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Chapter 1 

Contemporary Sexual Selection Matches Weapon Size Divergence In a Rhinoceros Beetle 

Jillian F. del Sol 

  

Abstract 

 

Exaggerated weapons of sexual selection often diverge more rapidly and dramatically than other 

body parts, suggesting that relevant agents of selection may be discernible in contemporary 

populations. I examined the ecology, reproductive behavior, and strength of sexual selection on 

horn length in five recently diverged beetle populations that differ in relative horn size. I show 

that mating system ecology differs between these locations and corresponds with the local 

strength of contemporary selection on horn length. Comparisons of ecological conditions and 

selection strength across populations offer a critical first step towards meaningfully linking 

mating system dynamics, selection patterns, and diversity in sexually selected traits. 
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Introduction 

Sexually selected weapons used in male-male competition include some of the most 

ornate and diverse traits in the animal kingdom (Andersson 1994; Emlen 2008). Despite their 

shared purpose as tools of mating competition, weapons differ dramatically in shape, size, 

position/placement on the body, and elaboration between closely related taxa (Rosenberg 2001; 

Caro et al. 2003; Emlen et al. 2005; Bro-Jorgensen 2007; Schutze et al. 2007; Emlen 2008; 

Painting et al. 2014; McCullough et al. 2015)Their extreme size and rapid diversification imply a 

history of strong and likely divergent selection, but the elaboration and diversification of these 

structures are not well understood (e.g., West-Eberhard 1983; Kingsolver et al. 2001; 

McCullough et al. 2016). Surprisingly few studies have quantified selection acting on weapons 

in the wild, and results to date vary (Coltmann et al. 2002; Painting et al. 2015; Zeh et al., 1994; 

Kelly 2004; Hongo 2007; Kruuk et al. 2002; Wellborn 2000; Reviewed in O’Brien 2017), with 

many studies failing to detect evidence of any selection on weapons in contemporary populations 

(Poissant et al. 2008; Kim et al. 2011; Painting and Holwell 2014). This suggests that sexual 

selection on weapons is episodic, or that costs of these structures sometimes offset benefits, 

resulting in balancing net selection on weapon form (O’Brien et al. 2017). Differences in 

selective regimes on weapons may serve as a mechanism generating their diversity across clades. 

Identifying contemporary selective regimes and the factors that shape them could offer insight 

into the drivers of early stages of weapon divergence. 

Conspecific populations may differ in the intensity or nature of selection acting on male 

weapons, providing opportunities to test critical predictions of mating system theory, and to 

explore ecological factors responsible for driving the initial stages of weapon divergence (West-

Eberhard 1983; Bonduriansky and Day 2003; Kodric-Brown and Brown; Endler 1983; Wellborn 

2000; Miller and Svensson 2014). Here, I have capitalized on among-population variation in the 

relative size of a male weapon, the forked head horn of the Japanese rhinoceros beetle, to test 

whether patterns of contemporary selection in the wild are consistent with local differences in 

relative weapon size.  Specifically, I explore the ecology, reproductive behavior, and strength of 

sexual selection acting on horn length in five recently diverged beetle populations, three with 

relatively short and two with much longer horn sizes. I show that mating system ecology differs 

between these locations and corresponds with the local strength of contemporary selection on 

horn length. 
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The Japanese rhinoceros beetle, Trypoxylus dichotomus (Dynastinae), is a univoltine 

scarab found in broadleaf forests across the Asian continent (Enrodi 1985). This species has been 

studied most extensively on Honshu Island, Japan, where adults emerge from the soil during 

summer months and fly to wounds on the sides of mature oak, ash, and maple trees (e.g., 

Quercus mongolica, Q. acutissima, Q. serrata, Fraxinus griffithii, Acer plantanoides; Hongo 

2007) and feed on oozing sap (Siva-Jothy 1987; Setsuda et al., 1999; Hongo 2003, 2007). Males 

battle with rival males for residency at these feeding territories (Obata & Hidaka 1983; Siva-

Jothy 1987; Hongo 2003, 2007). Feeding sites are scarce, and therefore comprise limiting, 

localized and economically defensible resources, which are the predicted drivers of resource-

defense systems like that of T. dichotomus (Emlen 2008). Fights between males are frequent 

(Fig. 2), and males with relatively larger body sizes and longer horn lengths are most likely to 

win (Siva-Jothy 1987; Hongo 2003, 2007, 2010; Karino et al., 2005, Fig. 4). Females mate with 

males at these feeding territories before leaving to lay eggs in decomposing litter up to a 

kilometer or more away (McCullough et al., 2012; McCullough 2013). 

  Like most ‘exaggerated’ sexually selected weapons (Kodric-Brown & Brown 1984; Zeh 

& Zeh 1988; Iwasa & Pomiankowski 1999; Biernaskie et al., 2014), Trypoxylus horn size is 

strongly condition dependent (Karino et al. 2004, Emlen et al., 2012; Johns et al., 2014; Kojima 

2015). Males modulate weapon growth in response to larval nutrition in a manner consistent with 

a developmental norm of reaction (Karino et al. 2004; Johns et al. 2014).  Static scaling 

relationships between horn length and body size thus approximate the average underlying 

reaction norms between horn length and nutrition for a population (Emlen & Nijhout 2000; 

Shingleton et al., 2007; Dreyer et al. 2016; Mirth et al. 2016; O’Brien et al. 2017).   

The populations included in this study differ in their respective norms of reaction such 

that males in three locations (Puli and Chia-yi, Taiwan, and Yakushima Island, Japan) have horn 

lengths that are relatively shorter than males in the remaining two locations (Kameoka and 

Kyoto, Honshu Island, Japan; Figure 1). I use existing data from one of the long-horned 

populations (Kyoto; Hongo 2007) and season-long observations of male mating success, 

behavior, and ecology at the remaining four populations, to test whether the degree of resource 

limitation and resulting intensity of sexual selection was stronger in long-horned populations 

than in the short-horned populations. 

  



 3 

Methods and Materials 

 

Study locations. 

 

Ecological and behavioral observations were conducted at four populations, and these data were 

analyzed alongside prior data collected in Kyoto, Honshu, Japan between 2003 and 2006 (Hongo 

2007). The active breeding seasons at all locations lasts approximately 1.5 months.  However, 

since Taiwan is located at least 7 degrees latitude closer to the equator than the other locations, 

the breeding seasons of the two Taiwan sites started almost two months earlier than the other 

locations. This staggered onset of breeding permitted me to observe mating behavior at two 

different locations each year, one in the south (Taiwan) and the other farther north (Yakushima; 

Kyoto).   

In the summer of 2016, observations were conducted first on the forested campus of 

National Chi-Nan University, located in Puli, Taiwan (June-July), and then, in the second half of 

the summer (late July- August), on the island of Yakushima, Japan. In 2017, observations were 

conducted first on the forested campus of Chia-yi University in Chia-yi Taiwan; then later in the 

summer, beetles were observed in a deciduous forest in Kameoka, Japan. 

  

Observation, morphological measurements and scaling. 

 

Observations began around 19:00 each night (prior to dusk and beetle emergence) in order to 

allow researchers to capture unmarked males upon their arrival at active trees prior to their 

involvement in relevant behaviors. Males were gently captured with a net or gloved hands, and 

were quickly measured with dial calipers (Anytime Tools, CA, USA) and marked with a unique 

number on both elytra with a non-toxic paint pen (Blick Art Supply, IL, USA). Horn length was 

recorded with one end of the calipers at the clypeal projection near the mouthparts, and the other 

end extended to the tip of the inner right horn projection to capture the full functional length of 

the structure (Hongo 2007). Two measures of body size were recorded: elytral length (a straight 

line from the top of the scutellum to the bottom corner of the right elytron) and the maximum 

width of the pronotum (Supp. Fig. 1). Observations were conducted using headlamps with built 
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in red filters (RioRand, USA). Light beams were focused adjacent to beetles to minimize 

disturbance, and were turned to the lowest setting (200lm) whenever possible. 

