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Abstract	

Berk,	Sara	A.,	PhD,	Spring	2019	Organismal	Biology,	Ecology,	and	Evolution	

	

Environmental	variation	and	sexual	selection	in	the	mountain	bluebird	(Sialia	currucoides)	

	

Chairperson:	Dr.	Creagh	Breuner		

	

Sexual	selection	acts	on	traits	that	increase	mating	success,	either	through	mating	

preferences	or	intrasexual	competition	for	access	to	mates.	For	traits	to	be	honest,	we	

expect	sexually	selected	traits	to	reflect	individual	condition	at	the	time	of	trait	

development.	Furthermore,	when	sexual	selection	operates	through	mating	preferences,	

we	also	expect	traits	to	indicate	benefits	(direct	or	indirect)	that	females	receive	for	

exercising	their	preference.	If	sexual	selection	acts	through	differential	success	in	

intrasexual	contests	over	mates,	we	expect	traits	to	indicate	resource	holding	potential,	or	

fighting	ability.	These	links	between	individual	condition,	trait	quality,	and	performance	

maintain	honesty,	because	high	condition	individuals	have	high	quality	traits,	and	

conspecifics	can	therefore	use	information	from	sexually	selected	traits	when	entering	

contests	or	choosing	between	prospective	mates.		

Based	on	the	above	logic,	we	expect	sexually	selected	traits	to	be	consistently	and	

positively	related	to	performance.	However,	individuals	may	differ	in	their	sensitivity	to	

environmental	variation	such	that	sexually	selected	traits	are	not	always	honest	indicators	

of	individual	condition,	benefits	to	females	or	offspring,	or	competitive	ability.	

Environmental	variation	could	affect	trait	honesty	if	individuals	vary	in	their	ability	to	

respond	to	environmental	variation.	For	example,	trait	honesty	may	disappear	in	poor	

environments,	if	individuals	with	highly	developed	sexually	selected	traits	only	perform	

well	in	high	quality	environments.	Alternatively,	individuals	with	more	elaborate	traits	may	

be	more	adept	at	responding	to	environmental	challenge,	and	trait	honesty	could	increase	

when	environmental	conditions	are	poor.	

For	my	dissertation	I	examined	variation	in	trait	development	and	honesty	under	

varying	conditions	in	the	mountain	bluebird,	Sialia	currucoides.	Mountain	bluebirds	display	
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sexually	dimorphic	UV-blue	coloration,	and	males	with	more	intense	coloration	sire	more	

offspring	at	their	own	nest	and	at	other	nests	through	extra-pair	fertilizations.	However,	it	

is	unclear	what	benefits	and	costs	receivers	experience	when	using	this	trait	to	asses	mates	

or	rivals,	and	what	processes	regulate	the	development	of	this	sexually	selected	trait.	

Therefore,	in	chapter	one	I	explored	the	function	of	this	signal	during	agonistic	contests	for	

territories.	I	performed	simulated	territorial	intrusions	to	understand	whether	male	

aggressive	behavior	was	related	to	his	coloration.	I	also	measured	food	availability	to	

determine	if	males	with	more	intense	coloration	obtained	higher	quality	territories.	

Overall,	my	results	provide	evidence	for	the	function	of	this	signal	during	agonistic	

contests.	Furthermore,	while	a	single	aggressive	behavior	(number	of	attacks)	was	

repeatable	across	the	egg	laying	period,	my	integrated	metric	of	aggression,	which	

accounted	for	many	aggressive	behaviors	and	was	related	to	male	coloration,	was	not.	

Lastly,	I	found	that	males	with	more	saturated	coloration	obtained	territories	with	greater	

insect	abundance.		

In	chapter	two,	I	performed	an	experiment	to	understand	the	mechanisms	of	

condition	dependence	of	blue	coloration.	Individuals	may	vary	in	their	sensitivity	to	

environmental	variation	during	trait	development;	such	high	condition	individuals	

preserve	trait	quality	during	environmental	challenge	while	poor	condition	individuals	do	

not.	Martin	et	al.	(2011)	suggest	that	endocrine	systems	are	an	important	mediator	of	

phenotypic	variation	because	hormones	both	respond	to	environmental	conditions	and	

regulate	internal	response	and	resulting	phenotype.	The	hormone	corticosterone	(CORT)	is	

released	by	the	adrenal	glands	in	response	to	challenge	to	divert	resources	towards	self-

preservation.	A	rapid,	transient	increase	in	CORT	can	help	individuals	to	survive	

challenging	situations.	However,	prolonged	or	frequent	CORT	secretion	can	cause	damage	

to	other	physiological	systems	and	potentially	decrease	fitness.	For	example,	CORT-

implanted	white	crowned	sparrows	abandon	their	high-elevation	breeding	territories	and	

retreat	to	low	elevations	during	storms.	This	increases	survival	but	decreases	reproductive	

success.	Also,	CORT-implanted	male	song	sparrows	increase	fat	stores,	but	are	less	likely	to	

respond	aggressively	to	a	simulated	territorial	intrusion.	These	links	between	

environmental	conditions	and	potential	fitness	consequences	make	CORT	an	ideal	

regulator	of	sexually	selected	traits.			
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To	this	end,	I	brought	14	hatch	year	mountain	bluebirds	into	captivity	to	study	how	

individual	variation	in	CORT	physiology	during	resource	limitation	predicted	coloration.	I	

wanted	to	understand	whether	CORT	predicted	blue	coloration	when	resources	were	

abundant,	limiting,	or	both.	I	found	that	when	birds	were	food	limited,	variation	in	CORT	

levels	increased.	Furthermore,	CORT	and	coloration	were	negatively	associated	in	my	food	

limitation	treatment,	as	predicted	if	poor	condition	males	mount	larger	stress	responses,	

but	this	association	disappeared	when	birds	were	given	ad	lib	food.	I	also	measured	feather	

structure	variables	to	determine	how	coloration	was	related	to	feather	quality	and	feather	

performance	(measured	as	resistance	to	airflow)	across	my	resource	availability	

treatments.	I	found	that	the	component	of	feather	structure	that	was	related	to	coloration	

(barbule	density)	was	sensitive	to	CORT	only	when	resources	were	limiting.	Conversely,	

the	feather	structure	variable	that	determined	feather	performance	(interbarb	distance)	

was	not	sensitive	to	CORT	in	either	treatment	and	did	not	predict	feather	coloration.	These	

results	indicate	that	feather	coloration	in	bluebirds	is	only	sensitive	to	variation	in	

physiology	when	resources	were	limiting,	and	that	this	was	mirrored	by	concurrent	

changes	in	condition-sensitive	feather	structure.		However,	feather	performance	was	not	

sensitive	to	individual	variation	in	physiology	or	variation	in	environmental	conditions.		

While	chapters	one	and	two	demonstrated	that	blue	coloration	is	condition	

dependent	and	related	to	aggressive	behavior,	male	bluebirds	still	provide	a	significant	

amount	of	parental	care.	This	means	that	females	may	be	using	coloration	to	select	mates	

and	obtain	benefits	for	themselves	and	their	offspring.	In	chapter	three,	I	examined	the	

effect	of	environmental	variation	on	the	relationship	between	bluebird	coloration	and	

direct	benefits	to	females,	expressed	as	offspring	quality	(nestling	mass).	Three	years	of	

data	on	free-living	bluebirds	suggests	that	the	relationship	between	male	coloration	and	

nestling	mass	varied	across	years	and	between	broods.	In	some	contexts,	more	elaborate	

males	had	heavier	nestlings,	while	in	other	contexts	they	raised	the	lightest	nestlings.	I	

found	that	this	variation	was	not	driven	by	resource	abundance,	but	instead	appeared	due	

to	changes	in	optimal	reproductive	effort.	When	average	nestling	mass	at	my	study	site	was	

higher,	bluer	males	raised	heavier	nestlings	than	they	did	when	average	nestling	mass	was	

lower.	This	variation	in	nestling	mass	occurred	independently	of	resource	availability.	
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Overall,	these	results	demonstrate	that	the	honesty	of	blue	coloration	varies	across	

environmental	contexts.	While	coloration	is	positively	related	to	aggressive	behavior,	

males	vary	in	their	sensitivity	to	resource	limitation,	and	blue	coloration	does	not	

consistently	predict	direct	benefits	in	the	wild.	My	data	indicate	that	the	process	of	sexual	

selection	is	context-dependent,	and	sexually	selected	traits	vary	in	the	extent	to	which	they	

predict	individual	performance	and	quality.			
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Chapter	1:	Coloration	signals	aggressive	behavior	and	territory	

quality	in	the	mountain	bluebird	,	Sialia	currucoides		
	

Abstract 

 Sexual selection is an evolutionary force that can result in highly elaborate traits. These 

traits function to increase mating success through intrasexual or intersexual competition. We 

studied whether blue coloration in the mountain bluebird (Sialia currucoides) is relevant during 

intrasexual contests over nest sites. Sexually dimorphic blue coloration in this species has been 

linked to mating success, but we know little about the function of this signal during aggressive 

interactions between males. Coloration may signal status and resource holding potential, but it is 

unclear whether aggressive behavior is based on individual status, the status of a competitor, or 

mutual assessment of both. We performed simulated territorial intrusions to understand whether 

male aggressive behavior was linked to his own status, the status of the simulated intruder, or 

both. We also measured food availability to determine if males with more intense coloration also 

obtained higher quality territories, as would be expected if plumage brightness honestly signals 

male resource holding potential (RHP). We found that male aggressive behavior was positively 

related to his own coloration, but not the coloration of his simulated opponent. However, while a 

single aggressive behavior was repeatable, our integrated metric of aggression was not. Lastly, 

we found that males with more saturated coloration obtained territories with greater insect 

abundance. Overall, our results provide evidence for the function of this signal during agonistic 

contests, and for the honesty of brightness as an indicator of male resource holding potential.  

Key words: sexual selection, behavior, territory quality, aggression 

 

Introduction 

Sexual selection is a complex evolutionary process resulting in elaborate traits that can 

increase mating success (Andersson 1994). First, sexually selected traits are utilized during 

intrasexual contests for mates. This type of sexual selection results in weapons that are directly 

used in fighting or signals of status that competitors use to evaluate each other. Second, sexually 

selected traits can be used intersexually during mate choice (Andersson 1994, Darwin 1859, 

1871). Conspecifics use signal traits to select mates that will provide benefits either directly, 
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through resources delivered during the current generation, or indirectly to future generations 

through “good genes” effects (Andersson 1986, Kirkpatrick 1982, Lande 1981, Møller and 

Jennions 2001, Moller and Alatalo 1999, Neff and Pitcher 2005).  

 During intrasexual competition, rivals can use status signals to evaluate the fighting 

ability of their opponent before escalating contests and avoid fights they are unlikely to win 

(Maynard Smith 1982, West-Eberhard 1979). These ornamental signals of status are distinct 

from weapons because they are used during rival assessment but are not directly utilized during 

fights (McCullough et al. 2016). Therefore, investigating whether status signals reflect fighting 

ability is a crucial component of demonstrating the information content of signaling traits 

(Searcy and Nowicki 2005). A great deal of research in birds and other taxa has indicated that 

ornamental traits are related to resource holding potential (RHP) and fighting ability (Hughes 

1996, Otter et al. 1997, Parker 1974, Pryke and Andersson 2003, Pryke and Griffith 2009, 

Rohwer and Rohwer 1978). Dark-eyed juncos with experimentally decreased plumage quality 

are less likely to win fights with other males (Grasso et al. 1996). Furthermore, P. dominulus 

paper wasps preferentially select rivals with facial patterns associated with lower quality (body 

size) when choosing individuals to challenge for contests over food (Tibbetts and Lindsay 2008). 

These results demonstrate that signal traits can be correlated with fighting ability and that 

receivers can distinguish between individuals when choosing to escalate contests.  

However, we have less evidence for relationships between fighting ability and contest 

outcome in natural populations. For example, signal quality may be related to territory quality or 

mate access for reasons other than RHP if higher quality males arrive to breeding sites earlier 

and avoid competition. Linking performance during fights to resource-winnings will allow us to 

better understand trait honesty and the maintenance of positive selection on sexually selected 

traits. We explored whether the sexually dimorphic UV-blue coloration in mountain bluebirds 

(Sialia currucoides) is informative between males during competition for nest sites. Previous 

studies have found that male mountain bluebirds with more elaborate coloration sire more 

offspring (Balenger et al. 2008). However, it is unclear what behaviors or mechanisms 

(intrasexual vs. intersexual) lead to this increase in reproductive success. Mountain bluebirds 

must nest in a cavity, but cannot excavate their own, leading to intense competition for nest sites 

during the early spring. Male eastern bluebirds with more elaborate coloration obtain nest boxes 

earlier when territory availability is experimentally limited, indicating that this signal may be 
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related to competitive ability (Siefferman and Hill 2005). However, to date, no study has 

observed whether resource holding potential or aggressive behavior of bluebirds covaries with 

male coloration.   

To this end, we performed simulated territorial intrusions to determine if male aggressive 

behavior was predicted by male coloration, and whether male behavior was repeatable across 

multiple observations. We also assessed whether coloration was related to contest outcome by 

measuring male territory quality (insect abundance). Our results shed light on the function of 

coloration in this system, and the mechanisms through which competitors determine the degree 

of contest escalation.   

 

Methods 

Field Site 

 We studied mountain bluebirds outside of Ronan, MT on the Flathead Indian Reservation 

(47.478370, -114.377034) from March 20th to April 20th, 2016 and March 28th to May 3rd, 

2017. The study site consists of 45 nest boxes spread across seven miles of fence line on a dirt 

road through sagebrush habitat. We scored nest development on a scale of 1-4 and checked 

highly developed nests (score 3 or 4) every other day until first egg.  

