  

 N: Right, ok 

 C: But whether that means it‟s not going to have a remainder…well, if you‟re taking 6 

 times an integer, yeah, I don‟t know, let‟s see.  So for example, if we did 2, that‟d be 6, 

 so that‟s 6 times 3, so that‟s 18, which is 0 mod 6.  If we did 3, that‟d be 3 times 3 times 

 4.  Because everything‟s a multiple of 6, it‟s not going to have a remainder, so this is a 

 true statement.   

 

Chris was still a little unsure that he had completed the proof, but soon he had talked himself into 

it. 

 C: See, I‟ve never really done mod things before, I‟ve never actually done in practice, or 

 in proofs before, I only know the definition.  So I wouldn‟t know, maybe, how, 

 necessarily, to write this up…But I think I‟ve proved it.  Because this is a multiple of 6, 

 so it‟s going to be 6 times some integer, it‟s going to equal, you know, 3n times n + 1. 

 N: Right 

 Because this is, one of these 2 has to be a multiple of 2 because it‟s 2 consecutive 

 integers. 

 N: Right 
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 C: And therefore it‟s not going to have a remainder, and so that‟s what this is saying on 

 the other side.   

 

 The proof Chris did for this problem is a process procedural proof.  He used 

mathematical induction and, as the other times he did, does not see the process as the following 

of a number of set instructions.  Instead Chris sees the method as a few general guidelines.   

 Identifying Chris‟ proof scheme here is not as straightforward.  One on hand, he still uses 

n = 2 as his base case.  However, the reflection period of the interview shed some light into this 

choice. 

 N: Ok.  Then you tried it for an example.  So when you tried it, was that meant to be a 

 base case for your induction argument? 

 C: Yeah 

 N: Ok, it wasn‟t a “Ok, let me see if it actually does work”? 

 C: It went for both. 

 N: Ok 

 C: It worked for both.  I knew 1 worked too.  

 

His choice of n = 2 was influenced by more than just how it would contribute to a proof by 

mathematical induction.  It also helped him get a feel for the problem.  This might have been part 

of why he chose n = 2 as a base case previously.  However, in the past he continued using that 

value even after he knew how to complete the problem.  Also, in this case Chris mentions the 

fact that it works for n = 1 without prompting.  It is possible that my asking about it before 

prompted him to address that.  This seems unlikely, though, because that interview occurred over 
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two months prior to this one.  It seems more likely to me that at some point in between the two 

interviews Chris gave consideration to the base case‟s role in proofs by induction and saw that it 

was necessary to start at n = 1.   

 At this point, I regret not asking Chris to write up a formal version of this proof.  That 

way, I could see if he used n = 1 as a base case once exploring the problem was no longer an 

issue.  As this is not the case, I speculate that Chris would have and therefore identify Chris‟ 

proof scheme as interiorized (rather than internalized) transformational.   

 

Question 7 

Suppose that A is a set containing n elements.  Find the number of subsets of A and prove that 

you are correct. 

 Chris started this problem by making sure that he understood some of the basic ideas in 

set theory, like the fact that the empty set and the original set A are both considered subsets of A.  

I also told him that I only wanted to consider finite sets.  From there, it did not take Chris long to 

come to a formula (see Figure 168). 

 C: Ok…so, I mean, the systematic way to do it is to, is that each element could be a 

 subset.  So, you have A, you have the set A, you have the null set, you also have n…and 

 then I assume you just have nC2 for all the subsets that contain 2 elements from n.  

 Likewise, nC3, nC4, dot dot dot.  nCn is A, so I guess the last thing you would do is 

 nC(n–1)…Ok…It seems like a lot of work, I‟ll be honest.  So I think what you‟d have to 

 do is, you would add all of these things together. 
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Figure 168: Chris' work on Question 7 

Chris thought that the answer he was looking for would be more concise than this, so he looked 

at the choose function to remind himself how it works.  He also wrote his formula in summation 

notation and turned his focus to a proof.   

 C: So now, I mean, I‟m confident that this is all…the subsets. 

 N: Ok 

 C: Now the fun part and why we‟re here, the prove part.  Right?  So typically, when you 

 give me an n, I want to do a proof by induction.   

 N: Ok 
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 (thinking) 

 C: However…I don‟t know what the hell I‟d do a proof by induction about.  Because I 

 don‟t have this equaling something, so I don‟t think that‟s the way. 

 

Chris also considered listing all terms in the sum explicitly, but did not think it was feasible.  He 

tried to use the symmetric nature of the choose function (nC0 = nCn, and so forth) to help with 

that, but I mentioned the possibility that n was odd.  

 Since he did not know where else to go, Chris decided to try it for a few values: 

 C: Ok, so this is all the subsets of A…I‟m just going to plug in a number and see what 

 that does.  Kind of like a base case, you know.  So if n = 4, maybe I‟ll see if there‟s a 

 pattern, who the hell knows.  I‟ll do n = 2, 3 and 4.  So if n = 2, you have 2C0, 2C1, 2C2, 

 so that‟s 1, 2C1, that‟s 2, plus 1, so that‟s (4).  If n = 3, 3C0…3C2, 3C3, so this goes 1, 

 this 3!/2!, so that‟s 1 + 3 + 3 + 1.  Well, so far, I mean, you‟re looking at Fibonacci 

 sequence, or Pascal‟s Triangle I mean.   

 N: Ok 

 C: So if that keeps up…then I‟m going to go with something along those lines. 

 

After adding up his sum for both 3 and 4, he noticed that he was getting successive powers of 2.  

I reminded Chris that during MATH 305, it was proved that the rows of Pascal‟s Triangle do 

indeed sum to powers of 2.   

 C: So if I, so this isn‟t what I‟m trying to prove?  Because this is known. 

 N: Yeah 
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 C: So I have to show that this defines all of the subsets, more so than what I‟m doing 

 here? 

 N: Well, I don‟t know about more so, I guess.  I mean, I guess what I‟m probably asking 

 you is…Once you‟ve gotten to this point, you‟ve made the claim that the number of 

 subsets is this sum. 

 C: Right 

 N: So, at this point you have to decide if you‟ve proven it or if it requires more proof.  

 Right? 

 C: Right 

 

Chris then described the reasons why he had convinced himself that his sum gave the number of 

subsets.  I then reiterated the question I asked him above: 

 N: Right.  I guess the question‟s become does the argument you‟ve just provided, does 

 that constitute a proof?  And if not, what more is required to make it a proof? 

 C: A contradiction [laughs].  Ok, so my 2 arguments were subsets must contain m 

 elements such that m is an element of the positive integers, m must be, it‟s bounded by 0, 

 positive integers, up to our n.  And it has to be an integer, ok?  And my other argument is, 

 then, that the, I don‟t know what that was called, the choose function…gives all possible, 

 well not gives all possible… 

 N: …gives the number of all possible. 

 C: ..function gives the number of possible combinations within each subset.  So as long 

 as I list all possible subsets, and this function gives me all combination within each 

 subset, then I should have given, therefore there‟s the total number of subsets. 
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 N: Ok 

 C: And I don‟t see, and you‟re going to be the one that tells me, where there would then 

 me a hole in my argument. 

 N: Ok, so like, if this was a homework assignment, you would just write up this argument 

 nicely and hand it in? 

 C: I‟d probably throw this guy (the formula on the top of Figure 168) in there 

 somewhere…And therefore this equation gives all possible m subsets as well the number 

 of combinations within each subset, is how I would end it. 

 

 The proof Chris provides here is semantic.  Although he did not see it as a proof right 

away, his understanding of the problem is exactly (not merely the basis for) his proof.  

Determining the proof scheme Chris displays here is nearly as straightforward.  His proof is 

certainly formal, based on his two main starting points and deducing from there without using 

any previous results (although he does acknowledge that the properties of the Pascal‟s triangle 

have been proven).  This suggests a transformational proof scheme.  The idea that Chris displays 

a transformational proof scheme comes from the way he eliminated potential proof methods.   

 C: I‟m definitely looking at the outcome of the proof before I ever dive into it, you know 

 what I mean?   

 N: Sure 

 C: Especially with contradiction, like where is your contradiction going to come from? 

 N: Or, where is the induction hypothesis going to be used. 
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 C: Right, and that‟s the thing that I knew there was no way I could have done that 

 because 1, it didn‟t equal anything and 2, there‟s no way of breaking up (n+1)C0 into 

 nC0.   

 

This sort of anticipatory thinking is typical of a transformational proof scheme. 

 

Question 8 

Prove that the cube root of 2 is irrational using a proof by contradiction. 

 Like with Question 4, Chris first saw this problem on the midterm he took in MATH 305.  

The response he gave there is in the figure. 

 

Figure 169: Chris' previous work on Question 8 

On the midterm, Chris did not provide a correct proof.  After assuming 3 2 was rational, he 

deduced that the denominator, q, must be even.  This was an apparent contradiction because 

initially q could be even or odd.   

 When Chris sat down to try this problem during the interview, I mentioned to him that 

when he saw the problem originally he had access to the proof that 2 is irrational.  I also 

mentioned that if he wanted, he could flip the page over and do that proof first as a refresher, 

which he did.  This proof is in Figure 170.   
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Figure 170: Chris' work on Question 8 (1 of 2) 

 C: I remember the big thing is like that this is a reduced fraction…I know the 

 contradiction‟s here…p
2
, let me think about this, so p

2
 over q

2
 equals 2…which means 

 that p
2
 is even, right?  I know that I‟m supposed to get that this is some how even over 

 even…which says that it can be reduced and that was like where…because if p
2
 is even, 

 p‟s even.  So I need to get it to say that q is even…Well, I have that p
2
 is even and since 

 p
2
 is even, then so since p

2
 was even I wrote, you know, p could be equal to 2m.  Since 

 p
2
 is even, then p is even. 
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 N: Right 

 C: So you could write p as 2m, and if I plug 2m into this equation, I get 4m
2
 equals 2q

2
, 

 which says that 2m
2
 equals q

2
.  Which, again, means q2‟s even because it‟s a multiple of 

 2… Under the same argument that if q
2
 is even, then q is even. 

