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CHAPTER 1 
 

CONCEPTUAL OVERVIEW 
 

Camouflage has intrigued naturalist for decades (Wallace 1867, Cott 1940) and continues 

to fuel research questions on animal coloration (Stevens and Merilaita 2009). Animals across 

taxa have evolved various forms of camouflage to prevent predation or facilitate it. 

For animals whose camouflage changes to match the local or seasonal environment, the 

time it takes to change color varies. For example, some animals such as cephalopods can change 

color in seconds, whereas snowshoe hares (Lepus americanus) can take weeks to change color. 

Snowshoe hares are one of approximately 21 animals that undergo seasonal changes in coat color 

to match snow (Mills et al. 2018, Zimova et al. 2018). However, as the climate warms and snow 

duration decreases animals in winter white coats become conspicuous on snowless ground, 

leading to a phenological mismatch between the animal’s color change and the background it is 

evolved to match (Mills et al. 2013). Furthermore, there are fitness cost to camouflage mismatch, 

as camouflaged mismatched snowshoe hares have increased mortality compared to camouflaged 

snowshoe hares (Zimova et al. 2016). 

Natural selection has shaped winter coat color to match local snow duration (Mills et al. 

2018). For instance, across species there are clines in winter white coat color based on snow 

duration and ephemerality (Mills et al. 2018). In snowshoe hares, snow can affect the initiation 

and rate of the coat color molt (Kumar 2015). 

Given the adaptive value of seasonal camouflage against snow and the effect of snow on 

the coat color molt (Kumar 2015), one may predict that co-occurring species subjected to the 

same environmental conditions should share convergent molt phenology. Animals in different 
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trophic levels, however, such as snowshoe hares and weasels have different selective pressures 

that may affect their phenology and winter coat color (Davis et al. 2019). We are aware of only 

one study that has investigated the phenology of sympatric coat color changing species (Hewson 

1957). 

  Overall, this thesis examines phenology of sympatric coat color changing species, 

elucidating interspecific variation in the phenology of a trait that is directly linked to climate 

change. As the climate warms and snow regimes change, species specific differences in coat 

color phenology may affect the capacity of different seasonal coat color species to persist. 

Adaptation is an additional way animals may persist amidst climate change. One route of 

adaptation is through phenotypic plasticity, a common phenomenon in which a genotype 

produces more than one phenotype in response to various environmental cues (Atkin et al. 2005, 

Turcotte and Levine 2016). Various biotic and abiotic cues can induce phenotypic plasticity 

(Turcotte and Levine 2016). For example, two abiotic factors that vary seasonally, temperature 

and light influence the number of eggs that enter diapause in annual fish (Furness 2015). Here 

we investigate the effect of snow and temperature on coat color molt.  

In chapter 1 of my thesis I quantify coat color phenology of sympatric species in 

Montana: snowshoe hares, short-tailed weasels (Mustela erminea), and long-tailed weasels 

(Mustela frenata). At our study site in Montana, all animals molt white. Therefore, I explore how 

snow and temperature affect the phenology (timing and rate) of the fall and spring coat color 

molts for each species. In West Virginia, where snow duration is transient, winter coat color 

phenology of sympatric snowshoe hares, long-tailed weasels and least weasels (Mustela nivalis) 

has diverged. In chapter 2 of my thesis we use a combination of field methods to discover that 

snowshoe hares molt white while both weasel species remain brown in winter in West Virginia, 



3 
 

illustrating an interspecific polymorphic response in winter coloration among sympatric species. 

Chapter 1 of this thesis may be used as a model of phenotypic plasticity in coat color phenology 

of sympatric species in areas with regular annual snowfall. Chapter 2 of my thesis, however, 

where snow is transient may provide a glimpse of what the future holds for coat color changing 

species, as the winter coat color has diverged between species.  

In addition to my main chapters on coat color phenology, I have been involved in a 

number of other projects that are in various stages of progress. One of these includes a 

collaboration within our lab to quantify the accuracy of coat color scoring from remote camera 

photos, an innovative method that will allow quantification of coat color phenology, mismatch, 

and potential adaptation across species globally (Appendix A). I also planned to quantify 

mortality cost of camouflage mismatch in weasels. Weasels, however, are elusive predators that 

are difficult to study in the field and I was unable to identify individual weasels or record 

predation events from remote camera photos. Therefore, Eben Sargent, an engineer, and I 

developed a device that mimics weasels’ rapid movement using brown and white short-tailed 

weasel pelts on snowy and non-snowy backgrounds to quantify mortality cost. After six months 

of field testing we developed a prototype, the Waltzing Weasel, and even photographed a 

predation event (Appendix B). We plan to continue this project as a senior thesis to an 

undergraduate student in the wildlife program. Finally, I contributed to a group project within the 

Mills lab that we published in the journal Science (Mills et al. 2018). Although I do not include 

Mills et al. (2018) as an appendix, our results fall within the conceptual umbrella of my thesis. In 

Mills et al. (2018) we georeferenced 2713 samples of known winter white coat color, across 

eight species to identify geographic clines, including regions of all brown winter morphs, all 
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white winter morphs, and polymorphic regions with sympatric winter brown and winter white 

individuals (Mills et al. 2018).  

 This research, which constitutes my thesis, reflects the work of many. Therefore, I use 

the collective “we” throughout the thesis.  
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CHAPTER 2 
 

DIFFERENCES IN SEASONAL COAT COLOR PHENOLOGY FOR SYMPATRIC 

SPECIES ACROSS TROPHIC LEVELS 

 

ABSTRACT 

Seasonal coat color is a convergent trait providing camouflage for species across taxa.  

