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ABSTRACT 

 

Hutchins, Patrick, M.S., June 2014  Cellular, Molecular, and Microbial Biology 
 
IDENTIFICATION OF MASTIGOCLADUS LAMINOSUS GENES ASSOCIATED WITH 
ENHANCED NITROGEN FIXATION PERFORMANCE 
 
Chairperson:  Dr. Scott Miller 
 
Understanding population variation for fitness-related traits is important for our comprehension 
of evolutionary adaptation and of how populations respond to environmental change.  Here, I 
investigate variation in nitrogen fixation performance for an ecologically-variable population of 
the cyanobacterium Mastigocladus laminosus from White Creek, a nitrogen-limited, 
geothermally-influenced stream in Yellowstone NP. I next take a population genomics approach 
to identify candidate loci associated with superior performance. Variation among strains and 
temperature dependence of the nitrogen fixation process were the most important factors in a 
linear mixed effects model.  Absolute and relative measures of genetic differentiation between 
strains from the upper quartile of nitrogen fixation performance and the other 75% of strains 
showed that only a small subset of loci were associated with superior nitrogen fixation. Most 
notably, the strains that fixed the most nitrogen contained a premature stop codon in a regulatory 
histidine kinase gene, but this allele was present at low frequency in other strains.  Because this 
nonsense mutation eliminates many important functional sites in the protein, this allele is 
expected to be non-functional.  Both the full-length and the putative null allele, as well as a third 
recombinant allele, were expressed during nitrogen step-down and in the presence of combined 
nitrogen.  Future studies will investigate whether the nonsense mutation results in transcriptional 
rewiring that is favorable for nitrogen fixation. 
 
Key Words: cyanobacteria, nitrogen fixation, thermophile, fitness, adaptation, genomics  
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Chapter 1 1 

Abstract 2 

Understanding population variation for fitness-related traits is important for our comprehension 3 
of evolutionary adaptation and of how populations respond to environmental change.  At a 4 
nitrogen-limited, geothermally-influenced stream in Yellowstone National Park, the 5 
cyanobacterium Mastigocladus laminosus fixes abundant nitrogen in situ, an important fitness-6 
related trait in nitrogen-limited systems.  While extensive work has been done to identify the 7 
genes required to perform nitrogen fixation, little is known about the amount or genetic basis of 8 
phenotypic variation in nitrogen fixation performance in natural populations.  Here, I use standard 9 
acetylene reduction assays to quantify the extent of phenotypic variation for nitrogen fixation 10 
ability among 23 randomly-selected White Creek M. laminosus strains.  Variation among strains 11 
and temperature dependence of the nitrogen fixation process were the most important factors in a 12 
linear mixed effects model.  Genome-wide analysis of the assayed strains was next used to 13 
identify candidate genes that may contribute to enhanced nitrogen fixation performance.  14 
Absolute and relative measures of genetic differentiation between strains from the upper quartile 15 
of nitrogen fixation performance and the other 75% of strains showed that only a small subset of 16 
loci were associated with superior nitrogen fixation. Most notably, strains that fixed the most 17 
nitrogen contained a premature stop codon in a regulatory histidine kinase gene, but this allele 18 
was present at low frequency in other strains.  Because this nonsense mutation eliminates many 19 
important functional sites in the protein, this allele is expected to be non-functional.  Expression 20 
and functional assays are needed to identify the mechanism through which this putative null allele 21 
may confer enhanced nitrogen fixation performance. 22 
 23 

Introduction 24 

Understanding population variation for fitness-related traits is important for our 25 

comprehension of evolutionary adaptation.  As first pointed out by Darwin, heritable variation 26 

represents the raw material of evolution by natural selection.  Forces that remove variation from a 27 

population, such as directional selection and genetic drift, are potentially counterbalanced by the 28 

input of mutations, gene flow, and balancing selection.  Spatially-varying selection, for instance, 29 

is a form of balancing selection whereby spatial heterogeneity in the environment favors 30 

alternative genotypes (Hedrick, 2006).  The extent of functional variation maintained in a 31 

population also has potential implications for both the resilience of ecosystem services in a 32 

changing environment (Hughes et al., 1997; Luck et al., 2003) as well as for how populations 33 

respond to temporal environmental change, because the rate at which beneficial mutations arise, 34 

and subsequently attain high frequencies, is slow in comparison to the speed at which populations 35 

can potentially adapt from standing genetic variation (Barrett, Schluter, 2008).  Therefore, it is 36 
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vital that we understand the extent of standing phenotypic and genetic variation within 37 

populations and the mechanisms by which it is maintained. 38 

At White Creek, a nitrogen-limited, geothermally-influenced stream in the Lower Geyser 39 

Basin of Yellowstone National Park, a population of the thermophilic, filamentous 40 

cyanobacterium, Mastigocladus (Fischerella) laminosus, exhibits tremendous ecological 41 

variation for temperature performance along a thermal gradient ranging from 39-54 ºC mean 42 

annual temperature (Miller et al., 2009).  This strong temperature gradient exists in the presence 43 

of little apparent spatial variation in nutrient and light availability (Miller et al., 2009).  More than 44 

150 M. laminosus strains from five sampling locations spanning their natural range in White 45 

Creek have been archived and/or maintained in laboratory culture.  M. laminosus strains from 46 

White Creek tend to grow better under laboratory conditions that mimic the mean temperatures 47 

from which they were originally collected, resulting in crossing reaction norms for temperature 48 

performance (Miller et al., 2009).  Although gene flow along White Creek is generally high 49 

throughout much of the genome, upstream and downstream strains of M. laminosus are 50 

genetically differentiated at specific genomic regions (Wall et al., in press; Miller et al., 51 

submitted).  However, several other regions of the genome exhibit the signatures of balancing 52 

selection in the absence of obvious spatial structure. Questions remain regarding both the 53 

functional and the adaptive significance of this variation. 54 

M. laminosus fixes abundant nitrogen in situ (Miller et al., 2006), and it is expected that 55 

this is an important fitness-related trait in nitrogen-limited systems like White Creek.  Biological 56 

nitrogen fixation is a globally significant biogeochemical process that many cyanobacteria 57 

perform.  It is estimated that organisms that fix atmospheric nitrogen (diazotrophs) are 58 

responsible for more than half of global nitrogen fixation, in spite of increasing anthropogenic 59 

nitrogen fixation since the industrial era (Galloway et al., 2004).  Because cyanobacteria also 60 

perform oxygenic photosynthesis, they must perform two crucial metabolic processes that are at 61 

odds with one another.  This is because the enzyme responsible for nitrogen fixation, nitrogenase, 62 
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contains a cofactor that is permanently deactivated by oxygen.  In order to fix atmospheric 63 

nitrogen and perform oxygenic photosynthesis, cyanobacteria must separate these activities in 64 

either time or in space.  Because photosynthetic oxygen production is light dependent, some 65 

cyanobacteria fix nitrogen under dark conditions, when their photosystems are naturally inactive 66 

(Berman-Frank et al., 2001). An alternative strategy employed by M. laminosus and related 67 

cyanobacteria is to spatially separate these biochemically incompatible processes by means of 68 

specialized and terminally differentiated nitrogen-fixing cells called heterocysts. 69 

Heterocysts, which are spaced at semi-regular intervals along filaments and typically 70 

account for ~5-10% of cells (Kumar et al., 2010), have several important structural and functional 71 

differences from vegetative cells that enable nitrogen fixation to occur.  Most importantly, the 72 

heterocyst creates a micro-oxic environment.  The heterocyst’s first defense against oxygen 73 

poisoning of nitrogenase is a physical barrier to oxygen diffusion in the form of an extracellular 74 

heterocyst envelope polysaccharide (HEP) and an underlying heterocyst glycolipid layer (HGL; 75 

Kumar et al., 2010).  Formation of the HEP layer is one of the earliest morphological changes 76 

during differentiation (Kumar et al., 2010), and an intact HEP layer is required for heterocyst 77 

function in the presence of oxygen (Huang et al., 2005; Wolk et al., 1988), though it is generally 78 

believed that the HGL layer is the primary gas diffusion barrier (Currier et al., 1977).  Another 79 

measure taken during heterocyst development to enable nitrogenase activity under light 80 

conditions is the dismantling of the oxygen-producing photosystem (PS) II (Wolk et al., 1994).  81 

An additional consequence of dismantling PSII is that the heterocyst is not able to generate 82 

reductant for carbon fixation (Wolk et al., 1994).  Consequently, fixed carbon in the form of 83 

sucrose is imported from adjacent vegetative cells to provide reducing power for nitrogen fixation 84 

(Kumar et al., 2010).  PS I, however, remains active, generating much of the ATP required for 85 

nitrogen fixation (Ernst et al., 1983).  Heterocysts also exhibit increased rates of respiration, the 86 

benefit of which is twofold: (1) intracellular oxygen is quickly consumed, which protects 87 

nitrogenase and (2) it provides a supplemental source of ATP that is used to power nitrogenase 88 
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(Wolk et al., 1994).  A return of combined nitrogen during the first 9-12 hours of heterocyst 89 

development can reverse the differentiation process , after which the cell is committed to 90 

differentiation (Yoon, Golden, 2001).  Fixed nitrogen produced by heterocysts rapidly diffuses 91 

into adjacent vegetative cells (Popa et al., 2007) via intracellular junctions (Mullineaux et al., 92 