 

Simulated Territorial Intrusions  

In 2017, we conducted simulated territorial intrusions (STI) on resident males (hereafter 

called 'focal males'; n=44 trials at 25 nests) at the discovery of first or second egg. For a subset of 

nests discovered on the first egg (n=14), we repeated STIs after the appearance of the third and 

fifth egg using a separate specimens to measure both the repeatability of the response of the focal 

male as well as how his response changed with specimen color (see specimen source description 

below (n=5 nests repeated twice, n=9 nests repeated three times). We did not visit nests on the 

days between repeated intruder trials. During the first trial, we used a random number generator 

to select one of our eight available specimens. For repeated trials, we divided specimens into 

“least chromatic,” “most chromatic,” and “medium chromatic” groups using spectrophotometry 

data (see below). We ensured that males receiving three trials encountered the full range of 

available specimen coloration by restricting our random selection to novel groups during 

repeated trials. For example, if a male was shown one of the “most chromatic” specimens during 
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his first trial, we restricted our random number generation so that he was not presented with 

another highly chromatic specimen during his second or third trial.   

 Specimen Sources: For specimens, we used eight taxidermy birds prepared from our 

captive population. These birds had been raised in captivity during summer 2014 and summer 

2016. If a specimen was damaged during trials, we either repaired it using super glue or 

discontinued use.  

Trials: We conducted ten-minute STI trials at each nest. We attached specimens to a 60-

inch wooden dowel affixed to a camera tripod. We also attached two other wooden dowels to the 

tripod to allow the focal bird places to perch during the trial. We painted the tripod and dowels 

green to decrease conspicuousness. We set the tripod and specimen 3m from the front of the nest 

box next to the fence line. The observer (always SB) covered the specimen with a cloth attached 

to a fishing line and retreated to a location at least 20m from the nest box. After a five-minute 

waiting period, the observer pulled the cloth from the specimen and began a three-minute 

playback period. For playback, we used an iPhone 6 plus at max volume concealed directly 

underneath the tripod. To avoid disturbing the birds to begin playback, we used a five minute 

recorded silence track such that the playback would automatically begin after five minutes. We 

only used one mountain bluebird call for all trials to limit specimen signal variation to visual 

cues. We recorded behavior of the focal male including latency to respond to the specimen, 

hovers directed toward the specimen, aggressive flights toward the specimen (males often 

display using undulating flight with no physical contact), and number of attacks to the specimen 

(these involved physically contacting the specimen with feet or beak). We also measured the 

number of times males perched at the entrance to the nest box, likely a defensive behavior (SB 

pers. obs.); males often appeared to be blocking the nest box entrance with their bodies while 

oriented towards the specimen. Males did not enter the nest box during any of our trials, though 

females often did. Finally, at the start of each minute we noted the position of the male and 

female as perched on the tripod with the specimen, within five meters of the specimen, within ten 

meters of the specimen, present within view but greater than ten meters from the specimen, or 

absent from the observer’s field of view. We used flagging tape affixed to the fence around the 

nest box to allow for easy quantification of the position of the male and female relative to the 

specimen.  
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Territory Quality 

 We assessed territory quality during 2016 and 2017 using pitfall traps placed within 20m 

in each direction of the nest box along the fenceline. Mountain bluebirds are primarily pounce 

foragers and eat insects off the ground, rather than flying insects (Herlugson 1982). In 2016, we 

placed traps within 2 days of the appearance of the first egg at each nest (beginning April 2nd). 

Birds arrived to the study site later in 2017 (first egg = March 29th 2016, April 6th in 2017), so we 

began placing pitfall traps on April 4th, 2017 as nests reached later stages of development prior to 

egg lay. We dug holes 10cm deep and placed 10cm plastic cups into the hole before packing dirt 

back around the trap. We filled cups with approximately 4cm of 50/50 propylene glycol and 

water. Every 7-8 days we collected insects from traps and replaced the trapping liquid. We froze 

samples in plastic bags until analysis. After thawing, rinsing and sorting, we dried insects for five 

days at 60 degrees Celsius and weighed insects (by family group) to the nearest milligram. To 

obtain insect biomass, we sorted insects to include only those which are frequently eaten by 

mountain bluebirds; Orthoptera, Coleoptera, and Lepidoptera. We categorized Coleoptera and 

Lepidoptera into adults and larvae and weighed them separately. We obtained relative insect 

abundance of the breeding season by z-scoring samples collected on the same day so that they 

were centered at 0 with a standard deviation of 1. This allowed us to assess whether more 

colorful males had relatively higher quality territories for a given day of the season.  

 

Color Measurement 

 We measured the color of rump feathers collected during capture using a USB4000 

spectrophotometer with a pulsed xenon light source (Ocean Optics, Dunedin, USA). We took 

five reflectance measurements each consisting of ten averaged curves. We stacked seven feathers 

on top of each other and taped them to non-reflective black paper (Canson) for measurement. We 

positioned the probe at 90 degrees using a probe holder and standardized the distance between 

the probe and the specimen at 5mm. We standardized measurements between individuals using a 

white standard (Labsphere, NH), and turned off the light source and covered the probe to create a 

dark standard. To minimize variation we measured coloration of all males in a single day. Past 

measurements of repeatability of color measurements from the same observer (SB) in our lab 

indicate low coefficients of variation even when feather samples from a single individual are 



	 6	

measured several years later (CV Hue=6%, CV Brightness=9%, CV spectral saturation=4%, CV 

UV Chroma=4%).  

 To extract color variables, we averaged the resultant reflectance measurements (between 

300 and 700nm) and smoothed spikes from curves using the program CLR 5 (v. 1.05, 

Montgomerie 2008). From these averaged curves we used R (R Core Team 2017) to extract the 

hue (wavelength of peak reflectance), blue chroma (proportion of the reflectance concentrated 

from 400-512 nm), UV-chroma (proportion of the reflectance concentrated from 300-400nm), 

and brightness (sum of the total reflectance). For wild birds, we also measured the spectral 

saturation (proportion of the reflectance concentrated within 100nm of the hue).  

 

Analysis 

 We performed all statistical analyses using R (R Core Team 2017). We analyzed STI 

behaviors into a principal components analysis (PCA). We combined presence data into total 

time spent within 10m of the nestbox vs. greater than 10m or absent. However, we only included 

the time that males spent within 10m of the nest box in our PCA scores, to avoid the use of two 

binary variables. We scaled all behavior variables in our PCA to a mean of zero and standard 

deviation of one. All aggressive behaviors loaded positively onto the first principal component 

(PC1), which explained 48% of the variance in aggressive behavior (Table 1). In sum, males 

with higher aggression scores spent more time within 10m of their nestbox and performed more 

aggressive behaviors towards the specimen during our 10-minute observation period. We used 

only the first observation from each nest to evaluate color as a predictive factor for aggressive 

behavior (n=20). We used linear regression models and assessed model fit and assumptions 

using appropriate diagnostic plots and R2. For analyses of the effect of specimen coloration on 

focal male behavior, we included all observations and fit a mixed effects model (R package 

nlme) with a random effect of male ID (n =14 separate focal males).  

 We used the package “rptR” to analyze repeatability of aggressive behaviors of 

individual males as well as responses to specimens (Nakagawa and Schielzeth 2010). We 

bootstrapped repeatability estimates with 1000 iterations and specified a gaussian distribution for 

all repeatability analyses. We did not scale behavior variables when analyzing the effects of 

specimen coloration or repeatability of focal male behavior. To evaluate whether coloration was 

involved in obtaining higher quality territories, we used a mixed effects model including a 
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random effect of male ID to assess the correlation between male coloration and territory quality 

at the beginning of the season using the first pitfall trap we collected on his territory in each year 

(n=20 nests in 2016, n = 21 nests in 2017).  

 

Results 

Coloration and Aggression 

In all of our analyses, male blue chroma and spectral saturation were the only significant 

predictor of focal male behavior. Male blue chroma was positively correlated with his response 

to the simulated territorial intrusion (Figure 2, β=0.40 F1,14=8,p=0.01,R2=0.36). Spectral 

saturation and UV Chroma were also positively related to male aggression (Saturation: 

β=0.41,F1,14=11.89, p<0.01,R2=0.42, UV Chroma: β=0.27, F1,14=5.38, p=0.04,R2=0.28). Hue and 

brightness were unrelated to male behavior (Hue: β=-0.04, F1,14=2.92,p=11,R2=0.17, Brightness: 

β=-0.01, F1,14=0.144, p=0.71,R2=0.01) These relationships were not due to seasonal effects, as 

there was no relationship between male coloration and nest initiation date across our study site 

(LMM: βcolor= 0.11, F1,67=0.03, p=0.85).  

 

Territory Quality 

Male coloration predicted the quality of his territory at the beginning of the season in both 2016 

and 2017 (Figure 4, LMM: F1,48=8.91, β=0.27, t=4.45, p=0.01). While the association between 

male coloration and insect abundance became less strong during the nestling phase (LMM: 

F1,48=4.74, β=0.10, t=2.18, p=0.03), relative insect abundance was moderately repeatable across 

individual nests (R2016=0.44, bootstrap 95% CI: (0.27,0.61), R2017=0.39, bootstrap 99% CI: 

(0.24,0.53)). Territory quality was also not directly related to male aggression (β=0.08, 

F1,12=0.13, p=0.73,R2=0.009), or nest initiation date (LMM: β=0.01, F1,43=1.90, p=0.17).  

 

Repeatability of Aggressive Behavior 

Repeatability analysis demonstrated that our aggression score (PC1) was not repeatable across 

the laying period (R=0.182, bootstrap 95% CI: (0,0.53), n=37 trials at 14 nests). However, we 

found that the number of times a focal male attacked the specimen was significantly repeatable 

(R=0.78, bootstrap 95% CI: (0.49,0.91)). Other behaviors were not repeatable among trials of the 

same focal male (aggressive flights: R=0.05, bootstrap 95% CI: (0,0.41), hovers: R=0.07, 
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bootstrap 95% CI: (0,0.45), perches: R=0.21, bootstrap 95% CI: (0,0.55), time within 10m of 

specimen: R=0.22 bootstrap 95% CI: (0,0.54)). Furthermore, focal male response was not 

repeatable based on the specimen used (first trials only, PC1: R=0, bootstrap 95% CI: (0,0.44), 

attacks R=0, bootstrap 95% CI: (0,0.40), hovers: R=0, bootstrap 95% CI: (0,0), aggressive 

flights: R=0, bootstrap 95% CI: (0,0.28), perches: R=0, bootstrap 95% CI: (0,0), time within 10m 

of specimen: R=0, bootstrap 95% CI: (0,0).  

 

Discussion  

 Sexual selection operates through intrasexual competition and intersexual mating 

preferences (Andersson 1994). Understanding how traits function during contests is crucial to 

comprehending the mechanisms of intrasexual selection (Hunt et al. 2009, Qvarnström and 

Forsgren 1998). We found that males with more chromatic coloration obtained higher quality 

territories. Across many bird species, males with more intense coloration have higher quality 

territories; such as nest sites that are more protected from predation, or that have increased food 

abundance (Hasegawa et al. 2014, Hill 1988, Keyser and Hill 2000, Wolfenbarger 1999). 

Plumage coloration can also signal territory quality during the nonbreeding season; male 

redstarts overwintering in high quality habitat have brighter tail feathers than males that 

overwinter in low quality second-growth habitat (Reudink et al., 2009).  Our results support 

further links between coloration, RHP, and territory quality as the result of success during 

intrasexual contests. 

Our study design was such that resident males likely perceived their territory to be high 

value; we performed our observations when males had already established and been defending 

territories for some time. Our results demonstrate that blue coloration is informative during 

agonistic interactions. A more elaborate male is more likely to defend his territory against 

intruders, and this should reduce his and his mate’s likelihood of losing their territory after 

establishment. From the perspective of rivals, this may reduce their propensity to enter into 

aggressive interactions with highly colorful males that own territories.  

Across species, males with more elaborate plumage coloration often have higher 

reproductive success (Balenger et al. 2009, Brommer et al. 2005, Doucet et al. 2005, Hill 1988, 

Keyser and Hill 2000, McGraw et al. 2001, Safran and McGraw 2004, Siefferman and Hill 2003, 

Wiehn 1997). Given the widespread associations between plumage color and territory quality, it 
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is unclear if the relationship between coloration and reproductive success is due to its function as 

an agonistic signal or a target of female preference, or both. Previous work on eastern bluebirds 

(Sialia sialias) found that females did not display preferences for male coloration in laboratory 

preference tests (Liu et al. 2007). Also, more colorful males did not attract new mates faster than 

their less colorful neighbors after mate removal in the field (Liu et al. 2009). These results, when 

taken together with the data we present in this paper, suggest that bluebird coloration is primarily 

an agonistic signal representing possible aggressive response to conspecific challenge.  

However, male mountain bluebird coloration positively predicts his total reproductive 

success (Balenger et al. 2008), and so this signal, or some correlate of it, may be used in female 

mate choice. Females may not always base their mating choices directly on male traits, but could 

choose aspects of the male's extended phenotype that result from winning competitive 

interactions with other males (Qvarnström and Forsgren 1998). High quality territories are one 

component of a male's extended phenotype that can provide increased resources for females. For 

example, female fish often choose spawning sites that are defended by high quality males. If 

males disappear or are experimentally removed, females will often remain at their spawning site 

rather than choosing a new mate (Jones 1981, Warner 1987). Traits that are used during 

intrasexual contests can therefore increase mating success even in the absence of strong female 

preference for that trait if females gain resources from mating with highly competitive males 

(Berglund et al. 1996, Qvarnström and Forsgren 1998). Females may receive benefits from 

exercising choices for more elaborately colored males, but further study is needed on the specific 

targets of female choice in bluebirds and other territorial species that utilize status signals.   