We show that details of coat color phenology differ across sympatric snowshoe hares (Lepus 

americanus) and short-tailed weasels (Mustela erminea). We detected species specific 

differences in the rate of the coat color molt, while molt initiation dates were similar across 

species. Furthermore, the rate of the coat color molt for short-tailed weasel’s varied, with faster 

molts in the fall compared to spring. We also found that colder temperature and more snow 

increase the probability that snowshoe hares and short-tailed weasels are white, whereas warmer 

temperature and less snow increase the probability that each species is brown. Our results 

highlight phenotypic plasticity in the rate of the coat color molt between sympatric short-tailed 

weasels and snowshoe hares. As climate-induced mismatch increases, persistence of coat color 

changing species depends on adaptation via natural selection on molt phenology.  
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INTRODUCTION 

Seasonal changes in the environment shape the evolution of animal phenology (i.e. 

timing of biological events) (Gwinner 1973, Stenseth and Mysterud 2002). Many animals in 

northern latitudes have evolved phenologic traits to cope with highly seasonal environments 

(Blix 2016), including hibernation, seasonal migration, and the seasonal coat color molt. 

As the climate warms and environments change rapidly, however, phenologies do not 

always keep pace, resulting in a phenological mismatch (Visser and Both 2005, Mills et al. 

2013). For example, the date of egg laying in the great tit (Parus major) has not advanced over a 

23 year period (Visser et al. 1998). However, the average spring temperature over the 23 year 

period has increased, advancing both vegetation phenology and the abundance of great tits prey 

resulting in a phenological mismatch between food requirement versus availability (Visser et al. 

1998). If and how animals adapt amidst rapid environmental change is of utmost importance 

given climate models predict changes over the next century (Thomas et al. 2004, Urban 2015, 

Mills et al. 2018).  

One route of adaptation is through phenotypic plasticity, the ability of a genotype to 

produce different phenotypes under different environmental conditions (Atkin et al. 2005, Fusco 

and Minelli 2010, Turcotte and Levine 2016). Various biotic and abiotic cues can induce 

phenotypic plasticity (Turcotte and Levine 2016). For instance, two abiotic factors that vary 

seasonally, temperature and light, influence the number of eggs that enter diapause in killifish 

(Nothobranchius furzeri) (Furness 2015).  

Seasonal coat color molt is a visually striking trait directly linked to climate change 

(Mills et al. 2013, 2018). Approximately 21 species of mammals and birds undergo seasonal 

changes in coloration, molting white in winter to match snow (Mills et al. 2018, Zimova et al. 
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2018). Initiation of the coat color molt is driven by photoperiod (Lyman 1943), while 

temperature and snow appear to modify the initiation and rate (Rothschild 1942, Rust 1962, 

Zimova et al. 2014, Zimova et al. 2018, Kumar 2015).  

Temperature has been shown to affect the rate of the coat color molt across species both 

in the lab (Rothschild 1942, Rust 1962) and in the field (Watson 1963, Flux 1970, Zimova et al. 

2014, Kumar 2015). For example, once the fall brown to white molt initiated, the rate of 

completion of the fall molt in captive short-tailed weasels (Mustela erminea) was affected by 

experimental temperature treatments (Rothschild 1942). In spring, warm temperatures can 

accelerate the white to brown molt in snowshoe hares (Lepus americanus) (Zimova et al. 2014) 

and short-tailed weasels (Rothschild 1942).  

The seasonal coat color trait is shaped by natural selection to track snow duration (Hall 

1951, Hewson and Watson 1979, Zimova et al. 2014, Mills et al. 2018). For example, the most 

important covariates in a global model that predicted the probability of a coat color changing 

individual being white were snow cover duration and two climate variables affecting snow 

seasonality and transience (Mills et al. 2018).  

Because snow and temperature are tightly correlated, most field studies have considered 

both factors together. For example, individuals monitored over multiple years molted slower in 

snowier and colder springs [mountain hare (Lepus timidus) (Watson 1963, Flux 1970, Clinging 

1982), snowshoe hare (Zimova et al. 2014), and rock ptarmigan (Lagopus muta) (Watson 1973)]. 

However, Kumar (2015) successfully disentangled the effect of snow from temperature and 

found direct effects of snow on molt initiation and rate in snowshoe hares.  

As the climate continues to warm, white animals become conspicuous against snowless 

backgrounds (snowshoe hares; Mills et al. 2013, least weasels (Mustela nivalis); Atmeh et al. 
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2018) and experience increased mortality (Zimova et al. 2016, Wilson et al. 2018). In the 

absence of an adaptive response, mortality costs could result in strong population declines by the 

end of the century (Zimova et al. 2016) and have already contributed to recent range contractions 

for snowshoe hares (Burt et al. 2016, Diefenbach et al. 2016, Sultaire et al. 2016). 

Adaptation can occur via natural selection (Vander Wall et al. 2013, Mills et al. 2018), 

behavioral plasticity (Zimova et al. 2014, Kumar 2015) or by phenotypic plasticity (Scoville and 

Pfrender 2010). The winter color morph (brown versus white) is determined by genetic variation 

at a single gene (Jones et al. 2018), making the coat color trait subject to selection. Camouflage 

mismatched snowshoe hares, however, show no behavioral plasticity (Zimova et al. 2014, Kumar 

2015). Despite the influence of photoperiod on the initiation of the coat color molt, snowshoe 

hares show some phenotypic plasticity to adjust coat color phenology in response primarily to 

snow (Zimova et al. 2014, Kumar 2015). However, phenotypic plasticity in other coat color 

changing species has rarely been investigated (but see Hewson 1973 for ptarmigan).  

