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Ecological and physiological influences on altricial bird growth and development 

 

Chairperson: Thomas E. Martin  

 

Rates of embryonic and post-natal growth vary extensively among species and 

geographic space. This variation is well represented in songbird offspring from different 

latitudes and can strongly influence organismal quality and fitness. However, 

environmental and evolutionary causes and consequences of variation in embryonic and 

post-natal growth remain unclear. Here we experimentally show in the field that, within 

the constraints imposed by physiological trade-offs, warmer incubation temperatures 

shortened embryonic period length among nine species of songbirds from two latitudes. 

Yet, the magnitude of the response varied and species-specific reaction norms of 

embryonic reduction in response to our treatment positively correlated with the natural 

temperature experienced during incubation. Furthermore, we found little evidence for 

potential metabolic costs imposed on offspring by faster development, but we detected 

benefits for size at hatching instead. These results question the generality of theories 

considering avian development to be strictly dictated by intrinsic trade-offs and suggest 

that shorter embryonic periods caused by warmer temperature may not be as detrimental 

as traditionally thought. Costs of shorter development due to warmer embryonic 

temperature may appear later in life as stunted post-natal growth via influences on 

offspring metabolism and parental feeding and brooding effort. Our treatment increased 

metabolic rate without producing appreciable changes in parental care yielding slower 

post-natal growth rates in two species, faster growth in one and no effects for the majority 

of the species studied. These results suggest that shorter embryonic periods are not 

generally associated to costs paid during the post-natal stages but also question the role of 

metabolism for growth. We tested for the association between metabolism and growth 

using a comparative approach. We discovered that metabolic rate and body mass of 

nestlings predicted variation in post-natal growth rates among 59 species of songbirds at 

three latitudes. These results beg the question of what are the possible evolutionary bases 

of metabolic variation. We found that nest depredation may be a selective force favoring 

increased metabolic rate to achieve faster growth independently from the constraints of 

adult mortality. This study advances our understanding of ecological and physiological 

causes and consequences underlying variation in embryonic time and post-natal growth.    
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ECOLOGICAL AND PHYSIOLOGICAL INFLUENCES ON 

ALTRICIAL BIRD GROWTH AND DEVELOPMENT 

 
Life history theory assumes that trade-offs constrain phenotypes in expression of traits 

(Roff 1992). Lengths of embryonic development and post-embryonic growth are traits 

that vary substantially among species and across latitudes, with tropical organisms 

generally showing slower trajectories compared to the north temperate (Case 1978; 

Arendt 1997). This variation has major implications for fitness (Stearns 1992 ; Lindén 

et al. 1992; Roff 1992), but ecological and physiological causes and consequences of 

interspecific differences in development and growth are still unclear and debated. 

  A major tenet of classic theory is that slower growth and development can allow 

enhanced individual quality and survival due to physiological trade-offs (Ricklefs 

1992; Arendt 2000; Lankford et al. 2001; Shine & Olsson 2003; Brommer 2004; Lee 

et al. 2013). Yet, when rates of embryonic development are extended due to cooler 

temperatures, lower offspring quality is expected  (Gorman & Nager 2004; Hepp et al. 

2006; Olson et al. 2006) and these costs may also carry over to later life stages  

(Metcalfe & Monaghan 2001; Monaghan 2008) . Thus, experiments are needed to test 

the relative contribution of physiological trade-offs and temperature to variation in 

development and growth, together with costs and benefits within and across life 

stages.  

 The respective role of temperature and physiological trade-offs in explaining 

interspecific rate of growth might differ between life stages of an organism. For 

example, in organisms that become endothermic when transitioning from the 

embryonic to the post-natal stage, temperature becomes internally regulated. Therefore 

physiological processes, such as differences in metabolism, might become the primary 



 v

determinant of variation in rate of growth among species (West et al. 2001). Yet, the 

importance of variation in metabolism to variation in growth rate among species is not 

well tested, and existing results are unclear  (Drent & Klaassen 1989; Konarzewsky 

1995; Williams et al. 2010). Moreover, the selective pressures causing the evolution of 

variation in metabolism among offspring of different species remain elusive 

(Lovegrove 2000). 

 Songbird embryos and nestlings show extensive interspecific variation in rates of 

embryonic development and post-natal growth within, and especially among, latitudes  

(Bosque & Bosque 1995; Remeŝ & Martin 2002; Martin 2002; Martin et al. 2011) . 

Also, eggs are ectothermic and sensitive to temperature (Hepp et al. 2006; Olson et al. 

2006), while nestlings develop full endothermy as they age  (Ricklefs 1987; Cheng & 

Martin 2012). Therefore, songbirds provide a unique opportunity to examine the 

potential differences in the relative importance of temperature versus metabolism 

across two developmental stages of the same organism. Moreover, both embryonic 

and post-natal development rates are positively correlated with nest predation rates 

across songbird species (Bosque & Bosque 1995; Remeŝ & Martin 2002; Martin et al. 

2011), such that predation may act as an important driver of natural selection that 

favors evolution of faster metabolism to allow faster development, as traditionally 

expected (Von Bertalanffy 1957). 

 Here we found that, within the constraints imposed by physiological trade-offs, 

experimentally increased embryonic temperature shortened development time for nine 

species of songbirds from two latitudes. Yet, the magnitude of the reduction in 

embryonic period varied and was positively correlated with the incubation temperature 

naturally experienced by each species. Contrary to theories that consider avian 
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development as strictly intrinsically regulated (Ricklefs 1992; Robinson et al. 2008), 

our results suggest that temperature can have a major role for interspecific variation in 

embryonic development. We also found no clear metabolic costs for the embryos, but 

detected benefits in terms of size at hatching for the majority of species. These data 

suggest that when variation in embryonic period length is caused by temperature, 

theory predicting costs associated to shorter development across species may require 

revisions. 

 Potential costs of faster development may be paid at later life stages in the form of 

smaller size at hatching and slower growth (Atkinson 1994; Metcalfe & Monaghan 

2001). Warmer temperatures shortening development can also affect other intrinsic 

traits such as metabolic rate (Nord & Nilsson 2011) that is strongly related to post-

natal growth (Ton & Martin 2015). Additionally, warmer temperature can reduce 

thermoregulatory costs for incubating adults (Bakken 1980) allowing extra energy 

available for parental care (Perez et al. 2008) that is also known to influence growth 

(Martin et al. 2011). How the effects of warmer embryonic temperature on metabolism 

and adult behavior may interact to influence interspecific variation in growth is 

unclear. Post-natal growth showed no changes in response to warmer embryonic 

temperatures among the majority of our species, but decreased in two and increased in 

one. These results suggest minimal costs associated to warmer temperature and faster 

development, contrary to what is expected (Zuo et al. 2012). Our treatment also caused 

little changes in parental feeding and brooding effort but yielded higher post-natal 

metabolic rate among all species. These results are important for the possible long-

term effects of metabolism for longevity (Harman 2001) and question the predicted 

association between metabolism and growth (Glazier 2015). 
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 We used a comparative approach to test the importance of metabolism for post-

natal growth and found that body mass and metabolism explained broad interspecific 

and geographic differences in post natal growth rates among 59 species of songbirds at 

three latitudes. These results further contribute to the available evidence in favor of 

metabolism as the physiological pacemaker of life history variation  (Ricklefs & 

Wikelski 2002) but beg the question of what selective pressures may underlie 

interspecific and latitudinal metabolic differences. 

   We tested the hypothesis that depredation rate at the nest in the post-natal stage 

may be a major force favoring the evolution of higher metabolism to achieve faster 

growth and reduce probabilities of time dependent mortality. However, since higher 

metabolism early in life can incur later costs for longevity (Harman 2001) we also 

hypothesized that probability of adult mortality may act as a constraint on metabolic 

increase. We found a positive correlation between metabolism and rate of depredation 

during the post-natal stage but not with probability of adult mortality. These results 

offer a rare example of ecological sources of variation in metabolic rates. 

Overall the present study advances our understanding of the ecological and 

physiological causes and consequences of interspecific and geographic variation in 

embryonic development and post-natal growth. 

  



 viii

 References 

Arendt, J. D. (1997). Adaptive intrinsic growth rates: An integration across taxa. 

Q.Rev.Biol., 149-177. 

Arendt, J. D. (2000). Allocation of cells to proliferation vs. differentiation and its 

consequences for growth and development. J.Exp.Zool., 288, 219-234. 

Atkinson, D. (1994). Temperature and organism size: A biological law for 

ectotherms?. Adv.Ecol.Res., 25, 1-1. 

Bakken, G. S. (1980). The use of standard operative temperature in the study of the 

thermal energetics of birds. Physiol.Zool., 108-119. 

Bosque, C. & Bosque, M. T. (1995). Nest predation as a selective factor in the 

evolution of developmental rates in altricial birds. Am.Nat., 234-260. 

Brommer, J. E. (2004). Immunocompetence and its costs during development: An 

experimental study in blue tit nestlings, 271, S110-S113. 

Case, T. J. (1978). On the evolution and adaptive significance of postnatal growth 

rates in the terrestrial vertebrates. Q.Rev.Biol., 243-282. 

Cheng, Y. & Martin, T. E. (2012). Nest predation risk and growth strategies of 

passerine species: Grow fast or develop traits to escape risk?. Am.Nat., 180, 285-

295. 

Drent, R. & Klaassen, M. (1989). Energetics of avian growth: The causal link with 

BMR and metabolic scope, 349-359. 

Glazier, D. S. (2015). Is metabolic rate a universal ‘pacemaker’for biological 

processes?, 90, 377-407. 

Gorman, H. E. & Nager, R. G. (2004). Prenatal developmental conditions have long–

term effects on offspring fecundity, 271, 1923-1928. 

Harman, D. (2001). Aging: Overview. Ann.N.Y.Acad.Sci., 928, 1-21. 

Hepp, G. R., Kennamer, R. A. & Johnson, M. H. (2006). Maternal effects in wood 

ducks: Incubation temperature influences incubation period and neonate 

phenotype. Funct.Ecol., 20, 308-314. 

Konarzewsky, M. (1995). Allocation of energy to growth and respiration in avian 

postembryonic development. Ecology, 76, 8-19. 



 ix

Lankford, T. E., Billerbeck, J. M. & Conover, D. O. (2001). Evolution of intrinsic 

growth and energy acquisition rates. II. trade-offs with vulnerability to predation 

in menidia menidia. Evolution, 55, 1873-1881. 

Lee, W., Monaghan, P. & Metcalfe, N. B. (2013). Experimental demonstration of the 

growth rate–lifespan trade-off, 280. 

Lindén, M., Gustafsson, L. & Pärt, T. (1992). Selection on fledging mass in the 

collared flycatcher and the great tit. Ecology, 336-343. 

Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. 

Am.Nat., 156, 201-219. 

Martin, T. E. (2002). A new view of avian life-history evolution tested on an 

incubation paradox, 269, 309-316. 

Martin, T. E., Lloyd, P., Bosque, C., Barton, D. C., Biancucci, A. L., Cheng, Y. & 

Ton, R. (2011). Growth rate variation among passerine species in tropical and 

temperate sites: An antagonistic interaction between parental food provisioning 

and nest predation risk. Evolution, 65, 1607-1622. 

Metcalfe, N. B. & Monaghan, P. (2001). Compensation for a bad start: Grow now, pay 

later?, 16, 254-260. 

Monaghan, P. (2008). Early growth conditions, phenotypic development and 

environmental change. Philos.Trans.R.Soc.Lond.B.Biol.Sci., 363, 1635-1645. 

Nord, A. & Nilsson, J. (2011). Incubation temperature affects growth and energy 

metabolism in blue tit nestlings. Am.Nat., 178, 639-651. 

Olson, C. R., Vleck, C. M. & Vleck, D. (2006). Periodic cooling of bird eggs reduces 

embryonic growth efficiency, 79, 927-936. 

Perez, J. H., Ardia, D. R., Chad, E. K. & Clotfelter, E. D. (2008). Experimental 

heating reveals nest temperature affects nestling condition in tree swallows 

(tachycineta bicolor). Biol.Lett., 4, 468-471. 

Remeŝ, V. & Martin, T. E. (2002). Environmental influences on the evolution of 

growth and developmental rates in passerines. Evolution, 56, 2505-2518. 

Ricklefs, R. (1987). Characterizing the development of homeothermy by rate of body 

cooling. Funct.Ecol., 151-157. 

Ricklefs, R. E. (1992). Embryonic development period and the prevalence of avian 

blood parasites., 89, 4722-4725. 



 x

Ricklefs, R. E. & Wikelski, M. (2002). The physiology/life-history nexus, 17, 462-

468. 

Robinson, W. D., Styrsky, J. D., Payne, B. J., Harper, R. G. & Thompson, C. F. 

(2008). Why are incubation periods longer in the tropics? A Common Garden 

experiment with house wrens reveals it is all in the egg. Am.Nat., 171, 532-535. 

Roff, D. A. (1992). Evolution of Life Histories: Theory and AnalysisSpringer. 

Shine, R. & Olsson, M. (2003). When to be born? prolonged pregnancy or incubation 

enhances locomotor performance in neonatal lizards (scincidae). J.Evol.Biol., 16, 

823-832. 

Stearns, S. . Oxford: Oxford university press; 1992, 264. 

Ton, R. & Martin, T. E. (2015). Metabolism correlates with variation in post-natal 

growth rate among songbirds at three latitudes. Funct.Ecol. 

Von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. Q.Rev.Biol., 

32, 217-231. 

West, G. B., Brown, J. H. & Enquist, B. J. (2001). A general model for ontogenetic 

growth. Nature, 413, 628-631. 

Williams, J. B., Miller, R. A., Harper, J. M. & Wiersma, P. (2010). Functional 

linkages for the pace of life, life-history, and environment in birds, 50, 855-868. 

Zuo, W., Moses, M. E., West, G. B., Hou, C. & Brown, J. H. (2012). A general model 

for effects of temperature on ectotherm ontogenetic growth and development. 

Proc.Biol.Sci., 279, 1840-1846. 

  



 xi

 Acknowledgments  

 
I can work alone, but few things excite me as being part of an amazing team. An 

endless list of people gave a vital contribution to this research project and fortunately 

they are aware of it. There is also an endless list of people who were instrumental in 

facilitating the present work but they probably do not even imagine how much they 

helped. For me is very important delivering to all of them my deep and authentic 

gratitude because they gave me the honor of feeling like a member of their same team. 

I am referring to all of these amazing people every time I use the word “We” in this 

document. 

  



 xii

 

 
 

 

TABLE OF CONTENTS  

 
 

Page 

 Dissertation abstract iii 

 Dissertation overview iv 

 References vii 

 Acknowledgements xi 

 Table of contents xii 

 List of figures xiv 

 List of tables xvi 

   

Chapter   

1 On the importance of temperature versus intrinsic constraints 1 

 for embryonic development time in temperate and tropical  

 songbirds  

 Abstract 2 

 Introduction 3 

 Methods 5 

 Results 11 

 Discussion 13 

 Acknowledgements 17 

 References 18 

 Supplemental material 
 

29 

   

2 Consequences of warmer temperature during embryonic 

development for metabolism, parental care, and post-natal 

35 

 growth among songbird species.  