 N: Ok…so yeah, you‟ve reached the contradiction you wanted to reach. 

 C: Right, which says, then, that both p and q are even so you can factor out a 2, so there‟s 

 your contradiction.   

 

 Chris had finished the 2 proof and went back to considering the proof for 3 2 .  “So…do 

the same thing, cube both sides, 2 is equal to p
3
 over q

3
…And then the same argument, it‟s easy 

to see that p
3
 is even.  Now this seems so straight forward.”  He worked his way through most of 

the problem (down to 33 4mq   in Figure 171) and looked back over his work and realized there 

was something that needed justification: 

 C: (T)hat‟s the place where I‟m stuck at, is just whether, is p
3
 even implies p even.  

 Although I know it is, is that what I then have to prove.  So if p is even, p could be 

 written as 2m.  So then that same argument, 8m
3
…q

3
 is 4m

3
, so q

3
 is obviously even as 

 well.  So, again, going through this circular argument, if q
3
 even gets to imply q even…   

 

Chris did not feel comfortable with the proof because he was using a fact that he did not know 

how to proof.  This was not a concern with the 2 proof because “I knew this was true and I 

knew this wasn‟t my main problem.  So I didn‟t want to spend a bunch of time working on it.”   

 Chris did, however, spend most of the rest of the time working on this issue.  He began 

by showing that an odd number cubed was still odd, unknowingly proving what he wanted to via 
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contrapositive.  The rest of his scratch work trying to complete this step is in Figures 170 and 

171. 

 

Figure 171: Chris' work on Question 8 (2 of 2) 

Chris tried to complete his lemma with contradiction and other algebraic manipulations and 

eventually I explained that he had already finished the proof and reviewed proof by 

contrapositive with him.  Once he saw that, he was happy with the proof. 

 C: But…showing that something works like this (n odd implies n
3
 odd) without the 

 reasoning here (bottom of Figure 171)… 

 N: Right 

 C: …was what I needed to feel comfortable with this proof. 
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 The proof Chris provides is an algorithm procedural proof.  He recalls the proof that 2  

is irrational and applies the same steps with little adjustment.  Clearly, the steps Chris follows are 

meaningful for him as he spends most of his time in the interview verifying something he 

intuitively believes anyway.   

 Chris‟ proof scheme here is transformational.  His proof relies on deducing that p is even, 

replacing it with 2m and deducing his contradiction from there.  Like with many of Chris‟ proofs, 

he keeps his goals in mind while working on this problem.  He remembers the contradiction he is 

to eventually find and works towards that goal.  He even mentions that if he were to write up the 

proof formally, he would pay even more attention to anticipatory actions: 

 C: (T)hen you can write down the proof of all these little sub, lemmas or whatever the 

 hell.  Like this would be, this is the perfect lemma to do before you do this proof.   

 N: Right 

 C: Then you can just say „By lemma 1A…‟ 

 

Question 9 

 Like Question 4, I had Chris evaluate a proof.  This time, I gave Chris a version of 

Cantor‟s Diagonalization argument.  Since he does not attempt a proof, there will be none to 

classify.  As usual, the interview will be used to look for insight into Chris‟ proof scheme.   

 Chris needed to read through the proof a few times and talk through it with me to really 

understand it.  His main hang up involved making he connection between B had to be in the list, 

and therefore equal to f(k), and why it could not equal f(k).   

 C: So B is just another decimal expansion?   

 N: Yeah 
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 C: That‟s it.  And so…obviously there‟s an f(k) that equals B.  There has to be an f(k) 

 that equals B. 

 N: Given our assumption that it was countable to begin with. 

 C: …and f(k), f(k) is going to be αk1, αk2 dot dot dot … equals β1, β2, but α …but β, ok so 

 I should really get those in here (write out work in Figure 172), there‟s αkk, there‟s 

 βk.  βk…absolutely does not equal αkk. … Which means these don‟t equal, so these don‟t 

 equal (crossing out equals signs from the bottom up) … So the contradiction, then, is that 

 f(k) does not equal B.   

 (thinking) 

 C: It‟s gotta be in the list somewhere, right? 

 N: That‟s what you‟d think.  Yeah, so yeah, so if you think B‟s in list somewhere, then 

 there does in fact exist a k such that f(k) equals that B.  Right? 

 C: Right, absolutely.  But that doesn‟t happen. 

 N: But that can‟t happen so therefore B can not be on the list. 

 C: And if B‟s not on the list, and B‟s in between 0 and 1, then you didn‟t count B, you 

 didn‟t include B in the set, so obviously… 

 N: …you didn‟t include B in the list. 

 C: Right.  Yeah, that makes sense. 

 

Once Chris had the argument down, he was able to articulate his trouble and sum up the proof 

nicely:  

 C: That‟s, yeah, by far the most confusing part is that there is this B that exists in this set, 

 obviously it exists in the set, it‟s made up of 1‟s and 2‟s, it‟s point 1‟s and 2‟s, and so 
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 there has to be, if we‟ve defined this set of everything, then there has to be an f(k) that 

 defines B. 

 N: Yeah 

 C: But f(k) can‟t equal B because βk doesn‟t αkk. 

 

Figure 172: Chris' work on Question 9 

 Once I was convinced he understood the proof, I asked him if he saw anything in the 

proof that was not justified but should be.   

 C: I don‟t know, just the….let‟s see…Yeah, every subset of a countable set is countable. 

 N: Ok 

 C: That‟s a, that would be a claim that I would say I believe it, you know, like… 

 

 Chris believed the proof and since he was not the one who wrote the proof, he was 

willing to believe it because it made sense to him.  He would have been more meticulous, 

though, if he would have been the one writing the proof: 

 C: If I‟ve learned anything from proofs it‟s that anything that you write down, you need 

 to be able to back up, and I‟ve written statements down in proofs that I‟ve gone home and 

 thought, you know, „I didn‟t back that up‟ and mentally I backed it up at home. 
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Chris was also able to see the implication for the rest of the proof had that statement failed: “If 

there was a hole in that statement, that‟s the key statement, you know, one of the key statements 

that, of what we‟re doing here.  Without a doubt.”    

 Chris is displaying an analytical proof scheme here.  He makes sure he understands the 

proof before he is comfortable saying he believes it.  Also, he is able to see that a flaw early in 

the proof would mean that rest of it was no longer true.  The form of the proof and the fact that I 

told him it was famous might have been enough to convince him.  If it were, that would be 

evidence of an external conviction proof scheme.  This is not the case, however, and Chris 

remains consistent with an analytic proof scheme. 

 

Question 10 

Prove or disprove: Between every pair of rational numbers that share denominators and whose 

numerators differ by 1, there is another rational number strictly between the pair whose 

denominator is less than that of the pair.   

Example, 6/9 < 5/7 < 7/9.  

 Chris started this problem by trying it for a few examples, just to see if it was going to 

work.  “I mean, if it works for 1/3 and 2/3, that‟s the minimum, and I found 1/2.” Once he was 

satisfied that it would, he turned to how he could go about proving it.  “Alright, well, I definitely 

don‟t think this is induction.  I don‟t have too many tools, but I don‟t think it‟s induction.”  

During the reflection, I asked Chris why he eliminated induction so quickly and he said that it 

was because it “just seems like a lot of variables.”   

 Since one of his main tools had been taken out of consideration, Chris went to the other 

proof method he was comfortable with: contradiction.  For this proof, he assumed that one could 
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find a rational number between the two given ones, but that this new rational had a denominator 

greater than that of the pair, 
b

a

d

c

b

a 1
  with d > b. 

 

Figure 173: Chris' work on Question 10 (1 of 3) 

 Chris did some algebraic manipulation but could not come to a contradiction as he hoped:  

“I wish that I could say that this (circled expression at bottom of 4.83.25) is negative or 

something like that.”   At that point, Chris restarted his work on a new sheet (Figure 174). 
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Figure 174: Chris' work on Question 10 (2 of 3) 

 Chris found some more examples but this time they matched the scenario he assumed to 

start his proof by contradiction.  After he found them, he tried more rearranging in hopes of 

finding something obviously false.  Because the interview was getting near its end, I pointed out 

to him that since he found such examples, there would be no way he could deduce something 

necessarily false from his assumption.  He then scrapped that assumption but spent the rest of the 

interview continuing with his algebraic manipulations.   

 C: Yeah, I really don‟t know.  This is, I‟m just doing the same s&*! in a different form.   

 (thinking) 

 C: Yeah, I don‟t know.  I don‟t know how to prove this by a direct proof. 
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 By this time, we had run out of time and began to reflect.  I asked him why, at the 

beginning of the interview, he said that 1/3 was the “minimum.” 

 C: Well, you can‟t do 1/2 to 2/2, I mean, I guess you could, but…every pair of rational 

 numbers that share, so yeah.  I mean, I guess I could have started out with 1/2.   

 N: Ok 

 C: But then…it‟s interesting, because it‟s 1/2 to 1, but a denominator less than that is 1, 

 and 1‟s never in between 1/2 and 1. 