Given the adaptive value of seasonal camouflage against snow, one may predict that co-

occurring species subjected to the same environmental conditions should share convergent coat 

color phenology (i.e. initiation date, rate of color change). Abiotic factors such as snow and 

temperature may have a similar effect on coat color phenology of sympatric species. 

Animals in different trophic levels, however, have different selective pressures that could 

affect coat color phenology. Specifically, different selective pressures may result in differences 

in the initiation and rate of the molt, as well as winter coat color (Davis et al. 2019). Weasels, for 

example, have different life-history traits compared to snowshoe hares (i.e. weasels – have high 

metabolism, are both predator and prey, use tunnels and the subnivean; snowshoe hares – have 

lower metabolism, are a prey animal, live above ground) (Brown and Lasiewski 1972, King and 
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Powell 2007, Zub et al. 2009, Zub et al. 2011). These life history differences may also affect the 

role of snow and temperature in driving plasticity in the molt phenology. 

Although many studies have quantified coat color phenology of a single species 

[snowshoe hares (Mills et al. 2013, Zimova et al. 2014, 2016, Kumar 2015), least weasels 

(Atmeh et al. 2018), Arctic fox (Vulpes lagopus) (Moberg 2017), and ptarmigan (Lagopus sp.) 

(Montgomerie et al. 2001)] only one study has investigated sympatric species, finding that rock 

ptarmigan and mountain hare have similar month of initiation and rate of the coat color molt 

(Hewson 1958).  

The central aim of this study is to quantify coat color phenology of sympatric snowshoe 

hares, long-tailed weasels (Mustela frenata), and short-tailed weasels. Specifically, our research 

questions are: do sympatric species exhibit the same seasonal coat color phenologies, and how 

does snow and temperature affect the coat color molt for each species? We predicted that the rate 

of both the weasel and snowshoe hare coat color molt would be accelerated by colder 

temperatures in the fall and warmer temperature in the spring. Given strong selection for 

camouflage against snow, we also predict that the initiation of the weasel and snowshoe hare 

coat color molt should change every year to exactly match when snow arrives. Alternatively, 

differences in the rate of the molt between weasels and hares could be due to the life history 

differences.  

Coat color phenology in snowshoe hares has been estimated by tracking and 

photographing radio-collared animals on a weekly basis (Mills et al. 2013, Zimova et al. 2014, 

2016). However, such approaches are not easily applied to weasels. Therefore, we used remote-

cameras to photograph and quantify phenology of all sympatric coat color changing species. In 

so doing, our study also adds monitoring of coat color phenology to the list of ecological 
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questions that can be evaluated by remote cameras (e.g. animal activity (Rowcliffe et al. 2014), 

species diversity (Steenweg et al. 2017), and density (Villette et al. 2017). 

METHODS 

i. STUDY SITE 

We quantified coat color phenology in a 24-km2 area referred to as Richmond Ridge (Lat. 

= 47.32822°, Long. = -113.53244°) on Lolo National Forest in Seeley Lake, Montana (for study 

area description see Griffin et al. 2005). Richmond Ridge is part of the Swan Range in a 

temperate boreal coniferous forest where dominant tree species include Western Larch (Larix 

occidentalis), Douglas-Fir (Pseudotsuga menziesii), Subalpine-Fir (Abies lasiocarpa), Lodgepole 

Pine (Pinus contorta), Ponderosa Pine (Pinus ponderosa) and Engelmann Spruce (Picea 

engelmannii). Common predators of snowshoe hares and weasels in the area include lynx (Lynx 

canadensis), bobcats (Lynx rufus), coyotes (Canis latrans), red foxes (Vulpes vulpes), American 

martens (Martes americana), golden eagles (Aquila chryseatos), great horned owls (Bubo 

virginianus), barred owls (Strix varia), northern goshawks (Accipiter gentilis), and red-tailed 

hawks (Buteo jamaicensis). 

ii. REMOTE CAMERAS 

Field work took place each fall (September – December) and spring (February – June) 

from fall 2016 – spring 2018. The number of deployed remote cameras ranged from 23 in fall 

2016 to 57 in spring 2018. To reduce pseudo-replicating estimates of the same individuals’ coat 

color phenology, we used a 350 meter spacing of cameras derived from home range estimates for 

long-tailed and short-tailed weasels (King and Powell 2007). At a camera location, we 
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opportunistically placed cameras in areas with coarse woody debris, a habitat feature favored by 

a primary prey species, red-backed voles (Myodes gapperi) (Ucitel 2002). 

Weasels are active predators with erratic movement patterns, making them difficult to 

photograph. Therefore, at each remote camera site, we placed a scent lure (i.e. Cavens Gusto 

scent lure) and bait (i.e. beef liver) in a 4” corrugated irrigation tube to attract and keep weasels 

in the remote cameras detection zone (i.e. the area in front of the remote camera that detects 

movement to trigger photo burst). Because the scent lure also attracted snowshoe hares we could 

record phenology of both species at the same cameras.  