 Abstract 36 

 Introduction 37 

 Methods 39 

 Results 41 

 Discussion 42 

 Acknowledgements 44 

 References 45 

 Supplemental material 57 

   

3 Metabolism correlates with variation in post-natal growth rate  62 

 among songbirds at three latitudes  

 Abstract 63 

 Introduction 65 

 Methods 67 

 Results 71 

 Discussion 72 

   



 xiii

 Acknowledgements 75 

 References 76 

 Supplemental material 88 

   

4 The role of nest predation and adult mortality in the evolution 95 

 of post-natal metabolic rate in songbirds  

 Abstract 96 

 Introduction 97 

 Methods 98 

 Results 99 

 Discussion 100 

 Acknowledgements 101 

 References 101 

 Supplemental material 106 



 xiv

LIST OF FIGURES 
 

Chapter 

 
1 

Figure 

 
1 

Description 

 
Conceptual graph of possible temperature effects on 

interspecific variation in embryonic period 

Page 

 
24 

 2 
Difference in incubation temperature between treatment 

and control 
25 

 3a 
Effect of experimentally increased temperature on 

embryonic development 26 

 

3b 

Correlation between natural incubation temperature and 

slope of embryonic period response to temperature 

changes 

26 

 4 
Effects of temperature and physiological trade-offs on 
embryonic development 

27 

 5a 
Difference in egg mass at hatching between treatment 

and control nests 
28 

 5b 
Difference in embryonic mass-specific metabolic rate 

between treatment and control nests 
28 

 S1 
Description of the set up needed for the heating 

experiment 
31 

 S2 Phylogenetic tree of the nine study species 32 

2 1 Effects of increased temperature on post-natal growth 48 

 2 
Difference in post-natal mass-specific metabolic rate 

between treatment and control nests 
49 

 
3 

Difference in per-capita feeding rate between 

treatment and control nests 
50 

 
4 

Difference in brooding time between treatment and 

control nests 
51 

 
5 

Difference in mass, tarsus, and wing growth rate 

between treatment and control nests 
52 

3 
1 Pin break stage 83 

 
2 

Allometric relationship between body mass and 

metabolic rate 
84 

 
3a 

Correlation between body mass and post-natal growth 

rate 
85 

 
3b 

Correlation between metabolic rate and post-natal 

growth rate 
85 

 
S1 

Phylogenetic relationships between the 59 species  

studied 
91 



 xv

 

 

4 
1a 

Allometric relationship between body mass and metabolic 

rate 
104 

 
1b 

Correlation between rate of nest depredation and metabolic 

rate 
104 

 
1c 

Correlation between probability of adult mortality and 

metabolic rate 
104 

 
S2 

Phylogenetic relationships between the 59 species  

studied 
109 



 xvi

LIST OF TABLES 
 

Chapter 

 
1 

Table 

 
S1 

Description 

 
Study species and sample size 

Page 

 
30 

 S2 Comparison of selection criteria between models 33 

 S3 
ANOVA tests of differences in egg mass at hatching 

and metabolic rate between treatment and control 34 

2 1 
ANOVA tests of differences in mass-specific metabolic 

rate between treatment and control 
54 

 2 
ANOVA tests of differences in per-capita feeding rate 
between treatment and control 

56 

 3 
ANOVA tests of differences in % brooding time 

between treatment and control 
56 

 S1 

ANOVA tests of difference in asymptotic size, growth 

rate, and time of inflection between treatment and 

control for mass, tarsi and wings 

58 

3 1 
Model output for the allometric relationship between 

body mass and metabolic rate at three latitudes 
86 

 2 
Model output for the correlation between body mass, 

metabolic rate and post-natal growth rate at three latitudes 87 

 S1 
Species list, sample size, mean body mass and mean 

metabolic rate with SE  
89 

 S2 Model selection criteria 92 

 S3 
Alternative model of the allometric relationship 

including a body mass*site interaction term 
93 

 S4 
Alternative model of the correlation between growth 

body mass and metabolic rate including interactions 
94 

4 1 
Model output for the correlation between rate of nest 
depredation, adult mortality probability and metabolic rate 
at three latitudes 

106 

 2 Species list, sample size, mean body mass and 

mean metabolic rate with SE 

107 



 1

CHAPTER ONE 
 
 

On the importance of temperature versus intrinsic constraints for 

embryonic development times in temperate and tropical songbirds 

 

Riccardo Ton1 and Thomas E. Martin2 

1 Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 

59812 

2 U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of 

Montana, Missoula, MT 59812 

Emails: 1 riccardo.ton@mso.umt.edu, 2 tom.martin@umontana.edu 

Running Title: TEMPERATURE AND EMBRYONIC DEVELOPMENT 

Key-words: Incubation period, birds, temperature, trade-offs, life history, tropics, 

plasticity 

Article Type: Letter 

Word Counts: Abstract (149), Main Text (4073); References: 50; Figures: 5; Tables: 0 

Corresponding Author: Riccardo Ton, Montana Cooperative Wildlife Research Unit, 

University of Montana, 32 Campus Dr, Missoula, MT, USA 59812, 406-552-7691, 

riccardo.ton@mso.umt.edu 

Statement of Authorship: RT and TEM designed the study. TEM obtained the funding. 

RT, TEM and a large number of field assistants collected the data. Both authors wrote the 

manuscript and contributed to revisions. 

  



 2

This draft manuscript is distributed solely for purposes of scientific peer review. Its 

content is deliberative and predecisional, so it must not be disclosed or released by 

reviewers. Because the manuscript has not yet been approved for publication by the U.S. 

Geological Survey (USGS), it does not represent any official USGS finding or policy. 



 3

Abstract 

Embryonic development time varies greatly across species and latitudes. Yet, it remains 

unclear to what extent this variation reflects intrinsic constraints from physiological 

trade-offs versus extrinsic effects of temperature. This distinction is important because 

slow development due to trade-offs can benefit adult longevity, whereas slow 

development from low temperature does not.  To separate these alternatives we 

experimentally increased incubation temperature in tropical and north temperate species 

of songbirds. Warmer temperatures shortened development time for all species with no 

apparent costs reflected in embryo mass or metabolism. Moreover, species with colder 

natural incubation temperatures, which is common in the tropics, showed greater 

reductions in development time than did species experiencing temperatures closer to their 

developmental optima. These results raise questions about traditional theory predicting 

that longer embryonic development times generally result in higher quality offspring. 

Instead, benefits to both embryos and parents may accrue from faster development 

associated with environmental warming, especially in the tropics. 
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Embryonic development time varies substantially among species and latitudes, with 

major implications for fitness (Roff 1992; Arendt 1997). Yet, the reasons for this 

variation are still unclear. Classic theory posits that slower development typical of many 

tropical organisms increases longevity via physiological trade-offs that enhance tissue 

differentiation (Arendt 2000), quality of immune responses (Brommer 2004), and 

locomotor abilities  (Shine & Olsson 2003) . However, slower growth increases exposure 

to time-dependent mortality such as predation (Stearns 1992; Lack 1968) . Thus, species 

may face two opposing pressures: grow slow for quality or grow fast to avoid predators.  

 Benefits of slow development are thought to arise from intrinsic physiological trade-

offs. However, within individual species, developmental periods of ectothermic embryos 

become slow also in response to colder temperatures (Deeming & Ferguson 1991; Booth 

et al. 2000) .  Still, these intraspecific changes in embryonic development time are small 

compared to known variation among species (Fig. 1). This larger interspecific variation 

may reflect physiological trade-offs as predicted by traditional theory, but a major role of 

temperature cannot be discounted (Fig 1).  Indeed, strong correlations of embryonic 

periods with temperature across diverse taxa indicate that temperature plays an important 

role in interspecific variation in development time  (Gillooly et al. 2002; Martin et al. 

2007; Martin et al. 2013) . Yet, experimental tests of these alternatives are needed to 

assess their relative importance.   

 Understanding the relative roles of these two potential causes of interspecific 

variation in rate of embryonic development is critical because they yield opposing 

consequences for offspring quality and survival. Physiological trade-offs that extend 

development time increase offspring quality  (Metcalfe & Monaghan 2003; Ricklefs 
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2006; de Magalhaes et al. 2007) , whereas shorter embryonic periods can lead to smaller 

size at birth, higher metabolic rate and lower survival (Harman 1955; Atkinson 1994; 

Mortola 2006). In contrast, cooler temperatures yielding longer development generally 

reduce offspring quality and survival (Hepp et al. 2006; Olson et al. 2006) , while warmer 

conditions may yield beneficial effects (Kingsolver & Huey 2008) . Thus, causes and 

consequences of interspecific variation in embryonic period can differ depending on the 

relative roles that physiological trade-offs versus temperature play in determining 

development time.  

 Songbird embryos provide a particularly strong context in which to test the relative 

effects of intrinsic constraints, temperature, and their phenotypic consequences at 

different latitudes. Tropical songbirds typically have longer embryonic periods that may 

reflect benefits of physiological trade-offs to explain the commonly observed higher adult 

survival compared with north temperate species  (Ghalambor & Martin 2001; Martin et 

al. 2015) . Yet, tropical birds also exhibit lower parental effort during incubation resulting 

in colder embryonic temperatures and this might explain the differences in length of 

embryonic period across species and latitudes independent of any physiological trade-offs  

(Martin et al. 2007) . Still, these possibilities are experimentally untested in a temperate-

tropical context, and available evidence is contradictory. 

 Some correlative studies found support for the importance of temperature to 

interspecific and latitudinal differences in embryonic development  (Martin 2002; Martin 

et al. 2013)  while others did not (Tieleman et al. 2004; Ricklefs & Brawn 2013). Egg 

swapping experiments between species at the same latitude showed a combined effect of 

physiological trade-offs and temperature in determining the length of embryonic 
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development (Martin et al. 2007; Martin et al. 2015). Experiments amplifying perceived 

predation risk at the nest caused increased incubation effort by parents, leading to shorter 

embryonic periods, but incubation temperature was not measured and changes were 

relatively small. Other tests that held temperature constant during incubation, found that 

differences in embryonic periods remained between populations (Robinson et al. 2008) 

and species (Robinson et al. 2014). However, the latter studies used incubators to 

manipulate temperature, which can prevent embryos from experiencing natural 

conditions that are critical to normal development (Olson et al. 2008). Thus, the relative 

importance of physiological processes versus temperature as causes of interspecific and 

latitudinal differences in development time remains unclear (Tieleman et al. 2004; 

Robinson et al. 2008; Martin et al. 2015).  

 Here we conduct controlled heating and egg-swap experiments in tropical and north-

temperate species that exhibited broad differences in embryonic development times and 

temperatures. We also compared differences in egg mass loss, metabolic rates, and 

hatching success between treatment and control nests to test for costs to embryos 

potentially associated with faster development at warmer temperatures. 

 

Methods 

Study Areas and Species— Data were collected for six songbird species between May 

and July 2011-2014 in a north temperate mixed forest at 2000-2350m elevation in 

Arizona, USA (33° N). We studied three additional species between February and May 

2012-2014 in a tropical forest at 1450-1750 m elevation in Sabah, Malaysia (6° N) (Table 

S1). 



 7

 

Experimental Increase in Incubation Temperature — We increased incubation 

temperature at 42 treatment nests each paired with a control nest exposed to the same 

level of manipulation but experiencing natural incubation temperatures. Treatment and 

control nests were spatially and temporally matched in order to minimize differences in 

weather, seasonality, habitat and elevation. We also matched nests by clutch size, since 

the number of eggs can influence embryonic development rates (Biebach 1984). The 

experiment lasted for the full length of the embryonic period starting from the last egg 

laid and ending with the first egg hatching. One heating device (Kapton Heaters model 

#KHLV-105) was installed around the nest cup and powered by a 12V car battery that we 

replaced every second day. The heat output from the device was regulated by a 

thermostat connected to a probe placed in bottom of the nest (Pressure Tek, model# 

3943) set at 37.5o C (Fig. S1). This value represents the upper end of the optimum range 

for embryonic development  (White & Kinney 1974) . Control nests were treated exactly 

the same, except that the heating device was wired to a cardboard box to simulate the 

battery. 

 The overall effect of the heaters was to raise the temperature of the nest during 

periods when the parents were absent or when incubation temperatures were sub-optimal. 

Thus average 24-hr egg temperature was increased while maintaining normal incubation 

rhythms (Fig. 2) and avoiding heat stress to the embryos (Webb 1987). Nests were 

monitored every 48 hours and up to four times a day as hatch dates approached. 

Embryonic period length was calculated as the time between the last egg laid and the first 

egg to hatch. To minimize loss of nests to predation, treatment and control nests of open-
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cup-nesting species were caged with iron mesh that allowed normal movements of 

parents but prevented most predators from accessing the nest.  

 

Egg Swap Experiment — At our tropical site during the 2014 season, we performed a 

second experiment that replicated methodology detailed in Martin et al. (2007). The goal 

was to test the relative contribution of temperature and physiological trade-offs for 

differences in embryonic period between two tropical species. Chestnut-crested Yuhina 

(Yuhina Everetti) and Bornean Stubtail (Urosphena whitheadi) have comparable egg 

mass but embryos of the former experience temperatures 5° C warmer on average than 

the latter during development because of differences in how often parents incubate the 

eggs (Martin et al. 2013). If development is caused by physiological trade-offs alone, 

swapped eggs should hatch at the same time as un-swapped controls of the same species. 

In contrast, if temperature is the sole cause of developmental period length, swapped eggs 

should show the same embryonic periods as their host nest species. Thus, by examining 

the percentage change in developmental time in swapped eggs, we can partition the 

relative importance of physiological trade-offs versus temperature. Eggs were transferred 

in the morning during the laying stage (i.e., prior to start of incubation) between nests of 

the same stage. Neither of these two species starts incubating before all eggs are laid, so 

embryos were undeveloped at the time of swapping. Nest predation is reasonably high, 

and despite protection provided by the cage many experimental nests were lost, but we 

were successful in hatching swapped eggs between four different pairs of nests.  

 

Temperature measurements— We measured temperature in all nests (Fig 2) by placing a 
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thermistor in the center of an artificial egg positioned in the middle of the nest and 

connected to a HOBO Stowaway XTI datalogger (Onset Computer Corporation, Bourne, 

Massachusetts, USA; Fig. S1). Temperature was recorded every 12 seconds for three 

days halfway through the natural incubation period. We chose to record temperature at 

this stage for three reasons. First, intra and interspecific variation in the amount of time 

spent brooding is higher during the early stages of incubation (Deeming 2002) . Second, 

incubating parents tend to be more sensitive to disturbance such as adding an extra egg to 

the clutch in early than middle incubation (personal observation). Third, postponing 

measurements during late stages of incubation may have been unfeasible because of 

anticipated hatch among treatment nests. Fake eggs were made of plaster of paris and 

were formed to mimic the size, shape and color of the host species. We limited our 

measurements of temperature differences to three days because larger clutches can 

increase the energetic costs of incubation to parents (Haftorn & Reinertsen 1985) . 