2008) and/or a continuous periplasm (Flores et al., 2006). 93 

Nitrogen fixation has a complex genetic basis in heterocystous cyanobacteria (Wolk, 94 

2000).  In addition to nitrogen fixation (nif) genes that are common to most diazotrophs, genes 95 

involved in heterocyst differentiation are also required.  Heterocyst differentiation has been 96 

extensively studied in the model cyanobacterium Anabaena PCC 7120 and is one of our best 97 

understood models of cell differentiation in bacteria (e.g., Kumar et al., 2010).  Nitrogen fixation 98 

is an energetically expensive process, and the heterocyst envelope is a significant investment, 99 

accounting for ~50% of cell dry weight (Dunn, Wolk, 1970); consequently, heterocysts are not 100 

produced when a preferred source of nitrogen is available in the environment.  Within hours of 101 

nitrogen limitation, the master regulator of heterocyst differentiation, hetR (Buikema, Haselkorn, 102 

2001), is limited to the semi-regularly spaced 5-10% of cells destined to become heterocysts 103 

(Huang et al., 2004).  The number of genes estimated to be differentially regulated during 104 

heterocyst development is staggering, ranging from just over 1000 in Anabaena PCC 7120 (Ehira 105 

et al., 2003) to just under 500 in Nostoc punctiforme (Campbell et al., 2007).  These include 106 

between 100-140 “Fox” genes that are required for nitrogen fixation in the presence of oxygen 107 

(Wolk, 2000).  For instance, the development of a heterocyst that is functional in an oxic 108 

environment requires the coordinated expression of genes which remodel the cell surface to 109 

provide a passive gas diffusion barrier that limits the entry of oxygen (Nicolaisen et al., 2009; see 110 

above).  Nitrogen fixation (nif) genes are expressed late in development, roughly 24 hours after 111 

nitrogen deprivation in Anabaena PCC 7120 (Ehira et al., 2003).  There are at least 18 genes and 112 

two excised DNA elements arranged in two separate gene clusters controlled by 4 operons in the 113 

Anabaena PCC 7120 nif regulon (reviewed in Böhm, 1998). 114 
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While extensive work has been done to identify the genes required to develop a 115 

heterocyst and to perform nitrogen fixation, very little is known about either the amount or the 116 

genetic basis of phenotypic variation for this important biogeochemical process in natural 117 

populations.  Here, I first address the extent of phenotypic variation for nitrogen fixation ability 118 

among 23 randomly-selected White Creek M. laminosus strains.  To assess whether nitrogen 119 

fixation co-varies with divergent temperature-specific growth in upstream and downstream sub-120 

populations of M. laminosus, nitrogen fixation was tested at both of the approximate temperature 121 

extremes of their natural range in White Creek.  Because nitrogen fixation requires a significant 122 

amount of ATP, the provision of fuel by carbon fixation is likely an important co-occurring 123 

process in M. laminosus under nitrogen limitation (Kumar et al., 2010).  Thus, simultaneous 124 

measurements of nitrogen- and carbon-fixation were performed to investigate the expectation that 125 

these two crucial metabolic processes are positively correlated in M. laminosus. 126 

I next build on existing genomic resources available for White Creek M. laminosus 127 

strains to take a population genomics approach to identify loci associated with superior 128 

performance for nitrogen fixation and its temperature dependence.  Population genomics 129 

approaches are powerful tools that use genome-wide sampling of population genetic variation 130 

to detect candidate genes which potentially contribute to population differentiation or phenotypic 131 

variation, as evidenced, for example, by outlier levels of genetic differentiation (reviewed by 132 

Luikart et al., 2003 and Storz 2005).  Although population genomics approaches have 133 

transformed the study of adaptation and genetic disease in both model and non-model eukaryotic 134 

systems, these methods have only recently been applied to bacteria (e.g. Thomas et al., 2012 and 135 

Epstein et al., 2012).  Previous genome-wide analysis of genetic differentiation of M. laminosus 136 

along the White Creek temperature gradient has demonstrated that only  a small fraction of White 137 

Creek M. laminosus loci are highly differentiated between upstream (>50°C) and downstream 138 

(<50°C) sites (Wall et al., submitted; Miller et al., submitted).  My general approach was to group 139 
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strains for which genome data were available into phenotypic classes based on nitrogen fixation 140 

performance and use these classes in analyses of genetic differentiation to identify candidate 141 

genes that may contribute to high metabolic performance under contrasting temperature regimes.  142 

This study provides new insights into the genetic basis of a globally important and biochemically 143 

complex metabolic process and on the influence of environment on the maintenance of diversity. 144 

 145 
Methods 146 

Nitrogen and carbon fixation assays 147 

 Axenic M. laminosus filaments were transferred to 125 mL Erlenmeyer flasks with 75 148 

mL of sterile D medium (Castenholz, 1988) and allowed to grow for at least two weeks.  Once 149 

sufficient biomass accrued in D medium flasks, sub-samples were transferred to flasks with ND 150 

medium (D medium without combined nitrogen) to establish steady state growth in the absence of 151 

combined nitrogen, as in Miller et al. (2006) and Miller et al. (2009).White Creek M. laminosus 152 

strains were grown at the standard maintenance temperature of 50°C in ND medium at a light 153 

intensity of 105±5 µE m-2 s-1 provided by cool white fluorescent bulbs.  After two weeks, cultures 154 

were split into six sub-lines, with three each of these moved to 37°C and 55°C growth chambers, 155 

respectively.  Sub-lines were maintained in each incubator in ND medium and with a 12/12 hr 156 

light/dark cycle (105±5 µE m-2 s-1 during the light cycle) for two weeks leading up to the assay.  157 

Sub-lines were transferred on days seven and twelve during this acclimation period to ensure that 158 

cells were in exponential growth phase on the day of the assay (14 days after cultures were split 159 

into sub-lines).  For each strain, nitrogen fixation incubation assays were performed two separate 160 

times using independent starting cultures. 161 

 Sub-samples from each sub-line were homogenized using a tissue grinder and normalized 162 

to an OD750 of 0.05±0.003.  Cultures were homogenized such that large clumps of trichomes (i.e. 163 

chains of cells) were broken up, but long chains containing vegetative cells and heterocysts 164 

remained intact.  Relative nitrogen fixation rates were estimated by the standard acetylene 165 
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reduction assay (ARA; Stewart et al., 1967).  Because the production of ethylene is proportional 166 

to the activity of the nitrogenase enzyme, “nitrogen fixation performance” will be used 167 

interchangeably with “normalized ethylene production” throughout this manuscript.  Assays were 168 

carried out with 10 mL of ND medium in 20 mL crimp-sealed vials with a light and a dark 169 

replicate for each sub-line.  Samples were incubated for four hours following the addition of 5 170 

mL of acetylene gas (generated by the addition of 5 g of calcium carbide to 100 mL of deionized 171 

water) at the beginning of the light cycle of the established light regime.  Incubations were 172 

terminated by aspirating as much sample headspace as possible (~15 mL) from each incubation 173 

vial and injecting it into a pre-evacuated 5 mL crimp vial.  Ethylene production was measured 174 

using flame-ionization detection gas chromatography (FID-GC) with a Shimadzu GC-2014.  175 

Ethylene production measurements were estimated using a standard curve, blank corrected 176 

against parallel incubation vials that contained only ND growth medium and normalized to an 177 

optical density of 0.050.  Optical density was empirically determined to have a linear relationship 178 

with cell dry mass for M. laminosus samples (Pearson correlation, R2 = 0.95, p <0.001).  179 

Microscopic counts of heterocyst frequency were performed for one representative sub-line at 180 

each temperature treatment.  This was done to ensure that any variability between strains in their 181 

ability to form heterocysts was taken into account during data analysis. 182 

 Concurrent estimations of carbon fixation by each sub-line were made using 14C-183 

bicarbonate incorporation rates (see Miller et al. 1998).  Briefly, incubations were initiated with 184 

the addition of 0.2 µCi of 14C-bicarbonate to 3 mL aliquots of each sub-line, carried out for one 185 

hour under the same light and temperature conditions as in the acetylene reduction assay above 186 

and then terminated with the addition of 200 µL of formalin.  To correct for non-biological 187 

uptake of radiolabeled carbon, formalin was added to a duplicate aliquot of one of the three sub-188 

lines at each temperature treatment at the start of the incubation.  The full 3 mL sample volume 189 

was filtered onto a 0.45 µm GN-6 membrane filter (PALL Life Sciences), rinsed first with 3% 190 

HCl to remove unincorporated radioisotope, and then rinsed with deionized water.  Filters were 191 
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then placed into 20 mL scintillation vials and allowed to ventilate in a fume hood for at least one 192 

hour before adding 1.5 mL of EcoLite scintillation fluid (ICN).  Samples were then read by a 193 