Selection is unable to act on traits that are not a repeatable aspect of individual phenotype 

(Boake 1989). Interestingly, we found that some, but not all, components of a male’s behavioral 

response to a simulated intruder were repeatable across the laying period. A male’s propensity to 

attack the specimen was repeatable, but other behaviors and our aggression score were not 

repeatable. Other studies have found that western bluebird aggressive behavior is repeatable 

throughout the breeding season (Duckworth 2006). Duckworth (2006, and later) used a behavior 

scoring system that relied heavily on the number of attack behaviors, so our results are in 

agreement with these earlier studies. Our data suggest that signal honesty of blue coloration may 

be maintained in this case through behaviors that are likely to result in injury, but “bluffing” 

behaviors such as aggressive flights, hovers, or nest box defense are not contributing to the 
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honesty of this signal, as they are not repeatable aspects of male phenotype. However, the fact 

that more elaborate males are still more likely to engage in the behaviors that escalate contests is 

compelling, and warrants further study about the maintenance of signal honesty in this system. In 

great-tits there is strong between-year repeatability of the plastic decline in aggressive behavior 

throughout the breeding period (Araya-Ajoy and Dingemanse 2017). In our study system, an 

aggregate of aggressive behavior is not repeatable during a single breeding stage (egg lay), but 

may be repeatable across years or breeding stages within the same year. We saw no decline in 

aggression throughout the laying period, and did not perform our intrusions at any point after 

nestlings had hatched. Sampling individuals in multiple years and across stages of the breeding 

season will help us understand whether our observed effects are due to selection or a different 

source of variation.  

 In conclusion, we have demonstrated that mountain bluebird coloration is related to 

several indicators of aggressive behavior and competitive ability. Females mated to bluer males 

receive resource benefits through increased territory quality, and bluer males show evidence of 

increased nest defense throughout the nestling period. However, only specific aspects of male 

aggressive behavior are repeatable throughout the laying period. Our results underline the 

importance of studying multiple possible benefits associated with signal traits. Signals that are 

relevant in aggressive contexts can also indicate benefits to females, though the relationships are 

likely to be multifaceted and vary across systems.  

 

Acknowledgements	

	 We	sincerely	thank	Libby	Beckman	and	the	University	of	Montana	Philip	L.	Wright	

Zoological	Museum	for	preparing	the	specimens.	We	would	also	like	to	thank	the	

confederated	Salish	and	Kootenai	tribes	for	access	to	the	Flathead	Indian	Reservation.	This	

work	followed	the	guidelines	described	by	AALAC	International	(“Guidelines	to	the	Use	of	

Wild	Birds	in	Research”).		

 

References 

Andersson M 1994. Sexual Selection. Princeton, N.J.: Princeton University Press.  

Andersson, M. 1986. Evolution of condition-dependent sex ornaments and mating preferences: 

sexual selection based on viability differences. Evolution 40:804–816. 



	 11	

Araya-Ajoy, Y. G., and N. J. Dingemanse. 2017. Repeatability, heritability, and age-dependence 

of seasonal plasticity in aggressiveness in a wild passerine bird. Journal of Animal Ecology 

86:227–238. 

Arnott, G., and R. W. Elwood. 2008. Information gathering and decision making about resource 

value in animal contests. Animal Behaviour 76:529–542. 

Balenger, S. L., L. S. Johnson, and B. S. Masters. 2008. Sexual selection in a socially 

monogamous bird: male color predicts paternity success in the mountain bluebird, Sialia 

currucoides. Behavioral Ecology and Sociobiology 63:403–411. 

Balenger, S. L., L. Scott Johnson, H. L. Mays, and B. S. Masters. 2009. Extra-pair paternity in 

the socially monogamous mountain bluebird Sialia currucoides and its effect on the 

potential for sexual selection. Journal of Avian Biology 40:173–180. 

Berglund, A., A. Bisazza, and A. Pilastro. 1996. Armaments and ornaments: an evolutionary 

explanation of traits of dual utility. Biological Journal of the Linnean Society 58:385–399. 

Boake, C. R. B. 1989. Repeatibility: its role in evolutionary studies of mating behavior. 

Evolutionary Ecology 3:173–182. 

Brommer, J. E., K. Ahola, and T. Karstinen. 2005. The colour of fitness: Plumage coloration and 

lifetime reproductive success in the tawny owl. Proceedings of the Royal Society B: 

Biological Sciences 272:935–940. 

Doucet, S. M., D. J. Mennill, R. Montgomerie, P. T. Boag, and L. M. Ratcliffe. 2005. 

Achromatic plumage reflectance predicts reproductive success in male black-capped 

chickadees. Behavioral Ecology 16:218–222. 

Duckworth, R. A. 2006. Behavioral correlations across breeding contexts provide a mechanism 

for a cost of aggression. Behavioral Ecology 17:1011–1019. 

Elwood, R. W., and G. Arnott. 2012. Understanding how animals fight with Lloyd Morgan’s 

canon. Animal Behaviour 84:1095–1102. Elsevier Ltd. 

Grasso, M. J., U. M. Savalli, and R. L. Mumme. 1996. Status signaling in dark-eyed juncos: 

perceived status of other birds affects dominance interactions. The Condor 98:636–639. 

Greene, E., B. E. Lyon, V. R. Muehter, L. Ratcliffe, S. J. Oliver, and P. T. Boag. 2000. 

Disruptive sexual selection for plumage coloration in a passerine bird. Nature 407:1000–

1003. 

Hasegawa, M., E. Arai, M. Watanabe, and M. Nakamura. 2014. Colourful males hold high 



	 12	

quality territories but exhibit reduced paternal care in barn swallows. Behaviour 151:591–

612. 

Herlugson, C. J. 1982. Food of adult and nestling western and mountain bluebirds. The Murrelet 

63:59–65. 

Hill, G. E. 1988. Age, plumage brightness, territory quality, and reproductive success in the 

black-headed grosbeak. The Condor 90:379–388. 

Hughes, M. 1996. Size assessment via a visual signal in snapping shrimp. Behavioral Ecology 

and Sociobiology 38:51–57. 

Hunt, J., C. J. Breuker, J. A. Sadowski, and A. J. Moore. 2009. Male-male competition, female 

mate choice and their interaction: Determining total sexual selection. Journal of 

Evolutionary Biology 22:13–26. 

Hurd, P. L. 2006. Resource holding potential, subjective resource value, and game theoretical 

models of aggressiveness signalling. Journal of Theoretical Biology 241:639–648. 

Jones, G. P. 1981. Spawning-site choice by female Pseudolabrus celidotus (Pisces: Labridae) and 

its influence on the mating system. Behavioral Ecology and Sociobiology 8:129–142. 

Keyser, A. J., and G. E. Hill. 2000. Structurally based plumage coloration is an honest signal of 

quality in male blue grosbeaks. Behavioral Ecology 11:202–209. 

Kirkpatrick, M. 1982. Sexual selection and the evolution of female choice. Evolution 36:1–12. 

Korsten, P., T. H. Dijkstra, and J. Komdeur. 2007. Is UV signalling involved in male-male 

territorial conflict in the blue tit (Cyanistes caeruleus)? A new experimental approach. 

Behaviour 144:447–470. 

Lande, R. 1981. Models of speciation by sexual selection on polygenic traits. Proceedings of the 

National Academy of Sciences 78:3721–3725. 

Liu, M., L. Siefferman, and G. E. Hill. 2007. An experimental test of female choice relative to 

male structural coloration in eastern bluebirds. Behavioral Ecology and Sociobiology 

61:623–630. 

Liu, M., L. Siefferman, H. Mays, J. E. Steffen, and G. E. Hill. 2009. A field test of female mate 

preference for male plumage coloration in eastern bluebirds. Animal Behaviour 78:879–

885. Elsevier Ltd. 

Maynard Smith, J. 1982. Evolution and the Theory of Games. Page in. Cambridge University 

Press, Cambridge. 



	 13	

McCullough, E. L., C. W. Miller, and D. J. Emlen. 2016. Why sexually selected weapons are not 

ornaments. Trends in Ecology and Evolution 31:742–751. Elsevier Ltd. 

McGraw, K. J., A. M. Stoehr, P. M. Nolan, and G. E. Hill. 2001. Plumage redness predicts 

breeding onset and reproductive success in the house finch: a validation of Darwin’s theory. 

Journal of Avian Biology 1:90–94. 

Møller, A., and M. Jennions. 2001. How important are direct fitness benefits of sexual selection? 

Naturwissenschaften 88:401–415. 

Moller, A. P., and R. V. Alatalo. 1999. Good-genes effects in sexual selection. Proceedings of 

the Royal Society B: Biological Sciences 266:85. 

Neff, B. D., and T. E. Pitcher. 2005. Genetic quality and sexual selection: An integrated 

framework for good genes and compatible genes. Molecular Ecology 14:19–38. 

Otter, K., B. Chruszcz, and L. Ratcliffe. 1997. Honest advertisement and song output during the 

dawn chorus of black-capped chickadees. Behavioral Ecology 8:167–173. 

Parker, G. A. 1974. Assessment strategy and the evaluation of fighting behavior. Journal of 

Theoretical Biology 47:223–243. 

Poesel, A., T. Dabelsteen, S. K. Darden, K. Delhey, and A. Peters. 2007. Territorial responses of 

male blue tits, Cyanistes caeruleus, to UV-manipulated neighbours. Journal of Ornithology 

148:179–187. 

Pryke, S. R., and S. Andersson. 2003. Carotenoid-based epaulettes reveal male competitive 

ability: Experiments with resident and floater red-shouldered widowbirds. Animal 

Behaviour 66:217–224. 

Pryke, S. R., and S. C. Griffith. 2009. Socially mediated trade-offs between aggression and 

parental effort in competing color morphs. The American Naturalist 174:455–464. 

Pryke, S. R., M. J. Lawes, and S. Andersson. 2001. Agonistic carotenoid signalling in male red-

collared widowbirds: Aggression related to the colour signal of both the territory owner and 

model intruder. Animal Behaviour 62:695–704. 

Qvarnström, A., and E. Forsgren. 1998. Should females prefer dominant males? Trends in 

Ecology and Evolution 13:498–501. 

Reudink, M. W., C. E. Studds, P. P. Marra, T. Kurt Kyser, and L. M. Ratcliffe. 2009. Plumage 

brightness predicts non-breeding season territory quality in a long-distance migratory 

songbird, the American redstart Setophaga ruticilla. Journal of Avian Biology 40:34–41. 



	 14	

Rohwer, S., and F. C. Rohwer. 1978. Status signalling in harris sparrows: Experimental 

deceptions achieved. Animal Behaviour 26:1012–1022. 

Safran, R. J., and K. J. McGraw. 2004. Plumage coloration, not length or symmetry of tail-

streamers, is a sexually selected trait in North American barn swallows. Behavioral Ecology 

15:455–461. 

Searcy, W. A., and S. Nowicki. 2005. The Evolution of Animal Communication. Page in. 

Princeton University Press, Princeton, NJ. 

Siefferman, L., and G. E. Hill. 2003. Structural and melanin coloration indicate parental effort 

and reproductive success in male eastern bluebirds. Behavioral Ecology 14:855–861. 

Siefferman, L., and G. E. Hill. 2005. UV-blue structural coloration and competition for 

nestboxes in male eastern bluebirds. Animal Behaviour 69:67–72. 

Tibbetts, E. A., and R. Lindsay. 2008. Visual signals of status and rival assessment in Polistes 

dominulus paper wasps. Biology Letters 4:237–239. 

Warner, R. R. 1987. Female choice of sites versus mates in a coral reef fish, Thalassoma 

bifasciatum. Animal Behaviour 35:1470–1478. 

West-Eberhard, M. J. 1979. Sexual selection, social competition, and evolution. Proeedings of 

the American Philosophical Society 123:222–234. 

Wiehn, J. 1997. Plumage characteristics as an indicator of male parental quality in the american 

kestrel. Journal of Avian Biology 28:47–55. 

Wolfenbarger, L. L. 1999. Red coloration of male northern cardinals correlates with mate quality 

and territory quality. Behavioral Ecology 10:80–90. 

 

 

 

 

 

 

  



	 15	

Tables and Table Legends 

Behavior PC1 Loading 
Time spent within 10m of the nest box 0.51 
Hovers 0.44 
Perch on Nestbox 0.32 
Attacks 0.37 
Aggressive Flights 0.55 
  
 

Table 1: Loadings of aggressive behaviors on first principal component (PC1) 

 

Figures  

 

Figure 1 The relationship between focal male coloration and aggression score  
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Figure 2 Male coloration predicted his territory quality during 2016 and 2017  

 

 

.  

 

	

	

	

	

	
	

	



	 17	

Blue	structural	coloration	honestly	indicates	male	

physiological	condition	under	resource	limitation	in	the	

mountain	bluebird,	Sialia	currucoides	
	

Berk,	S.A.1,	Emlen,	D.J.1,	and	Breuner,	C.W.1,2	

	
1	Division	of	Biological	Sciences,	University	of	Montana,	Missoula,	MT,	U.S.A.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 18	

Abstract		

Sexually	selected	signals	are	predicted	to	exhibit	heightened	condition-sensitive	

expression	relative	to	other,	non-signaling	structures.	We	used	corticosterone	(CORT)	

physiology	to	study	the	effects	of	food	availability	on	blue	coloration	(a	sexually	selected	

signal)	and	feather	aerodynamic	performance	in	the	mountain	bluebird.	Stressors	as	

diverse	as	nutrient	limitation,	disease,	and	low	social	status	all	increase	levels	of	circulating	

CORT,	making	CORT	an	informative	proxy	for	assessing	the	overall	state/condition	of	

individual	males.	We	found	that	when	birds	were	food	limited,	CORT	inversely	predicted	

coloration;	this	relationship	disappeared	when	birds	were	given	ad	lib	food.	Neither	food	

limitation	nor	CORT	affected	feather	performance,	which	was	unrelated	to	signaling.	To	

understand	these	differences	in	condition-dependence,	we	also	measured	feather	fine-

structural	morphology.	We	found	that	a	component	of	feather	structure	(barbule	density)	

negatively	predicted	coloration	and	was	exquisitely	sensitive	to	CORT,	but	only	when	

resources	were	limiting.	In	contrast,	an	adjacent	feather	structural	component	associated	

with	feather	performance	(interbarb	distance)	was	not	sensitive	to	CORT	and	did	not	

predict	feather	coloration.	Our	results	reveal	an	astonishing	uncoupling	of	the	development	

of	adjacent	aspects	of	the	same	structure,	and	provide	compelling	evidence	for	the	

importance	of	heightened	condition-sensitive	expression	of	sexually	selected	signals.	