Cameras were mounted on trees at knee height, perpendicular to and aimed downward 

toward the bait tube. Over the duration of our four field seasons, we deployed a variety of 

camera models including: Reconyx PC900 Hyperfire Professional infrared camera, Reconyx 

PC850 Hyperfire Pro White Flash camera, Reconyx Ultrafire XR6, and the Browning Dark OPS 

940. All camera settings were set to the fastest trigger speed possible per model (e.g. 5 picture 

rapid fire, 5 second delay between pictures). 

iii. COAT COLOR PHENOLOGY 

We adapted protocols used for snowshoe hare coat color phenology (Mills et al. 2013, 

Kumar 2015, Zimova et al. 2016) for weasels. The pattern of the weasel coat color molt (i.e. 

beginning on the belly and ending on the back in the fall and reversed in the spring) is similar for 

both long-tailed and short-tailed weasels (van Soest and van Bree 1969, King 1979, King and 

Moody 1982, Zimova et al. 2018). Both long-tailed and short-tailed weasels have a black tip at 

the end of their tail that remains black year round (King and Powell 2007), which we omitted 

from measurements of coat color phenology. 
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Photos of both species were uploaded into Microsoft PowerPoint, with date information 

deleted to remove any expectancy bias (Mills and Knowlton 1989) from estimating coat color 

with knowledge of the expected coat color based on date. A single observer (BD) quantified coat 

color of each photographed animal. Every animal received a score of proportion white (i.e. 0, 

0.05, 0.2, 0.4, 0.6, 0.8, 0.95, 1 white). Next, in Program R (version 3.5.3, R Development Core 

Team 2019) we binned all animals into three categories of proportion white (i.e. 0 – 0.05 = 

brown, 0.06 – 0.94 = molting, and 0.95 – 1 = white).  

iv. STATISTICAL ANALYSIS 

Snowshoe hares and weasels were not individually identifiable and often remained near 

the bait tube for hundreds of consecutive images. Therefore, to reduce pseudo-replicating the 

same individual’s coat color phenology, we treated as a single independent detection all 

consecutive photos of an individual until it left the camera’s frame for at least one intervening 

picture. 

We investigated the effect of two covariates (i.e. snow and temperature) on coat color 

phenology. We used temperature data (i.e. daily average temperature) and daily snow data (i.e. 

snow water equivalent) from a SNOTEL site (Kraft Creek, Lat. = 47.42750°, Long. = -

113.77527°) approximately 21 kilometers away. The data from all cameras that detected weasels 

and snowshoe hares was strongly correlated with the SNOTEL site for both snow presence (phi 

coefficient = 0.85) and temperature data (phi coefficient = 0.83). 

Because we could not distinguish individual animals and animals were not detected every 

day, we used a generalized linear model in a Bayesian framework to determine probability of 

being white for each species (using an R package we developed; [CamoMismatch]). We used a 

multinomial model to predict the population level average daily coat color phenology for each 
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species. Next, we used daily predictions of percent white to build a time series of the coat color 

molt for each species over four seasons. The model was fit with Markov Chain Monte Carlo 

(MCMC) in R2Jags using three chains of 200,000 iterations with the first 100,000 being 

discarded as burn-ins. The Gelman-Rubin statistic was used to indicate chain convergence (�̂� ≤ 

1.1).  

RESULTS 

i. COAT COLOR PHENOLOGY 

Snowshoe hares and short-tailed weasels showed differences in coat color phenology 

(Figure 1). For all seasons, short-tailed weasels molted faster and completed the molt earlier than 

snowshoe hares (Table 2; results from fall 2017 are uncertain and are further being analyzed). In 

addition, short-tailed weasels molted faster in the fall than in the spring. Long-tailed weasel coat 

color phenology could not be estimated due to low sample size.   

ii. TEMPERATURE AND SNOW 

Both snow and temperature affected snowshoe hare and short-tailed weasel coat color 

phenology (Table 3). Over all seasons, colder temperature and greater snowfall increase the 

probability that both snowshoe hares and short-tailed weasels were white (Table 3). 

DISCUSSION  

Most coat color research has focused on the phenology of a single species, such as 

snowshoe hares (Mills et al. 2013, Zimova et al. 2014, Kumar 2015), least weasels (Atmeh et al. 

2018), Arctic fox (Moberg 2017), and ptarmigan (Montgomerie et al. 2001). Hewson (1958) 
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compared coat color phenology of sympatric rock ptarmigan and mountain hares in Scotland and 

determined that the timing and duration of the coat color molt was similar.  

Likewise, studies of mechanisms driving plasticity in molt phenology (such as snow and 

temperature) have also been species-specific [mountain  hare (Watson 1963, Flux 1970, Jackes 

and Watson 1975, Clinging 1982), snowshoe hare (Zimova et al. 2014, Kumar 2015), short-

tailed weasel (Rothschild 1942, Rust 1962), Siberian hamster (Phodopus sungorus)(Larkin et al. 

2001), collared  lemming (Dicrostonyx groenlandicus) (Degerbøl and Møhl-Hansen, 1943)], and 

birds [rock ptarmigan (Salomonsen 1939, Watson 1973)]. Our study is the first to consider under 

a unified framework the effects of both snow and temperature for two sympatric color changing 

species.  

 We document coat color phenology of both weasels and snowshoe hares. We found that 

snowshoe hares and short-tailed weasels had similar dates of initiation of seasonal color molts, 

but species specific differences in the rate of the molt. Furthermore, we found seasonal 

differences in the rate of the coat color molt for short-tailed weasels, with faster molts in the fall 

compared to spring. We also found that colder temperature and more snow increase probability 

that snowshoe hares and short-tailed weasels are white, whereas warmer temperature and less 

snow increase probability that each species is brown. 