 

Population Density and Resource Distribution. 

 

As with many beetles (e.g., Gries & Gries 1994; Rochat et al., 2004; Wertheim 2005), adult 

Trypoxylus dichotomus respond to aggregation pheromones and collect in local areas of high 

activity. Thus, even when putatively suitable host trees exist over wide areas, beetles tend to 

converge on a few focal host trees, resulting in locally dense populations that are widely 

separated from other such populations. Often, these exact localities are used by beetles in 

multiple years, resulting in stable hot-spots of beetle activity (e.g., Hongo 2003, 2007, 2012).  

  At each of our study locations we identified the local hotspot of activity and quantified 

ecological variables pertinent to the likely intensity of mate competition. These included the 

species of host tree, counts of the number of host trees with active territories, and nightly 

estimates of the number of available territories. Additionally, I conducted hourly counts of the 

numbers of males and females at territories, providing both nightly and cumulative estimates of 

overall beetle densities and local sex ratios. In addition to these population-wide measures, I and 

an undergraduate assistant conducted hour-long focal animal observations of males (Altmann 

1974) to measure the frequency and type of interactions with competitors and potential mates.  

  Because only reproductively active adults fly to feeding locations (Siva-Jothy 1984), I 

estimated the operational sex ratio as the average ratio of adult males to adult females at the 

breeding aggregations each night. I estimated the value of territories at each location as the 

average number of female visits per hour observed during our focal male observations. The cost 

of guarding a territory was measured as the average number of approaches and/or challenges by 

rival males per hour. Finally, we estimated the opportunity for selection by calculating the 

variance in male mating success as described by Shuster and Wade (2003). 

Focal animal observations were supplemented by regular population-wide censuses of 

matings, as successful copulations were infrequent enough that they were unlikely to occur 

during the focal male observations, and because we wanted to identify, as best as possible, every 

successful mating occurring in the local breeding assemblage during the season as they occurred 

(see “Selection on horn length in the wild”, below). Laboratory studies suggest that successful 
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sperm transfer requires a minimum of a half hour in copula (range 30 -150 minutes; Karino & 

Niiyama 2006) and, in the one field location examined prior to this study, copulation durations in 

the field typically lasted 30 min or longer (Hongo 2007). Thus, I surveyed all active trees every 

half hour throughout each night, locating every courting and copulating pair and recording the 

identity of mating males. Because successful copulation is associated with an easily recognizable 

posture distinct from courtship (Fig. 2), it is possible to discern at a distance any pairs of beetles 

in copula as well as the elytral ID number of marked males. In this way, our population surveys 

are likely to have captured the majority of successful copulations in the population during the 

entire breeding season. 

 

Function of male horns in combat.  

 

We used our focal male observations to measure the stages of escalation and outcome of male - 

male interactions at territories (del Sol et al in prep.). Additional sampling of fights was 

conducted intermittently throughout the season. For the present study, I confirmed that males use 

their horns in agonistic interactions with rival males at all study locations. To quantify the effect 

of body and horn size on fight outcome, I modeled the likelihood that the focal male wins using 

the predictor variables of the differences in horn or body size in a logistic general linear model 

for each site (Hardy and Briffa 2012; Painting et al. 2015).  

 

Statistical Analyses- Comparing relative horn length across populations.  

 

All statistical analyses were conducted in opensource RStudio (R v. 3.5.3 ; RStudio v. 1.1.463; R 

Foundation for Statistical Computing, 2016). To compare the relative weapon sizes of males in 

different populations in a biologically relevant manner, I regressed horn length on pronotum 

width, and compared linear, logistic, and Gompertz line fits using AIC for each population size 

(Nijhout and German 2012; Fig. 1). Population model pairs (both for log-transformed linear and 

logistic models) were compared using the Likelihood Ratio test to confirm the “long” and 

“short” –horned designation for each population. Residuals for selection models were calculated 

using the model with the lowest average AIC across populations.  
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Statistical Analyses- Selection on male horn length in the wild. 

 

As described in O'Brien et al (2017), selection on an exaggerated male weapon can be measured 

as a metric trait experiencing direct selection acting on absolute weapon size, or considering the 

highly phenotypically plastic nature of this trait, measuring instead bivariate selection on the 

relationship between weapon and body size (a 'reaction norm' perspective sensu Emlen and 

Nijhout 2000; Shingleton et al. 2007; Dreyer et al. 2016; Mirth et al. 2016; O’Brien et al. 2017). 

For each study population, I tested five hypotheses for selection on the head horn in male 

Trypoxylus:  (I) directional selection for larger absolute weapon size, (II) stabilizing selection on 

absolute weapon size, (III) proportional selection on reaction norms (increased reaction norm 

intercept), (IV) correlational selection on reaction norms (increased reaction norm slope), and 

(V) stabilizing selection on a the population reaction norm. Using field measures of mating 

success from our population-wide censuses, we tested for each form of selection in the four study 

locations for which we obtained mating data. 

  Morphological measures were mean standardized before analysis (Lande and Arnold 

1984). Logistic regressions were used to assess allometric relationships between horn length and 

body size (pronotum width) in each population given the approximately equal error in measures 

of trait and body size (“smatr” package in R, Warton, D. [2005]). Residual values from logistic 

models were collected as a proxy of relative weapon size, since the logistic models described the 

horn-body size relationship most closely. 

  Ordinary least squares (OLS) regression was used to determine support for Hypotheses I-

V in accordance with the methods described by Lande and Arnold (1983) and Arnold and Wade 

(1984). Models only incorporating linear terms were used to assess directional selection. Models 

incorporating both linear and quadratic terms of the explanatory variable were used to assess 

patterns of stabilizing selection. In each analysis, “mating success” referred to relative mating 

success as a continuous response variable. Relative mating success was calculated for each male 

as the number of observed successful matings across the entire breeding season divided by the 

average number of matings per male in the population across the entire breeding season. Akaike 

information criterion (AIC) was used to compare models.  

  Hypothesis I, directional selection for absolute weapon size, was assessed by regressing 

mating success on absolute weapon size. Hypothesis II, stabilizing selection on absolute weapon 
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size, was assessed by regressing mating success on absolute weapon size using both linear and 

quadratic representations of weapon size. Hypothesis III and IV were assessed by regressing 

relative mating success on weapon size, body size, and the interaction between weapon and body 

size. Hypothesis III, correlational selection on reaction norms, was assessed using regression 

coefficients representing the interaction between weapon and body size. Hypothesis IV, 

proportional selection on reaction norms, was assessed using the regression coefficients 

representing weapon size after controlling for body size. Hypothesis V, stabilizing selection on 

reaction norms, was assessed by regressing relative mating success on relative weapon size using 

both linear and quadratic coefficients as representations of relative weapon size.   

To further distinguish between these hypotheses, I assessed relative mating success as a 

function of absolute residual weapon size. This allowed me to assess the presence of stabilizing 

selection without incorporating quadratic coefficients into our analyses. In addition, I analyzed 

differences in variance in relative weapon size between mated and non-mated males in the 

population (treated as a binary response variable where males either successfully or 

unsuccessfully inseminated at least one female throughout the breeding season) using Levene’s 

test (using residual values from MA regression). As stabilizing selection is predicted to reduce 

variation within a population, we believe this comparison valuable in assessing such patterns in 

wild populations (e.g., O’Brien et al. 2017). 

         Finally, selection differentials and gradients were calculated for both absolute and 

relative weapon size to compare the strength of selection associated with Hypotheses I and III 

across our study populations. Selection differentials were calculated as the difference in mean 

absolute weapon size of mated and non-mated animals. Selection gradients were calculated as 

the partial regression coefficients from OLS regression of relative mating success on absolute 

weapon size (Lande and Arnold 1983). 