	

Introduction	

Sexual	selection	acts	on	traits	that	increase	mating	success,	either	through	female	

preference	or	success	during	competition	for	access	to	mates	[1].	Classic	theory	on	sexual	

selection	proposes	several	unifying	characteristics	of	sexually	selected	traits	that	increase	

their	reliability	as	signals	of	quality	to	conspecifics	[rev.	by	2–5].	First,	high	inter-individual	

variation	in	sexually	selected	traits	allows	these	traits	to	reveal	variation	in	genetic	quality	

[6–10].	Second,	traits	favored	by	sexual	selection	are	often	highly	condition	sensitive,	

especially	compared	to	non-sexual	traits	[6,11–15].		For	example,	rhinoceros	beetle	horns	

are	more	sensitive	to	variation	in	larval	nutrition	than	wings	or	genitals	[16,17].	Also,	stalk-

eyed	fly	eyestalks	reveal	sensitivity	of	different	genotypes	to	variation	in	nutritional	

condition,	while	variation	in	body	size	does	not	[18].		
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To	test	these	attributes	of	sexually	selected	traits,	we	must	first	choose	an	accurate	

measurement	of	individual	condition	[13].	Some	have	defined	condition	as	the	amount	of	

resources	an	individual	is	able	to	devote	to	the	development	of	a	sexually	selected	trait	

[19–21].	Others	have	defined	condition	as	the	number	of	offspring	produced	relative	to	

other	individuals	in	the	population	[3,22].	Finally,	recent	theoretical	work	has	proposed	

that	condition	represents	the	ability	to	respond	to	environmental	challenge	[23].	Even	

under	these	definitions,	many	traits	could	conceivably	be	related	to	condition,	and	

researchers	who	perform	empirical	work	often	find	it	difficult	to	select	traits	that	represent	

condition	in	their	study	organism.	Endocrine	systems	are	a	good	proxy	for	individual	

state/condition	because	hormones	both	respond	to	environmental	conditions	and	regulate	

internal	response	and	resulting	phenotype	[24,25].	The	hormone	corticosterone	(CORT)	is	

released	by	the	adrenal	glands	in	response	to	challenge	to	divert	resources	towards	self-

preservation	[26].	CORT	secretion	is	often	thought	to	represent	condition	and	allostatic	

state	[25,27,28].	A	rapid,	transient	increase	in	CORT	can	help	individuals	to	survive	

challenging	situations.	However,	prolonged	elevation	of	CORT	can	cause	damage	to	other	

physiological	systems	and	potentially	decrease	fitness	[29,30].	For	example,	CORT-

implanted	white	crowned	sparrows	abandon	their	high-elevation	breeding	territories	and	

retreat	to	low	elevations	during	storms	[31]	Increased	CORT	in	this	population	predicts	

increased	survival	but	decreased	reproductive	success		[32].	In	terms	of	sexual	selection,	

CORT-implanted	nestling	barn	owls	show	reduced	investment	in	a	sexually	selected	trait:	

deposition	of	phaeomelanin	into	their	feathers	[33].	These	links	between	environmental	

conditions	and	potential	fitness	consequences	make	CORT	an	ideal	regulator	of	condition-

dependent	sexually	selected	traits.		

We	performed	an	experiment	to	test	for	heightened	condition-dependence	of	blue	

coloration	in	the	mountain	bluebird,	Sialia	currucoides.	We	used	a	resource	limitation	

challenge	to	explore	changes	in	CORT,	feather	coloration,	and	feather	aerodynamic	

performance	in	response	to	environmental	challenge.	While	it	is	common	to	test	condition-

dependence	of	sexually	selected	traits	through	resource	limitation,	many	studies	do	not	

compare	changes	in	sexually	selected	traits	to	non-sexual	controls	[14].	Therefore,	we	

explored	whether	blue	coloration	(a	sexually	selected	trait)	was	related	to	feather	

performance	(a	non	sexual	trait),	and	used	the	direction	and	strength	of	these	relationships	
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to	understand	the	honesty	of	male	coloration.	We	also	investigated	whether	changes	in	

trait	quality	across	resource	levels	were	related	to	CORT	physiology,	and	whether	this	

condition-sensitivity	occurred	when	resources	were	limiting,	fully	available,	or	both.	

Individuals	may	be	able	to	allocate	resources	to	all	traits	equally	when	resources	are	

abundant,	but	limiting	resources	may	reveal	trade-offs	between	competing	demands	[34–

36].	For	example,	horn	length	in	soay	sheep	is	negatively	associated	with	longevity	only	

when	environmental	quality	is	poor,	but	the	trade-off	is	absent	in	high	resource	years	[37].		

We	explored	the	relationships	between	CORT	physiology,	feather	coloration	and	

aerodynamic	function,	to	explore	the	mechanisms	underlying	condition	dependence	of	blue	

coloration.	First,	feather	coloration	may	be	negatively	impacted	by	low	food	and	elevated	

CORT,	but	feather	performance	may	be	insensitive	to	both.	This	would	add	to	results	in	

rhinoceros	beetles	and	stalk-eyed	flies	demonstrating	heightened	condition	sensitivity	of	

sexual	traits	compared	to	non-sexual	traits	[14,16,17].	Under	this	hypothesis,	we	predict	

that	differences	in	the	quality	of	males	should	become	exacerbated	in	our	resource	

limitation	treatment,	resulting	in	greater	variance	in	CORT	responses	(reflecting	greater	

variation	in	male	quality),	as	well	as	amplified	among-male	variation	in	the	signal	trait	

(coloration).		In	contrast,	despite	the	amplified	variation	in	physiology,	feather	

performance	should	be	less	affected	by	food	limitation	or	related	to	individual	CORT	

secretion.	This	hypothesis	predicts	that	flight	performance	will	be	less	sensitive	to	

fluctuations	in	male	physiological	condition,	and	we	predict	similarly	low	patterns	of	

among-male	variation	for	this	trait	across	both	high	and	low	food	availability	treatments.		

Alternatively,	blue	coloration	may	be	pleiotropically	linked	to	feather	performance.	

While	pigments	produce	some	avian	colors,	blue	coloration	results	from	the	reflection	of	

light	through	highly	organized	tissues	within	the	feather.	Light	passes	through	the	feather	

cortex	and	is	scattered	through	a	spongy	layer	of	organized	keratin	before	reaching	a	basal	

layer	of	melanin	granules	that	reflects	the	observed	color	[38,39].		Hereafter,	we	

collectively	refer	to	these	structures	as	“microstructure.”	In	contrast	to	microstructure,	

feather	macro-structure	includes	larger	components	of	feather	structure	such	as	barbule	

density,	rachis	thickness,	and	mass.	Feather	macrostructure	plays	a	role	in	flight	

performance	and	thermoregulation	[40,41]	Because	both	color	and	flight	performance	

result	from	structural	morphology	of	the	feather,	it	is	possible	that	changes	in	one	
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necessarily	result	in	changes	to	the	other.		If	coloration	and	flight	performance	are	

structurally	or	otherwise	pleiotropically	linked,	then	both	traits	should	covary	with	

individual	male	condition	and	CORT	physiology.	In	this	case,	birds	would	not	be	capable	of	

uncoupling	the	expression	of	color	and	flight	performance,	and	both	traits	should	be	

equally	condition	dependent.		

Previous	research	has	explored	singular	connections	between	CORT,	feather	

macrostructure,	feather	color,	and	feather	performance;	we	sought	to	understand	the	

connections	across	physiology,	feather	color,	and	feather	function	within	the	same	species.	

In	European	starlings	(Sturnus	vulgaris)	CORT	affects	some,	but	not	all,	components	of	

feather	macrostructure	[42].	That	study,	however,	did	not	relate	feather	macrostructure	to	

coloration	or	performance.	Others	have	evaluated	the	relationship	between	feather	

structure	and	performance	across	gross	levels	of	morphology,	such	as	between	species,	age	

classes,	or	feather	regions	[40,41,43,44],	but	to	date	no	studies	have	linked	individual	

variation	in	feather	macrostructure	to	feather	function.	Examining	feather	function	in	this	

manner	allows	us	to	understand	which	components	of	feather	macrostructure	may	relate	

to	feather	color,	and	whether	or	not	these	same	feather	metrics	were	important	for	feather	

function.		

	

Methods	

Animals	and	Housing	

	 In	summer	2016,	we	transported	14	male	mountain	bluebird	nestlings,	between	15	

and	18	days	post-hatch,	to	our	laboratory	at	the	Field	Research	Station	at	Fort	Missoula.	To	

acclimate	nestlings	to	the	laboratory	environment,	we	hand	fed	nestlings	1	mL	of	Formula	

for	Nestling	Songbirds	diet	[45]	per	hour	and	weaned	birds	to	an	adult	diet	(peanut	butter	

crumble	diet,	adapted	from	[45])	as	they	were	ready;	see	Appendix	1	for	complete	hand-

rearing	protocol.	During	hand	feeding,	birds	were	housed	in	cages	with	2-3	individuals	per	

cage	(30in	x	18in	x	18in).	We	initially	exposed	birds	to	15-hour	day	lengths	and	decreased	

day	length	by	15	minutes	per	week	until	photoperiod	reached	12	hours	of	light/dark	per	

day.	We	maintained	this	12	hour	light/dark	cycle	for	the	duration	of	the	experiment.		This	

reduction	in	photoperiod	was	sufficient	to	stimulate	birds	to	molt	into	their	adult	plumage.	

After	weaning,	birds	were	released	into	a	flight	room	(2.5m	x	2.5m	x	2.5m)	to	complete	the	
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photoperiod	adjustment.	We	returned	birds	to	individual	cages	at	the	beginning	of	the	

experiment,	and	allowed	for	a	one	week	acclimation	to	cages	before	beginning	blood	

sampling.	Birds	received	ad	lib	water	for	the	duration	of	their	time	in	captivity,	regardless	

of	if	they	were	food	restricted.	All	procedures	were	approved	under	permits	from	the	US	

Fish	and	Wildlife	Service	(23228),	Montana	Fish	Wildlife	and	Parks	(2016-078),	and	the	

University	of	Montana	Institutional	Animal	Care	and	Use	Committee	(AUP	33-14CBDBS-

061014).	

	

	Experimental	Procedure		

We	tested	the	interaction	between	treatment,	feather	structure,	and	corticosterone	

on	feather	coloration	and	performance.	To	this	end,	we	used	a	paired	study	design,	where	

each	of	the	n=14	birds	received	both	the	control	(ad	lib	food)	and	the	experimental	(20%	

food	reduction)	treatment	in	randomized	order.	We	weighed	each	individual’s	food	daily	

before	the	experiment	began	to	determine	average	total	food	intake	and	then	reduced	each	

bird’s	food	intake	accordingly.	We	stimulated	feather	growth	by	pulling	the	two	outermost	

primaries	on	each	wing,	the	four	outermost	rectrices,	and	a	large	patch	of	contour	feathers	

from	the	rump.	We	pulled	these	feathers	on	the	first	day	of	the	experiment,	and	allowed	

birds	to	grow	feathers	for	56	days	while	receiving	their	designated	treatment.	We	observed	

variation	in	the	amount	of	feather	regrowth	during	this	time,	but	56	days	was	sufficient	for	

all	birds	to	fully	grow	at	least	one	remige	and	all	pulled	contour	feathers.	While	we	pulled	

feathers	from	several	regions	to	stimulate	heavy	molt,	we	only	report	results	from	contour	

feathers,	as	field	studies	have	found	that	rump	coloration	is	positively	related	to	

reproductive	success	[46].		

We	collected	blood	samples	from	birds	receiving	food	limitation	or	ad	lib	food	to	

determine	baseline	CORT	secretion	3	weeks	into	each	treatment,	resulting	in	two	

measurements	of	baseline	CORT	per	bird.	Five	samples	were	lost	during	processing	and	1	

was	omitted	as	a	statistical	outlier,	resulting	in	a	final	n	of	11	for	food	limitation	and	10	for	

ad	lib	treatments.	During	the	food	limitation	treatment,	n=7	birds	received	a	CORT	implant	

along	with	a	reduction	in	available	food.	However,	our	CORT	implant	pellet	(Innovative	

Research	of	America,	SG-111)	failed	to	produce	an	elevation	in	CORT	levels	(Appendix	2).	

We	therefore	combined	treatment	groups	(cort-	and	control-implanted)	and	compared	
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feather	traits	against	endogenous	CORT	levels	measured	in	the	middle	of	feather	growth	

for	each	individual.	

	

Feather	Structure	and	Color		

	 We	measured	color	using	a	USB4000	spectrophotometer	with	a	pulsed	xenon	light	

source	(Ocean	Optics,	Dunedin,	USA).	We	took	five	reflectance	measurements	each	

consisting	of	ten	averaged	curves.	We	stacked	seven	contour	feathers	on	top	of	each	other	

and	taped	them	to	non-reflective	black	paper	(Canson)	for	measurements.	We	positioned	

the	probe	at	90	degrees	using	a	probe	holder	and	standardized	the	distance	between	the	

probe	and	the	specimen	at	5mm.	We	standardized	measurements	between	individuals	

using	a	white	standard,	and	turned	off	the	light	source	and	covered	the	probe	to	create	a	

dark	standard.		

	 To	extract	color	variables,	we	averaged	the	resultant	reflectance	measurements	

(between	300	and	700nm)	and	smoothed	spikes	from	curves	using	the	program	CLR	5	(v.	

1.05,	Montgomerie	2008).	From	these	averaged	curves	we	used	R	(R	Core	Team	2017)	to	

extract	the	hue	(wavelength	of	peak	reflectance),	blue	chroma	(saturation:	proportion	of	

the	reflectance	concentrated	from	400-512	nm),	UV-chroma	(proportion	of	the	reflectance	

concentrated	from	300-400nm),	and	brightness	(sum	of	the	total	reflectance).	To	ease	

interpretation	of	our	effect	sizes,	we	report	chroma	variables	as	whole	numbers	rather	

than	proportions	(proportion	reflectance	within	specified	wavelengths	x	100).		