Beckman LS6000SE scintillation counter.  As with ethylene production, carbon fixation rates 194 

were normalized to an optical density of 0.050. 195 

Statistical Analysis 196 

Because of the crossed experimental design and the heteroskedastic nature of the data, 197 

even after transformation, I generated a linear mixed effects model using the R “lme4” package 198 

(Bates et al., 2014) to understand which factors explained the variation in observed nitrogen 199 

fixation performance.  Fixed factors of the model were (1) normalized carbon fixation rate, (2) 200 

temperature treatment, (3) heterocyst frequency, and all possible interactions.  The random effects 201 

structure was designed such that the model accounted for variation within incubations and among 202 

strains across the two temperature treatments.  Other variables in the model were removed via 203 

backwards stepwise nested hypothesis testing using the F-test until the lowest Akaike information 204 

criterion score was obtained.  A post-hoc pseudo-R2 for linear mixed models (Nakagawa, 205 

Schielzeth, 2013) was used to approximate the fit of the model and estimate the amount of 206 

variation that could be explained by fixed factors and individual random effects. 207 

Identification of Candidate Genes 208 

 Results from the ARA’s were used to categorize M. laminosus strains into phenotypic 209 

classes based on normalized ethylene production within each temperature treatment (37 and 55 ºC 210 

datasets) and overall pooled performance (pooled dataset).  For each dataset, strains in the upper 211 

quartile of mean normalized ethylene production were binned as the “upper” phenotypic class and 212 

those below this benchmark categorized as the “lower” phenotypic class.  Genomic data for M. 213 

laminosus strains used in the analysis were obtained previously (Miller et al., submitted).  Briefly, 214 

paired-end Illumina sequence data were obtained for 20 White Creek strains randomly-selected 215 

from the lab strain collection.  Draft genomes were assembled de novo using Velvet (Zerbino, 216 

Birney, 2008).  Contigs in these draft genomes were auto-annotated with the RAST server and 217 
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saved in GenBank format (Aziz et al., 2008).  For each genome, protein-coding genes (CDS) 218 

were extracted from the GenBank files with custom Perl scripts to create FASTA-formatted files 219 

of all CDS.   220 

Sequential local BLASTn queries of a non-redundant database of CDS were used to build 221 

separate FASTA-formatted files of orthologous CDS corresponding to each locus for the two 222 

phenotypic classes described above.  Only full-length CDS were included, and loci for which 223 

fewer than 10 sequences were available were excluded. Custom Perl scripts (Miller et al., 224 

submitted) were then used to estimate genome-wide relative (FST) and absolute (DXY) genetic 225 

differentiation of polymorphic loci between phenotypic classes.  Though FST has historically been 226 

used to estimate the relative genetic variation between geographically distinct populations 227 

(Holsinger, Weir, 2009), FST may be applied to any pair of defined groups.  Here, the groups of 228 

interest are based on phenotypic classes rather than geographic location.  The resulting 229 

distributions of FST and DXY, respectively, were taken as empirical null distributions for each 230 

dataset to avoid assumptions regarding demographic history used by model-based approaches for 231 

identifying candidate loci.  Vetted outlier loci (top ~1% of the tail, 20 CDS) of both FST and DXY 232 

distributions were further explored by comparing them to available annotated orthologs in the 233 

NCBI database. 234 

 235 
Results & Discussion 236 

Nitrogen Fixation Activity 237 

 Strain means for normalized ethylene production values in the pooled dataset used to 238 

develop the model spanned a large range, from 0.35 PPM hr -1 in WC434 to 12.36 PPM in 239 

WC245 (Table 1.1). There was very little variation in normalized ethylene production in dark 240 

treatments and these rates were, on average, 28% of normalized ethylene production in respective 241 

light conditions, which is consistent with other studies on various diazotrophs that report light-242 

independent nitrogenase activities at less than half of those under saturating light (e.g. Liengen, 243 
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1999; Staal et al., 2001; Fig. 1.1B).  Only data from the light treatments were included in the 244 

model and in subsequent analyses. 245 

The final linear mixed model used to estimate normalized ethylene production from the 246 

pooled dataset (Table 1.2) was a random slope model that included two fixed factors (heterocyst 247 

frequency and a carbon fixation by temperature interaction) and two random effects (incubation, 248 

and a strain by temperature interaction).  The pseudo-R2 (R2
(c)) for this model was 0.74 with fixed 249 

factors explaining 21% of the variation (R2
(m)), and random effects explaining the remaining 53%.  250 

Of the random effects, the strain of M. laminosus assayed accounted for 19% of the model 251 

variance, temperature accounted for 20% and incubation for 3% (the remaining 11% of variation 252 

is the residual for random effects).  The strain, and thereby the genomic background, proved to be 253 

very influential in determining overall normalized ethylene production, accounting for more than 254 

one fourth of the total variation explained by the model. 255 

Heterocyst frequencies were on average 2.4 ± 0.3% (error based on 95% confidence 256 

interval).  This is lower than the ~5-10% frequency that is typically reported for model heterocyst 257 

forming cyanobacteria but comparable to previous results obtained in the lab for M. laminosus 258 

under these conditions (unpublished data).  The correlation between heterocyst frequency and 259 

normalized ethylene production was only significant in the 55 ºC dataset (Pearson correlation, R 260 

= 0.50, p <0.01), but was weakly positive in the 37 ºC and pooled datasets (R = 0.17 and 0.30, 261 

respectively).  Mean strain-specific normalized carbon fixation rates for the pooled dataset ranged 262 

between 33 and 133 µg C L-1 hr -1 (data not shown).  Normalized carbon fixation rates were 263 

generally higher in the 37 ºC dataset than the 55 ºC (averages of 107 ±10 and 33 ±3 µg C L-1 hr -1, 264 

respectively). There was a highly significantly positive correlation between normalized carbon 265 

fixation and normalized ethylene production in the 55 ºC (Pearson correlation, R = 0.73, p <0.01) 266 

and pooled datasets (Pearson correlation, R = 0.59, p <0.01).  The relationship between 267 

normalized carbon fixation and normalized ethylene production in the 37 ºC dataset was positive, 268 

but not significant (Pearson correlation, R = 0.50, p >0.05).  While the fixed factors described 269 
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above cumulatively explained a moderate amount of variation in the model (21%, Table 1.2), 270 

strain and temperature effects explained approximately twice as much model variation. 271 

Normalized ethylene production varied widely across temperature treatments and strains 272 

(Fig. 1.1, Table 1.1).  Out of the 23 strains assayed, 9 had reaction norm slopes that were 273 

significantly different from zero in the light treatments (Fig. 1.1A; t-test, p <0.05) and 8 in the 274 

dark treatments (Fig. 1.1B).  Strains with non-zero slopes usually performed better at the lower 275 

temperature than at the higher temperature.  This finding is corroborated by field 15N2 –uptake 276 

experiments with White Creek M. laminosus performed by Stewart (1970) and by acetylene 277 

reduction assays performed in the field at White Creek (Hutchins and Miller, unpublished).  Just 278 

one strain (WC344) had higher average nitrogenase activity at 55 ºC than at 37 ºC.  There was no 279 

correlation between the temperature at which each strain was isolated from White Creek and 280 

normalized ethylene production in either temperature-specific or pooled datasets (Pearson 281 

correlation, p >0.05; data not shown).  The intrinsic temperature dependence of nitrogen fixation 282 

performance in the strains assayed here therefore does not appear to be tightly coupled to the 283 

location of strain origin along the thermal gradient.  In the pooled dataset, strains in the upper 284 

phenotypic class were, not surprisingly, often also those that were in the upper class for 285 

temperature-specific normalized ethylene production (Table 1.1).  The upper classes for 55 ºC 286 

and the pooled dataset shared more common strains with each other than either did with those of 287 

the 37 ºC group.  Strains WC119, WC245, and WC439 were in the upper class for both of the 288 

temperature-specific and the pooled datasets. 289 

Genome-wide Analysis of Loci Associated with Nitrogen Fixation 290 

Genomic data was available for five out of the six strains in the upper class (top quartile 291 

of pooled normalized ethylene production; WC119, WC1110, WC245, WC344, and WC439) and 292 

for 11 out of the 17 remaining (lower class) strains.  The majority of the M. laminosus genome 293 

exhibited very little differentiation between phenotypic classes for all three datasets but contained 294 

distinct outliers in the tails of the distributions (FST and DXY near zero; Fig. 1.2 and 1.3, 295 
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respectively).  Candidate loci exhibited the greatest genetic differentiation between classes in the 296 