 

Egg Mass and Metabolic Measurements— We marked and weighed all eggs of 

treatment and control nests using an ACCULAB portable electronic scale (precision 

0.001 g). A first measurement was taken the day of clutch completion followed by a 

second one two days before the expected hatch date. This repeated measurement allowed 

us to quantify the mass lost by each clutch during development. 

We measured embryo metabolic rate as oxygen consumption rate [VO2 (mL h-1)] 

using a FoxBox field gas analyzer (Sable System, Las Vegas, NV, USA) for one egg only 

in order to ensure independence among samples. Metabolic measurements were executed 

following the protocol detailed in Martin et al. (2013). Eggs were removed from the nest 
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at 79.9 ± 0.72% (mean ± SE) of their development and were replaced with fakes. Eggs 

were weighed using an ACCULAB portable electronic scale (precision 0.001 g; 

Edgewood, NY, USA). During metabolic measurements, the eggs rested in a 60 mL 

syringe, connected to an open-flow system flushed with atmospheric air at a rate of 25 

ml/min. The air was scrubbed of CO2 and water vapor magnesium perchlorate, soda lime 

and drierite. To precisely control experimental temperature, the chamber was submerged 

in a water bath and held at 37.5 oC.  

Oxygen consumption rate was measured continuously every 0.5 s, and VO2 (mL 

h-1) was calculated as the difference in O2 concentration between the air input and output 

flowing through the chamber during the most stable three minutes of measurements. We 

used the formula VO2 = FRi(Fio2 – Feo2)/(1-Feo2) in ExpeData (ver. 1.3.2) software from 

Sable Systems. Where FRi is the incurrent mass flow rate scrubbed from water vapor and 

CO2, Fio2 is the incurrent fractional concentration of oxygen, and Feo2 is the excurrent 

fractional concentration of oxygen (Lighton 2008). Metabolic measurements lasted 

between 90 and 110 minutes, with larger eggs taking longer. After completion each egg 

was returned unharmed to the nest of origin.  

 

Statistical Analyses— We tested the effect that differences in incubation temperatures 

between treatment and control nests have on embryonic period using a linear mixed 

model with species as a random effect nested within site and year. Because no difference 

in temperature should yield no difference in embryonic period, we forced all our 

intercepts through zero (Eisenhauer 2003)  to obtain a better fit (Table S2) 

 Because the temperature changes between treatment and control were not 
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identical among species, we standardized changes in embryonic period to allow more 

direct comparisons. This was achieved estimating species-specific coefficients (slopes) 

using a linear model with changes in embryonic period as dependent variable and 

changes in temperature as an explanatory variable. To test for evolved differences in 

reaction norms, we used slopes as dependent variable and the average temperature in 

control nests as the independent variable in a linear model that takes into consideration 

the phylogenetic history of species (package “caper”; Orme et al. 2013).  To produce our 

phylogeny we built a majority-rule consensus tree with program Mesquite (Maddison and 

Maddison 2015) using 1,000 trees sampled from BirdTree.org (Jetz et al. 2012). 

We quantified the relative contribution of temperature versus intrinsic constraints 

in determining differences in embryonic period between species in our swap experiment. 

We divided the change in embryonic period of the transferred egg by the observed 

difference in embryonic periods of the host versus natal nest x 100. We attributed this 

percentage change in embryonic periods between species to temperature and the 

remaining portion to physiological trade-offs and other unmeasured effects.  

We tested for effects of heating on egg mass loss by fitting a linear mixed model 

with percent egg mass loss difference between treatment and control as dependent 

variable and species as a random effect nested within site and year. Using the same 

statistical approach we tested for differences in mass specific metabolic rate and hatching 

success between treatment and control nests (see supplemental methods). We also 

conducted separate ANOVA tests for each species to evaluate whether differences in egg 

mass loss and mass-specific metabolic rate were significantly different from 0 (Table S3). 

All analyses were performed using R version 3.1.2 (R Core Team 2014). 
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Results 

 

Heating Experiment— Our heating experiments at 42 nests increased incubation 

temperatures as hoped (mean ± SE = 1.32 ± 0.13 °C). Temperature differences between 

treatment and control were associated with an overall decrease in treatment embryonic 

period among the nine species considered here (Fig. 3a; mean effect size ± SE = -1.26 ± 

0.16 d, P < 0.001). However, individual species reactions to treatment varied 

substantially. Cordilleran flycatcher showed almost no reduction in embryonic period 

(mean ± SE = -0.2 ± 0.08 d) despite increased temperature (Fig. 3a). Differently, 

Mountain Wren-babbler showed impressive shortening in development time (mean ± SE 

= 5.33 ± 1.2 d) with a relatively small change in average temperature (mean ± SE = 2.36 

± 0.72 °C). The differences in reaction norm slopes of the nine species were correlated 

with the average normal (control) temperature (Fig. 3b; mean effect size ± SE = 0.3 ± 

0.08, r2 = 0.69, P = 0.005). In short, embryonic periods of tropical species with colder 

normal temperatures exhibited stronger responses (steeper reaction norms) to heating 

compared to north temperate species that normally develop under warmer conditions. 

 

Egg Swap Experiment— Bornean Stubtail eggs placed in Chestnut-crested Yuhina nests 

experienced higher average temperatures (mean ± SE = 4.06 ± 0.39 °C) and showed a 

25% shortening in development time (mean ± SE = 6 ± 0.4 d) compared to controls (fig. 

4). This reduced the average gap in development time between the two species from nine 

(mean ± SE = 9 ± 0.4 d) to three (mean ± SE = 3 ± 0.4 d) days. Therefore temperature 
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alone accounted for 67 ± 5.8% of the difference in average embryonic period between 

natal and host species, while the remaining 33 ± 5.8% can be attributed to intrinsic 

constraints or other unmeasured variables (Fig. 4). Physiological trade-offs also acted on 

the other end of the temperature gradient limiting the extent to which development can be 

delayed. Indeed, eggs of chestnut-crested Yuhina that were transferred to the colder 

temperature conditions of stubtail nests extended their embryonic period by two days on 

average (mean ± SE = 2 ± 0.4 d).   A substantial difference from the host nest remained 

(mean ± SE = 8 ± 0.4 d). Thus, physiological trade-offs act asymmetrically among 

species at the slow (cold) versus fast (warm) ends.  

  

Consequences of increased temperature for egg mass and metabolism— Egg mass 

naturally decreases over the embryonic period due to water loss associated with 

metabolic processes underlying development. Average reduction in egg mass in our study 

was 14.6% ± 0.41 for all samples (F = 2.618, P = 0.014) but interspecific differences 

were substantial, ranging between 10-22%. Embryos of seven species lost less mass when 

exposed to heating, with three of these being significant (Fig 5a). The remaining two 

species lost more mass when incubated at warmer temperatures but the effect was not 

significant (Fig5a; Table S3). Overall, warmer temperatures during development resulted 

in higher embryonic size prior to hatching across the nine species in our experiment (Fig 

5a; F = 9.91, P = 0.003).  

Heated embryos had higher mass-specific metabolic rates than control embryos in 

six species, two of which showed a significant effect of treatment. Mass-specific 

metabolic rate was lower in three species and one of those showed a marginally 
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significant effect of the heating experiment. This resulted in an overall lack of significant 

effect of our treatment on metabolic rates (Fig 5b; F = 0.813, P = 0.372).  

Hatching success is typically about 90% in natural nests  (Briskie & Mackintosh 

2004) .  In our study, 93 ± 0.7% of eggs hatched successfully, with no differences 

between treatment and control clutches (F = 0.213, P = 0.69).  

 

 

Discussion 

The relative importance of temperature and physiological trade-offs in determining 

interspecific variation in the length of embryonic development has been extensively 

debated  (Martin 2002; Tieleman et al. 2004; Martin et al. 2007; Ricklefs & Brawn 2013; 

Martin et al. 2013; Martin et al. 2015) . Our results suggest that temperature and 

physiological trade-offs play important but unequal roles in determining interspecific and 

latitudinal variation in embryonic development. The substantial reduction in embryonic 

period in response to artificial heating (Fig. 3a) concurs with previous correlational 

studies that include a much larger sample of species from different latitudes (Martin et al. 

2007, 2015). This correspondence supports the idea that, within the constraints imposed 

by physiological trade-offs, temperature can strongly influence interspecific variation in 

embryonic period (Gillooly et al. 2002).  

 Ultimately, physiology appears to limit how short development time can be. The 

shortest period of embryonic development in birds is 10-11 days  (Rahn & Ar 1974) , 

when average incubation temperature is close to 37 °C (Martin et al. 2007). Thus, 

embryos experiencing stable natural incubation temperatures near 37 °C may have 
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evolved development periods close to their physiological limits. Species near their 

physiological maxima at the warm end reduced their embryonic periods very little during 

warming experiments  (Fig. 3). Rather, heating shortened embryonic period much more 

in tropical species with colder incubation temperatures and longer development (Fig. 3). 

This result is important because it provides experimental evidence that refutes a long-held 

view that tropical species are relatively insensitive to temperature and that their long 

embryonic periods reflect physiological trade-offs that provide benefits (i.e., Ricklefs 

1992; Tieleman et al. 2004; Robinson et al. 2008, 2014). 

Faster development may lead to reduced phenotypic quality like smaller size at 

hatching in lizards (Van Damme et al. 1992), and faster metabolic rates in chickens 

(Mortola 2006), both of which decrease survival (Allen et al. 2008). Yet, we found that 

eggs developing at warmer temperatures were heavier prior to hatch date compared to 

control eggs in seven out of nine species studied here (Fig. 4a). Similarly other studies 

found that cooling eggs caused reduced egg yolk mass in birds (Olson et al. 2006) and 

smaller size at birth in insects (Walters & Hassall 2006) and reptiles (Elphick & Shine 

1998) .  This effect may be explained by warmer temperature favoring higher efficiency 

in cell differentiation and proliferation and by lower temperatures diverting resources to 

respiration and self-maintenance. Intriguingly, our reported effects of temperature on egg 

mass support the hypothesis that, in the tropics, parents lay larger eggs to provision their 

embryos with extra resources that compensate for the maintenance costs of low average 

incubation temperatures (Martin 2008).  Also, we did not detect an overall change in 

mass-specific embryonic metabolic rate due to heating (Fig. 5b). The possibility remains 

that higher incubation temperatures underlying faster development may produce other 
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costs unmeasured here, but we did not detect costs related to mass and metabolism.  

Our results undermine the idea that longer embryonic periods of tropical species 

improve organismal quality and increase longevity. Instead, long development times 

caused by low incubation temperatures may impose a cost on young rather than provide a 

benefit (Ardia et al. 2010; DuRant et al. 2012). Slow development at lower temperatures 

extends the time of exposure to sources of mortality experienced during the vulnerable 

stage of incubation. For example, Bornean Stubtail eggs have a 24-day incubation period 

and are exposed to a daily predation probability of 0.045 (Martin et al. 2015).  Yet, our 

experiments show that this species has the potential to shorten embryonic development 

by about six days, which translates into a 24% reduction in predation risk. Why then do 

songbirds not increase incubation effort to keep eggs warmer and shorten the incubation 

period so that their offspring benefit from reduced predation risk?  

 A possible answer is that costs accrue to parents rather than to offspring.  In lon-

lived tropical species selection may favor reduced parental energy expenditure by parents 

so that they enhance their own probability to breed in the future (Martin 2002; Martin et 

al 2015). Our experiments certainly demonstrate that long-lived tropical species with 

lower incubation temperatures had stronger responses to heating indicating that their long 

embryonic periods are due to low parental effort in warming eggs. Nevertheless, this 

species maintained a longer embryonic development compared to the host indicating an 

influence of intrinsic constraints. This suggests that selection may favor longevity in two 

ways: by acting on intrinsic trade-offs, and by reducing parental effort that affects 

extrinsic embryonic temperature. 

The effects that developmental temperature has on phenotypic variation are 
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especially important in light of global climate changes (Griffith et al. 2016) . Our data 

show that “cold” tropical embryos shorten development time more than “warm” north 

temperate species for an equivalent increase in temperature. This suggests that small rises 

in temperature due to global warming predicted at low latitudes (Parry 2007) may benefit 

tropical embryos by shortening their incubation period and reducing exposure to 

predation without phenotypic costs to the offspring. Conversely increased temperatures in 

north temperate zones may yield smaller effects for development but could still impact 

species close to their physiological maxima (Somero 2010). Therefore songbird embryos 

may represent a major exception to the hypotheses that detrimental impacts on 

ectotherms from global warming should be stronger at lower latitudes  (Deutsch et al. 

2008; Dillon et al. 2010)  

Our study shows that, within the constraints imposed by physiological trade-offs, 

extrinsic temperature plays a stronger role on interspecific and latitudinal variation in 

embryonic period. However the effect of higher temperatures varied as a function of the 

thermal conditions normally experienced during development, leading to questions about 

possible latitudinal differences in the effect of global warming on ectothermic embryos. 

Additionally we found benefits rather than costs associated to shorter embryonic periods. 

These results support the view that when caused by lower temperatures, extended 

development may not be as beneficial as traditionally thought. 
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Figure 1. Conceptual graph representing the correlation between temperature and 

embryonic development. Each symbol and color represents a different species. At the 

intraspecific level, temperature (dashed lines) can explain differences in development 

period (small bracket). However it is still unclear if temperature (solid lines) or 

physiological constraints are the main determinant of interspecific variation in embryonic 

period (large bracket).    

 

Figure 2. Thermal conditions experienced during 24 hours of incubation by a control and 

a treatment clutch of Red-faced Warbler (Cardellina rubifrons) of the same age. 

Measurements were recorded on the same date and nesting habitat; temperature 

oscillations reflect parental incubation bouts.  

 

Figure 3. (a) Correlation between measured differences in egg temperature, and 

incubation period differences between treatment and control among 42 paired nests 

belonging to nine species at two latitudes. Each point represents a nest pair and each 

symbol and color a different species. Individual regression lines provide the intraspecific 

response of embryonic period to experimental heating and warmer colors are associated 

to warmer natural incubation temperature. Dashed lines denote tropical species. Names in 

figure legend are reported in order of ascending slope. (b) Correlation between average (± 

1 SE) differences in control incubation temperature and change of embryonic period with 

treatment temperature (slope ± 1 SE) for nine songbird species at two latitudes. Tropical 

species are denoted as ~. The gray horizontal line intercepting zero represents the 

physiological threshold for development where further temperature increases produces no 



 24

changes in embryonic period. 