 N: Yeah 

 C: So maybe I should have started out with that. 

 N: Could have.  I would have just asked you to add some restrictions so that it would 

 work.   

 C: Fair enough.   

 

So, Chris realized that the statement was false as written but also agreed to work on the problem 

more for the next interview.  He said he would and I asked him what thoughts he had on where 

he would go from there: “Yeah, it seemed like here (Figure 173) d was constantly b – 1 but we‟ll 

see.  You know, that was the d I chose.  I could always choose a d that was b – 1.  So I‟ll see if 

that continues to hold.”   

 When he came to the next interview, Chris had worked on the problem but did not bring 

his work with him.  He was able to recreate his proof with a little time. The work he did is on the 

left side of Figure 175.  He remembered the idea to let d = b – 1, worked with that for a bit and 

then remembered that he could also use the substitution a = c.     



517 

 

 

Figure 175: Chris' work on Question 10 (3 of 3) 

 C: Right, I‟m pretty sure I just said “Ok, then there‟s an integer that lies, that there‟s 

 room for an integer to lie in here. (see circled „ab‟)  Oh, wait, or did I just say that this is 

 a true statement? … Right, so a, b has to be greater…than a (+) 1, which makes sense 

 because b is greater than a because I mean…if you‟re looking in between, if you‟re 

 looking in the range 0 to 1, then it‟s very clear.   
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Chris thought that he had finished the proof given his restriction that the rationals be strictly 

inside the unit interval.  Then, I talked through with him how to extend the result outside the unit 

interval, provided neither of the endpoints of the inequality were an integer.   

 The proof Chris provides here is a syntactic one.  It is logically deduced and does not 

follow any prescribed steps.  However, it is also not based on any intuition into the problem.  

Instead, the idea to restrict the numerator and denominator was based on the observation of 

examples.  He did not know why such a restriction would work, only that it seemed to.  Then, 

once he had that guess, Chris was able to come up with a proof.   

 The way Chris turns his guess into a proof displays a transformational proof scheme.  His 

proof is composed of algebraic manipulations.  While he likely did not know exactly where the 

operations he performed would lead, he did do them hoping to arrive at an obviously true 

statement which he eventually did.  This is not the anticipatory action that would constitute a 

transformational proof scheme alone, but this combined with his algebraic manipulations does. 

 

Question 11 

 The interview in which Chris finished Question 10 was the last interview of the study.  

After discussing the previous question, Chris and I talked about the study overall.  Because Chris 

did not attempt a proof, there will be no proof attempt to classify.  As is usual, though, the 

debriefing session will be used to look for clues into Chris‟ proof scheme and to reinforce 

observations made throughout the study. 

 I started by asking Chris if he felt like he had gotten better at proofs over the course of 

the semester.  He said “I think so.  I like to think so.  I sure hope so.”  I asked him what led to the 

improvement he saw, and he said that practice was the biggest thing. 
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 N: Ok, so you think just, you saw more, you had to do more proofs and that‟s what led to 

 the improvement? 

 C: Yeah, yeah absolutely.  And it‟s really just…same old same old proofs I haven‟t, I‟ve 

 stayed at the same level of proofs.  I‟ve gotten better with this, I would say, the same type 

 of proofs, these number theory, these proof by induction, proof by contradiction.   

 

When Chris says that he has “stayed at the same level of proofs” he is referring to the level of 

proofs he has seen and the skills necessary to complete them, not his ability.  His focus on proof 

methods also came up later when I asked Chris what could have led to more improvement: 

 C: Well, just the skills, you got to have, the more techniques you have in math, the better 

 off you‟ll be.  Whether that means writing series, doing a better job with series, which 

 I‟m not good at, or… 

 N: Take analysis. 

 Complex or something along those lines.  I think that‟s always, it‟s like you gotta know 

 the language before you can do the work and to me going to class is the language and 

 proofs are the work.  It‟s the outcome, it‟s what we strive for.   

 N: Ok 

 C: So just the, I don‟t know how much farther my proofs could go with the background in 

 math I have.  I mean, obviously there‟s a lot of cool proofs out there, that I haven‟t done. 

 N: Right 

 C: But I believe I can do them, if they, you know what I mean? 

 N: Yeah, well, some of them, depending on whether or not the classes you‟ve taken lend 

 themselves to the methods necessary. 
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 C: Right, if I‟ve had the material, if I have the background of “Ok, well, this is our goal, 

 this is what we want, this is what you learned in class, now prove it in the general sense.”  

 

I believe this last statement refers to Chris‟ transformational proof scheme.  Often over the 

course of the study, Chris would look to the conclusion of the proof to see how to get there rather 

than at the beginning to see how to start.  Combining seeing where he needs to go with the 

knowledge of how to get there is the approach Chris takes to proof. 

 I also asked Chris if there was anything new that he implemented in his proof attempts: 

 C: Contradiction.  I feel like I‟ve gotten better with the contradiction, writing them, being 

 able to write the contradiction, that I‟ve improved on…I mean, we‟ve done contradiction 

 before, like square root of 2, but I‟ve gotten better at it…Yeah, if I can‟t do induction, 

 I‟m going to do contradiction.   

 

This matches what Chris did with the last problem, where first he considered induction as an 

option and then worked for most of the interview on trying making a proof by contradiction 

work.   

 I then asked Chris what role he saw examples playing in proof.  “I think examples 

essential, I could never imagine doing a difficult proof I‟ve never seen before without examples, 

without writing down numbers, and just go try it, seeing if it‟s true.”  He mentioned the last 

problem as time when examples led him to see how to do a proof:  

 C: Just like with this one, b – 1.  I had to do all the examples and it still took me a full 

 interview to think “Oh, b – 1, oh my god, every time b – 1.” Likewise, every time, c, in 

 my example, c over b – 1, c equaled a.   
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 N: Yeah 

 C: Would never would have seen that.  I don‟t know how you come up with that (stuff) 

 without examples.  

 

While his proof for the last problem was syntactic, I do not think it is a stretch to apply this line 

of thinking to his view of proof overall.  In much of his work, proofs came from understanding 

he gained through the use of examples which is why semantic proofs showed up so often.    

  The next question I asked Chris had to do with what he saw as necessary to complete a 

proof and what he regarded as helpful but not necessary.  

 C: So obviously the background knowledge.  If you‟re doing a complex (analysis) proof, 

 you have to know complex. 

 N: Ok.  That falls under the necessary… 

 C; Necessary, required.  Unnecessary but really helpful is similar proofs you‟ve seen 

 before.  Necessary and helpful is examples. 

 N: Ok 

 C: Absolutely, and then having these tools, having contradiction, induction, direct proof 

 tools are necessary. 

 

This last exchange sums up the things he said earlier in the interview which, in turn, dovetails 

nicely with the work he did during the study. 
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Chris’ progression 

 Below is a chart of the types of proofs Chris attempted and the proof schemes he 

displayed over the course of the study. 

Question Type of proof Proof scheme 

1 Semantic Transformational 

2a Semantic Transformational 

2b Process Transformational (Internalized) 

3 Process (Attempt) Transformational (Internalized) 

4 N\A Analytic 

5 N\A Transformational 

6 Process Transformational 

7 Semantic Transformational 

8 Algorithm Transformational 

9 N\A Analytic 

10 Syntactic Transformational 

11 N\A Transformational 

Table 9: Summary of Chris' work 

 Judging by the table, it does not seem like Chris made too much progress over the year in 

which the study took place.  The only place where there seemed to be improvement was in Chris‟ 

understanding of induction.  Even there, the progress made was minimal.  As was the case with 

others in the study, the lack of substantial progress is not a cause for concern.  Instead, Chris did 

not make much progress because he had little progress to make.   

 As he mentioned in the final interview, there is certainly more mathematics he can learn.  

However, as far as proof goes, he came into the study with a mostly analytic proof scheme.  

Also, his tendency towards semantic proofs often led him to naturally caring out the first step of 

Polya‟s guidelines to problem solving: “understanding the problem.”  Once he had the 

understanding, Chris would look to the conclusion of the proof to see how to get there (Polya‟s 

“devising a plan”) and then carry out that plan.  Although it would generally occur after the 

interviews, Chris and I would often discuss alternative proofs for the problems he looked at.  In 

addition to sheer practice, Chris mentioned in the last interview that this helped him learn. 

 N: Yeah, but I mean, the improvement you think comes from the practice? 
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 C: Absolutely. And diversity…And doing one proof three different ways, stuff like that.   

 N: Ok, yeah, we did that in here once. 

 C: I like that stuff. 

 N: Ok, so… 

 C: But even, maybe we didn‟t, you and I always did it, though.  Whenever we got done, 

 you and I always discussed, “Oh, well, we could have done it this way” or “We could 

 have done it this way” or “Oh, here‟s an interesting way” and that‟s what‟s cool, that‟s 

 what… 

 

This looking back at the problem completes Polya‟s fifth step in problem solving.  From the 

beginning of the study, Chris followed problem solving steps that I believe most undergraduate 

mathematics professors would recommend.  Pairing his approach to problem solving with his 

formal view of proof makes it easy to see why Chris‟ apparent lack of progress is not 

discouraging.  
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Chapter 5: Discussion and Conclusions 

 This chapter looks at the inferences that can be drawn from the data collected for this 

study.  First, the observations made from this study will be compared to those found in a recent 

dissertation completed by VanSpronsen (2008), also at The University of Montana.  Next, charts 

summarizing the proof types and proof schemes of all students will be examined for the purpose 

of getting a better overall picture of the data collected for this study.  Based on this picture, some 

similarities between participants become evident and the following section looks at three groups 

of students that were formed based on these similarities.  The third section discusses the 

conclusions that can be drawn from the data analysis and the fourth looks at the implications 

these conclusions have for teaching mathematical proof.  In the final section, some ideas for 

further research are explored. 