	 We	evaluated	feather	structure	by	measuring	barbule	density	per	1	mm2,	rachis	

thickness,	the	distance	between	individual	barbs,	and	the	angle	of	the	barb	to	the	rachis	as	

per	[42].	We	took	two	50X	images	per	feather	using	the	cellSens	software	package	on	an	

Olympus	SZX16	fluorescence	dissecting	microscope	with	an	Olympus	DP26	camera	

attachment	(Olympus	Corporation,	Japan).	We	collected	one	image	from	the	tip	of	the	

feather,	and	a	second	towards	the	middle	of	the	feather,	closer	to	the	proximal	end,	but	not	

including	any	downy	parts.	From	these	images,	we	used	ImageJ	(NIH)	to	count	barbules	

within	two	separate	randomly	selected	fields	1	mm2	near	the	tip	of	the	feather.	We	

measured	rachis	thickness,	interbarb	distance,	and	barb	angle	as	the	average	of	five	

measurements	taken	from	the	middle	of	feather.	We	also	measured	feather	length	to	the	

nearest	millimeter	and	feather	mass	to	the	nearest	milligram.		
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Feather	Resistance	to	Airflow	

	 We	measured	feather	resistance	as	the	back	pressure	feathers	generated	as	air	was	

directed	through	them	at	a	constant	rate.	Briefly,	individual	feathers	were	centered	and	

superglued	to	5-mm	diameter	plastic	tubing	(8	cm	lengths).	Air	was	directed	through	the	

feather	from	a	cylinder	of	compressed	air,	with	the	flow	rate	(100	ml/min)	controlled	by	a	

mass-flow	controller	and	associated	electronics	(MFC-4,	Sable	Systems).	We	measured	the	

pressure	differential	across	the	feather	by	connecting	a	tube	from	a	t-junction	located	just	

upstream	of	the	feather	to	a	differential	pressure	meter	(PT1000-B,	Sable	Systems).	

Between	measurements,	pressure	arising	from	the	t-junction	and	tubing	alone	was	zeroed	

out	using	empty	plastic	tubing.	We	measured	three	feathers	per	individual	per	treatment	

and	averaged	them	before	analysis.	

	

Hormone	Assays	

We	measured	corticosterone	using	an	enzyme-linked	immunosorbent	assay	(ELISA)	

kit	from	Enzo	Life	Sciences	(Cat	No.	ASI-900-097).	Pooled	plasma	was	extracted	with	

diethyl	ether	and	checked	for	parallelism	against	the	standard	curve;	all	dilutions	used	in	

the	assay	occurred	in	the	parallel	portion	of	the	curve.	Individual	samples	were	doubly-

extracted	with	diethyl	ether	according	to	[47],	and	run	in	triplicate	at	a	final	dilution	of	

1:10-1:36	in	assay	buffer	included	with	the	Enzo	Life	Sciences	ELISA	kit.	Sample	recovery	

was	estimated	by	adding	50	µl	of	4000	cpm/100	µl	3H-CORT	prior	to	extraction	(mean	

recovery=76%	±	8%),	and	assay	results	were	adjusted	based	on	individual	recovery	values.	

We	analyzed	most	samples	in	triplicate	during	the	ELISA,	but	we	often	included	duplicates	

to	manage	space	on	plates.	Intra-assay	variation	was	7.7%	and	inter-assay	variation	(based	

on	an	external	standard	included	on	each	plate)	was	14%	across	6	plates.		

	

Statistics	

	 We	performed	all	statistical	analyses	using	R	Version	3.4.3	[48].	We	first	examined	

variables	for	normality	and	performed	log-transformations	where	appropriate.	We	

performed	paired	t	tests	to	determine	the	effect	of	our	food	limitation	treatment	on	mean	
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corticosterone,	feather	color,	and	feather	performance.	We	also	used	Bartlett’s	test	to	

examine	changes	in	variance	across	control	and	experimental	treatments.	To	test	for	

relationships	between	CORT	physiology,	feather	color,	and	structure,	we	used	linear	mixed	

effects	models	(package	nlme)	with	a	random	effect	of	individual	ID.		

	 When	examining	the	relationships	between	feather	morphology,	coloration,	and	

performance,	we	sought	to	limit	post-hoc	comparisons	and	preserve	degrees	of	freedom.	

Therefore,	we	began	our	analyses	using	backwards	model	selection	to	determine	which	

feather	structure	variables	were	related	to	feather	coloration	and	performance	(Results	in	

sections	b	and	c	below).	We	then	used	the	best	models	from	these	analyses	(determined	by	

AICc	comparisons)	to	explore	interactive	effects	of	treatment	and	corticosterone	on	the	

aspects	of	feather	structure	that	were	relevant	to	feather	color	or	performance	(section	d).	

We	chose	this	approach	because	we	measured	many	components	of	feather	structure,	and	

this	analysis	allowed	us	to	use	only	the	feather	structure	variables	which	were	relevant	to	

feather	color	or	performance	and	avoid	overfitting	our	models	given	our	small	sample	

sizes.	We	used	generalized	linear	mixed	models	with	a	random	effect	of	individual	ID	for	

these	analyses.	In	certain	cases,	we	used	linear	models	within	treatment	groups	(ad	lib	and	

food	limited)	to	further	explore	relationships	and	determine	if	overall	correlations	were	

equally	strong	in	both	groups.	As	these	models	did	not	include	repeated	sampling	of	

individuals,	we	did	not	include	any	random	effect	structure.	Within	our	dataset,	blue	

chroma	and	UV	chroma	were	highly	correlated	(Pearson	r	=	(0.72,	0.93),	p<0.001).	To	

simplify	our	analyses,	we	only	report	model	selection	for	structural	predictors	of	blue	

chroma,	though	these	results	never	conflicted	during	model	selection	of	feather	structure	

and	UV	chroma.	We	chose	to	report	our	results	as	95%	confidence	intervals	surrounding	

estimates	of	effect	sizes.	

	

Results	

	a)	Condition	Sensitivity	of	Feather	Coloration	and	Performance		

	 Food	limitation	elevated	baseline	CORT	and	led	to	increased	variance	in	baseline	

CORT	among	males	(Figure	1a,	paired	t	test:	t=-2.34,	df=7,	p=0.05,	Bartlett’s	K2=5.42,	

p=0.02).	Food	limitation	also	increased	variation	in	blue	chroma	(Figure	1b,	Bartlett’s	K2,	

Blue	Chroma:	4.25,	p=0.04)	and	decreased	variation	in	hue	(Bartlett’s	K2=11.25,	p<0.01),	
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but	did	not	alter	variance	in	brightness	(Bartlett’s	K2=	1.06,	p=0.30).	There	were	no	

changes	in	the	mean	of	any	of	our	coloration	measures	across	treatments	(paired	t	tests,	

Blue	Chroma:	t=1.20,	df	=13,	p=0.25;	Hue:	t=1.16,	df=13,	p=0.27;	Brightness:	t=-0.09,	df=13,	

p=0.92).	Finally,	there	was	no	change	in	the	mean	or	variance	of	feather	performance	

across	treatments	(Figure	1c,	paired	t	test:	t=1.10,	df=13,	p=0.30,	Bartlett’s	K2=	1.30,	

p=0.25).		

		

	
Figure	1	Food	limitation	increased	baseline	CORT	(a),	and	increased	variance	in	both	CORT	and	blue	chroma	

(b),	but	had	no	effect	on	feather	resistance	(c).		

	

	

										We	found	that	CORT	predicted	coloration,	but	not	feather	performance	(Figure	2).	

Furthermore,	CORT	was	only	related	to	feather	coloration	in	our	resource	limitation	

treatment.	In	our	full	mixed-effects	model	of	the	relationship	between	baseline	CORT	and	

blue	chroma,	we	found	no	support	for	an	interaction	between	treatment	and	CORT	

(βCORT*Treatment		95%	CI=	(-2.56,1.20),		t5=-0.92,	p=0.39).	Our	simplified	additive	model	

revealed	an	overall	negative	relationship	between	baseline	CORT	and	blue	chroma,	but	no	

effect	of	treatment,	and	performed	better	than	the	full	model	based	on	AICc	(βCORT		95%	CI=	

(-1.59,-0.34),	t6=-3.78,	p<0.01,	βtreatment	95%	CI=	(-0.97,1.31),	t6=0.36,	p=0.73,	ΔAICc	=	-

1.93).	Simple	linear	models	within	treatments	determined	that	this	effect	was	entirely	due	

to	the	negative	correlation	within	the	food	limited	group,	where	the	variance	in	baseline	

CORT	and	coloration	were	greater	(Food	limited:	βCORT	95%	CI	=	(-1.79,	-0.311),	F1,9=10.3,	
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p=0.01,	Ad	lib:	βCORT	95%	CI	=	(-1.56,0.90),	F1,8=	0.38,	p=0.55).	However,	the	large	overlap	

in	confidence	intervals	for	the	effect	sizes	suggests	that	while	the	effect	of	corticosterone	

on	coloration	is	driven	by	changes	in	variance	within	the	food	limited	group,	the	effect	is	

not	necessarily	different	from	birds	in	the	ad	lib	group.	In	contrast,	we	found	that	CORT	did	

not	predict	variation	in	feather	resistance	in	either	treatment	(LMM:	βCORT*Treatment		95%	CI=	

(-3.88,7.53),		t5=	0.82,	p=0.45,	additive	LMM:	(βCORT	95%	CI	=	(-0.94,2.85),	t6=1.22,	p=0.27,	

βTreatment	95%	CI	=	(-6.01,1.22),	t6=-1.62,	p=0.15).		

	

	
Figure	2	Baseline	CORT	predicts	blue	chroma	(left	panel),	but	not	feather	resistance	(right	panel).		

	

b)	Feather	Coloration	and	Structure		

Feather	macrostructure	and	coloration	co-varied	depending	on	treatment.	Our	

model	selection	revealed	that	while	our	best	model	included	effects	of	barbule	density,	

barbule	density	was	not	a	good	predictor	of	feather	coloration	across	treatments.	(LMM:	

βbarbule	95%	CI=	(-0.01,	0.006),	βFood	limited	95%	CI=	(-1.73,	0.475),	Table	S1).		Instead,	

barbule	density	and	blue	chroma	were	negatively	correlated	within	the	food	limited	

treatment,	but	not	in	the	ad	lib	treatment	(Figure	3,	Ad	lib:	β	95%	CI=	(-0.004,	0.01),	

F1,11=1.26,	p=0.28,	Food	limited:	β	95%	CI=	(-0.03,	0),	F1,12=4.48,	p=0.05)).		
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Figure	3	Barbule	density	and	blue	chroma	are	negatively	related	under	food	limitation	(filled	circles)	but	not	

ad	lib	food	availability	(open	circles).		

	

c)	Feather	Performance	and	Structure	

Specific	feather	macrostructure	variables	predicted	feather	performance.	In	our	top	

model,	interbarb	distance	was	negatively	correlated	with	feather	resistance	(Figure	4,	

LMM:	ΒInterbarb	95%	CI	=	(-57.69,-8.02)),	and	food	limitation	had	no	effect	on	feather	

resistance	(LMM:	βTreatment	95%	CI	=	(-4.24,0.11)).	While	this	model	was	equivalent	to	our	

model	including	both	barb	angle	and	rachis	thickness		(ΔAICc	=	-0.37),	these	two	variables	

were	ultimately	unrelated	to	feather	resistance	(βBarbAngle	95%	CI	=	(-0.26,0.45),	βRachis	

95%	CI	=	(-66.97,	44.28)).	We	did	not	include	feather	mass	in	our	model	selection	due	to	

colinearity	with	other	components	of	feather	structure,	but	feather	mass	and	resistance	

were	significantly	positively	correlated	(β	95%	CI	=(6.11,11.77)).	Our	model	selection	

results	for	the	effects	of	feather	structure	on	resistance	to	air	are	summarized	in	Table	S2.		

	



	 29	

	
Figure	4	Interbarb	distance	predicts	feather	resistance	across	ad	lib	(open	circles)	and	food	limitation	(filled	

circles)	treatments.			

	

d)	Corticosterone	and	Feather	Structure		

We	used	our	analyses	from	parts	(b)	and	(c)	to	drive	our	analysis	of	the	effect	of	

corticosterone	on	feather	structure.	Hence,	we	only	evaluated	CORT's	association	with	

interbarb	distance,	barbule	density,	and	feather	mass.			

Corticosterone	had	varying	effects	on	feather	macrostructure	across	treatments.	

Our	top	model	for	the	effect	of	corticosterone	on	barbule	density	included	the	interaction	

of	corticosterone	and	treatment,	though	it	was	not	significant	(βCORT	*Trt95%	CI	=	(-55.81,	

159.96)).		However,	analyses	of	the	treatment	groups	separately	revealed	that	birds	in	the	

food	limited	treatment	increased	barbule	density	with	increasing	corticosterone	while	

birds	in	the	ad	libitum	group	did	not	(Figure	5,	Ad	lib:	βCORT	95%	CI	=	(-133.73,	83.71)		

F1,7=	0.30,	p=0.60;	Food	limited:	βCORT	95%	CI	=	(5.97,48.15),	F1,9=	8.42,	p=0.02).		

We	found	no	significant	relationship	between	corticosterone	and	interbarb	distance.	

Our	best	model	for	the	effect	of	corticosterone	on	interbarb	distance	included	only	an	effect	

of	corticosterone,	though	it	was	not	significant	(βCORT=	(-0.03,	0.006)).	Individual	models	

revealed	no	effect	of	corticosterone	on	interbarb	distance	in	either	treatment	(Ad	lib:	βCORT	

95%	CI	=	(-0.10,0.06)	F1,7=	0.361,	p=0.56,	Food	limited:	βCORT	95%	CI	=	(-0.03,0.005),	F1,9=	
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2.75,	p=0.13).	We	summarize	these	model	selection	results	in	Table	S3.	Hence,	

corticosterone	predicts	changes	in	traits	associated	with	color,	but	not	feather	

performance.	

We	found	no	significant	relationship	between	corticosterone	and	feather	mass.	Our	

best	model	for	the	effect	of	corticosterone	on	feather	mass	included	only	an	effect	of	

treatment,	though	it	was	not	significant	(βTreatment	95%	CI	=	(-0.36,0.06)).		

	

	
Figure	5	Baseline	CORT	predicts	barbule	density	in	the	food	limited	(closed	circles),	but	not	the	ad	lib	(oopen	

circles)	treatment.		