 

Figure 4. Results of the swap experiment for eggs of Bornean Stubtail (cold species) 

transferred in nests of Chestnut-crested Yuhina (warm species), and for eggs of Chestnut-

crested Yuhina transferred in nests of Bornean Stubtail. Arrows indicate the effect of 

temperature changes on embryonic development length. Segments indicate the effect of 

physiological trade-offs in limiting the reduction (cold species swapped to warm nest) or 

extension (warm species swapped to cold nest) of the embryonic period. 

 

Figure 5. Mean differences between treatment and control (± 1 SE) in (a) % egg mass, 

and (b) mass-specific metabolic rate (mL O2 h
-1) for nine bird species exposed to 

increased incubation temperature in a tropical (Malaysia) and north temperate (Arizona) 

site. Significant (p < 0.05) and marginally significant (p < 0.1) effects within species are 

denoted respectively as * and ‐.  
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Figure 1. 
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Figure 2. 
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Figure 3.  
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Figure 4. 
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Figure 5. 
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Table S1. Common and scientific names for 9 bird species breeding at our tropical (Malaysia) and 

a north temperate (Arizona) field sites. Total number of paired treatment and control nests (n) are 

shown for our heating and swap experiments. 

 

Site Common Name Scientific Name 

Heating 

Experiment  

n 

Swap 

Experiment  

n 

Malaysia Bornean Stubtail Urosphena whiteadi 3 4 

Malaysia 
Mountain Wren-

babbler 
Napothera crassa 3 --- 

Malaysia 
Chestnut-crested 

Yuhina 
Yuhina everetti 4 4 

Arizona Cordilleran Flycatcher 
Empidonax 

occidentalis 
5 --- 

Arizona Grey-headed Junco Junco hyemalis 4 --- 

Arizona House Wren Troglodytes aedon 5 --- 

Arizona Mountain Chickadee Poecile gambeli 3 --- 

Arizona Red-faced Warbler Cardellina rubifrons 7 --- 

Arizona Western Bluebird Sialia mexicana 8 --- 

 Totals   42 8 
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Figure S1. Picture of the set up needed for the heating experiment here uncovered from 

camouflaging materials for showing purposes. The heating device (solid red arrow) wraps around 

the nest cup where a fake egg connected to a probe (red star) records temperature experienced by 

the embryos during incubation. A thermostat connected to the circuit (dashed red arrow) regulates 

the energy input from the battery to the heating device.  Notice the iron mesh surrounding the nest 

to reduce sample loss due to predation.  
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Figure S2. Phylogenetic relationships among north temperate (red) and tropical (blue) bird 

species used in the present study. The majority rule consensus tree was computed in program 

Mesquite using 1,000 trees obtained from BirdTree.org.  
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Table S2. Comparison of fit between linear mixed models testing the effect of incubation period 

differences on embryonic period changes between treatment and control nests for nine species of 

breeding songbirds at two latitudes (see methods). Models were tested (a) with intercept values 

free to vary and (b) forcing all intercepts through zero. 

 

Selection criterion Model with free varying intercepts Model with intercepts forced through 0 

AIC 154.61 153.67 

BIC 161.57 158.88 

r2 0.91 0.88 

SE 0.23 0.16 

F-statistic 20.10 60.75 
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Table S3. Summary output of individual tropical (blue) and north temperate (red) species tested 

for differences between treatment and control nests in egg mass loss (g) and mass-specific 

metabolic rate (mL O2 h-1) using ANOVA with a random factor of year. Significant and 

marginally significant differences are denoted with (*) and (`) respectively. 

 

Species Dependent variable F value P value 

Bornean Stubtail Egg mass 0.612 0.515 

 Mass-specific metabolic rate 0.910 0.440 

    

Mountain Wren-babbler Egg mass 2.393 0.261 

 Mass-specific metabolic rate 4.26 0.090` 

    

Chestnut-crested Yuhina Egg mass 0.0005 0.983 

 Mass-specific metabolic rate 0.676 0.471 

    

Cordilleran Flycatcher Egg mass 0.730 0.440 

 Mass-specific metabolic rate 9.102 0.037* 

    

Grey-headed Junco Egg mass 0.520 0.545 

 Mass-specific metabolic rate 0.929 0.407 

    

House Wren Egg mass 7.458 0.034* 

 Mass-specific metabolic rate 1.016 0.352 

    

Mountain Chickadee Egg mass 0.023 0.888 

 Mass-specific metabolic rate 79.65 0.012 * 

    

Red-faced Warbler Egg mass 4.666 0.083` 

 Mass-specific metabolic rate 0.362 0.568 

    

Western Bluebird Egg mass 6.340 0.032* 

 Mass-specific metabolic rate 1.444 0.26 
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ABSTRACT 

 

Environmental conditions early in life can have substantial impacts on subsequent life 

stages. Higher temperatures during development can shorten embryonic period, which 

may reduce offspring size at maturity and fitness. Additionally, warmer embryonic 

temperatures can influence offspring metabolism. Lastly, warmer temperatures can lower 

thermoregulatory costs for the adults, and the energy saved may be invested into higher 

parental care for offspring. Faster embryonic development, changes in metabolism, and 

variation in parental care can affect the expression of important traits, like post-natal 

growth, and responses may differ across species depending on evolved life history 

differences. However, interspecific studies testing carry-over effects of warmer 

embryonic temperature on post-natal growth are lacking. Here, we found that 

experimentally increased temperatures during embryonic development increased post-

natal metabolic rates among seven species of songbirds. Higher embryonic temperatures 

did not significantly alter the overall rates of parental food delivery or brooding effort. 

We also found no changes in growth rates in four of the species studied, faster growth in 

one species and slower growth in two. These results suggest that carry-over effects of 

warmer temperature causing faster embryonic development can have some reflection on 

growth that may not be as costly as traditionally thought. Yet, further studies should 

elucidate possible long-term consequences of increased metabolism for adult longevity. 
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INTRODUCTION 

Environmental conditions experienced early in life can have major repercussions 

on phenotypic expression later in life (Harrison et al., 2011;Pigliucci, 2001). Thermal 

fluctuations have pervasive effects on all levels of biological organization (Huey and 

Berrigan 2001; Jiang and Morin, 2004), and may be especially important during the 

sensitive ectothermic phase of embryonic development (Gilbert and Epel, 2009). Warmer 

temperatures experienced early in life can shorten embryonic periods within (Deeming 

and Ferguson, 1991) and among species (Ton and Martin 2016). Faster embryonic 

development may impose future costs such as smaller size (Atkinson, 1994), which is 

known to negatively impact fitness (Brown et al., 1993). However, faster embryonic 

development facilitated by warmer embryonic conditions can increase hatchling size 

across different taxa thus yielding benefits (Eiby and Booth, 2009; Hutton, 1987; Olson 

et al., 2006). Despite these opposing consequences for post-natal growth, the effects of 

warmer embryonic development on phenotypic expression in later life stages among 

species remain elusive. 

Our understanding of the potential costs of carry over effects (i.e. changes in trait 

expression that transfer from one life stage to the next) (Lindström, 1999) may be limited 

by the complexity of the interactions occurring between temperature and other traits 

influencing growth. For example, offspring experiencing warmer embryonic conditions 

have higher post-natal metabolic rates in reptiles (Steyermark and Spotila, 2000), but not 

in birds (Olson et al. 2006; Nord and Nilsson 2011). Variation in post-natal metabolism is 

positively correlated with cellular proliferation and post-natal growth (Ton and Martin, 

2015; West et al., 2001). Surprisingly, available experiments on the effects of embryonic 

temperature on post-natal growth within species produced both, faster (Durant et al., 

2010) and slower growth (O'Steen, 1998), but metabolic rates were not measured. 

Furthermore, the effects of warmer embryonic temperature on metabolism are important 

to test because higher metabolic rate can yield higher levels of oxidative damages 

(Alonso-Alvarez et al., 2006), which can ultimately reduce longevity (Harman, 2001). 

These oxidative damages may be additive to potential costs of faster embryonic 

development, further impacting offspring growth.    
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Changes in post-natal metabolism also affect the energetic requirements of 

offspring regarding food and heat (Nagy et al., 1999). Interestingly, higher temperature 

during the embryonic stage can also reduce costs of thermoregulation for adults (Bakken, 

1980). These energy savings can allow higher investment in offspring in species with 

parental care. Increased parental care in the form of food or heat can accelerate growth 

and can give higher offspring quality (Criscuolo et al., 2008; Lindström, 1999; Metcalfe 

and Monaghan, 2001). Those “silver spoon” advantages (Madsen and Shine, 2000) can 

potentially ameliorate costs of faster embryonic periods, but the magnitude of the 

behavioral responses to environmental changes can vary based on evolved interspecific 

differences in life history strategies (Ghalambor et al., 2013). Thus embryonic 

temperatures, embryonic development time, metabolic rate and parental care may all 

interact in determining rates of post-natal growth. Yet, interspecific studies investigating 

the interactions and relative importance that these traits can have for offspring growth are 

lacking.  

The carry over effects of higher temperature during development on offspring 

growth are particularly important to test among altricial species, like songbirds, for 

multiple reasons. First, offspring of songbirds are ectothermic, immobile, and relatively 

small compared to the mass of adults, which reduces their thermal inertia. Thus, plastic 

metabolic adjustments of offspring exposed to warmer embryonic temperature can be 

important for their survival (Somero, 2010). Second, eggs of songbirds experience wide 

interspecific variation in embryonic period (Martin, 2002; Martin et al., 2015) and this 

variation is mostly due to temperature differences during incubation (Ton and Martin 

2016). Thus, the consequences of carry over effects due to experimentally increased 

temperature may also differ among species. Third, parental care plays a critical role for 

passerine nestlings since they completely depend on the food and heat provided by adults 

for their growth and thermoregulation. Therefore, songbirds are ideal for testing the 

potential effects of increased temperature during embryonic development on variation in 

metabolism, parental care and post-natal growth (Figure 1). 

 Here we experimentally increased incubation temperatures in the field for seven 

songbird species, six temperate and one tropical, encompassing a broad range of variation 

in average incubation temperatures and parental care (Martin et al. 2015). We tested carry 
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over effects of higher incubation temperature on nestling metabolic rate, food delivery 

and brooding rates of adults, and their influences on post-natal growth. 

 

MATERIAL AND METHODS 

Study areas and species 

Data were collected in a high elevation (2350m) mixed forest in north-temperate Arizona, 

USA for six songbird species and in a tropical mid-elevation forest (1450-1950 m) in 

Malaysia for one species (Table 1). 

 

Experimental Increase in Incubation Temperature  

Following the procedure described in Ton and Martin (2016), we increased incubation 

temperature in 46 treatment nests, each paired with a control nest that was not exposed to 

the artificial temperature increase. Because 13 nests were depredated during the early 

nestling stage they were not included in analyses. We raised the temperature experienced 

by the embryos throughout incubation while maintaining normal incubation rhythms and 

avoiding heat stress to the embryos (Ton and Martin 2016). 

To quantify the temperature increase in treatment compared to control nests we 

placed a thermistor in the center of an artificial egg positioned in the middle of the nest 

and connected to a HOBO Stowaway XTI datalogger (Onset Computer Corporation, 

Bourne, Massachussets, USA). Temperature was recorded every 12 seconds for three 

days in the middle of the incubation period (Ton and Martin 2016).  

 

Metabolic measurements 

We measured metabolic rates of nestlings from our control and treatment nests following 

the procedure described in Ton and Martin (2015). Using a Foxbox field gas analyzer 

(Sable System, Las Vegas, NV, USA), we recorded oxygen consumption [VO2 (mL h-1)] 

at 37.0 oC for one nestling per clutch to ensure independence among samples within a 

species.  

Metabolic rates were measured at pin break, a standardized developmental stage 

when primary feathers break their sheaths and thermoregulatory capacities are 

comparable among species (Cheng and Martin, 2012; Pereyra and Morton, 2001; Sogge 
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et al., 1991). Therefore recording VO2 at pin break allowed us to control for interspecific 

variation in thermoregulation and its effect on metabolism during growth. 

 Each nestling was put in a 2.1L stainless-steel airtight metabolism chamber inside 

a large, dark, insulated cabinet with a Peltier device (Pelt-4; Sable Systems) maintaining 

temperature at 37 ± 0.1°C. The chamber was connected to an open-flow system and 

flushed with 200-300 milliliters per minute flow of atmospheric air scrubbed of CO2 and 

water vapor. Air was filtered through scrubbers with soda lime, magnesium perchlorate 

and Drierite (Lighton, 2008). VO2 was measured continuously every 0.5s and was 

calculated as the most stable five minutes of oxygen consumption during measurements. 

After completion of VO2 measurements, nestlings were returned to their nest unharmed. 

VO2 (mL h-1) was calculated in ExpeData (ver. 1.3.2) software from Sable Systems using 

the formula VO2 = FRi(Fio2 – Feo2)/(1-Feo2). Where FRi is the incurrent mass flow rate 

scrubbed from water vapor and CO2, Fio2 is the incurrent fractional concentration of 

oxygen, and Feo2 is the excurrent fractional concentration of oxygen (Lighton, 2008). 

 

Feeding rate and brooding rate 

We collected information on rate of offspring brooding and food delivery by videotaping 

nests for 6 - 8 hr starting within 30 min of sunrise(Martin et al., 2011). Hi-8 video 

camcorders (Sony Corporation, Tokyo, Japan) were concealed with surrounding 

vegetation 4 to 15 m from the nest and were left unattended. Per-nestling feeding rate was 

measured as feeding-trips nestling-1 h-1 and calculated dividing the total feeding rate by 

the number of young in the nest. Brooding effort was calculated as percentage of time 

spent by the parents sitting on the nest to heat their offspring. Video recordings were 

made 2-3 days after hatch date, on the day that pin feathers broke their sheaths, and 2-3 

days prior to the expected fledging date (Martin et al., 2000) 

 

Growth rate 

To calculate nestling growth trajectories, we measured body mass (g), wing chord length 

(mm), and tarsus length (mm) for the first three days after hatch and every other day 

thereafter.  Mass measurements were taken with GemPro electronic scales (0.001 g 

resolution; model 250, MyWeigh, Phoenix, Arizona, USA). Other biometrics were taken 
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with Mitutoyo digital calipers (0.01 mm resolution; model 500-196-30, Mitutoyo, 

Aurora, Illinois, USA).  

 

Statistical Analyses 

We tested for effects of heating during development on the physiological and 

behavioral variables studied here by fitting linear mixed-effects models (R package lmer). 

Tests among species were performed including the difference between treatment and 

control for the trait of interest (i.e. mass specific metabolic rate, feeding rate, and 

brooding time) as response variables, and comparing the value of the intercept to zero. 

Species were included as a random effect nested within year. Furthermore, we fit separate 

ANOVA models with a random factor of year for each species to test for differences in 

mass-specific metabolic rate, brooding rate, and per-capita feeding rate between 

treatment and control nests.  

For nestling mass, wing chord length, and tarsus size, we examined changes in 

growth rates (K), the timing of growth (inflection time, or ti), and asymptotic size (A) 

using nonlinear mixed models (R package nlme) that estimated differences in growth 

between treatment and control (Sofaer et al., 2013). All analyses were performed using R 

version 3.1.2 (R Core Team 2014). 