Our investigation of convergence in coat color phenology rests on a strong understanding 

of how related traits evolve through different lineages (Zimmer and Emlen 2012). Understanding 

how traits converge in different lineages can reveal how each lineage reached a common 

phenotype, and can uncover various solutions to different stressors within the constraints of 

phylogeny. Apes and corvids, for instance, have repeatedly evolved the cognitive ability to solve 

problems, leading to convergent evolution of intelligence (Emery and Clayton. 2004). Similar 
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auditory biochemical mechanisms evolved in two phylogenetically remote organisms, katydids 

and mammals, despite different physiologies (Montealegre-Z et al. 2012). At the molecular level, 

different light sensitive opsin proteins arose in bacteria even though they are nonhomologous 

(Larusso et al. 2008). As a final example, serine protease venoms converged on nearly identical 

protein structures in spite of evolving independently in mammals and lizards (Brodie 2010). 

Seasonal coat color is a convergent trait providing camouflage for species across taxa 

from the Siberian hamster to the Arctic fox (Zimova et al. 2018). The coat color trait has evolved 

to match a seasonally transient snowy background (Mills et al. 2018). 

Despite general convergence of the trait, we have shown that details of the coat color 

phenology can differ across sympatric species. The differences in the rate of the molt between 

short-tailed weasels and snowshoe hares could be due to species-specific energetic constraints. 

For instance, short-tailed weasels are long and thin, a morphology well-suited to hunt and move 

in small spaces. Although both species endure a metabolic cost of living in a cold environment 

(Brown and Lasiewksi 1972, Sheriff et al. 2009), the metabolic cost on short-tailed weasels may 

be more severe than snowshoe hares (Brown and Lasiewksi 1972). For example, the metabolism 

of cold stressed weasels is 50 – 100% greater than that of similar sized mammals (Brown and 

Lasiewksi 1972). Least weasels (Mustela nivalis) account for changes in temperature by 

adjusting their activity patterns (Zub et al. 2009). Maintaining a relatively constant energy output 

across varying temperatures exemplifies a metabolic niche of a small mammal having extremely 

high energy expenditures primarily driven by ambient temperature (Zub et al. 2009). Maintaining 

the metabolic niche while balancing activity patterns, temperature, and possibly the coat color 

molt may require weasels to molt faster than snowshoe hares.  
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 Our result that the rate of the short-tailed weasel molt occurs faster in fall than spring 

aligns with previous findings (Rothschild 1942). The seasonal differences in the rate of the short-

tailed weasel molt may be due to reproduction. Short-tailed weasels breed in the summer, 

however, implantation is delayed until the following spring. In spring, once photoperiod changes, 

the hormone prolactin triggers both implantation and initiation of the coat color molt (Rust 1965, 

Zimova et al. 2018).  

The connection between reproduction and the coat color molt may reduce potential for 

phenotypic plasticity in the spring, with greater potential for phenotypic plasticity in the fall. 

However, snowshoe hares show the opposite, with phenotypic plasticity in the rate of the spring 

but not the fall coat color molt (Zimova et al. 2014). 

 Climate models predict drastic changes in temperature and snow regimes over the next 

century, with special emphasis on decreasing winter snow duration (Thomas et al. 2004, Urban 

2015, Mills et al. 2018). Studying how plastic a trait is in response to a changing climate is one 

of the biggest challenges we face. Our results highlight phenotypic plasticity in the rate of the 

coat color molt between sympatric short-tailed weasels and snowshoe hares.  As climate-induced 

mismatch increases, persistence of coat color changing species depends on adaptation via natural 

selection on molt phenology.  
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Figure 1. Snowshoe hare and short-tailed weasel coat color phenology from fall 2016 – spring 

2018. Each line is the daily probability of how white the population of each species is through 

time. A.) The fall 2016 coat color molt progresses from brown to white. B.) The spring 2017 coat 

color molt progresses from white to brown. C.) The fall 2017 coat color molt progresses from 

brown to white. D.) The spring 2018 coat color molt progresses from white to brown. 
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Table 1. Number of independent detections of each species per season.  

 

 Fall 2016 Spring 2017 Fall 2017 Spring 2018 

Snowshoe Hare 33 699 915 1586 

Short-tailed Weasel 36 15 405 646 

Long-tailed Weasel 0 3 36 2 

 

 

 

 

 

 

Table 2. The initiation, rate, and completion date of the seasonal coat color molt for each species 

each season. * indicates low sample size.  

 

 LTW SSH STW 

Fall 16 Initiation * Oct 8 Oct 2 

Fall 16 Rate * 34 days 19 days 

Fall 16 Completion * Nov 11 Oct 21 

    

Spring 17 Initiation * Apr 8 Apr 4 

Spring 17 Rate * 45 days 28 days 

Spring17 Completion * May 23 May 2 

    

Fall 17 Initiation Oct 25 Sep 24 Oct 8 

Fall 17 Rate 18 days 60 days 20 days 

Fall 17 Completion Nov 12 Nov 23 Oct 28 

    

Spring 18 Initiation * Apr 15 Apr 8 

Spring 18 Rate * 41 days 37 days 

Spring 18 Completion * May 26 May 15 
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Table 3. The effect of snow and temperature on short-tailed weasel and snowshoe hare coat 

color molt. Colder temperature and more snow increase probability that snowshoe hares and 

short-tailed weasels are white, whereas warmer temperature and less snow increase probability 

that each species is brown.   