  

Results 

Populations differ in relative horn length 

 

Based on the visual 95% confidence as well as differences in log-likelihood ratio test, 

Kameoka and Honshu populations are indeed longer horned than Puli, Chia-yi, and Yakushima, 

which overlap as ‘short-horned’ (Fig. 1). 
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Mating system characteristics and ecology vary between locations 

 

Overall, the mating behavior of beetles was similar across locations, in that adult males and 

females emerged from litter at dusk and flew to host trees with active territories to feed.  Males 

encountered rival males on the sides of trees and battled over ownership of territories, and 

females encountered males on the trunks of trees and were courted and mated while 

feeding. After feeding, females left the breeding aggregations to seek out nearby locations with 

rotting vegetation where they lay their eggs (e.g., Hongo 2003, 2007; McCullough radio 

telemetry paper). In contrast, males tended to remain at the breeding aggregations throughout the 

night, and returned for successive nights until they were eaten or died of other 

causes.  Consequently, males tended to remain at the breeding aggregations for longer than 

females, contributing to operational sex ratios that were male biased (Table 1).   

Although the general features of the mating system appeared similar at all study 

locations, some details differed.  The species of host tree differed, with beetles in the two long-

horned populations (Kyoto, Kameoka) using Oak (Quercus spp.), beetles in two short horned 

populations (Taiwan- Puli, Chia-Yi) using ash trees (Fraxinus griffithii), while in Yakushima, 

beetles fed primarily on sap flows carved into bay trees (Machilus thunbergii) by unidentified 

heterospecific larvae. In addition, the overall densities of beetles differed dramatically, with the 

Puli, Taiwan population having the most animals (up to 300 animals at the breeding aggregation 

per night and 900+ individuals throughout the season) and Chia-Yi and Yakushima having the 

fewest (approximately 25 and 8 beetles at the aggregation per night, respectively) (Table 1).   

Beetles in both long-horned populations feed on oak sap flows created sporadically by 

burrowing moth larvae during summer months (Hongo 2005, 2007). Ostensibly due to small 

moth populations, these sap flows are rare, often concentrated to a few trees in a given area, and 

can stop flowing at any time if the larvae stop feeding. In the present study, a single tree hosted 

the entire breeding aggregation in Kameoka with an average of 3 territories active in a night, and 

in Hongo (2007), there were 7 active trees in an entire experimental forest. In contrast, beetles in 

short-horned populations feed on Fraxinus (Taiwan populations) and Machilus (Yakushima, JP), 

thin-barked trees that allow both male and female T. dichotomus to carve sap flows at will using 

clypeal projections (Hongo 2005). Because beetles could carve their own territories, feeding sites 

were much more abundant- often with a dozen or more per tree and many trees with available 
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feeding sites. Abundance of territories and the number of flows per male competitor were much 

higher in all three short-horned populations than in the long-horned, likely a result of nightly 

bark- carving by both males and females (Table 1). 

In order to combine the effects of beetle density and feeding territory availability into 

biologically meaningful metrics of the social environment relevant to selection on horns, I used 

over 350 hours of focal animal observations of territorial males (these data were not collected in 

Hongo’s original study, so we do not include Kyoto in these comparisons).  In this way I could 

estimate the average number of times a territory-holding guarding male was likely to be 

confronted by a rival male (and estimate of the relative cost of guarding a territory in each 

location), as well as the number of times a territory was likely to be visited by a female (an 

estimate of the relative benefits of guarding a territory in each location).  

Males were likely to face multiple challenges by rivals each night at all of the populations 

(12.2 +/- 3.3 challenges per night at Kameoka; 27.8 +/- 4.25 at Puli; 2.9 +/- 1.1 at Chia-Yi; and 

3.4 +/- 0.9 at Yakushima; Table 1), despite the fact that several of these populations had huge 

numbers of available territories (e.g., 612.5 +/- 51.9 territories per night at Puli, and 168 +/- 3.6 

territories per night at Yakushima), and one of these (Yakushima) also had very low overall 

numbers of beetles (approximately 11 adult beetles per night).  This suggests that beetles are 

congregating at sites occupied by other beetles, and is consistent with the presence of an 

aggregation pheromone in this and other rhinoceros species (e.g., Gries and Gries 1994; Hallett 

et al., 1995).   

Puli, Taiwan, had extraordinarily high densities of beetles and this resulted in the highest 

per-night number of challenges to guarding males.  Interestingly, Kameoka, a long-horned 

population, also had high numbers of challenges per night, despite having the lowest overall 

number of adult beetles in the local aggregation (approximately 8 adults per night), presumably 

reflecting the severe limitation of available territories (table 1). 

Males guarding territories at the one measured long-horned population (Kameoka) were 

far more likely to be visited by female beetles than were males guarding territories at the three 

short-horned locations (12.6 +/- 3.3 female visits per night, compared with 4.6 +/- 0.6, 3.7 +/- 

0.7, and 0.7 +/- 0.3 female visits per night at Puli, Chia-Yi, and Yakushima, respectively), 

suggesting that the costs of guarding a territory are most likely to be offset by reproductive 
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benefits at locations where available feeding territories are most severely limiting (Table 1; 

Supp. Fig. 2).   

 

Contest dynamics are similar across populations 

 

At all five study locations males fought rival males over possession of sap sites. Males 

turned to face approaching rivals upon contact and used horns to jab and lunge in response. In 

escalated fights, males attempted to use their forked head horn to pry opponents off of the tree. 

The logistic regressions showed that larger and longer horned males are more likely to win fights 

in each population (Fig. 4). Since horn and body size are tightly correlated (Fig. 1), a GLMM 

with horn size and site as fixed variables and individual beetles as random effects is sufficient 

(AIC differences < 1) to show the significance of horn size in predicting contest outcome 

(p=0.01) and shows that outlier beetles or individual fights do not impact the model. This model 

also shows one site effect of Kameoka (p = 0.0082), in accordance with this population’s 

tendency for a lower difference between winners and losers (see Chapter 2, supplementary figure 

2). 

 

Populations differed in the intensity of net selection acting on male horn length 

 

Using lifetime mating success as the measure of male fitness (Hongo 2005, 2007; Harada 

& Fujiyama 2017), we found remarkably strong selection (as defined by Kingsolver et al. 2001) 

for longer horns in both long horned populations (Kyoto: β=0.43 ±0.09, p < 0.001; Kameoka: β 

=0.65 ±0.28, p< 0.05; Table 3; Fig. 5). In contrast, and in accordance with predictions, one short-

horned population experienced weaker directional selection on horn length (Chi-Nan, β 

=0.27±0.14, p<0.05), and I did not detect significant directional selection on horn length in the 

second short-horned population (Chia-yi, β =-.33±0.08, p > 0.1). Despite conducting night-long 

observations throughout the season, I did not observe any mating events at one short-horned 

population (possibly due to low population sizes; Table 1), so were not able to calculate selection 

gradients. We did not detect significance in any gamma term or for directional selection on 

residual weapon size, allowing us to reject hypotheses of selection acting on the reaction norm in 

these populations.  
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Discussion 

I observed fighting and mating behavior at four locations across the range of the Japanese 

rhinoceros beetle, Trypoxylus dichotomus (National Chi-Nan University, Puli, Taiwan [June-July 

2016]; Yakushima Island, Japan [late July- August 2016]; Chia-yi, Taiwan [June-July 2017]; and 

Kameoka, Honshu, Japan [late-July-August 2017]), and combined my findings with the results 

of two years' observations at a fifth location, Kyoto, Honshu, Japan [July-August 2003, 2006; 

Hongo 2007). Essential features of the mating system, and general behavior of beetles, were 

consistent across all five locations. Invariably, beetles aggregated at a cluster of suitable host 

trees, flying to the sides of the trees at dusk and fighting, feeding, and mating at wounds on the 

sides of these trees. At all locations males battled with rival males over access to these feeding 

territories regardless of territory availability (Table 1), and males with the largest body sizes and 

longest horn lengths were the most likely to win (Figure 3). Females visited trees to feed at the 

sap sites before leaving to oviposit in the surrounding litter. At all locations, females encountered 

males at the feeding sites, and all matings occurred at or near these territories. 