55 ºC dataset. Nearly half of the candidate genes identified in the results did not have a homolog 297 

in the NCBI database with a known function (Fig. 1.4 and 1.5, Tables 1.3 – 1.8).  However, for 298 

those that did have an identifiable function, the vast majority were involved with carbohydrate, 299 

amino acid, or inorganic ion transport/metabolism.  The small peaks in the frequencies of FST 300 

values centered on 0.30 – 0.35 for all three datasets are the result of the genetic clustering of a 301 

few strains from the lower class (WC1110, WC527, WC538, and WC441) for a sub-set of loci 302 

that are not associated with enhanced nitrogen fixation. 303 

At 37 ºC, the most represented cluster of orthologous groups (COG) category among 304 

candidates were those with unknown function or general prediction only (Fig. 1.4A and 1.5A, 305 

respectively).  Those with identifiable functions were most commonly involved with inorganic or 306 

amino acid transport/metabolism or cell membrane biogenesis.  However, there were several 307 

noteworthy candidate genes in the ~1% tail of outlier loci.  One of the genes that appeared in tails 308 

of both the FST and DXY distributions was candidate 19-42545.  It is annotated as a diguanylate 309 

cyclase, an enzyme which is observed in diverse branches of the prokaryotic tree (Galperin, 310 

2004).  Diguanylate cyclases catalyze the formation of 3′–5′ cyclic diguanylic acid (c-di-GMP), a 311 

secondary messenger protein involved in numerous networks (Hengge, 2009) that leads to the 312 

biosynthesis of adhesins and exopolysacharides associated with bacterial biofilm formation 313 

(Jenal, 2004).  There are two nonsynonymous polymorphisms at this locus: all strains in the upper 314 

phenotypic class had a serine rather than an alanine at residue 34 and an aspartic acid instead of 315 

an asparagine at residue 42 (the allele fixed in the upper class was present at 42% frequency in 316 

the lower class).  The highest FST value belonged to a potassium channel protein gene (candidate 317 

56-42545) orthologous to alr0440 in Anabaena PCC 7120.  This gene is upregulated during 318 

nitrogen step-down and heterocyst development (Ehira et al., 2003), but differentiation between 319 

phenotypic classes was manifested by two synonymous polymorphisms, and its role in nitrogen 320 

fixation performance is not known (the allele fixed in the upper class was present in 40% of 321 
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strains in the lower class).  Candidate 131-35450 is annotated as hupW, a protease that is involved 322 

in the maturation of the uptake hydrogenase (Wang et al., 2012) and is upregulated during 323 

heterocyst development (Ehira et al., 2003).  The uptake hydrogenase recycles the hydrogen 324 

byproduct generated by nitrogenase, providing additional electrons that are used for nitrogen-325 

reduction during fixation (Lindberg et al., 2012).  Inactivation of hupW results in a 326 

malfunctioning uptake hydrogenase and the evolution of excess hydrogen atoms in heterocysts 327 

(Lindberg et al., 2012), thus decreasing the reducing power available to the heterocyst (Carrasco 328 

et al., 2005).  All of the upper class strains at 37 ºC were characterized by a methionine at residue 329 

28, rather than an isoleucine, in the nickel binding site (the allele fixed in the upper class was 330 

present at 62% frequency in the lower class).  Functional analyses of proteins from these 331 

candidate loci are needed to elucidate their effects on nitrogen fixation and fitness in M. 332 

laminosus. 333 

Though the number of candidate genes encoding proteins with either unknown function 334 

or having only a general prediction was also high in the 55 ºC dataset, a large proportion of the 335 

genes encoded proteins that are involved with carbohydrate transport and metabolism (Fig. 1.4B 336 

and 1.5B for FST and DXY, respectively).   The locus with the greatest FST value was candidate 28-337 

39736, an adenylylsulfate (APS) kinase.  These phosphotransferases catalyze the second reaction 338 

of the conversion of inorganic sulfate to 3'-phosphoadenosine 5'-phosphosulfate as part of 339 

assimilatory sulfur metabolisms (Renosto et al., 1984).  A single nonsynonymous polymorphism 340 

between the two classes was present at nucleotide 241, resulting in an aspartic acid in the upper 341 

class while the majority of lower class strains contain an asparagine at this position (the allele 342 

fixed in the upper class was present at 17% frequency in the lower class).  Candidate 1-33964 343 

encodes the hopene-associated glycosyltransferase, hpnB. Glycosyltransferases which contain 344 

family 2 domains, as is the case with hpnB, are generally responsible for transferring nucleotide-345 

diphosphate sugars to polysaccharide and lipid substrates (Perzl et al., 1998).   hpnB (alr0776) is 346 

one of several genes related to heterocyst development that is upregulated by NaCl in the 347 
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cyanobacterium, Anabaena sp. PCC 7120  (Imashimizu et al., 2005).    All of the strains in the 348 

upper phenotypic class possessed a nonsynonymous polymorphism that translates to an alanine 349 

instead of a glycine at residue 271 (the allele fixed in the upper class was present in 27% of 350 

strains in the lower class). The third FST outlier, candidate 49-34361, is annotated as a cation-351 

transporting ATPase and shows weak homology to all3375 in the Anabaena PCC 7120 genome 352 

(Kaneko et al., 2001). A nonsynonymous polymorphism between the phenotypic classes resulted 353 

in a proline in the upper class and a leucine in the lower class at amino acid 172 (the allele fixed 354 

in the upper class was present at 33% frequency in the lower class).  Candidate 65-42545 encodes 355 

the third subunit of cytochrome oxidase that is most similar to the homologous gene located in the 356 

coxBACI operon in Anabaena PCC 7120.  While this gene is mildly upregulated during 357 

heterocyst development, it does not appear to be the primary cytochrome oxidase responsible for 358 

enhanced respiratory activity within the heterocyst (Jones, Haselkorn, 2002).  Furthermore, the 359 

interaction between cytochrome-c and cytochrome oxidase occurs on subunits I and II, whereas 360 

the third subunit is not involved catalytically (Witt et al., 1998).  The differentiation between 361 

classes manifested as a synonymous adenine instead of guanine at nucleotide 435 in the gene (the 362 

allele fixed in the upper class was present in 36% of strains in the lower class). Still, consumption 363 

of intracellular oxygen is crucial for heterocysts, and genetic changes in this gene may potentially 364 

contribute to variation in nitrogen fixation among strains of M. laminosus.  Candidate 93-42545 is 365 

homologous to alr4726 in the Anabaena PCC 7120 genome, which encodes a protein that has 366 

been identified as belonging to the zinc uptake regulator family of sensory kinases.  Two 367 

synonymous polymorphisms are observed between phenotypic classes: in strains from the upper 368 

class a cytosine is present instead of a thymine at nucleotide 252 and thymine rather than a 369 

cytosine at 261 (the allele fixed in the upper class was present at 36% frequency in the lower 370 

class). 371 

Though in many cases, the polymorphisms that distinguish phenotypic classes at the 372 

above candidate loci are synonymous, it does not necessarily mean that these loci are 373 
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unimportant.  While selection may act on codon usage, an alternative possibility is that the actual 374 

target of selection is in non-coding DNA that is physically linked to the candidate locus. The 375 

analysis screened protein coding regions of the M. laminosus genome, but polymorphisms in non-376 

coding regulatory regions that are adjacent to genes may potentially influence nitrogen fixation 377 

performance. A sliding window approach along genome contigs could be used to find adjacent, 378 

physically linked non-coding regions of the M. laminosus genome that may also be differentiated 379 

between phenotypic classes and which may be the true target of selection. 380 

Within the pooled dataset, the most common functionally identifiable COGs among the 381 

FST candidates were carbohydrate transport/metabolism, amino acid transport/metabolism, and 382 

signal transduction proteins.  A histidine kinase gene, candidate 167-28586, was an outlier in both 383 

the FST and DXY distributions and had the highest values for each respective metric of any gene 384 

for the pooled dataset.  Unlike other candidates identified thus far, there appear to be three 385 

segregating alleles at this locus:  an allele with a nonsense mutation that eliminates 150 386 

nucleotides at the 3’ end of the gene (fixed in upper class, 36% frequency in lower class); a full-387 

copy allele that differs from the above allele at 39 nucleotide positions, one of which includes the 388 

site of the alternative nonsense polymorphism; and an apparently rare (N = 1 in our sample) 389 

recombinant allele that is identical to the latter at the 5’ end and to the former at the 3’ end and 390 

therefore contains the nonsense mutation (see ‘A Histidine Kinase Candidate’ below for more 391 

discussion of candidate 167-28586). Candidate 20-24813 is annotated as an enzyme in the 392 

cytochrome P450 family.  P450s are heme-thiolate proteins that oxidize and degrade a diverse 393 

array of substrates and have equally diverse structures throughout all three domains of life 394 

(Werck-Reichhart, Feyereisen, 2000).  Strains in the upper phenotypic class have a synonymous 395 

polymorphism at nucleotide 1317 in the form of a thymine (27% frequency in lower class), rather 396 

than a cytosine, as is the case with most strains in the lower class.  Candidate 29-33117 encodes 397 

the cytochrome-c550 component of PS II.  Cytochrome-c-550 is a membrane bound component 398 

of the cyanobacterial PS II oxygen-evolving complex (OEC; responsible for the water-splitting 399 
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reaction that produces oxygen and provides reducing power for carbon fixation) and is 400 

responsible for stabilizing chlorine and calcium-binding to the complex (Roncel et al., 2012).  401 