	

Discussion		

	 Our	results	demonstrate	that	the	sexually	selected	functions	of	feathers	(coloration)	

are	sensitive	to	condition,	while	the	naturally	selected	functions	(resistance	to	airflow)	are	

not.	We	found	that	these	differences	were	predicted	by	variation	in	individual	physiology	

in	response	to	resource	limitation.	Namely,	males	that	secreted	more	CORT	in	response	to	

our	experimental	challenge	sacrificed	color	production.	However,	the	same	was	not	true	for	

the	naturally	selected	components	of	feathers	that	regulated	feather	function.			
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	 	Signaling	theory	predicts	that	traits	functioning	as	reliable	indicators	of	individual	

male	quality	in	the	context	of	sexual	selection	should	be	more	sensitive	to	stress,	nutrition,	

and	variation	in	individual	condition,	than	other	non-signal	structures	[1,5,49,50].	Indeed,	

heightened	conditional	expression	amplifies	otherwise-subtle	differences	among	males,	

causing	these	traits	to	be	especially	informative	when	used	as	signals	in	the	context	of	

male-male	competition	or	mate	choice.		Although	many	studies	have	demonstrated	

condition-	and/or	nutrition-sensitivity	of	sexually	selected	signal	traits,	relatively	few	have	

compared	these	responses	to	those	of	other,	non-signal	traits.	Rhinoceros	beetle	horns	are	

more	sensitive	to	nutrition,	and	to	insulin	receptor	knockdown	during	development,	than	

genitals	or	wings	[16,17].	In	stalk-eyed	flies,	eyestalk	length	reveals	genetic	variation	in	

responsiveness	to	resource	limitation	more	strongly	than	wing	length,	which	scales	with	

body	size	regardless	of	resource	availability	[18].	In	our	study,	blue	coloration	and	barbule	

density	were	exquisitely	sensitive	to	male	condition,	and	differences	between	males	

became	increasingly	pronounced	as	resources	became	limiting.		

	 It	is	important	to	note	that	the	effects	of	CORT	and	resource	limitation	occurred	

without	changes	in	mean	coloration	or	feather	structure	across	treatment	groups.	In	birds,	

past	work	has	sought	to	demonstrate	condition	dependence	of	ornamental	feather	traits	

through	mean	decreases	during	resource	restriction	or	immune	challenge	[51–55].	While	

these	large	differences	between	treatment	groups	are	one	method	of	demonstrating	

condition	dependence,	our	results	show	that	individual	variation	in	response	to	resource	

limitation	is	another	important	facet	of	honest	signaling.	Others	have	previously	proposed	

that	sexually	selected	traits	signal	individual	capacities	to	respond	[23].	Under	this	

hypothesis,	a	male’s	ability	to	cope	with	challenge	is	a	crucial	component	of	fitness	that	is	

expressed	through	development	of	sexually	selected	traits.	Our	results	suggest	a	novel	

method	of	evaluating	this	hypothesis	through	the	exploration	of	individual	variation	in	

stress	physiology	in	resource-abundant	and	resource-limited	conditions.	

Our	results	confirm	critical	predictions	of	sexual	selection	and	signaling	theory	and	

show	how	even	subtle	aspects	of	structure	on	the	same	feathers	can	exhibit	markedly	

different	patterns	of	condition-	and	nutrition-dependence.	However,	we	found	that	the	

correlation	between	barbule	density	and	coloration	was	inconsistent	across	resource	

levels.	Past	researchers	have	reported	correlations	between	feather	micro-	and	
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macrostructure	and	color	[56,57],	and	[39]	found	that	individual	variation	in	feather	

microstructure	was	related	to	UV-violet	chroma	and	spectral	saturation.	Namely,	male	

eastern	bluebirds	with	more	circular	keratin	rods	within	the	feather	barb	and	less	variation	

in	keratin	rod	diameter	displayed	colors	that	were	more	saturated	[39].	While	these	

microstructural	elements	were	strongly	predictive	of	feather	coloration,	others	have	also	

observed	that	macrostructure	contributes	to	feather	coloration	by	altering	structural	

absorption	of	light	wavelengths	[57].	We	suggest	that	interactions	between	micro-	and	

macrostructural	components	of	feathers	were	altered	during	our	food	limitation,	which	led	

to	stronger	associations	between	barbule	density	and	coloration	when	resources	were	

limiting.	Future	work	should	explore	which	aspects	of	feather	morphology	are	related	to	

coloration,	and	in	what	environmental	contexts.		

	 Our	study	is	unique	in	that	it	explores	individual	variation	in	the	relationship	

between	feather	macrostructure	and	performance.	While	we	frequently	measure	aspects	of	

feather	structure,	few	studies	quantify	how	individual	differences	in	feather	structure	are	

related	to	feather	performance	[42,43].	We	found	that	interbarb	distance	affected	feather	

performance	in	both	treatments,	but	was	not	sensitive	to	CORT	physiology.	Others	have	

demonstrated	that	feather	structure	is	relevant	to	feather	function,	namely	that	throughout	

ontogenetic	development,	barbule	density	and	rachis	thickness	are	important	for	age-

related	increases	in	flight	performance	[40].	Feather	structure	is	also	relevant	to	life-

history	differences	between	species,	as	birds	with	shorter	nestling	periods	develop	

feathers	with	less	densely-packed	barbs	[43].	Here,	we	report	that	individual	variation	in	

feather	structure	predicts	feather	resistance,	linking	structure	to	performance	for	the	first	

time.		

	 Overall,	our	results	lend	support	to	condition	dependence	of	blue	coloration	

through	interactions	with	feather	macrostructure,	stress	physiology,	and	resource	

availability.	However,	we	were	unable	to	evaluate	several	interesting	components	of	this	

system	that	are	worthy	of	further	study.	First,	our	results	cannot	demonstrate	that	CORT	

levels	drive	the	variation	we	see	in	food	limited	individuals.	Successful	experimental	

alteration	of	CORT	would	be	necessary	for	that,	and	warrants	future	work.	Future	studies	

could	focus	on	the	components	of	feather	development	within	the	follicle	to	understand	

when	and	how	differential	sensitivity	to	CORT	may	occur.	Also,	there	is	likely	interplay	
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between	feather	micro-	and	macrostructure,	and	similar	to	our	results	here,	these	

relationships	may	change	as	resources	become	limiting.	To	fully	understand	the	

mechanisms	underlying	variation	in	blue	coloration,	full	exploration	of	condition-

dependent	changes	in	microstructure	are	warranted.		
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Supplemental	Material	
	
Tables		
	
Model	 AICc	

Blue	Chroma	~	Barbule	+	Barb	Angle	+	Rachis	+	Interbarb	+	Food	

Limitation	

111.62	

Blue	Chroma	~	Barbule	+	Barb	Angle	+	Rachis	+	Food	Limitation	 113.56	

Blue	Chroma	~	Barbule	+	Barb	Angle	+	Food	Limitation	 116.62	

Blue	Chroma	~	Barbule	+	Food	Limitation	 110.08		

	 	
Table	S1	Results	of	backwards	model	selection	of	the	relationship	between	feather	macrostructure	and	

coloration,	all	models	include	a	random	effect	of	individual	ID.		

	

	

Model	 AICc	
Resistance	~	Barbule	+	Barb	Angle	+	Rachis	+	Interbarb	+	Food	Limitation	 140.87		

Resistance	~	Barb	Angle	+	Rachis	+	Interbarb	+	Food	Limitation	 129.88		

Resistance	~	Barb	Angle	+	Interbarb	+	Food	Limitation	 134.63		

Resistance	~	Interbarb	+	Food	Limitation	 129.51	

Resistance	~	Food	Limitation	 140.69		

	

Table	S2	Results	of	backwards	model	selection	for	the	effect	of	feather	structure	on	performance	(resistance	

to	airflow),	all	models	included	a	random	effect	of	individual	ID.			
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Appendix	One	
Hand	Feeding	Protocol	

	 We	collected	nestlings	between	days	15	and	18	post-hatch	and	transported	birds	to	

captivity	in	small	groups	of	2	to	5	birds	per	day.	We	chose	these	ages	because	mountain	

bluebird	nestlings	fledge	between	19	and	21	days	post-hatch,	and	we	wanted	nestlings	to	

complete	the	majority	of	energetically	expensive	growth	in	the	wild.		

	 For	the	first	1-3	days	after	bringing	nestlings	into	captivity,	we	fed	nestlings	the	

Formula	for	Nestling	Songbirds	(FoNS)	at	one-hour	intervals	during	daylight	hours.	We	did	

Model	 AICc	

Barbule	Density	 	

Barbule		~	CORT*	Food	Limitation	 194.54	

Barbule	~	CORT	+	Food	Limitation	 201.29	

Barbule	~	CORT		 206.81	

Barbule	~	Food	Limitation	 207.63	

Feather	Mass	 	

Mass	~	CORT*	Food	Limitation		 26.62	

Mass	~	CORT	+	Food	Limitation	 22.42	

Mass	~	CORT		 17.69	

Mass	~	Food	Limitation	 15.22	

	 Interbarb	Distance	 	 	

Interbarb	~	CORT	*	Food	Limitation	 -31.92	

Interbarb	~	CORT	+	Food	Limitation	 -41.11	

Interbarb	~	CORT		 -50.83		

Interbarb	~	Food	Limitation	 -49.37		

Table	S3	Results	of	backwards	model	selection	for	the	effect	of	corticosterone	on	candidate	

feather	structure	variables.	All	models	include	a	random	effect	of	individual	ID.		
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not	perform	any	feedings	at	night	and	there	was	no	mortality	during	night	cycles.	We	

weighed	nestlings	morning	and	night	to	document	mass	gain	or	loss	during	the	day,	and	

made	adjustments	to	the	feeding	schedule	for	each	individual	based	on	mass	change	during	

each	day.	In	general,	nestlings	that	gained	or	maintained	weight	received	less	feedings	on	

the	following	day.	We	found	this	approach	useful,	and	only	once	had	to	resume	feeding	

more	often	when	a	nestling	failed	to	maintain	weight	as	we	decreased	feeding.	Nestlings	

typically	lost	weight	for	the	first	five	days	in	captivity,	and	began	to	gain	weight	after	this	

point	(Figure	1).	On	average,	it	took	10.9	±	0.4	days	to	wean	nestlings	onto	an	adult	diet	

using	this	protocol	(Figure	2).	Our	fastest	individuals	began	eating	their	adult	diet	in	9	

days,	and	the	slowest	took	a	total	of	15	days.	We	determined	that	nestlings	were	eating	the	

adult	diet	through	observations	of	food	dishes	and	mass	changes	throughout	the	hand	

feeding	period.		

	

	
Figure	1	Mass	change	(mass	at	end	of	day	–	mass	at	start	of	day)	±	standard	error	for	22	
individual	mountain	bluebird	nestlings	during	hand	feeding.		
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Figure	2	Hours	between	feedings	±	standard	error	for	22	individual	mountain	bluebird	
nestlings	during	hand	feeding.		
	
	 To	entice	nestlings	to	eat	our	adult	diet,	we	kept	fresh	dishes	of	peanut	butter	

crumble	(Table	1,	recipe	adapted	from	Gage	and	Duerr	2008)	available	at	all	times.	

Approximately	every	four	hours,	we	added	5-10	mealworms	to	these	dishes.	We	observed	

that	nestlings	cued	into	the	movement	of	the	worms,	and	subsequently	associated	the	dish	

with	food	and	began	to	sample	our	provided	diet	as	the	interval	between	hand	feedings	

increased.	It	is	important	to	note	that	we	did	not	want	the	mealworms	to	be	a	significant	or	

predictable	source	of	food,	and	they	were	merely	used	as	a	training	tool	to	adjust	birds	to	

captivity.	Using	this	protocol,	we	had	no	deaths	due	to	starvation.		

	

	
Ingredient	 Amount			
Toasted	wheat	germ	 2	cups	
Hills	Science	Diet	feline	maintenance	dry	
food	

2	cups,	ground		

ZuLife	Soft-Bill	Diet	for	Iron	Sensitive	
Birds	#5MI2	

2	cups,	ground		

Quiko	Goldy	Eggfood	 ½	cup		
LaFeber	Avi-Era	bird	vitamins		 1	tablespoon	
Calcium	carbonate	 1.5	tablespoons	
“Old	fashioned”	peanut	butter	(no	salt,	
sugar,	or	other	additives)	

½	cup		

Table	1	Recipe	for	peanut-butter	crumble	diet	fed	to	bluebirds	as	adults.	All	ingredients	
were	combined	in	a	food	processor.		
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Appendix	Two		
After	we	completed	our	experiment,	we	selected	three	birds	that	had	not	received	a	CORT	

implant	as	one	of	their	experimental	treatments.	We	gave	these	individuals	corticosterone	

implants	and	measured	baseline	CORT	before	the	implant	(Figure	1,	day	0),	3	day	post-

implant,	and	every	seven	days	thereafter	for	34	days.		

	

	
Figure	1	Changes	in	baseline	CORT	across	time	after	CORT	implantation.	Our	CORT	
implant	significantly	decreased	CORT	secretion.	Stars	indicate	points	that	are	significantly	
different	from	our	pre-implant	blood	sampling.		
	