 

RESULTS 

Effect of the experiment on metabolism—A relatively minor increase in average 

temperature during embryonic development (mean ± SE = 1.32 ± 0.13 °C) caused higher 

mass-specific metabolic rates in the post-natal stage across all seven species studied here 

(F = 13.645, P < 0.001, Figure 2). However this difference was only significant within 

two species (Figure 2, Table 1).  

Effect of the experiment on parental care— Warmer temperatures during incubation 

did not change the overall level of care provided by parents to offspring in the form of 

feeding rates (F = 1.01, P < 0.318) or brooding (F = 0.131, P < 0.718) among species. 

Still, parents of six of the seven species showed a tendency for higher per capita food 

delivery rate under the treatment (Figure 3), while one species (mountain chickadee) 

instead showed a significant reduction in feeding rate compared to the control (Table 2). 
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Experimental increases in embryonic temperature produced minimal or no changes in the 

time parents spent brooding nestlings in five north temperate species (Figure 4). Yet, the 

species that reduced feeding (mountain chickadee) also showed a significant decrease in 

brooding effort. Only the tropical species increased both brooding time and feeding rate 

(Table 2, 3, Figure 3, 4), but this increase was not significant. 

Consequences for growth rate— Growth rates of body mass, tarsus, and wing chord 

were higher for embryos exposed to warmer temperature in our tropical species alone 

(Table S1 Figure 5). Conversely, two species showed reduced growth rates under the 

treatment; one had slower growth in tarsus and wing chord (house wren), and the other in 

body mass and wing chord (mountain chickadee). One species showed reduced body 

mass growth but higher wing chord growth in the treatment compared to the control 

(cordilleran flycatcher). The remaining three species showed no significant difference in 

the rate of growth between heated and control nests (Figure 5, Table S1). 

 

 

DISCUSSION 

Faster development in ectothermic embryos is thought to impose fitness costs, including 

reductions in size at birth and post-natal growth (Atkinson, 1994; Zuo et al., 2012). Yet, 

when faster development is due to warmer temperatures costs for offspring may not be 

present. Our study shows that the magnitude and direction of growth rate responses to 

warmer embryonic temperatures differ among species. Two species showed slower 

growth in response to our treatment for at least one of the biometrics measured. This 

follows the expectations of the temperature size rule, which predicts smaller cellular size 

and lower body mass in ectotherms developing at warmer temperature (Atkinson, 1994). 

The majority (4) of species showed no apparent growth related costs from warmer 

development. One had a significant increase in rate of growth for all the body parts 

measured. These results emphasize that consequences of faster development from 

warmer temperature may not be as detrimental as generally thought. 

Experimental increase in embryonic temperature also yielded higher mass-

specific metabolic rate during the post-natal stage for all the species considered here. For 

six of these species, our results were consistent with higher embryonic metabolism 
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reported in a previous study (Ton and Martin 2016), indicating that the “physiological 

imprint” of temperature persists across life stages. Higher metabolism may produce 

increased accumulation of oxidative damages and reduce longevity  (Harman, 2001). 

Higher metabolism is also normally associated with faster growth within and among 

species (Ton and Martin, 2015; West et al., 2001). Intriguingly, not all species that 

showed increased metabolism due to our treatment also grew faster, raising questions 

about the causal relationship between these two traits (Glazier, 2014).  

The effects of warmer temperatures on parental care may explain the absence of 

faster growth despite increased metabolism in nestlings. Parents did not generally 

increase effort in favor of young. A significant reduction in feeding and brooding rate 

shown by one species was associated with a decrease in growth rate. Slower or similar 

growth rates compared to the control nests were detected in those species that increased 

feeding but not brooding. The only species that increased both rate of feeding and 

brooding in response to the treatment showed substantially higher growth rates. Thus, for 

species that show no positive effect on growth rates but had increased metabolism, 

parents may have not matched the energy requirements of the offspring by a sufficient 

increase in parental care. 

The carry over effects of warmer temperature during embryonic development for 

metabolism, parental care and growth detected here are especially important considering 

the variety of ecological factors that may affect embryonic temperature. For example, 

exposure to higher perceived risk of predation or food available for incubating parents 

can lead to increased embryonic temperature (LaManna and Martin, 2016). Also, 

increased environmental temperatures expected with global warming can influence 

thermal conditions and development of embryos (Griffith et al., 2016; Scott and 

Johnston, 2012). We show that small changes in temperature (e.g. 1C) during embryonic 

development can have downstream repercussions for post-natal rates of offspring growth. 

However, species vary in their growth response to warmer embryonic conditions; some 

species benefit, some suffer, and others are unaffected. This interspecific variation in our 

study can be explained by integrating intrinsic (e.g. metabolism) and extrinsic (e.g. 

parental care) components of growth rate and ultimately questions the generality of 
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theories predicting detrimental consequences of faster development due to warmer 

embryonic temperature.  
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Figures 

1. 

 

 

Figure 1: Conceptual representation of the direct (solid arrows) and indirect (dashed 

arrows) effects of increased temperature during embryonic development on post-natal 

growth.  
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2. 

 

 

Figure 2: Differences between treatment and control means (± 1 SE) in post-natal mass-

specific metabolic rate (mL O2 h
-1) for seven bird species exposed to increased incubation 

temperature in a tropical (Malaysia) and north temperate (Arizona) site. Significant (p < 

0.1) effects are denoted as *. 
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3. 

 

 

 

Figure 3: Differences between treatment and control means (± 1 SE) in per-capita 

feeding rate (feeding trips nestling-1 h-1) for seven bird species exposed to increased 

incubation temperature in a tropical (Malaysia) and north temperate (Arizona) site. 

Significant (p < 0.1) effects are denoted as *. 
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4. 

 

Figure 4: Differences between treatment and control means (± 1 SE) in brooding 

attentiveness (% of time spent brooding) for seven bird species exposed to increased 

incubation temperature in a tropical (Malaysia) and north temperate (Arizona) site. 

Significant (p < 0.1) effects are denoted as *. 
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5. 
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Figure 5: Treatment and control means (± 1 SE) for nestling growth rate of (a) mass, (b) 

tarsi, and (c) wings of seven bird species exposed to increased incubation temperature in 

a tropical (Malaysia) and north temperate (Arizona) site. Significant (p < 0.1) effects 

within species are denoted as *. 
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Table 1. ANOVA tests for differences in mass-specific metabolic rate (mL O2 h
-1) 

between treatment and control nests for one tropical (in bold) and six north temperate 

species. Sample sizes, means, standard errors (SE), F statistics, and p-values are 

provided. Significant effects (p ≤ 0.10) are denoted as *. 

 

Variable: mass-specific metabolic rate (mL O2 h
-1) 

 

Species 

Treat

n 

Control 

n 

Diff. 

Mean 

Diff. 

SE 
F p 

Chestnut-crested Yuhina 5 5 1.27 0.55 5.27 0.105* 

Cordilleran Flycatcher 3 3 1.35 0.86 2.44 0.259 

Grey-headed Junco 3 3 0.90 0.77 1.36 0.363 

House Wren 8 8 0.53 0.58 0.82 0.399 

Mountain Chickadee 3 3 0.49 0.62 0.62 0.512 

Red-faced Warbler 3 3 0.17 0.39 0.19 0.704 

Western Bluebird 8 8 0.66 0.26 6.65 0.042* 
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Table 2. ANOVA tests for differences in per-capita feeding rate (feeding trips 

nestling-1 h-1) between treatment and control nests for one tropical (in bold) and six 

north temperate species. Means, standard errors (SE), F statistics, and p-values are 

provided. Significant effects (p ≤ 0.10) are denoted as *. 

 

Variable: per capita feeding rate (feeding trips nestling-1 h-1) 
 

Species 

Diff. 

Mean 

Diff. 

SE 
F p 

Chestnut-crested Yuhina 1.27 0.20 1.65 0.235 

Cordilleran Flycatcher 0.38 0.86 0.186 0.677 

Grey-headed Junco 0.15 0.77 0.01 0.916 

House Wren 0.29 0.58 0.234 0.634 

Mountain Chickadee -0.72 0.62 4.351 0.092* 

Red-faced Warbler 0.17 0.46 0.18 0.678 

Western Bluebird 0.66 0.60 1.43 0.112 
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Table 3. ANOVA tests for differences in brooding rate (% time spent on the nest) 

between treatment and control nests for one tropical (bolded) and six north temperate 

species. Means, standard errors (SE), F statistics, and p-values are provided. 

Significant effects (p ≤ 0.10) are denoted as *. 

 

Variable: brooding rate (% time spent on the nest) 
 

Species 

Diff. 

Mean 

Diff. 

SE 
F p 

Chestnut-crested Yuhina 0.17 0.15 1.21 0.351 

Cordilleran Flycatcher 0.005 0.08 0.004 0.951 

Grey-headed Junco -0.06 0.08 0.55 0.594 

House Wren -0.02 0.17 0.01 0.896 

Mountain Chickadee -0.43 0.20 4.66 0.090* 

Red-faced Warbler -0.02 0.10 0.04 0.836 

Western Bluebird -0.01 0.01 1.43 0.899 
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Table S1. ANOVA tests for differences between treatment and control nests in asymptotic 

size (A), growth rate (K), and time of growth curve inflection (ti).  Mean values are provided 

for treatment and control nestlings, followed by SE, F statistics, and p-values. Significant (p 

< 0.1) and highly significant (p < 0.005) effects are denoted as * and ** respectively. Results 

are presented for mass growth, wing growth, and tarsus growth. Species used for the 

experiment are reported in alphabetical order (Chestnut-crested Yuhina, Cordilleran 

Flycatcher, Gray-headed Junco, House Wren, Mountain Chickadee, Red-faced Warbler, 

Western Bluebird).  

 

Species: Chestnut –crested Yuhina 
   

Variable 

Treat. 

Mean 

Treat. 

SE 

Control 

Mean 

Control 

SE 
F p 

Mass Growth: 
      

 
A (asymptote; g) 10.46 0.91 10.98 1.23 1.13 0.288 

 
K (growth rate)* 0.459 0.02 0.457 0.03 7.61 0.006 

 
ti (inflection time; days) 3.91 0.30 4.21 0.45 0.66 0.414 

Wing Growth: 
      

 
A (asymptote; mm) 49.63 8.45 45.07 4.69 0.18 0.659 

 
K (growth rate) ** 0.333 0.02 0.317 0.01 11.46 0.001 

 
ti (inflection time; days) * 7.17 0.92 9.23 6.62 0.49 0.074 

Tarsus Growth: 
      

 
A (asymptote; mm) 21.22 1.89 18.84 0.87 < 0.01 0.953 

 
K (growth rate)* 0.275 0.02 0.242 0.01 4.82 0.030 

 
ti (inflection time; days) 3.74 0.78 2.47 0.33 0.46 0.497 

 

Species: Cordilleran Flycatcher 
   

Variable 

Treat. 

Mean 

Treat. 

SE 

Control 

Mean 

Control 

SE 
F p 

Mass Growth: 
      

 
A (asymptote; g) 12.99 0.09 13.24 0.35 < 0.01 0.966 

 
K (growth rate)* 0.432 0.008 0.469 0.17 6.45 0.012 

 
ti (inflection time; days)* 5.08 0.21 4.43 0.35 4.03 0.047 

Wing Growth: 
      

 
A (asymptote; mm) 58.51 1.43 71.66 9.17 2.00 0.159 

 
K (growth rate)* 0.284 0.008 0.235 0.02 5.64 0.019 

 
ti (inflection time; days) 8.84 0.21 10.16 1.10 1.37 0.244 

Tarsus Growth: 
      

 
A (asymptote; mm) 18.75 0.26 18.27 0.49 0.76 0.384 

 
K (growth rate) 0.269 0.007 0.299 0.01 2.23 0.131 

 
ti (inflection time; days) 3.56 0.27 2.76 0.44 2.26 0.135 
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Species: Gray-headed Junco 
   

Variable 

Treat. 

Mean 

Treat. 

SE 

Control 

Mean 

Control 

SE 
F p 

Mass Growth: 
      

 
A (asymptote; g) 18.74 0.39 18.97 0.49 0.13 0.720 

 
K (growth rate) 0.507 0.02 0.52 0.03 0.17 0.676 

 
ti (inflection time; days) 4.07 0.16 3.94 0.24 0.19 0.665 

Wing Growth: 
      

 
A (asymptote; mm) 76.19 14.19 69.15 6.80 < 0.01 0.938 

 
K (growth rate) 0.289 0.02 0.285 0.04 < 0.01 0.931 

 
ti (inflection time; days) 8.68 1.26 8.96 1.94 0.01 0.901 

Tarsus Growth: 
      

 
A (asymptote; mm) 23.91 0.58 23.82 0.36 < 0.01 0.926 

 
K (growth rate) 0.395 0.02 0.381 0.011 0.12 0.722 

 
ti (inflection time; days) 2.76 0.19 2.715 0.21 0.01 0.899 

 

Species: House Wren 
   

Variable 

Treat. 

Mean 

Treat. 

SE 

Control 

Mean 

Control 

SE 
F p 

Mass Growth: 
      

 
A (asymptote; g) 11.12 0.24 11.13 0.24 0.08 0.779 

 
K (growth rate) 0.503 0.01 0.49 0.012 0.59 0.440 

 
ti (inflection time; days) 4.73 0.14 4.88 0.14 0.07 0.277 

Wing Growth: 
      

 
A (asymptote; mm) 51.49 1.32 51.52 1.38 < 0.01 0.938 

 
K (growth rate)* 0.228 0.006 0.24 0.007 4.01 0.031 

 
ti (inflection time; days) 10.90 0.26 10.75 0.26 0.01 0.901 

Tarsus Growth: 
      

 
A (asymptote; mm) 18.45 0.18 18.58 0.36 0.06 0.808 

 
K (growth rate)* 0.358 0.007 0.387 0.011 5.31 0.021 

 
ti (inflection time; days) 3.45 0.13 3.65 0.21 0.42 0.513 
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Species: Mountain Chickadee 
   

Variable 

Treat. 

Mean 

Treat. 

SE 

Control 

Mean 

Control 

SE 
F p 

Mass Growth: 
      

 
A (asymptote; g) 12.39 0.25 12.63 0.23 2.19 0.139 

 
K (growth rate) ** 0.345 0.007 0.391 0.007 18.05 <0.001 

 
ti (inflection time; days)** 7.00 0.24 6.00 0.18 16.08 <0.001 

Wing Growth: 
      

 
A (asymptote; mm)** 73.08 2.28 62.99 1.98 33.17 <0.001 

 
K (growth rate)** 0.202 0.004 0.222 0.003 14.75 <0.001 

 
ti (inflection time; days)** 14.15 0.21 12.56 0.14 37.57 <0.001 

Tarsus Growth: 
      

 
A (asymptote; mm) 19.43 0.14 19.64 0.10 1.76 0.183 

 
K (growth rate) 0.339 0.007 0.341 0.006 0.006 0.806 

 
ti (inflection time; days) 4.28 0.22 4.20 0.15 0.08 0.769 

 

Species: Red-faced Warbler 
   

Variable 

Treat. 