Classical mating system theory predicts that the intensity of sexual selection will depend 

on the extent to which breeding resources—high quality territories or females— are defensible 

and valuable enough to be worth sequestering (Brown and Orians 1970; Emlen and Oring 1977; 

Shuster and Wade 2003). We observed male-biased operational sex ratios at all of our study 

locations (Table 1), presumably reflecting the fact that males tend to remain at the territories all 

night, for as many successive nights as they are able, whereas females visit feeding territories for 

only up to three days to feed and mate before flying away to oviposit in the surrounding litter 

(Hongo 2007; McCullough 2013).  Observed operational sex ratios ranged from 1.5 to 5.0, and, 

interestingly, were lowest at one of the long-horned populations, suggesting that average nightly 

OSR is not a good predictor of the local intensity of sexual selection acting on male horns. 

Beetle density and the number of available territories each varied extensively across our 

sites, and both appear to contribute to the relative cost males pay for successfully guarding a 

territory at each location.  Specifically, populations with large numbers of rival males (Puli) 

and/or severe limitation of available territories (Kameoka) had the highest number of challenges 

per night faced by territory-guarding males.  We suggest this provides a relevant metric for 

contrasting the relative “price” males must pay for holding a feeding territory.  of territory 

defense would be reflected in our season-long measures of male mating success and net selection 
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on horns.  Despite low numbers of beetles (and correspondingly small final sample sizes) at 

several locations, our results confirm these predictions. 

Although the general features of the mating system were similar across sites, many of the 

details differed (Table 1, Figure 4), and these differences are likely to be relevant to the intensity 

of sexual selection acting on horns at each location. Most notably, the species of host tree 

differed from location to location (Oak [Quercus spp.] at Kameoka and Kyoto, and Ash 

[Fraxinus griffithii] at Puli and Chia-yi, and Bay [Machilus thunbergii] at Yakushima). This is 

key to changing resource ecology because of the specific feeding behavior of Trypoxylus 

dichotomus. Their ability to carve only certain host trees means that, at the two Honshu locations 

(Kameoka and Kyoto), beetles must rely on wounds created by the boring larvae of a moth 

(Hongo 2003, 2007), unable to carve into thick oak bark. Thus, animals are forced to compete for 

a small number of already-present wounds on the sides of the trees (~4 per site in Kameoka and 

~3 per site in Kyoto). As a result, territories were severely limiting at these locations and the 

intensity of competition over these sap sites was accordingly high. 

At the other three locations, bark on host trees was much thinner, and the only oak trees 

are introduced artificially. As originally proposed by Hongo (2007), thinner bark allows beetles 

to carve their own territories instead of expending energy by fighting for them. Consequently, 

although the basic behaviors of the beetles were similar -- males still fought rival males and 

females still fed at sap sites before flying off to lay eggs -- the number of available territories was 

much higher (Table 1). With territories less limiting, the relative value of territory ownership 

decreased. Specifically, the probability that a male was challenged by a rival was almost as high 

at Puli and Chia-Yi, two short-horned populations, as it was at the long horned populations on 

Honshu (number of challenges on average at Puli = 27.8+/-4.25; at Kameoka, males faced half as 

many challenges, 12.2+/-3.3), but the probability of a territorial male being visited by a female 

was lower (Table 1, Figure 3). While males with longer horns experience competitive benefits in 

each population, territorial males enjoyed the greatest reproductive benefits of territory holding 

in the long-horned population for which we obtained ecological data. The number of females that 

a male was likely to encounter was significantly higher in the long-horned population than in any 

of the short-horned populations (Fig. 3), translating both into population-based differences in the 

opportunity for selection (Fig. 1) and in the comparative strength of selection acting on horn 

length (Table 2; Table 3). 
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Peculiarities of this system means that measuring male fitness via their mating success  is 

unusually reliable  (Hongo 2005, 2007; Harada & Fujiyama 2017), given the tendency for 

females to mate singly despite being courted by many males. As predicted, we found remarkably 

strong selection (as defined by Kingsolver et al. 2001) for longer horns in both long horned 

populations (Kyoto: β=0.43 ±0.09, p < 0.001; Kameoka: β =0.65 ±0.28, p< 0.05; Fig. 3). This is 

consistent with the selective benefits afforded by high quality territories in these populations. In 

contrast, and in accordance with predictions, one short-horned population experienced weaker 

directional selection on horn length (Chi-Nan, β =0.27±0.14, p<0.05), and we did not detect 

directional selection on horn length in the second short-horned population (Chia-yi, β =-

.33±0.08, p > 0.1). In Yakushima, territory quality was so low that we were not able to observe 

any mating events. In this site, hundreds of active territories were counted over the season, while 

we routinely counted fewer than 10 beetles nightly across a 7 kilometer “hotspot”. 

Measures of direct selection on absolute weapon size are the most intuitive way to 

quantify the strength of selection acting on an exaggerated sexually-selected structure.  However, 

given that most of these structures are highly nutrition- and condition-sensitive in their 

expression (Kodric-Brown & Brown 1984; Zeh & Zeh 1988; Iwasa & Pomiankowski 1999; 

Biernaskie et al., 2014), a more appropriate approach, particularly for insects, where body size is 

often overwhelmingly influenced by larval access to nutrition, is to consider static scaling 

relationships- a population level measure- as approximations for underlying developmental 

reaction norms (Emlen & Nijhout 2000; Shingleton et al., 2007; Dreyer et al. 2016; Mirth et al;., 

2016; O’Brien et al. 2017).   Sexual selection would then act on either the slope or intercept of 

these scaling relationships by favoring males with relatively longer horns for their body size.  

Both horn length and body size in T. dichotomus are nutrition- and condition-sensitive 

(Karino et al. 2004, Emlen et al., 2012; Johns et al., 2014; Kojima 2015). Since T. dichotomus 

subpopulations, like other weaponed species complexes, differ in the size of weapons relative to 

the body (Fig. 1), I predicted that the processes that act to differentiate weapon phenotype are 

likely acting on relative horn length, in accordance with theory suggesting that selection shaping 

such patterns should act on relative weapon size (Bonduriansky and Day 2003; Dreyer et al. 

2015). I also tested for stabilizing selection on local patterns of horn length relative to body size 

to assess the alternative hypothesis that rather than a lack of directional selection, smaller 

weapons are maintained by differing patterns of stabilizing selection. However, I found no 
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evidence that non-linear selection is acting on the horn-body size allometry in any of the focal 

populations.  

Using the interaction term in a model regressing relative mating success on male horn 

length and body size, we tested whether selection might be acting to increase the slope of the 

horn length - body size scaling relationship (Model 3 in Tables 2 and 3).   Similarly, by testing 

for selection on residual horn length, we tested whether sexual selection might favor increases in 

the intercept of horn length - body size scaling relationships.  Finally, we tested for net 

stabilizing selection on the reaction norm by including a polynomial (gamma) term in our 

analyses.  Because each of these approaches is likely to be limited by available sample sizes, we 

also tested for stabilizing selection acting on the horn length-body size reaction norm by taking 

the absolute value of residual horn lengths and regressing relative male mating success on the 

extent to which male horn lengths deviated from the population average scaling relationship 

(O’Brien et al., 2017). 