 

5.1 Comparison to VanSpronsen’s Results 

 One of the benefits of choosing a research methodology based on task-based interviews 

involving proof is that it is very similar to the methodology used by VanSpronsen, who 

completed her dissertation at The University of Montana in 2008.  Using the same methodology 

to study how students complete proofs put me in a unique position to verify the results of her 

study.   

 For her study, VanSpronsen (2008) interviewed 18 novice proof writers and studied the 

methods they used when completing proofs.  Generally speaking, she found that students each 

had a particular strategy they employed while attempting to complete a proof and that strategy 

was consistent for the participants in her study across different questions.  The strategies 

VanSpronsen found were the use of examples, the use of equations, the use of other 
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 visualizations and self-regulation.  These strategies were also used by the participants in my 

study, but were not consistent across questions in this study as was reported by VanSpronsen.  

As will be seen, my study corroborated some of these findings and contradicted others. 

 

5.1.1 Strategies 

5.1.1.1 Use of examples 

 For all the questions in my study that required students to construct their own proof, at 

least some participants used examples in their proof attempt, with the exception of Question 8.  

That question (which asked them to prove that the cube root of 2 is irrational) was the exception, 

in my opinion, for a couple reasons.  First of all, they were being asked to recreate a proof that 

they had already worked on, although this proof attempt came months later.  Also, those who 

successfully completed the proof the first time were able to modify the steps from a well-known 

proof (that the square root of 2 is irrational).  It is possible that even the students who did not 

complete the proof previously had encountered the more famous proof between attempts.  In any 

event, all students had an idea of how the proof was supposed to go (at least how it was supposed 

to start) either from this previous experience with the problem or at least from the fact that the 

problem stated that they were to use a proof by contradiction.   

 That question aside, the use of examples was prevalent in this study as it was in that of 

VanSpronsen (2008).   

 In general, participants were able to recognize the need to move past examples in their 

 work, but not all could actually do so. They used examples as a tool to understand the 

 definitions and new ideas posed and, in some cases, to form portions of the proof.  (p. 

 324) 
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Participants in this study repeated mentioned the fact that examples do not serve as proof.  

Examples of VanSpronsen‟s other claims were also seen. 

 In Question 1, Barbara worked many examples but could not get past them in order to 

reach a proof.  In that case, she was working on the Isis problem and she used as her examples 

various differences between the sides of the rectangle.  She was able to see that she had found all 

the solutions for rectangles whose sides differed by as little as 0 up to rectangles whose sides 

differed by 21.  However, she was not able to move beyond her method to show that no solutions 

other than the ones she had found exist.   

 The use of examples to help in the ways VanSpronsen (2008) mentioned also occurred 

many times in this study.  For example, Chris‟ work on Question 2a was an instance where 

working with examples led to the proof that was eventually completed.  The question asked him 

to prove that ab – ba is a multiple of 9 when ab is a two-digit number and ba is the number with 

the same digits reversed.  Chris recognized that it would be possible for him to simply go 

through and check all such instances.  However, in beginning to do so, Chris saw the pattern that 

he eventually used complete his proof.  As was mentioned, this is just one illustration of 

examples aiding a participant in the completion of a proof.   

  

5.1.1.2 Use of equations 

 Another method that was prevalent in VanSpronsen‟s study was “searching for equations 

and trying to manipulate those found towards a proof” (2008, p. 324).  This was the case in my 

study as well, as were the results of such efforts.   
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 In some cases…, focusing on equations became distracting and was a factor in 

 (students‟) inability to prove a statement.  Overall, however, the use of equations was not 

 a hindrance for most who attempted it, but seldom led to a full proof.  (p. 324) 

 

The problem mentioned was an issue for many students.  In particular, this showed up for the 

students who did not readily remember the proof for Question 8 (in particular Mary and Michael) 

and for practically all students (except Barbara) when working on Question 13 (where students 

dealt with the inequality relating to rational numbers).  It often seemed like working extensively 

with equations was something the participants did when they could not think of what else to do.  

The time spent on rearranging equations often took away from efforts that could have led to an 

understanding that could have in turn led to a proof. 

 Working with equations was not always a hindrance, however, and led to a proof in a few 

cases.  For example, Mary used equations efficiently when completing her proof for Question 2a.  

In fact, although her proof ended up being very similar to Chris‟, they arrived at their proofs 

quite differently: Chris via examples and Mary by manipulating the equation only.  At times, 

working extensively with equations was both a hindrance and a help, as was the case with John‟s 

work on Question 3 (the inequality relating to the harmonic series).  During his initial work, John 

got distracted from the main idea of the proof, going so far as to recreate his equations (in this 

case, inequalities) in other forms.  After leaving the interview setting and starting the problem 

over fresh, he was able to see a key insight that made his proof work out nicely.   

 The emphasis the participants in my study placed on working with equations is also 

evidenced by the number of proof types classified syntactic.  Most (if not all) of the syntactic  
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proofs discussed in Chapter 4 were labeled as such because the main focus of the participant was 

on working with equations via logically permissible means.   

 

5.1.1.3 Use of visualizations 

 When VanSpronsen (2008) refers to visualizations, she is mostly referring to ways to 

organize information (p. 325 – 326).  This was the case for some of the students in my study as 

well; in particular, see Chris‟ and James‟ work on Question 1 (the Isis problem).  Helen also used 

visual aids effectively in her out of interview work on Question 13.  Although it did not lead to a 

completed proof, it did lead to an insight that I feel is necessary to completing the proof. 

 VanSpronsen (2008) also mentions that these visualizations can be a hindrance if the 

visualization was “disorganized and random” (p.326).  This was an issue at times as well.  For 

instance, John‟s work on Question 7 (finding the cardinality of the power set of a finite set) 

quickly became complicated as he looked at different examples of sets and tried to make 

connections and keep track of all the subsets.  It was not until he quit looking at these examples 

that he was able to come up with a proof.  It should be noted, however, that he did eventually use 

a different visualization that may have been related to previous ones to come up with the idea 

that led to his proof.   

 Will also allowed visualizations to complicate his attempt at Question 7, both with the 

unrelated triangle he drew at the beginning of his work and the muddled way in which he began 

to keep track of the subsets of a four element set.  Like with John, Will did eventually come up 

with a proof and, in the case of Will, the idea he used for his proof was more closely related to 

his previous work.  So it is likely that even when the use of visualizations seems to be a 
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hindrance due to disorganization, ideas that can lead to complete proofs may be found in work 

that might not seem fruitful at first glance. 

 

5.1.1.4 Self-regulation 

 The examples of self-regulation VanSpronsen (2008) mentions mostly deal with using 

systematic versus random examples.  Instances of this include some already mentioned.  Chris‟ 

work on Question 2a and John‟s on Question 7 serve as examples where work began as 

disorganized but was cleaned up with positive results as work continued.  Other examples 

include James‟ work on Question 1 and Mary‟s work on Questions 1 and 2b (proving that n
3
 – n 

is a multiple of 6).   

 Organized examples were not the only ways VanSpronsen (2008) decided the students in 

her study used self-regulation.  “Overall, strategies used to monitor work, make goals, redirect 

work, and keep goals in mind were always beneficial and never a detriment for participants” 

(2008, p. 327).    John and Chris were both conscious of the progress they were making on 

Question 8 and it affected the way in which they worked, allowing them to get their respective 

proofs more efficiently.  Monitoring work and keeping goals in mind were also important for 

many students, especially in Question 2b where students who used induction (e.g., Michael) 

needed sub-proofs to complete the overall proof.   

 As VanSpronsen (2008) mentions, my study revealed examples where self-regulation 

was used by students to aid in their proof attempts and there was no evidence that self-regulation 

was ever a hindrance. 
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5.1.2 VanSpronsen’s general discussion 

 While there were many results that VanSpronsen‟s study had in common with this one, 

one of her main findings differed from what was observed in this study. “The strategy use and 

difficulties experienced by each participant were fairly consistent from question to question, and 

the individual questions had little effect on changing the way the participant approached a proof” 

(2008, p. 330).  As will be seen in later discussion, this was not the case for many of the students 

in my study.  Most students had a fairly even split between the types of proofs they attempted 

(procedural, syntactic or semantic).   

 Those students who were fairly consistent in proof type, for example John and James, 

these students were consistent in their use of semantic proofs.  However, the nature of semantic 

proofs is that the proof is dependant on gaining an understanding of the individual proof being 

completed.  As such, when completing a semantic proof one is focused on the problem at hand 

and not on a preferred proof strategy.  Also, at least in the cases of John and James, the times 

they deviated from using a semantic proof were mostly the times where they were asked to use a 

procedural proof (Questions 3 and 8).  There were only two other times these two participants 

did not use a semantic proof.  First was when John saw the presence of an „n‟ in the statement of 

Question 2b (a cue for him to use induction).  Thus, in this instance, the work he completed was 

question-dependent.  Second was James‟ work on Question 13, which was syntactic because he 

made no progress beyond manipulating equations.   