Mean 

Treat. 

SE 

Control 

Mean 

Control 

SE 
F p 

Mass Growth: 
      

 
A (asymptote; g) 10.07 0.32 10.02 0.36 < 0.01 0.925 

 
K (growth rate) 0.501 0.13 0.53 0.012 0.02 0.280 

 
ti (inflection time; days) 3.77 0.09 3.80 0.14 0.14 0.895 

Wing Growth: 
      

 
A (asymptote; mm) 54.10 2.26 59.59 3.97 1.44 0.233 

 
K (growth rate) 0.333 0.01 0.326 0.01 0.19 0.661 

 
ti (inflection time; days) 6.95 0.27 7.68 0.41 2.08 0.152 

Tarsus Growth: 
      

 
A (asymptote; mm) 19.78 0.50 19.71 0.65 < 0.01 0.924 

 
K (growth rate) 0.381 0.01 0.363 0.02 0.44 0.507 

 
ti (inflection time; days) 2.73 0.14 2.90 0.21 0.47 0.494 
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Species: Western Bluebird 
   

Variable 

Treat. 

Mean 

Treat. 

SE 

Control 

Mean 

Control 

SE 
F p 

Mass Growth: 
      

 
A (asymptote; g) 26.76 0.18 26.30 0.46 1.20 0.273 

 
K (growth rate) 0.440 0.007 0.405 .007 0.79 0.373 

 
ti (inflection time; days) 5.7 0.09 5.52 0.10 0.16 0.405 

Wing Growth: 
      

 
A (asymptote; mm) 87.93 1.80 89.39 3.17 0.15 0.690 

 
K (growth rate) 0.223 0.004 0.224 0.007 0.01 0.896 

 
ti (inflection time; days) 12.67 0.21 12.87 0.36 0.21 0.645 

Tarsus Growth: 
      

 
A (asymptote; mm) 21.34 0.15 21.08 0.22 1.33 0.248 

 
K (growth rate) 0.350 0.005 0.357 0.008 0.95 0.329 

 
ti (inflection time; days) 3.3 0.11 3.12 0.18 1.01 0.313 
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Summary 

1. Variation in post-natal growth rates is substantial among organisms and especially 

strong among latitudes. Tropical species typically have slower growth than north-

temperate relatives. Metabolic rate is thought to be a critical mechanism underlying 

post-natal growth (after accounting for the effect of body mass).  However, 

comparative tests on a large spatial scale are lacking, and the importance of 

metabolism for growth rates remains unclear both within and particularly across 

latitudes.  

2. Songbirds exhibit strong interspecific variation in growth rates across geographic 

space, although within latitudes an association between metabolic rate and growth 

rate has not always been observed.  Moreover, the hypothesis that differences in 

growth rates across latitudes reflect underlying differences in metabolism is untested. 

Here we investigate these possibilities across north temperate, south temperate and 

tropical study sites.   

3. Phylogenetic analyses showed that, for a given body mass, metabolic rates of north 

temperate nestlings were higher than tropical relatives. Metabolic rates independent 

from body mass correlated with post-natal growth rates both within and among 

latitudes. Also, when accounting for interspecific differences in metabolic rates 

offspring body mass explained substantial variation in growth rates as expected under 

classic allometric theory.  

4. Our results suggest that variation in metabolic rates has an important influence on 

broad patterns of avian growth rates at a global scale. We recommend further studies 
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that address the ecological and physiological costs and consequences of variation in 

metabolism and growth rates.  

 

Key-words: body mass, life history theory, metabolic rate, physiology, temperate 

and tropical nestlings.   
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Introduction 

Growth rates of offspring vary extensively among taxa, especially when comparing 

slow-growing tropical versus fast-growing north temperate organisms (Case1978; 

Roff 1992; Arendt 1997). Fast growth can decrease the risk of time-dependent 

mortality (Skutch 1949; Case 1978; Ricklefs 1993; Benrey & Denno 1997; Remeš & 

Martin 2002), allow earlier access to food and other resources (Conover & Present 

1990), and increase opportunities for repeated reproductive events (Sibly & Calow 

1986). However, fast growth can also negatively affect a broad array of traits related 

to organismal quality (Arendt 2003; Alonso-Alvarez et al. 2007; Arriero, Majewska 

& Martin 2013) and can reduce longevity (Metcalfe & Monaghan 2003; Hulbert et al. 

2007; Lee, Monaghan & Metcalfe 2013; but see Martin et al. 2015). Despite these 

important ramifications for organismal quality and fitness (Starck & Ricklefs 1998), 

our understanding of the physiological mechanisms underlying broad interspecific 

and latitudinal variation in growth remains limited (Dmitriew 2011; Flatt & Heyland 

2011). 

Body mass, body temperature, and metabolic rate are thought to be responsible for 

extensive interspecific variation in rates of cellular proliferation (von Bertalanffy 

1957). In particular, ontogenetic models predict that for a given temperature and body 

mass, the rate of somatic growth increases with metabolic rate (West, Brown & 

Enquist 1997; West, Brown & Enquist 2001). While this relationship has long been 

accepted, recent results have questioned the generality of metabolic rate as a 

pacemaker for growth within (Burton et al. 2011) and among species (Glazier 2014). 
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This uncertainty is highlighted in songbirds (Fig. 1) where the influence of 

metabolism and body mass on growth rates remains unclear. 

Previous interspecific tests of the relationship between growth and metabolism in 

birds within latitudes have found no correlation (Konarzewsky et al. 2000), a weak 

positive correlation (Williams et al. 2007), and a positive correlation (Drent & 

Klassen 1989; Klassen & Drent 1991). However, the latter two studies did not 

directly measure metabolic rate but projected it from allometric equations.  Moreover, 

reanalysis of their data yielded conclusions opposite to those of the original tests 

(Konarzewsky 1995), increasing the uncertainty surrounding the metabolism-growth 

relationship. The ability of metabolic rate to explain differences in growth rates of 

songbirds is further questioned by the absence of a correlation between offspring 

body mass and growth rate (Martin et al. 2011), opposite to expectations under 

scaling theory (West et al. 2001). Overall, this inconclusive evidence begs for studies 

directly testing if metabolism explains interspecific variation in avian growth. 

While the role of metabolism in explaining growth rate variation within latitudes has 

been unclear, the role of metabolism in determining latitudinal differences in growth 

rates is untested. Metabolic rates of adults are lower in tropical songbirds compared to 

temperate relatives (Wikelski et al. 2003; Wiersma et al. 2007). If nestlings exhibit 

the same latitudinal pattern, then this may explain geographic variation in growth 

rates.  Interestingly, embryonic metabolism did not differ among latitudes (Martin, 

Ton & Nicklison 2013), raising questions about latitudinal patterns of metabolism in 

offspring. Of course, metabolic rates can change across life stages (Glazier 2005), 

which emphasizes the need for direct measurements of post-natal metabolism. Here, 
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we test the hypothesis that metabolic rates underlie interspecific growth rates of 

songbirds both within and among latitudes. 

  

Materials and Methods 

STUDY AREAS AND SPECIES 

Data were collected in a high elevation (2350m) mixed forest in north-temperate 

Arizona, USA (34° 34’ N, 111° 14 W); in a tropical mid-elevation forest (1450-1950 

m) in Malaysia (5° 59’N , 116° 34’ E); and in a south-temperate dwarf shrubland 

located at sea level in South Africa (33° 41’ S, 18° 26’ E) (see Martin et al. 2015). 

Our sample included 59 species from 52 genera and 25 families within the order 

Passeriformes spanning substantial variation in body mass and rates of post-natal 

growth (see data accessibility). 

 

METABOLIC MEASUREMENTS 

We measured metabolic rates for 436 nestlings of 59 passerine species (see Table S1 

in supporting information). Sample size varied between 1 and 13 with a mean ± SE of 

7.4 ± 0.44 individuals measured per species. Only one nestling per clutch was tested 

to ensure independence among samples. Measurements were taken for 22 species in 

Arizona from May through July between 2011 and 2014; 23 species in Malaysia from 

February through April in 2012-2014; and 14 species in South Africa between August 

and November 2014. To account for possible effects of circadian rhythms, such as 

ambient temperature and rates of food delivery, on metabolic rates, measurements 

were taken between 11 a.m. and 5 p.m. 
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We recorded oxygen consumption [VO2 (mL h-1)] at 39.0 oC in an open flow 

respirometry system using a Foxbox field gas analyzer (Sable System, Las Vegas, 

NV, USA). The temperature of 39.0 oC was selected because it appears to match with 

the thermoneutral zone (temperature of lower oxygen consumption) for our species. 

We reached this conclusion based on extensive metabolic measurements we 

performed along a five steps Q10 interval of temperatures from 31 to 41 oC 

(unpublished data). Also 39.0 oC best approximated the average value of body 

temperature recorded in the field for the species studied here (38.95 ± 0.0586 oC). We 

measured a nestling’s internal body temperature as soon as it was removed from a 

nest and before the metabolic measurements using a HH506RA Multilogger 

Thermometer (Omega, Stamford, CT, USA).  After inserting a 0.8 mm diameter 

thermocouple in the nestling’s cloaca, we monitored core body temperature for at 

least 10 seconds and recorded the highest temperature value for each individual. 

Metabolic rates were measured at pin break, a standardized developmental stage 

when primary feathers break their sheaths and thermoregulatory capacities are 

comparable among species (Fig. 1, Sogge et al. 1991; Pereyra & Morton 2001). 

Therefore recording VO2 at pin break allowed us to control for interspecific variation 

in thermoregulation and its effect on metabolism during growth. 

 Each nestling was put in a 3.2L stainless-steel airtight metabolism chamber 

where it could sit on a cup-shaped piece of iron mesh that prevented extensive 

movements of the nestling while still allowing normal airflow. The chamber sat in a 

large, dark, insulated cabinet with a Peltier device (Pelt-4; Sable Systems) 

maintaining temperature at 39 ± 0.1°C. The chamber was connected to an open-flow 
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system and flushed with 200-300 milliliters per minute flow of atmospheric air 

scrubbed of CO2 and water vapor. These flow rates guaranteed a stable proportion of 

oxygen available to birds within the sampled body range (Table S1). Air was filtered 

through scrubbers with Soda Lime, Magnesium Perchlorate and Drierite to remove 

water and CO2 (Lighton 2008).  After allowing the nestling to become accustomed to 

the chamber for 30 minutes, an initial baseline was recorded for about 10 minutes. 

Subsequently, VO2 was measured continuously every 0.5s until a plateau was reached 

(stable oxygen readings for at least 10 minutes). Lastly, a final baseline was recorded 

for 10 more minutes. The two baselines were later used to correct for potential drift in 

ambient O2 during measurements and thus maximize the accuracy of our estimates. 

VO2 was calculated as the most stable five minutes of oxygen consumption within the 

plateau. The total amount of time needed to complete a measurement ranged from 70 

to 110 minutes depending on nestling size. After completion of VO2 measurements, 

nestlings were fed with commercial food for altricial birds and returned to their nest 

unharmed. VO2 (mL h-1) was calculated in ExpeData (ver. 1.3.2) software from Sable 

Systems using the formula VO2 = FRi(Fio2 – Feo2)/(1-Feo2). Where FRi is the incurrent 

mass flow rate scrubbed from water vapor and CO2, Fio2 is the incurrent fractional 

concentration of oxygen, and Feo2 is the excurrent fractional concentration of oxygen 

(Lighton 2008). 

 

GROWTH RATE 

Nestling growth rates were estimated for a total of 53 species. Small sample sizes 

prevented us from obtaining robust data on growth rates for two species in Arizona, 

two in Malaysia, and two in South Africa. Our growth rate estimates are based on 
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extensive sampling lasting 15 years (1999-2013) in Arizona, 6 years (2009-2014) in 

Malaysia, and 5 years (2000-2004) in South Africa. To calculate growth rates, we 

measured nestling body mass at the same time (± 1h) every day for the first three days 

after hatch and then every other day until fledge. We used GemPro 250 portable 

electronic scales (MyWeigh, Phoenix, Arizona, USA) with an accuracy of ± 0.001 g. 

We calculated the growth rate constant (k) for each species using logistic regression; 

a standardized and widely used method that allows interspecific comparison 

independent of absolute development time and body mass (Ricklefs 1968; Remeš & 

Martin 2002). Growth rates data are available online at the following link 

http://dx.doi.org/10.5061/dryad.ks62j. 

 

STATISTICAL ANALYSIS 

We produced our estimates for metabolic rate (VO2 at 39 oC) and body mass using a 

linear mixed model to capture within and among species variation for each parameter 

of interest. To explain the scaling relationship between metabolic rate (VO2 at 39 oC) 

and body mass, we ran a generalized linear model with body mass, site and the 

interaction between body mass and site as fixed factors and species’ metabolic rate as 

the response variable.  Both nestling metabolic rate and body mass were log10 

transformed to meet assumptions of normality. To evaluate whether these 

relationships varied across sites, we conducted post hoc tests for differences in slopes 

among sites. To control for possible phylogenetic effects (Felsenstein 1985), we 

conducted a Phylogenetic Generalized Least Squares (PGLS) analysis using the 

Caper package in R (Orme 2013). To create the phylogenetic tree used to constrain 

the analysis, we sampled 1000 trees containing our study species from 
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www.birdtree.org (Jetz et al. 2012) using the Hackett backbone (Hackett et al.  2008). 

We then produced a majority-rules consensus tree using the program Mesquite 

(Appendix S1 in supporting information, Maddison & Maddison 2001). We used the 

scaling parameter Pagel’s lambda (λ) as a measure of phylogenetic signal, which can 

range form 0 to 1 (Pagel 1999).  A value closer to 0 indicates lower similarity in traits 

among species than strictly expected by their phylogenetic relationships based on a 

Brownian motion model of evolution (Pagel 1999). The λ values produced by our 

PGLS analysis were based on maximum likelihood optimization.  

To assess how metabolic rates may influence growth rates, we ran an additional 

PGLS model, with growth rate as the response factor and metabolic rate, body mass, 

site, site × body-mass and site × metabolic rate interaction terms as fixed factors. We 

used backward-stepwise selection criteria to pick the best model and dropped non-

significant variables from our analysis (Table S2). Full model outputs including all 

variables are listed in Tables S3 and S4. All statistical analyses were done in R 

v.3.0.3 (R Development Core Team 2014, Vienna, Austria).  

 

Results  

Metabolic rate increased with nestling body mass for 59 species of songbirds at all 

three latitudes (Fig. 2). The slope of this scaling relationship was 0.77 ± 0.022 (β ± 

SE), very close to the ¾ exponent expected under allometric theory (Kleiber 1932). 