The two years’ data collected by Hongo (2003, 2007) at Kyoto, Japan, provided the 

largest sample sizes, and the clearest picture of selection acting on male weapons.  In this 

population, sexual selection appears to act strongly, favoring the largest males with the longest 

absolute horn lengths (Tables 2, 3), as well as large males with relatively long horns (Figure 

5).  Specifically, we find support for models I and III, and treating horn length - body size 

scaling as a reaction norm, our results suggest selection acts to favor a steeper scaling 

relationship slope in this location.  At Kameoka, the other long-horned population, beetle 

densities were much lower, and our tests of models of selection on reaction norms were limited 

by smaller sample size (Table 2).  Despite this, we still find evidence for strong net selection on 

absolute horn length (Table 3, Figure 5).  In contrast, selection on horn length was weaker at all 

three of the short-horned populations, and despite a very large sample size at one location (Puli), 

we detected no evidence of selection for increased slope or intercept of the scaling relationship 

between horn length and body size.   

These results represent a key piece in understanding the relationship between weapon 

diversity and the strength of sexual selection in weaponed species[DJ19] . Comparative studies 

of horned scarabs suggest later mechanisms underlying weapon diversity, like developmental 

costs (Emlen 2004) and changes in fighting substrate and style (McCullouh 2016). With over 

350 total hours of focal male and whole-site observations, my data suggests that selection is not 
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being shaped by local differences in horn function, aggressive behavior, or territory substrate, but 

primarily by the relationship between resource availability and abundance.  

The idea that the intensity of mating competition is sufficient to shape sexual selection 

and resulting phenotypes is pervasive and intuitive. Even in comparative studies that suggest 

differences in the selective benefits of weapons, researchers consider the outcomes of fights to be 

a primary driver. Similarly, ecological measures of competition intensity, like competitor 

density, are commonly invoked as sufficient to drive selection strength (Kokko and Rankin 2006; 

Kokko 2012). However, this conceptual pattern tends to omit the necessity of a positive 

relationship between competitive benefits and mating benefits for competition to shape sexual 

selection. We found no evidence that typical competition drivers- sex ratio, population density- 

track as expected with the strength of selection on a competitive trait across 4 populations of T. 

dichotomus. 

Rather, our results suggest that even when all the conditions for strong selection are met: 

competition intensity is high, bigger weapons predict competitive success, and mating behavior 

still reflects a resource-defense system- a negative or nonexistent relationship between 

competitive ability (territory holding) and mating benefits (the likelihood of female encounters) 

can result in a collapse of strong selection on weapon size. Changes in the value of a territory, 

here measured as the frequency of female visitation, appear sufficient to cause this collapse, 

shaping divergent selection patterns on the same weapon. In this case, this is likely the result of 

differences in geographically based territory type: the various tree species that beetles feed on in 

different populations. 

 By shifting the focus to a species complex at the earliest stages of divergence, my work 

demonstrates that contemporary differences in the strength of sexual selection are associated 

with patterns of recent weapon diversity, and suggest that changes in territorial ecology that 

affect the monopolizability of mates are sufficient to induce these changes. This insight into the 

role of rapid changes in and response to sexual selection in weapon diversity may come to bear 

on our understanding of the mechanisms linking the evolution of extreme sexually selected traits 

and their extreme diversity. 
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Figure 1: Logistic regressions of body width on horn length for 5 populations of Trypoxylus 

dichotomus males. 
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Figure 2: Typical observational conditions and Trypoxylus dichotomus behaviors. (A) Two males engage 

in escalated combat- here, the red “intruder” individual had challenged the territory “owner” while he was 

courting. The female carves and feeds at the original territory nearby, seemingly unaware of the males. 

(B) Upon successful insemination, males assume a ‘hanging’ position. This is distinct from a vertical 

courtship position, allowing successful mating to be identified from a distance. Both trees shown are 

Fraxinus griffithii in Puli, Taiwan, and illustrate the typical activity of beetles being at or just above eye-

level.  
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Figure 3:  Locations, competitive conditions, and horn-body size scaling relationship of each of 

the 5 study populations.  
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Figure 4: Logistic regressions showing the relationship between win probability and body size or horn 

size relative to opponent for Kameoka and the three short horned populations. In all populations, winners 

have larger weapon size and larger body size than their opponent. 
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Figure 5: Male mating success in 4 populations as a function of their position on the population specific 

weapon-body size scaling relationship.  
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Supplementary Figures 

 
Supplementary Figure 1: Horn and Pronotum Width Measurements 

 

 

 

 
Supplementary Figure 2: Territorial males in Kameoka, the long horned population, encountered 

significantly more females per night than at each of the short horned populations.   
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Chapter 2  

Contest Dynamics in Populations of Horn-Divergent Rhinoceros Beetles 

 

Abstract 

Weapons resulting from intrasexual selection are diverse, and they often evolve to extreme size. 

However, it is unclear whether the function of weapons in battle change along with their size (or 

vice versa). Specifically, exaggerated weapons are likely to serve a key signaling role in male-

male competition, whereas their smaller counterparts may not. I tested these and other 

hypotheses put forth by contest theory, allowing me to quantify and compare the extent to which 

weapons serve as signals of fighting prowess in four populations of rhinoceros beetle that 

diverge in horn size and mating system ecology. Both weapon and body size influenced fight 

outcomes in all four populations.  Differences in weapon and body size between opponents 

predicted the extent of fight escalation in three populations, suggesting that horns may be 

functioning as deterrent signals in these locations, but not at one of the short-horned locations.  I 

used the relationship between fight duration and max escalation as a measure of the predictability 

of escalation of contests, or the degree of ritualization of contests, and found that the long horned 

population and the short horned population with the highest beetle density and most frequent 

fights, both had contests dynamics consistent with gradual escalation therefore male 

assessment.  The remaining populations showed sudden and unpredictable escalation of fight 

intensity suggesting a lack of effective assessment of rival males, and presumably with a lack of 

a signal function of the male horns.  Overall, my results suggest that beetles in populations 

experiencing the strongest sexual selection on weapon size, either due to resource limitation or 

high beetle density, incorporated assessment of rival males into fighting behavior, while 

populations with weaker net selection did not.  This is the first such comparison of contest 

dynamics in a species with polymorphic weapons, and serves as an empirical bridge between the 

evolutionary subfields of contest theory and animal weapon evolution. 
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Introduction 

Sexual selection via male competition has resulted in the evolution of diverse and 

exaggerated weaponry across the tree of life (Andersson 1994; Emlen 2008), but the selective 

and behavioral mechanisms underlying these patterns are still a mystery. Classic theory predicts 

that when the limited sex fights fiercely for access to rare mating opportunities, weapons can 

evolve to be larger as a result of increased reproductive benefits for well endowed contest 

winners, closely tying the size of animal weapons to the strength of selection determined by 

breeding success (Emlen 2008). However, selective environments are multifaceted, and weapons 

do not only function as tools. Many weapons serve dual functions: in addition to being used to 

pry, joust, or wrestle, weapons allow the bearers to communicate fighting prowess and guide a 

set of ritualized contest behaviors collectively known as contest dynamics (Parker 1964; Enquist 

and Leimar 1983; Berglund 1996). The development of contest theory allows us to quantify the 

nature and extent of male communication in physical encounters, and we can extend these 

concepts to predict how weapons might evolve ((Snell-Rood and Moczek 2013; Hardy and 

Briffa 2013; Painting et al. 2015).  

Contest outcomes are typically determined not by death of the loser but by “limited 

warfare”, a phenomenon where competitors avoid escalated and potentially injurious battle by 

first sizing each other up with less risky interactions like prodding or interlocking weapons. 

Game theory models of agonistic interactions predict that males will benefit by backing down 

from a confrontation if they can determine accurately that they are likely to lose, ending the fight 

before getting hurt (Maynard Smith and Parker 1973, 1976). However, males should only benefit 

from backing down when the information they glean regarding their opponent is a reliable 

predictor of the likely outcome of the contest (West-Eberhard 1983; Emlen and Nijhout 2000; 

Biernaskie 2014). Two factors in particular can affect the reliability of agonistic signaling. 