Differentiation between the phenotypic classes was characterized by a single synonymous 402 

polymorphism:  cytosine in the upper class and thymine in the lower class at nucleotide 471 (the 403 

allele fixed in the upper class was present at 50% frequency in the lower class).  Candidate 10-404 

32834 was in the upper 1% of both FST and DXY distributions and is annotated as the nickel-405 

binding alpha subunit of urease, an enzyme that catalyzes the hydrolysis of urea into ammonia 406 

and carbon dioxide (Holm, Sander, 1997).  There were four nucleotide polymorphisms in the 407 

upper class, two of which are adjacent and are nonsynonymous.  Strains in the upper class have 408 

an alanine at residue 555 (55% frequency in lower class) while some strains in the lower class 409 

have an allele with an asparagine at this location.  The polymorphism described here does not 410 

occur in either a metal binding site or the active site of the protein, though it is possible that it 411 

confers a structural modification.  Urease is directly involved in assimilatory nitrogen metabolism 412 

and the recycling of urea generated by cell metabolism.  Chemical analysis of water samples 413 

taken along White Creek does suggest that there are occasional pulses of dissolved organic 414 

nitrogen in the system (Hutchins, unpublished).  Urease’s involvement in nitrogen metabolism 415 

and the differentiation in the alpha subunit gene between phenotypic classes presented here make 416 

this locus an interesting prospect for future investigations.   417 

A Histidine Kinase Candidate 418 

The 167-28586 locus, which appears as a candidate in the pooled dataset and putatively 419 

encodes a histidine kinase, is particularly noteworthy.  In addition to being an extreme outlier by 420 

both metrics of genetic differentiation, 167-28586 also exhibits the molecular evolutionary 421 

signatures of long-term balancing selection (Miller et al., submitted). These include an extremely 422 

positively skewed value of Tajima’s D and an excess of polymorphism in the White Creek 423 

population.  Histidine kinases (HKs) are involved in two-component signal transduction systems 424 

(TCSs), the principal means by which bacteria sense and respond to environmental changes (Gao, 425 
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Stock, 2009; Wuichet et al., 2010).  Prototypical TCSs involve two distinct proteins.  A histidine 426 

kinase (HK), which usually has a sensory domain that interacts with the intra- or extracellular 427 

environment, serves as the input component of the system.  The HK then transfers phosphoryl 428 

groups to a cognate response regulator (RR) to effect a change in gene expression or, sometimes, 429 

protein activity (Galperin, 2010).  Once stimulated, a well-conserved ATP binding domain at the 430 

C-terminal end of the HK catalyzes the autophosphorylation of a conserved histidine residue.  431 

The phosphorylated HK then transfers the His-bound phosphoryl group to an asparagine residue 432 

in a highly-conserved receiver domain on the RR. 433 

167-28586 exhibits ~50% amino acid identity with three histidine kinases in the 434 

Anabaena PCC 7120 genome (alr1551, alr2739, and alr4882).  For several reasons, alr4882 435 

appears to be the ortholog in the Anabaena PCC 7120 genome. 67-28586 and alr4882 share the 436 

same length and domain structure (both lack a sensory domain) as alr4882, which is not the case 437 

with other Anabaena homologs. Also, local gene order in the region is conserved: both HK167-438 

28586 and alr4882 are downstream of a putatively orthologous annotated gene encoding a protein 439 

with a FIST sensory domain that likely serves as the sensory component of this network (alr4881 440 

and the corresponding M. laminosus gene are ~56% identical at the amino acid level).  While 441 

FIST domains are phylogenetically widespread, they are biochemically uncharacterized, though 442 

they are predicted to bind small molecules (Borziak, Zhulin, 2007). 443 

It is likely that the loss of more than half of the ATP-binding pocket would render 444 

HK167-28586 nonfunctional, even if it were expressed.  I propose that this would result in a 445 

transcriptional “rewiring” that is somehow favorable with respect to nitrogen fixation.  Loss of 446 

function mutations that alter regulatory networks may be a common mechanism of bacterial 447 

adaptation to environmental change (Hottes et al., 2013).  “Gain-of-function” mutations require 448 

very specific alterations to genes and are rare compared to “loss-of-function” mutations, which 449 

can be explored rapidly in a large evolving population (Hottes et al., 2013).  However, in order 450 

for HK167-28586 to contribute to the observed differences in performance between phenotypic 451 
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classes, I expect that the full copy of the allele must, at the very least, be expressed during either 452 

nitrogen step-down and/or steady-state growth under nitrogen-limitation (see Chapter 2). 453 

Interestingly, HK167-28586 is located just upstream of what appears to be an 454 

orthologous gene to alr0677 in the Anabaena PCC 7120 genome.  This gene exhibits homology 455 

with a site-specific recombinase, XisC, which is required for the excision of ~10.5 kilobases from 456 

the hupL gene in Anabaena PCC 7120, which encodes the large subunit of the uptake 457 

hydrogenase (Carrasco et al., 2005).  Excision of the hupL element is necessary to produce a 458 

functional heterocyst-specific [NiFe] uptake hydrogenase, which catalyzes the consumption of 459 

hydrogen that is produced as a byproduct of nitrogen fixation (Tamagnini et al., 2002).  Two 460 

other site-specific recombinases are also required for nitrogen fixation in Anabaena PCC 7120 461 

(Böhm, 1998).  In order to produce a functional nitrogenase enzyme, two inserted elements in the 462 

nif operon must be removed: a 55 kilobase element from fdxN, which encodes a ferredoxin-like 463 

protein, and an 11 kilobase element from nifD, which encodes the alpha subunit of the 464 

nitrogenase MoFe protein.  These elements contain genes encoding the site-specific recombinases 465 

required for their own excision: xisF and xisA, respectively.  Though the proximity of Hk167-466 

28586 to a putative site-specific recombinase is intriguing, at this time it is not possible to say 467 

what, if any, relationship exists between the two genes and nitrogen fixation performance in M. 468 

laminosus. 469 

 470 
Conclusion 471 

Differences among strains explained a considerable portion of the variation in nitrogen 472 

fixation in a mixed effects model.  The comparatively low number of loci that were strongly 473 

associated with phenotypic variation among strains in nitrogen fixation performance suggests that 474 

dissecting the contributions of these genetic factors to variation in this complex trait may be 475 

tractable.  However, the signatures of selection that we observe in our genome data may be the 476 

product of natural selection acting on subtle phenotypic differences that may be difficult to 477 
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resolve with laboratory experiments. Consequently, it may be challenging to quantify the impact 478 

of a locus (i.e., its effect size) on the phenotypic variation for a quantitative trait without large 479 

sample sizes.  For example, although a positive relationship is estimated between ethylene 480 

production and the presence of the premature stop codon in HK167-28586 (Fig. 1.6), the model is 481 

not significant for this low sample size (Nagelkerke R2 = 0.14, p = 0.27; Nagelkerke, 1991).  A 482 

much larger sample will be required to obtain an accurate estimate of the contribution of this 483 

locus to variation in nitrogen fixation.  However, the first step in determining how genetic 484 

variation at this locus may act to enhance nitrogen fixation performance is to identify its pattern 485 

of expression with respect to nitrogen limitation.  486 
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Tables 487 

Table 1.1 Strain means and errors (95% confidence) for normalized ethylene 
production and summary statistics for all strain means.  Underlined values are those 
which were in the top quartile of their respective columns. 

                  Normalized Ethylene Production (PPM hr-1)   
  WC Strain      37ºC      55ºC      Pooled   
            
  111 4.92 ±0.60 4.09 ±0.60 4.51 ±0.42   
  112 4.99 ±0.84 0.41 ±0.03 2.70 ±0.79   
  114 12.36 ±1.30 2.06 ±0.43 7.21 ±1.66   
  116 4.78 ±1.13 2.83 ±0.82 3.80 ±0.72   
  119 7.18 ±0.75 5.49 ±1.32 6.33 ±0.76   
  1110 6.35 ±1.54 1.80 ±0.45 4.08 ±1.02   
  213 3.49 ±0.67 2.57 ±1.09 3.07 ±0.60   
  217 1.35 ±0.22 1.90 ±0.41 1.62 ±0.24   
  245 8.54 ±0.54 6.71 ±2.37 7.63 ±1.19   
  246 5.68 ±0.51 2.17 ±1.26 4.27 ±0.78   
  249 1.94 ±0.23 1.81 ±0.41 1.88 ±0.23   
  326 8.07 ±1.54 0.68 ±0.33 4.04 ±1.33   
  344 4.91 ±1.34 9.25 ±1.29 7.08 ±1.09   
  434 0.30 ±0.04 0.41 ±0.06 0.35 ±0.04   
  438 5.71 ±0.41 5.49 ±1.00 5.60 ±0.52   
  439 8.70 ±1.22 5.05 ±0.98 6.88 ±0.92   
  441 5.58 ±1.25 4.36 ±0.81 5.03 ±0.76   
  442 4.03 ±0.95 2.47 ±0.68 3.25 ±0.60   
  527 4.78 ±0.64 2.37 ±0.55 3.58 ±0.54   
  538 4.79 ±0.50 3.06 ±0.68 3.92 ±0.48   
  542 5.52 ±0.44 5.58 ±0.90 5.55 ±0.45   
  558 4.56 ±0.45 2.67 ±0.53 3.61 ±0.43   
  559 2.91 ±0.47 2.34 ±1.14 2.62 ±0.59   
  Mean  5.28  3.29 4.29   
  Minimum  0.30  0.41 0.35   
  Lower Quartile  4.30  1.98 3.16   
  Median  4.92  2.57 4.04   
  Upper Quartile  6.03  4.71 5.57   
  Maximum 12.36  9.25 7.63   

  488 
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Table 1.2 Mixed effects model summary using R's lme4 package syntax. R2
(m) is the model 

variation explained by fixed factors and R2
(c) is the total variation explained by the model.  