For a given body mass, metabolic rates were significantly higher for north temperate 

species compared to those in the south temperate and tropics (Table 1). Also, 



 73

metabolic rates of nestlings in the south temperate were higher than in the tropics but 

the differences were not significant (Table 1).  

The residual variation in metabolic rate unexplained by body mass strongly correlated 

with interspecific nestling growth rates (Fig 3b; Table 2). Moreover, latitudinal 

differences in growth disappeared as emphasized by the lack of significance of the 

“site” variable (P = 0.814) (Table S2). Allometric rules predict that growth rates 

should decrease with increasing body mass. When accounting for interspecific 

differences in metabolic rate nestling body mass explained 33% of interspecific 

variation in growth rate among sites (Fig. 3a; Table 2). None of the interactions terms 

tested in our models were significant indicating similar relationships among sites and 

were therefore dropped from the analysis and reported only in the supporting 

information (Tables S1 and S2).  The λ values produced by our PGLS analyses were 

all greater than 0 but less than 1 (Table 1, 2) as seen in other comparative studies 

among birds and passerines in particular (Freckleton, Harvey & Pagel 2002)   

 

Discussion 

Predictions that body mass and metabolism should underlie growth rate variation 

have not been well supported in interspecific avian studies within latitudes (Dunn 

1980; Klassen & Drent 1991; Konarzewsky 1995; Konarzewsky et al. 2000; Williams 

et al. 2007), and have never been tested across latitudes. We directly measured 

growth, body mass, and metabolic rates from three bird communities across the 

world, and documented strong correlations between these traits. Moreover we 

demonstrated that a geographic pattern in metabolism coincided with a known 
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latitudinal gradient in growth rates (Martin et al. 2011). North-temperate nestlings 

had higher metabolic rates and faster growth than south-temperate and tropical 

species. Previous studies have argued that metabolic variation in adult songbirds 

among latitudes reflected differences in “pace of life” (Wikelski et al. 2003; Wiersma 

et al. 2007). This argument revolves on theoretical expectations (Ricklefs & Wikelski 

2002) and direct tests (Williams et al. 2010) suggesting that life history and 

physiological traits are expressed in coordination along a slow-fast continuum. Our 

study supported these previous findings by offering correlative evidence that a 

physiological trait (metabolic rate) underlies broad interspecific variation in a major 

life-history trait (rate of growth).  

 The latitudinal metabolic differences we found between tropical and north-

temperate sites were not detected for embryonic metabolic rates for the same species 

(Martin et al. 2013). However, embryos are ectothermic while nestlings are first 

poikilothermic and finally endothermic as they grow. These radically different 

thermoregulatory conditions are known to be associated with equally different 

metabolic regimes (Peterson, Nagy & Diamond 1990).  Therefore, dissimilarities 

between studies may reflect ontogenetic changes in metabolism across life stages of 

the same organism (White & Kearney 2013).  

 This stage-dependent nature of metabolic processes may also explain 

differences in the scaling relationship between metabolic rate and body mass among 

studies (Glazier 2005). Our slope for nestlings closely approximated the traditional ¾ 

exponent expected under classic scaling theories (Kleiber 1932, West et al. 1997, 

Banavar et al. 2014). However, this result did not match predictions of shallow slopes 
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close to ⅔ for organisms of small body size (Kolokotrones et al. 2010). Our scaling 

exponent was higher than for embryos (Martin et al. 2013) and adults (Wiersma et al. 

2007) of songbirds, but lower than for growing young in other avian studies (Klassen 

& Drent 1991). Similar ontogenetic changes in allometric scaling have been 

previously documented (Czarnolesky et al. 2008; Peng et al. 2010; Glazier, Hirst & 

Atkinson 2015) and contribute to the debate over the existence of a universal slope 

for the metabolism-body mass correlation (West et al. 1997; White, Cassey & 

Blackburn 2007) 

  Previous studies have found weak effects or failed to detect the predicted 

negative relationship between body mass and growth rate (Remes and Martin 2002; 

Martin et al. 2011). Here we found that, when taking into account interspecific 

differences in metabolic rate, body mass explained a good part of growth rates 

variation. This result unveils the masking effect that metabolic rate can have on 

allometric relationships and further emphasizes the importance of interspecific 

differences in metabolism for broad geographic patterns of growth. Metabolic 

variation unexplained by body mass may be favored by environmental mortality 

during offspring growth (Rose 1991), but this possibility needs testing.  

 Understanding the selective pressures that influence metabolic variation would 

be fruitful because of the potential role of metabolism in life history evolution and 

“rate of living” theory (Pearl 1928). For example, high metabolic activity favoring 

fast growth may induce high production of reactive oxygen species (ROS) (Harman 

1955). These metabolic byproducts have been hypothesized to carry physiological 

costs paid off later in life via oxidative damage that increase probability of adult 
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mortality (Harman 2001; Hulbert et al. 2007). Yet, the actual connection between 

high metabolism, ROS production, and costs for adult survival is still debated (Barja 

2007). Some evidence also suggests that the intrinsic costs of growth rate variation 

may be of less importance than extrinsic sources of mortality in passerines (Martin et 

al. 2015). Future studies should elucidate if the variation in metabolic rate underlying 

post-natal growth is also a possible mediator of trade-offs between offspring and adult 

mortality.  
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Figures 

Fig. 1. Hermit thrush (Catharus guttatus) on pin break day. This is a species 

commonly breeding at our Arizona study site; the nestling just underwent metabolic 

measurements and after being fed it will be ready to re-join its nest of origin. 

 

Fig. 2. Allometric scaling of metabolic rate for 59 species of songbirds nestlings. The 

lines represent a linear regression of body mass and metabolic rate (both log10 

transformed) for each of the three latitudes investigated. For a given body mass, 

metabolic rate of north temperate species (Arizona) is significantly higher compared 

to that of species from tropical and south temperate regions (Malaysia and South 

Africa). 

 

Fig. 3. Partial regression plots of growth rates for 52 species of songbirds’ nestlings at 

three latitudes as a function of a) log10 body mass while accounting for metabolic rate 

and b) log10 metabolic rate when controlling for body mass. Bigger body sizes are 

associated with slower growth while higher metabolic rates yield faster growth within 

and among sites.
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Figure 1. 
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Tables 

Table 1. Summary of the model representing the scaling relationship between 

metabolic rate (ml O2 h
-1 at 39o C), and log10 transformed body mass (g) with site as a 

fixed factor. Differences in metabolic rates between sites are listed as pair-wise 

contrasts.  We report effect size (R2), lambda values (λ), coefficients with standard 

error (β ,SE), F-values, degrees of freedom (df) , and significance (P) obtained from 

PGLS (Orme 2013) for 59 species of passerine nestlings in Arizona, Malaysia and 

South Africa.  

 

  

Offspring metabolic rate as the dependent variable, (R2=0.94), (λ = 0.710) 

Variable β (SE) F df P-value 

Body mass 0.771 (0.022) 1240.4 1 <0.001 

Site --- 9.347 2 <0.001 

    Malaysia vs Arizona -0.065 (0.022) --- - <0.001 

    South Africa vs Arizona -0.046 (0.015) --- - 0.003 

    South Africa vs Malaysia 0.018 (0.013) --- - 0.164 

Error   55  
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Table 2. Summary of the model for offspring growth rates (k) as a function of log10 

transformed body mass (g), and log10 metabolic rate (ml O2 h
-1 g-1 at 39o C). We 

report effect size R2), lambda values (λ), coefficients with standard error (β ,SE), F-

values, degrees of freedom (df) , and significance (P) obtained from PGLS (Orme 

2013) for 53 species of passerine nestlings in Arizona, Malaysia and South Africa. 

 

 

 

 

Offspring growth rate (k) as the dependent variable (R2 = 0.44), (λ = 0.573). 

Variable β (SE) F df P-value 

Residual metabolic rate 0.780 (0.152) 24.95 1 <0.001 

Body mass  -0.720 (0.125) 33.06 1 <0.001 

Error   50  
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Table S1. List reporting parameter estimates, standard errors (SE), and sample sizes (N = 

number of individuals) of body mass and metabolic rate for each of the 59 nestling species 

studied at our three sites (AZ=Arizona, ZA=South Africa, MY=Malaysia). 

Species Mass (g) SE 

Metabolic 

rate (VO2 

(mL h-1)) 

SE N Site 

Empidonax occidentalis  10.53 0.227 0.700 0.031 11 AZ 

Vireo plumbeus 12.94 0.505 0.965 0.064 5 AZ 

Vireo gilvus 9.93 0.347 0.807 0.010 6 AZ 

Sialia mexicana 22.42 0.571 1.309 0.034 11 AZ 

Myadestes townsendi 27.48 - 1.615 - 1 AZ 

Catharus guttatus 20.76 0.504 1.279 0.053 10 AZ 

Turdus migratorius 47.99 1.899 2.570 0.125 10 AZ 

Sitta canadensis 9.39 0.157 0.727 0.030 11 AZ 

Sitta carolinensis 17.53 0.374 1.039 0.045 10 AZ 

Certhia americana 6.86 0.162 0.568 0.020 10 AZ 

Troglodytes aedon 9.62 0.231 0.615 0.034 13 AZ 

Poecile gambeli 9.74 0.265 0.677 0.050 12 AZ 

Junco hyemalis 15.32 0.263 0.962 0.025 10 AZ 

Spizella passerina 9.68 0.251 0.773 0.023 10 AZ 

Pipilo chlorurus 19.80 0.547 1.224 0.122 9 AZ 

Pipilo maculatus 21.81 0.508 1.494 0.055 9 AZ 

Oreothlypis celata 7.79 0.166 0.663 0.020 10 AZ 

Oreothlypis virginiae 6.94 0.198 0.598 0.029 10 AZ 

Setophaga auduboni 10.12 0.337 0.834 0.052 8 AZ 

Cardellina rubrifrons 8.48 0.182 0.721 0.039 10 AZ 

Piranga ludoviciana 19.11 1.106 1.424 0.042 6 AZ 

Pheucticus melanocephalus 23.71 1.272 1.914 0.107 3 MY 

Pachycephala hypoxantha 15.50 0.631 0.912 0.043 7 MY 

Rhipidura albicollis 9.15 0.216 0.681 0.025 9 MY 

Myophonus borneensis 84.94 5.939 2.977 0.189 7 MY 

Geokichla citrina 37.65 - 1.932 - 1 MY 

Chlamydochaera jefferyi 34.76 0.962 1.743 0.083 6 MY 

Brachypteryx montana 16.47 0.491 0.810 0.028 10 MY 

Vauriella gularis 22.77 0.877 1.306 0.043 9 MY 

Ficedula hyperythra 8.41 0.266 0.624 0.018 10 MY 

Ficedula westermanni 7.14 - 0.472 - 1 MY 

Eumyias indigo 15.03 0.103 0.877 0.038 3 MY 

Enicurus leschenaulti 25.36 1.407 1.166 0.026 4 MY 

Alophoixus ochraceus 22.69 1.132 1.325 0.054 4 MY 

Zosterops atricapilla 6.29 - 0.542 - 1 MY 

Urosphena whiteheadi 7.78 0.340 0.480 0.020 6 MY 

Horornis vulcania 8.60 - 0.573 - 1 MY 

Phyllergates cuculatus 6.10 0.289 0.448 0.022 5 MY 

Phylloscopus trivirgatus 8.29 0.196 0.549 0.021 8 MY 

Seicercus montis 6.39 0.128 0.469 0.017 7 MY 

Pellorneum pyrrogenys 11.40 0.654 0.769 0.029 10 MY 

Napothera crassa 18.20 0.449 0.853 0.036 2 MY 
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Stachyris nigriceps 12.19 0.262 0.893 0.034 13 MY 

Yuhina everetti 8.69 0.317 0.539 0.018 13 MY 

Aethopyga temminckii 4.90 0.239 0.333 0.012 4 MY 

Telophorus zeylonus 41.15 0.949 2.182 0.165 4 ZA 

Dessonornis caffra 20.12 0.530 1.436 0.031 8 ZA 

Tychadeon coryphaeus 16.17 0.846 0.941 0.028 9 ZA 

Pycnonotus capensis 19.94 0.780 1.597 0.071 11 ZA 

Cisticola subruficapilla 7.41 0.394 0.676 0.052 4 ZA 

Prinia maculosa 7.23 0.102 0.618 0.014 12 ZA 

Apalis thoracica 8.91 0.269 0.723 0.026 10 ZA 

Zosterops capensis 7.22 0.395 0.665 0.041 8 ZA 

Sphenoeacus afer 17.28 0.775 1.392 0.077 4 ZA 

Curruca subcaeruleum 8.93 0.232 0.779 0.056 2 ZA 

Anthobaphes chalybeus 6.24 0.225 0.511 0.018 9 ZA 

Crithagra flaviventris 11.19 0.514 1.103 0.064 8 ZA 

Crithagra albogularis 18.46 1.161 1.833 0.031 3 ZA 

Emberiza capensis 13.28 0.691 1.367 0.064 5 ZA 
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Appendix S1.  
Majority rules consensus tree based on 1000 trees from birdtree.org (Jetz et al. 2012) showing 

the phylogenetic associations among the 59 species studied. Branches are color coded as 

follow: Yellow=Arizona, Red=South Africa, Blue=Malaysia.  
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Empidonax occidentalis
Telophorus zeylonus
Pachycephala hypoxantha
Rhipidura albicollis
Vireo gilvus
Vireo plumbeus
Parus gambeli
Sphenoeacus afer
Phylloscopus trivirgatus
Seicercus montis
Urosphena whiteheadi
Orthotomus cuculatus
Cettia vulcania
Pycnonotus capensis
Alophoixus ochraceus
Cisticola subruficapilla
Apalis thoracica
Prinia maculosa
Sylvia subcaerulea
Yuhina everetti
Zosterops pallidus
Zosterops atricapilla
Stachyris nigriceps
Trichastoma pyrrogenys
Napothera crassa
Nectarinia chalybea
Aethopyga mystacalis
Serinus flaviventris
Serinus albogularis
Piranga ludoviciana
Pheucticus melanocephalus
Dendroica coronata
Cardellina rubrifrons
Vermivora virginiae
Vermivora celata
Emberiza capensis
Spizella passerina
Junco hyemalis
Pipilo maculatus
Pipilo chlorurus
Certhia americana
Troglodytes aedon
Sitta canadensis
Sitta carolinensis
Sialia mexicana
Myadestes townsendi
Catharus guttatus
Chlamydochaera jefferyi
Zoothera citrina
Turdus migratorius
Cossypha caffra
Erythropygia coryphaeus
Eumyias indigo
Brachypteryx montana
Rhinomyias gularis
Ficedula hyperythra
Ficedula westermanni
Enicurus leschenaulti
Myophonus borneensis
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Table S2. Description of the backward-stepwise criteria used for best model selection. 

Models are ranked according to Δ AIC and number of model parameters (k).   

 

 

 

 

 

 

 

 

 

  

Metabolic rate as the dependent variable.  