First, accurate assessment of a rival is easiest if there is a conspicuous and honest signal 

of fighting ability that males can use to determine relative resource holding potential (RHP) of an 

opponent (Parker 1974; Enquist and Leimar 1983; Maynard Smith and Harper 1995). 

Exaggerated weapons of male competition often meet these criteria:  they are large and highly 

visible, and they are often hypervariable in their expression from male to male.  In addition, their 

growth tends to be unusually sensitive to variation in the nutritional state and/or physiological 

condition of the male at the time the weapon develops. Hyper- variability and ‘heightened 
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conditional expression’ (Cotton et al. 2004) cause these traits to be especially informative signals 

of male body condition and RHP, amplifying otherwise-subtle differences in condition, status, 

and/or body size so that they are especially easy to discern (Biernaskie et al. 2014).  For this 

reason, males in many species use relative differences in weapon size to assess the RHP of an 

opponent (reviewed in Emlen 2008).   

A second factor relevant to the efficacy of assessment concerns the nature of the fights 

themselves.  The outcome of the contest must be highly repeatable, or predictable, before a male 

is likely to benefit from electing to back down, and not all contest outcomes are predictable 

(Hardy and Briffa 2013). Contests that unfold face-to-face between pairs of rival males are much 

more likely to unfold in ways that are repeatable than are contests involving 3 or more males 

(Emlen 2014).  Indeed, one-on-one contests often unfold in ritualized, astonishingly repeatable 

sequences, as males escalate the intensity of the interaction in stages (Maynard Smith and Parker 

1976).  In these contests, it usually behooves males to pay attention to signals of the RHP of their 

opponent, collecting such information in stages as the fight proceeds in order to make an 

informed decision about when to back down from further injury (Enquist and Leimar 1983, 

Harper 2006).  Such ritualized, dyadic encounters are the hallmark of contest theory, and these 

pairwise fights nearly always include males who opt to back down.  Scrambles involving three or 

more males, on the other hand, are comparatively chaotic. In these contests the better fighter may 

not win, the benefits of large weapons may be less pronounced, and the unpredictability of the 

contest outcome means that males may elect to continue fighting even if they have the smaller 

RHP.  Consequently, the social context in which the contests occur may influence the extent to 

which males assess their opponents, and thus the extent to which an exaggerated structure like a 

weapon functions as a deterrent signal, rather than a tool (McCullough et al. 2013).   

In the present study, I observed male contests in the Japanese rhinoceros beetle 

Trypoxylus dichotomus, at four populations differing in relative weapon size, to explore the 

extent to which populations might differ in the relative importance of signaling in the function of 

the exaggerated male weapon. Trypoxylus dichotomus are a univoltine, sap-feeding rhinoceros 

beetle found across Asia. Their life cycle is confined to two summer months, and is relatively 

localized in suitable patches of broadleaf forest: both sexes congregate to feed at sap bearing 

trees, and females lay eggs in loamy forest soil before dying. Males battle with rival males for 

residency at these feeding territories, which are typically scarce, driving a resource-defense 
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mating system (Obata & Hidaka 1983; Siva-Jothy 1987; Hongo 2003, 2007). Recent work has 

shown, however, that the sap site resources are much less limiting in short-horned populations in 

Taiwan and southern Japan, suggesting an ecological driver of weapon divergence and the 

potential for shifts in the nature of local resource competition (del Sol et al. in prep). 

Differences in resource value are known to shape the outcome of agonistic interactions 

and the nature of appraisal behavior (), but the extent to which this is true for the same species 

has never been examined. In addition, contest theory predicts that the higher degree of weapon 

exaggeration found in northern Japanese populations is consistent with a larger role of contest 

communication. One such population has already been shown to engage in ritualized appraisal 

behavior using the weapons (Hongo 2003), suggesting that shorter weapons in other populations 

may be a result of a reduced role of appraisal in male-male interactions over resources. In the 

present study, I quantified contest dynamics in the field in four distinct populations of T. 

dichotomus, three of which have relatively short horns (Puli and Chia-yi, Taiwan; Yakushima, 

Japan), and one with relatively longer horns (Kameoka, Japan). Specifically, I compare the 

patterns of escalation of fights (a measure of the extent of assessment) with the social context of 

fights (overall density of males, number of rivals in vicinity of fight, number of males involved 

in fights), and the relative length of the male horns in each population, to test population 

differences in the extent to which battles are resolved prior to escalation. 

 

Methods and Materials 

 

Study locations.  

I conducted behavioral observations of four populations of Trypoxylus dichotomus over two 

summers comprising four, 1.5 month long breeding seasons in Taiwan and Japan, as part of 

another study (del Sol et al. in prep). In the summer of 2016, observations were conducted first 

on the forested campus of National Chi-Nan University, located in Puli, Taiwan (June-July). The 

second half of the summer (late July- August), I observed the full season on the island of 

Yakushima, Japan. In 2017, observations were conducted on the forested campus of Chia-yi 

University in Chia-yi Taiwan; in later Summer I observed beetles in a forested area in Kameoka, 

Japan. 
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Morphological measurements and scaling.  

Observations began around 19:00 each night (prior to dusk and beetle emergence) in order to 

allow researchers to capture and measure unmarked males prior to their involvement in male-

male interactions. Observations ended at sunrise, or otherwise when no pairs of male beetles 

could be observed in the same vicinity. For three populations, all actively sap-bearing trees were 

observed (NCNU, Kameoka, CYU); for the Yakushima, Japan population, we chose the most 

active 6 kilometer stretch of road and performed repeated surveys to confirm activity throughout 

the season.  

Upon arrival at a tree, males were gently captured with a bamboo net or gloved hands, 

measured with dial calipers (Anytime Tools, CA, USA) and marked with a unique number on 

both elytra with non-toxic paint pen (Blick Art Supply, IL, USA). Repeated capture was avoided 

except to restore faded ID numbers. Horn length was recorded with one end of the calipers at the 

clypeal projection near the mouthparts, and the other end extended to the tip of the inner right 

horn projection to capture the full functional length of the structure (Supp. Fig. 1; Hongo 2007). 

Two measures of body size were recorded: elytral length (a straight line from the top of the 

scutellum to the bottom corner of the right elytron) and the maximum width of the pronotum 

(Supp. Fig. 1). 

        

Contest Observations 

Beetles are unable to see the color red (Enrodi 1992), so observations were conducted 

using headlamps with built-in red filters (RioRand, USA). Light beams were diffused and 

pointed adjacent to beetles to minimize disturbance, and were set to dim (200 lumens) whenever 

possible. One focal male at a time was chosen haphazardly to be observed for one hour. If the 

beetle was lost (flew or ran away, unable to be seen) after 30 minutes of observation, the 

observation was ended and the data were adjusted to account for time as per focal animal 

methods (Altmann 1974). During observation, each interaction with another male or female was 

noted. The duration of each behavior, including territory holding, fighting, and courting females, 

was recorded, as well as the number of beetles that arrived at a held territory. Territory quality 

was recorded as the number of females that approached or fed from a sap territory in an hour. I 

supplemented hour-long observations with intermittent sampling of aggregations, recording the 

details of additional fights through the course of the night.  
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For each male encounter, we recorded the ID numbers of each participant; the duration of 

the encounter; the maximum escalation score; whether a female was present; which beetle was 

the “owner” of the territory prior to the encounter, and which was the “intruder”. Ownership was 

defined as active feeding, physical blockage of, or courting a feeding female at a territory. In 

several instances, ownership was defined as the participation in these activities more recently 

than the intruder. Duration of encounters was measured from the moment the territorial male 

“acknowledged” or faced the intruder to the point where the loser was either fully pried off the 

tree or ran at least 20 cm away from the winner. Encounters were virtually always instigated by 

physical contact from the intruder and elicited a startling response from the territorial male that 

allowed us to identify the beginning of an encounter for both participants. 

  

Quantifying Escalation Stage.  