 I believe that this difference in findings between VanSpronsen‟s study (2008) and my 

own is due to a difference in methodology.  While she used twice as many participants, she 

interviewed them only four times.  On the other hand, I had far fewer students but was able to 

observe them over the course of a full academic year.  Thus, it is my conjecture that the 



531 

 

participant tendencies observed in VanSpronsen‟s study were short-term in nature and my longer 

study allowed for me to observe the students‟ changes in preference.   

 

5.2 Charts summarizing categories 

 In this section, I will give a summary of the categorizations of each student‟s work.  

Included will be the classifications of both proof type and proof scheme for each participant.  It 

is my hope that this will give the reader a general sense of the data compiled.  Recall that 

Questions 5 and 11 served as debriefing sessions and the participants were asked to evaluate 

completed proofs in Questions 4 and 9, which is why there is no proof type designations for 

those questions. 

 A word about the tables is necessary here.  Recall that many of the categories had sub-

categories.  So, for example, a procedural proof type could be either algorithm or process.  Thus, 

there are two columns under the heading “Procedural”.  An “A” in a column under the 

Procedural heading means that the proof was of the algorithmic sub-type.  If there are no sub-

categories, an “X” is used designate the presence of that particular proof type or proof scheme. 

Also, “(a)” designates an attempted, but incomplete, proof.  (See key on page 535.) 

Participant: John           

Question Procedural* Syntactic Semantic  Question Empirical External** Analytic *** 

11     N/A    11       T A 

10       (a)  10       T   

9     N/A    9       T   

8 A        8       T   

7       X  7       T   

6     X    6       T   

5     N/A    5       T   

4     N/A    4         A 

3   P      3         N 

2b   P      2b       T   

2a       X  2a       T A 

1       X  1       T   

Table 10: John's proof types and proof schemes 



532 

 

 
Participant: Mary          

Question Procedural* Syntactic Semantic  Question Empirical External** Analytic *** 

11     N/A    11       T   

10     X    10       T   

9     N/A    9       T   

8 A        8       T   

7   P(a)      7 X A R     

6       (a)  6       T   

5     N/A    5       T   

4     N/A    4       T   

3   P(a)      3       T(i)   

2b       (a)  2b       T   

2a     (a)    2a       T   

1       X  1       T   

Table 11: Mary's proof types and proof schemes 

Participant: Will           

Question Procedural* Syntactic Semantic  Question Empirical External* Analytic *** 

11     N/A    11       T   

10     X    10       T   

9     N/A    9       T   

8 A        8       T   

7   P(a)      7     R T   

6       (a)  6       T   

5     N/A    5       T A 

4     N/A    4       T A 

3   P(a)      3       T   

2b       X  2b       T   

2a     X    2a       T   

1       X  1       T   

Table 12: Will's proof types and proof schemes 

Participant: Helen          

Question Procedural* Syntactic Semantic  Question Empirical External** Analytic *** 

11     N/A    11         N 

10     X(a) (a)  10       T   

9     N/A    9         A 

8   P      8       T   

7       X  7         A 

6   P      6   A   T   

5     N/A    5         N 

4     N/A    4         N 

3 A(a)        3 X A   T(i)   

2b A(a)        2b     R     

2a     X    2a       T   

1     X    1       T   

Table 13: Helen's proof types and proof schemes 
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Participant: Barbara          

Question Procedural* Syntactic Semantic  Question Empirical External** Analytic *** 

11     N/A    11       T   

10     X    10 X     T   

9     N/A    9   A     A 

8 A        8       T   

7     (a)    7 X     T   

6   P(a)      6       T(i)   

5     N/A    5       T A 

4     N/A    4         A 

3   P(a)      3       T(i)   

2b A        2b       T(i)   

2a     (a)    2a X     T   

1       (a)  1 X     T   

Table 14: Barbara's proof types and schemes 

Participant: James          

Question Algorithm* Syntactic Semantic  Question Empirical External** Analytic *** 

11     N/A    11       T   

10     (a)    10       T   

9     N/A    9       T   

8   P      8       T   

7       X  7       T   

6       (a)  6     S T    

5     N/A    5       T A 

4     N/A    4       T A 

3   P      3       T   

2b       (a)  2b       T   

2a       X  2a       T   

1       X  1       T   

Table 15: James' proof types and proof schemes 

Participant: Robert          

Question Algorithm* Syntactic Semantic  Question Empirical External** Analytic *** 

11     N/A    11       T A 

10     (a)    10       T   

9     N/A    9       T A 

8 A        8       T   

7       X  7       T   

6       (a)  6       T   

5     N/A    5       T A 

4     N/A    4       T   

3   P      3       T   

2b       X  2b       T   

2a       X  2a         A 

1       X  1       T   

Table 16: Robert's proof types and proof schemes 
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Participant: Michael          

Question Algorithm* Syntactic Semantic  Question Empirical External** Analytic *** 

11     N/A    11       T   

10       (a)  10       T   

9     N/A    9       T   

8 A        8       T   

7       X  7       T   

6   P      6       T A 

5     N/A    5         N 

4     N/A    4       T   

3   P(a)      3       T   

2b   P      2b       T(i)   

2a     X    2a       T   

1       X  1       T   

Table 17: Michael's proof types and proof schemes 

Participant: Chris          

Question Algorithm* Syntactic Semantic  Question Empirical External** Analytic *** 

11     N/A    11       T   

10     X    10       T   

9     N/A    9         N 

8 A        8       T   

7       X  7       T   

6   P      6       T   

5     N/A    5       T   

4     N/A    4         N 

3   P(a)      3       T(i)   

2b   P      2b       T(i)   

2a       X  2a       T   

1       X  1       T   

Table 18: Chris' proof types and proof schemes 

 (a) = Attempt     ** A = Authoritative *** T = Transformational 

* A = Algorithm         R = Ritual    i= Internalized 

   P = Process         S = Symbolic       A  = Axiomatic 

              N = Neither, but still analytic 

  

 Before going any further, these results can be compared with those found by Weber 

(2004) in the studies he used to develop his proof type framework.  There, Weber states that the 

categories were developed by observing proofs completed by students in two abstract algebra 

courses and an analysis course.  He found that of the 139 proofs classified, 48 (34.5%) were 

procedural, 74 (53.2%) were syntactic and 17 (12.2%) were semantic.  In this study, 71 proofs 
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were classified with 29 (40.8%) being procedural, 14 (19.7%) syntactic and 28 (39.4%) 

semantic.   

 There are a few possible reasons for the discrepancy between the results of these two 

studies.  One possible reason is the different populations in the studies.  In Weber‟s, students 

were a little further along in their coursework.  Although all the students in the current study had 

completed the transition to proof course, only one was taking analysis at the time of the study 

and none were taking abstract algebra.   

 Another more likely reason is that Weber did not classify proof attempts in which 

students made no progress.  In particular, this (along with the instances of me giving the students 

help) may explain the greater percentage of semantic proofs.  When students did not make any 

progress on the problem on their own, they employed various methods of gaining some 

understanding of the problem.  If no progress toward a proof followed from that, I would have 

labeled that a semantic attempt while Weber would have refrained from labeling it at all.   

 However, this does not account for the fact that syntactic proofs were the most common 

by a wide margin in Weber‟s study and were by far the least common in mine.  A few 

possibilities arise for this, although I am not sure which is more likely.  One is that the problems 

used in Weber‟s study lent themselves to syntactic proofs much more readily than those in my 

study.  Support for this comes from the fact that all the proofs that Weber classified from the 

algebra class were syntactic.  It is also possible that all the differences seen can be attributed to 

the fact that the proofs were coded by different researchers.  However, the consistency seen 

between the codes given by myself and the peer reviewers in this study suggests that the 

differences are due to a combination of the reasons listed, perhaps along with other possibilities 

not considered. 
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5.2.1 Notes on proof scheme  

 One of the first things one notices when looking at the charts is the relative lack of any 

proof scheme other than analytic.  Outside of Helen and Barbara, no participants display an 

empirical or external proof scheme in more than one interview.  In fact, every other student but 

two (Mary and James) showed an analytic proof scheme, and possibly others, while working on 

every question.  In both of these cases, (Mary‟s Question 7 and James‟ Question 6) the 

participant did not complete a proof and, in my opinion, if they would have gotten to a point 

where they understood the problem well enough to do so, they would have given a rigorous 

proof thus constituting an analytic proof scheme.   

 I believe the analytic proof scheme was so ubiquitous because the participants had 

already completed MATH 305 and had been explicitly taught what does and does not constitute 

a proof.  Even when displaying evidence for another proof scheme, students acknowledged the 

need for rigorous proof.  For example, in Question 10 Barbara mentioned that based on the 

examples she had seen she believed that a rational could always be found that would make the 

desired inequality hold.  Despite this belief, she still worked on trying to construct a proof.  This 

highlights a difference between what serves as proof to her personally (she is convinced by 

examples) and what she decides will be considered a proof by others.  Barbara clearly knows 

what does and does not “count as a proof” although she does not use the same criteria of 

verification to convince herself.  It is unclear how many other students held similar beliefs over 

the course of study.  It seems likely that other participants did as well but did not verbalize them.   

 Another factor leading to the preponderance of the analytic proof scheme is the fact that 

the use of equations mentioned in the previous section was so prevalent.  The use of equations is 

present in almost all cases of students who displayed a transformational analytic proof scheme.  
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Exceptions to this include when participants used a proof with steps laid out for them.  In most 

cases, this means the use of mathematical induction but also includes instances like Question 8  

(where the participants were able to create a proof either based on previous work or on the 

similar proof showing that 2  is irrational).   