Species Season Beta Coefficient  95% CI Interpretation 

 

Short-tailed 

Weasel 

 

 

Fall 2016 

 

βTemp (5.172) 

 

1.660 – 10.113 

Probability of 

being in brown 

category  

increases as temp 

increases 

  

Fall 2016 

 

βSnow (9.245) 

 

0.637 – 23.456 

Probability of 

being in white 

category 

increases as snow 

increases 

  

Spring 2017 

 

βSnow (-15.526) 

 

-29.655 – -

4.465 

Probability of 

being brown 

category 

decreases as snow 

increases 

  

Spring 2017 

 

βSnow (14.105) 

 

3.981 – 27.825 

Probability of 

being in white 

category 

increases as snow 

increases 

  

Fall 2017 

 

βSnow (5.262) 

 

1.652 – 11.567 

Probability of 

being in white 

category 

increases as snow 

increases 

  

Fall 2017 

 

βTemp (-1.745) 

 

-2.584 – -0.942 

Probability of 

being in white 

category 

decreases as temp 

increases 

  

Spring 2018 

 

βSnow (-8.386) 

 

-13.449 – -

4.728 

Probability of 

being in brown 

category 

decreases as snow 

increases 

  

Spring 2018 

 

βSnow (-1.526) 

 

-2.808 – -0.354 

Probability of 

being in white 

category 

decreases as snow 

increases 
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Spring 2018 

 

βTemp (-3.142) 

 

-4.224 – -2.141 

Probability of 

being in white 

category 

decreases as temp 

increases  

 

Snowshoe Hare 

 

 

Fall 2016 

 

βTemp (2.254) 

 

0.799 – 4.235 

Probability of 

being in brown 

category 

increases as temp 

increases 

 

 

 

Fall 2016 

 

βSnow (9.829) 

 

1.525 – 23.786 

 

Probability of 

being in white 

category 

increases as snow 

increases 

  

Spring 2017 

 

βSnow (-8.996) 

 

-15.343 – -

4.250 

Probability of 

being in brown 

category 

decreases as snow 

increases. 

  

Spring 2017 

 

βSnow (4.213) 

 

3.430 – 5.118 

Probability of 

being in white 

category 

increases as snow 

increases.  

  

Fall 2017 

 

βSnow (-2.181) 

 

-3.042 – -1.456 

Probability of 

being in brown 

category 

decreases as snow 

increases 

  

Fall 2017 

 

βSnow (2.396) 

 

2.078 – 2.736 

Probability of 

being in white 

category 

increases as snow 

increases 

  

Fall 2017 

 

βTemp (0.367) 

 

0.157 – 0.587 

Probability of 

being in brown 

category 

increases as temp 

increases 

  

Spring 2018 

 

βSnow (-2.297) 

 

-2.889 – -1.755 

Probability of 

being brown 

decreases as snow 

increases 

  

Spring 2018 

 

βSnow (1.547) 

 

1.031 – 2.103 

Probability of 

being white 
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increases as snow 

increases 

 Spring 2018  

βTemp (-2.521) 

 

-3.070 – -2.001 

Probability of 

being in white 

category 

decreases as temp 

increases  
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Abstract. Across the globe, more than 21 species undergo seasonal changes in coloration, molting white 

in winter to become camouflaged against snow. Given the adaptive value of seasonal camouflage against 

local snow duration, one might predict that sympatric coat color changing species would have similar  

winter coat color. This hypothesis, however, contrasts with anecdotal evidence and modeling results that 

predict sympatric winter white and winter brown species in some areas with transient snow cover. In one 

such area, West Virginia, we document coat color phenology between three sympatric species: snowshoe 

hares (Lepus americanus), long-tailed weasels (Mustela frenata), and least weasels (Mustela nivalis). Using a 

combination of field methods, we document and quantify each species’ winter coat color, illustrating an 

interspecific polymorphic response in winter coloration among sympatric winter white snowshoe hares and 

winter brown weasels. We then hypothesize what forces drive the interspecific differences between 

snowshoe hare and weasel winter coloration, highlighting areas of focus for future seasonal coat color 

research. 
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INTRODUCTION 

Strong selection for camouflage is a major dri- 

ver of animal coloration (Caro 2005). Across taxa, 

animals have evolved different camouflage strate- 

gies in response to the selective pressure of preda- 

tion (Stevens and Merilaita 2009). In particular, 

many species camouflage themselves by changing 

their color to resemble the surroundings. Color 

change can occur very quickly for some species 

while taking much longer for others. For example, 

some cephalopods can change color in seconds, 

whereas some mustelids take weeks to change 

 
color. These mustelids are part of a group of at 

least 21 species of birds and mammals that 

undergo seasonal changes in coloration, molting 

white in winter to match snow cover, thus reduc- 

ing predation risk from visually hunting predators 

(Zimova et al. 2018). One of the most persistent 

and widespread signals of climate change in the 

northern hemisphere, however, is a reduction in 

the number of days with snow on the ground. As 

snow duration decreases, animals in white winter 

coats become more conspicuous against snowless 

ground, suffering increased mortality (Mills et al. 

2013, Zimova et al. 2016, Wilson et al. 2018). 

http://creativecommons.org/licenses/by/3.0/
mailto:brandon.davis@umontana.edu
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Across the geographic ranges of these seasonal 

coat color changing species, natural selection has 

shaped winter coat color to track the average 

duration and ephemerality of snow, creating 

intraspecific geographic clines that include regions 

of all brown winter morphs, all white winter 

morphs, and polymorphic regions with sympatric 

winter brown and white individuals (Mills et al. 

2018). In snowshoe hares, the winter brown versus 

winter white morph is controlled by genetic varia- 

tion at a single gene (Jones et al. 2018), making 

this an adaptive trait subject to natural selection. 