Contest escalation is typically described by a species- specific set of behaviors that increase in 

intensity or contact and proceed in a predictable order as competitors gain more information 

about each other (Maynard-Smith 1974; Maynard Smith and Parker 1976; Enquist and Leimar 

1983). For T. dichotomus, contest escalation has been described and quantified once before by Y. 

Hongo (2003). Since the final of the 6 stages only describes whether the loser flies or runs, I 

have compressed the contest observations into 5 separate stages that more strongly delineate the 

extent to which each competitors horn is used in the interaction. Observations were consistent in 

the order of these interactions, meaning that the final stage assigned to an interaction indicates 

that all prior stages happened as well.  

 

Stage 1: Non-escalated. The males acknowledge interact, usually with a horn or leg touch, and 

acknowledge each other; then at least one male runs or walks away.  

  

Stage 2: Non-escalated. Males acknowledge each other, then at least one male (possibly both) 

performs an aggressive gesture (i.e. not just turning towards the other beetle): “lunging” or horn 

jabbing, or chasing. One male leaves. 

  

Stage 3: Non-escalated. Males engage in behaviors 1 and 2, and then one male pries the other 

male, who then ends the interaction by running away.  
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Stage 4: Escalated. Both males engage in behaviors 1-3; both males attempt to pry each other, 

but at different times. One male may run, then come back and pry. May end in the ‘loser’ 

running or being pried off the tree. 

  

Stage 5: Escalated. A true battle. Behaviors 1-4, followed by at least one instance of mutual 

prying- defined as both participants have their horn under the other at the same time. Usually 

ends in a “de-escalation”, or repetition of behaviors 1-4, in no particular order. May end in the 

‘loser’ running or being pried off the tree. 

 

Statistics. 

All analyses were conducted in R 2.15 (R Core Team 2013). We used ANOVA to 

compare contest conditions between each population, including: hourly competitor density, 

territory density, number of opponents at a territory, and territory value (average number of 

females that approach a territory per hour). 

Each male in an interaction was assigned a focal or non-focal status according to which 

male was the subject of focal observation during the encounter. Differences in competitor RHP 

can be assessed in multiple ways (Hardy and Briffa 2013); to capture a pairwise and population-

independent metric, I calculated competitor difference as the ratio of focal RHP (horn or body 

size) to non-focal RHP. 

Since my contest measures were not staged and conducted under field conditions, I 

accounted for repeated measures of individual males and of pairs by introducing both of these 

parameters as random effects in each model. Population was also included as a random effect in 

each model; upon significance, sites were analyzed separately. To test for the influence of horn 

size, body size, and relative horn size on contest outcome, we constructed a GLMM with a 

binary focal male won/opponent won response variable, and relative size difference as the 

predictor variable (horn and body size were run separately and together; Table 4. Due to the high 

collinearity of horn and body size (R~.92), only models with horn difference are reported). 

Additional models were run, one with territory ownership, and one with female presence, as 

fixed effects (Table 5.  
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We conducted several analyses to assess the adherence of contest behavior to classic 

predictions of contest theory in each population. In addition to the above predictors of RHP, we 

constructed a similar set of GLMM to assess the contributors to fight outcomes of only escalated 

fights to assess the likelihood that pre-escalation stages act as assessment behaviors in all 

populations (whereas it was found in a prior, long horned population; Hongo 2003). I ran 

logarithmic multiple regression models testing the probability of escalation based on the 

aforementioned size differences between opponents. I then ran multiple regression analyses 

testing for the relationship between duration and size difference. Further multiple regression 

between duration and the size of the loser or winner allows for the delineation of sequential 

assessment (SAM) and cumulative assessment (CAM) models of contest theory. 

 

Results: 

Competitive Environment and Territory Value 

Overall, I conducted over 350 hours of focal male observation and observed 589 contests 

ranging across escalation stages (Kameoka, n = 123; Puli, n= 423; Chia-yi, n= 20 ; Yakushima, 

n= 23). Short-horned sites had more abundant territories and trees than long horned sites (Chaper 

1, Table 1). Numbers of beetles were higher in Puli by an order of magnitude. The OSR was 

around 1.5 in Kameoka and Chia-yi, but was 3.4 in Puli and 5.0 in Yakushima. Fighting 

frequency was consistent with population numbers in short-horned populations, with territorial 

males in Puli battling, on average, 26 more times per night than in Chia-yi and Yakushima. 

Conversely, territorial males in Kameoka fought on average 12.2 battles a night despite having 

an average of 4.7 males on the tree at one time. Territory value, measured as female visitation 

numbers, was on average at least three times higher in Kameoka than in any short-horned 

population (Chapter 1, Table 1).  

 

Predictors of contest outcome- weapons, body size, ownership, female presence 

The initial GLMM showed no significance for individual and pair effects (p>0.1), 

allowing me to remove these parameters from subsequent models (those reported here; Table 4). 

Horn size was significant, suggesting that focal males with larger horns were more likely to win 

contests (Table 4). Site was also significant in this model (p<0.05); ANOVA revealed that the 

weapon size difference between competitors in Kameoka was significantly lower than the other 
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three sites (p < 0.05; Fig. 6). Logistic regressions showed that larger weapon size and larger body 

size significantly predicted the winner in every population (Chapter 1, Fig. 4).  

Contest outcomes were influenced by territoriality and female presence (Table 5). Focal 

ownership of the territory was a significant predictor of focal wins (Logistic Regression, = 

2.084 0.19, p < 2e-16), while the presence of a female did not significantly affect the outcome 

of the contests (= 0.211 0.23, p = 0.36). Site identity did not significantly affect either model 

(p > 0.1) 

 

Escalation and Duration 

Fights were more likely to escalate in Kameoka than in any short-horned site (ANOVA, 

df = 3, F = 27.73, p <0.001; Tukey Post hoc, p < 0.001). The likelihood of fight escalation was 

predicted by RHP (horn) difference in Kameoka and Puli, but not the other two short horned 

sites. (Fig. 6) The relationship between contest escalation and duration, a common metric of 

predictable contests (Briffa et al. 2013), was significantly positive in both Kameoka (OLS, p < 

.001) and Puli (OLS, p < .001). Longer contests did not escalate predictably in Yakushima (OLS, 

p > 0.1), and Chia-yi (OLS, P > 0.1). 

 

Discussion 

 

The tight link between environment and mating system characteristics means that sexual 

selection on weapons and other signals fluctuates across time and space, the latter being of 

particular interest in explaining the diversity of such traits (West-Eberhard 1983; Miller and 

Svensson 2014), While selection on weapons in general has been broadly characterized 

(reviewed in O’Brien et al. 2017), our understanding of the connection between competitive 

environment and animal weapon diversity is tenuous. There is some evidence that weapon 

diversity correlates with the diversity of fighting substrate (Emlen 2005; McCullough 2015) and 

general elements of the mating system like group size (Geist 1966; Bro-Jorgensen 2007). But 

local changes in social selection are likely the primary drivers of among-population differences 

in weapon form, and thus comprise the earliest stages of weapon divergence.  A dearth of 

population-level comparative studies and the infancy of contest theory in general leaves us little 

to help predict the evolution of weapon and competitive behavior. One recent study suggests that 
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aggressive behaviors may be subject to phylogenetic inertia (Ayres‐Peres et al. 2015), suggesting 

that behavior may change more slowly than local competitive conditions, with interesting 

consequences for mismatch and local selection on weapon form. In the present study, I have 

shown that while aggressive behavior in general may persist, contest environments and to some 

extent, dynamics are quite subject to shifts in mating system ecology.   