 Although Helen and Barbara were unique in that they did not display the analytic scheme 

almost exclusively as the other participants did, this does not mean that they were strangers to 

that proof scheme.  On the contrary, looking at their respective charts shows that they too 

exhibited this type of proof scheme while working on every one of the problems in the study.  

So, again, it is possible that Helen and Barbara were not unique in their views of mathematical 

proof, only that they were more vocal while working and more willing to discuss ideas they held 

even when they knew it would not “count” as a proof.   

 One last note on the proof scheme categorizations is that in the vast majority of cases, the 

analytic proof scheme was either transformational or could not be classified into either 

transformational or axiomatic.  As mentioned in previous chapters, the nature of the questioning 

in the interviews did not allow for material discussed to build upon itself.  Among reasons for 

this was the infrequency of the interviews relative to other venues for discussing such material 

(i.e., classes) and the necessity for the questions to be accessible to students taking a variety of 

classes.  Because of these limitations inherent to the study, it is unclear whether or not the 

axiomatic proof scheme was more widespread than it appears to be judging by the charts 

presented above. 

 

5.2.2 Notes on proof type 

 There is a glaring difference that one notices when looking at the charts for proof type 

versus proof scheme.  That is, proof scheme is far more consistent that proof type.  For all 
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students, the proof types employed vary a great deal.  While it may seem like there is not much 

order to the breakdown of proof type, there are some things that can be gleaned from the charts.  

To make things clearer, below are more succinct charts breaking down the proof types seen by 

question (Table 19) and again by student (Table 20). 

Question Algorithm Syntactic Semantic 

1   1 8 

2a   5 4 

2b 5   4 

3 9     

6 4 1 4 

7 2 1 6 

8 9     

10   7 2 

Table 19: Proof type by question 

Student Algorithm Syntactic Semantic 

John 3 1 4 

Mary 3 2 3 

Will 3 2 3 

Helen 4 3 1 

Barbara 4 3 1 

James 2 1 5 

Robert 2 1 5 

Michael 4 1 3 

Chris 4 1 3 

Table 20: Proof type by participant 

 The first and most straight-forward insight that can be made is that when students are 

asked for a particular type of proof, they are generally able to do so.  Questions 3 and 8 asked the 

participants for particular types of proofs (induction and contradiction, respectively) and in each 

case, the students provided such a proof.  This is reflected in the charts by the fact that all nine 

participants preformed a procedural proof for these problems: Question 3 because induction 

requires specific steps and Question 8 because the students had a previous proof that they were to 

mimic.   

 Beyond the observation mentioned above, not much is clear.  While data for the study 

was being collected, the impression given by the data was that the type of proof attempted by 
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each participant depended on the question asked more than on the students themselves.  Looking 

at Table 19, however, evidence for this seems weak.  Taking Questions 3 and 8 out of 

consideration, we find three questions (1, 7 and 10) that had yield proof attempts predominately 

of a particular type.  This appears to support my earlier suspicion. When looking at the three 

remaining questions (2a, 2b and 6), however, we see that the proof types provided by the 

participants are fairly evenly split between two of the three possible.  Interestingly, there were no 

questions that had proof types split evenly among all three possible types.   

 Since proof type is not clearly dependent on the question asked alone, one might posit 

that choice of proof type is entirely dependent on the student.  Again, this does not seem to be 

the case.  James and Robert are the students that come closest to displaying a preference for a 

particular type of proof.  However, it can not be said that they display a strong preference as they 

each gave a semantic proof five out of eight times.  Not only did their most frequently used proof 

type show up just over half the time, that type was semantic.  As has been noted above, this type 

of proof is the most question-dependent of all.   

 Besides not having any participants display a strong preference for any one type of proof, 

two students (Mary and Will) came as close as is possible to evenly distributing the proof types 

among the three possibilities.  It is interesting to note that when comparing the charts for Mary 

and Will, we see that they both used the same types of proofs for each particular question.  I do 

not know of anything that can explain this besides mere coincidence.   

 All of the students who have yet to be discussed had a proof type they used 4 times, one 

they used three times and one used once.  It is tempting to state that these 5 students each had a 

proof type they had an aversion to using, having only shown up one time.  I do not think it is 

prudent to draw this conclusion, however.  For one thing, the small number of classifications 
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makes such an inference dubious.  In each of the five cases, if a single question‟s proof type was 

changed to the type occurring only once, it would drastically change the balance of all types.  

Secondly, no such aversion to particular types of proofs was ever evident to me during the course 

of the study.  It seems likely to me that such a preference would have become evident over the 

course of the year spent studying the students.   

 Given the ambiguity of what was discussed above, I believe that the question of whether 

proof type is more dependent on the question or the student answering the question is an open 

one.  This, of course, excludes questions such as Questions 3 and 8 where a particular type of 

proof is asked for explicitly.   

5.3 Three participant groups 

 This section divides the participants into three categories in an effort to draw 

comparisons between the different types of progressions the students made.  The participants 

were divided up based on two different criteria: number of times they failed to complete a proof 

and change in proof scheme over time.  These criteria were chosen for two reasons.  First, 

because they were based on the classifications laid out before the study began (proof schemes) 

that turned out to be the most telling over the course of the study.  Second, using these criteria 

leads to participant groups that match closely to the informal groups that I felt the students fell 

into as the study progressed. 

 The first, and largest, category includes participants who did not make much, if any 

perceptible progress yet were successful in most proof attempts.  The second group includes 

students who also did not seem to progress much but were less successful with the problems.  

The last category includes only a single member, Helen, who did show signs of progress as 

judged by the criteria set out in this study. 
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5.3.1 Group 1 

 As is mentioned above, this class of participants is the largest by far.  It also consists of 

the students most successful on the problems given during the study.  This group includes a full 

two thirds of all participants: John, Will, James, Robert, Michael and Chris.  The first criterion 

used to delineate the students was number of questions each student left a question unproved.  

All members of this group left three or fewer questions incomplete: John and Chris, one each; 

Robert and Michael, two each; James and Will, three each.  Helen also successfully completed 

all but three problems but the reason for her exclusion from this group will become clear later. 

 While the number of complete, correct proofs is a rather rough measure of the work 

completed by these students over the course of the study, it is useful in grouping together these 

students.  If one were to go back and read each of these students‟ summaries from Chapter 4, a 

recurring theme would become evident: all of these students displayed very little progression 

throughout the study.  This may sound like a negative thing, but that is not actually the case.  

Instead, these students did not make much discernable progress because they all began the study 

with a fairly mature (and unchanging) view of proof.   

 This unchanging view of proof is evident in the near universal presence of the analytic 

proof scheme amongst members of this group.  Between the eleven questions posed to these six 

students, evidence of anything other than an analytic proof scheme was only seen twice: James‟ 

Question 6 and Will‟s Question 7.  In James‟ case, he displayed a symbolic proof scheme due to 

an abuse notation that occurred out of desperation (when he failed to see what else to do with the 

problem).  In the case of Will‟s Question 7 work, the ritualistic proof scheme was evident 

because he failed to identify something that could have served as a proof because he did not 

recognize it as such (the contrapositive to believing something is a proof because it looks like 
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one).  Even in these cases, however, James and Will still displayed evidence of the analytic proof 

scheme.   

 Another thing common to the members of this group is their propensity to give or attempt 

semantic proofs.  By definition, these are proofs that are meaningful to the proof writer and 

require an understanding of the proof beyond following prescribed steps or (potentially 

thoughtlessly) pushing symbols, even if the symbolic manipulations are correct and logically 

permissible.  All members at least attempted semantic proofs at three times: Will, Michael and 

Chris, three times; John, four times; James and Robert, five times.  Like the number of 

incomplete proofs, this criterion alone could not be used to group the students in the study as I 

have (Mary also used or attempted three semantic proofs).  However, I do not think it is mere 

coincidence that students who were for the most part successful also used semantic proofs often.  

Typically, when one is struggling with a proof, a breakthrough occurs that allows him or her to 

complete the proof fairly quickly relative to the overall amount of time spent on the proof.  These 

breakthroughs generally do not occur because the proof writer has finally applied the required 

steps correctly or happened upon the correct way to rearrange a given formula. Instead, these 

sorts of breakthroughs are typically due to some insight into the problem at hand that had eluded 

the proof writer until that point.  It follows, then, that students who make an effort to gain a 

conceptual understanding of the problem they are working on would be more likely to solve it.   

 One last item of note with this group is that the two participants in this study who were 

not mathematics majors, Will and Michael, both expressed a feeling that they either regressed in 

their proof abilities (Will) or failed to improve (Michael).  In both cases, they cited a lack of 

practice with proof outside the interviews as the cause.  Personally, I think it is more likely that 

what they were experiencing had more to do with the increased difficulty of the problems given  
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to them than with an actual regression of abilities.  While all students encountered the 

increasingly difficulty problems, Will and Michael were unique in their estimation that they 

failed to get better at proof.  I do not think this is a coincidence as they (Will and Michael) did 

not have the chance to offset their struggles in the interviews by becoming obviously more 

comfortable with proofs in proof-intensive classes.   Regardless, both students were successful 

overall and were likely being a bit hard on themselves. 

 

5.3.2 Group 2 

 The second group of students is considerably smaller, consisting of two students: Mary 

and Barbara.  As is mentioned above, these two students did not display much progress based on 

the criteria used in this study, which was similar to Group 1.  Unlike Group 1, however, these 

two participants were less successful in completing the problems presented to them.  Both Mary 

and Barbara left five of the eight problems unfinished.   