Given the adaptive value of seasonal camouflage 

against local snow duration and the demonstrated 

direct effect of snow on the color molt (Kumar 

2015), one might predict that sympatric color 

molting species would show similar winter coat 

colors. This hypothesis, however, contrasts with 

anecdotal findings (Hall 1951, Brooks 1955) and 

global spatial modeling results (Mills et al. 2018) 

that predict regions of sympatric winter white and 

winter brown species in areas with transient snow 

cover. In one such purported region, West Vir- 

ginia, we document winter coat color of three coat 

color changing species: snowshoe hares (Lepus 

americanus), long-tailed weasels (Mustela frenata), 

and least weasels (Mustela nivalis) to elucidate 

interspecific color molting patterns of sympatric 

species. 

We used a combination of field methods to 

document winter coat color in snowshoe hares 

and weasels in West Virginia in 2014. We live 

trapped 12 molting snowshoe hares from West 

Virginia to confirm that they molt white in winter 

(Fig. 1), validating historical accounts (Brooks 

1955). Because weasels are notoriously difficult 

to capture in the wild, we used a non- invasive 

sampling framework consisting of remote cameras 

and bait tubes to detect and monitor wea- sels. We 

recorded 31 photographs of long-tailed weasels and 

five of least weasels between Novem- ber and 

February, months when both weasel spe- cies 

should be all or mostly white if they adopt the white 

winter coat. Unlike the winter white snow- shoe 

hares, both long-tailed weasels and least wea- sels 

at our study site were winter brown (Fig. 2). 

Together these figures depict an interspecific poly- 

morphic response in winter coloration among 

sympatric winter white hares and winter brown 

weasels. 

 
 

 

Fig. 1. A snowshoe hare in West Virginia midway through its fall brown to winter white coat color molt on 10 

November 2014. 
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Fig. 2. A brown long-tailed weasel in West Virginia (a) on a snowless brown background on 12 November 

2014 and (b) on a snowy background on 16 November 2014. Photographs were taken at the same location four 

days apart. 

 

Because we could not distinguish individual 

weasels based on photographs, we established 

two criteria to reduce pseudoreplication arising 

from sampling the color molt of the same indi- 

vidual multiple times. Our approach was  derived 

from average weasel movement parame- ters 

across space and time (home range diameter of 

1.5 km; movement rate of five meters/minute; 

Gehring and Swihart 2004). Using these criteria, 

photographs represented different individuals 

when they were separated by (1) more than the 

expected distance moved over time and (2) more 

than an average home range diameter regardless 

of time. Using these criteria, our 36 photographs 

represent a minimum of three winter brown long-

tailed weasels and one winter brown least weasel. 

Our findings support historical accounts of winter 

brown long-tailed weasels (Hall 1951) and winter 

white snowshoe hares (Brooks 1955) in West 

Virginia, as well as modeling results (Mills et al. 

2018). 

If winter coat color has evolved to maintain 

camouflage against local snow conditions, then 

why do snowshoe hares molt white and weasels 
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Fig. 3. Potential forces that drive maintenance of year-round brown coloration or selection for winter white 

coloration. Because snow is present, white would seem to be the preferred winter wardrobe as seen in snowshoe 

hares. Despite seasonal snow cover, however, weasels maintain brown coloration in winter. Dotted arrows depict 

weak/unclear relationship. 

 
 

molt brown in winter in the same population in 

West Virginia (Fig. 3)? One possibility is that one 

of the molts is maladaptive now or in the recent 

past. Alternatively, selective costs and benefits 

may differ between the two species due to 

behavioral or life history differences. For exam- 

ple, weasels may remain brown year-round due 

to lower consequences of staying brown or to 

higher costs of molting white. Snowshoe hares 

spend their days resting in forms moving very 

little and relying on crypsis to avoid detection. 

Weasels, however, move frequently and inhabit 

burrows and subnivean space below snow possi- 

bly decreasing their risk of predation and ulti- 

mately lowering the consequence of staying 

brown. 

Snowshoe hares and weasels also have differ- 

ent reproductive and life history strategies, which 

could affect winter color tradeoffs. For instance, 

snowshoe hares and least weasels both undergo 

direct implantation (i.e., the zygote passes 

through all stages of development with- out any 

detectable pause), whereas in long-tailed weasels 

implantation is delayed for nine to ten months 

until the following spring. In addition, 

 

weasels are born altricial and depend on heavy 

investment by their mothers, whereas snowshoe 

hares are precocial with little to no maternal care 

other than nursing. These differences in breeding 

life history could lead to differences in exposure 

to predation. Also, because hormones regulating 

reproduction simultaneously affect seasonal coat 

color, reproductive differences between species 

may constrain species color molts (Wright 1942, 

Rust 1965, Zimova et al. 2018). 

Coat color changing species are of special 

interest in the context of climate change. A reduc- 

tion in snow duration is one of the strongest pre- 

dicted outcomes of climate change in the 

northern hemisphere (Pederson et al. 2011). A 

rapid reduction in the number of days with snow 

cover would increase the number of days of cam- 

ouflage mismatch if snowshoe hare molt phenol- 

ogy does not track decreases in snowpack 

duration (Mills et al. 2013, Zimova et al. 2014). 

In addition, mismatched snowshoe hares have 

reduced survival, which could lead to a decrease 

in population growth rate in the absence of an 

adaptive response (Zimova et al. 2016). Further- 

more, snowshoe hares have experienced recent 
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range contractions linked to reduced snow dura- 

tion and possibly mismatch related mortality 

(Burt et al. 2016, Diefenbach et al. 2016, Sultaire 

et al. 2016). Range contractions are especially rel- 

evant for hares in West Virginia, the southeastern 

limit of their range. Snowshoe hares exist at a 

very low density in West Virginia and had the 

lowest genetic diversity of any population sam- 

pled in a range-wide snowshoe hare genetic 

analysis (Cheng et al. 2014). 