  Model AIC BIC Log 
Likelihood R2

(m) R2
(c)   

  ET ~ 1 + H + C×T + (1|I) + (1+T|S) 3525.4 3556.7 -1752.7 0.21 0.74   
                
                
  Variables Definition         
  C 14C-bicarbonate incorporation rate (µg C hr -1)   
  ET Normalized ethylene production (PPM hr -1)   
  H Heterocyst frequency (heterocysts per cell counted) 
  S Nominal M. laminosus strain ID     
  T Temperature treatment (ºC)       

  489 
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Table 1.3 Candidate genes associated with variation in nitrogen fixation performance at 37 ºC, the relative 
genetic differentiation between phenotypic classes (FST), and corresponding annotations of homologous 
genes in the NCBI database.  Emboldened rows are genes that are both FST and DXY outliers. 

  Gene Fst Annotation   
  56-42545 0.4836 Potassium channel protein   
  59-39736 0.4563 Ribosomal protein S12 methylthiotransferase   
  124-17867 0.4258 Hypothetical Protein   
  223-48944 0.3992 Cobalt transport protein component   
  19-42545 0.3966 Diguanylate cyclase   
  131-35450 0.3961 Hydrogenase maturation protease hupW   
  227-48944 0.3886 Hypothetical Protein   
  44-39685 0.3750 HSP htpX   
  41-4197 0.3750 Hypothetical Protein   
  112-40954 0.3684 Hypothetical Protein   
  24-24749 0.3649 Hypothetical Protein   
  33-4197 0.3633 Hypothetical Protein   
  13-30518 0.3633 GCN5 family acetyltransferase   
  31-39736 0.3584 Hypothetical Protein   
  19-24813 0.3514 Hypothetical Protein   
  237-48944 0.3503 Macrolide ABC transporter/ATP-binding protein   
  38-47543 0.3468 Hypothetical Protein   
  7-45 0.3379 Hypothetical Protein   
  1-30518 0.3333 Group 1 glycosyl transferase   
  23-24749 0.3333 Hypothetical Protein   

 490 
Table 1.4 Candidate genes associated with variation in nitrogen fixation performance at 37 ºC, the 
absolute genetic differentiation between phenotypic classes (DXY), and corresponding annotations of 
homologous genes in the NCBI database.  Emboldened rows are genes that are both FST and DXY outliers. 
  Gene Dxy Annotation   
  33-9029 0.0057 Hypothetical protein   
  19-42545 0.0035 Diguanylate cyclase   
  11-43020 0.0032 Hypothetical protein   
  12-14867 0.0031 Hypothetical protein   
  124-17867 0.0026 SCP-like extracellular protein   
  20-51983 0.0020 Hypothetical protein   
  31-39736 0.0018 Hypothetical protein   
  17-20539 0.0018 Hypothetical protein   
  44-43317 0.0018 tRNA(Ile)-lysidine synthase   
  118-37089 0.0018 UDP-N-acetylglucosamine 1-carboxyvinyltransferase   
  45-9675 0.0017 Phosphate ABC transporter substrate-binding protein   
  243-48944 0.0016 Putative Anti-Sigma regulatory factor (Ser/Thr kinase)   
  68-28680 0.0016 Nitrate ABC transporter, inner membrane subunit   
  309-48944 0.0015 Hypothetical protein   
  128-40954 0.0015 Nucleotidyl transferase   
  44-29888 0.0014 Hypothetical protein   
  7-45 0.0014 Hypothetical protein   
  54-57682 0.0013 Hypothetical protein   
  69-28680 0.0013 Amino acid ABC transporter substrate-binding protein   
  228-48944 0.0012 Ferritin, Dps family protein   
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Table 1.5 Candidate genes associated with variation in nitrogen fixation performance at 55 ºC, the relative 
genetic differentiation between phenotypic classes (FST), and corresponding annotations of homologous 
genes in the NCBI database.  Emboldened rows are genes that are both FST and DXY outliers. 
  Gene Fst Annotation   
  28-39736 0.6954 Adenylyl-sulfate kinase   
  1-33964 0.5698 Hopene-associated glycosyltransferase HpnB   
  49-34361 0.5273 Cation-transporting ATPase   
  65-42545 0.5176 Cytochrome-c oxidase subunit 3   
  93-42545 0.5150 Membrane-anchored histidine kinase   
  44-39378 0.4833 Hypothetical Protein   
  15-39736 0.4625 Teichoic acid-transporting ATPase/ABC transporter   
  48-34361 0.4611 Cation-transporting ATPase   
  35-24749 0.4600 Cyclic nucleotide binding   
  72-4197 0.4563 RNP-1 like binding protein   
  55-20539 0.4526 Hypothetical Protein   
  22-24813 0.4328 Hypothetical Protein   
  29-33117 0.4278 Cytochrome-c 550 psbV   
  69-4197 0.4172 Hypothetical Protein   
  7-17867 0.4103 MFS transporter   
  4-65273 0.4103 S-adenosylmethionine synthetase    
  59-13348 0.4082 ArsR family transcriptional regulator   
  12-39736 0.4074 Hypothetical Protein   
  77-48944 0.4045 ABC transporter    
  29-2411 0.4028 FAD dependent oxidoreductase   

 491 
Table 1.6 Candidate genes associated with variation in nitrogen fixation performance at 55 ºC, the 
absolute genetic differentiation between phenotypic classes (DXY), and corresponding annotations of 
homologous genes in the NCBI database.  Emboldened rows are genes that are both FST and DXY outliers. 

  Gene Dxy Annotation   
  77-48944 0.0081 ABC transporter    
  10-32834 0.0053 Urease alpha subunit   
  31-20539 0.0039 Glycosyl transferase family 2   
  62-37089 0.0038 Chlorophyll A-B binding protein   
  93-17867 0.0036 Hypothetical protein   
  19-42545 0.0035 Hypothetical protein   
  12-17867 0.0033 ABC-type nitrate/sulfonate/bicarbonate transport system, ATPase 
  80-29888 0.0031 ABC-2 type transporter   
  92-17867 0.0029 Exodeoxyribonuclease VII small subunit   
  118-40954 0.0025 Hypothetical protein   
  102-32982 0.0025 Hydrogenase expression/formation protein HypD   
  34-39685 0.0024 Glycosyl transferase family 2   
  76-17867 0.0023 Cobalt transport protein   
  132-48944 0.0022 Putative ABC-type transport system, permease component   
  127-48944 0.0021 Basic membrane lipoprotein    
  84-29888 0.0021 Oxidoreductase domain protein   
  23-29888 0.0007 FHA domain containing protein   
  81-29888 0.0020 Teichoic-acid-transporting ATPase   
  7-17867 0.0020 MFS transporter   
  20-51983 0.0020 Hypothetical protein   
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Table 1.7 Candidate genes associated with variation in pooled nitrogen fixation performance, the relative 
genetic differentiation (FST) between phenotypic classes, and corresponding annotations of homologous 
genes in the NCBI database.  Emboldened rows are genes that are both FST and DXY outliers. 
  Gene Fst Annotation   
  167-28586 0.5397 Histidine Kinase   
  20-24813 0.5313 Cytochrome P450   
  59-17867 0.5000 Hypothetical Protein   
  15-39736 0.4813 Teichoic-acid-transporting ATPase/ABC transporter   
  72-4197 0.4563 RNP-1-like binding protein   
  77-48944 0.4378 ABC transporter   
  7-17867 0.4264 MFS transporter   
  22-24813 0.4179 Hypothetical Protein   
  29-33117 0.4175 Cytochrome-c550   
  12-51983 0.4141 Unknown   
  108-24813 0.4138 Cyclic nucleotide-binding protein   
  59-13348 0.4082 ArsR-family transcriptional regulator    
  12-39736 0.4074 Hypothetical Protein   
  57-16960 0.4057 Hypothetical Protein   
  10-32834 0.4050 Urease alpha subunit   
  29-2411 0.4028 FAD dependent oxidoreductase   
  66-15735 0.4000 Hypothetical Protein   
  62-37089 0.4000 Chlorophyll a-b binding protein   
  223-48944 0.3992 Cobalt transport protein component CbiN   
  19-42545 0.3966 Unknown   

 492 
Table 1.8 Candidate genes associated with variation in pooled nitrogen fixation performance, the absolute 
genetic differentiation between phenotypic classes (DXY), and corresponding annotations of homologous 
genes in the NCBI database.  Emboldened rows are genes that are both FST and DXY outliers. 