 Despite finishing the same number of proofs, there were significant differences between 

Mary and Barbara, as judged by the results of this study.  On one hand, Mary had much in 

common with the students in the first group.  Like James and Will, Mary used a semantic proof 

three times.  Also like the members of the Group 1, Mary displayed an analytic proof scheme on 

during most interviews.  However, unlike the members of the first group, she did not show an 

analytic proof scheme while working on all questions.  Relatively late in the study, Question 7, 

Mary gave evidence for the empirical, authoritative and ritualistic external proof schemes.  This 

does not mean that she suddenly forgot what it takes for a proof to be considered valid.  It does 

show, however, that she was still harboring some “bad habits” that became evident when she was 

dealing with a proof that made her struggle.  This is different from members of the first group in 
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that she does not present any evidence for an analytic proof scheme along with the empirical and 

external ones. 

 Another way Mary differed from members of Group 1 is that she does not ever show any 

evidence for the axiomatic analytic proof scheme.  As has been mentioned a few times, the 

nature of the questions in this study made it difficult to exhibit this proof scheme.  Many students 

did demonstrate evidence for this scheme, however.  The amount of proofs labeled as 

transformational analytic is mainly due to Mary‟s reliance on manipulating equations while 

working on proofs.  This tendency stayed with her throughout the study which, along with the 

number of proofs left unfinished, is why Mary was placed into the second group. 

 Barbara was also placed into Group 2, but differed from Mary in some important ways.  

For one thing, she relied more on examples than equations for many of the problems in the study.  

This is rather counter-intuitive when one considers that she attempted the fewest (one) semantic 

proofs.  Barbara also differed from Mary in that her proof schemes were far more inconsistent.  

This is not necessary a bad thing, for example Barbara exhibited the axiomatic analytic proof 

scheme three times over the course of the study.  She also demonstrated a non-analytic proof 

scheme more often: fives times compared to once.  Even in doing so, Barbara gave evidence for 

an analytic proof scheme during every question.   

 This last trait is something Barbara shares with all the members of Group 1.  Another 

thing Barbara has in common with the first group is that she did not show any progress based on 

the classifications from this study.  The fact that she only finished three problems is not the only 

reason she was placed in this group, though.  She also displayed non-analytic proof schemes over 

the course of the study.  As late as the last question in which she was asked to complete a proof 

(Question 10), Barbara shows an empirical proof scheme.  This was not an isolated instance,  
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either.  She also demonstrated an external proof scheme in Question 9 and an empirical scheme 

in Question 7.  Unlike the students in Group 1, Barbara had real progress that she could have 

made and that would have been evident.  Unfortunately, based on the criteria laid out for this 

study, Barbara did not make as much progress as she could have.   

 

5.3.3 Group 3 

 The last group to discuss consists of only a single student: Helen.  One thing that makes 

Helen unique is that one could make the case that she could be in either of the previous groups.  

For example she was fairly successful in completing the questions presented to her, leaving only 

three unfinished.  This may imply that she belongs in the first group.  Alternatively, one might 

note that she only attempted a semantic proof twice.  This might lead one to conclude that she 

belongs in the second group.  While both of these observations are correct, they both fail to point 

out an important aspect of the work Helen did.  Over the course of the study, the proof schemes 

Helen displayed changed in a meaningful way. 

 Like the members of the first group and Barbara, Helen displayed some sort of analytic 

proof scheme while working on every problem in the study.  This is countered by the fact that 

she also displayed a non-analytic proof scheme during while working on three of the questions, 

which was second most to Barbara (five questions).  What is important to note, though, is when 

these three questions occurred in the study.  Two were during the first semester of the study and 

the third was the first question of the second semester.  Thus, Helen is the only participant in the 

study that showed discernable progress as judged by the criteria used in this study.  To be sure, 

other students made progress as well (e.g., Barbara became more proficient in her use of 
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mathematical induction).  However, using the classifications decided on prior to data collection, 

Helen is the only student whose proof tendencies changed noticeably.   

 Helen‟s progress is also evident in ways other than her move away from non-analytic 

proof schemes.  For example, although she used a semantic proof only twice, both instances 

came after the last time she demonstrated anything other than an analytic proof scheme.  Also, 

two of the three problems she did not finish were Questions 2a and 2b, fairly early in the study.  

The last problem that she did not finish (Question 10) was difficult for all the students and she 

did actually come up with a proof, but not without help from me.  It should be noted, however, 

that through exploring that problem she did come up with the proper restrictions that make the 

inequality hold and came very close to a key insight that would have, I believe, allowed her to 

complete the proof.  Lastly, the two times that she displayed an axiomatic analytic proof scheme 

both occurred after the last time she exhibited a non-analytic proof scheme. 

 Given the signs of progress Helen displays, it is clear that she is unique and deserves her 

own category.  While it likely occurred before the study for students in Group 1 and after the 

study for those in the second group, Helen made a discernable move away from non-analytic 

proof schemes during the study.  Aside from improving particular skills, like becoming more 

proficient with induction, Helen is the only study to make clear progress.  Not only that, the 

progress Helen makes is, in my opinion, the most meaningful of any made by any participant in 

the study. 

 

5.4 Conclusions 

 At this point, we are ready to return to the question this study was designed to address: 

What, if any, identifiable stages exist through which students progress as they learn 
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mathematical proof?  One of the most basic criteria that could be used to identify student 

progress is whether or not the students complete a correct mathematical proof a higher percent of 

the time as they learn.  This is not a very telling measure, however, because it depends on many 

things (experience with similar problems, proficiency with needed techniques, etc.).  So, this 

study was designed to use two separate classification systems to track the work nine participants 

completed over the course of an academic year.   

 One thing becomes clear when looking at the summary of the classifications given in 

Section 5.2: there is no evident proof trajectory that is common to all the students who 

participated in the study.  There are a few possibilities as why to this may be the case.  First of 

all, it may be that classification systems used in this study may not be the ones needed to discern 

the progress that was made by the students.  Of the frameworks available at the time the study 

was designed, I felt the two used were the most relevant and nuanced.  The frameworks used 

allowed both what the participants actually did (proof type) and how they thought about proof 

(proof scheme) to be addressed.  In addition, especially in the case of proof scheme, the 

frameworks also featured sub-divisions of the categories which allowed for a measure of 

refinement within the classifications themselves.  Despite these advantages, there was a lack of 

discernible progress amongst the vast majority of the participants.  At this point, it is unclear to 

me how these frameworks could be changed to allow for a better account of student progress.   

 Another potential reason that student progress could not be documented for all students is 

that much of the meaningful progress that might have been detected had already been 

accomplished.  To me, this seems like a likelier explanation.  As has been discussed, the students 

had completed the transition to proof course the semester before the study began.  While I had 

expected that this class would primarily impart the basics of proof to the students, it appears as 
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though the majority of the students in the study gained a fairly mature view of proof from that 

class or previous classes.  Given the relative success of most of the students in the study (all of 

Group 1), I think it is safe to make this claim.   

 There are a few caveats that are worth mentioning.  First, simply because two thirds of 

the students were in Group 1, and therefore considered successful, does not mean that they are 

reflective of all students in that class.  It was well known to the students before the study began 

that they would be asked to complete proofs.  It is silly to think that this fact was not taken into 

account when the students decided whether or not they would volunteer for the study.  It is 

entirely possible that students not yet comfortable with proof would shy away from volunteering, 

thus leaving mostly those who felt confident in their abilities to take part.  This is a conjecture, 

however, as I do not have any measure of student confidence from before the study to compare 

with comments made in either of the two debriefing interviews.   

 Secondly, just because the students in Group 2 did not make progress as judged by the 

criteria used in this study does not mean that made no improvements when it came to proof or 

that they have not made any progress since data collection from the study has ceased.  As I have 

already mentioned, Barbara made noticeable progress with mathematical induction and Mary 

increased her use of self-regulation strategies and became more open to changing how she 

attempted to solve a problem toward the end of the study.  I am sure that the improvements they 

made during this study are not the end of the line for Mary and Barbara and they have continued 

to become more comfortable with proof as they have taken more mathematics courses. 

 So, since the participants in Group 1 had relatively little progress to make and the 

students in Group 2 had some to make but did not, at least with regard to the classifications used 

in this study, we are left to what can be made of Helen‟s progress.  Because she did make 
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identifiable progress, it is possible to identify some rough stages that she went through as she 

became more comfortable with mathematical proof.   

 When it comes to Helen‟s choice of proof type, she moved from a tendency to use 

procedural and syntactic proofs early in the study to a propensity to attempt semantic proofs in 

later attempts.  The exception to this was Question 8, which led all students into a procedural 

proof, as has been discussed.  This shift in inclination is notable because it matches the general 

trend shared by the members of Group 1.  As far as Helen‟s evident proof schemes, they changed 

somewhat as well, albeit less markedly.  After the first question of the second semester, Helen 

exhibited exclusively analytic proof schemes.  Helen‟s change in proof scheme is less 

pronounced than that of her proof types because she also displayed the analytic proof scheme 

earlier in the study and other proof schemes during only two questions in the first semester.   

 To sum up, then, the closest we can come to identifying stages that Helen went through is 

as follows.  In the beginning of the study (Questions 1 – 3, 6) Helen attempted to complete 

proofs via the manipulation of equations (syntactic proofs) and/or following prescribed steps 

(procedural proofs).  Later in the study, Helen began to use a more flexible approach in which 

she made an attempt to understand the problems, looking for insights that could be turned into a 

proof (semantic proofs) towards the end of the study.  The students in Group 1 came into the 

study with a predilection toward semantic proofs and those in Group 2 did not attempt semantic 

proofs often and, when they did, those attempts came early in the study.  To sum up, then, all of 

the evidence from this study suggests that as students become more successful provers, they tend 

to prefer and use semantic proofs more often when compared to procedural or syntactic proofs.   