Model Δ AIC k 

Body mass + site + site*body mass 1.90  4 

Body mass +site 0.00 3 

Body mass 12.94 2 

Growth rate as the dependent variable.  

Model Δ AIC k 

Metabolic rate + body mass + site + 

site*body mass + site*metabolic rate   

18.04 

  

6 

Metabolic rate + body mass + site + 

site*body mass  

15.40 5 

Metabolic rate + body mass + site  19.13 4 

Metabolic rate + body mass  0.00 3 
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Table S3. Summary of the model representing the scaling relationship between metabolic 

rate (ml O2 h-1 at 39o C), and log10 transformed body mass (g) with site as a fixed factor, and 

including a site*body mass interaction term. We report effect size (r2), lambda values (λ), 

coefficients with standard error (β ,SE), F-values, degrees of freedom (df) , and significance 

(P) obtained from PGLS (Orme 2013) for 59 species of passerine nestlings in Arizona, 

Malaysia and South Africa. 

 

 

 

   

Offspring metabolic rate as the dependent variable, (R2=0.96), (λ = 0.447) 

Variable β (SE) F df P-value 

Body mass 0.795 (0.046) 294.12 1 <0.001 

Site --- 8.892 2 <0.001 

Site*body mass --- 0.865 2 0.426 

Error   53  
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Table S4. Summary of the model for latitudinal comparisons of offspring growth rates (k) 

relative to log10 transformed body mass (g), and log10 residual metabolic rate (ml O2 h-1 g-1 at 

39o C), with site as a fixed factor, and including a site*body mass and a site*metabolic rate 

interaction terms. We report effect size (r2), lambda values (λ), coefficients with standard 

error (β ,SE), F-values, degrees of freedom (df) , and significance (P) obtained from PGLS 

(Orme 2013) for 53 species of passerine nestlings in Arizona, Malaysia and South Africa. 

 

 

  

 

Offspring growth rate (k) as the dependent variable (R2=0.53), (λ = 0.421). 

Variable β (SE) F df P-value 

Body mass  -0.051 (0.053) 11.48 1 0.001 

Residual metabolic rate 0.858 (0.270) 13.02 1 <0.001 

Site  --- 2.93 2 0.064 

Site*body mass --- 1.448 2 0.246 

Site*residual metabolic rate  0.414 2 0.663 

Error   44  
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Selection should drive the coevolution of life history strategies and associated 

physiological mechanisms but the sources of ecological mortality underlying this 

process remain unclear. High nest predation risk can be a major agent of selection 

favoring fast growth rates among songbird species and thereby may favor higher post-

natal metabolic rates. Metabolism is strongly linked to post-natal growth rate but can 

also be an important determinant of adult mortality. Therefore, increases in 

metabolism may be constrained in species with lower adult mortality probability 

because of potential intrinsic costs of high metabolism on longevity. Here we test 

these possibilities among songbird species at three latitudes.  We found that faster 

metabolic rate was associated with higher nest predation risk but not adult mortality 

probability. Our results provide a rare example of ecological sources of mortality 

acting on post-natal metabolic rate as a mechanism underlying offspring growth.  

 

Keywords: offspring predation, adult mortality, metabolic variation, growth rate, 

songbird nestlings. 
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1. Introduction 

Metabolic theory of ecology postulates that interspecific variation in metabolic rates 

underlay the slow-fast continuum in life history traits [1] . This link between 

physiology and life history has both bio-molecular and ecological causes [2] . 

However, while the former mechanisms are being actively investigated [1] , the latter 

are still poorly understood [3] .  Predation is a major source of ecological mortality 

during vulnerable developmental stages and underlies variation in post-natal growth 

[4] . Since rapid growth in turn requires support from metabolism  [5, 6] , high 

offspring predation rates might favor high metabolism as a way to achieve faster 

growth and enhance the probability of survival during early life stages. This 

hypothesis, however, remains untested, and as a result, limits our understanding of 

possible evolutionary causes of metabolic variation.  

The evolution of fast metabolism from nest predation risk may be constrained 

by potential physiological costs on longevity (e.g., see [7] ).  Indeed, high metabolic 

rate can produce high oxidative damage [8]  and result in trade-offs between fast 

growth and low organismal quality, both of which may increase adult mortality [9] . 

Thus, high offspring predation should favor fast metabolism while low adult mortality 

should favor slow metabolism to avoid oxidative damage and the detrimental 

consequences of fast growth. Here we provide a comparative test of the prediction 

that species under high predation during the post-natal stage should evolve fast 

metabolic rates, while species experiencing high adult mortality should evolve the 

opposite. We explore this possibility among songbird species at three latitudes 

encompassing substantial variation in post-natal metabolic rates.  
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2. Materials and Methods 

(a) Study Area and Species 

We measured metabolic rates, nest predation rates, and probability of adult mortality in 43 species of 

songbirds (order Passeriformes) at three latitudes (see supplementary material). We studied 16 species 

in high elevation (2300 m) mixed forest in Arizona (34° N latitude), 14 species in tropical mid-

elevation forest (1450-1950 m) in Malaysia (6°N), and 13 species in coastal shrubland at sea level in 

South Africa  [7] .  

 

(b) Metabolic measurements 

We recorded oxygen consumption [VO2 (mL h-1)] at 39.0 oC, a typical temperature experienced by 

songbird offspring while being brooded by parents, for 370 nestlings in an open flow respirometry 

system using a Foxbox field gas analyzer (Sable System, Las Vegas, NV, USA). Measurements were 

made on only one nestling per clutch and at pin break, a standardized developmental stage among 

species when primary feathers break their sheaths. Nestlings were placed in a 2.3L stainless-steel 

airtight chamber within a dark temperature controlled cabinet set at 39 ± 0.1°C. The chamber was 

flushed with 200-300 milliliters per minute flow of atmospheric air scrubbed of CO2 and water vapor  

[10] .  After allowing 30 minutes for the sample to adjust, VO2 was measured every 0.5s until a plateau 

(maximum oxygen consumption) was reached and maintained for at least 10 minutes. VO2 (mL h-1) was 

calculated as the O2 concentration value observed during the most stable 5 minutes of oxygen 

consumption within the plateau using ExpeData software (ver. 1.3.2) from Sable Systems (see [7]  for 

more details). 

 

(c) Nest predation rates and adult mortality probability 

We located and monitored large numbers of nests for 28 years in Arizona (1987-2014), six years 

(2009-2014) in Malaysia, and five years (2000-2004) in South Africa to obtain robust estimates of nest 

predation rates [4]. We calculated daily nest predation rates during the post-natal period with the 

logistic exposure method [11] .  
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 Adult mortality probability was obtained from capture-recapture and resighting of color-banded 

birds in each site [12]  for South Africa and [7]  for Arizona and Malaysia).  

 

(d) Statistical analysis 

To account for phylogenetic effects, we sampled 1000 trees from www.birdtree.org  [13]  using the 

Hackett backbone [14]  and produced a majority-rules consensus tree (see supplementary material) 

using the program Mesquite [15] . We then conducted Phylogenetic Generalized Least Squares (PGLS) 

analyses using the Caper package in R [16] .  

Estimates for metabolic rates (VO2 at 39 oC) and body masses of the 43 study species were 

obtained with a linear mixed model [4]. We used PGLS to test the ability of site as a fixed factor, and 

nest predation rate, adult mortality probability and body mass as covariates to explain variation in 

metabolic rate. We tested for differences in regression slopes among sites by including site × predation 

rate, site × adult mortality, and site × body mass interaction terms in the model. All statistical analyses 

were done in R v.3.0.3 for Macintosh (R Development Core Team 2014, Vienna, Austria).  

 

3. Results 

After accounting for nest predation, adult mortality, and site effects, body mass 

explained most of the variation in metabolic rate among species (table 1, figure 1 a), 

as expected under classic allometric theory  [17] . Nest predation explained residual 

variation in nestling metabolic rates (table 1, figure 1 b). Adult mortality probability 

did not correlate with any residual variation in metabolic rate (table 1, figure 1 c). 

Metabolism differed among sites (table 1), confirming the presence of a latitudinal 

pattern in metabolic variation detected by previous studies [4]. None of the 

explanatory variables in our analysis exhibited significant interactions among sites (p 

> 0.1) therefore the interaction terms were dropped from the model. 
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4. Discussion  

Metabolism can play an important role in many aspects of phenotypic 

variation among species [18] .  However, examples of ecological mortality sources 

underlying interspecific and geographic variation in metabolism are rare [3]. Here we 

show that nest predation explains part of the post-natal metabolic variation among 

diverse passerine species across the world. In contrast, we did not detect any 

influence of adult mortality probability in constraining metabolic rates. These results 

suggest that songbirds may not face a conflict between higher metabolism to increase 

growth rate to reduce nest predation risk and lower metabolism to reduce intrinsic 

costs that may shorten life.   

Songbirds appear to avoid this conflict by evolving physiological mechanisms 

that reduce the detrimental consequences of metabolic damage and fast growth. 

Indeed low rates of free radical production [19] , and membranes protecting cells 

from oxidative damages  [20]  are known to buffer the potentially negative effects of 

high oxygen consumption. These intrinsic defenses may relax possible constraints 

imposed by adult mortality probability while allowing nest predation to favor high 

metabolism to accelerate growth and minimize stage-dependent mortality.  

 Our results fit with previous evidence showing a strong effect of nest predation 

rate but not of adult mortality probability on post-natal growth rates [7] . Yet, the 

influence of mortality sources on intrinsic mechanisms such as metabolic rate that are 

responsible for growth were previously untested. Our results help link sources of 

environmental mortality and physiological mechanisms that may underlie phenotypic 

variation in post-natal growth.  
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Figure legends 

Figure 1. Partial regression plots of metabolic rate (ml O2 h
-1 at 39°C) as (a) a 

function of body mass after accounting for nest predation, adult mortality probability, 

and site, (b) as a function of nest predation rate after accounting for adult mortality 

probability, body mass, and site, and (c) as a function of adult mortality probability 

after accounting for nest predation rates, body mass, and site. Each point represents a 

species. 
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Tables 

 

Table 1. 

Linear model representing the relationship between metabolic rate (ml O2 h
-1 at 39o 

C), rate of nest predation, adult mortality probability, and body mass for 43 species of 

songbirds at three latitudes. We report effect size (R2), coefficients with standard error 

(β ,SE), F-values, degrees of freedom (df), and significance (P) obtained from PGLS.  

 

 

 

 

 

 

 

 

 

 

 

  

Mass-specific offspring metabolic rate as the dependent variable. R2 = 0.42 

Variable β (SE) F df P-value 

Body mass 0.798 (0.026) 916.3 1 <0.001 

Nest predation 1.027 (0.373) 7.562 1 0.017 

Adult mortality  0.112 (0.087) 1.638 1 0.206 

Site --- 3.174 2 0.052 

Error   37  
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Appendix S1. List reporting parameter estimates, standard errors (SE), and sample sizes (N = 

number of individuals) of body mass and metabolic rate for each of the 43 nestling species 

studied at our three sites (AZ=Arizona, ZA=South Africa, MY=Malaysia). 

 

Species Mass (g) SE Metabolic 

rate (VO2 

(mL h-1)) 

SE N Site 

Empidonax occidentalis  10.53 0.227 0.700 0.031 11 AZ 

Vireo gilvus 9.93 0.347 0.807 0.010 6 AZ 

Sialia Mexicana 22.42 0.571 1.309 0.034 11 AZ 

Catharus guttatus 20.76 0.504 1.279 0.053 10 AZ 

Turdus migratorius 47.99 1.899 2.570 0.125 10 AZ 

Sitta Canadensis 9.39 0.157 0.727 0.030 11 AZ 

Sitta carolinensis 17.53 0.374 1.039 0.045 10 AZ 

Certhia Americana 6.86 0.162 0.568 0.020 10 AZ 

Troglodytes aedon 9.62 0.231 0.615 0.034 13 AZ 

Poecile gambeli 9.74 0.265 0.677 0.050 12 AZ 

Junco hyemalis 15.32 0.263 0.962 0.025 10 AZ 

Pipilo chlorurus 19.80 0.547 1.224 0.122 9 AZ 

Oreothlypis celata 7.79 0.166 0.663 0.020 10 AZ 

Setophaga auduboni 10.12 0.337 0.834 0.052 8 AZ 

Cardellina rubrifrons 8.48 0.182 0.721 0.039 10 AZ 

Piranga ludoviciana 19.11 1.106 1.424 0.042 6 AZ 

Pachycephala hypoxantha 15.50 0.631 0.912 0.043 7 MY 

Rhipidura albicollis 9.15 0.216 0.681 0.025 9 MY 

Myophonus borneensis 84.94 5.939 2.977 0.189 7 MY 

Brachypteryx montana 16.47 0.491 0.810 0.028 10 MY 

Vauriella gularis 22.77 0.877 1.306 0.043 9 MY 

Ficedula hyperythra 8.41 0.266 0.624 0.018 10 MY 

Eumyias indigo 15.03 0.103 0.877 0.038 3 MY 

Enicurus leschenaulti 25.36 1.407 1.166 0.026 4 MY 

Alophoixus ochraceus 22.69 1.132 1.325 0.054 4 MY 

Phyllergates cuculatus 6.10 0.289 0.448 0.022 5 MY 

Seicercus montis 6.39 0.128 0.469 0.017 7 MY 

Pellorneum pyrrogenys 11.40 0.654 0.769 0.029 10 MY 

Stachyris nigriceps 12.19 0.262 0.893 0.034 13 MY 

Yuhina everetti 8.69 0.317 0.539 0.018 13 MY 

Dessonornis caffra 20.12 0.530 1.436 0.031 8 ZA 

Tychadeon coryphaeus 16.17 0.846 0.941 0.028 9 ZA 

Pycnonotus capensis 19.94 0.780 1.597 0.071 11 ZA 

Cisticola subruficapilla 7.41 0.394 0.676 0.052 4 ZA 

Prinia maculosa 7.23 0.102 0.618 0.014 12 ZA 

Apalis thoracica 8.91 0.269 0.723 0.026 10 ZA 

Zosterops capensis 7.22 0.395 0.665 0.041 8 ZA 

Sphenoeacus afer 17.28 0.775 1.392 0.077 4 ZA 

Curruca subcaeruleum 8.93 0.232 0.779 0.056 2 ZA 

Anthobaphes chalybeus 6.24 0.225 0.511 0.018 9 ZA 

Crithagra flaviventris 11.19 0.514 1.103 0.064 8 ZA 

Crithagra albogularis 18.46 1.161 1.833 0.031 3 ZA 
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Emberiza capensis 13.28 0.691 1.367 0.064 5 ZA 
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Appendix S2. Majority rules consensus tree based on 1000 trees from birdtree.org (Jetz et al. 

2012) showing the phylogenetic associations among the 43 species studied. Branches are 

color coded as follow: Dark gray=Arizona, Light grey=South Africa, Black=Malaysia. 
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