  Gene Dxy Annotation   
  167-28586 0.0161 Histidine kinase   
  77-48944 0.0088 ABC transporter   
  33-9029 0.0057 Hypothetical Protein   
  10-32834 0.0056 Urease alpha subunit   
  93-17867 0.0054 Hypothetical Protein   
  62-37089 0.0052 Chlorophyll A-B binding protein   
  169-28586 0.0039 Hypothetical Protein   
  31-20539 0.0039 Glycosyl transferase family 2   
  19-42545 0.0035 Hypothetical Protein   
  84-29888 0.0034 Oxidoreductase domain protein   
  12-17867 0.0033 ABC-type NO3

-/SO2O-/CHO3
- transport system   

  11-43020 0.0032 Function Unknown   
  12-14867 0.0031 Glycosyl transferase, group 1    
  111-46452 0.0031 HGT; MbtH domain protein   
  299-48944 0.0030 Putative peptidoglycan binding protein   
  59-17867 0.0030 Hypothetical Protein   
  92-17867 0.0029 Exodeoxyribonuclease 7 small subunit   
  80-29888 0.0029 Teichoic-acid-transporting ATPase   
  40-3504 0.0027 Hypothetical Protein   
  118-40954 0.0026 NAD(P)H-quinone oxidoreductase subunit 4   
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Figures 493 

 494 

Fig. 1.1 M. laminosus reaction norms for normalized ethylene production across temperature 495 
treatments.  Emboldened lines indicate a slope that is significantly different from zero at the 95% 496 
confidence interval (ANOVA, p >0.05). Grey lines represent assayed strains for which slopes 497 
were not significantly different from zero (NS).  For clarity, error bars are not shown (see Table 498 
1.1 for this information). 499 
  500 

 25 



 501 
Fig. 1.2 Relative genetic differentiation (FST) between upper and lower phenotypic classes in the 502 
37 ºC (A), 55 ºC (B), and pooled datasets (C).  Insets have re-scaled views of the data in panels 503 
A, B, and C to better visualize outlier values. 504 
  505 
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 506 

 507 
Fig. 1.3 Absolute genetic differentiation (DXY) between upper and lower phenotypic classes in the 508 
37 ºC (A), 55 ºC (B), and pooled datasets (C).  Insets have re-scaled views of the data in panels 509 
A, B, and C to better visualize outlier values. 510 
  511 

 27 



 512 
 513 
Fig. 1.4 Annotated clusters of orthologous groups (COG) categories for the top 1% of FST outlier 514 
loci in the 37 ºC (A), 55 ºC (B), and pooled datasets (C). 515 
 516 
 517 

 518 
 519 
Fig. 1.5 Annotated clusters of orthologous groups (COG) categories for the top 1% of DXY outlier 520 
loci in the 37 ºC (A), 55 ºC (B), and pooled datasets (C). 521 
  522 
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 523 
 524 

Fig 1.6 General linear model predicting the probability that a White Creek M. laminosus strain 525 
contains the premature stop codon at the 167-28586 locus based on strain mean normalized 526 
ethylene production.  Circles are strain means for pooled ethylene production for strains with the 527 
premature stop codon and squares are strain means for those which have the full allele. 528 

529 
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 Chapter 2 530 

Abstract 531 

In chapter 1, I reported that allelic variation at a histidine kinase gene (HK167-28586) was 532 
significantly associated with variation in nitrogen fixation performance in M. laminosus from a 533 
population at White Creek in Yellowstone NP.  HK167-28586 also exhibits several molecular 534 
evolutionary signatures that suggest that allelic diversity at this locus encodes functionally 535 
important variation that has been maintained by some form of balancing selection.  For there to 536 
be a phenotypic difference between allelic classes, I expect that the expression of the full and 537 
functional allele is required during either heterocyst development and/or steady state growth 538 
under nitrogen-limitation.  Five different strains representing the three different alleles at the 539 
HK167-28586 locus that were observed in the White Creek population were tested in a simple 540 
expression assay under nitrogen-limitation using a reverse transcription polymerase chain 541 
reaction (RT-PCR) approach.  Expression of the HK transcript was present at T0 in all but one 542 
strain, and the transcript was not present in any samples at 48 hours after nitrogen step-down.  I 543 
conclude that gene expression was turned off following heterocyst maturation and the onset of 544 
steady-state growth under nitrogen-limitation.  More studies will be needed to assign a specific 545 
functional role to HK167-28586 and to determine the contribution of allelic variation at this locus 546 
to variation in nitrogen fixation. 547 
 548 

Introduction 549 

Two-component signal transduction systems (two component systems; TCSs) are the 550 

principal means by which bacteria sense and respond to environmental changes (Gao, Stock, 551 

2009; Wuichet et al., 2010).  TCSs are involved in a profound suite of critical cellular functions, 552 

including, but not limited to, chemotaxis, virulence, symbiosis, and carbon and nitrogen 553 

metabolisms (Parkinson, Kofoid, 1992).  These signaling pathways can account for a significant 554 

proportion of bacterial genomes (up to ~2.5% in the cyanobacterium Synechocystis sp.; Mizuno et 555 

al. 1996) and have likely been crucial for bacterial adaptation.   556 

Prototypical TCSs involve two separate proteins.  A histidine kinase (HK), which usually 557 

has a sensory domain that interacts with the intra- or extracellular environment, serves as the 558 

input component of the system.  The HK then transfers phosphoryl groups to a cognate response 559 

regulator (RR) to effect a change in gene expression or, sometimes, protein activity (Galperin, 560 

2010).  Once stimulated, a well-conserved ATP binding domain at the C-terminal end of the HK 561 

catalyzes the autophosphorylation of a conserved histidine residue.  The phosphorylated HK then 562 

transfers the His-bound phosphoryl group to an asparagine residue in a well-conserved receiver 563 
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domain on the RR.  The phosphorylation of the receiver domain changes the structural 564 

conformation of a variable effector domain, which carries out the regulatory activity of the 565 

pathway.  TCSs are often involved with several branching networks, yet operate with astounding 566 

fidelity (Laub, Goulian, 2007). 567 

In chapter 1, I reported that allelic variation at a HK gene (HK167-28586) is associated 568 

with the ability of M. laminosus to fix nitrogen.  Three alleles ranging in amino acid identity from 569 

96-99% were observed in the White Creek sample.  These include: an allele with a nonsense 570 

mutation that is expected to eliminate 9 of the 17 predicted ATP binding residues in the encoded 571 

protein and therefore is expected to lack autophosphorylation and kinase activities; an allele that 572 

differs at 39 nucleotide positions; and an apparently rare recombinant null allele that is identical 573 

to the former at the 3’ end and to the latter at the 5’ end, and therefore contains the nonsense 574 

mutation. Because ATP hydrolysis is central to autophosphorylation and subsequent kinase 575 

activities, the loss of more than half of the ATP-binding pocket is expected to render the HK 576 

nonfunctional for these activities, even if it is expressed. For there to be a phenotypic difference 577 

between allelic classes, I further expect that expression of the full and functional allele is required 578 

either during heterocyst development and/or steady-state growth under nitrogen limitation.  Here, 579 

this expectation is tested in a simple expression assay under nitrogen-limitation using a reverse 580 

transcription polymerase chain reaction (RT-PCR) approach. 581 

 582 
Methods 583 

Culture Conditions and Sample Collection 584 

 The assay was designed such that expression of HK167-28586 could be studied during 585 

both heterocyst development and subsequent steady-state growth under nitrogen-limitation.  Five 586 

different strains representing the three different alleles at the HK167-28586 locus that were 587 

observed in the White Creek population were used in the experiment to determine whether each 588 

allele is transcribed.  Strains WC119 and WC344 both have the full copy, while WC527 and 589 
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WC538 contain the null allele, and WC249 is the sole representative of the recombinant null 590 

allele.  M. laminosus cells were grown in semi-continuous batch cultures in D medium 591 

(Castenholz, 1988) until ~5 mL of cell mass had accumulated for each strain.  Just before the  592 

expression assay, the cells were washed twice in ND medium (D medium without combined 593 

nitrogen) by vortexing, centrifuging, and pouring off the supernatant before adding cells to 594 

triplicate flasks containing 250 mL of ND medium.  Cultures were maintained at 37 ºC with a 595 

12/12 hour light/dark cycle.  The first cell sample was taken ~30 minutes after transfer to ND 596 

media (in the last hour of the dark cycle) and serves as the first time-point (T0). 597 

 Approximately 0.5 mL of cell mass was collected at 0, 6, 12, 18, 24, 36, and 48 hours 598 

after T0 using sterile Pasteur pipets and 2 mL microcentrifuge tubes.  Samples were immediately 599 

immersed in liquid nitrogen and stored at -80 ºC until extraction. A Qiagen RNeasy mini 600 

extraction kit was used to isolate RNA according to the manufacturer’s instructions.  Prior to 601 

constructing cDNA from RNA transcripts, the presence and quality of RNA was checked on a 602 