We	used	a	repeated	measures	ANOVA	to	compare	CORT	levels	amongst	our	sampling	days	

during	this	period,	and	performed	Tukey	comparisons	to	determine	differences	between	

days	post-implantation.	We	found	that	CORT	levels	were	decreased	three	days	after	

implantation,	increased	to	normal	levels	seven	days	post-implant,	and	remained	depressed	

until	34	days	post-implant,	when	they	returned	to	pre-implant	levels	(Table	1).		
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Comparison	 Difference	±	SE	 z	 Tukey	HSD	p	
Day	3	–	Day	0	 -1.12	±	0.31		 -3.59	 <0.01	
Day	6	–	Day	0	 -0.85	±	0.31	 -2.67	 0.15	
Day	13	–	Day	0	 -1.16	±	0.31	 -3.67	 <0.01	
Day	20	–	Day	0	 -1.21	±	0.31	 -3.85	 <0.01	
Day	27	–	Day	0	 -1.06	±	0.31	 -3.40	 0.01	
Day	34	–	Day	0	 -0.86	±	0.35	 -2.47	 0.28	
Day	6	–	Day	3	 0.29	±	0.31	 0.91	 1.00	
Day	13	–	Day	3	 -0.03	±	0.31	 -0.08	 1.00	
Day	20	–	Day	3	 -0.08	±	0.31	 -0.26	 1.00	
Day	27	–	Day	3	 0.06	±	0.31	 0.19	 1.00	
Day	34	–	Day	3	 0.26	±	0.35	 0.74	 1.00	
Day	13	–	Day	6	 -0.31	±	0.31		 -1.00	 1.00	
Day	20	–	Day	6	 -0.47	±	0.31	 -1.17	 1.00	
Day	27	–	Day	6	 -0.23	±	0.31		 -0.72	 1.00	
Day	34	–	Day	6	 -0.02	±	0.35	 -0.07	 1.00	
Day	20	–	Day	13	 -0.05	±	0.31	 -0.17		 1.00		
Day	27	–	Day	13	 0.09	±	0.31	 0.28	 1.00	
Day	34	–	Day	13	 0.29	±	0.35	 0.83	 1.00	
Day	27	–	Day	20	 0.14	±	0.31	 0.45	 1.00	
Day	34	–	Day	20	 0.34	±	0.35	 0.98	 1.00	
Day	34	–	Day	27	 0.20	±	0.35		 0.58	 1.00		
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Chapter	3:	Context-dependent	direct	benefits	across	years	and	

seasons	in	the	mountain	bluebird,	Sialia	currucoides	
Berk,	S.A.	&	Breuner,	C.W.		

	

Abstract		

	

Sexual	selection	is	a	complex	process	that	results	from	selection	on	traits	through	

differential	mating	success.	Sexually	selected	traits	are	honest	if	they	are	related	to	

individual	condition	and	predict	individual	performance.	For	traits	that	are	under	selection	

through	female	choice,	traits	may	relate	to	benefits	that	males	provide	to	females	or	

offspring.	We	explored	whether	a	sexually	selected	trait	(blue	coloration)	was	a	

consistently	honest	predictor	of	direct	benefits	in	the	mountain	bluebird,	Sialia	currucoides.	

We	present	three	years	of	data	concerning	variation	in	the	relationship	between	bluebird	

coloration	and	direct	benefits	to	females,	expressed	as	offspring	quality	(nestling	mass).	

We	found	that	between	years	and	seasonal	timing	(first	vs.	second	broods),	the	relationship	

between	male	coloration	and	nestling	mass	varied	from	negative	to	neutral	or	positive.	In	

some	contexts,	more	elaborate	males	had	heavier	nestlings,	while	in	other	contexts	they	

raised	the	lightest	nestlings.	We	found	that	this	variation	was	due	to	changes	in	optimal	

reproductive	effort.	When	average	nestling	mass	at	our	study	site	was	higher,	bluer	males	

raised	heavier	nestlings,	however	when	average	nestling	mass	was	lower,	this	trend	

reversed	and	bluer	males	raised	lighter	nestlings.	Overall,	these	results	demonstrate	both	

the	performance	correlates	of	blue	coloration	and	how	the	honesty	of	this	trait	varies	

across	environmental	contexts.	

	

Introduction		

The	diversity	of	sexually	selected	traits	in	nature	has	fascinated	researchers	for	

some	time.	There	are	several	models	for	the	maintenance	of	female	preferences	for	

sexually	selected	traits	(Kokko	et	al.	2003).	In	some	systems,	sexually	selected	traits	

indicate	benefits	that	males	will	provide	to	females.	These	benefits	can	occur	directly,	or	

indirectly	(Kirkpatrick	1985,	1987,	Lande	1981,	Andersson	1986).	Indirect	benefits	result	
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from	heritability	or	both	sexually	selected	traits	and	mating	preferences	for	those	traits.	

This	means	that	females	who	mate	with	high	quality	males	produce	offspring	that	have	

increased	mating	success	in	future	generations	(Fisher	1930).	However,	direct	benefits	are	

fecundity	or	resource	benefits	that	females	receive	as	a	result	of	exercising	their	preference	

for	male	traits	(Iwasa	and	Pomiankowski	1999,	Kirkpatrick	1996,	Kokko	et	al.	2003,	Møller	

and	Jennions	2001)	

	 Many	studies	have	confirmed	that	sexually	selected	traits	honestly	indicate	a	male’s	

ability	to	provide	direct	benefits	to	females	(Møller	and	Jennions	2001).	For	example,	male	

house	finches	with	redder	plumage	provide	more	parental	care	(Hill	1991).	Furthermore,	

male	sticklebacks	with	more	intense	red	coloration	are	better	able	to	defend	their	young	at	

nesting	sites	(Andersson	1994).	However,	there	are	other	examples	of	negative	or	neutral	

correlations	between	indicator	traits	and	direct	benefits.	Some	populations	of	house	

finches	display	conditional	strategies,	where	males	with	less	developed	ornamentation	

perform	more	parental	care	to	increase	offspring	quality,	while	more	ornamented	males	

nest	earlier	to	increase	offspring	survival	without	increasing	parental	care	(Badyaev	and	

Hill	2002).	Also,	female	pied	flycatchers	display	preferences	for	larger	male	song	

repertoires,	but	these	males	with	larger	repertoires	do	not	feed	their	offspring	more	

frequently	(Rinden	et	al.	2000).	Some	have	even	observed	variation	in	trait	information	

content	across	a	single	season;	male	collared	flycatchers	with	larger	plumage	badges	fledge	

fewer	offspring	early	in	the	season,	but	this	effect	is	reversed	later	in	the	season	when	

males	with	larger	forehead	patches	fledge	more	offspring	(Qvarnström	et	al.	2000).	While	

these	types	of	effects	have	been	widely	discussed	and	documented	in	the	literature,	we	

have	few	examples	of	the	environmental	or	individual	variables	that	drive	variation	in	the	

links	between	sexually	selected	traits	and	direct	benefits	(Kokko	et	al.	2003,	Mays	and	Hill	

2004,	Miller	and	Svensson	2014,	Qvarnström	and	Forsgren	1998).		

	 We	examined	the	potential	for	variation	in	direct	benefits	in	the	mountain	bluebird,	

Sialia	currucoides.	Mountain	bluebirds	display	sexually	dimorphic	UV-blue	coloration,	and	

males	with	more	intense	coloration	sire	more	offspring	at	their	own	nest	and	at	other	nests	

through	extra-pair	fertilizations	(Balenger	et	al.	2008,	O’Brien	and	Dawson	2011).		

However,	it	is	unclear	which	mechanisms	maintain	female	preference	for	this	trait.	There	is	

ample	potential	in	this	system	for	both	direct	and	indirect	benefits,	as	males	provide	
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parental	care	and	participate	in	aggressive	contests	to	obtain	and	defend	territories.	

Furthermore,	females	select	both	social	mates	who	provide	parental	care,	and	extra-pair	

mates	that	provide	only	genetic	material	(Balenger	et	al.	2008).	In	this	study,	we	focused	on	

social	mates,	as	they,	rather	than	genetic	mates,	are	most	likely	to	provide	direct	benefits.		

Past	work	has	found	that	males	with	more	saturated	coloration	are	more	aggressive	

during	contests	for	territories	(Berk,	unpublished),	but	there	is	no	relationship	between	

male	coloration	and	his	provisioning	rates	to	offspring	(Balenger	et	al.	2007).	Blue	

coloration	is	a	sexually	selected	trait	that	is	highly	condition	sensitive,	and	its	expression	is	

correlated	with	individual	variation	in	male	CORT	physiology,	such	that	males	with	the	

lowest	CORT	responses	produce	the	most	saturated	coloration	(Berk,	unpublished).	These	

effects	are	most	pronounced	during	resource	limiting	conditions	(Berk,	unpublished).	This	

means	that	the	extent	of	among-male	variation	in	plumage,	and	the	relationship	between	

plumage	quality	and	male	condition,	is	likely	to	be	more	pronounced	during	harsh	years	

than	in	good	years.	In	this	study,	we	explored	whether	male	coloration	was	related	to	

offspring	mass,	a	direct	benefit	that	represents	reproductive	effort	by	both	parents,	and	

how	the	relationship	between	male	coloration	and	the	mass	of	his	offspring	varied	across	

years	and	seasons.	Overall,	we	were	interested	in	the	reliability	of	blue	coloration	as	a	

signal	of	direct	benefits,	given	the	realities	of	heterogeneous	environments	experienced	by	

individual	birds	across	their	lifetime.		

We	used	several	components	of	natural	environmental	variation	to	evaluate	these	

changes	in	direct	benefits.	First,	we	observed	variation	in	spring	phenology	across	the	

three	years	of	our	study.	Second,	we	observed	variation	across	broods	within	each	season.	

While	food	availability	is	often	higher	during	the	late	summer,	life	history	trade-offs	often	

dictate	that	during	second	broods,	clutch	sizes	are	smaller,	and	nestlings	weigh	less	and	

grow	more	slowly	(Klomp	1970,	Martin	1987,	Stearns	1989).	We	were	interested	in	

whether	these	trade-offs	impacted	males	differently	based	on	the	development	of	their	

sexually	selected	trait.	Finally,	we	experimentally	challenged	males	by	feather	clipping	

them	to	‘reduce’	environmental	food	availability.	Here,	we	explored	whether	male	

coloration	predicted	his	responsiveness	to	our	experimental	challenge.	We	quantified	the	

amount	of	variation	in	the	relationship	between	our	sexually	selected	trait	and	direct	

benefits,	and	explored	the	factors	that	caused	these	disparities	in	male	performance.		
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Methods	

Field	Site	and	Nest	Monitoring		

	 We	studied	mountain	bluebirds	outside	of	Ronan,	MT	on	the	Flathead	Indian	

Reservation	(47.478370,	-114.377034)	from	March	20th	to	August	30th	during	2015,	2016,	

and	2017.	The	study	site	consists	of	48	nest	boxes	spread	across	seven	miles	of	fence	line	

on	a	dirt	road	through	sagebrush	habitat.	We	scored	nest	development	on	a	scale	of	1-4	and	

checked	highly	developed	nests	(score	3	or	4)	every	other	day	until	first	egg.	We	checked	

nests	daily	throughout	the	laying	period	until	we	had	confirmed	the	onset	of	incubation	

through	egg	warmth	and	constant	clutch	size	for	three	consecutive	days.	During	incubation,	

we	checked	nests	every	three	days	until	the	12th	day	of	incubation,	at	which	point	we	began	

to	check	nests	daily	until	nestlings	hatched.		

	 We	visited	nests	to	measure	nestlings	on	days	3,6,9,	and	12	post-hatch,	and	

thereafter	we	measured	nestlings	every	other	day	until	fledging,	which	usually	occurred	

when	nestlings	were	20	days	old.	At	each	time	point,	we	took	measurements	of	nestling	

head+bill	length,	wing	chord,	tarsus,	and	mass.	Mountain	bluebird	nestlings	begin	to	lose	

weight	as	they	prepare	to	fledge,	so	we	calculated	the	maximum	mass	that	each	nestling	

reached	before	they	began	to	lose	weight.		

	 We	captured	adult	males	between	day	7	and	12	post	hatch	using	nest	box	traps.	For	

each	male,	we	measured	head+bill,	wing	chord,	tarsus,	and	mass	to	the	nearest	gram.	Each	

male	received	a	USFW	leg	band	and	a	unique	combination	of	colored	leg	bands.		At	this	

capture,	we	also	collected	a	feather	sample	for	future	coloration	measurement.			

	 We	used	NOAA	climate	data	from	Hot	Springs,	MT	(47.6°,	-114.68333°	)	to	obtain	

daily	minimum,	maximum,	and	average	temperature	for	our	study	site.	The	weather	station	

is	10	miles	from	our	nest	boxes.		

	

Feather	Clip	Manipulation	

	 During	first	broods	in	2016,	we	captured	adult	male	mountain	bluebirds	using	nest	

box	traps	on	day	7	or	8	post	hatch	to	perform	the	feather	clip	manipulation.	We	attempted	

captures	at	all	nests	on	day	7,	and	if	we	captured	a	male	on	day	8	we	designated	that	nest	

as	a	control	(unclipped)	nest,	such	that	all	males	who	were	feather	clipped	received	the	



	 49	

manipulation	on	nestling	day	7	(n=13	control	nests,	n=13	clipped	nests).	We	alternated	

treatment	designations	so	both	control	and	feather	clip	nests	were	spaced	evenly	

throughout	the	season.	For	our	wing	area	reduction,	we	reduced	wingspan	by	10%	by	

clipping	the	outermost	five	primary	feathers.	This	reduction	usually	amounted	to	10-15mm	

clipped	from	each	feather.	According	to	the	Rankine-Froude	momentum	model,	this	

increased	the	power	requirements	for	bluebird	flight	by	11%.	Three	control	and	one	

feather	clip	nest	experienced	nest	failure,	and	we	removed	these	from	our	analysis.		

	

Color	Measurement	

	 We	measured	the	color	of	rump	feathers	collected	during	capture	using	a	USB4000	

spectrophotometer	with	a	pulsed	xenon	light	source	(Ocean	Optics,	Dunedin,	USA).	We	

took	five	reflectance	measurements	each	consisting	of	ten	averaged	curves.	We	stacked	

seven	feathers	on	top	of	each	other	and	taped	them	to	non-reflective	black	paper	(Canson)	

for	measurement.	We	positioned	the	probe	at	90	degrees	using	a	probe	holder	and	

standardized	the	distance	between	the	probe	and	the	specimen	at	5mm.	We	standardized	

measurements	between	individuals	using	a	white	standard,	and	turned	off	the	light	source	

and	covered	the	probe	to	create	a	dark	standard.	To	minimize	variation	we	measured	

coloration	on	a	single	day	each	year,	such	that	all	males	from	2015	were	measured	on	a	

single	day	in	late-summer	2015,	and	the	same	for	2016	and	2017.	Past	measurements	of	

repeatability	of	color	measurements	from	the	same	observer	(SB)	in	our	lab	indicate	low	

coefficients	of	variation	even	when	feather	samples	from	a	single	individual	are	measured	

several	years	later	(CV	Hue=6%,	CV	Brightness=9%,	CV	spectral	saturation=4%,	CV	UV	

Chroma=4%).		