As climate-induced mismatch increases, per- 

sistence of hares in this region depends on suc- 

cessful adaptation. Although limited plasticity in 

seasonal coat color phenology exists for hares 

(Kumar 2015, Zimova et al. 2018), another possi- 

bility would be to evolve to forego the winter 

white molt entirely, remaining brown year-round 

like weasels in West Virginia. Winter brown 

morphs would be expected to be selectively 

favored over winter white individuals as snow 

duration decreases (Mills et al. 2018). Thus, 

regions with different winter coat color among 

species such as we described here provide an 

excellent opportunity to study how different spe- 

cies respond to similar climate-induced selective 

pressure. 
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APPENDIX A 

Quantifying Coat Color with Cameras 

 

I am involved in a collaboration within our lab to quantify the accuracy of coat color 

scoring from remote camera photos. In addition, we will identify factors affecting accuracy and 

provide general recommendations on how to setup and monitor coat color phenology using 

remote cameras. This study will determine the limitations and applications of remote cameras to 

quantify coat color phenology, mismatch, and potential adaptation across species globally. 

Experiments take place at an outdoor enclosure at the University of Montana Field Research 

Center in Missoula, Montana. We photograph captive snowshoe hares with remote cameras, 

quantify coat color using these photos, and compare estimates to those obtained by visual 

observation. We will finish experiments this summer and plan to submit our manuscript for 

publication in fall 2019.  
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APPENDIX B 

The Waltzing Weasel 

As noted in chapter 1, we wanted to quantify mortality cost of camouflage mismatch in 

weasels. Weasels, however, are elusive predators that are difficult to study in the field and we 

were unable to identify individual weasels or record predation events from remote camera 

photos. Therefore, Eben Sargent, an engineer, and I developed the Waltzing Weasel (Figure 1), a 

cost efficient device (Table 1) that mimics weasels’ rapid movement using brown and white 

short-tailed weasel pelts. The Waltzing Weasel uses two servo motors to move mounted white 

and brown short-tailed weasel (Mustela erminea) pelts in a motion to mimic weasel movement. 

While one weasel pelt is in motion the other pelt is hidden below a platform. We mounted 

remote cameras next to the Waltzing Weasel to capture predation events. When set in the field 

year-round, the Waltzing Weasel presents both weasel color morphs on snow and snow free 

backgrounds, allowing us to quantify predation risk of camouflaged and camouflage mismatched 

weasels (i.e. brown animal on snow, white animal on non-snowy background).  

After six months of field testing we finalized adjustments to the Waltzing Weasel, and 

even photographed a predation event (Figure 2). This project will continue as a senior thesis of 

an undergraduate student in the wildlife program. 
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Figure 1. The Waltzing Weasel, a device that mimics weasels’ rapid movement using brown and 

white short-tailed weasel pelts. A.) Inverted Waltzing Weasel. Brown and white weasel pelts are 

mounted to piano wire that attach to servo motors. B.) Three RC car batteries power the Waltzing 

Weasel. RC batteries and circuit board are stored in dry box.  
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Table 1. Cost of supplies to build Waltzing Weasel. 

 

Supplies Cost 

batteries (x3) 36.00 

servos (x3) 54.00 

arduino 16.00 

voltage converters 12.00 

battery charger 12.00 

servo screws and arms 16.00 

servo and battery connectors 19.00 

piano wire, misc hardware 10.00 

ensclosures 24.00 

Total $199.00 
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Figure 2. The Waltzing Weasel deployed in a snowy field in December. Natural debris 

camouflages the Waltzing Weasel with the background. A photograph of a barred owl (Strix 

varia) attacking the white weasel. 
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APPENDIX C 

Citizen Science Protocol to Detect Weasels 

 

We collaborated with Dr. Roland Kays at North Carolina State University to develop a 

citizen science protocol to detect weasels throughout the east coast. We plan to write a 

manuscript describing our method and submit our manuscript to the Wildlife Bulletin.  

Materials 

1. Game camera 

2. 4-in x 12-in black corrugated drain tube (or something similar) 

3. Drain pipe cap 

4. Caven’s Gusto scent lure  

http://www.minntrapprod.com/Cavens-Gusto/productinfo/GUSTO16/ 

5. Raw chicken livers (or something similar) 

 

Protocol 

1. Find a good place: thick habitat is good, look 

for tracks in the snow, downed logs, rocky 

ledges, and hedgerows are also great places. 

 

2. Place the Tube:  

• Wedge the tube into a tight space (under log, 

between rocks, etc.) 

• Cover remaining tube with debris 

• Put liver in the back 

• Cap one end of the tube 

• 1 tbsp. Scent lure in the front 

 

3. Set Camera, leave for 2-3 weeks  

• Find a tree or stake 8 – 12 feet from the tube’s entrance. 

• Set camera ~3ft up and aim down at the front of the tube, knee height will also work. 

• Use walk-test mode to test aim by moving your hand in front of tube 

• Use high sensitivity, no quite period before pictures, take 3-5 pictures for each trigger, 

with no time between triggers. 

• Be sure the date/time settings are correct. 

• Following the first deployment of the camera you may need to reduce your camera’s 

sensitivity to prevent an overload of mice and voles pictures.    

Tube setup 

http://www.minntrapprod.com/Cavens-Gusto/productinfo/GUSTO16/
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