There are exceptions to this preference, however.  All the students in the group used procedural 

or syntactic proofs in at least one of the following scenarios: when they are explicitly asked for a 
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certain type of proof, when the problem they are working on readily lends itself to a certain type 

of proof and when they are stuck with a problem and do not know what else to do.   

 

5.5 Implications 

 Given the work done by the participants of this study, one can glean some potential 

implications relating to how undergraduates can become effective provers.  The first implication 

is that when students are not sure about what to do with a proof, they are better off looking for 

ways to understand the problem at hand rather than manipulating equations or trying to apply a 

learned procedure.  There were many instances in this study where students were able to 

successfully apply a process in the pursuit of a proof.  Included were cases when mathematical 

induction could be used (such as Questions 2a, 2b, 3, 6 and 7) or when the students could rely on 

a proof for a similar problem with which they were already familiar (Question 8).  However, by 

and large, the students who were successful were the ones that did not often get stuck retracing 

their steps within a set procedure and also could identify when they were rearranging an equation 

without making any progress.  Instead, the students who were successful often used other 

methods, such as examples, tables or graphs, to get an understanding of the problem they were 

working on that could be turned into a proof.  In other words, the students who were most 

successful on the questions used in this study were the ones that used semantic proofs and the 

students who were least successful were the ones who did not.  Helen corroborates this in that 

she had more success during the second semester, after she had began to change her approach to 

proof to include more semantic proof attempts.   

 A certain amount of self-regulation and flexibility is necessary when attempting semantic 

proofs, and this leads to the second implication one can draw from this study.  Students need to 
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both be able to recognize when the approach they have chosen will not work on a given problem 

and be able to make a good guess as to what will work.  As was noted in the summary of Helen‟s 

work in Chapter 4, students need to be taught and become comfortable with the different types of 

proof techniques they learn in a class such as MATH 305 before they can be expected to apply 

the appropriate technique on their own.  This does not mean, however, that simply teaching 

students the different proof techniques is enough for them to be able to make such decisions.  

Helen said as much when I asked her at the end of the study what she thought could have led to 

more improvement for her: 

 Helen: Maybe a 305 class that made you actually think about what you needed to do 

 instead of just giving you a problem and telling you how you needed to do it… Because, 

 like everything we did with induction, we were told to do induction.  Everything we did 

 with contradiction, we were told to do contradiction…And we weren‟t, like there was no 

 way to find out like what would work in what situation better. 

 

 Although Helen may come across as critical of MATH 305, I do not think that she would 

disagree that first one needs to learn what the techniques are and how to accomplish them before 

one can decide for him or herself where it would be appropriate to use each technique.  However, 

this does not eliminate the importance of one‟s learning which potential technique is most useful 

in which types of situations and why.  Thus, part of learning how to self-regulate and complete 

semantic proofs is learning how to decide how one is going to proceed in his or her proof 

attempt.  It seems to be Helen‟s stance, and it is mine as well, that the best way to learn these 

skills is to struggle on your own with such issues.   
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 Therefore, part of any class similar to MATH 305 should be the inclusion of problems in 

which the students are given little guidance regarding which approach to take.  For one thing, 

this would give students practice in recognizing what it is like to go down fruitless paths, 

increasing their self-regulation skills.  It would also give students experience in identifying what 

proof techniques are most appropriate for different types of problems.  Lastly, it would allow 

students the opportunity to discover which methods of exploring a problem (examples, graphs, 

etc.) are most useful to them, thus making future attempts at semantic proofs more fruitful and 

efficient.   

 I think it is worth noting here that this is not exactly new advice.  In particular, it echoes 

some of Polya‟s suggestions first mentioned in Chapter 2.  Not only is it reminiscent of the first 

two steps of Polya‟s five problem solving steps (“Understand the problem” and “devise a plan”, 

Polya, 1945), it also recalls his address to all mathematics teachers: “Let us teach guessing!” 

(Polya, 1954, p.158)   

 

5.6 Ideas for future research 

 This final section looks at suggestions for further research.  First will be addressed what 

could have been done differently with this study.  Secondly, some ideas will be discussed that 

could expand on the results from this study.   

 

5.6.1 Ideas for improving current research 

 For all the planning that goes into research, one can not account for everything that may 

occur over the course of a study.  Of course, this study is no exception and there are a few things 

I would have done differently if I were to conduct the study over again.  First of all, I would have  
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been more consistent with the level of interaction I had with the participants during each 

interview.  As I mention in Chapter 3, I interacted with the students much more during the first 

few interviews than the subsequent ones.  Beginning with Question 3, I was much more hands-

off and allowed the students to work as they wished, often silently, until we discussed the work 

they had done during a reflection period at the end of the interview.  As I mentioned before, this 

increased interaction on my part was due to both my inexperience as an interviewer and my 

desire to make the interviews as relatively stress-free for the participants as possible.  Thus the 

interaction, especially for the very first interview, included more hints on the problem than in 

later interviews.   

 In retrospect, I think a better course of action would have been to set up informal 

interviews with the participants before the interviews included in the study were conducted.  

These informal interviews could have included the participants and me working on problems of 

their choosing, e.g., their own homework problems.  This would give the students some time to 

become at ease in the interview setting without the pressure of trying to complete a new proof on 

their own.  It would have also given me some experience in teasing out what the participants 

were thinking without revealing too much information about the problem at hand and it would 

have also likely given me a better idea of what happens when each individual student reaches the 

point at which they can no longer make progress on a problem on their own.  If I would have 

conducted these informal interviews, once the interviews for the study began I could have let 

them go at it alone and gained a better idea of their work on those early problems.  As it was, for 

those early problems, I was left to separate the work they did on their own from the work that 

was influenced by me and thus needed to be interpreted differently.   
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 Once I did begin to allow students to work as they wished and go back to discuss their 

work during the reflection periods, I still did my best to not steer the conversation toward their 

beliefs about proofs but rather tried to directly discuss the work they did on that particular 

problem.  My thinking was that their thoughts about proofs would come out via this conversation 

and that my questions could easily become too leading to obtain reliable results.  Looking back, I 

think that I should have tried a bit harder to get at the students‟ beliefs.  For example, on 

Question 10, Barbara mentioned becoming convinced about the problem based on the examples 

she tried, thus providing evidence for the empirical proof scheme.  While this is definitely 

legitimate evidence for that proof scheme, what I am unsure about is how many other students 

had similar proof schemes.  Although they may not have volunteered the information, I suspect 

that other participants held similar ideas.  It is quite possible that they did not mention such 

thoughts because they knew that examples do not serve as proof, but it is also possible that they 

did not mention these beliefs simply because I did not ask.  My guess is that the later is the case 

for a least a few of the participants in this study. 

 The last thing I would recommend changing if this study were to be repeated would be to 

change its timing relative to when the participants completed MATH 305.  As has been seen, the 

majority of the participants did not have an extensive amount of progress to make as ascertained 

by the criteria set out in this study.  It seems like to me that the students in Group 1 did not all 

begin MATH 305 with the tendency to employ the semantic proof scheme.  Instead, I think that 

they all came to do so at different rates while working going through their transition-to-proof  

course.  If this study were conducted while the participants were in that class, this shift in proof-

writing approach would be more evident.   
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 It is possible that this change in the study‟s timing relative to coursework would 

necessitate a corresponding change in the questions used in the study.  However, at this time it is 

not clear whether or not this would be the case.  It is also not apparent what new problems would 

be better if the questions were to change.  It is possible that questions could be taken directly 

from the class, provided the participants had not seen them in advance. 

 

5.6.2 Ideas for furthering current research 

 The first and most obvious thing that could be done to further this research is to repeat it.  

In many other areas of study, research is repeated by different researchers to verify results.  To 

my knowledge, this does not seem to happen often in mathematics education.  If these results 

were to be found again by other researcher it would this lend more validity to the results found 

here and would also expand the number of students and settings where the results were found.  If 

a similar study was conducted and similar results were not found, then perhaps the differences in 

students and/or settings could shed some light on the different variables that influence how 

students learn to prove.   

 The second way this research could be furthered is by performing a categorical statistical 

analysis to see which has a greater bearing on the type of proof a student uses: the problem being 

asked or the participant who is attempting the proof.  Because the types of proofs each student 

produced changed as they worked on different problems, it seemed to me that proof type 

depended on the question while I was going through each student‟s work individually.  Taking in 

the data overall, however, this conclusion seems less likely.   It is also difficult to look at the data 

accumulated and become convinced that the proof type attempted depends on the student alone.  

Because I did not anticipate encountering this sort of question, I am unprepared to answer it.  I 
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am confident, however, that someone well-versed in categorical statistics could answer such a 

question.  Of course it is possible that a participant population greater than nine is necessary to  

complete such an analysis, in which case having this study repeated with a different population 

would be beneficial. 

 I am certain that others would be able to come up with other ways to further this and 

related research.  I am hopeful that this research as contributed meaningfully to the body of 

knowledge regarding how students learn to mathematical proofs.  This study has hopefully given 

a better understanding as to how, at least in the case of a single student, how one can improve 

one‟s abilities with mathematical proof and has found some characteristics common to students 

who are judged to be relatively successful in their proof attempts.  I am also hopeful that this 

new knowledge can be used to improve the instruction received by those undergraduates who are 

learning mathematical proof for the first time. 
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