	 To	extract	color	variables,	we	averaged	the	resultant	reflectance	measurements	

(between	300	and	700nm)	and	smoothed	spikes	from	curves	using	the	program	CLR	5	(v.	

1.05,	Montgomerie	2008).	From	these	averaged	curves	we	used	R	(R	Core	Team	2017)	to	

extract	the	hue	(wavelength	of	peak	reflectance),	spectral	saturation	(proportion	of	the	

reflectance	concentrated	within	100nm	each	individual’s	hue),	UV-chroma	(proportion	of	

the	reflectance	concentrated	from	300-400nm),	and	brightness	(sum	of	the	total	

reflectance).		
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Statistics		

We	conducted	our	analyses	using	R	version	4.1.3	(R	Development	Core	Team,	2017).	

For	our	analyses	of	overall	relationships	between	male	coloration	and	direct	benefits	

across	years,	we	made	sure	to	exclude	any	individuals	that	had	received	an	experimental	

manipulation	during	the	current	breeding	attempt.	Our	final	data	set	included	215	

individual	breeding	attempts	from	117	individual	males.	Within	these	nests,	we	measured	

nestlings	at	133	nests.		

	 We	tested	for	differences	in	phenology	(timing	and	variance	in	nest	initiation	date)	

as	well	as	changes	in	the	mean	and	variance	of	male	coloration	across	years	using	mixed	

effects	models	in	R	package	“nlme”	with	a	Gaussian	distribution	and	a	log	link	function	

(Pinheiro	et	al.	2017).	Each	of	these	models	contained	a	random	effect	of	male	ID,	as	we	

captured	males	several	times	both	within	years	(once	each	during	first	and	second	broods)	

or	between	years	as	they	returned	to	breed	at	our	study	site.	We	performed	posthoc	

comparisons	between	years	using	Tukey’s	HSD	in	the	package	“multcomp”	(Hothorn	et	al.	

2008).	We	tested	for	variance	heterogeneity	in	nest	initiation	and	coloration	using	

Bartlett’s	tests.		

	 We	also	used	mixed	effects	models	to	examine	the	overall	relationship	between	

coloration	and	nestling	mass	across	years.	However,	to	estimate	individual	effect	sizes	

across	years	and	between	first	and	second	broods	within	a	year,	we	used	linear	regression	

analyses	with	no	random	effects.	These	regressions	did	not	contain	multiple	observations	

of	the	same	individual,	as	males	only	had	one	nest	within	each	time	period.	We	used	

Pearson’s	r	to	estimate	the	relationship	between	average	nestling	mass	and	the	effect	size	

for	male	coloration	within	a	given	time	period.		We	also	used	fixed	effects	linear	

regressions	to	analyze	the	interaction	between	color	and	treatment	during	our	

experimental	feather	clip	challenge,	as	these	experiments	did	not	include	repeated	

observations	of	any	individuals.		

	

	

Results		

Annual	Variation	in	Climate	and	Phenology	
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	 Annual	variation	in	the	timing	of	spring	led	to	variation	in	first	egg	date	across	the	

three	years	of	our	study	(Figure	1).	Average	nest	initiation	date	was	10	days	earlier	in	

2016	than	it	was	in	2017	(Mixed	effects	model:	F2,69=16.51,	p<0.001,	Table	1).	Between	

years,	there	was	also	variance	heterogeneity,	such	that	when	birds	initiated	their	nests	

earlier	in	2016,	there	was	less	variance	in	nest	initiation	date	across	the	study	site.	

Furthermore,	in	2017	when	average	nest	initiation	was	the	latest,	variance	in	lay	date	also	

increased	(Bartlett's	K2	=	15.639,	df	=	2,	p<0.001,	SD(2015)=6.45,	SD(2016)=5.82,	

SD(2017)=10.82).		
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Figure	1	Seasonal	variation	in	temperature	and	lay	date	frequencies.	Solid	lines	represent	

daily	average	temperature;	histograms	represent	the	frequency	of	nests	initiated	on	each	

day	of	the	season.		

	

	

	

Year	Comparison	 Difference	in	Average	nest	

initiation	±	SE	

p	value	

2015-2016	 5.98	±	1.80	 <0.01	

2016-2017	 -9.63	±	1.87	 <0.001	

2017	-	2015	 3.65	±	1.70	 0.15	

Table	1	Pairwise	comparisons	of	differences	in	nest	initiation	between	years	with	

Bonferonni	adjusted	p	values.		

	

	

Annual	Variation	in	Coloration		

	

	 We	also	observed	variation	in	the	coloration	of	males	that	obtained	territories	

within	our	study	area	(Figure	2).	Males	at	our	study	site	had	less	saturated	coloration	in	

2015,	there	was	no	significant	difference	in	mean	coloration	between	2016	and	2017	

(mixed	effects	model:	F2,125=20.39,	p<0.001,	mean(2015)	=	34.04,	n=35	males,	mean(2016)	

=	36.68,	n=49	males,	mean(2017)	=	36.75,	n=44	males).	Furthermore,	we	also	observed	

changes	in	the	variance	of	male	coloration	across	years	(Bartlett's	K2	=	5.41,	df	=	2,	p=0.06,	

SD(2015)	=	2.29,	SD(2016)	=	1.71,	SD(2017)	=	2.36).		
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Figure	2	Changes	in	distribution	of	male	coloration	across	years.	Letters	indicate	

significant	differences.		

	

Variation	in	Direct	Benefits		

	 Across	years,	males	with	intermediate	coloration	had	the	heaviest	nestlings	(Figure	

3,	βColor=2.49,	p=0.05,	βColor2=	-0.03,	p=0.04).	However,	within	years	and	across	seasons,	the	

relationship	between	male	coloration	and	nestling	mass	varied	from	negative,	with	more	

elaborate	males	having	lighter	nestlings,	to	positive,	with	more	elaborate	males	having	

heavier	nestlings	(Figure	4,	Table	2).	Specifically,	we	found	that	when	mean	nestling	mass	

at	our	field	site	was	higher,	the	effect	of	coloration	on	nestling	mass	was	more	strongly	

positive	(Figure	5,	Pearson	r	=	0.90,	df=4,	p=0.02)	However,	males	that	were	

experimentally	challenged	did	not	respond	differently	based	on	their	coloration	(Figure	6,	

βcolor*Treatment=	0.001	(p=0.996),	F2,19=3.97,	p=0.02,	R2=0.29),	even	though	our	treatment	

reduced	nestling	mass	(Additive	model:	βcolor=	-0.37	(p=0.04),	βtreatment=-1.90	(p<0.01),	
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F2,19=6.28,	p=<0.01,	R2=0.33).	However,	the	effect	of	coloration	on	nestling	mass	in	our	

experimental	treatment	was	consistent	with	our	broad	patterns	of	the	honesty	of	blue	

coloration	across	years	and	seasons	(Pearson	r	(with	experimental	males)	=	0.86,	df=5,	

p=0.02).		

	

	

		
Figure	3	The	overall	relationship	between	male	coloration	and	the	average	mass	of	

nestlings	at	his	nest.	Line	represents	the	results	of	a	mixed	effects	model	including	a	

random	effect	of	male	ID.		
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Figure	4	Variation	in	the	relationship	between	male	spectral	saturation	and	nestling	mass	

across	years	and	seasonal	timing.		
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Year	 Brood	#	 β	±	SE	 Model	Fdf,	(p)		
2015	 1	 0.39	±	0.15	 6.311,14,	(0.02)	

2015	 2	 -0.06	±	0.12	 0.221,16,	(0.61)		

2016	 1	 -0.28	±	0.24	 1.881,14,	(0.18)		

2016		 2	 -0.49	±	0.21	 5.601,15,	(0.03)		

2017	 1	 0.02	±	0.08	 0.061,26,	(0.80)	

2017	 2	 -0.67	±	0.20	 11.411,15,	(<0.01)		

	Table	2	Estimated	effect	sizes	for	male	coloration	on	nestling	mass	across	years	and	

seasons	(first	vs.	second	brood).		

	

	
Figure	5	The	relationship	between	the	effect	size	for	male	coloration	and	nestling	mass	

across	years	and	seasons.	Error	bars	represent	standard	error.	First	broods	are	denoted	by	

circles,	second	broods	are	triangles.		
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Figure	6	The	effect	of	male	coloration	on	nestling	mass	during	experimental	feather	clip	

challenge	(2016).		

	

Discussion		

	 The	ability	of	blue	coloration	to	predict	direct	benefits	varied	with	reproductive	

investment	across	years	and	seasons.	When	reproductive	investment	was	high,	male	

mountain	bluebirds	with	more	saturated	colors	invested	more	in	reproduction	and	

produced	heavier	nestlings.	However,	when	reproductive	investment	across	our	study	site	

was	low,	this	trend	reversed	and	more	colorful	males	produced	lighter	nestlings.		

	 We	found	that	variation	in	reproductive	investment	covaried	with	seasonal	

variation	that	impacted	the	distribution	of	male	traits	across	our	study	site.	When	spring	

progressed	quickly	and	there	was	less	variance	in	the	date	of	territory	establishment,	there	

was	also	less	variance	in	the	coloration	of	males	who	obtained	territories.	Signaling	theory	

predicts	that	when	variance	in	male	traits	is	high,	females	should	receive	relatively	more	

benefits	from	mating	with	higher	quality	males	(Kodric-Brown	and	Brown	1984).	Our	data	

partially	support	this	hypothesis	in	that	when	mean	male	trait	quality	was	low	in	early	

2015,	the	association	between	male	trait	quality	and	offspring	mass	was	strongly	positive.	

However,	variance	in	blue	coloration	was	highest	in	2017,	and	we	did	not	observe	the	same	
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positive	relationship	between	male	color	and	nestling	mass.	This	suggests	that	in	years	

where	less	colorful	males	are	able	to	obtain	territories,	females	gain	direct	benefits	from	

mating	with	relatively	more	ornamented	males.	However,	in	other	years	of	our	study	the	

most	elaborately	colored	males	produced	the	lightest	offspring.	This	warrants	further	

exploration,	as	it	appears	that	sometimes	females	pay	costs	for	social	pairings	with	

elaborate	males.		

	 While	we	found	a	strong	relationship	between	reproductive	investment	and	direct	

benefits,	males	did	not	respond	differently	to	our	experimental	challenge	based	on	their	

coloration.	Variation	in	responsiveness	to	challenge	has	been	shown	to	impact	other	

aspects	of	sexual	selection,	though,	and	should	not	be	ruled	out	as	a	source	of	variation	in	

this	or	other	mating	systems	(Hill	2011).	For	example,	male	soay	sheep	that	invest	heavily	

in	horn	length	in	poor	environments	suffer	reduced	correlations	between	horn	length	and	

reproductive	success	as	adults	(Robinson	et	al.	2008).	This	indicates	that	allocation	

differences	during	early	development	can	impact	the	reproductive	benefits	associated	with	

sexually	selected	traits	into	adulthood.	Our	data	have	not	ruled	out	these	types	of	effects.	

Given	that	our	experimental	manipulation	predictably	altered	the	relationship	between	

male	coloration	and	direct	benefits,	it	is	likely	that	our	experimental	perturbation	was	not	

strong	enough	to	observe	an	interaction	between	male	coloration	and	treatment.		

Across	years,	male	mountain	bluebirds	with	intermediate	levels	of	coloration	were	

the	most	likely	to	provide	direct	benefits	in	the	form	of	offspring	quality.	Previous	work	on	

sexual	selection	has	also	documented	stabilizing	effects	of	male	trait	quality	on	fitness	and	

performance	(Gray	and	Cade	1999,	Hunt	et	al.	2005,	O’Brien	et	al.	2017).	These	effects	

could	be	due	to	constraint,	where	males	cannot	simultaneously	optimize	both	components	

of	fitness,	or	adaptation,	where	males	adjust	their	performance	based	on	context	

(Antonovics	and	van	Tienderen	1991).	While	our	data	support	adjustments	to	direct	

benefits	based	on	context,	we	cannot	completely	eliminate	temporal	constraints	regulating	

trait	development.	In	two	out	of	three	of	the	years	of	our	study,	the	relationship	between	

male	coloration	and	offspring	quality	became	more	negative	late	in	the	season.	Notably,	in	

late	2017,	when	nestlings	were	the	lightest,	the	relationship	between	male	coloration	and	

nestling	mass	was	more	negative	than	in	late	2016	or	2015.	This	suggests	adaptive	

adjustment	rather	than	fixed	constraints	on	resource	allocation.	However,	these	effects	
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may	also	be	due	to	males	partitioning	resources	between	the	current	reproductive	attempt	

and	the	onset	of	seasonal	molt,	when	this	signal	must	be	developed	to	ensure	reproductive	

success	in	the	following	year.	Overlap	between	molt	and	breeding	is	energetically	costly,	

and	birds	may	be	unable	to	maximize	both	offspring	quality	and	feather	coloration	late	in	

the	season	(Dawson	et	al.	2000;	Foster	1974,	1975;	Siikamaki	et	al.	1994).	This	temporal	

constraint	is	likely	strong,	and	therefore	we	do	not	have	data	to	conclusively	determine	

that	the	changes	in	nestling	mass	across	our	study	were	adaptive	adjustment	to	

reproductive	effort.		

	 Overall,	future	work	should	focus	on	manipulating	the	major	contributors	to	

variation	in	the	honesty	of	sexually	selected	traits	to	make	robust	predictions	about	when	

and	where	we	expect	traits	to	be	honest	indicators	of	male	performance.	Here,	we	identify	

two	potential	factors:	the	distribution	of	territorial	males	and	changes	in	optimal	

reproductive	investment.	Identifying	the	causal	agents	that	drive	variance	in	the	honesty	of	

sexually	selected	traits	is	a	crucial	goal	for	future	sexual	selection	research.		
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