NanoDrop spectrometer, and DNA contamination of the RNA prep was screened via PCR using 603 

the primers and cycling conditions described below.  A Thermo Scientific Maxima First Strand 604 

cDNA Synthesis Kit for RT-PCR was used to construct first strand cDNA according to the 605 

manufacturer’s instructions. First strand synthesis was accompanied by a template-negative 606 

control. 607 

RT-PCR 608 

HK cDNA was amplified by touchdown PCR on an MJR PTC-100 thermal cycler.  The 609 

forward (5’-GGAATCCACCAACTATGG-3’) and reverse (5’-CCAGGTGTAGAGTAGCAC-610 

3’) primers were designed manually.  The resulting amplicon was 1025 bp in length and included 611 

the premature stop codon mutation of the putative null alleles.  An initial denaturation step at 94 612 

ºC for 3 min was followed by 30 cycles of 1 min at 94 ºC, 30 sec at variable annealing 613 

temperatures, and 1 min at 72 ºC.  The initial annealing temperature was 54 ºC and decreased 614 

every 10 cycles, reaching a final annealing temperature of 50 ºC.  A final extension phase at 72 615 
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ºC for 3 minutes completed the program.  PCRs were run with a template-negative and a positive 616 

control.  Presence of the HK transcript at each time point was determined for each strain via gel 617 

electrophoresis of the cDNA amplicon.  TAE gels consisted of 2% agarose and were run for ~15 618 

min at 98 V.  Amplified DNA was stained using ethidium bromide and visualized on a UV 619 

transilluminator. 620 

 621 
Results 622 

 Expression of the HK transcript was present at T0 in all but the strain WC344 samples, 623 

which first showed expression after 6 hours (Fig. 2.1).  The first strain for which we could not 624 

detect the HK transcript was WC527 at 24 hours, though this may be due, in part, to the 625 

extremely low biomass left to harvest in this strain at that time point.  The HK transcript was not 626 

present in any samples at 48 hours, and so appears to have been turned off somewhere between 627 

36-48 hours after nitrogen step-down.  Though no quantitative estimates of heterocyst frequencies 628 

were made during this experiment, visual inspections of each strain at each time point suggest 629 

that all of the experimental strains reached their maximal heterocyst frequencies between 24-36 630 

hours after nitrogen depletion.  This timeframe for heterocyst maturation is also corroborated by 631 

numerous other studies of heterocyst development in closely related cyanobacteria (Kumar et al., 632 

2010; Wong, Meeks, 2001).  In a subsequent expression assay under +N conditions (nitrate as N 633 

source), all three alleles of the gene were turned on in representative strains WC119, WC249, and 634 

WC344 (data not shown). 635 

 636 

Discussion 637 

Our results demonstrate that all three of the HK167-28586 alleles from the gene 638 

identified in Chapter 1 are expressed during M. laminosus heterocyst development and during +N 639 

growth.  Although all three alleles are expressed, the alleles containing the premature stop codon 640 

are expected to be constitutively “off” because, without half of the ATP-binding sites, 641 

 33 



autophosphorylation and kinase activities should be effectively nullified.  Results from Chapter 1 642 

suggest that silencing HK167-28586 prior to steady-state growth under nitrogen limitation 643 

contributes to enhanced nitrogen fixation.  This presents us with several important questions: 644 

what is the regulatory function of HK167-28586 (i.e., its cognate response regulator(s) and the 645 

transcriptional network in which it participates)?; is it really a null allele, and what are the 646 

regulatory consequences of the elimination of much of the ATP-binding pocket?; and does the 647 

nonsense mutation come with a cost under certain environmental conditions? 648 

The regulatory role of HK167-28586 cannot be discerned from this study.  However, the 649 

HK167-28586 exhibits ~50% amino acid identity with three histidine kinases in the Anabaena 650 

PCC 7120 genome (alr1551, alr2739, and alr4882). For several reasons, alr4882 appears to be the 651 

ortholog. The HK gene is the same length as alr4882, which is not the case with other Anabaena 652 

homologs. Also, local gene order in the region is conserved: both HK167-28586 and alr4882 are 653 

downstream of a putatively orthologous annotated gene encoding a protein with a FIST domain 654 

(alr4881 and the corresponding M. laminosus gene are ~56% identical at the amino acid level).  655 

While FIST domains are phylogenetically widespread, they are biochemically uncharacterized, 656 

though they are predicted to bind small molecules (Borziak, Zhulin, 2007).  In Mella-Herrara et 657 

al. (2011), alr4882 is referred to in unpublished data as a gene that is upregulated during 658 

heterocyst development 5-9 hours after nitrogen step-down.  Insertional inactivation had no 659 

observed negative impact on –N growth, but their observations appear to be qualitative (the 660 

standard assay is to identify Fox- mutants by the yellowing of colonies on a plate) and don’t 661 

speak to the fine-scale fitness effects that may be operating.  Gene knock-outs in Anabaena PCC 662 

7120 and subsequent functional assays for nitrogen fixation may reveal differences in fitness that 663 

are too subtle for qualitative assays. 664 

We expect that the premature stop codon nullifies the ability of HK167-28586 to function 665 

as a kinase.  However, there are at least three possible scenarios where HK167-28586 could 666 
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continue to function in a TCS. First, the premature stop codon could be “leaky” and allow a full-667 

length HK to be translated often enough to effect a regulatory response.  Alternatively, though 668 

unlikely, the remaining ATP binding sites that are found upstream of the nonsense mutation may 669 

be sufficient to promote ATP-binding and autophosphorylation activity.  To determine whether 670 

alleles with the premature stop codons have lost the ability to autophosphorylate, heterologously 671 

expressed protein can be assayed for autophosphorylation activity (Hastie et al., 2006).  Using 672 

this approach, the enzyme activity of each allelic variant of HK167-28586 could be compared 673 

quantitatively and with high sensitivity.  In yet another scenario, the allele may have lost 674 

autophosphorylation activity but can still participate in the signal transduction network via 675 

phosphatase activity.  Many histidine kinases are bifunctional enzymes that can phosphorylate as 676 

well as dephosphorylate their cognate response regulators (Alex, Simon, 1994).  All of the White 677 

Creek M. laminosus alleles have an intact phosphotransfer domain, and, in at least one case, this 678 

domain alone is sufficient to support phosphatase activity of a histidine kinase (EnvZ; Zhu et al., 679 

2000).  Manipulation of the balance of kinase versus phosphatase activities might be an additional 680 

possible mechanism by which allelic variation at 167-28586 effects transcriptional rewiring via 681 

loss of function (Hottes, 2013). 682 

Understanding the regulatory consequences of each HK167-28586 allele will be crucial 683 

in determining how genetic variation affects nitrogen fixation performance.  Finding HK167-684 

28586’s cognate response regulator(s) would make great strides in this regard.  Phosphotransfer 685 

profiling (Skerker et al., 2005) uses ATP radiolabelled with 32P and SDS-PAGE to identify 686 

phosphotransfer events between purified HKs and RRs.  This approach is necessary for 687 

identifying “orphans”, or HK-RR pairs that are not expressed under the same operon, as is the 688 

case here.  The differences in the transcriptome among strains with different alleles identified in 689 

RNA-seq data would likely yield insight into the downstream regulatory consequences of each 690 

HK167-28586 allele and help guide more directed functional assays under varying environmental 691 
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conditions. Transcriptomic comparisons between allele variants would help to identify any 692 

regulatory networks that have been altered as a result of the nonsense mutation.  Furthermore, the 693 

existence of a recombinant null allele may enable us to parse the individual regulatory effects of 694 

the nonsense mutation and the highly polymorphic region at the 5’ end of the gene.  It is possible 695 

that the null allele results in a fitness trade-off under varying environmental conditions.  A 696 

transcriptomic approach could also be used to compare differences in gene regulation for each 697 

allele under varying environmental conditions.  Investigations such as these will inform our 698 

understanding of the role that balancing selection may play in the maintenance of the HK167-699 

28586 alleles.  700 

Conclusion 701 

All three HK167-28586 alleles were expressed during nitrogen-replete conditions and 702 

during heterocyst development under nitrogen-limitation. Thus, I expect there to be differences in 703 

the transcriptional profiles of strains with functional and putative null alleles, respectively.  This 704 

is the first step in demonstrating a functional basis for the pattern of association with improved 705 

nitrogen fixation in M. laminosus from Chapter 1.  However, more studies will be needed to be 706 

able to assign a functional role to HK167-28586 and to determine the underlying cause of 707 

variation in nitrogen fixation for each allele. 708 

  709 
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Figures 710 

 711 

Fig. 2.1 Presence or absence of a HK167-28586 transcript after nitrogen step-down in five M. 712 
laminosus strains from White Creek.  Subscripts next to strain numbers indicate which allele the 713 
strain contains (“a” is the null allele, “b” is the recombinant null allele, and “c” is full the copy 714 
allele). 715 
  716 
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