 

Competitive Environment 

 Trypoxylus dichotomus is flexible in feeding, and is able to carve sap flows in thin- 

barked trees where its Japanese host tree Quercus acutissima is not found (Hongo 2006). This 

had notable effects in Puli and Chia-yi, where males and females were found to carve territories 

each night in the soft barked Fraxinus griffithii with the result that resources typically 

outnumbered males. Yakushima’s native host Machilus thunbergii were abundant and each 

sported several cascading sap flows. In addition, we found remarkably few beetles each night, 

meaning that the resource defense system appeared to have collapsed entirely. Territorial males 

could expect to fight a number of competitors consistent with the abundance of males. Puli’s 

population was large, and even though territories were abundant, males fought hard throughout 

the night to keep or gain sap wounds that had already been carved. Similarly, in Kameoka, 

though male abundance was relatively low, the whole population was confined to a single host 

tree, making competition intense and high reward. Whereas female abundance in Puli did not 

match male abundance, lowering the local territory value, Kameoka’s dearth of sap flows meant 

that territorial males were more likely to be fighting for a chance to secure a mate than in any of 

the short-horned populations. While competition was fierce in two populations and diminished 

with lower population sizes in Chia-yi and Yakushima, Kameoka was the only place where 

territory value conferred the benefits of engaging in competition.  

 

A note on mating system 

Researchers of Trypoxylus dichotomus have long reported anecdotal evidence that 

females of the species only mate once (Siva-Jothy 1987, Hongo 2003, 2007), and a more recent 

study confirms this anomaly (Harada and Fujiyama 2017). Though rare (Eberhard 1996; 

Arnqvist and Nilsson 2000), systems with singly mating females suggest a mechanism that 

would maintain strong competition in spite of resource ecology. In the case of T. dichotomus, 
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females mated singly in all sites (del Sol et al. in prep), suggesting that territory limitation 

remains the deciding factor in competition dynamics and selection strength on weapons. 

 

No Evidence for Female Defense or Scramble Competition 

In a female-limited system, the presence of a female on a territory can reasonably be said 

to increase the immediate value of the territory. Thus, an opponent with such information is 

liable to adjust behavior accordingly (Enquist and Leimar 1987), and I predicted that males 

would adjust their behavior where territory value is low, as they have a lower chance of running 

into a female in a given night. However, fight outcomes were no different with females present, 

suggesting that male behavior remains in line with a purely resource-defense mating system in 

all populations despite the fact that, in short-horned populations, the competitive environment no 

longer constructs a beneficial relationship between competitive ability and mate success.  

Residency effects are common in territorial species, as a territory holder has more RHP 

than an intruder by definition (Davies 1978; Grafen 1987). However, this may break down—

either when territory value is low, like in Yakushima where females are incredibly rare—or 

when territory value is consistent across territories in systems like Taiwan, where feeding sites 

are made by males and females alike. This analysis also highlights the importance of conducting 

tests of behavioral and selective hypotheses with a keen eye towards natural history. Previous 

work in this system (del Sol et al. in prep) suggests that the primary driver of selection strength is 

feeding site, or territory, abundance. Males in short-horned populations can make their own 

territories; meaning that ownership may no longer be an accurate measure of RHP. Nevertheless, 

residency effects were consistent and pronounced across all sites, suggesting the consistency of a 

territory-defense mating system regardless of the breakdown of selection on competitive traits.   

 

Contest Predictability 

This study offers observations of wild populations with naturally occurring contests 

rather than staged. While this makes it difficult to tease apart the relative influence on weapon 

and body size, we are able to understand the nature of contests in a biologically relevant manner, 

allowing us to properly compare divergent populations. The nature of fights and of weapon size 

advantage was similar across all sites. Larger males with larger weapons were more likely to win 

contests, and this is expected from the consistency in the fighting style and fighting substrate. 
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Males pried and jousted with their horns, and males with longer horns reached their opponents 

first. Previous research shows that the horn is crucial in determining fight outcome (Karino et al. 

2005), but this is the first demonstration of the consistency of horn use as a tool of battle in 

multiple, weapon- divergent population of this rhinoceros beetle.  

In general, beetle competitive behavior was similar in all sites. Males viciously defended 

territories regardless of whether there were females present, or even likely to be present. Even 

though competitor densities were high in Kameoka and one short horned site, Puli, fights still 

invariably played out as duels. This served as a first quantifiable measure of predictability: the 

ritualized nature of battles (Enquist and Leimar 1983). I used the same escalation scale in each 

population, as higher levels of escalation did not occur without the preceding levels (n=523). 

Despite this, however, contest dynamics did partially break down at the two low-density sites, 

Chia-yi and Yakushima. At these sites, males tended to escalate fights independent of the 

magnitude of differences in RHP (Fig. 6).  

As a final test of fight predictability, I examined the relationship between fight duration 

and escalation. If horns are being used as signals, then we should expect that more closely 

matched two opponents are, the more likely they should be to escalate in aggression and persist 

in battle as they gain information about each other (Briffa et al. 2013). Thus, a tighter 

relationship between these two fight characteristics indicates a more rigid adherence to the 

evolutionarily stable strategy of the war of attrition (Maynard Smith and Parker 1976).  Using 

this metric, I found that three of the sites showed predictable escalation of contests, while one 

location, Yakushima, did not.  While not completely illustrative of scramble competition 

behavior, this shift in contest dynamics at Yakushima indicates at least an early collapse of the 

resource defense system consistent with the fact that competitive ability and mating success are 

no longer connected at these two sites, due to low numbers of individuals and low territory value.  

Ultimately, populations differed in the extent to which contests incorporated assessment, 

suggesting that the weapon may be functioning as a signal in some locations but not others. In 

one long-horned and one short-horned site, high competition was the result of limiting territories 

and high beetle density, respectively, but the ability to defend a territory translated into selective 

benefits most strongly in the long-horned population, as predicted. On several measures of 

predictability, the two short-horned populations with high territory number and lower density 

have collapsed, reflecting a predicted change in general contest dynamics as a result of the 
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competitive environment. In both populations, however, selection for horns was non-existent, 

suggesting that the behavioral changes were not, in fact, towards a use of the weapon that gave 

selective advantages. Rather, the shift in social environment (resource limitation) was likely 

sufficient to change both the selective pressure and fighting behavior in these populations in the 

short time since the populations’ divergence (West-Eberhard 1983). Importantly, however, 

although key determinants of mating systems have diverged between these populations, the 

mating system itself has not. This provides some of the first evidence that weapons can change 

rapidly as a result of shifting selective benefits under the contemporary mating system, and not in 

response to immediate shifts in social and competitive environment. In predicting the drivers of 

weapon divergence and that of other sexual traits, this serves to illustrate the importance of 

constructing the link- quantitatively and as per natural history- between competition and mating 

success. Since the relationship between a male’s success in battle and his mating success is 

ultimately what determines the selective benefits, prior trends of equating competitive 

environments to the strength of selection are likely insufficient to predict patterns of weapon 

divergence (Bro-Jorgensen 2007; Kokko et al. 2012). Future research in the contribution of 

sexual selection to the diversity of its products will require a keen eye both for the natural history 

of individual study systems and for the myriad ways in which these spectacular traits are used 

and perceived.  
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Table 4: Results of binomial GLMM with focal male’s horn size relative to opponent and site as fixed effects, individual id and 

fight ID as random effects; response variable is whether the focal male won.  

Model Parameters Estimate SE P-

Value 

Binomial GLMM; Response var = focal individ won (1/0); 

Individual ID and Pair ID as random effects 
Intercept 1.1282 0.687 0.10 

 
Horn 1.9011 0.7619 0.01 

 
Site 

(Kameoka) 

-1.9831 0.7502 0.0082 

(individual and pair ID not significant; p<.1). (other sites non-sig.; p< 0.1) 
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Figure 6: The probability of encounter escalation based on the absolute difference in opponent’s weapon size. Kameoka and Puli 

(A and C) show patterns consistent with the horn as a signal, with probability decreasing the larger the difference in opponent’s 

RHP is. Chia-yi and Yakushima (B and D) show no significant pattern.  
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Figure 7: Contest escalation versus duration as a metric of fight predictability.  


